

September 20, 2023

L-2023-122 10 CFR 50.4 10 CFR 50.36

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

Re: St. Lucie Units 1 and 2

Docket Nos. 50-335 and 50-389

Corrections to the 2022 Annual Radiological

Environmental Operating Report

Reference: FPL letter L-2023-041 dated April 4, 2023: Annual Radiological

Environmental Operating Report for Calendar Year 2022

By letter dated April 4, 2023 (Reference), Florida Power & Light submitted the 2022 Annual Radiological Environmental Operating Report (AREOR) for St. Lucie Units 1 and 2 pursuant to Technical Specification (TS) 6.9.1.8. The 2022 report provided information for the 12-month period beginning January 1, 2022 and ending December 31, 2022.

It was discovered that some quarterly Offsite Dose Calculation Manual (ODCM) required data results were missing. Also, some Radiological Environmental Monitoring Program (REMP) equipment deviations were not reported in Section 5. These items have been corrected and are provided in this submittal. This corrected report replaces the St. Lucie 2022 AREOR report in its entirety.

If you have any questions regarding this submittal, please contact Kenneth Mack at 561-904-3635.

Sincerely,

Dianne Strand

De 32

General Manager, Regulatory Affairs

Florida Power & Light Company

Enclosure: 2022 Annual Radiological Environmental Operating Report

CC:

USNRC Regional Administrator, Region II

USNRC Project Manager, St. Lucie Nuclear Plant USNRC Resident Inspector, St. Lucie Nuclear Plant

Florida Power & Light Company

2022

ANNUAL

RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

ST. LUCIE PLANT

UNITS 1 & 2

LICENSE NOS. DPR-67, NPF-16

DOCKET NOS. 50-335, 50-389

TABLE OF CONTENTS

DES	CRIPTION	<u>PAGE</u>
1.	Introduction	2
2.	Radiological Environmental Monitoring Program	2
3.	Discussion and Interpretation of Results	4
4.	Environmental Radiological Monitoring Program Annual Summary	7
5.	Deviations / Missing Data	15
6.	Analyses with LLDs Above Required Detection Capabilities	16
7.	Key to Sample Locations	17
8.	Ground Water Protection – Industry Initiative	21
9.	Radiological Surveillance of Florida Power & Light Company – St. Lucie Site	24
	A. First Quarter 2022	
	B. Second Quarter 2022	
	C. Third Quarter 2022	
	D. Fourth Quarter 2022	
10). Results from the Interlaboratory Comparison Program – 2022	83

1. Introduction

This report is submitted pursuant to Specification 6.9.1.8 of St. Lucie Unit 1 and St. Lucie Unit 2 Technical Specifications. The Annual Radiological Environmental Operating Report (AREOR) provides information, summaries, and analytical results pertaining to the radiological environmental monitoring program for the calendar year indicated. This report covers surveillance activities meeting the requirements of Unit 1 and Unit 2 Technical Specifications.

2. Radiological Environmental Monitoring Program

A. Purpose

The purpose of the Radiological Environmental Monitoring Program (REMP) is to provide representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures to members of the public resulting from station operation. The radiological environmental monitoring program also supplements the radioactive effluents monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected based on the effluent measurements and the modeling of the environmental exposure pathways.

B. <u>Program Description</u>

The Radiological Environmental Monitoring Program for the St. Lucie Plant (PSL) is conducted pursuant to the St. Lucie Units 1 and 2 Offsite Dose Calculation Manual (ODCM) Section 3/4.12.1 Monitoring Program.

1. Sample Locations, Types, and Frequencies

- a. Direct radiation gamma exposure rate is monitored continuously at 27 locations by thermoluminescent dosimeters (TLDs). TLDs are collected and analyzed quarterly.
- b. Airborne radioiodine and particulate samplers are operated continuously at five locations. Samples are collected weekly. Analyses include Iodine-131 and gross beta weekly, and gamma isotopic measurements of composite quarterly by location.
- c. Surface water samples are collected from two locations. The indicator samples are collected and analyzed weekly, while control samples are collected and analyzed monthly. Analyses include gamma isotopic and tritium measurements.
- d. Shoreline sediment samples are collected from two locations coinciding with the locations for surface water samples. Samples are collected and analyzed semi-annually. Sediment samples are analyzed by gamma isotopic measurements.

- e. Fish and invertebrate samples are collected from two locations. Samples are collected and analyzed semi-annually. Fish and invertebrate samples are analyzed by gamma isotopic measurements.
- f. Broad leaf vegetation samples are collected from three locations. Samples are collected and analyzed monthly. Broad leaf vegetation samples are analyzed by gamma isotopic measurements.

2. Analytical Responsibility

Radiological environmental monitoring for PSL is conducted by the State of Florida, Department of Health (DOH), Bureau of Radiation Control (BRC). Samples are collected and analyzed by DOH field and laboratory personnel, respectively. The samples are analyzed at the DOH BRC Environmental Radiation Control Laboratory in Orlando, Florida.

C. Analytical Results

Summarized analysis data and results for all specified samples collected and analyzed during the surveillance period is provided in Section 4. Deviations from the sample schedule or missing data, if any, are noted and explained in Section 5. Samples not meeting the specified "a priori" LLD, if any, are noted and explained in Section 6. Detailed analysis data and results for all samples collected and analyzed by the BRC during the surveillance period is provided in Section 9.

D. Land Use Census

A Land Use Census survey out to a five-mile radius around PSL is conducted annually to determine the location of the nearest milk animal, residence, and garden producing broad leaf vegetation in each of the 16 meteorological sectors. A summary of the Land Use Census for the surveillance year is provided in Section 4.

E. Interlaboratory Comparison Program

The interlaboratory comparison program consists of participating in the DOE Mixed Analyte Performance Evaluation Program (MAPEP) and the Environmental Resources Associates (ERA) RadChem Study proficiency testing. The samples are analyzed using the methods applicable to the REMP (gamma spectroscopy, gross beta, and tritium for water). Results for the interlaboratory comparison program are listed in Section 10.

3. Discussion and Interpretation of Results

A. Reporting of Results

This AREOR contains the summaries, interpretations, and information required by the PSL ODCM. The following tables provide a summary of the measurements made for the nuclides required by ODCM Table 4.12-1 for all samples specified by Table 3.12-1. In addition, summaries are provided for other nuclides identified in the specified samples, including those not related to PSL operation. These include nuclides such as Be-7, K-40, Th-232, and Ra-226 which are common and naturally occurring in the Florida environment.

B. Interpretation of Results

1. Direct Radiation

The results of direct radiation monitoring are consistent with past measurements for the specified locations. The exposure rate data showed no indication of any adverse trends attributed to effluents from the plant. The measured exposure rates were consistent with exposure rates that were observed during the preoperational surveillance program.

2. Air Particulates/Radioiodine

The results for radioactive air particulate and radioiodine attributed to plant effluents indicated no trends attributable to plant effluents and were consistent with past measurements. No detectable I-131 was present in any of the radioiodine samples. Gamma isotopic measurements yielded no indication of any nuclides attributed to PSL operation. The results for air particulate/radioiodine samples were consistent with measurements that were made during the preoperational surveillance program.

3. Waterborne, Surface Water

The results for radioactivity measurements in surface water were consistent with past measurements and with measurements made during the pre-operational surveillance program. Tritium was reported as present in surface water in 3 out of 52 weekly ODCM-required indicator location samples and 1 out of 12 monthly control location samples. The highest amount of tritium reported was 6.4% of the required Lower Limit of Detection (LLD) for non-drinking water listed in ODCM Table 4.12-1 and 0.64% of the reporting level for non-drinking water listed in ODCM Table 3.12-2. There was no indication of any other nuclides attributable to plant effluents.

4. Waterborne, Sediment and Food Products

The results for radioactivity measurements in waterborne sediment and fish samples were consistent with past measurements and with measurements made during the pre-operational surveillance program. For the Fish Ingestion Pathway, Cs-137 was not reported in any indicator samples or control samples. Crustacean samples were not able to be collected during the surveillance period. There was no indication of any other nuclides attributable to plant effluents.

5. Broad Leaf Vegetation

The results for radioactivity measurements in broad leaf vegetation were consistent with past measurements and with measurements made during the preoperational surveillance program. Cs-137 was not present in any of the 24 ODCM-required indicator samples and was present in 0 of the 12 control location samples. The amount of Cs-137 reported was 23% of the required LLD listed in ODCM Table 4.12-1 and 0.9% of the reporting level listed in ODCM Table 3.12-2. There were no indications of any other nuclides attributable to plant effluents.

6. Land Use Census

5136 Watersong Way is now the closest residence to the power plant in the Watersong development. No locations within a 5-mile radius of PSL were identified with gardens or with potential milk-producing animals (cows or goats).

No locations yielding a calculated dose or dose commitment greater than the values currently being calculated were identified by the Land Use Census.

No locations yielding a calculated dose or dose commitment (via the same exposure pathway) 20% greater than locations currently being sampled as part of the REMP were identified by the Land Use Census.

7. Interlaboratory Comparison Program

The State of Florida DOH BRC laboratory participated in MAPEP Series 46, 47, and the ERA RadCheM Study 131 with satisfactory results. This satisfied the requirements for the Interlaboratory Comparison Program as directed in the PSL ODCM.

C. Conclusions

The data obtained through the PSL REMP verifies that the levels of radiation and concentrations of radioactive materials in environmental samples, representing the highest potential exposure pathways to members of the public, are not increasing due to station operation. Measured exposure rates are consistent with the exposure rates observed during the pre-operational surveillance program.

- Results for air particulate/radioiodine samples are consistent with measurements that were made during the pre-operational surveillance program.
- The highest value for tritium in surface water, based on 3 positive indicator samples, was 6.4% of the required LLD listed in ODCM Table 4.12-1 and 0.64% of the reporting level listed in ODCM Table 3.12-2. There was no indication of any other nuclides attributable to plant effluents.
- There was no indication of any nuclides in the waterborne sediment or food product samples that could be attributed to plant effluents.
- The amount of Cs-137 reported in the single positive broad leaf vegetation Indicator Location H51 sample was 23% of the required LLD listed in ODCM Table 4.12-1 and 0.9% of the reporting level listed in ODCM Table 3.12-2. There were no indications of any other nuclides attributable to plant effluents.

REMP sample analyses verify that the dose or dose commitment to members of the public, attributable to the operation of St. Lucie Units 1 and 2 during the surveillance period, are well within "as low as reasonably achievable" (ALARA) criteria established by 10 CFR 50, Appendix I.

4. Environmental Radiological Monitoring Program Annual Summary

I. Direct Radiation

PATHWAY: DIRECT RADIATION SAMPLES COLLECTED: TLD UNITS: micro-R/hr								
		Lower	All Indicator Locations	Location with I Annual Me		Control Location		
	Number of	Limit of	Mean (f) ^b	<u>Name^c</u>	<u>(f)</u> ^b	Mean (f)b		
Type of Analyses	Analyses Performed	Detection ^a (LLD)	Range	Distance & Direction	Range	Range		
Exposure ^d	108		3.76 (102/104)	NW-10	4.69 (4/4)	3.91 (4/4)		
			2.90-5.13	9.6 mi., NW	4.10- 5.13	3.27-4.23		
	Nur	nber of Non-	Routine Reported	Measurements =	· 0.			

Gamma Exposure Trend Chart

II. Air Particulates/Radioiodine

PATHWAY: A	AIRBORNE					
SAMPLES C	OLLECTED: F	ADIOIODINE AND PARTI	CULATES			
UNITS: pico-	Ci/M³					
			All Indicator Locations	Location with Hi	ghest Annual Mean	Control Location
	Number of		Mean (f) ^b	<u>Name^c</u>	Mean (f) ^b	Mean (f) ^b
Type of	Analyses	Lower Limit of	Range	Distance &	Range	Range
Analyses	Performed	Detection ^a (LLD)		Direction		
¹³¹	260	0.021	<mda (0="" 208)<="" td=""><td></td><td></td><td><mda (0="" 52)<="" td=""></mda></td></mda>			<mda (0="" 52)<="" td=""></mda>
Gross Beta	258	0.0064	0.0135 (206/208)	H14	0.014 (51/52)	0.015 (52/52)
			0.001-0.026	1 mi., SE	0.003-0.023	0.004-0.030
Composite Gamma	32					
⁷ Be	30	0.006	0.1161 (16/16)	H34	0.1184 (4/4)	0.1256 (4/4)
			0.0728-0.1490	0.5 mi., N	0.0728-0.1490	0.0982-0.1510
⁴⁰ K	30	0.018	<mda (0="" 16)<="" td=""><td></td><td>-</td><td><mda (0="" 4)<="" td=""></mda></td></mda>		-	<mda (0="" 4)<="" td=""></mda>
¹³⁴ Cs	30	0.0008	<mda (0="" 16)<="" td=""><td>-</td><td></td><td><mda (0="" 4)<="" td=""></mda></td></mda>	-		<mda (0="" 4)<="" td=""></mda>
¹³⁷ Cs	30	0.0008	<mda (0="" 16)<="" td=""><td></td><td></td><td><mda (0="" 4)<="" td=""></mda></td></mda>			<mda (0="" 4)<="" td=""></mda>
²¹⁰ Pb	30		<mda (0="" 16)<="" td=""><td></td><td></td><td>0.0080 (1/4)</td></mda>			0.0080 (1/4)
						0.0080-0.0080
		Be-7, k	(-40, and Pb-210 are natural	lly occurring.		
		Number of No	on-Routine Reported Measur	rements = 0.		

Waterborne, Surface Water III.

