

Practical Considerations for Application of Al/ML

Al Policy, Risk-Informed, Credibility, & VVUQ

Scott Sidener

Westinghouse Electric Company

Chief Data Scientist / Chief Engineer - Digital

Ethical use of Artificial Intelligence –

Create/Have a Corporate Policy

- Key Elements
 - Purpose, Intent, & Applicability
 - Ethical and responsible use of Al
 - Transparency
 - Harmful Bias Mitigation
 - User Awareness
 - Data Privacy & Security
 - Risk & Assessment
 - Safety & Reliability
 - Monitoring
 - Accountability
 - Data Ethics Committee
 - Human-in-the-Loop
 - Compliance
 - Audit

A clear policy provides the appropriate guardrails before development & during application

Risk Informed AI/ML Application

What can go wrong?

- Incorrect prediction
- Incorrect classification
- False or misleading generation
- Loss of information security or privacy
- Misuse
- Etc.

How likely is it to happen?

- Evaluation of model credibility within context of use
- Performance-based validation

What are the consequences?

- Level 1: adversely impacts safety or regulation compliance
- Level 2: adversely influences analyses, decisions, human behavior, etc.
- Level 3: Loss of time and/or money

EU Al Act Risk Levels

- Unacceptable Risk
- High Risk
- Limited Risk

Al/ML Credibility — The quality that a model can be trusted for a context of use

Applicability

 Relevance of the evidence from validation activities to support the use of the model for a context of use

Predictive or Generative Capability

 The anticipated accuracy and precision of the model over a specified application domain

Evidence

- Qualitative & Quantitative
- VVUQ

Credibility is not Static

Requires continuous monitoring of both context and performance

The trained model accurately represents the real application

Data & Domains

Transparency

Human-Based

Performance-Based

Data & Domains

Data Sets

Training, Validation, Calibration (sometimes),
 Test (truly blind validation)

Application Domain

 Often a hyper-rectangle defined by bounds of training/validation data

Expected Domain

- Where analysts expect to use model, often a convex hull around simulated application data
- This may be a very localized & sparse space

• Train/Validation Domain

 Often a convex hull around data used to create the model

You won' fill a high-dimensional space with data

Expected

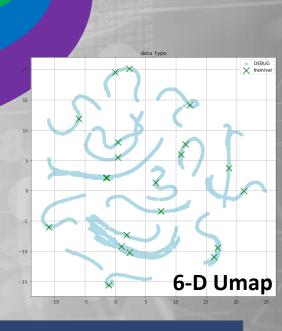
Train/Validation

Domain

Domain

Application

Domain



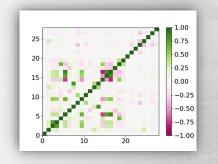
Always assume the model is extrapolating

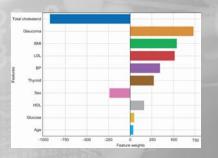
- Transparency is fundamentally contradictory to AI/ML technology
 - Model size and complexity is exponentially running away from the ability to interpret all feature influences and interactions

- To gain some transparency
 - Use simple models (linear regression, decision tree, etc.)
 - Use very low dimensionality features
 - Use physics informed ML

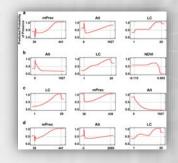
Transparency

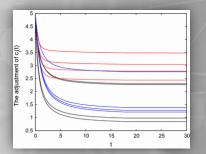
Sensitivity





Parametric Studies





Don't depend on full transparency & don't assume causality

Human-Based

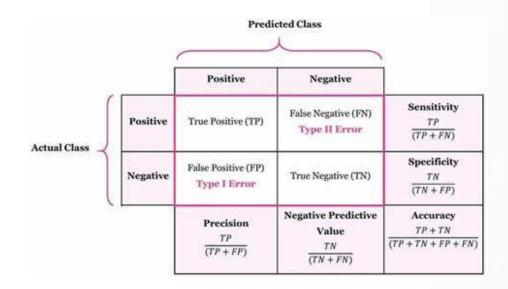
- Human in the middle
- Accountability
- Consistency?
- Process?
- Skill

