

Validating Actinides and Fission Products for Burnup Credit Criticality Safety Analyses – Nuclide Compositions Prediction with Extended Validation Basis

Office of Nuclear Regulatory Research

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at the NRC's Library at <u>www.nrc.gov/reading-rm.html.</u> Publicly released records include, to name a few, NUREG-series publications; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and Title 10, "Energy," in the *Code of Federal Regulations* may also be purchased from one of these two sources:

1. The Superintendent of Documents

U.S. Government Publishing Office Washington, DC 20402-0001 Internet: <u>https://bookstore.gpo.gov/</u> Telephone: (202) 512-1800 Fax: (202) 512-2104

2. The National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312-0002 Internet: <u>https://www.ntis.gov/</u> 1-800-553-6847 or, locally, (703) 605-6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: U.S. Nuclear Regulatory Commission

Office of Administration Digital Communications and Administrative Services Branch Washington, DC 20555-0001 E-mail: <u>Reproduction.Resource@nrc.gov</u> Facsimile: (301) 415-2289

Some publications in the NUREG series that are posted at the NRC's Web site address <u>www.nrc.gov/reading-rm/</u> <u>doc-collections/nuregs</u> are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852-2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute 11 West 42nd Street

New York, NY 10036-8002 Internet: <u>www.ansi.org</u> (212) 642-4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor prepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG–XXXX) or agency contractors (NUREG/CR–XXXX), (2) proceedings of conferences (NUREG/CP–XXXX), (3) reports resulting from international agreements (NUREG/IA–XXXX),(4) brochures (NUREG/BR–XXXX), and (5) compilations of legal decisions and orders of the Commission and the Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of the NRC's regulations (NUREG-0750), (6) Knowledge Management prepared by NRC staff or agency contractors (NUREG/KM-XXXX).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

Validating Actinides and Fission Products for Burnup Credit Criticality Safety Analyses – Nuclide Compositions Prediction with Extended Validation Basis

Manuscript Completed: May 2023 Date Published: September 2023

Prepared by: Germina Ilas Rabab Elzohery

Oak Ridge National Laboratory Oak Ridge, TN 37831-6170

Lucas Kyriazidis, NRC Project Manager

Office of Nuclear Regulatory Research

ABSTRACT

Criticality safety evaluations accounting for burnup credit require validation of the computational tools and associated nuclear data used to perform the fuel depletion and criticality calculations. The NUREG/CR-7108 report published in 2012 documents an approach for establishing the bias and bias uncertainty in the calculated neutron multiplication factor (k_{eff}) that is associated to calculated spent nuclear fuel nuclide compositions, using as validation basis radiochemical assay (RCA) measurement data for nuclide concentrations.

Studies documented in the current report build upon the NUREG/CR-7108 approach. The bias and bias uncertainty in calculated k_{eff} for a representative analysis model that includes pressurized water reactor (PWR) spent fuel is determined by applying a stochastic sampling method. The validation basis presented herein is improved compared to that in NUREG/CR-7108 to fill data gaps at high burnups, with practical impact on burnup credit for modern discharged fuel. This extended validation basis includes recent RCA measurements performed at Oak Ridge National Laboratory under an experimental program jointly funded by the Nuclear Regulatory Commission and the Department of Energy. The improvement in the validation basis led to an overall decrease in the k_{eff} bias uncertainty for the considered analysis model compared to the corresponding values in ISG-8 Rev.3.

TABLE OF CONTENTS

A	BSTR	RACT		iii	
LI	sт о	f figu	RES	vii	
LI	ST O	F TABL	.ES	ix	
E	KECU	ITIVE S	UMMARY	xi	
A	скис	OWLED	GMENTS	xiii	
A	BBRE	Ενιατισ	ONS AND ACRONYMS	xv	
1	INTE	RODUC	TION	1-1	
2	OVE	RVIEW	OF MODELS AND METHODS	2-1	
	2.1	Critica	lity Safety Model	2-1	
	2.2	Metho	d for Stochastic Uncertainty Sampling	2-6	
	2.0	2.3.1	Step A. Establish bias and bias uncertainty in calculated nuclide	2-0	
		2.3.2	Step B. Randomly sample calculated nuclide concentrations in the	2-6	
			considered criticality model	2-7	
		2.3.3 2.3.4	Step C. Calculate instances of k_{eff} for the criticality model Step D. Estimate bias and bias uncertainty in calculated k_{eff} of the	2-8	
				2-9	
3	LOA		CURVES	3-1	
	3.1	Burnu	p-Dependent Fuel Compositions for the Cask Model	3-1	
	3.2	Effect	of Cross Section Libraries on the Loading Curve	3-1	
	3.3	New A	pproach for Loading Curve Generation	3-2	
4	CON	IPUTA	TIONAL TOOLS AND ASSOCIATED NUCLEAR DATA	4-1	
5	NUC	LIDE II	NVENTORY VALIDATION DATA AND RESULTS	5-1	
	5.1	Nuclid	e Inventory Validation Data	5-1	
		5.1.1	Fuel sample characteristics	5-2	
		5.1.2	Number of measurements for burnup credit nuclides	5-5	
	5.2	Bias a	nd Uncertainty in Calculated Nuclide Concentration	5-7	
	5.3	Compa NURE	arison to Bias and Uncertainty in Calculated Nuclide Concentrations from G/CR-7108	5-11	
c					
0	6 1		s and Bias Uncertainty Calculated with SCALE 6.2 // ENDE/R VII 1	1-0 6_1	
	6.2	k _{eff} Bia	is Uncertainty Comparison with NUREG/CR-7108 and ISG-8, Rev 3	6-3	
7	CON	ICLUSI	ONS	7-1	

8	REFERENC	ES8	-1
AF	PPENDIX A	STOCHASTIC UNCERTAINTY SAMPLING METHOD -	
		IMPLEMENTATION USING SAMPLER A	1

LIST OF FIGURES

Figure	Ilustration of the SCALE Model for the GBC-32 Cask	2-4
Figure	Ilustration of the PWR Assembly Configuration (2D Cross S	Section)2-5
Figure	Ilustration of Axial Burnup Profiles for the PWR Assembly .	2-5
Figure	Ilustration of Steps in Stochastic Uncertainty Sampling Met	hod2-10
Figure	<i>k</i> eff Obtained Using the Old Loading Curve [23]	3-2
Figure	Loading Curve for the GBC-32 Cask (12 Actinides and 16 Products)	Fission 3-3
Figure	Burnup vs. Enrichment for the Measured Fuel Samples	5-4
Figure	Burnup Distribution Histogram for the Measured Fuel Sam	ples5-4
Figure	M/C Ratio vs. Burnup for ²³⁵ U	5-9
Figure	M/C Ratio vs. Burnup for ²³⁹ Pu	5-9
Figure	M/C Ratio vs. Burnup for ¹³³ Cs	5-10
Figure	Bias and Bias Uncertainty for Actinides Compared to Previ Burnups > 40 GWd/MTU	ous Data for 5-12
Figure	Bias and Bias Uncertainty for Fission Products Compared Data	to Previous 5-13
Figure	k _{eff} Bias for the Cask Model	6-2
Figure	<i>k</i> eff Bias Uncertainty for the Cask Model	6-2
Figure	<i>k</i> eff Bias + Bias Uncertainty for the Cask Model	6-2
Figure	Comparison of <i>k</i> eff Bias Uncertainty for the Cask Model	6-3
Figure <i>i</i>	Histogram of k _{eff} Perturbed Values for 55 GWd/MTU Burnu	p A-3
Figure <i>i</i>	<i>k</i> eff Bias and Bias Uncertainty vs. Number of Perturbed Cas GWd/MTU Burnup	ses for 10 A-4
Figure <i>i</i>	<i>k</i> eff Bias and Bias Uncertainty vs. Number of Perturbed Cas GWd/MTU Burnup	ses for 45 A-5
Figure <i>J</i>	keff Bias Uncertainty Estimate vs. Number of Perturbed Cas	ses A-5

LIST OF TABLES

Table 3-1	Comparison of New and Old Loading Curve Enrichments	3-3
Table 5-1	Summary of PWR RCA Data Used for Validation Data [39]	5-3
Table 5-2	Number of RCA Measurements per Nuclide	5-6
Table 5-3	Nuclide Bias and Bias Uncertainty for Actinides	5-8
Table 5-4	Nuclide Bias and Bias Uncertainty for Fission Products	.5-10
Table 5-5	Bias and Bias Uncertainty for Actinides for Burnups > 40 GWd/MTU Compared to Previous Data	.5-11
Table 5-6	Bias and Bias Uncertainty for Fission Products Compared to Previous Data	.5-13
Table 6-1	Bias and Bias Uncertainty for k_{eff} of the Cask Model	6-1
Table A-1	Comparison of Results Obtained with New and Previous Implementations of the Stochastic Sampling Method for Consistent Input at 30 GWd/MTU Burnup	A-6
Table A-2	Detailed keff Results Obtained with the CSAS6 Criticality Model	A-8
Table A-3	Detailed <i>k</i> _{eff} Results Obtained with the CSAS5 Criticality Model	A-9

EXECUTIVE SUMMARY

Criticality safety evaluations accounting for burnup credit require validation of the computational tools and associated nuclear data that are used to perform the fuel depletion and criticality calculations involved in these evaluations. An approach for establishing the bias and bias uncertainty in the calculated neutron multiplication factor (k_{eff}) for a criticality safety model, resulting from bias and bias uncertainty in calculated nuclide concentrations in spent nuclear fuel, was documented by Oak Ridge National Laboratory (ORNL) in the NUREG/CR-7108 report published in 2012. The approach was independent of the depletion and criticality computational methods being used and of the choice of the safety analysis model. The validation basis for the approach consisted of measured nuclide concentrations in spent nuclear fuel samples that were obtained from radiochemical assay (RCA) experiments.