PATHWAY: WATERBORNE

SAMPLES COLLECTED: SURFACE WATER UNITS: pico-Ci/LITER

<u>.</u>	Ci/LITER					
			All Indicator	Location with		<u>Control</u>
		Lower	Locations Moon (f)	Annual M		Locations
	Number of	Limit of	Mean (f) ^b	Name ^c	Mean (f) ^b	Mean (f) ^b
Type of	Analyses	Detection ^a	Range	Distance & Direction	Range	Range
Analyses	Performed	(LLD)		Direction		
Tritium	88	172	126 (3/52)	H15	126	<mda (0="" 12)<="" td=""></mda>
			84-191	<1mi.,	(3/52)	
				ENE/E/ESE	84-191	
Gamma	00					
Isotopic	88					
-						
⁴⁰ K		58	329 (51/52)	H15	329	336 (12/12)
• •			245-397	<1mi.,	(51/52)	273-417
				ENE/E/ESE	245-397	
⁵⁴ Mn		4	<mda (0="" 52)<="" td=""><td></td><td>****</td><td><mda (0="" 12)<="" td=""></mda></td></mda>		****	<mda (0="" 12)<="" td=""></mda>
⁵⁹ Fe		4	<mda (0="" 52)<="" td=""><td></td><td></td><td><mda (0="" 12)<="" td=""></mda></td></mda>			<mda (0="" 12)<="" td=""></mda>
⁵⁸ Co		4	<mda (0="" 52)<="" td=""><td></td><td></td><td><mda (0="" 12)<="" td=""></mda></td></mda>			<mda (0="" 12)<="" td=""></mda>
⁶⁰ Co		8	<mda (0="" 52)<="" td=""><td></td><td></td><td><mda (0="" 12)<="" td=""></mda></td></mda>			<mda (0="" 12)<="" td=""></mda>
⁶⁵ Zn		4	<mda (0="" 52)<="" td=""><td></td><td></td><td><mda (0="" 12)<="" td=""></mda></td></mda>			<mda (0="" 12)<="" td=""></mda>
⁹⁵ Zr-Nb		8	<mda (0="" 52)<="" td=""><td></td><td></td><td><mda (0="" 12)<="" td=""></mda></td></mda>			<mda (0="" 12)<="" td=""></mda>
131		6	<mda (0="" 52)<="" td=""><td></td><td></td><td><mda (0="" 12)<="" td=""></mda></td></mda>			<mda (0="" 12)<="" td=""></mda>
¹³⁴ Cs		5	<mda (0="" 52)<="" td=""><td>44 144 144 144 144 144 144 144 144 144</td><td></td><td><mda (0="" 12)<="" td=""></mda></td></mda>	44 144 144 144 144 144 144 144 144 144		<mda (0="" 12)<="" td=""></mda>
¹³⁷ Cs ¹⁴⁰ Ba-La		3	<mda (0="" 52)<="" td=""><td>this way don't not see any any and any</td><td>300° paga ang paga 3000 ann 1000 1000 1000</td><td><mda (0="" 12)<="" td=""></mda></td></mda>	this way don't not see any any and any	300° paga ang paga 3000 ann 1000 1000 1000	<mda (0="" 12)<="" td=""></mda>
		4	<mda (0="" 52)<="" td=""><td></td><td></td><td><mda (0="" 12)<="" td=""></mda></td></mda>			<mda (0="" 12)<="" td=""></mda>

IV. Waterborne, Sediment and Food Products

			All Indicator Locations	Location with Highest A	<u>Annual Mean</u>	Control Location
Type of Analyses	Number of Analyses Performed	Lower Limit of Detection ³ (LLD)	<u>Mean (f)^b</u> Range	<u>Name^c</u> Distance & Direction	Mean (1) ^b Range	<u>Mean (1)</u> b Range
Gamma Isotopic	11			•		
⁷ Be		56	<mda (0="" 2)<="" td=""><td>H-15 <1mi, ENE/E/ESE</td><td><mda (0="" 2)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>	H-15 <1mi, ENE/E/ESE	<mda (0="" 2)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
[∞] K		100	296 (2/2) 179-412	H15 <1mi, ENE/E/ESE	296 (2/2) 179-412	231 (2/2) 175-287
[‰] Co [∞] Co		6 7	<mda (0="" 2)<br=""><mda (0="" 2)<="" td=""><td>******</td><td><mda (0="" 2)<br=""><mda (0="" 2)<="" td=""><td><mda (0="" 2)<br=""><mda (0="" 2)<="" td=""></mda></mda></td></mda></mda></td></mda></mda>	******	<mda (0="" 2)<br=""><mda (0="" 2)<="" td=""><td><mda (0="" 2)<br=""><mda (0="" 2)<="" td=""></mda></mda></td></mda></mda>	<mda (0="" 2)<br=""><mda (0="" 2)<="" td=""></mda></mda>
134Cs		7 7	<mda (0="" 2)<="" td=""><td>****</td><td><mda (0="" 2)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>	****	<mda (0="" 2)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
¹³⁷ Cs ²¹⁰ F0		*********	<mda (0="" 2)<br=""><mda (0="" 2)<="" td=""><td>******</td><td><mda (0="" 2)<br=""><mda (0="" 2)<="" td=""><td><mda (0="" 2)<br=""><mda (0="" 2)<="" td=""></mda></mda></td></mda></mda></td></mda></mda>	******	<mda (0="" 2)<br=""><mda (0="" 2)<="" td=""><td><mda (0="" 2)<br=""><mda (0="" 2)<="" td=""></mda></mda></td></mda></mda>	<mda (0="" 2)<br=""><mda (0="" 2)<="" td=""></mda></mda>
²²⁸ Ra		15	83 (2/2) 55-110	H15 <1mi, ENE/E/ESE	83 (2/2) 55-110	41 (1/2) 41-41
²³² Th		25	<mda (0="" 2)<="" td=""><td>*******</td><td><mda (0="" 2)<="" td=""><td></td></mda></td></mda>	*******	<mda (0="" 2)<="" td=""><td></td></mda>	
²³⁵ U		********	16 (1/2) 16-16	H15	16 (1/2) 16-16	15 (1/2) 15-15
²³⁸ Ú		*******	<mda (0="" 2)<="" td=""><td><1mi, ENE/E/ESE</td><td><mda (0="" 2)<="" td=""><td></td></mda></td></mda>	<1mi, ENE/E/ESE	<mda (0="" 2)<="" td=""><td></td></mda>	

			All Indicator Locations	Location with Highest	Annual Mean	Control Location
		Lower Limit of	Mean (f) ^b	Name ^c	Mean (f) ^b	Mean (f) ^b
Type of Analyses	Analyses Performed	Detection ^a (LLD)	Range	Distance & Direction	Range	Range
Gamma Isotopic	5		and the second s			
⁴⁰ K		270	2097 (3/3)	H-15	2097 (3/3)	1760 (2/2)
			1250-3420	<1 mi, ENE/E/ESE	1250-3420	1430-2090
⁵⁴ Mn		16	<mda (0="" 3)<="" td=""><td></td><td><mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>		<mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
⁵⁸ Co		15	<mda (0="" 3)<="" td=""><td>******</td><td><mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>	******	<mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
⁶⁰ Co		16	<mda (0="" 3)<="" td=""><td>~~~~~</td><td><mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>	~~~~~	<mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
¹³⁴ Cs		16	<mda (0="" 3)<="" td=""><td></td><td><mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>		<mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
¹³⁷ Cs		18	<mda (0="" 3)<="" td=""><td>AL D III 4000 TO III 100</td><td><mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>	AL D III 4000 TO III 100	<mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
²²⁶ Ra		300	<mda (0="" 3)<="" td=""><td></td><td><mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>		<mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
²²⁸ Ra		58	<mda (0="" 3)<="" td=""><td>***</td><td><mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>	***	<mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
⁵⁹ Fe		28	<mda (0="" 3)<="" td=""><td></td><td><mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>		<mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>
⁶⁵ Zn		32	<mda (0="" 3)<="" td=""><td></td><td><mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda></td></mda>		<mda (0="" 3)<="" td=""><td><mda (0="" 2)<="" td=""></mda></td></mda>	<mda (0="" 2)<="" td=""></mda>

		-	All Indicator Locations	Location with Highest A	nnual Mean	Control Location
Type of Analyses	Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	<u>Mean (f)^b</u> Range	Name ^c Distance & Direction	<u>Mean (f)</u> ⁵ Range	Mean (f) ^b Range
Gamma Isotopic	4					
40K		270	3190 (2/2)	H15	3190 (2/2)	2830 (2/2)
			1630-4750	<1ml., ENE/E/ESE	1630-4750	2760-2900
54Mn		23	<mda (0="" 2)<="" td=""><td></td><td>*******</td><td><mda (0="" 2)<="" td=""></mda></td></mda>		*******	<mda (0="" 2)<="" td=""></mda>
⁵⁸ Co		25	<mda (0="" 2)<="" td=""><td>********</td><td>********</td><td><mda (0="" 2)<="" td=""></mda></td></mda>	********	********	<mda (0="" 2)<="" td=""></mda>
⁶⁰ Co		25	<mda (0="" 2)<="" td=""><td>******</td><td>*****</td><td><mda (0="" 2)<="" td=""></mda></td></mda>	******	*****	<mda (0="" 2)<="" td=""></mda>
134Cs		25	<mda (0="" 2)<="" td=""><td>******</td><td>**********</td><td><mda (0="" 2)<="" td=""></mda></td></mda>	******	**********	<mda (0="" 2)<="" td=""></mda>
¹³⁷ Cs		26	<mda (0="" 2)<="" td=""><td>******</td><td></td><td><mda (0="" 2)<="" td=""></mda></td></mda>	******		<mda (0="" 2)<="" td=""></mda>
²²⁶ Ra		217	<mda (0="" 2)<="" td=""><td></td><td>*********</td><td><mda (0="" 2)<="" td=""></mda></td></mda>		*********	<mda (0="" 2)<="" td=""></mda>
²²⁸ Ra		105	<mda (0="" 2)<="" td=""><td>***</td><td></td><td><mda (0="" 2)<="" td=""></mda></td></mda>	***		<mda (0="" 2)<="" td=""></mda>
⁵⁹ Fe		53	<mda (0="" 2)<="" td=""><td>****</td><td>*******</td><td><mda (0="" 2)<="" td=""></mda></td></mda>	****	*******	<mda (0="" 2)<="" td=""></mda>
65Zn		58	<mda (0="" 2)<="" td=""><td>*****</td><td>******</td><td><mda (0="" 2)<="" td=""></mda></td></mda>	*****	******	<mda (0="" 2)<="" td=""></mda>

V. Broad Leaf Vegetation

PATHWAY: ING SAMPLES COLL JNITS: pico-Ci/k	ECTED:	BROADLEAF V	/EGETATION			
			All Indicator Locations	Location with Highest	Annual Mean	Control Locations
Type of Analyses	Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	Mean (f) ^b Range	Name ^c Distance & Direction	Mean (f) ^b Range	Mean (f) ^b Range
Gamma Isotopic	36	-				
⁷ Be		64	1426 (24/24)	H51	1536 (12/12)	974 (12/12)
			758-2790	1mi., N/NNW	953-2790	595-1370
⁴ºK		120	3743 (24/24)	H52	3806 (12/12)	2778 (12/12)
			2240-5600	1mi., S/SSE	3090-5530	1970-3390
131		20	<mda (0="" 24)<="" td=""><td></td><td><mda (0="" 12)<="" td=""><td><mda (0="" 12)<="" td=""></mda></td></mda></td></mda>		<mda (0="" 12)<="" td=""><td><mda (0="" 12)<="" td=""></mda></td></mda>	<mda (0="" 12)<="" td=""></mda>
¹³⁴ Cs		11	<mda (0="" 24)<="" td=""><td></td><td><mda (0="" 12)<="" td=""><td><mda (0="" 12)<="" td=""></mda></td></mda></td></mda>		<mda (0="" 12)<="" td=""><td><mda (0="" 12)<="" td=""></mda></td></mda>	<mda (0="" 12)<="" td=""></mda>
¹³⁷ Cs		13	18 (1/24)	H51	18 (1/12)	<mda (0="" 12)<="" td=""></mda>
			18-18	1mi., N/NNW	18-18	
²¹⁰ Pb		693	468 (9/24)	H52	528 (6/12)	558 (3/12)
			62-1260	1mi., S/SSE	68-1260	210-1070
²¹² Pb		19	20 (2/24)	H52	20 (2/12)	<mda (0="" 12)<="" td=""></mda>
			19-21	1mi., S/SSE	19-21	
²²⁶ Ra		189	297 (1/24)	H51	297 (1/12)	<mda (0="" 12)<="" td=""></mda>
			297-297	1mi., N/NNW	297-297	
²²⁸ Ra		29	<mda (0="" 24)<="" td=""><td></td><td><mda (0="" 12)<="" td=""><td><mda (0="" 12)<="" td=""></mda></td></mda></td></mda>		<mda (0="" 12)<="" td=""><td><mda (0="" 12)<="" td=""></mda></td></mda>	<mda (0="" 12)<="" td=""></mda>

Be-7, K-40, Pb-210, Pb-212, Ra-226, and Ra-228 are naturally occurring. Number of Non-Routine Reported Measurements = 0.

NOTES

- a. The LLD is an "a priori" value which establishes the smallest concentration of radioactive material in a sample that will yield a net count above system background, that will be detected with 95% probability, with only 5% probability of falsely concluding that a blank observation represents a real signal. LLDs are at the time of sample measurement.
 - Minimum Detectable Activity (MDA) reported in the Quarterly Reports (Section 9) for the individual samples have been corrected to the time of sample collection.
- b. Mean and Range are based upon detectable measurements only. The fraction of detectable measurements at specified locations is indicated in parentheses (f).
- c. Specific identifying information for each sample location is provided in Section 7.
- d. Results were based upon the average net response of three elements in a TLD.

VI. Land Use Census

The PSL Annual Land Use Census Survey was performed during the months of June and July 2022. No locations with a garden or with potential milk-producing animals (cows or goats) were identified within a 5-mile radius of the St. Lucie Plant.

2022 St. Lucie I	2022 St. Lucie Land Use Census: Distance to Nearest Location ^{a, i}					
Sector	Residence	Garden ^d	Milk Animal ^c			
N	Oe	0	0			
NNE	0	0	0			
NE	0	0	0			
ENE	0	0	0			
E	0	0	0			
ESE	0	0	0			
SE	(A) 1.5 / 142° (B) 1.6 / 145°	0	0			
SSE	(A) 1.8 / 147°g (B) 2.0 / 149°	Γt	L			
S	3.3 / 190°	L	L			
SSW	2.2 / 212°	L	L			
SW	1.9 / 234°	L	. L			
WSW	1.9 / 240°	L	L			
W	1.9 / 260°	L	L			
WNW	2.3 / 281°	L	L			
NW	3.4 / 304°	L	L			
NNW	(A) 2.7 / 344° (B) 2.8 / 343°	L	L			

NOTES

- a. All categories surveyed out to a 5-mile radius from the St. Lucie Plant.
- b. The format used to denote location is:

distance (miles) / bearing (degrees).

