

DED – Wire (*aka Welding*) Use Case Update NRC Workshop

> Teresa Melfi October 2023

Alternative to Castings and Forgings Faster Delivery

What's in a Name: Additive Manufacturing or Welding?

Additive Manufacturing (Drama)

- 3D printing, DED, WAAM
- Parts are "builds"
- Uses "feedstock"
- "Black Box" machine
- Non-portable procedures
- Parameters still not well known
- Often not fully dense
- NDT techniques not well established
- Properties often not well understood

Welding (Boring)

- GMAW, GTAW, EBW, LW
- Parts are "weld metal"
- Uses welding electrodes
- Welding systems
- Portable procedures
- Established "variables"
- Fully dense weld metals
- NDT techniques well known
- Material properties well known

ICAM2022

Use Case – Weld Metal (DED-Wire) Additive High Temperature, Pressure Retaining Refinery Application*

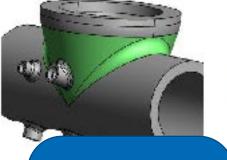
* Full presentations available upon request

Robert Rettew, Chevron Teresa Melfi, Lincoln Electric Ben Schaeffer, Lincoln Electric Matt Sanders, Stress Engineering

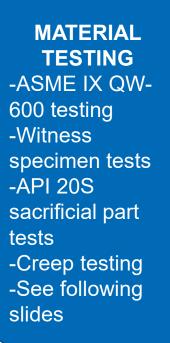
A Refinery 3D Printing Success Story

- In early 2022, a facility turnaround needed replacements for several components in hydrogen furnace service. These components were critical path to restart the facility.
- Service requirements were 1500F and 300psi, with a design lifetime of 20 years.
- Application was for a furnace header. Previous installation was Alloy 800H with Alloy 617 weldments.
- Existing components were damaged and unusable. Replacement using traditional methods estimated ~3 months.
- 3D printing was used to deliver replacements in just under 4 weeks, avoiding a significant shutdown.

Piping components being printed at Lincoln Electric Additive Services



(left) Digital part verification, (right) Final Installation



Workflow of an Urgent WAAM Job

DESIGN/ ENGINEERING REVIEW -Alloy 617 proposed -Some design optimization -FEA analysis (1500°, 300 psi) -Quality Audit -Gather 617 electrode

PART TESTING & INSTALLATION -See following slide for testing -Machine bevels -Install (by welding!!)

Inspection & Testing Summary

- Testing Conducted on Each Piece
 - Dimensional Checks
 - 100% Dye Penetrant surface inspection
 - Phased Array UT of Critical Locations
- Testing Conducted on Witness Coupons
 - Hardness Survey
 - Metallographical Assessment
 - Tensile Testing in multiple orientations
 - Chemistry

- Additional Testing Conducted on First Article
 - Pressure Testing at 6,000psi
 - Tensile Tests at elevated temperature, from wall thickness at various critical locations
 - -Local RT Inspection
 - Creep testing using samples from sacrificial part

Printed Components Testing

- Hydrotest (photo on right)
- Acoustic Emissions
- Phased Array Ultrasonics in critical areas, require special qualification
- Radiographic Inspection of 100% Volumetric
- Dye Penetrant 100% surface