The approach documented in the current report builds upon the approach documented in NUREG/CR-7108. The bias and bias uncertainty in calculated k_{eff} is determined for a representative safety analysis model of a generic burnup credit (GBC)-32 cask that includes pressurized water reactor (PWR) spent fuel assemblies. The approach applied herein is based on a new and standardized implementation of the stochastic sampling method presented in NUREG/CR-7108. This implementation employs the capabilities in the Sampler uncertainty quantification tool, which was introduced in the SCALE modeling and simulation suite for nuclear safety analysis and design in 2016.

The approach for propagating bias and bias uncertainty in calculated nuclide concentrations to bias and bias uncertainty in calculated k_{eff} for a criticality safety model is based on these primary steps: (1) develop a model for the bias and bias uncertainty in calculated nuclide concentrations for a given set of nuclides over a burnup range of interest based on measurement data for these nuclides, (2) randomly vary the nuclide concentrations within the range of their estimated uncertainties for the fuel compositions of the criticality model, (3) calculate k_{eff} for the criticality safety model using the randomly varied fuel compositions and repeat the process multiple times, and (4) estimate the bias and bias uncertainty in calculated k_{eff} for the criticality safety model from the distribution of k_{eff} values.

All analyses presented in this report are performed using the computational tools available in the 6.2.4 release of SCALE and nuclear cross sections based on Evaluated Nuclear Data File (ENDF)/B-VII.1. Fuel compositions for the criticality safety model include 28 nuclides important for burnup credit: 12 actinides and 16 fission products.

The loading curve presented in NUREG/CR-7108 for the GBC-32 cask model was reassessed to verify its applicability when using updated computational tools in SCALE 6.2.4 and 252-group ENDF/B-VII.1 cross section libraries. Based on the observed results, a new loading curve was generated and served for updating the cask reference model before using it to determine the bias and bias uncertainty in k_{eff} associated to calculated nuclide concentrations. The updated loading curve corresponds to fuel compositions that include all 28 burnup credit nuclides and was generated based on a new methodology.

The RCA validation basis is significantly extended in the current report for high burnups. It includes measurement data for 129 PWR fuel samples that cover a burnup range of 7–80 GWd/MTU, with 30 of these samples having burnups greater than 40 GWd/MTU. The validation basis considered in NUREG-7108 included 100 PWR fuel samples with burnups between 7 and 60 GWd/MTU. The current validation basis includes high-burnup RCA

measurements from international experimental programs and from recent experiments performed at ORNL for nine PWR spent fuel samples. These recent measurements were obtained as part of an ongoing experimental program jointly funded by the US Nuclear Regulatory Commission (NRC) and the US Department of Energy (DOE). Bias and bias uncertainty values in calculated k_{eff} for the considered criticality safety model are presented in this report for assembly-average burnups ranging between 5 and 70 GWd/MTU, with both actinide and fission product nuclides being credited. The k_{eff} bias varies between 0.0010 and 0.0033, and the k_{eff} bias uncertainty varies between 0.0136 and 0.0187. The k_{eff} bias uncertainty values for burnups greater than 30 GWd/MTU and fuel compositions that include actinide and fission product burnup credit nuclide are smaller than the corresponding values shown in NUREG/CR-7108. Part of this decrease is caused by a reduction in the bias uncertainty for the calculated nuclide concentrations resulting from improved statistics (increased number of measurements for burnup credit nuclides) and the addition of high-quality measurement data for impactful actinides and fission products.

ACKNOWLEDGMENTS

Funding for this work was provided by the US Nuclear Regulatory Commission (NRC). The authors would like to thank Lucas Kyriazidis and Andrew Barto of the NRC for their constructive feedback. Technical review and helpful comments from Georgeta Radulescu, Ian Gauld, and Ugur Mertyurek of Oak Ridge National Laboratory are greatly appreciated.

ABBREVIATIONS AND ACRONYMS

ANL	Argonne National Laboratory
ATM	approved testing material
CEA	Commissariat à l'Énergie Atomique
CSN	Consego de Securidad Nuclear
DOE	US Department of Energy
ENDF	Evaluated Nuclear Data File
ENRESA	Empresa Nacional de Residuo Radioactivo, SA (Spain)
ENUSA	Empresa Nacional del Uranio, SA (Spain)
GBC	generic burnup credit cask
GE-VNC	General Electric Vallecitos Nuclear Center
GKN II	Gemeinschaftskernkraftwerk Unit II in Neckarwestheim/Neckar
GWd/MTU	gigawatt-day per metric ton of uranium (unit of fuel burnup)
IAEA	International Atomic Energy Agency
IRCh	Institute for Radiochemistry at Karlsruhe
ISG	interim staff guidance
ITU	European Institute for Transuranium Elements
JAERI	Japan Atomic Energy Research Institute (now Japan Atomic Energy Agency)
JRC	Joint Research Center, European Commission
<i>k</i> _{eff}	effective neutron multiplication factor
KRI	Khlopin Radium Institute
LWR	light-water reactor
M/C	measured-to-calculated
NEA	Nuclear Energy Agency
NRC	US Nuclear Regulatory Commission
OFA	optimized fuel assembly
ORNL	Oak Ridge National Laboratory
PNNL	Pacific Northwest National Laboratory
PSI	Paul Scherrer Institute
PWR	pressurized water reactor
RCA	radiochemical assay
SCK·CEN	Studiecentrum voor Kernenergie – Centre d'étude de l'Énergie Nucléaire
T _{1/2}	half-life
ТМІ	Three Mile Island
W	Westinghouse
WABA	wet annular burnable absorber
WAK	Karlsruhe Reprocessing Plant
YMP	Yucca Mountain Project

1 INTRODUCTION

Technical challenges associated with the use of burnup credit for the transport and storage of spent nuclear fuel have been the focus of numerous investigations performed in the United States and other countries for decades. Advances in developing new approaches to address these challenges or to improve the existing ones have been possible as a result of advances in the supporting modeling and simulation tools and the availability of new relevant experimental data. Criticality safety evaluations accounting for burnup credit require validation of the computational methods, computational tools and associated nuclear data used to perform fuel depletion and criticality calculations needed for the evaluations. Current US Nuclear Regulatory Commission (NRC) guidance for calculation of burnup credit in criticality safety analyses of pressurized water reactor (PWR) spent fuel for transportation and storage casks is based on the Interim Staff Guidance (ISG)-8, Rev 3 [1] that was released in 2012. The guidance in ISG-8 Rev. 3 has since been incorporated into the "Standard Review Plan for Spent Fuel Dry Storage Systems and Facilities" (NUREG-2215) [2] and "Standard Review Plan for Transportation Packages for Spent Fuel and Radioactive Material" (NUREG-2216) [3] reports, which were released in 2020. The technical basis supporting this burnup credit guidance includes an approach developed by Oak Ridge National Laboratory (ORNL) for establishing the bias and bias uncertainty in calculated neutron multiplication factor (k_{eff}) for transportation and storage casks resulting from bias and bias uncertainty in calculated nuclide concentrations in spent nuclear fuel. This approach was documented in detail in NUREG/CR-7108 in 2012 [4] and other related publications [5].

Bias and bias uncertainty in calculated nuclide concentrations for 28 actinide and fission product nuclides important for burnup credit [1] in PWR spent fuel were determined in NUREG/CR-7108 through validation based on radiochemical assay (RCA) data for 100 fuel samples with burnups between 7 and 60 gigawatt-day per metric ton of uranium (GWd/MTU) and initial fuel enrichments between 2.453 and 4.657%. The bias and bias uncertainty in calculated k_{eff} for a representative safety analysis model of a generic burnup credit (GBC)-32 cask [6] with PWR spent fuel assemblies, with fuel compositions including both actinide and fission product burnup credit nuclides, were reported in NUREG/CR-7108 [4] for assembly-average burnups ranging between 5 and 45 GWd/MTU. All underlying analyses were performed using computational tools in version 6.1 of SCALE [7] and nuclear cross sections based on Evaluated Nuclear Data File (ENDF)/B-VII.0 [8].

Studies documented in the current report build upon and complement the previous investigations [4]. A new and standardized implementation is provided for the stochastic sampling method presented in NUREG-7108 [4]. This implementation is based on capabilities in the Sampler [9] uncertainty quantification tool which was introduced in the SCALE code package in 2016. All analyses in this report were performed using computational tools in version 6.2.4 of SCALE and nuclear cross sections based on ENDF/B-VII.1 [10].

The RCA validation basis for PWR spent nuclear fuel is extended in the current report to higher burnups than previously [4] available and covers a 7–80 GWd/MTU range. This extended validation basis includes recent RCA measurements performed at ORNL for nine PWR spent fuel samples. These measurements were performed as part of an ongoing experimental program jointly funded by the NRC and the US Department of Energy [11,12]. In addition, nine high burnup spent fuel samples from fuel irradiated in the Gosgen PWR in Switzerland and the Vandellos PWR in Spain are included. Data for these nine samples were acquired through two international experimental programs: the MALIBU program [13] coordinated initially by

Belgonucleaire and later by Studiecentrum voor Kernenergie – Centre d'étude de l'Énergie Nucléaire (SCK-CEN) in Belgium; and the program [14,15] coordinated by the Spanish safety council for nuclear activities Consejo de Seguridad Nuclear (CSN) in collaboration with Spanish fuel vendor Empresa Nacional del Uranio, SA (ENUSA) and Empresa Nacional de Residuo Radioactivo SA (ENRESA), the organization responsible for waste management in Spain. ORNL participated to these international programs through funding from the NRC.