For example, a residence located in the southeast sector at 1.5 miles bearing 142 degrees is recorded as 1.5 / 142°.

- c. Potential milk animal locations.
- d. Only gardens with an estimated total area of 500 square feet or more and producing green leafy vegetables are considered.
- e. "O" denotes the sector is predominantly an ocean area.
- f. "L" denotes the sector is predominantly a land area that is unoccupied by the category type.
- g. Non-residential occupied buildings in this sector include:

<u>Sector</u>	<u>Distance</u>	<u>Description</u>
SSE (A)	1.8 / 147°	Fire Station

5. <u>Deviations / Missing Data</u>

Instances of missing data and air sampler partial run times are listed below.

A. Pathway:

Surface Water: Radioisotopes

Location:

H-15 (Ocean side vicinity of St. Lucie Plant)

Dates:

11-1-22 (Weekly samples)

Deviation:

Failure to perform environmental surveillance.

Description:

Sample not taken.

Corrective Action:

BRC field team collected and analyzed samples for the

following week and were normal levels.

B. Pathway:

Airborne: Radioiodine and Particulates

Location:

H-30 (Power Line - 7609 Indian River Drive)

Dates:

02-07-22 to 02-16-22

Deviation:

Sample was missing at the time of collection.

Description:

The particulate sample was missing at the time of collection,

therefore was not analyzed.

Corrective Action:

Particulate filter was replaced and returned to routine

sampling.

C. Pathway:

Airborne: Radioiodine and Particulates

Location:

H-14 (Onsite – SE Near south property line)

Dates:

05-25-22 to 06-01-22

Deviation:

Sample was missing at the time of collection.

Description:

The particulate sample was missing at the time of collection,

therefore was not analyzed.

Corrective Action:

Particulate filter was replaced and returned to routine

sampling.

D. Pathway:

Direct Exposure: TLD

Location:

WSW-10 (10 miles WSW at Del Rio and Davis Streets)

Dates:

1st Quarter, January 1st to March 31st, 2022 TLD was missing at the time of collection.

Deviation: Description:

TLD was not available for direct exposure analysis. TLD

readings in the vicinity of WSW-10 showed normal levels.

Corrective Action: TLD was replaced.

E. Pathway:

Direct Exposure: TLD

Location:

NNW-5 (5 miles NNW at Frederick Douglas Beach Entrance)

Dates:

4th Quarter, October 1st to December 31st, 2022

Deviation:

TLD was missing at the time of collection.

Description:

TLD was not available for direct exposure analysis. TLD

readings in the vicinity of NNW-5 showed normal levels.

Corrective Action:

TLD was replaced.

F. Pathway:

REMP Groundwater

Location:

H-70, H-71, H-72, H-73, H-74, H-75, H-76, H-77, H-78, H-79

(Onsite REMP Program Groundwater Wells)

Dates:

Quarter 1 2022

Deviation:

Failure to perform environmental surveillance.

Description:

Quarterly REMP Program Groundwater Wells were not

sampled in Quarter 1 2022.

Corrective Action:

Second quarter groundwater samples were collected early in the first month of the 2nd quarter and showed normal levels. Quarterly management level peer checks of REMP Program sampling activities will be completed at the two month point in the quarter to ensure all quarterly samples have been

completed.

G. Pathway:

Waterborne

Location:

H-15 and H-59 (Onsite - Shoreline Sediment)

Dates:

Semi-annual Sample Period, Jan 1st to June 30th, 2022.

Deviation:

Failure to perform environmental surveillance.

Description:

Semi-annual required shoreline sediment samples were not

collected.

Corrective Action: Sediment samples were collected 25 days late in the next semiannual surveillance period and showed normal levels. Semi-annual surveillance checks will be performed with quarterly management level peer checks of REMP Program sampling activities to ensure all sample surveillances are

completed on time.

6. <u>Analyses with LLDs Above Required Detection Capabilities</u>

The values specified in ODCM Table 4.12-1 Detection Capabilities For Environmental Sample Analysis were achieved for all samples. REMP sampling deviations and missing data are listed in Section 5.

7. Key to Sample Locations

Site Area Map & Environmental Sample Locations

Environmental Sample Locations (10 Miles)

PATHWAY: Direct Radiation
SAMPLES COLLECTED: TLD
SAMPLE FREQUENCY: Quarterly

Location	Direction	Approximate	
Name	Sector	Distance (Miles)	Description
N-1	N	1	North of Blind Creek (A1A)
NNW-5	NNW	4.8	Frederick Douglas Beach Entrance
NNW-10	NNW	8.7	Coast Guard Station
NW-5	NW	5.4	Indian River Drive at Rio Vista Drive
NW-10	NW	9.6	Intersection of SR 68 and 33rd St (FPL Facility)
WNW-2	WNW	2.3	Cemetery South of 7107 Indian River Drive
WNW-5	WNW	5.1	US-1 at SR 712
WNW-10	WNW	10	SR 70, Just West of I-95
W-2	W	2	Power Line - 77609 Indian River Drive
W-5	W	5.4	Oleander and Sager Streets
W-10	W	10.3	I-95 and SR 709
WSW-2	WSW	1.8	8503 Indian River Drive
WSW-5	WSW	5.6	Prima Vista Blvd. at Yacht Club
WSW-10	WSW	10	Del Rio and Davis Streets
SW-2	SW	2	9205 Indian River Drive
SW-5	SW	4.5	FPL Walton Service Center
SW-10	SW	10.2	Port St. Lucie Blvd. and Cairo Road
SSW-2	SSW	2.6	10307 Indian River Drive
SSW-5	SSW	6	Port St. Lucie Blvd. and US-1
SSW-10	SSW	8	Pine Valley and Westmoreland Roads
S-5	S	5.2	13189 Indian River Drive
S-10	S	10.8	US 1 and Palm City Ave
S/SSE-10	SSE	9.9	Indian River Drive and Quail Run Lane
SSE-5	SSE	5.1	North of Entrance to Miramar
SSE-10	SSE	10.2	Elliot Museum
SE-1	SE	1	South of Cooling Canal
H32 (Control)	NNW	18.1	U. of Florida - IFAS Entomology Lab Vero Beach

PATHWAY: Airborne

SAMPLES COLLECTED: Radioiodine and Particulates

SAMPLE FREQUENCY: Weekly

Location	Direction	Approximate	
Name	Sector	Distance (Miles)	Description
H08	WNW	6	FPL Substation – Weatherbee Road
H14	SE	1	On-Site - Near South Property Line
H30	W	2	Power Line - 7609 Indian River Drive
H34	N	0.5	On-Site - At Meteorological Tower
H12 (Control)	S	12	FPL Substation, SR-76 Stuart

PATHWAY: Waterborne

SAMPLES COLLECTED: Surface Water (Ocean) SAMPLE FREQUENCY: H-15 Weekly; H-59 Monthly

Location Name	Direction Sector	Approximate Distance (Miles)	Description
H15	ENE/E/ESE	<1	Atlantic Ocean Public Beaches, East Side A1A
H59 (Control)	S/SSE	10-20	Near South End of Hutchinson Island

SAMPLES COLLECTED: Shoreline Sediment SAMPLE FREQUENCY: Semi-Annually

Location Name	Direction Sector	Approximate Distance (Miles)	Description
H15	ENE/E/ESE	<1	Atlantic Ocean Public Beaches, East Side A1A
H59 (Control)	S/SSE	10-20	Near South End of Hutchinson Island

PATHWAY: Ingestion – Food Products

SAMPLES COLLECTED: Crustacea and Fish SAMPLE FREQUENCY: Semi-Annually

Location Name	Direction Sector	Approximate Distance (Miles)	Description
H15	ENE/E/ESE	<1	Ocean Side, Vicinity of St. Lucie Plant
H59 (Control)	S/SSE	10-20	Near South End of Hutchinson Island

SAMPLES COLLECTED: Broad Leaf Vegetation - Food Products

SAMPLE FREQUENCY: Monthly

Location Name	Direction Sector	Approximate Distance (Miles)	Description
H51	N/NNW	1	Off-Site Near North Property Line
H52	H52 S/SSE 1		Off-Site Near South Property Line
H59 (Control)	S/SSE	10-20	Near South End of Hutchinson Island

8. <u>Ground Water Protection – Industry Initiative</u>

A. <u>Description of Program</u>

Quarterly ground water sampling was performed by the State of Florida Department of Health (DOH), Bureau of Radiation Control (BRC), pursuant to an agreement between FPL and the DOH as part of the ODCM REMP sampling program. Samples were analyzed for tritium and principle gamma emitters, and tritium was the only fission product identified. Naturally occurring potassium (K-40) was identified occasionally.

The wells identified for radiological environmental sampling in support of the industry initiative are listed below and in Appendix B-2 of the ODCM. The 10 wells are on the outside perimeter of PSL's Protected Area. The two locations with the St. Lucie Plant ID ending in "S" (H70 and H73) are shallower wells adjacent (within a few feet) to a deeper well at the same location.

State ID	St. Lucie Plant ID	Location Description
H70	GIS-MW-ES	West of A1A; Between the Discharge Canal and Gate "B"
H71	GIS-MW-EI	West of A1A; Between the Discharge Canal and Gate "B"
H72	GIS-MW-SI	South of Intake Canal and the adjacent access road
H73	GIS-MW-SWS	S/W corner of Intake Canal and the adjacent access road
H74	GIS-MW-SWI	S/W corner of Intake Canal and the adjacent access road
H75	GIS-MW-WI	West of plant site and Intake Canal; South of switchyard
H76	H76	North of Simulator; South of Big Mud Creek
H77	H77	East of Barge Slip; By Land Utilization Building
H78	H78	South of North Warehouse
H79	H79	West of A1A and East of Parking Lot

B. St. Lucie 2022 Tritium Results⁽¹⁾ Summary (pCi/L)

State ID	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
H70	(2)	94	<132	<134
H71	(2)	413 <135		436
H72	(2)	<134 <135		<134
H73	(2)	<134	<135	<129
H74	(2)	<134	<135	<129
H75	(2)	<134	<135	<129
H76	(2)	<134	<135	<129
H77	(2)	<134	<132	<129
H78	(2)	<139	<132	<134
H79	(2)	<139	<132	<134

- 1. Samples analyzed for H3 and principle gamma emitters; tritium was the only fission product identified. Naturally occurring K-40 was occasionally identified.
- 2. First Quarter Ground Water samples were not collected by the BRC.

C. Map of Groundwater Water Protection - Industry Initiative Wells

9. Radiological Surveillance of Florida Power & Light Company - St. Lucie Site

A. First Quarter 2022

RADIOLOGICAL SURVEILLANCE

OF

FLORIDA POWER AND LIGHT COMPANY

ST. LUCIE PLANT

FIRST QUARTER 2022

BUREAU OF RADIATION CONTROL

ST. LUCIE SITE

Offsite Dose Calculation Manual Sampling

First Quarter, 2022

Sample Type	Collection Frequency	Number of Sample Locations	Number of Samples
			7
1. Direct Radiation	Quarterly	27	24
2. Airborne			
2.a. Air Iodines	Weekly	5	65
2.b. Air Particulates	Weekly	5	64
3. Waterborne			
3.a. Surface Water	Weekly	1	13
	Monthly	1	3
3.b. Shoreline Sediment	Semiannually	2	0
4. Ingestion			
4.a. Fish and Invertebrates	10000		
4.a.1. Crustacea	Semiannually	2	0
4.a.2. Fish	Semiannually	2	2
4.b. Broadleaf Vegetation	Monthly	3	9

Total: 180

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

The marine fauna listed in this report were collected in part, under Florida FWC SAL030.

1. DIRECT RADIATION – DEPLOYED TLD's – (μR/hour)

Sample <u>Site</u>	Deployment 15-Dec-21 Collection 11-Mar-22	Sample <u>Site</u>	Deployment 15-Dec-21 <u>Collection 11-Mar-22</u>
N-1	3.3 ± 0.4	SW-2	3.19 ± 0.22
NNW-5	3.4 ± 0.5	SW-5	3.66 ± 0.71
NNW-10	4.0 ± 0.7	SW-10	3.28 ± 0.57
NW-5	3.13 ± 0.16	SSW-2	3.23 ± 0.32
NW-10	4.1 ± 0.1	SSW-5	3.55 ± 0.39
WNW-2	3.2 ± 0.1	SSW-10	3.01 ± 0.45
WNW-5	3.5 ± 0.3	S-5	3.36 ± 0.63
WNW-10	3.3 ± 0.2	S-10	3.04 ± 0.11
W-2	3.3 ± 0.3	S/SSE-10	3.51 ± 0.16
W-5	2.9 ± 0.2	SSE-5	3.22 ± 0.43
W-10	3.6 ± 0.2	SSE-10	3.14 ± 0.36
WSW-2	2.9 ± 0.2	SE-1	3.04 ± 0.39
WSW-5	3.5 ± 0.2	H-32	3.27 ± 0.48
WSW-10	(A)		

⁽A) TLDs were missing when collection was attempted.

⁽B) TLD was mistakenly not switched out.