Production Images

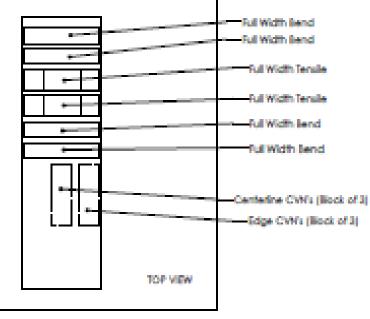
Timeframe Recap

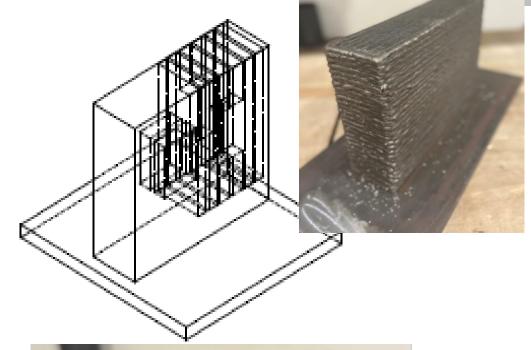
- Week One
 - First Inquiry
 - Meetings & Printability Assessment with Lincoln Electric
 - Determined code case and API guidance
- Week Two
 - Risk Assessment, supported by review of Lincoln and Industry Data
 - Visit to Lincoln, review QA/QC and manufacturing
 - Initial Mechanical Results, Surface Roughness, and FEA model
- Week Three
 - Hydrotest, PAUT, and RT on test piece
 - Grinding & photography of surface indications
- Week Four
 - Delivery of subsequent parts for final machining, inspection, & installation

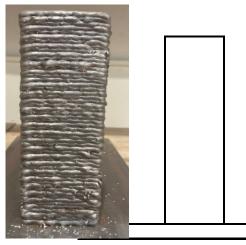
Qualification and Testing Outline

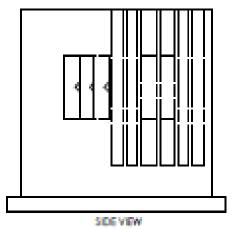
- Qualify the deposition procedure using test pieces -- bracketing essential variables and thickness per ASME Section IX
- Compare results to a corresponding material specification
- Build the part(s), first article (if required) and witness specimens
- Destructively test the witness specimen
- Destructively test first article, if required by the referencing standard
- Non-destructively test the printed parts, as required by the referencing standard

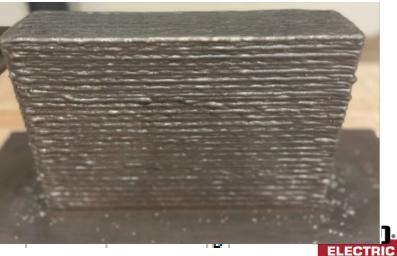
ASME IX QW-600 Bracketed Qualification

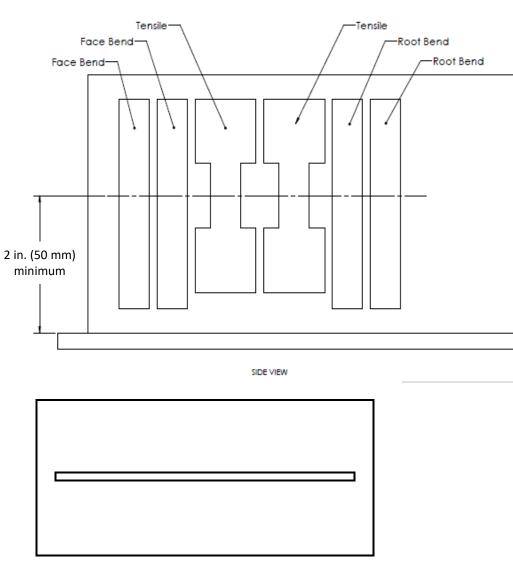

- Must test the highest cooling rate to be used in production.
- Must test the lowest cooling rate to be used in production.
- Must test the thinnest wall to be printed in production.
- Must test the thickest wall to be printed in production.


Codes require validation that all production printing stayed within these qualification bounds and also meet all other variables and rules of Section IX