Extension of the validation basis from 60 GWd/MTU [4] to 80 GWd/MTU in the current report has practical impact on criticality safety with burnup credit for modern discharged fuel. The median of the assembly-average burnup characterizing all PWR spent fuel assemblies discharged in US between 2003 and 2013 (i.e., 35,256 assemblies), as documented in NUREG/CR-7227 [16], is 47.1 GWd/MTU. Whereas the maximum assembly-average burnup for these PWR fuel assemblies is 69.7 GWd/MTU [16], which would correspond to a maximum axial burnup of approximately 77 GWd/MTU.

The information presented in this report emphasizes new data and does not repeat details that can be found in NUREG/CR-7108. However, an overview of data and concepts previously discussed [4] is included herein as necessary to help the reader understand the context and relevance of the differences between previous and current findings.

An overview of the terminology used throughout this report and a brief description of the considered criticality safety analysis model are provided in Section 2, along with a description of the method used to determine the bias and bias uncertainty in the calculated k_{eff} of the safety analysis model that is associated to calculated nuclide concentrations for that model. Section 3 presents a new approach for determining loading curves for the considered cask criticality model. Section 4 provides a brief description of the computational tools and associated nuclear data used to perform the analyses presented in this report. Section 5 describes the extended RCA validation basis used to determine the bias and bias uncertainty in calculated nuclide concentrations, summarizes the computational approach used, and presents the results obtained. Section 6 presents the results obtained for the bias and bias uncertainty in calculated k_{eff} for the considered criticality model. Concluding remarks are provided in Section 7. Details concerning the Sampler-based implementation of the stochastic sampling method, verification, and results, are presented in Appendix A.

2 OVERVIEW OF MODELS AND METHODS

2.1 <u>Terminology</u>

Criticality safety analyses are required to demonstrate that a proposed spent nuclear fuel storage or transportation configuration meets applicable requirements. These analyses include development of applicable criticality safety models and calculations to show that the proposed configuration will meet the maximum k_{eff} limits specified in the applicable requirements and guidance [1-3].

The criteria for establishing subcriticality with credit for the reactivity decrease based on fuel burnup are expressed in Eq. (1) [4,17],

$$k_{p} + \Delta k_{p} + \beta_{i} + \Delta k_{i} + \beta + \Delta k_{\beta} + \Delta k_{x} + \Delta k_{m} \le k_{limit},$$
(1)

where

- k_{ρ} is the calculated multiplication factor of the model for the evaluated system;
- Δk_p is an allowance for
 - statistical or convergence uncertainties, or both, in the determination of k_{p} ,
 - material and fabrication tolerances, and
 - uncertainties caused by geometric or material representation limitations of the models used in the determination of k_p;
- β_i is the bias in k_p resulting from depletion code bias in calculated nuclides concentrations;
- Δk_i is the bias uncertainty in k_p resulting from depletion code bias uncertainty in the calculated nuclides concentrations;
- β is the bias that results from using a particular calculation method and nuclear cross section data to calculate the benchmark criticality experiments;
- Δk_{β} is the criticality bias uncertainty, which includes
 - statistical or convergence uncertainties, or both, in the computation of β,
 - uncertainties in the benchmark criticality experiments,
 - uncertainty in the bias resulting from application of the linear least-squares fitting technique to the critical experiment results, and
 - tolerance interval multiplier to yield a single-sided 95% probability and 95% confidence level;
- Δk_x is a supplement to β and Δk_β that may be included to provide an allowance for the bias and uncertainty from nuclide cross section data that might not be adequately accounted for in the benchmark criticality experiments used for calculating β ;
- Δk_m is a margin for unknown uncertainties deemed to be adequate to ensure subcriticality of the physical system being modeled (this term is typically referred to as an *administrative margin*); and
- k_{limit} is the upper limit on the k_{eff} value for which the system is considered.

Determination of the term $\beta_i + \Delta k_i$ is addressed in NUREG/CR-7108 [4] and is revisited in this report. The terminology applied [4] is also used throughout this report for consistency, as follows:

- k_{eff} bias represents the average change in the calculated k_{eff} of the considered safety model resulting from bias and bias uncertainty in calculated nuclide concentrations in fuel for that model;
- k_{eff} bias uncertainty represents the variance of the change in calculated k_{eff} of the considered safety model, at a 95% probability and 95% confidence level, which results from bias and bias uncertainty in calculated nuclide concentrations for that model.

A bias that reduces the calculated value of k_{eff} is not considered in Eq. (1), consistent with the approach in NUREG/CR-7108 [4] and NUREG/CR-7109 [17].

2.2 Criticality Safety Model

The representative safety analysis model for a PWR spent nuclear fuel cask that serves as basis for k_{eff} bias and bias uncertainty determination in the current report is the GBC-32 cask model [6], the same configuration used as a reference model in NUREG/CR-7108 [4], NUREG-7109 [17], and other burnup credit studies [18,19]. This cask configuration includes 32 PWR fuel assemblies and neutron absorber panels containing a fixed absorber uniformly dispersed in the panels' material. The 3D cask model represents half of the cask configuration, taking advantage of the symmetry. An illustration of this 3D model, as rendered with SCALE, is presented in Figure 2-1. This illustration shows (a) a 2D cross section at the axial midline of the model to emphasize the included fuel assemblies, and (b) a cutaway view of the 3D model with a quarter of the model removed to illustrate the different axial layers with different fuel compositions within the fuel assembly. Each color in Figure 2-1 indicates a different material composition in the model.

All PWR assemblies in the cask model are identical with respect to geometry and material compositions. The PWR assembly is a Westinghouse (W) 17×17 optimized fuel assembly (OFA) as used in previous reports [4,18]. A 2D cross section of the assembly model is presented in Figure 2-2 showing the assembly layout (a) as used in the assembly depletion simulations, with wet annular burnable absorber (WABA) rods present, in which the burnable absorber material is boron carbide contained in an alumina matrix, and (b) as used in the cask criticality model (no WABA present). Within the cask model, the fuel rods of this assembly are represented using 18 axial zones with the same axial length but different fuel material compositions, reflecting 18 different fuel burnups.

For a given assembly-average burnup, the burnup values of these axial zones in the fuel rods are determined by applying previously used axial burnup profiles [4,18] that were shown to be conservative [18] with respect to criticality. These axial burnup profiles are illustrated in Figure 2-3. These profiles were generated [18] based on data from PWR cycles of operation up to around 1995, for assemblies with much lower assembly-average burnups than those operated in modern PWRs. The axial profile shown in Figure 2-3 for burnups greater than 30 GWd/MTU was developed based on data for 1225 assemblies, out of which: 40% had burnups between 30 and 35 GWd/MTU, 71% had burnups between 30 and 40 GWd/MTU, and 90% of them had burnups between 30 and 45 GWd/MTU. However, it was shown that the use of these profiles for assemblies with assembly burnups higher than 45 GWd/MTU would be conservative

with respect to k_{eff} [18]. Therefore, applying the profile from Figure 2-3 to assemblies with average burnups greater than the burnups used as a basis for deriving this profile will be conservative.

For a given assembly-average burnup, burnup-dependent nuclide concentrations in the fuel rods of the PWR assembly were determined in NUREG/CR-7108 [4] such as the k_{eff} value for the cask model was 0.94, as previously recommended for cask criticality safety analyses [2,3,20]. For validation purposes, loading curves were developed [4] for the cask model. These loading curves were updated for the current report using a new methodology as described in Section 3.

Depletion calculations with conservative reactor operating parameters that increase discharge reactivity [4,21] for spent PWR fuel were performed to generate axially varying burnupdependent nuclide concentrations for the spent fuel in the considered PWR assembly. The depletion calculations for achieving a given assembly-average burnup are followed by decay simulations for a cooling time of 5 years from the time that the assembly is discharged from the reactor. The resulting fuel compositions are applied in the GBC-32 cask model.

(a) 2D cross section at the axial midline

(b) Cutaway view of the 3D model with a quarter of the model removed (18 axial fuel materials)

Figure 2-1 Ilustration of the SCALE Model for the GBC-32 Cask

(a) As in assembly depletion model (with WABA rods)

(b) As in cask criticality model (no WABA present)

Figure 2-2 Ilustration of the PWR Assembly Configuration (2D Cross Section)

Figure 2-3 Ilustration of Axial Burnup Profiles for the PWR Assembly

2.3 Method for Stochastic Uncertainty Sampling

Uncertainty in calculated nuclide concentrations in spent nuclear fuel is one of the greatest sources of uncertainty in criticality calculations that account for burnup credit. Different methods are used to propagate the uncertainty in calculated nuclide concentrations to the uncertainty in k_{eff} for a system of interest. Some of these methods are presented in detail in NUREG-6811 [19]. The stochastic uncertainty sampling method was deemed as enabling a realistic estimate of the effects of nuclides uncertainties by simulating the probability distributions of the nuclide concentrations [19,22]. The foundation of the stochastic uncertainty sampling method was earlier introduced in ORNL/TM-2001/83 [22]. This method was implemented in a computer code named KRONOS [22], which was designed to automate the setting up, execution, and parsing of the output for the large number of criticality calculations involved. Updated versions of this code were applied for the work presented in NUREG-6811 [19] and NUREG/CR-7108 [4]. Appendix A describes the new implementation of the method used in this effort, using the Sampler uncertainty quantification tool available in SCALE 6.2.4.

For completeness, the principles of the stochastic method for uncertainty sampling are briefly summarized herein. Details can be found in related reports [4,19,22]. The objective of propagating the bias and bias uncertainty in calculated nuclide concentrations to bias and bias uncertainty in the k_{eff} of a criticality model can be achieved by applying the following four steps:

- A. Establish the expected bias and bias uncertainty in calculated nuclide concentrations by validating the depletion method used to calculate these concentrations based on measurement data for the burnup credit nuclides.
- B. Randomly sample the calculated nuclide concentrations within the range of their estimated uncertainties and probability distributions based on data obtained in step A.
- C. Calculate k_{eff} for the criticality model using the values of nuclide concentrations from B, and repeat steps B and C multiple times for multiple random realizations.
- D. Analyze the distribution of k_{eff} values obtained from C; this distribution provides variations in k_{eff} that correspond to random variations in expected values for calculated nuclide concentrations. Determine bias and bias uncertainty in k_{eff} .