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES – (pCi/ m³)

Collection <u>Date</u>	<u>H08</u>	<u>H12</u>	<u>H14</u>	<u>H30</u>	<u>H34</u>
04-Jan-22	<0.02	<0.02	<0.02	<0.02	<0.02
12-Jan-22	<0.02	<0.02	<0.02	<0.02	<0.02
18-Jan-22	<0.02	<0.02	<0.02	<0.02	<0.02
25-Jan-22	<0.02	<0.02	<0.02	<0.02	<0.02
01-Feb-22	<0.02	<0.02	<0.02	<0.02	<0.02
07-Feb-22	<0.02	<0.02	<0.02	<0.02	<0.02
16-Feb-22	<0.02	<0.02	<0.02	<0.02	<0.02
22-Feb-22	<0.03	<0.03	<0.03	<0.03	<0.03
01-Mar-22	<0.02	<0.02	<0.02	<0.02	<0.02
07-Mar-22	<0.03	<0.03	<0.03	<0.03	<0.03
15-Mar-22	<0.02	<0.02	<0.02	<0.02	<0.02
22-Mar-22	<0.02	<0.02	<0.02	<0.02	<0.02
29-Mar-22	<0.02	<0.02	<0.02	<0.02	<0.02

2.b.1. AIR PARTICULATES – GROSS BETA – (pCi/m³)

Collection Date					
	<u>H08</u>	<u>H12</u>	<u>H14</u>	<u>H30</u>	<u>H34</u>
04-Jan-22	0.012 ± 0.002	0.013 ± 0.002	0.015 ± 0.002	0.019 ± 0.002	0.015 ± 0.002
12-Jan-22	0.018 ± 0.002	0.015 ± 0.002	0.016 ± 0.002	0.015 ± 0.002	0.017 ± 0.002
18-Jan-22	0.024 ± 0.002	0.018 ± 0.002	0.018 ± 0.002	0.020 ± 0.002	0.019 ± 0.002
25-Jan-22	0.015 ± 0.002	0.018 ± 0.002	0.019 ± 0.002	0.018 ± 0.002	0.014 ± 0.002
01-Feb-22	0.015 ± 0.002	0.014 ± 0.002	0.016 ± 0.002	0.013 ± 0.002	0.013 ± 0.002
07-Feb-22	0.015 ± 0.002	0.016 ± 0.002	0.022 ± 0.002	0.013 ± 0.002	0.011 ± 0.002
16-Feb-22	0.018 ± 0.002	0.018 ± 0.002	0.017 ± 0.002	(A)	0.015 ± 0.002
22-Feb-22	0.019 ± 0.002	0.018 ± 0.002	0.015 ± 0.002	0.016 ± 0.002	0.016 ± 0.002
01-Mar-22	0.008 ± 0.002	0.006 ± 0.002	0.010 ± 0.002	0.007 ± 0.002	0.007 ± 0.002
07-Mar-22	0.014 ± 0.002	0.017 ± 0.002	0.018 ± 0.002	0.019 ± 0.002	0.013 ± 0.002
15-Mar-22	0.008 ± 0.002	0.015 ± 0.002	0.012 ± 0.002	0.008 ± 0.002	0.006 ± 0.001
22-Mar-22	0.013 ± 0.002	0.012 ± 0.002	0.008 ± 0.002	0.011 ± 0.002	0.017 ± 0.002
29-Mar-22	0.014 ± 0.002	0.015 ± 0.002	0.020 ± 0.002	0.016 ± 0.002	0.020 ± 0.002
Average:	0.015 ± 0.001	0.015 ± 0.001	0.016 ± 0.001	0.013 ± 0.001	0.014 ± 0.001

(A) sample was missing at time of collection

2.b.2. AIR PARTICULATES – GAMMA ANALYSIS OF QUARTERLY COMPOSITES – (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
H08	0.1450 ± 0.0095	<0.0149	<0.0012	<0.0009	<0.0157
H12	0.1510 ± 0.0093	<0.0168	<0.0011	<0.0010	< 0.0149
H14	0.1390 ± 0.0096	<0.0164	<0.0010	<0.0006	<0.0317
H30	0.1280 ± 0.0091	<0.0132	<0.0012	<0.0010	<0.0145
H34	0.1250 ± 0.0093	<0.0144	<0.0010	<0.0008	< 0.0336

3.a. SURFACE WATER - (pCi/L)

Sample <u>Site</u>	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>l-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H15	04-Jan-22	<137	319 ± 26	<3	<4	<9	<4	<8	<7	<12	<4	<3	<8
	12-Jan-22	<137	259 ± 23	<3	<4	<8	<4	<7	<6	<5	<3	<3	<6
	18-Jan-22	<137	317 ± 25	<3	<3	<6	<4	<8	<6	<4	<3	<4	<4
	25-Jan-22	<137	348 ± 26	<3	<3	<6	<4	<9	<6	<3	<3	<4	<4
	02-Feb-22	84 ± 42	298 ± 25	<4	<3	<7	<4	<8	<6	<4	<3	<4	<4
	07-Feb-22	<131	352 ± 26	<4	<3	<8	<3	<8	<6	<4	<4	<4	<4
	16-Feb-22	<131	343 ± 27	<4	<3	<6	<4	<8	<6	<4	<3	<4	<4
	22-Feb-22	<135	305 ± 25	<4	<4	<7	<4	<9	<5	<4	<4	<4	<4
	01-Mar-22	<135	320 ± 31	<4	<4	<9	<4	<8	<7	<4	<3	<4	<6
	07-Mar-22	<135	273 ± 25	<3	<3	<7	<4	<7	<6	<4	<3	<3	<4
	15-Mar-22	<135	377 ± 28	<3	<3	<6	<3	<8	<6	<4	<3	<4	<4
	22-Mar-22	<143	336 ± 27	<3	<3	<6	<4	<8	<6	<4	<3	<3	<4
	29-Mar-22	<143	293 ± 28	<3	<3	<7	<3	<8	<6	<4	<3	<4	<4
H59	05-Jan-22	<137	344 ± 26	<3	<4	<7	<3	3 <9 <	<6	<10	<3	<3	<6
	02-Feb-22	<133	288 ± 24	<3	<3	<7	<3	<7	<5	<4	<3	<4	<4
	02-Mar-22	<135	355 ± 27	<4	<3	<6	<4	<7	<6	<4	<4	<4	<4

⁽A) - These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.

⁽B) – These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT – (pCi/kg, dry weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
H15	These samples not yet collected											
H59												
										,		

4.a.1. CRUSTACEA – (pCi/kg, wet weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
H15	These samples not yet collected.										
H59											

4.a.2. FISH – (pCi/kg, wet weight)

Sample Site	Collection Date	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
H15	25-Mar-22	1630 ± 124	<16	<17	<28	<15	<28	<16	<17	<302	<56
H59	02-Mar-22	2760 ± 214	<25	<26	<57	<28	<59	<22	<26	<539	<97

4.b. BROADLEAF VEGETATION – Brazilian Pepper – (pCi/kg, wet weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>l-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Pb-212</u>	<u>Ra-226</u>	<u>Ra-228</u>
H51	05-Jan-22	1630 ± 80	2570 ± 149	<37	<12	<15	<315	<24	<284	<51
	02-Feb-22	2570 ± 79	2240 ± 108	<9	<8	<8	584 ± 99	<18	<212	<34
	02-Mar-22	1560 ± 68	4590 ± 193	<11	<11	<12	399 ± 94	<24	<251	<50
H52	05-Jan-22	1140 ± 56	3450 ± 152	<30	<9	<10	278 ± 73	<18	<207	<40
	02-Feb-22	1070 ± 54	3310 ± 149	<11	<9	<10	<264	<18	<231	<43
	02-Mar-22	1650 ± 63	3860 ± 161	<10	<9	<9	308 ± 74	<19	<202	< 39
H59	05-Jan-22	781 ± 57	2430 ± 135	<35	<10	<12	<260	<22	<255	<42
	02-Feb-22	1130 ± 56	2940 ± 137	<11	<9	<11	210 ± 68	<19	<209	<37
	02-Mar-22	1370 ± 65	2050 ± 117	<12	<10	<12	394 ± 96	<22	<252	<46

ST. LUCIE SITE

Supplemental Sampling

First Quarter, 2022

Sample Type	Collection Frequency	Number of Sample Locations	Number of Samples
1. Direct Radiation	Quarterly	9	9
2. Airborne 2.a. Air Iodines	Weekly	3	25
2.b. Air Particulates	Weekly	3	25
3. Waterborne 3.a. Surface Water	Monthly	2	6
3.b. Shoreline Sediment	Semiannually	4	0
3.c. Beach Sand	Semiannually	3	0
3.d. Ground Water	Quarterly	10	0
4. Ingestion			
4.a. Garden Crop	Annually	1	0
4.b. Citrus	Annually	1	1

Total: 66

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

1. DIRECT RADIATION – DEPLOYED TLD's – (µR/hour)

Sample <u>Site</u>	Deployment 15-Dec-21 Collection 11-Mar-22
H08	3.8 ± 0.3
H09	3.8 ± 0.2
H12	7.5 ± 1.1
H14	3.8 ± 0.8
H33	3.5 ± 0.3
H34	3.5 ± 0.2
H60	3.4 ± 0.3
H61	4.5 ± 0.3
H62	4.0 ± 0.7

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES – (pCi/m³)

Collection Date	H09	<u>H32</u>	<u>H33</u>
04-Jan-22	<0.02	<0.02	(B)
12-Jan-22	<0.02	<0.02	(B)
18-Jan-22	<0.02	<0.02	(B)
25-Jan-22	<0.02	<0.03	(B)
01-Feb-22	<0.02	(A)	(B)
07-Feb-22	<0.02	(A)	<0.02
16-Feb-22	<0.02	(A)	<0.02
22-Feb-22	<0.03	(A)	<0.03
01-Mar-22	<0.02	(A)	<0.02
07-Mar-22	<0.03	(A)	<0.03
15-Mar-22	<0.02	(A)	<0.02
22-Mar-22	<0.02	(A)	<0.02
29-Mar-22	<0.02	(A)	<0.02

- (A) Site power was out for extended period
- (B) Site power was out for extended period

2.b. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection <u>Date</u>	H09	H32	H33
04-Jan-22	0.015 ± 0.002	0.012 ± 0.002	(B)
12-Jan-22	0.018 ± 0.002	0.014 ± 0.002	(B)
18-Jan-22	0.025 ± 0.002	0.020 ± 0.002	(B)
25-Jan-22	0.018 ± 0.002	0.021 ± 0.003	(B)
01-Feb-22	0.017 ± 0.002	(A)	(B)
07-Feb-22	0.017 ± 0.002	(A)	0.015 ± 0.002
16-Feb-22	0.018 ± 0.002	(A)	0.011 ± 0.001
22-Feb-22	0.017 ± 0.002	(A)	0.018 ± 0.002
01-Mar-22	0.007 ± 0.002	(A)	0.005 ± 0.001
07-Mar-22	0.019 ± 0.002	(A)	0.015 ± 0.002
15-Mar-22	0.009 ± 0.002	(A)	0.006 ± 0.001
22-Mar-22	0.012 ± 0.002	(A)	0.016 ± 0.002
29-Mar-22	0.015 ± 0.002	(A)	0.018 ± 0.002
Average	0.016 ± 0.001	0.017 ± 0.001	0.013 ± 0.001

⁽A) Site power was out for extended period

2.b. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
H09	0.1260 ± 0.0095	<0.0143	<0.0010	<0.0010	< 0.0338
H32	0.1180 ± 0.0201	<0.0499	<0.0037	<0.0032	<0.1060
H33	0.1570 ± 0.0131	<0.0270	<0.0018	<0.0014	< 0.0233

⁽B) Site power was out for extended period

3.a. SURFACE WATER - (pCi/L)

Sample <u>Site</u>	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>l-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H13	05-Jan-22	<133	295 ± 24	<4	<3	<7	<4	<8	<6	<4	<3	<4	<4
	02-Feb-22	<131	285 ± 24	<3	<3	<8	<4	<7	<5	<4	<3	<4	<4
	02-Mar-22	<135	367 ± 27	<3	<3	<6	<4	<7	<6	<4	<3	<3	<4
H36	05-Jan-22	96 ± 43	286 ± 25	<3	<3	<8	<4	<7	<5	<4	<3	<3	<4
	02-Feb-22	<133	312 ± 25	<4	<3	<7	<4	<8	<6	<4	<3	<3	<5
	02-Mar-22	<135	322 ± 25	<3	<4	<7	<4	<8	<6	<4	<3	<4	<4

⁽A) – These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.

3.b. SHORELINE SEDIMENT – (pCi/kg, dry weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
H13				TI	hese samp	les have n	ot yet beer	collected				-
H16												
H19								Transit transp date:				
H36												

⁽B) – These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.c. BEACH SAND – (pCi/kg, dry weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
H15		These samples have not yet been collected										
H16			!									
H19							}					

3.d. GROUND WATER - (pCi/L)

Sample <u>Site</u>	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>l-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H70					These	samples	were not	collected	<u>d</u>	·			
H71		and the processing state of the											
H72							· · · · · · · · · · · · · · · · · · ·						
H73		Commence of the Commence of th											
H74		Accordance for contract to the contract of the							J			Management of one a successful reasonable reasonable from the party of	
H75												Control of the contro	
H76			and the second s		447-440-440-440-440-440-440-440-440-440-								
H77		C The of the state and a second secon											
H78		00 de 100 mario de compansion de 20 de 21 de 20 de				1000000 March 100000 March 1000						7 () () () () () () () () () (**************************************
H79												2000 000 000 A FA 1000 Plate 122 PRODUCTION 000 000 000 000 000 000 000 000 000 0	

⁽A) – These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.

⁽B) – These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

4.a. GARDEN CROP – (pCi/kg, wet weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>l-131</u>	<u>Cs-134</u>	<u>Cs-137</u>
H41	This sample	has not been ava	nilable.			

4.b. CITRUS – (pCi/kg, wet weight)

Sample Site	Collection Date	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>
H23	28-Jan-22	<45	1630 ± 79	<6	<6	<7

B. Second Quarter 2022

RADIOLOGICAL SURVEILLANCE

OF

FLORIDA POWER AND LIGHT COMPANY

ST. LUCIE PLANT

SECOND QUARTER 2022

BUREAU OF RADIATION CONTROL

ST. LUCIE SITE

Offsite Dose Calculation Manual Sampling

Second Quarter, 2022

Sample Type	Collection Frequency	Number of Sample Locations	Number of Samples
1. Direct Radiation	Quarterly	27	27
2. Airborne 2.a. Air Iodines	Weekly	5	65
2.b. Air Particulates	Weekly	5	64
3. Waterborne 3.a. Surface Water	Weekly Monthly	1	13
3.b. Shoreline Sediment	Semiannually	2	2
4. Ingestion4.a. Fish and Invertebrates4.a.1. Crustacea	Semiannually	2	2
4.a.2. Fish	Semiannually	2	0
4.b. Broadleaf Vegetation	Monthly	3	9

Total: 18

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

The marine fauna listed in this report were collected in part, under Florida FWC SAL030.