The newest version of Midjourney created this image with the prompt, "photograph of a woman artist in an artist's studio holding her hands up." (all edits Elaine Velie/Hyperallergic using Midjourney)

Human validation can be effective, but risky

Rapidly requiring greater skill & attention

Validation Metrics



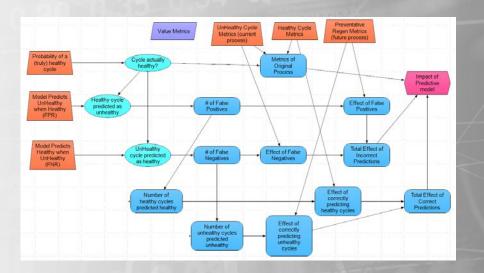
	Metrics	Value
0	MAE	6.052
1	MSE	56.187
2	RMSE	7.496
3	R-Squared	0.389

Metrics are easy to calculate, Simulating impacts is very powerful

Performance-Based

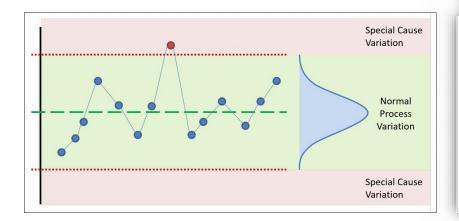
Simulate Impact of Incorrect Results

- Performance beyond validation metrics
- Bias detection, risk analysis

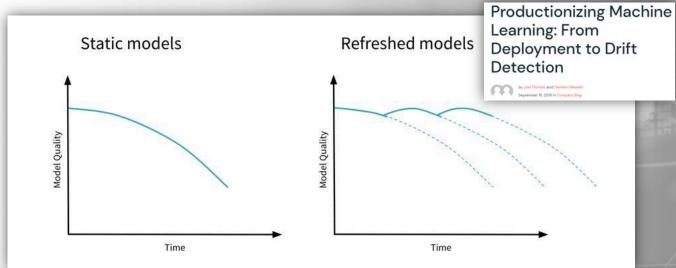


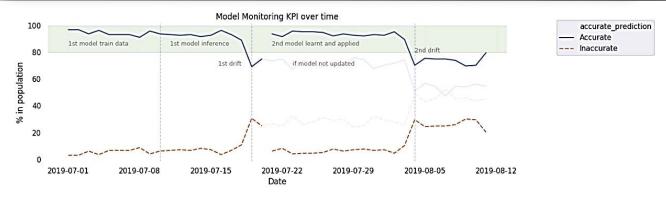
Performance can be Ephemeral

- Performance monitoring
- Continuously learning models
- Models watching inputs
- Statistical process control
- Process Capability
- Anomaly detection



Performance-Based





Assume model performance will change with time

Context of use unknowingly or unexpectedly drifts

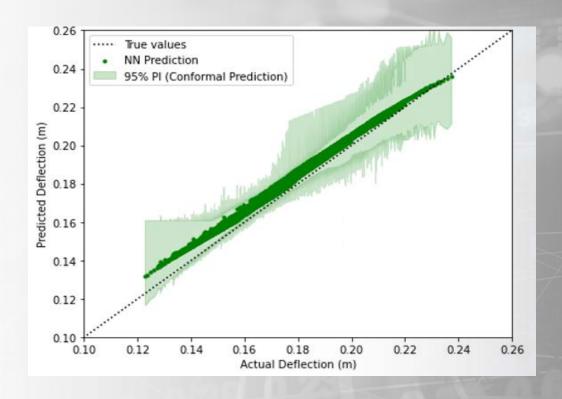
Inputs can drift or contain anomalies

AI/ML Uncertainty Quantification

Uncertainties

- Measurement / Experimental
- **✓** Model
- ✓ Input
- Numerical
- "Training Uncertainty" characterizes range of predictions which can result from different choices of hyperparameters when training a model

Nearly every new prediction will <u>not</u> be at validation data points



Quantify, Propagate & Simulate Impacts of Uncertainty

Practical Considerations for Application of AI/ML

- Have an ethical AI policy to ensure guardrails (North Star)
- Use risk-informed approaches
- Determine credibility
- Leverage VVUQ & and simulate impacts of model defects
- Expect credibility /performance creep, monitor continuously