These steps are described further in the sections below.

2.3.1 Step A. Establish bias and bias uncertainty in calculated nuclide concentrations

Validation of the depletion method used to calculate nuclide concentrations for the criticality model can be performed by comparing measured nuclide concentrations to corresponding calculated values determined using the considered depletion method. In this context, *depletion method* refers to the computational tool and the associated nuclear data used to simulate the fuel depletion during irradiation. Given a set of N_i measured concentrations for a burnup credit nuclide *i*, an average measured-to-calculated (M/C) nuclide concentration ratio \overline{X}_i is calculated as

$$\overline{X}_{i} = \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} X_{i}^{j} = \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \frac{M_{i}^{j}}{C_{i}^{j}},$$
(2)

where

- *i* = index of burnup credit nuclide in the set of 28 burnup credit nuclides,
- j = index of a measured concentration for nuclide *i* in the set of N_i measured concentrations for that nuclide,
- M_i^j = measured concentration of nuclide *i* that corresponds to measurement (i.e., index) *j* in the set of N_i measured concentrations for that nuclide,
- C_i^j = calculated concentration of nuclide *i* that corresponds to measurement (i.e., index) *j* in the set of N_i measured concentrations for that nuclide, and
- X_i^j = M/C nuclide concentration ratio of nuclide *i* that corresponds to measurement (index) *j* in the set of N_i measured concentrations for that nuclide.

The uncertainty in the prediction of \overline{X}_i is the standard deviation s_i associated with \overline{X}_i , calculated as

$$s_{i} = \sqrt{\frac{\sum_{j=1}^{N_{i}} (X_{i}^{j} - \overline{X}_{i})^{2}}{N_{i} - 1}}.$$
(3)

 \overline{X}_i and s_i are unique to each nuclide and can vary as a function of burnup. The value \overline{X}_i represents the factor that, when multiplied by a calculated nuclide concentration C_i for nuclide *i*, will correct for the average bias in the predicted nuclide concentration, resulting in an improved (best) estimate for that concentration as $C_i \overline{X}_i$.

2.3.2 Step B. Randomly sample calculated nuclide concentrations in the considered criticality model

The method assumes a normal distribution of the expected nuclide concentration corresponding to a calculated concentration C_i . A verification of the normality assumption was performed in NUREG-7108, which indicated that the use of a normal distribution in place of the actual distribution is slightly conservative (i.e., led to a greater value of keff bias uncertainty). For application in Step C, to randomly sample the nuclide concentrations within the range of their estimated uncertainties, s_i is adjusted using tolerance factors assigned to bound the limit of \overline{X}_i at a given confidence level. This adjustment accounts for uncertainties associated with the number of X_i^j values, or equivalently, the number of available measurements N_i used as the basis for validation for that nuclide and is expressed in Eq. (4). The resulting σ_i serves as the uncertainty estimate [4] for nuclide *i* applied in Step C. Factor tf_2^i represents a two-sided tolerance-limit factor for the normal distribution to bound 68.3% of the population at a 95% confidence level and is applied to adjust s_i if at least 10 measurements [4] are available for nuclide *i*. If less than 10 measurements are available for that nuclide, then the adjustment factor tf_1^i is used, which represents the one-sided tolerance limit factor for the normal distribution to bound 95% of the population at a 95% confidence level. The magnitude of a tolerance factor increases as N_i decreases; for nuclides with a small number of measurements, a tolerance interval for uncertainty is significantly larger than a confidence interval. For example, the value of tf_2^i is 1.7255 for N_i = 10, and it decreases to 1.1392 for N_i = 100 [4].

$$\sigma_{i} = \begin{cases} s_{i} \cdot tf_{2}^{i} & \text{if } N_{i} \ge 10\\ s_{i} \cdot tf_{1}^{i} & \text{if } N_{i} < 10 \end{cases}$$
(4)

These tolerance factors are applied to account for the size of the statistical sample (i.e., number of measurements for a given nuclide) and to capture potential uncertainties associated with the inability to establish a normal distribution for nuclides with a low number of measurements available. This adjustment will increase the uncertainty in the calculated nuclide concentration.

The model used for generating a distribution of expected concentrations for a given nuclide i in a fuel material with burnup Bu is described by Eq. (5),

$$C_{i,Bu}^{m} = C_{i,Bu} \left(\overline{X}_{i,Bu} + \sigma_{i,Bu} R_{i}^{m} \right), \tag{5}$$

where

i = index of burnup credit nuclide,

m = index of the randomly sampled concentration value for nuclide *i*,

 $C_{i,Bu}$ = predicted concentration of nuclide *i* in a fuel mixture with burnup Bu,

 $\overline{X}_{i,Bu}$ = average M/C nuclide concentration ratio of nuclide *i* that corresponds to burnup Bu,

 $\sigma_{i,Bu}$ = uncertainty in $\overline{X}_{i,Bu}$ corresponding to nuclide *i* and burnup *Bu*,

- R_i^m = random number selected from the standard normal distribution, and
- $C_{i,Bu}^{m}$ = sampled value of the calculated nuclide concentration of nuclide *i* for a fuel mixture of burnup *Bu*, from the expected range of values that correspond to $\overline{X}_{i,Bu}$ and $\sigma_{i,Bu}$.

The same random number R_i^m is applied to nuclide *i* for all fuel mixtures (i.e., all values of Bu) in the fuel assembly.

2.3.3 Step C. Calculate instances of *k*_{eff} for the criticality model

The reference criticality model for determining the bias and bias uncertainty in calculated k_{eff} consists of the cask model described in Section 2.2, in which all fuel assemblies have the same assembly-average burnup and the same axial burnup profile. Eighteen axially varying fuel mixtures are included in the assembly model, with each fuel mixture corresponding to a different burnup. The nuclide concentrations for these fuel mixtures, in the context of the stochastic method description, are the $C_{i,Bu}$ values in Eq. (5), and *i* varies from 1 to 28.

A perturbed instance of the reference criticality model (m=1) is obtained by replacing the nominal nuclide concentrations values $C_{i,Bu}$ with perturbed values $C_{i,Bu}^1$ calculated per Eq. (5). The nuclide concentrations are simultaneously sampled within the expected probability distribution for each nuclide. The stochastic sampling of the nuclide concentrations for a given nuclide *i* is consistent across all fuel mixtures in the model; in other words, the same random number R_i^1 is applied in Eq. (5) to determine the nuclide concentration $C_{i,Bu}^1$ for nuclide *i* in each of the fuel mixtures.

The k_{eff} for the perturbed criticality model (m=1) is calculated, and the process is repeated M times from m=1 to m=M by randomly sampling the nuclides concentrations for the reference criticality model to obtain M modified instances of this model. The k_{eff} is calculated for each perturbed model, and the result is a distribution of the k_{eff} values that reflect the effect of the random variations of the calculated nuclide concentrations. Selection of the M value to ensure that the resulting k_{eff} distribution is meaningful is discussed in Appendix A.2.

2.3.4 Step D. Estimate bias and bias uncertainty in calculated k_{eff} of the criticality model

The mean and the standard deviation of the distribution of k_{eff} values resulting from step C are calculated as

$$\overline{k}_{\rm eff} = \frac{1}{M} \sum_{m=1}^{M} k_{\rm eff}^{m} \text{ , and}$$
(6)

$$\sigma_{k_{\rm eff}} = \sqrt{\frac{\sum_{m=1}^{M} \left(k_{\rm eff}^m - \overline{k}_{\rm eff}\right)^2}{M - 1}},\tag{7}$$

where

 $\overline{k}_{\text{eff}}$ = mean of the calculated k_{eff} values,

M = number of the calculated k_{eff} values (i.e., number of perturbed cases),

 $\sigma_{k_{eff}}$ = standard deviation of the calculated k_{eff} values, and

 $k_{\text{eff}}^m = k_{\text{eff}}$ value for simulation *m* in the series of *M* simulations.

The k_{eff} values from a statistically significant number of criticality calculations were shown [4] to approach a normal distribution with the mean and standard deviation given by Eqs. (6) and (7). Convergence was considered achieved when the values for $\overline{k}_{\text{eff}}$ and $\sigma_{k_{\text{eff}}}$ changed insignificantly (e.g., within ±0.0005) with an additional simulation.

The bias in k_{eff} and the bias uncertainty in k_{eff} are calculated as

$$k_{\rm eff} bias = k_{\rm eff}^{REF} - \overline{k}_{\rm eff} and$$
(8)

$$k_{\rm eff} \ bias \ uncertainty = \ \sigma_{k_{\rm eff}} \ tf_1^M, \tag{9}$$

where

 k_{eff}^{REF} = value of k_{eff} calculated for the reference criticality model (i.e., model using the calculated nuclide concentrations without any adjustment for bias or uncertainty), and

 tf_1^M = one-sided tolerance-limit factor for the normal distribution corresponding to the number of calculated k_{eff} values (*M*), at a 95% probability, 95% confidence level.

The bias and bias uncertainty in calculated k_{eff} that result from bias and bias uncertainty in calculated nuclide concentrations— $\beta_i + \Delta k_i$ per terminology in Eq. (1)—are determined [4] as

$$\beta_{i} + Dk_{i} = \begin{cases} \left(k_{eff}^{REF} - \overline{k}_{eff}\right) + \sigma_{k_{eff}} t f_{1}^{M} & \text{if } \overline{k}_{eff} > k_{eff}^{REF} \\ \sigma_{k_{eff}} t f_{1}^{M} & \text{if } \overline{k}_{eff} \le k_{eff}^{REF} \end{cases}$$
(10)

An illustration of the main steps involved in the stochastic uncertainty sampling method is shown in Figure 2-4.