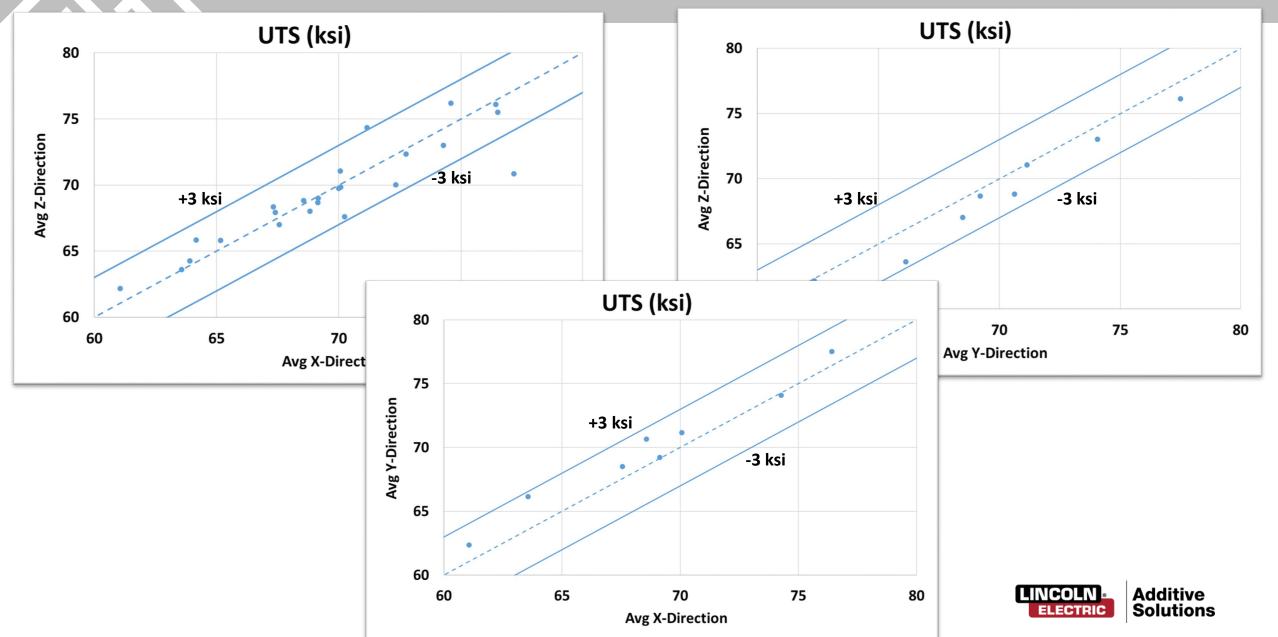

Thick Qualification Specimen Removal





FRONT VIEW

Thin Qualification Specimen Removal


ASME Research Project Execution

- » Nearly 2 Tons of weld metal deposited (72 Walls, 15 Weeks)
- » 384 Tensile Specimens machined and tested
- » 544 CVN Specimens machined and tested

Results: UTS vs. Sample Orientation

Why Isotropy is Important

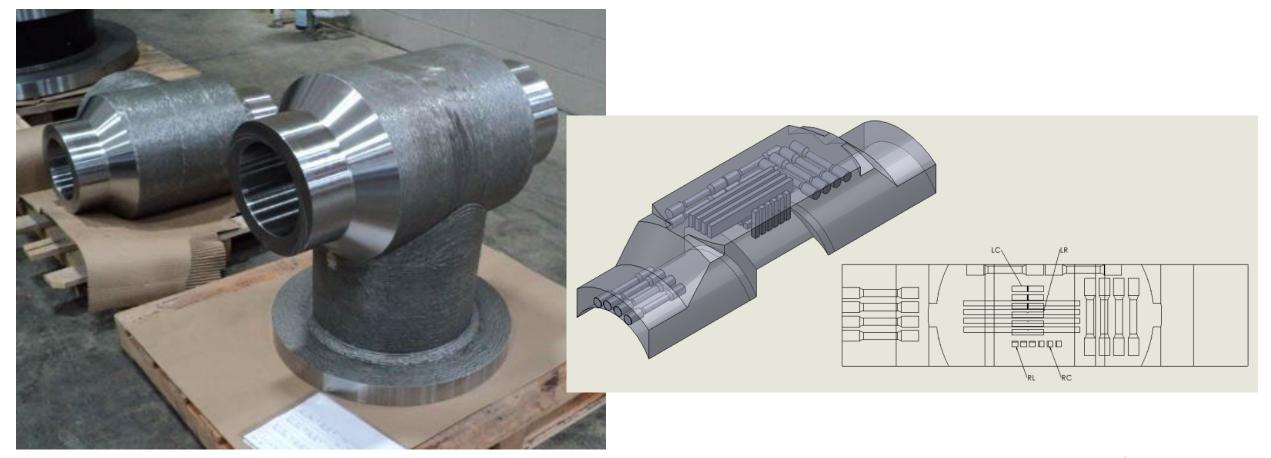
X-Y-Z Build Direction??