$\underline{\text{1. DIRECT RADIATION - DEPLOYED TLD's - }(\mu R/hour)}$

Sample Site	Deployment 15-March-22 Collection 22-June-22	Sample <u>Site</u>	Deployment 15-March-22 Collection 22-June-22
N-1	4.00 ± 0.28	SW-2	3.93 ± 0.11
NNW-5	3.67 ± 0.09	SW-5	4.75 ± 0.09
NNW-10	4.69 ± 0.38	SW-10	3.99 ± 0.11
NW-5	3.84 ± 0.31	SSW-2	3.86 ± 0.2
NW-10	5.13 ± 0.33	SSW-5	4.52 ± 0.19
WNW-2	3.78 ± 0.28	SSW-10	3.7 ± 0.32
WNW-5	4.01 ± 0.5	S-5	3.84 ± 0.22
WNW-10	3.84 ± 0.12	S-10	5.13 ± 0.39
W-2	3.51 ± 0.22	S/SSE-10	4.47 ± 0.19
W-5	4.32 ± 0.46	SSE-5	3.93 ± 0.32
W-10	3.56 ± 0.15	SSE-10	4.31 ± 0.27
WSW-2	4.00 ± 0.55	SE-1	4.04 ± 0.13
WSW-5	4.18 ± 0.22	H-32	4.23 ± 0.36
WSW-10	4.49 ± 0.19		

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/m³)

Collection <u>Date</u>					
	<u>H08</u>	<u>H12</u>	<u>H14</u>	<u>H30</u>	<u>H34</u>
05-Apr-22	<0.02	<0.02	<0.02	<0.02	<0.02
13-Apr-22	<0.02	<0.02	<0.02	<0.02	<0.02
20-Apr-22	<0.02	<0.02	<0.02	<0.02	<0.02
26-Apr-22	<0.02	<0.02	<0.02	<0.02	<0.02
04-May-22	<0.02	<0.02	<0.02	<0.02	<0.02
11-May-22	<0.02	<0.02	<0.02	<0.02	<0.02
17-May-22	<0.02	<0.02	<0.02	<0.02	<0.02
25-May-22	<0.02	<0.02	<0.02	<0.02	<0.02
01-Jun-22	<0.02	<0.02	<0.02	<0.02	<0.02
08-Jun-22	<0.02	<0.02	<0.02	<0.02	<0.02
15-Jun-22	<0.02	<0.02	<0.02	<0.02	<0.02
23-Jun-22	<0.02	<0.02	<0.02	<0.02	<0.02
28-Jun-22	<0.04	<0.03	<0.03	<0.03	<0.03

2.b.1. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection <u>Date</u>	ПОδ	ш12	шал	uэл	шэл
<u> </u>	<u>H08</u>	<u>H12</u>	<u>H14</u>	<u>H30</u>	<u>H34</u>
05-Apr-22	0.019 ± 0.002	0.017 ± 0.002	0.018 ± 0.002	0.021 ± 0.002	0.018 ± 0.002
13-Apr-22	0.015 ± 0.002	0.013 ± 0.002	0.013 ± 0.002	0.018 ± 0.002	0.014 ± 0.002
20-Apr-22	0.010 ± 0.002	0.009 ± 0.002	0.012 ± 0.002	0.008 ± 0.002	0.011 ± 0.002
26-Apr-22	0.017 ± 0.002	0.016 ± 0.002	0.018 ± 0.002	0.016 ± 0.002	0.015 ± 0.002
04-May-22	0.014 ± 0.002	0.020 ± 0.002	0.016 ± 0.002	0.018 ± 0.002	0.015 ± 0.002
11-May-22	0.013 ± 0.002	0.013 ± 0.002	0.011 ± 0.002	0.015 ± 0.002	0.015 ± 0.002
17-May-22	0.008 ± 0.002	0.010 ± 0.002	0.017 ± 0.002	0.009 ± 0.002	0.014 ± 0.002
25-May-22	0.016 ± 0.002	0.019 ± 0.002	0.017 ± 0.002	0.018 ± 0.002	0.017 ± 0.002
01-Jun-22	0.012 ± 0.002	0.020 ± 0.002	(A)	0.015 ± 0.002	0.017 ± 0.002
08-Jun-22	0.011 ± 0.002	0.007 ± 0.002	0.003 ± 0.001	0.009 ± 0.002	0.004 ± 0.001
15-Jun-22	0.019 ± 0.002	0.020 ± 0.002	0.021 ± 0.002	0.020 ± 0.002	0.013 ± 0.002
23-Jun-22	0.018 ± 0.002	0.017 ± 0.002	0.023 ± 0.002	0.017 ± 0.002	0.018 ± 0.002
28-Jun-22	0.021 ± 0.003	0.020 ± 0.003	0.020 ± 0.003	0.022 ± 0.003	0.014 ± 0.002
Average	0.014 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	0.014 ± 0.001

(A) Sample was missing at time of collection

2.b.2. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
H08	0.126 ± 0.0088	<0.0109	<0.0009	<0.001	<0.0109
H12	0.122 ± 0.089	<0.0107	<0.0010	<0.001	0.008 ± 0.002
H14	0.109 ± 0.0088	<0.0171	<0.0007	<0.001	<0.0306
H30	0.12 ± 0.0092	<0.0140	<0.0009	<0.001	<0.0107
H34	0.120 ± 0.0092	<0.0126	<0.0009	<0.001	<0.0115

3.a. SURFACE WATER - (pCi/L)

Sample <u>Site</u>	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>l-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H15	05-Apr-22	<133	386 ± 28	<3	<3	<7	<3	<8	<7	<5	<3	<4	<5
	14-Apr-22	<137	362 ± 28	<4	<3	<6	<3	<8	<6	<4	<3	<4	<4
	20-Apr-22	<137	340 ± 27	<4	<3	<7	<4	<7	<6	<4	<4	<4	<4
	26-Apr-22	<140	335 ± 26	<3	<3	<7	<4	<8	<5	<3	<4	<3	<4
	04-May-22	<134	319 ± 25	<3	<3	<6	<3	<8	<6	<4	<3	<3	<4
	11-May-22	191 ± 45	371 ± 27	<4	<3	<8	<3	<7	<5	<4	<4	<4	<4
	17-May-22	<134	338 ± 26	<4	<4	<7	<4	<8	<6	<4	<3	<4	<4
	25-May-22	<133	346 ± 26	<3	<3	<7	<4	<8	<5	<4	<3	<3	<4
	01-Jun-22	<132	318 ± 26	<3	<3	<6	<4	<7	<5	<4	<4	<4	<3
	08-Jun-22	<132	333 ± 27	<3	<3	<7	<4	<7	<6	<4	<4	<4	<3
	16-Jun-22	<132	342 ± 27	<4	<3	<7	<4	<7	<5	<3	<3	<3	<3
	22-Jun-22	<134	340 ± 26	<3	<4	<6	<4	<8	<5	<4	<3	<4	<3
	28-Jun-22	103 ± 43	363 ± 28	<3	<3	<8	<4	<8	<6	<6	<4	<4	<4
H59	05-Apr-22	<133	302 ± 42	<5	<6	<12	<6	<11	<10	<12	<4	<6	<7
	02-May-22	<134	320 ± 36	<5	<6	<11	<5	<12	<10	<8	<5	<6	<11
	08-Jun-22	<198	294 ± 24	<3	<3	<7	<3	<7	<6	<4	<3	· <4	<3

⁽A) - These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.

⁽B) - These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT - (pCi/kg, dry weight)

Sample Site	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
H15	25-Jul-22	<92	179 ±	<8	<6	<8	<7	<334	55 ± 10	<48	16 ± 5	<48
H59	25-Jul-22	<65	175 ±	<7	<9	<6	<8	<80	<180	<40	<40	<60

NOTE: Samples collected late due to scheduling error.

4.a.1. CRUSTACEA - (pCi/kg, wet weight)

Sampl e	Collectio n <u>Date</u>	<u>K-40</u>	<u>Mn</u> -	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-</u> 60	<u>Zn-65</u>	<u>Cs</u> -	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
H15	16-Jun-22	1620 ± 153	<22	<20	<44	<22	<57	<20	<2	784 ± 164	<116
H59	16-Jun-22	1430 ± 166	<22	<24	<51	<20	<46	<18	<23	<539	<117

4.a.2. FISH - (pCi/kg, wet weight)

Sample Site	Collection Date	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>	
39 500 500 500 500 500 500 500 500 500 50	These samples previously collected											

4.b. BROADLEAF VEGETATION - Brazilian Pepper - (pCi/kg, wet weight)

Sample Site	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	Pb-212	<u>Ra-226</u>	<u>Ra-228</u>
H51	05-Apr-22	1020 ±	4940 ±	<18	<13	<15	<930	<32	297 ± 136	<70
	02-May-22	1140 ±	3550 ±	<33	<14	<17	<1010	<32	<414	<69
Manager in Anglish de siness des constitues de la constitue de la constitue de la constitue de la constitue de	08-Jun-22	953 ±	3830 ±	<16	<13	18 ± 4	<101	<26	<305	<48
H52	05-Apr-22	1930 ±	3290 ±	<19	<12	<15	774 ± 322	<32	<353	<62
	02-May-22	1050 ±	3660 ±	<24	<12	<14	<931	<26	<330	<51
	08-Jun-22	1680 ±	3850 ±	<35	<17	<20	<7860	<43	<542	<65
H59	05-Apr-22	1010 ±	1970 ±	<11	<10	<12	<113	<21	<218	<37
	02-May-22	1110 ±	2370 ±	<19	<10	<11	<120	<20	<228	<38
was a constant of the constant	08-Jun-22	1070 ±	3130 ±	<17	<10	<12	<90	<21	<249	<39

ST. LUCIE SITE

Supplemental Sampling

Second Quarter, 2022

Sample Type	Collection Frequency	Number of Sample Locations	Number of Samples
1. Direct Radiation	Quarterly	9	9
2. Airborne			
2.a. Air Iodines	Weekly	3	26
2.b. Air Particulates	Weekly	3	26
3. Waterborne			
3.a. Surface Water	Monthly	2	6
3.b. Shoreline Sediment	Semiannually	4	0
3.c. Beach Sand	Semiannually	3	0
3.d. Ground Water	Quarterly	10	10
4. Ingestion			
4.a. Garden Crop	Annually	1	0
4.b. Citrus	Annually	1	0

Total: 77

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

1. DIRECT RADIATION - DEPLOYED TLD's - (μR/hour)

Sample	Deployment 15-Mar-22
Site	Collection 22-June-22
H08	4.48 ± 0.15
H09	4.6 ± 0.49
H12	9.44 ± 0.23
H14	4.69 ± 0.46
H33	4.36 ± 0.24
H34	4.25 ± 0.11
H60	4.34 ± 0.17
H61	5.79 ± 0.22
H62	4.89 ± 0.31

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/m³)

Collection Date	<u>H09</u>	<u>H32</u>	<u>H33</u>
05-Apr-22	< 0.02	(A)	< 0.02
13-Apr-22	< 0.02	(A)	< 0.02
20-Apr-22	< 0.02	(A)	< 0.02
26-Apr-22	< 0.02	(A)	< 0.02
04-May-22	< 0.02	(A)	< 0.02
11-May-22	< 0.02	(A)	< 0.02
17-May-22	< 0.02	(A)	< 0.02
25-May-22	< 0.02	(A)	< 0.02
01-Jun-22	< 0.02	(A)	< 0.02
08-Jun-22	< 0.02	(A)	< 0.02
15-Jun-22	< 0.02	(A)	< 0.02
22-Jun-22	< 0.02	(A)	< 0.02
28-Jun-22	< 0.03	(A)	< 0.03

⁽A) Site power was out for an extended period.

(A) 2.b. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection Date	H09	H32	Н33
05-Apr-22	0.013 ± 0.002	(A)	0.013 ± 0.002
13-Apr-22	0.014 ± 0.002	(A)	0.016 ± 0.002
20-Apr-22	0.009 ± 0.002	(A)	0.012 ± 0.002
26-Apr-22	0.019 ± 0.002	(A)	0.018 ± 0.002
04-May-22	0.017 ± 0.002	(A)	0.013 ± 0.002
11-May-22	0.018 ± 0.002	(A)	0.014 ± 0.002
17-May-22	0.011 ± 0.002	(A)	0.012 ± 0.002
25-May-22	0.017 ± 0.002	(A)	0.016 ± 0.002
01-Jun-22	0.014 ± 0.002	(A)	0.011 ± 0.002
08-Jun-22	0.004 ± 0.001	(A)	0.009 ± 0.002
15-Jun-22	0.019 ± 0.002	(A)	0.017 ± 0.002
22-Jun-22	0.021 ± 0.002	(A)	0.020 ± 0.002
28-Jun-22	0.009 ± 0.002	(A)	0.016 ± 0.002
Average	0.014 ± 0.001	(A)	0.014 ± 0.001
ita norvar was out for	on autandad nariad		

⁽A) Site power was out for an extended period.