Figure 2-4 Ilustration of Steps in Stochastic Uncertainty Sampling Method

3 LOADING CURVES

The loading curve for the GBC-32 cask model presented in NUREG/CR-7108 [4] was reassessed to verify its applicability when using the cask model with computational tools in SCALE 6.2.4 and 252-group ENDF/B-VII.1 cross section libraries. Based on the observed results, a new loading curve was generated to update the cask reference model that serves to determine the bias and bias uncertainty in k_{eff} . The updated loading curve corresponds to fuel compositions that include all 28 burnup credit nuclides (12 actinides and 16 fission products). The updated curve is generated based on the new methodology described briefly in this section. A loading curve considering actinides only was not an object of investigation, because all criticality calculations presented here consider both actinides and fission products. A new approach [23] based on the ORIGAMI computational tool in SCALE 6.2.4 is used to generate loading curves and is briefly summarized in section 3.3. Previously, loading curves were generated [4] based on the STARBUCS sequence in SCALE 6.1.3.

3.1 Burnup-Dependent Fuel Compositions for the Cask Model

The CSAS6 cask models referenced herein have the same geometry as the CSAS5 models used in NUREG/CR-7108. The enrichment and burnup-dependent fuel compositions for a particular CSAS6 model, which correspond to a given assembly's initial enrichment, average burnup, and axial profile, are determined using the following computational steps:

- Generate burnup-dependent ORIGEN libraries for the W 17×17 OFA assembly model for different values of the initial fuel enrichment by running TRITON with 252-group ENDF/B-VII.1 cross sections. These ORIGEN libraries are generated here for enrichments ranging from 1.5 to 8% and a burnup range of 0 to 90 GWd/MTU. The assembly depletion model has the same geometry and uses conservative reactor operating parameters that increase discharge reactivity [4,21], as previously used, with WABAs inserted into the assembly guide tubes throughout the irradiation history.
- Apply the burnup-dependent ORIGEN libraries as input to ORIGAMI and perform depletion and decay calculations for a specific burnup and a specific enrichment. For a given assembly's initial enrichment, average burnup, and axial profile, 18 ORIGAMI calculations are performed, with each calculation corresponding to a given axial burnup in the fuel assembly. Each calculation provides a fuel composition that corresponds to that axial burnup.
- Apply the 18 burnup-dependent fuel compositions from ORIGAMI as input in the cask CSAS6 criticality model.

A Python script was developed to automate the process of generating and running the ORIGAMI inputs and to apply the resulting fuel compositions in the CSAS6 input file.

3.2 Effect of Cross Section Libraries on the Loading Curve

Application of the loading curve developed in NUREG/CR-7108 [4] to the current CSAS6 cask model that uses fuel compositions generated as described in Section 5.1 resulted in k_{eff} values smaller than the 0.94 target value for a reference model. The differences between the target value and the CSAS6 k_{eff} values were in the 0.0024 to 0.0043 range. The CSAS6 k_{eff} values are illustrated in Figure 3-1, along with the k_{eff} values obtained for the CSAS5 models as applied in

NUREG/CR-7108. Figure 3-1 indicates on the x-axis the burnup in GWd/MTU and enrichment that correspond to each of the shown k_{eff} values. The fuel compositions in the CSAS5 models applied in NUREG/CR-7108 were generated using SCALE 6.1.3 and burnup-dependent ORIGEN libraries created using the 238-group ENDF/B-VII.0 cross sections with the TRITON depletion model of the fuel assembly [4]. No significant differences in k_{eff} are expected because a different criticality sequence within a given SCALE release was used (CSAS5 vs. CSAS6) with consistent input. For a consistent input, the k_{eff} values obtained with CSAS5 and CSAS6 are similar within the statistical uncertainty. However, some differences are expected in k_{eff} because of the change in cross sections between ENDF/B-VII.0 and ENDF/B-VII.1. This resulted in differences in the predicted concentrations for burnup credit nuclides.

Figure 3-1 k_{eff} Obtained Using the Old Loading Curve [23]

3.3 <u>New Approach for Loading Curve Generation</u>

The new methodology [23] for generating a loading curve for the cask model is consistent with the approach used to generate burnup-dependent fuel compositions for that model. For a given assembly-average burnup and axial profile, the initial enrichment that would ensure reaching the target value of 0.94 for k_{eff} is determined iteratively. The enrichment that corresponds to the previous loading curve [4] for a given assembly-average burnup and axial profile serves as an initial guess and is used to perform a CSAS6 initial run to calculate an initial value for k_{eff} . The initial guess for enrichment and an assumed enrichment sensitivity coefficient (relative to k_{eff}) are applied to predict a new enrichment. Fuel compositions are generated for this new enrichment using ORIGAMI and are applied in the CSAS6 criticality model. The updated CSAS6 model is rerun, resulting in a new k_{eff} value. The process is repeated with the updated sensitivity coefficient based on the new value of k_{eff} until the target of 0.94 for k_{eff} is reached. The new methodology for loading curve generation is implemented through a Python script.

The loading curve is extended above 45 GWd/MTU burnup and 5% enrichment, which were the limits considered in NUREG/CR-7108. The extension led to enrichments greater than the 5% enrichment limit of current commercial fuel. Note that the current RCA validation basis covers burnups up to 80 GWd/MTU and initial enrichments up to 5%. The new loading curve,

generated for a target k_{eff} of 0.94, is illustrated in Figure 3-2. The space above the curve—points defined by assembly average burnup and initial enrichment—corresponds to k_{eff} values smaller than 0.94 and is acceptable, whereas the space under the curve is not acceptable. The horizontal segments of the loading curve are caused by the changes in the axial fuel burnup profiles (see Figure 2-3) at 18 and 30 GWd/MTU.

Figure 3-2 Loading Curve for the GBC-32 Cask (12 Actinides and 16 Fission Products)

The burnup and enrichment values for the new loading curve are listed in Table 3-1, along with the enrichment values for the old loading curve developed in NUREG-7108. For a given assembly burnup, the difference between the new and previous enrichment value varies in the range 0.2 to 0.6%, with the difference increasing with increasing burnup.

Assembly burnup (GWd/MTU)	New enrichment (%)	Old enrichment (%)
5	2.12	2.13
10	2.33	2.36
18	3.00	3.03
25	3.44	3.48
30	3.92	3.98
40	4.64	4.70
45	5.00	5.05

Table 3-1 Comparison of New and Old Loading Curve Enrichments

4 COMPUTATIONAL TOOLS AND ASSOCIATED NUCLEAR DATA

The computational tools and nuclear data used for simulations presented in this report are briefly described herein. All these tools are available in version 6.2.4 of the SCALE nuclear analysis modeling and simulation suite for nuclear safety analysis and design [7]. SCALE (<u>https://www.ornl.gov/scale</u>) is developed and maintained by ORNL under contract with the NRC, DOE, and the National Nuclear Security Administration (NNSA) to perform reactor physics, criticality safety, radiation shielding, and spent fuel characterization for nuclear facilities and transportation/storage package designs.

Validation of capabilities and associated nuclear data in the SCALE code system has been a continuous effort at ORNL since these capabilities were first developed. A comprehensive validation report of SCALE 6.2.4 was recently published. The validation report addresses, among other applications, SCALE's capabilities for nuclide inventory characterization and nuclear criticality safety [24–26].

The criticality simulations are performed with the 3D Monte Carlo criticality codes KENO-V.a and KENO-VI under the CSAS5 and CSAS6 criticality safety analysis sequences in SCALE 6.2.4 [27,28]. The results for bias and bias uncertainties in k_{eff} in this report are obtained with KENO-VI and 252-group ENDF/B-VII.1 cross sections. However, KENO-V.a is also used herein for verification purposes and for consistent comparisons with the criticality simulations in NUREG/CR-7108, which employed KENO-V.a with 238-group ENDF/B-VII.0 cross sections.

The fuel depletion and decay simulations for obtaining the burnup-dependent nuclide concentrations applied in the criticality models include the use of the TRITON [7,29], ORIGAMI [7,30], and ORIGEN [7,31] capabilities in SCALE 6.2.4. Depletion and decay simulations for the considered W17×17 OFA assembly are performed using the 2D depletion capability under the TRITON depletion sequence to generate burnup-dependent ORIGEN libraries for this assembly. In this case, TRITON iteratively couples the 2D neutron transport solver NEWT [29] and the ORIGEN nuclear transmutation and decay code. The burnup-dependent ORIGEN library is generated during the TRITON simulation and includes the burnup-dependent nuclear data (cross sections as function of burnup, fission yields, and decay data) that enable burnupdependent ORIGEN standalone simulations. ORIGEN libraries are generated as a function of burnup and initial fuel enrichment. The generated ORIGEN libraries serve as input to ORIGAMI for performing fast depletion simulations with ORIGEN for the burnups and initial fuel enrichments of interest. ORIGAMI also serves under the new approach for generating loading curves for the PWR cask model as described in Section 3. Note that in NUREG/CR-7108, the STARBUCS sequence in SCALE 6.1.3 was used to determine burnup-dependent nuclide concentrations for PWR criticality calculations and to generate loading curves for the PWR analysis models [4].

The Sampler uncertainty quantification tool [7,9] in SCALE 6.2.4 supports the new and standardized implementation of the stochastic uncertainty sampling method for k_{eff} bias and bias uncertainty estimation. Sampler, which was released in SCALE in 2016, is a sequence that can propagate uncertainties in nuclear data or input parameters to estimate the resulting uncertainty in a SCALE calculated response. These uncertainties are propagated through all computational steps in the simulation, providing a fully coupled analysis that accounts for all correlations inherent to the calculation. In the current work, Sampler is used to perturb the input nuclide concentrations in the criticality model's fuel materials to determine the effect on the calculated k_{eff} . Details about this implementation are provided in Appendix A.
5 NUCLIDE INVENTORY VALIDATION DATA AND RESULTS

The nuclide inventory validation basis applied in the current work for determining the bias and bias uncertainty in code-predicted nuclide concentrations for burnup credit nuclides in PWR spent nuclear fuel is significantly improved. The validation basis now includes RCA measurement data for 129 PWR spent fuel samples covering a burnup range up to 80 GWd/MTU.