Corresponding Material Specification

- Results must meet the requirements of a *corresponding material specification*
- A corresponding material specification is often an ASTM specification for a different product form, for example:
 - A516 gr 70 plate
 - A182 F316L forging
 - A217 WC9 casting

Sets up an "equivalence" approach for use in design and construction standards

Requires validation that all production printing stayed within the qualification bounds



Replacement for 316L Valve Body

Project between Lincoln Electric & EPRI

ER316LSi Qualification

GMAAM PQR Data Summary (welding in accordance with ASME BPVC-IX & Code Case 3020)

Electrode (feedstock) classification is ER316LSi (per AWS A5.9)

Cooling Rate	Welding Transfer Mode	PWHT	# Beads	Layer Width	Wall Thickness	Yield Strength	Ultimate Strength	Elongation	ROA	Side Bends	CVN Toughness	Note
(type)	(type)		(per Layer)	(in)	(type)	(ksi)	(ksi)	(%)	(%)	(Result)	(ft-lbs@-320F)	
						30.6	70.0	68.0	74		85	
			1	0.6	Thin	30.3	68.0	72.0	67	Pass	79	
Slow											92	
<u>siow</u> High Heat Input		Solution Anneal				31.9	79.0	72.0	55		79	
angn neut mput &	Spray	(3 hrs @ 2050F)				32.6	79.0	57.0	42		79	
∝ High Interpass		(STIIS@2050F)	9	3.1	Thick	31.6	79.0	74.0	66	Dace	115	
riigii interpuss			9	5.1	THICK	33.2	79.5	72.0	54	Pass	83	
						31.5	78.0	70.0	62		84	
						30.8	78.0	72.0	62		83	
						32.8	71.5	44.0	64		12	1/4-Size
			1	< 0.3	Thin	32.5	71.0	47.0	67	Pass	14	CVNs
East											11	CVINS
Fast		Solution Anneal				31.4	72.0	30.0	32		63	
Low Heat Input &	Spray	(3 hrs @ 2050F)				31.6	80.5	56.0	33		71	
∝ Low Interpass		(STIIS@2050F)	21	2.1	Thick	32.0	77.0	38.0	44	Dace	78	
Low merpuss			21	2.1	THICK	31.6	80.5	61.0	44	Pass	78	
											69	
											68	

Min	30.3	68.0	30.0	32
Max	33.2	80.5	74.0	74
Average	31.7	75.9	59.5	55

Replacement for 316L Valve Body

ASME IX Qualification

316LSi Printed Valve Body

	Yield Strength	Ultimate Strength	Elongation
	(ksi)	(ksi)	(%)
Min	30.3	68.0	30.0
Max	33.2	80.5	74.0
Average	31.7	75.9	59.5