2.b. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - $\underline{(pCi/m^3)}$

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
H09	0.1130 ± 0.0090	<0.0134	<0.0008	<0.0009	<0.0009
H32	Site	power was c	out for an ext	ended perio	d.
H33	0.1140 ± 0.0096	< 0.0139	<0.0008	<0.0008	0.0382 ± 0.0109

3.a. SURFACE WATER - (pCi/L)

Sample <u>Site</u>	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-</u> <u>54</u>	<u>Co- 58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 Nb-95 (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H13	05-Apr-22	<132	381 ± 44	<5	<5	<12	<5	<12	<11	<10	<4	<6	<7
	02-May-22	<134	325 ± 35	<5	<5	<11	<6	<14	<9	<8	<5	<5	<21
	08-Jun-22	<198	197 ± 19	<3	<3	<7	<3	<7	<5	<3	<3	<3	<3
H36	05-Apr-22	<132	297 ± 24	<3	<3	<8	<4	<8	<7	<7	<4	<4	<5
	02-May-22	<134	288 ± 23	<4	<3	<6	<4	<8	<6	<4	<3	<4	<5
	08-Jun-22	<198	297 ± 24	<3	<3	<8	<4	<7	<7	<4	<3	<4	<3

- 2. These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.
- 3. These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT - (pCi/kg, dry weight)

Sample <u>Site</u>	Collection Date	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
H13	These	samples have	not yet bee	n collected	d.	ř						
H16					Continue of the Continue of th							
H19												No.
H36			alaman wasan kan san san san san san san san san san s						APPENDINGS AND			

3.c. BEACH SAND - (pCi/kg, dry weight)

Sample Site	Collection Date	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>	
H15	Thes	These samples have not yet been collected.											
H16						THE REAL PROPERTY AND ADDRESS							
H19			7										

3.d. GROUND WATER - (pCi/L)

Sample <u>Site</u>	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>l-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H70	07-Jun-22	94 ± 45	<67	<4	<4	<8	<4	<9	<7	<5	<4	<5	<8
H71	07-Jun-22	413 ± 50	380 ± 34	<5	<4	<8	<4	<9	<7	<5	<4	<5	<8
H72	07-Jun-22	<134	296 ± 25	<4	<4	<7	<4	<10	<7	<5	<5	<4	<4
H73	07-Jun-22	<134	81 ± 14	<4	<4	<7	<4	<8	<7	<4	<4	<4	<4
H74	07-Jun-22	<134	315 ± 25	<3	<4	<7	<4	<10	<6	<4	<4	<4	<4
H75	07-Jun-22	<134	235 ± 22	<3	<4	<7	<4	<10	<6	<4	<4	<4	<4
H76	07-Jun-22	<134	<45	<4	<4	<7	<4	<9	<7	<5	<4	<4	<8
H77	07-Jun-22	<134	<67	<4	<4	<7	<4	<8	<7	<4	<4	<4	<10
H78	07-Jun-22	<139	56 ± 13	<5	<4	<8	<4	<9	<7	<5	<4	<4	<8
H79	07-Jun-22	<139	<51	<3	<4	<6	<3	<7	<6	<4	<4	<4	<4

⁽A) - These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.

⁽B) - These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

4.a. GARDEN CROP - (pCi/kg, wet weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>l-131</u>	<u>Cs-134</u>	<u>Cs-137</u>
H41		nas not been ava				·

4.b. CITRUS - (pCi/kg, wet weight)

Sample Site	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>
H23		eviously collecte	d.			

C. Third Quarter 2022

RADIOLOGICAL SURVEILLANCE OF

FLORIDA POWER AND LIGHT COMPANY

ST. LUCIE PLANT

THIRD QUARTER 2022

BUREAU OF RADIATION CONTROL

ST. LUCIE SITE

Offsite Dose Calculation Manual Sampling

Third Quarter, 2022

Sample Type	Collection Frequency	Number of Sample Locations	Number of Samples
1. Direct Radiation	Quarterly	27	27
4. Airborne <u>4.a.</u> Air Iodines	Weekly	5	65
2.b. Air Particulates	Weekly	5	65
3. Waterborne 3.a. Surface Water	Weekly Monthly	1	13
3.b. Shoreline Sediment 4. Ingestion 4.a. Fish and Invertebrates 4.a.1. Crustacea	Semiannually Semiannually	1	1
4.a.2. Fish	Semiannually	0	0
4.b. Broadleaf Vegetation	Monthly	3	9

Total: 183

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard- deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

The marine fauna listed in this report were collected in part, under Florida FWC SAL030.

1. DIRECT RADIATION - DEPLOYED TLD's - (µR/hour)

Sample <u>Site</u>	Deployment 22-June-22 Collection 20-Sep-22
N-1	3.57 ± 0.2
NNW-5	3.6 ± 0.5
NNW-10	4.36 ± 0.23
NW-5	3.49 ± 0.21
NW-10	4.62 ± 0.02
WNW-2	3.66 ± 0.36
WNW-5	3.73 ± 0.36
WNW-10	3.57 ± 0.34
W-2	3.51 ± 44
W-5	4.12 ± 0.26
W-10	3.16 ± 0.26
WSW-2	3.71 ± 0.05
WSW-5	3.83 ± 0.38
WSW-10	4.08 ± 0.43
SW-2	3.5 ± 0.47
SW-5	4.32 ± 0.36
SW-10	3.56 ± 0.46
SSW-2	3.5 ± 0.32
SSW-5	4.18 ± 0.68
SSW-10	3.32 ± 0.54
S-5	3.41 ± 0.29
S-10	4.05 ± 0.57
S/SSE-10	3.96 ± 0.21
SSE-5	3.5 ± 0.31
SSE-10	3.93 ± 0.26
SE-1	3.3 ± 0.06
H-32	4.03 ± 0.39

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/ m³)

Collection <u>Date</u>	<u>H08</u>	<u>H12</u>	<u>H14</u>	<u>H30</u>	<u>H34</u>
06-Jul-22	<0.02	< 0.02	< 0.02	<0.02	<0.02
12-Jul-22	<0.03	< 0.03	< 0.03	<0.03	<0.03
18-Jul-22	<0.03	< 0.03	< 0.03	<0.03	<0.03
26-Jul-22	<0.02	<0.02	<0.02	<0.02	<0.02
02-Aug-22	<0.02	< 0.02	< 0.02	<0.02	<0.02
09-Aug-22	<0.02	< 0.02	<0.02	<0.02	<0.02
16-Aug-22	<0.02	<0.02	<0.02	<0.02	<0.02
22-Aug-22	<0.03	<0.03	< 0.03	<0.03	<0.03
30-Aug-22	<0.03	<0.03	<0.03	<0.03	<0.03
07-Sep-22	<0.01	<0.01	<0.01	<0.01	<0.01
13-Sep-22	<0.03	<0.03	<0.03	<0.03	<0.03
20-Sep-22	<0.02	<0.02	<0.02	<0.02	<0.02
27-Sep-22	<0.03	<0.03	< 0.03	<0.03	<0.03

2.b.1. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection <u>Date</u>	<u>H08</u>	<u>H12</u>	<u>H14</u>	<u>H30</u>	<u>H34</u>
06-Jul-22	0.007 ± 0.001	0.005 ± 0.001	0.010 ± 0.002	0.008 ± 0.001	0.007 ± 0.001
12-Jul-22	0.012 ± 0.002	0.012 ± 0.002	0.009 ± 0.002	0.009 ± 0.002	0.009 ± 0.002
18-Jul-22	0.010 ± 0.002	0.010 ± 0.002	0.010 ± 0.002	0.006 ± 0.002	0.009 ± 0.002
26-Jul-22	0.015 ± 0.002	0.012 ± 0.002	0.012 ± 0.002	0.014 ± 0.002	0.013 ± 0.002
02-Aug-22	0.011 ± 0.002	0.019 ± 0.002	0.016 ± 0.002	0.017 ± 0.002	0.015 ± 0.002
09-Aug-22	0.014 ± 0.002	0.019 ± 0.002	0.016 ± 0.002	0.012 ± 0.002	0.016 ± 0.002
16-Aug-22	0.021 ± 0.002	0.018 ± 0.002	0.019 ± 0.002	0.023 ± 0.002	0.023 ± 0.002
22-Aug-22	0.002 ± 0.001	0.016 ± 0.002	0.021 ± 0.002	$0.019 \pm .002$	0.018 ± 0.002
30-Aug-22	0.011 ± 0.002	0.007 ± 0.001	0.009 ± 0.001	0.007 ± 0.001	0.007 ± 0.001
07-Sep-22	0.008 ± 0.002	0.009 ± 0.002	0.007 ± 0.002	0.011 ± 0.002	0.010 ± 0.002
13-Sep-22	0.008 ± 0.002	0.011 ± 0.002	0.009 ± 0.002	0.010 ± 0.002	0.006 ± 0.002
20-Sep-22	0.004 ± 0.001	0.006 ± 0.001	0.007 ± 0.002	0.006 ± 0.001	0.007 ± 0.002
27-Sep-22	0.013 ± 0.002	0.015 ± 0.002	0.012 ± 0.002	0.016 ± 0.002	0.014 ± 0.002
Average	0.010 ± 0.001	0.012 ± 0.001	0.012 ± 0.001	0.012 ± 0.001	0.012 ± 0.001

2.b.2. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
H08	0.0728 ± 0.0067	<0.0116	<0.0104	<0.0009	<0.0093
H12	0.0982 ± 0.0075	<0.0096	<0.0137	<0.0009	<0.0098
H14	0.0830 ± 0.0071	<0.0097	<0.0139	<0.0007	<0.0303
H30	0.0789 ± 0.0070	<0.0102	<0.0151	<0.0007	<0.0298
H34	0.0796 ± 0.0074	<0.0132	<0.0142	<0.0006	<0.0278

3.a. SURFACE WATER - (pCi/L)

Sample Site	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H15	06-Jul-22	<135	358 ± 28	<4	<4	<8	<3	<9	<8	<6	<4	<3	<4
	12-Jul-22	<135	322 ± 26	<3	<4	<7	<3	<7	<6	<4	<3	<4	<3
	18-Jul-22	<132	350 ± 27	<3	<3	<7	<4	<8	<6	<5	<3	<3	<3
	26-Jul-22	<137	312 ± 26	<3	<3	<6	<3	<7	<6	<4	<4	<3	<3
	02-Aug-22	<136	312 ± 25	<4	<3	<7	<4	<6	<6	<4	<3	<4	<3
	09-Aug-22	<136	365 ± 40	<5	<9	<7	<14	<11	<6	<5	<5	<12	<3
	16-Aug-22	<136	245 ± 23	<3	<3	<7	<4	<7	<6	<4	<3	<4	<3
	22-Aug-22	<133	311 ± 25	<3	<3	<7	<4	<8	<6	<4	<4	<4	<3
	30-Aug-22	<133	294 ± 24	<3	<3	<6	<4	<8	<6	<4	<3	<4	<4
	07-Sep-22	<136	362 ± 28	<4	<4	<9	<4	<8	<7	<6	<4	<4	<3
	13-Sep-22	<136	305 ± 26	<3	<3	<7	<4	<7	<5	<4	<3	<3	<2
	20-Sep-22	<136	319 ± 26	<3	<3	<7	<4	<8	<6	<4	<4	<3	<9
	27-Sep-22	<136	338 ± 36	<6	<6	<11	<6	<10	<1	<8	<5	<6	<7
H59	06-Jul-22	<135	336 ± 37	<5	<5	<12	<3	<15	<9	<9	<5	<5	<12
	09-Aug-22	<136	365 ± 40	<6	<5	<9	<7	<14	<11	<6	<5	<5	<3
	01-Sep-22	<133	361±27	<3	<7	<4	<6	<5	<4	<3	<4	<3	<4

⁽A)- These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.

⁽B) - These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT - (pCi/kg, dry weight)

Sample Site	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
H15	01-Sep-22	<94	412 ± 46	<9	<9	<9	<11	<1130	110 ± 13	<75	<22	<233
H59	01-Sep-22	<87	287 ± 40	<8	<6	<8	<9	<936	41 ± 11	<65	15 ± 5	<169

4.a.1. CRUSTACEA - (pCi/kg, wet weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>K-40</u>	<u>Mn-</u> 54	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-</u> 60	<u>Zn-65</u>	<u>Cs-</u> 134	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
H15	14-Jul-22	1250 ± 115	<14	<16	<33	<19	<36	<16	<18	<408	<64
H59				S	ample to b	e collect			The second secon		

4.a.2. FISH - (pCi/kg, wet weight)

Sample Site	Collection Date	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>		
	These samples to be collected												

4.b. BROADLEAF VEGETATION - Brazilian Pepper - (pCi/kg, wet weight)

Sample Site	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Pb-212</u>	<u>Ra-226</u>	<u>Ra-228</u>
H51	06-Jul-22	1090 ± 51	3200 ± 139	<16	<8	<10	62 ± 18	<17	<205	<38
	09-Aug-22	1920 ± 107	2280 ± 144	<14	<11	<13	<984	<29	<341	<57
	01-Sep-22	984 ± 68	5600 ± 240	<12	<11	<13	<796	<18	<307	<58
H52	06-Jul-22	758 ± 66	3980 ± 198	<25	<12	<12	481 ± 317	<27	<341	<60
**************************************	09-Aug-22	1590 ± 65	5530 ± 213	<12	<10	<13	<90	<22	<238	<41
The state of the s	01-Sep-22	1180 ± 53	4380 ± 174	<10	<9	<10	68 ± 18	<19	<210	<36
H59	06-Jul-22	595 ± 40	3270 ± 147	<20	<9	<12	<83	<20	<234	<36
	09-Aug-22	925 ± 50	2960 ± 135	<11	<9	<12	<80	<19	<207	<38
	01-Sep-22	739 ± 64	3390 ± 179	<15	<11	<17	1070 ± 295	<32	<315	<64

ST. LUCIE SITE

Supplemental Sampling

Third Quarter, 2022

Sample Type	Collection Frequency	Number of Sample Locations	Number of Samples
1. Direct Radiation	Quarterly	9	9
2. Airborne 2.a. Air Iodines	Weekly	3	34
2.b. Air Particulates	Weekly	3	34
4 Waterborne 4.a Surface Water	Monthly	2	6
3.b. Shoreline Sediment	Semiannually	4	4
3.c. Beach Sand	Semiannually	3	3
3.d. Ground Water	Quarterly	10	10
4. Ingestion			
4.a. Garden Crop	Annually	0	0
4.b. Citrus	Annually	0	0

Total: 77

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard- deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

1. DIRECT RADIATION - DEPLOYED TLD's - (µR/hour)

Sample <u>Site</u>	Deployment 22-June-22 Collection 20-Sep-22
H08	4.03 ± 0.39
H09	4.04 ± 0.40
H12	7.95 ± 0.57
H14	4.07 ± 0.42
H33	3.87 ± 0.05
H34	3.76 ± 0.50
H60	3.6 ± 0.25
H61	3.8 ± 0.05
H62	4.91 ± 0.39

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/m³)

Collection Date	<u>H09</u>	<u>H32</u>	<u>H33</u>
06-Jul-22	< 0.02	(A)	<0.02
12-Jul-22	< 0.03	(A)	<0.03
18-Jul-22	< 0.03	(A)	<0.03
26-Jul-22	< 0.02	(A)	<0.02
02-Aug-22	< 0.02	(A)	<0.02
09-Aug-22	< 0.02	< 0.02	<0.02
16-Aug-22	< 0.02	< 0.02	<0.02
22-Aug-22	< 0.03	<0.03	< 0.03
30-Aug-22	< 0.03	<0.03	<0.03
07-Sep-22	< 0.01	<0.01	< 0.01
13-Sep-22	< 0.03	<0.03	< 0.03
20-Sep-22	< 0.02	<0.02	< 0.02
27-Sep-22	< 0.03	<0.03	<0.03

(A) Site power was out for an extended period.