Measurement data for 9 of the 129 samples became available recently [11,12]. Under NRC and DOE support, ORNL is conducting experiments to measure important actinides and fission products in 16 PWR spent fuel samples from fuel irradiated in the North Anna PWR. These samples were selected from 6 of the 25 sibling rods that have served for post-irradiation examinations performed by ORNL and Pacific Northwest National Laboratory (PNNL) to study the effects of long-term storage and transportation for light-water reactor (LWR) high-burnup fuel under the DOE Nuclear Energy High Burnup Spent Fuel Data Project [32]. Measurement data are currently available for 9 of the 16 North Anna samples, and the experimental effort is ongoing.

In the future, the RCA validation basis for PWR spent fuel will be further improved with the addition of newer high-quality RCA measurements, as they become available. Under the ongoing ORNL experimental program [11] mentioned previously, measurements are being conducted on the seven other high burnup fuel samples. Additionally, measurement data will become available in the future from the REGAL international experimental program [33] led by SCK-CEN. ORNL participates in this program through funding from the NRC. The first phase of REGAL includes measurements on samples from two UO₂ fuel rods with an estimated rod-average burnup of approximately 50 GWd/MTU and from one gadolinia fuel rod with an estimated burnup of 12 GWd/MTU.

5.1 Nuclide Inventory Validation Data

Table 5-1 lists the main characteristics of the fuel rods from which the 129 considered samples were selected, including assembly lattice, fuel enrichment, and burnup range. These fuel rods were irradiated in 13 PWRs operated in six countries: Germany, Italy, Japan, Spain, Switzerland, and the United States.

The samples that were recently added to the validation basis include the following:

- 6 Vandellos samples [34],
- 5 Three Mile Island (TMI)-1 samples measured at ORNL in 2011 [35],
- 3 H.B. Robinson samples [36], 8 Turkey Point 3 samples [36], and 6 Ohi samples [36], for which measurement reports became available through the SFCOMPO database [37],
- 3 Gosgen samples measured under the MALIBU program [13],
- 9 North Anna samples measured at ORNL in 2022 [11,12].

Eleven of the TMI-1 samples from fuel rod H6 of assembly NJ05YU, which were considered in NUREG/CR-7108 [4], are not included herein. The experimental data for these samples

exhibited higher biases and variability compared to other measurement data for fuel from the same assembly or from other experimental programs. These were primarily associated with the lower precision of the experiment, large discrepancies for the Pu measurements, and large uncertainty of 7% in the estimated sample burnup [38,39]. The measurements for these 11 samples were applied to code validation at the time because they included fission product measurements that provided an opportunity to evaluate uncertainty for nuclides with very few measurements. Notably, the 5 TMI-1 samples that were added in this effort, which were measured at ORNL in 2011 [35], originated from the same fuel assembly as the former 11 TMI-1 samples—2 are from fuel rod H6 and 3 from fuel rod D5—and had estimated burnups in the same 45–55 GWd/MTU burnup range.

5.1.1 Fuel sample characteristics

The samples listed in Table 5-1 span a wide range of PWR assembly designs, including 14 × 14, 15 × 15, 17 × 17 and 18 × 18 fuel rod lattices; fuel enrichments ranging from 1.6874 to 4.657%; and sample burnups ranging from 7.2 to 78.3 GWd/MTU. Approximately one quarter (i.e., 31) of the 129 considered samples have burnups greater than 40 GWd/MTU. The distribution of burnup as a function of enrichment for the 129 considered samples is illustrated in Figure 5-1; the colors indicate the fuels' origins by reactor name. The histogram of the sample burnups is presented in Figure 5-2.

Reactor	Country	Measurement	Experimental	Assembly	Enrichment	No. of samples / no.	Burnup
		laboratory ^a	program	lattice	(%)	fuel rods	(GWd/MTU)
Calvert Cliffs-1	NS	PNL, KRI	ATM-103,	14 × 14	2.453, 2.72,	9/3	18.7-46.5
			ATM-104,		3.038		
			ATM-106 ^b				
GKN II	Germany	SCK-CEN	REBUS ^c	18 × 18	3.8	1/1	54.1
Gösgen	Switzerland	SCK-CEN, ITU	ARIANE,	15 × 15	3.5, 4.1, 4.3	6/3	29.1–70.4
)			MALIBU °				
H. B. Robinson-2	NS	PNL, LANL	ATM-101	15 × 15	2.561	7/3	16.0–31.7
North Anna	NS	ORNL	NRC/DOE/O	17 × 17	3.6, 4.0, 4.2,	9/5	33.2–67.3
			RNL		4.5		
Obrigheim	Germany	JRC Ispra, ITU, IRCh, WAK	EUR, ICE	14 × 14	2.83, 3.00, 3.13	15/7	17.1–30.9
Ohi-1	Japan	JAERI	JAERI	17 × 17	3.2	1/1	52.4
Ohi-2	Japan	JAERI	JAERI	17 × 17	1.6874, 3.2	5/3	21.5–38.5
Takahama-3	Japan	JAERI	JAERI	17 × 17	2.63, 4.11	13/3	17.4-47.3
TMI-1	NS	GE-VNC, ORNL	DOE YMP d,	15 × 15	4.013, 4.657	13/5	22.8–55.0
			ORNL				
Trino Vercellese	Italy	JRC Ispra,	EUR	15×15	2.719, 3.13,	31/10	7.2–25.3
		Karlsruhe			3.897		
Turkey Point-3	NS	Battelle-Columbus	NWTS	15×15	2.556	13/7	19.9–31.6
Vandellos II	Spain	Studsvik	CSN/ENUSA ^e	17 × 17	4.5	6/2	43.5–78.3
^a ANL = Argonne Na	tional Laborato	ory; GE-VNC = Genera	al Electric Vallecitos	s Nuclear Cer	nter; PNNL = Pacific	Northwest Nationa	Laboratory; KRI =

39
ata [
õ
uo
ati
lid
< a
õ
Ē
se
D
Data
◄
RC
ĸ
2
f
5
lar
E
n
S
Σ
С С
able
Ĕ

Khlopin Radium Institute; JAERI = Japan Atomic Energy Research Institute (now Japan Atomic Energy Agency); JRC = Joint Research Center, European Commission; ITU = European Institute for Transuranium Elements; IRCh = Institute for Radiochemistry at Karlsruhe; WAK = Karlsruhe Reprocessing Plant; IAEA = International Atomic Energy Agency; SCK•CEN = Studiecentrum voor Kernenergie – Centre d'étude de l'Énergie Nucléaire; PSI = Paul Scherrer Institute; CEA = Commissariat à l'Énergie Atomique;

^bATM = approved testing material

cInternational experimental programs initially managed by Belgonucleaire, then by SCK CEN (Belgium)

dDOE YMP = US Department of Energy Yucca Mountain Project €CSN = Consego de Securidad Nuclear; ENUSA = Empresa Nacional del Uranio, SA (Spain)

Figure 5-1 Burnup vs. Enrichment for the Measured Fuel Samples

Figure 5-2 Burnup Distribution Histogram for the Measured Fuel Samples

5.1.2 Number of measurements for burnup credit nuclides

Burnup credit nuclides [1,2] consist of 12 actinides and 16 fission products with large fission cross sections and/or large neutron absorption cross sections, and which are stable or have relatively long half-lives. The numbers of measurements available for these nuclides in this validation are shown in Table 5-2, along with the half-lives of the nuclides and the burnup ranges of the measured samples. The number of measurements per nuclide and the corresponding burnup range for the data used in NUREG/CR-7108 [4] are also included for comparison.

Nine of the 12 actinides listed in Table 5-2 (²³⁴U, ²³⁵U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, and ²⁴¹Am) account for about 95% of the reactivity's worth of the actinides and close to 70% of the total reactivity's worth of all nuclides in typical spent fuel. Whereas 6 nuclides (¹⁴³Nd, ¹⁴⁹Sm, ¹⁰³Rh, ¹⁵¹Sm, ¹³³Cs, and ¹⁵⁵Gd) of the listed 16 fission products account for approximately 75% of the fission product worth and 20% of the total worth in typical spent nuclear fuel [40].

Uranium and plutonium nuclide measurements are available for most of the considered samples. In the past, application of fission product burnup credit was negatively impacted [19] by the limited availability of RCA measurement data to allow adequate validation for these nuclides. The validation basis presented herein is expanded overall for the fission products, particularly for the top six contributors, with ¹³³Cs being the nuclide with the largest relative increase in the number of measurements.