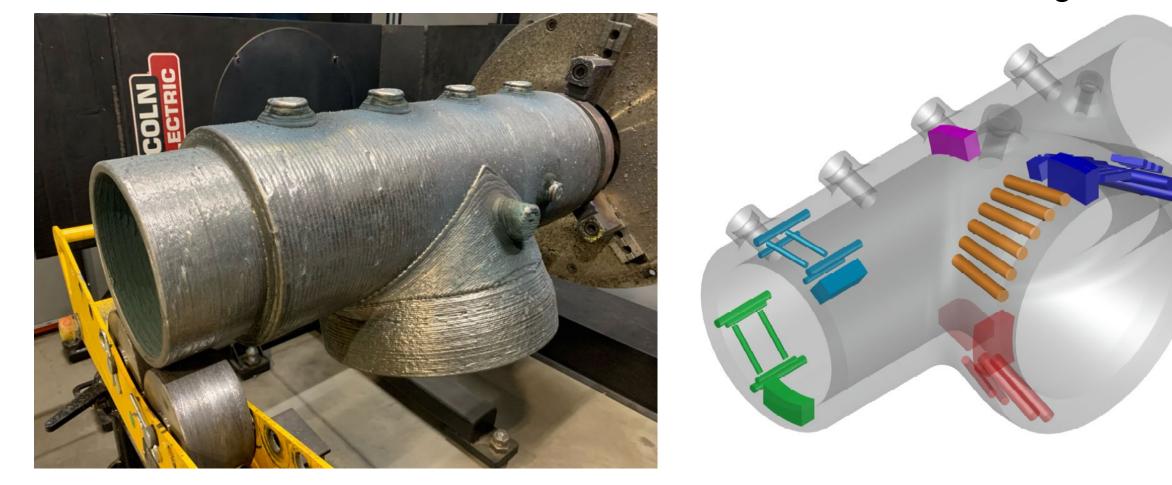

Orientation	Sample ID	Temp. (°F)	Temp. (°C)	UTS (ksi)	UTS (MPa)	YS (ksi)	YS (MPa)	Elong. in 4D (%)
	T16	70	21.1	80.2	553.0	31.3	215.8	67.8
Build	T17	70	21.1	80.2	553.0	32.3	222.7	66.8
Direction, Thin Section	T18	70	21.1	80.2	553.0	31.6	217.9	67.6
	T19	70	21.1	80.1	552.3	32.1	221.3	68.1
Build	T20	70	21.1	81	558.5	33	227.5	67.9
Direction,	T21	70	21.1	81.4	561.2	33	227.5	70
Thick	T22	70	21.1	81.3	560.5	32.6	224.8	66.2
Section	T23	70	21.1	82.2	566.7	32.4	223.4	66.6
	T24	70	21.1	82.2	566.7	35	241.3	60.8
Transverse	T25	70	21.1	34.9	240.6	28	193.1	7
Direction	T26	70	21.1	78.4	540.5	32.8	226.1	38
	T27	70	21.1	82.2	566.7	33.4	230.3	63.4
Transverse,	T28	70	21.1	80.2	553.0	32.9	226.8	58.4
Retest	T29	70	21.1	80.3	553.6	32.9	226.8	56.4

Table 5-8. Tensile Data at Room Temperature for K91W

Replacement for 800HT Furnace Header

First Article Testing

ERNiCrCoMo-1 Qualification (Alloy 617)

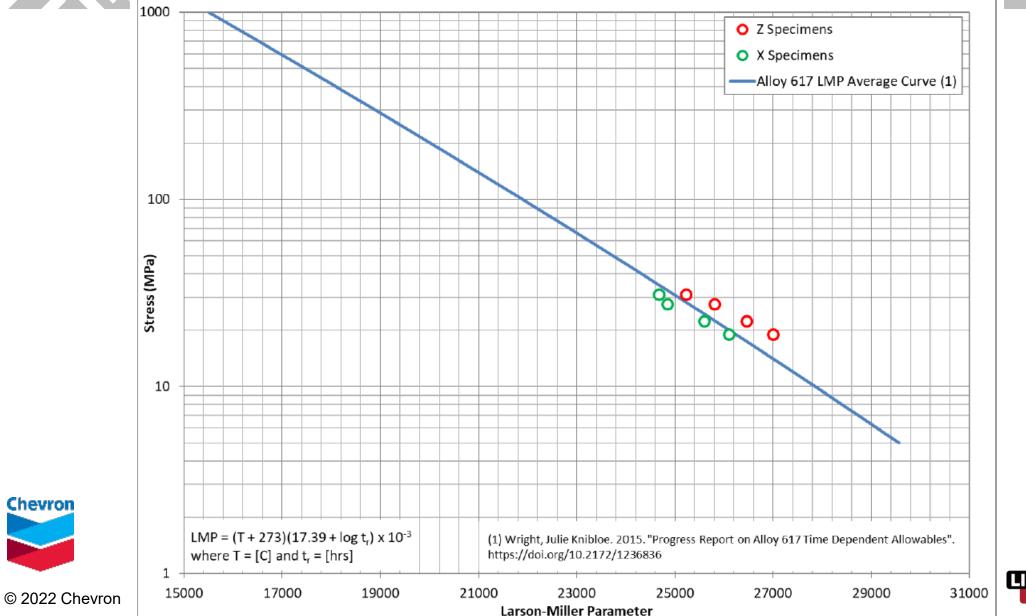
GMAAM PQR Data Summary (welding in accordance with ASME BPVC-IX & Code Case 3020)