2.b. AIR PARTICULATES - GROSS BETA - (pCi/m³)

	Collection Date	H09	H32	Н33
ą.	Name of the second seco			
	06-Jul-22	0.004 ± 0.001	(A)	0.010 ± 0.002
	12-Jul-22	0.010 ± 0.002	(A)	0.008 ± 0.002
	18-Jul-22	0.011 ± 0.002	(A)	0.011 ± 0.002
	26-Jul-22	0.015 ± 0.002	(A)	0.015 ± 0.002
	02-Aug-22	0.015 ± 0.002	(A)	0.010 ± 0.002
	09-Aug-22	0.020 ± 0.002	0.013 ± 0.002	0.014 ± 0.002
	16-Aug-22	0.020 ± 0.002	0.020 ± 0.002	0.011 ± 0.002
	22-Aug-22	0.018 ± 0.002	0.017 ± 0.002	0.016 ± 0.002
	30-Aug-22	0.007 ± 0.001	0.003 ± 0.001	0.005 ± 0.001
	07-Sep-22	0.009 ± 0.002	0.010 ± 0.002	0.010 ± 0.002
	13-Sep-22	0.009 ± 0.002	0.007 ± 0.002	0.010 ± 0.002
	20-Sep-22	0.007 ± 0.002	0.006 ± 0.001	0.011 ± 0.002
	27-Sep-22	0.014 ± 0.002	0.019 ± 0.002	0.015 ± 0.002
	Average	0.012 ± 0.001	0.012 ± 0.001	0.011 ± 0.001

⁽A) Site power was out for an extended period.

2.b. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - (pCi/m3)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
H09	0.0864 ± 0.0076	<0.0123	<0.0159	<0.0007	<0.0351
H32	Site	power was c	out for an ex	tended perio	d.
Н33	0.0757 ± 0.0072	< 0.0137	<0.0111	<0.0009	<0.0093

3.a. SURFACE WATER - (pCi/L)

Sample Site	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn- 54</u>	<u>Co- 58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H13	06-Jul-22	<135	306 ± 35	<6	<5	<11	<5	<14	<10	<8	<5	<5	<8
	09-Aug-22	<136	356 ± 37	<5	<5	<11	<6	<11	<8	<7	<5	<5	<13
	01-Sep-22	<133	339 ± 27	<3	<4	<7	<4	<8	<6	<5	<3	<3	<3
H36	06-Jul-22	<135	367 ± 27	<3	<4	<8	<4	<8	<6	<6	<3	<3	<3
	09-Aug-22	<136	317 ± 27	<4	<4	<8	<4	<7	<6	<5	<4	<4	<3
	01-Sep-22	<133	400 ± 38	<6	<5	12	<6	<11	<9	<9	<5	<6	<7

- (A)- These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.
- (B)- These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT - (pCi/kg, dry weight)

Sample Site	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
H13	01-Sep-22	53 ± 13	666 ± 44	<6	<6	<7	<8	<393	<254	<52	<16	<122
H16	01-Sep-22	<75	474 ± 56	<10	<9	<9	<10	<1096	<341	<69	<22	<205
H19	01-Sep-22	<93	445 ± 51	<10	<9	<9	<11	<836	<327	<69	<21	<211
H36	13-Sep-22	<126	7860 ± 272	<15	<11	<18	<16	5280 ± 398	<552	<96	<35	<324

3.c. BEACH SAND - (pCi/kg, dry weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
H15	01-Sep-22	<88	282 ± 39	<78	<8	<8	<9	<1010	325 ± 98	<68	20 ± 6	<198
H16	01-Sep-22	<81	203 ± 33	<69	<9	<7	<10	<1090	411 ± 95	<60	26 ± 6	<173
H19	01-Sep-22	<98	<157	<10	<11	<10	<11	<916	225 ± 122	63 ± 24	16 ± 8	<203

3.d. GROUND WATER - (pCi/L)

Sample Site	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 Nb-95 (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H70	14-Jul-22	<132	<82	<5	<5	<12	<6	<12	<9	<7	<5	<5	<19
H71	14-Jul-22	<135	313 ± 36	<6	<6	<13	<7	<14	<10	<7	<6	<6	<17
H72	14-Jul-22	<135	77 ± 13	<3	<3	<7	<7	<8	<6	<4	<4	<4	<3
H73	14-Jul-22	<135	318 ± 38	<5	<5	<10	<6	<11	<10	<6	<5	<5	<17
H74	14-Jul-22	<135	212 ± 21	<4	<3	<6	<4	<8	<6	<4	<4	<4	<3
H75	14-Jul-22	<135	<86	<5	<6	<11	<5	<11	<10	<8	<5	<6	<10
H76	14-Jul-22	<135	<37	<3	<4	<7	<3	<8	<6	<5	<3	<3	<3
H77	14-Jul-22	<132	<81	<5	<5	<9	<4	<12	<9	<9	<5	<5	<7
H78	14-Jul-22	<132	<63	<5	<4	<10	<5	<11	<9	<9	<4	<6	<8
H79	14-Jul-22	<132	<82	<5	<5	<12	<6	<12	<9	<7	<5	<5	<19

⁽A) - These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.

⁽B) - These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La- 140, whichever method yields the greater sensitivity for a given sample.

4.a. GARDEN CROP - (pCi/kg, wet weight)

Sample Site	Collection Date	<u>Be-7</u>	<u>K-40</u>	<u>I-<13<1</u>	<u>Cs-<134</u>	<u>Cs-<137</u>
H41	This sample	has not been av	vailable.			

4.b. CITRUS - (pCi/kg, wet weight)

Sample Site	Collection Date	<u>Be-7</u>	<u>K-40</u>	<u>I-<13<1</u>	<u>Cs-<134</u>	<u>Cs-</u> <137
H23		This sar	nple was previous	sly collected.		

D. Fourth Quarter 2022

RADIOLOGICAL SURVEILLANCE

OF

FLORIDA POWER AND LIGHT COMPANY

ST. LUCIE PLANT

FOURTH QUARTER 2022

BUREAU OF RADIATION CONTROL

ST. LUCIE SITE

Offsite Dose Calculation Manual Sampling

Fourth Quarter, 2022

Sample Type	Collection Frequency	Number of Sample Locations	Number of Samples
1. Direct Radiation	Quarterly	27	26
2. Airborne			
2.a. Air Iodines	Weekly	5	60
2.b. Air Particulates	Weekly	5	60
3. Waterborne			
3.a. Surface Water	Weekly	1	12
	Monthly	1	3
3.b. Shoreline Sediment	Semiannually	0	0
4. Ingestion			
4.a. Fish and Invertebrates			
4.a.1. Crustacea	Semiannually	2	2
4.a.2. Fish	Semiannually	2	2
4.b. Broadleaf Vegetation	Monthly	3	9

Total: 177

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

The marine fauna listed in this report were collected in part, under Florida FWC SAL030A.

1. DIRECT RADIATION - DEPLOYED TLD's - (μR/hour)

Sample <u>Site</u>	Deployment 20-Sep-22 Collection 21-Dec-22
N-1	3.5 ± 0.3
NNW-5	(A)
NNW-10	4.2 ± 0.4
NW-5	3.6 ± 0.3
NW-10	4.9 ± 0.3
WNW-2	3.6 ± 0.1
WNW-5	3.8 ± 0.1
WNW-10	3.5 ± 0.2
W-2	3.4 ± 0.2
W-5	4.1 ± 0.2
W-10	3.2 ± 0.2
WSW-2	3.8 ± 0.1
WSW-5	3.9 ± 0.1
WSW-10	4.3 ± 0.4
SW-2	3.5 ± 0.2
SW-5	4.3 ± 0.1
SW-10	3.7 ± 0.2
SSW-2	3.6 ± 0.3
SSW-5	4.1 ± 0.2
SSW-10	3.5 ± 0.2
S-5	3.4 ± 0.3
S-10	4.1 ± 0.1
S/SSE-10	4.0 ± 0.2
SSE-5	3.8 ± 0.3
SSE-10	3.7 ± 0.3
SE-1	3.4 ± 0.2
H-32	4.1 ± 0.2

(A) Missing at time of collection

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/m³)

Collection <u>Date</u>	<u>H08</u>	<u>H12</u> .	<u>H14</u>	<u>H30</u>	<u>H34</u>
04-Oct-22	< 0.02	< 0.02	<0.02	< 0.02	<0.02
11-Oct-22	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
18-Oct-22	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
24-Oct-22	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
02-Nov-22	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
08-Nov-22	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
14-Nov-22	<0.02	< 0.02	< 0.02	< 0.01	< 0.02
22-Nov-22	<0.01	<0.01	< 0.01	< 0.01	< 0.01
30-Nov-22	<0.01	<0.01	<0.01	<0.01	< 0.01
07-Dec-22	<0.01	<0.01	<0.01	<0.01	< 0.01
13-Dec-22	<0.02	<0.02	<0.02	<0.02	< 0.02
22-Dec-22	<0.02	<0.02	<0.01	<0.01	< 0.01
28-Dec-22	<0.02	<0.01	<0.02	<0.02	<0.02

2.b.1. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection <u>Date</u>	<u>H08</u>	<u>H12</u>	<u>H14</u>	<u>H30</u>	<u>H34</u>
04-Oct-22	0.010 ± 0.002	0.007 ± 0.002	0.009 ± 0.001	0.008 ± 0.002	0.011 ± 0.002
11-Oct-22	0.013 ± 0.002	0.015 ± 0.002	0.012 ± 0.002	0.014 ± 0.002	0.010 ± 0.002
18-Oct-22	0.015 ± 0.002	0.018 ± 0.002	0.015 ± 0.002	0.016 ± 0.002	0.010 ± 0.002
24-Oct-22	0.015 ± 0.002	0.019 ± 0.002	0.018 ± 0.002	0.013 ± 0.002	0.016 ± 0.002
02-Nov-22	0.013 ± 0.002	0.011 ± 0.002	0.013 ± 0.002	0.013 ± 0.002	0.011 ± 0.001
08-Nov-22	0.008 ± 0.002	0.012 ± 0.002	0.010 ± 0.002	0.014 ± 0.002	0.013 ± 0.002
14-Nov-22	0.011 ± 0.002	0.030 ± 0.003	0.011 ± 0.002	0.009 ± 0.002	0.008 ± 0.002
22-Nov-22	0.008 ± 0.002	0.004 ± 0.001	0.008 ± 0.002	0.007 ± 0.001	0.006 ± 0.001
30-Nov-22	0.012 ± 0.002	0.013 ± 0.002	0.010 ± 0.002	0.016 ± 0.002	0.014 ± 0.002
07-Dec-22	0.016 ± 0.002	0.023 ± 0.002	0.019 ± 0.002	0.013 ± 0.002	0.012 ± 0.002
13-Dec-22	0.017 ± 0.002	0.019 ± 0.002	0.012 ± 0.002	0.015 ± 0.002	0.013 ± 0.002
22-Dec-22	0.016 ± 0.002	0.021 ± 0.002	0.019 ± 0.002	0.014 ± 0.002	0.014 ± 0.002
28-Dec-22	0.014 ± 0.002	0.013 ± 0.002	0.019 ± 0.002	0.001 ± 0.001	0.026 ± 0.003
Average	0.013 ± 0.001	0.016 ± 0.001	0.014 ± 0.001	0.012 ± 0.001	0.013 ± 0.001

2.b.2. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
H08	0.1230 ± 0.0098	<0.0112	<0.0009	<0.0011	< 0.0010
H12	0.1310 ± 0.0102	< 0.0144	< 0.0007	<0.0008	< 0.0008
H14	0.1300 ± 0.0107	<0.0217	<0.0009	<0.0011	< 0.0010
H30	0.1290 ± 0.0098	<0.0146	<0.0008	<0.0010	< 0.0008
H34	0.1490 ± 0.0107	<0.0231	<0.0010	<0.0012	< 0.0011

3.a. SURFACE WATER - (pCi/L)

Sample Site	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H15	04-Oct-22	<130	318 ± 26	<3	<3	<7	<4	<8	<6	<4	<3	<4	<3
	11-Oct-22	<129	331 ± 26	<4	<3	<7	<3	<7	<6	<4	<3	<3	<3
	18-Oct-22	<129	332 ± 25	<3	<3	<7	<4	<7	<6	<4	<3	<4	<3
	24-Oct-22	<130	309 ± 25	<4	<3	<8	<4	<7	<7	<5	<3	<4	<3
	08-Nov-22	<134	310 ± 36	<5	<5	<13	<5	<11	<8	<11	<4	<5	<8
	14-Nov-22	<133	310 ± 26	<3	<3	<6	<3	<6	<5	<4	<3	<4	<3
	22-Nov-22	<129	331±27	<3	<4	<8	<3	<8	<6	<6	<3	<4	<4
	30-Nov-22	<133	318 ± 25	<3	<4	<7	<3	<8	<5	<4	<3	<3	<3
	07-Dec-22	<128	292 ± 25	<3	<3	<8	<3	<8	<6	<4	<4	<4	<3
	13-Dec-22	<134	397 ± 27	<3	<3	<7	<4	<8	<6	<4	<3	<4	<3
	22-Dec-22	<134	320 ± 26	<3	<4	<7	<4	<8	<6	<6	<3	<4	<4
	28-Dec-22	<134	367 ± 27	<3	<4	<7	<4	<7	<5	<4	<4	<3	<3
H59	04-Oct-22	<131	273 ± 24	<3	<3	<7	<3	<7	<6	<4	<4	<4	<3
	02-Nov-22	<129	381 ± 40	<6	<5	<13	<6	<11	<10	<6	<4	<6	<10
	07-Dec-22	<134	417 ± 32	<4	<3	<8	<4	<8	<6	<5	<3	<4	<8

⁽A) - These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.