Nuclide	Nuclide half-life	Number of measurements [herein]	Burnup range (GWd/MTU) [herein]	No. of measurements NUREG/CR- 7108 [4]	Burnup range (GWd/MTU) NUREG/CR-7108 [4]
²³⁴ U	2.45 × 10⁵ yr	86	7.2–70.3	63	7.2–59.7
²³⁵ U	7.04 × 10 ⁸ yr	128	7.2–78.3	100	7.2–59.7
²³⁶ U	2.34 × 10 ⁷ yr	113	12.9–78.3	85	12.9–59.7
²³⁸ U	4.47 × 10 ⁹ yr	123	7.2–70.3	100	7.2–59.7
²³⁷ Np	2.14 × 10 ⁶ yr	49	16.0–77.0	44	16.0–59.7
²³⁸ Pu	87.71 yr	112	12.9–78.3	85	12.9–59.7
²³⁹ Pu	2.41 × 10 ⁴ yr	127	7.2–78.3	100	7.2–59.7
²⁴⁰ Pu	6.56 × 10 ³ yr	127	7.2–78.3	100	7.2–59.7
²⁴¹ Pu	14.29 yr	127	7.2–78.3	100	7.2–59.7
²⁴² Pu	3.75 × 10⁵ yr	126	7.2–78.3	99	7.2–59.7
²⁴¹ Am	433 yr	58	16.4–78.3	47	17.1–59.7
²⁴³ Am	7,370 yr	65	16.4–78.3	48	17.1–59.7
⁹⁵ Mo	stable	20	29.1–70.3	15	31.1–59.7
⁹⁹ Tc	2.11 × 10⁵ yr	33	16.0–70.3	25	16.0–59.7
¹⁰¹ Ru	stable	15	29.1–70.3	15	31.1–59.7
¹⁰³ Rh	stable	21	29.1–70.3	16	31.1–59.7
¹⁰⁹ Ag	stable	9	45.9–59.7	14	44.8–59.7
¹³³ Cs	stable	26	27.4–77.0	7	27.4–59.7
¹⁴³ Nd	stable	62	16.0–78.3	44	16.0–59.7
¹⁴⁵ Nd	stable	62	16.0–78.3	44	16.0–59.7
¹⁴⁷ Sm	1.06 × 10 ¹¹ yr	42	23.0–78.3	32	23.7–59.7
¹⁴⁹ Sm	stable	38	23.0–77.0	28	23.7–59.7
¹⁵⁰ Sm	stable	44	23.0–78.3.	32	23.7–59.7
¹⁵¹ Sm	90 yr	43	23.0–78.3	32	23.7–59.7
¹⁵² Sm	stable	44	23.0–78.3	32	23.7–59.7
¹⁵¹ Eu	stable	26	23.0–70.3	21	23.7–59.7
¹⁵³ Eu	stable	38	23.0–78.3.	27	23.7–59.7
¹⁵⁵ Gd	stable	38	21.5–78.3	27	23.7–59.7

 Table 5-2
 Number of RCA Measurements per Nuclide

5.2 Bias and Uncertainty in Calculated Nuclide Concentration

Individual TRITON depletion models are developed for each measured fuel sample to simulate the sample irradiation and decay history. These models are similar to those applied in previous validation studies that were performed with different SCALE versions and cross section data [41-43]. They are 2D models representing quarter, half, or full assembly configurations, depending on the applicable symmetry and the ease of modeling. All TRITON simulations presented herein are performed using SCALE version 6.2.4 with 252-group ENDF/B-VII.1 cross sections. Details on TRITON computational models, measurement data, and results obtained for subsets of measurement data used in this effort can be found in other SCALE validation studies [26,41-43].

The calculated nuclide concentrations are compared with the corresponding measurement data to determine the mean M/C nuclide concentration ratio and the associated standard deviation per Eqs. (2) and (3). The mean represents the bias, and the bias uncertainty is determined per Eq. (4). The bias and bias uncertainty in the calculated nuclide concentrations for the burnup credit nuclides are presented in Table 5-3 for actinide nuclides and in Table 5-4 for fission product nuclides. The biases for different nuclides are known to be strongly correlated because of the inherent associated transmutation and decay physics [19,22]. However, variations around the bias for a given nuclide are assumed to be independent of variations for the other nuclides in the stochastic uncertainty sampling method. By sampling the nuclide concentrations independently, this approach inherently assumes that the uncertainties in individual nuclide concentrations are independent [4,19,22]. This assumption was previously reviewed [4] by evaluating the degree of correlations among nuclide uncertainties and their effect on the k_{eff} bias uncertainty for the cask analysis model. It was shown that the k_{eff} bias uncertainty was dominated by ²³⁵U and ²³⁹Pu, which correlation was statistically insignificant, whereas correlations for all other nuclides had relatively small contributions to k_{eff} bias uncertainty.

Table 5-3 shows the bias and bias uncertainty in calculated actinide nuclides concentrations over two burnup ranges: \leq 40 GWd/MTU and 40–80 GWd/ MTU. Compared to measurement data, ²³⁵U is on average underpredicted by approximately 1.2% for lower burnups and overpredicted by 1.2% for higher burnups: the associated bias uncertainty is 3.8% for lower burnups and 8.3% for higher burnups. The variation with burnup of ²³⁵U content transitions from linear decrease at lower burnups to exponential decrease at higher burnups; a small uncertainty in the sample burnup at higher burnups will affect the calculated nuclide content to a greater extent than at lower burnups. For ²³⁹Pu, one of the top actinides impacting reactivity, the content is underpredicted on average by close to 1.5% for both burnup ranges considered, and the associated uncertainty is less than 4.5%.

Notably, the bias uncertainties of major actinides ²³⁵U and ²³⁹Pu, other plutonium, and americium isotopes are smaller in the current analysis than the corresponding values in NUREG/CR-7108 [4] for burnups greater than 40 GWd/ MTU. This reduction results primarily from: improved statistics from increasing the number of measurements for a given nuclide; replacement of the problematic TMI-1 data with newer measurements of the same fuel; and recent high-quality, low-uncertainty measurements for high burnup fuel. These changes led to less variability of bias values. Detailed comparisons are presented in Section 5.3.

Previous validation studies [26,42,43] indicate that on average, the prediction of uranium isotopes does not significantly change when using SCALE 6.1/ENDF/B-VII.0 vs. SCALE 6.2.4/ENDF/B-VII.1. A significant improvement was noted for bias of plutonium isotopes (smaller bias) when using SCALE 6.2.4/ENDF/B-VII.1, particularly for ²³⁹Pu and ²³⁸Pu; consequently,

changes in plutonium nuclides impacted the calculation of nuclide contents in the higher actinide americium. Part of the change in bias and bias uncertainty for plutonium isotopes in this work is the result of the change in nuclear cross sections used in the simulations, from ENDF/B-VII.0 in NUREG/CR-7108 to ENDF/B-VII.1. The observed differences are not impacted as significantly by the different SCALE version used, given that the underlying computational methods were not changed significantly between the two SCALE versions. The improvement in the bias for plutonium isotopes was attributed mostly to the significant change in the (n, γ) cross section for ²³⁸Pu between ENDF-B/VII.0 and ENDF-B/VII.1 [26,43].

Burnup range Nuclide		< 40 G\	Nd/t	40 (GWd/t -	80 GWd/t
	No. of meas.	Bias	Bias uncertainty	No. of meas.	Bias	Bias uncertainty
²³⁴ U	61	0.9136	0.1496	25	0.9276	0.1001
²³⁵ U	98	0.9883	0.0383	30	1.0121	0.0829
²³⁶ U	83	1.0194	0.0407	30	0.9841	0.0274
²³⁸ U	98	1.0010	0.0044	25	1.0029	0.0079
²³⁷ Np	28	1.0634	0.1456	21	1.0828	0.1778
²³⁸ Pu	83	1.0538	0.1012	29	0.9765	0.0848
²³⁹ Pu	98	0.9855	0.0371	29	0.9864	0.0452
²⁴⁰ Pu	98	1.0020	0.0370	29	0.9727	0.0337
²⁴¹ Pu	98	1.0334	0.0614	29	1.0101	0.0424
²⁴² Pu	97	1.0504	0.0826	29	1.0035	0.0691
²⁴¹ Am	28	0.9442	0.1997	30	0.9493	0.2054
²⁴³ Am	36	1.1024	0.2246	29	1.0542	0.1511

 Table 5-3
 Nuclide Bias and Bias Uncertainty for Actinides

The variation of the bias with burnup is illustrated in Figures 5-3 and 5-4 for ²³⁵U and ²³⁹Pu. In these figures, the y-axis shows the M/C nuclide concentration ratio corresponding to each of the measured samples, with 128 values for ²³⁵U and 127 values for ²³⁹Pu. These two major actinides were measured in all samples; however, ²³⁹Pu final data for two North Anna fuel samples were not available by the time of this analysis, while ²³⁵U measured in one Vandellos fuel sample was not recommended due to experimental issues [34]. The different colors in Figures 5-3 and 5-4 indicate the origin of the measured fuel by reactor name. The error bars account for the reported measurement uncertainty and are shown only for qualitative purposes. They are not used in any calculations in this work. The reported measurement uncertainties differ greatly among measurement laboratories and cannot be used consistently, due to inconsistencies in the uncertainty analysis techniques used to report them [44].

Table 5-4 presents the bias and bias uncertainty in calculated fission product nuclide concentrations over the entire burnup range for which measurement data are available for

validation. When compared to NUREG/CR-7108, notable changes in bias and bias uncertainty are observed for ¹³³Cs and ¹⁵⁵Gd, as presented in the next section. These changes are largely caused by the increased number of measurements used for validation, particularly the addition of the recent measurements on North Anna spent fuel [11,12]. The bias variation with burnup is illustrated in Figure 5-5 for ¹³³Cs.