Cooling Rate	Welding Transfer Mode	PWHT	# Beads	Layer Width	Wall Thickness	Yield Strength	Ultimate Strength	Elongation	ROA	Side Bends	CVN To	ughness	Note
(type)	(type)		(per Layer)	(in)	(type)	(ksi)	(ksi)	(%)	(%)	(Result)	(ft-lbs@-50F)	(ft-lbs@70F)	
						49.9	99.0	47.0	48		87		
			1	0.8	Thin	51.0	100.0	47.0	49	Pass	98		
Slow											108		
High Heat Input						59.0	103.0	46.0	50			76	
&	Spray	None				60.5	102.0	47.0	50			63	
High Interpass			9	3.9	Thick	58.0	103.0	46.5	44	Pass		73	
ingii interpuss			5	3.5	THICK	58.0	102.0	45.5	48	1 4 3 5		99	
						61.5	104.0	47.5	53			96	
						58.0	103.0	47.5	40			94	
						57.0	96.5	50.0	55		17	17	1/4-Size
			1	< 0.3	Thin	56.0	96.5	54.0	64	Pass	20	17	CVNs
Fast											15	22	CVINS
Low Heat Input						63.5	107.0	56.0	42		94		
&	Spray	None				63.5	98.0	33.0	35		97		
Low Interpass			9	2.2	Thick					Pass	124		
			5	2.2	THEK					1 4 3 5	122		
											120		
											126		

Electrode (feedstock) classification is ERNiCrCoMo-1 (per AWS A5.14)

Min	49.9	96.5	33.0	35
Max	63.5	107.0	56.0	64
Average	58.0	101.2	47.3	48

Printed Replacement for 800HT


ASME IX Qualification

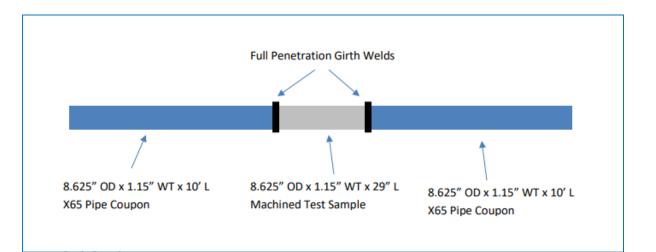
	Yield	Ultimate	Flongation
	Strength	Strength	Elongation
	(ksi)	(ksi)	(%)
Min	49.9	96.5	33.0
Max	63.5	107.0	56.0
Average	58.0	101.2	47.3

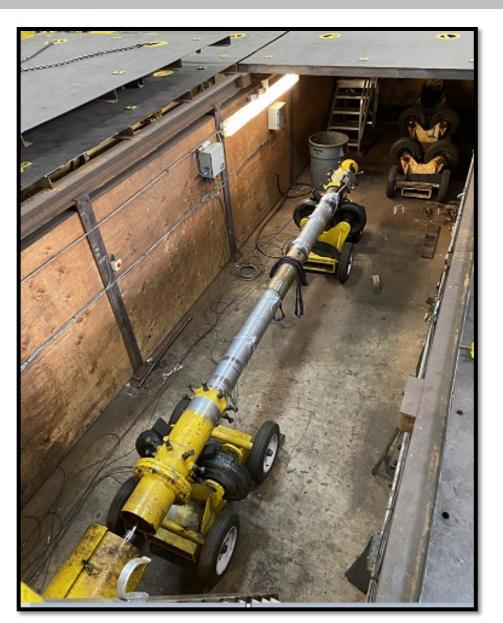
First Article Testing

Orientation	Location	Yield Strength (ksi)	Tensile Strength (ksi)	Elongation (%)
Longitudinal	ID	57.6	102.5	44.8
Longitudinai	1D	55.4	99.9	40.1
I an alterational	OD	65.5	108.7	40.4
Longitudinal	00	66.4	108.7	40.5
Transverse	Mid-wall	60.9	106.1	45.5
	IVIIU-Wall	59.0	102.7	34.9
Transverse	Mid-wall	63.0	107.0	39.9
	wiid-waii	61.6	107.9	37.4
Longitudinal	ID	58.0	101.8	43.1
		58.3	102.2	44.9
	OD	64.3	109.4	42.1
		66.7	108.6	42.5
		60.9	101.8	47.0
Longitudinal	N dial and H	60.4	102.4	48.6
T	Mid-wall	61.0	104.2	44.4
Transverse		61.5	104.7	43.7
La maitrualin e l		60.6	101.1	46.5
Longitudinal		60.5	101.1	46.8
_	Mid-wall	61.4	103.5	40.3
Transverse		62.5	105.4	40.5