⁽B) - These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT - (pCi/kg, dry weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
H15												
H59				These S	amples Pr	eviously C	ollected				And the state of t	

4.a.1. CRUSTACEA - (pCi/kg, wet weight)

Sample Site	Collection <u>Date</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
H15	11-Oct-22	3420 ±	<20	<23	<41	<22	<41	<21	<23	<457	<87
H59	29-Nov-22	2090 ±	<218	<23	<18	<45	<28	<51	<21	<498	<129

4.a.2. FISH - (pCi/kg, wet weight)

Sample Site	Collection Date	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	Fe-59	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
H15	20-Oct-22	4750 ± 280	<26	<28	<61	<23	<65	<29	<29	<63	<122
H59	14-Dec-22	2900 ± 207	<20	<23	<45	<26	<52	<21	<23	<371	<98

4.b. BROADLEAF VEGETATION - Brazilian Pepper - (pCi/kg, wet weight)

Sample Site	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Pb-212</u>	<u>Ra-226</u>	<u>Ra-228</u>
H51	04-Oct-22	1660 ± 103	4560 ± 226	<17	<13	<16	<976	<28	<334	<70
	02-Nov-22	2790 ± 243	2710 ± 139	<32	<9	<15	<699	<21	<248	<44
	07-Dec-22	1120 ± 109	4080 ± 195	<13	<13	<12	<726	<24	<257	<50
H52	04-Oct-22	1110 ± 73	4060 ± 196	<14	<10	<14	<830	19 ± 7	<311	<52
	02-Nov-22	1630 ± 106	3210 ± 181	<44	<11	<13	1260 ± 369	<30	<376	<53
	07-Dec-22	1010 ± 68	3090 ± 164	<13	<12	<12	<709	21 ± 7	<307	<53
H59	04-Oct-22	933 ± 70	3390 ± 186	<16	<11	<15	<834	<30	<334	<54
	02-Nov-22	978 ± 96	2210 ± 123	<30	<9	<10	<704	<19	<206	<37
	07-Dec-22	1050 ± 47	3330 ± 139	<9	<7	<9	<69	<18	<187	<33

ST. LUCIE SITE

Supplemental Sampling

Fourth Quarter, 2022

Sample Type	Collection Frequency	Number of Sample Locations	Number of Samples
1. Direct Radiation	Quarterly	9	9
2. Airborne 2.a. Air Iodines	Weekly	3	34
2.b. Air Particulates	Weekly	3	34
3. Waterborne 3.a. Surface Water	Monthly	2	6
3.b. Shoreline Sediment	Semiannually	0	0
3.c. Beach Sand	Semiannually	0	0
3.d. Ground Water	Quarterly	10	10
4. Ingestion 4.a. Garden Crop	Annually	0	0
4.b. Citrus	Annually	0	0

Total: 77

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

1. DIRECT RADIATION - DEPLOYED TLD's - (µR/hour)

Sample <u>Site</u>	Deployment 20-Sep-22 Collection 21-Dec-22
H08	4.10 ± 0.19
H09	4.04 ± 0.31
H12	8.02 ± 0.27
H14	4.10 ± 0.19
H33	3.88 ± 0.59
H34	3.58 ± 0.27
H60	3.67 ± 0.39
H61	4.93 ± 0.10
H62	4.43 ± 0.31

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/m³)

Collection Date	<u>H09</u>	<u>H32</u>	<u>H33</u>
04-Oct-22	< 0.02	< 0.02	< 0.02
11-Oct-22	< 0.03	<0.03	<0.48 (B)
18-Oct-22	< 0.02	<0.02	(A)
24-Oct-22	< 0.03	<0.03	(A)
02-Nov-22	< 0.02	< 0.02	(A)
08-Nov-22	< 0.02	<0.02	(A)
14-Nov-22	< 0.02	< 0.02	< 0.02
22-Nov-22	< 0.01	<0.01	(A)
30-Nov-22	< 0.01	<0.01	< 0.01
07-Dec-22	< 0.01	<0.01	< 0.01
13-Dec-22	< 0.02	< 0.02	< 0.02
21-Dec-22	< 0.02	<0.02	< 0.01
28-Dec-22	< 0.01	< 0.03	< 0.02

- (A) Site power was out for an extended period.
- (B) Measurement due to low volume from power being out

2.b. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection <u>Date</u>	<u>H09</u>	<u>H32</u>	<u>H33</u>
04-Oct-22	0.011 ± 0.002	0.012 ± 0.002	0.011 ± 0.002
11-Oct-22	0.007 ± 0.002	0.013 ± 0.002	<0.020 (B)
18-Oct-22	0.015 ± 0.002	0.014 ± 0.002	(A)
24-Oct-22	0.014 ± 0.002	0.020 ± 0.002	(A)
02-Nov-22	0.011 ± 0.002	0.017 ± 0.002	(A)
08-Nov-22	0.014 ± 0.002	0.009 ± 0.002	(A)
14-Nov-22	0.009 ± 0.002	0.007 ± 0.002	0.007 ± 0.002
22-Nov-22	0.007 ± 0.002	0.006 ± 0.001	(A)
30-Nov-22	0.015 ± 0.002	0.017 ± 0.002	0.003 ± 0.001
07-Dec-22	0.016 ± 0.002	0.025 ± 0.002	0.013 ± 0.002
13-Dec-22	0.017 ± 0.002	0.019 ± 0.002	0.015 ± 0.002
21-Dec-22	0.018 ± 0.002	0.021 ± 0.002	0.009 ± 0.001
28-Dec-22	0.013 ± 0.002	0.035 ± 0.004	0.019 ± 0.003
Average	0.013 ± 0.001	0.017 ± 0.001	0.010 ± 0.001

⁽A) Site power was out for an extended period.

2.b. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
H09	0.1350 ± 0.0101	<0.0150	<0.0190	<0.0009	<0.0009
H32	0.1480 ± 0.0106	<0.0163	<0.0208	<0.0009	<0.0010
Н33	0.1230 ± 0.0125	<0.0184	< 0.0273	<0.0014	<0.0012

⁽B) Measurement due to low volume from power being out

3.a. SURFACE WATER - (pCi/L)

Sample <u>Site</u>	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-</u> <u>54</u>	<u>Co-</u> <u>58</u>	<u>Fe-59</u>	<u>Co-60</u>	Zn-65	Zr-95 <u>Nb-95</u> (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
H13	04-Oct-22	<131	285 ± 25	<3	<3	<7	<3	<7	<5	<4	<3	<4	<3
	02-Nov-22	<134	237 ± 23	<3	<3	<6	<4	<7	<5	<4	<3	<3	<3
	07-Dec-22	<134	274 ± 24	<4	<3	<6	<4	<9	<6	<4	<3	<3	<3
H36	04-Oct-22	<131	253 ± 24	<3	<3	<7	<3	<7	<6	<4	<4	<4	<2
	02-Nov-22	86 ± 41	324 ± 27	<4	<4	<7	<4	<8	<6	<4	<4	<4	<3
	07-Dec-22	<128	300 ± 25	<4	<3	<8	<3	<8	<6	<4	<3	<3	<3

- (A) These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.
- (B) These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT - (pCi/kg, dry weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	Th-232	<u>U-235</u>	<u>U-238</u>
H13												
H16				Э	These San	ples Previ	ously Colle	cted	1			
H19		***************************************			Delphone concentration and con			2				
H36												

3.c. BEACH SAND - (pCi/kg, dry weight)

Sampl e <u>Site</u>	Collectio n <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	Th-232	<u>U-235</u>	<u>U-238</u>
H15												
H16					These San	nples Prev	iously Coll	ected				
H19												

3.e.GROUND WATER - (pCi/L)

Sample Site	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
70	27-Oct-22	<134	<54	<3	<3	<6	<4	<8	<6	<6	<4	<4	<3
71	27-Oct-22	436 ± 50	315 ± 27	<4	<4	<8	<4	<9	<7	<6	<4	<4	<4
72	27-Oct-22	<134	339 ± 36	<5	<6	<10	<7	<12	<10	<9	<4	<6	<10
73	27-Oct-22	<129	<64	<3	<3	<7	<3	<8	<7	<6	<3	<3	<3
74	27-Oct-22	<129	309 ± 38	<7	<5	<12	<7	<12	<11	<11	<5	<6	<11
75	27-Oct-22	<129	251 ± 23	<3	<4	<7	<3	<8	<6	<6	<4	<4	<3
76	27-Oct-22	<129	<64	<4	<5	<10	<5	<9	<9	<10	<5	<5	<8
77	27-Oct-22	<129	<40	<3	<4	<5	<3	<8	<5	<6	<4	<3	<6
78	27-Oct-22	<134	<96	<7	<8	<13	<6	<13	<17	<21	<8	<10	<11
79	27-Oct-22	<134	<67	<5	<6	<11	<5	<10	<10	<9	<5	<6	<5

⁽A) - These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLD's.

⁽B) - These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

4.a. GARDEN CROP - (pCi/kg, wet weight)

Sample Site	Collection Date	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>
H41	This sample	has not been a	vailable.			

4.b. CITRUS - (pCi/kg, wet weight)

Sample Site	Collection Date	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>
H23		This sa	ample was prev	iously collect	ed.	

10. Results from the BRC Interlaboratory Comparison Program – 2022

DOE MAPEP Series 46 Results

	Matrix: Air Filter (Bq/sample)									
Radionuclide	Result	Ref. Value	Flag (Evaluation)	Acceptance Range						
Mn-54	0.004	W	Α	False Positive						
Co-60	0.728	0.72	Α	0.50 - 0.94						
Zn-65	-0.005		Α	False Positive						
Cs-134	0.852	0.93	Α	0.65 - 1.21						
Cs-137	0.733	0.726	Α	0.508 - 0.944						
Gross Alpha	0.916	1.20	Α	0.36 - 2.04						
Gross Beta	0.645	0.681	Α	0.341 - 1.022						

Matrix: Soil (Bq/kg)									
Radionuclide	Result	Ref. Value	Flag (Evaluation)	Acceptance Range					
K-40	568.25	596	Α	417 - 775					
Mn-54	1104.17	1140	Α	798 - 1482					
Co-60	410.83	443	Α	310 - 576					
Zn-65	0.86		Α	False Positive					
Cs-134	886.32	890	Α	623 - 1157					
Cs-137	335.00	365	Α	256 - 475					
U-238	105.31	123	Α	86 - 160					

	Matrix: Water (Bq/L)									
Radionuclide	Result	Ref. Value	Flag (Evaluation)	Acceptance Range						
H-3 (pCi/L)	322.92	300	Α	210 - 390						
K-40	-0.256		Α	False Positive						
Mn-54	18.347	18.9	Α	13.2 – 24.6						
Co-60	8.778	9.3	Α	6.5 – 12.1						
Zn-65	26.704	26.2	Α	18.3 – 34.1						
Cs-134	0.047	Self that page	Α	False Positive						
Cs-137	7.469	7.64	Α	5.35 - 9.93						
Ra-226	0.724	0.8	Α	0.6 – 1.0						

DOE MAPEP Series 46 Results

Matrix: Vegetation (Bq/sample)										
Radionuclide	Result	Ref. Value	Flag (Evaluation)	Acceptance Range						
Am-241	0.104	0.101	Α	0.071 - 0.131						
Mn-54	2.895	2.59	Α	1.81 - 3.37						
Co-60	0.021		Α	False Positive						
Zn-65	1.718	1.47	Α	1.03 - 1.91						
Cs-134	8.082	7.61	Α	5.33 - 9.89						
Cs-137	1.733	1.52	Α	1.06 - 1.98						
U-238	0.074	0.074	Α	0.052 - 0.096						

DOE MAPEP Series 47 Results and ERA RAD-131 BRC Results

Matrix: Air Filter (Bq/sample)				
Radionuclide	Result	Ref. Value	Flag (Evaluation)	Acceptance Range
Mn-54	2.029	1.880	Α	1.32 - 2.44
Co-60	1.954	1.99	Α	1.39 - 2.59
Zn-65	1.872	1.580	Α	1.11 - 2.05
Cs-134	0.045		Α	False Positive
Cs-137	1.593	1.53	Α	1.07 - 1.99
Gross Alpha	1.11	0.90	Α	0.27 - 1.53
Gross Beta	1.22	1.31	Α	0.66 - 1.97

Matrix: Soil (Bq/kg)				
Radionuclide	Result	Ref. Value	Flag (Evaluation)	Acceptance Range
K-40	534.14	537	Α	376 - 698
Mn-54	828.11	841	Α	589 - 1093
Co-60	0.15		Α	False Positive
Zn-65	1156.63	1140	Α	798 - 1482
Cs-134	641.82	627	Α	439 - 815
Cs-137	1.14		Α	False Positive
U-238	141.16	157	Α	110 - 204

Matrix: Water (Bq/L)				
Radionuclide	Result	Ref. Value	Flag (Evaluation)	Acceptance Range
H-3 (pCi/L)	15317	15100	Α	13200 - 16600
K-40	1.378		Α	False Positive
Mn-54	0.198		Α	False Positive
Co-60	16.46	17	Α	11.9 - 22.1
Zn-65	11.824	11.3	Α	7.9 - 14.7
Cs-134	16.178	17.1	Α	12.0 - 22.2
Cs-137	16.710	16.8	Α	11.8 - 21.8
Ra-226	19.760	19	Α	14.1 - 21.7

DOE MAPEP Series 47 Results and ERA RAD-131 BRC Results

Matrix: Vegetation (Bq/sample)				
Radionuclide	Result	Ref. Value	Flag (Evaluation)	Acceptance Range
Am-241	0.245	0.189	W	0.132 - 0.246
Mn-54	2.613	2.43	Α	1.70 - 3.16
Co-60	4.776	4.620	Α	3.23 - 6.01
Zn-65	8.217	7.49	Α	5.24 - 9.74
Cs-134	-0.005		Α	False Positive
Cs-137	1.189	1.083	Α	0.758 - 1.408
U-238	0.155	0.13	Α	0.091 - 0.169