Creep Testing – Chevron 617 Parts

Application-based Fatigue Studies


- Georgia Tech Ryan Sherman (USDOT FHWA)
- Printed blocks for material characterization
- Fatigue specimens printed
 - Testing as-printed and fully machined



Other Recent Fatigue Work

- U Mich Pingsha Dong (USDOE)
- Stress Engineering Offshore
- U of Toledo (VHCF / Eaton)
- Private industry

Is it new in pressure retaining applications?

- 1967 Mitsubishi patented a method for construction of cylindrical and spherical pressure vessels entirely out of weld metal.
- 1976 64-ton pressure vessel 216 inches long, 71 inches in diameter and 8 inches thick manufactured from weld metal
- 1978 20 ton steel ring fabricated entirely from weld metal.
- 1980s Shape welding in Germany
- 1980s multiple companies produced large parts and buildups for repair of steam turbines
- 1980s offshore oil and gas used weld metal "buildup" to increase the pressure ratings from 15,000 psi to 20,000 psi
- 1982 1993, approximately 450 steam turbine and 235 utility rotors were rebuilt using weld metal..Hartford has not reported a single failure of a rotor attributable to weld repair since the beginning of the program.
- For details see <u>https://sperkoengineering.com/html/Additive.pdf</u>

Is it new in nuclear applications?

- 1960 Russians produce valve bodies using only weld metal. Used in nuclear facilities in USSR.
- 1998 -- German Nuclear Safety Standards Commission (KTA) allows use of products and components manufactured using "shape welding".
- Shape welding used by Siemens for nozzle openings and flange surfaces
- 1970s CB&I BWR weld metal buildup on bottom head of each reactor to avoid purchase of a forged ring with an integrally forged skirt extension.
- Westinghouse anti-rotation key lugs are produced today from weld metal, eliminating material availability issues, allowing more precision in location and are more easily they ultrasonically examined compared to the prior plates attached with groove welds.
- Inconel weld metal is used to replace bar attaching partition plate in steam generator, which simplifies fabrication and improve Ultrasonic inspection due to grain orientation in the Inconel bar stock.
- Handholds, inspection ports, flange surfaces, nozzle projections and manways produced from weld metal for pressurizers, steam generators and heater bundles
- B&W produced at least one large Inconel elbow entirely from weld metal because of the long lead times for forged high alloy elbows and safe ends. Also produced cylinders, cones, flanges elbows and dished heads by "shape melting" but unsure where or if they were put into service.

For details see <u>https://sperkoengineering.com/html/Additive.pdf</u>

"Weld Metal Buildup" Code Cases

Accepted by the NRC in Regulatory Guide 1.147 with no added restrictions

- N-853 PWR Class 1 Primary Piping Alloy 600 Full Penetration Branch Connection Weld Metal
- Buildup for Material Susceptible to Primary Water Stress Corrosion Cracking
- N-740, Full Structural Dissimilar Metal Weld Overlay for Repair or Mitigation of Class 1, 2, and 3 Items.
- N-653, Full Structural Overlaid Wrought Austenitic Piping Welds
- N-661, Wall Thickness Restoration of Class 2 and 3 Carbon Steel Piping for Raw Water Service
- N-766, Nickel Alloy Reactor Coolant Inlay and Overlay for Mitigation of PWR Full Penetration Circumferential Nickel Alloy Dissimilar Metal Welds in Class 1 Items.
- » For details see https://sperkoengineering.com/html/Additive.pdf

Questions / Discussion

Teresa Melfi@LincolnElectric.com