Figure 5-3 M/C Ratio vs. Burnup for ²³⁵U

Figure 5-4 M/C Ratio vs. Burnup for ²³⁹Pu

Burnup ranga	< 80 GWd/t						
Nuclide	No. of meas.	Bias	Bias uncertainty				
⁹⁵ Mo	20	1.0353	0.1522				
⁹⁹ Tc	33	0.9877	0.2343				
¹⁰¹ Ru	15	0.9468	0.1314				
¹⁰³ Rh	21	0.9524	0.1607				
¹⁰⁹ Ag	9	0.8146	0.6870				
¹³³ Cs	26	0.9732	0.0234				
¹⁴³ Nd	62	0.9906	0.0288				
¹⁴⁵ Nd	62	0.9969	0.0186				
¹⁴⁷ Sm	42	0.9943	0.0370				
¹⁴⁹ Sm	38	0.9715	0.1238				
¹⁵⁰ Sm	44	0.9812	0.0386				
¹⁵¹ Sm	43	1.0360	0.0658				
¹⁵² Sm	44	0.9974	0.0395				
¹⁵¹ Eu	26	1.0964	0.4285				
¹⁵³ Eu	38	1.0212	0.1034				
¹⁵⁵ Gd	38	1.0471	0.2243				

 Table 5-4
 Nuclide Bias and Bias Uncertainty for Fission Products

Figure 5-5 M/C Ratio vs. Burnup for ¹³³Cs

5.3 <u>Comparison to Bias and Uncertainty in Calculated Nuclide Concentrations</u> <u>from NUREG/CR-7108</u>

Bias and uncertainty in calculated actinides concentrations corresponding to the current validation basis, compared to the previous one [4], are generally not significantly changed for burnups smaller than 40 GWd/MTU. The measurement data available for validation are practically the same for low burnups. Significant changes are observed for bias uncertainty in some actinides at burnups greater than 40 GWd/MTU: these are caused by the removal of the lower-precision TMI-1 measurement data and addition of new data, primarily from the Vandellos and North Anna samples. For example, the relative bias uncertainty in ²³⁵U is on average reduced from approximately 11% [4] to 8.3% herein. Whereas, for ²³⁹Pu the relative bias uncertainty decreases from the previous value of 7.3% to 4.5% in current work. Comparisons for all burnup credit actinides are presented in Table 5-5 and illustrated in Figure 5-6. The bias calculated herein is closer to 1.0 (i.e., better prediction) than the previous values for most actinides; relative bias improvement is greater than 5% for ²³⁶U, ^{238,239,240,242}Pu, ²³⁷Np and ²⁴³Am. Except for ^{234,236,238}U, and ²⁴²Pu, a reduction in the relative bias uncertainty of more than 2% is observed for all other actinides.

	This report		NUREG	G/CR-7108	Diffe	Difference ^a	
Nuclide	Bias	Bias uncertainty	Bias	Bias uncertainty	Bias	Bias uncertainty	
²³⁴ U	0.9276	0.1001	0.9114	0.1077	0.0162	-0.0076	
²³⁵ U	1.0121	0.0829	0.9459	0.1096	0.0662	-0.0267	
²³⁶ U	0.9841	0.0274	0.9862	0.0303	-0.0021	-0.0029	
²³⁸ U	1.0029	0.0079	1.0020	0.0021	0.0009	0.0058	
²³⁷ Np	1.0828	0.1778	1.0011	0.1072	0.0817	0.0706	
²³⁸ Pu	0.9765	0.0848	1.1375	0.2331	-0.1610	-0.1483	
²³⁹ Pu	0.9864	0.0452	0.8984	0.0727	0.0880	-0.0275	
²⁴⁰ Pu	0.9727	0.0337	0.8981	0.0810	0.0746	-0.0473	
²⁴¹ Pu	1.0101	0.0424	0.9833	0.0839	0.0268	-0.0415	
²⁴² Pu	1.0035	0.0691	1.0636	0.0852	-0.0601	-0.0161	
²⁴¹ Am	0.9493	0.2054	0.9947	0.3224	-0.0454	-0.1170	
²⁴³ Am	1.0542	0.1511	0.9216	0.2124	0.1326	-0.0613	

Table 5-5	Bias and Bias Uncertainty for Actinides for Burnups > 40 GWd/MTU Compared
	to Previous Data

^a Values in this report compared to those in NUREG/CR-7108.

Figure 5-6 Bias and Bias Uncertainty for Actinides Compared to Previous Data for Burnups > 40 GWd/MTU

For fission products, notable reductions are observed between the previous and the current values of bias and bias uncertainty for ¹⁵⁵Gd, one of the six top fission products contributing to reactivity. For ¹⁵⁵Gd, the relative bias and bias uncertainty changed from 26% and 34% previously to 5% and 22% in this work. Comparisons for all burnup credit fission products are presented in Table 5-6 and illustrated in Figure 5-7. Better prediction (i.e., bias closer to 1.0) and a relative bias change greater than 5% are observed for ⁹⁹Tc, ¹⁰³Rh, ¹⁰⁹Ag, ¹⁴⁷Sm and ¹⁵¹Eu. The bias uncertainty decreases for 9 of the 16 fission products; for the other 7 fission products, it increases, with increases greater than 5% in the relative bias uncertainty being observed for ⁹⁵Mo, ¹⁰³Rh, ¹⁰⁹Ag and ¹⁵³Eu. For these four fission products, the bias and uncertainty changes are primarily due to the change in the individual M/C values used as a basis, given the addition of new samples and removal of the 11 TMI-1 samples. The largest bias uncertainty increase that is observed for ¹⁰⁹Ag is primarily due to the smaller number of measurements in the current validation set than in the previous one, and this increase is associated with the application of a larger tolerance factor than that applied previously [4] to account for the limited number of measurements.

	This report		NURE	G/CR-7108	Difference ^a	
Nuclide	Bias	Bias uncertainty	Bias	Bias uncertainty	Bias	Bias uncertainty
⁹⁵ Mo	1.0353	0.1522	1.0002	0.0745	0.0351	0.0777
⁹⁹ Tc	0.9877	0.2343	0.9400	0.2030	0.0477	0.0313
¹⁰¹ Ru	0.9468	0.1314	0.9726	0.1152	-0.0258	0.0162
¹⁰³ Rh	0.9524	0.1607	0.9021	0.0894	0.0503	0.0713
¹⁰⁹ Ag	0.8146	0.6870	0.5546	0.2694	0.2600	0.4176
¹³³ Cs	0.9732	0.0234	0.9810	0.0680	-0.0078	-0.0446
¹⁴³ Nd	0.9906	0.0288	0.9779	0.0526	0.0127	-0.0238
¹⁴⁵ Nd	0.9969	0.0186	0.9978	0.0291	-0.0009	-0.0105
¹⁴⁷ Sm	0.9943	0.0370	0.9379	0.0967	0.0564	-0.0597
¹⁴⁹ Sm	0.9715	0.1238	0.9634	0.0995	0.0081	0.0243
¹⁵⁰ Sm	0.9812	0.0386	0.9656	0.0663	0.0156	-0.0277
¹⁵¹ Sm	1.0360	0.0658	0.9961	0.0782	0.0399	-0.0124
¹⁵² Sm	0.9974	0.0395	0.9736	0.0427	0.0238	-0.0032
¹⁵¹ Eu	1.0964	0.4285	1.4721	0.7644	-0.3757	-0.3359
¹⁵³ Eu	1.0212	0.1034	0.9967	0.0480	0.0245	0.0554
¹⁵⁵ Gd	1.0471	0.2243	1.2556	0.3391	-0.2085	-0.1148

 Table 5-6
 Bias and Bias Uncertainty for Fission Products Compared to Previous Data

^a Values in this report compared to those in NUREG/CR-7108.

6 BIAS AND BIAS UNCERTAINTY IN CALCULATED keff

The Sampler uncertainty quantification tool in SCALE 6.2.4 is used for the new and standardized implementation of the stochastic uncertainty sampling method described in Section 2.3 to determine the bias and bias uncertainty in calculated k_{eff} for the cask criticality model. Details on the Sampler implementation are presented in Appendix A.

6.1 <u>*k*eff</u> Bias and Bias Uncertainty Calculated with SCALE 6.2.4/ ENDF/B-VII.1</u>

Bias and bias uncertainty in calculated k_{eff} for the cask model as a function of the assembly average burnup are shown in Table 6-1. These values are obtained using a CSAS6 model of the cask with 252-group ENDF/B-VII.1 cross sections, the stochastic method for uncertainty sampling presented in section 2.3, and the bias and bias uncertainty in calculated actinides and fission product concentrations from Tables 5-3 and 5-4. Two sets of values are applied in the stochastic sampling method for the bias and bias uncertainty of burnup-dependent actinide concentrations in fuel materials of the CSAS6 model: one set for burnups ≤ 40 GWd/MTU, and another set for burnups greater than 40 GWd/MTU. A single set of values is used for fission product concentrations over the entire burnup range up to 80 GWd/MTU. The k_{eff} bias and bias uncertainty values shown in Table 6-1 correspond to 1,000 Sampler samples (i.e., CSAS6 calculations) for each assembly burnup. However, as presented in Appendix A.2, which discusses the convergence of the results as a function of the number of random samples used, similar bias and uncertainty values are obtained with 300 Sampler samples.

Assembly burnup (GWd/MTU)	Initial enrichment (%)	<i>k</i> _{eff} bias	<i>k</i> eff bias uncertainty	<i>k</i> _{eff} bias + <i>k</i> _{eff} bias uncertainty
5	2.13	0.0033	0.0165	0.0198
10	2.36	0.0032	0.0155	0.0187
18	3.03	0.0028	0.0142	0.0169
25	3.48	0.0023	0.0138	0.0161
30	3.98	0.0020	0.0136	0.0159
40	4.70	0.0017	0.0139	0.0157
45	5.06	0.0010	0.0152	0.0162
50	5.42	0.0011	0.0149	0.0160
55	5.79	0ª	0.0187	0.0187
60	6.16	0	0.0184	0.0184
55	5.79	0	0.0182	0.0182
70	6.16	0	0.0180	0.0180

Table 6-1 Bias and Bias Uncertainty for *k*eff of the Cask Model

^a A bias that reduces the calculated value of k_{eff} is not considered [2] and is set to 0; actual values are - 0.0005, -0.0007, -0.0006, and -0.0003 for burnups of 55, 60, 65, and 70 GWd/MTU, respectively.

The variations of k_{eff} bias, k_{eff} bias uncertainty, and the sum of k_{eff} bias and bias uncertainty as a function of the assembly average burnup are illustrated in Figures 6-1 through 6-3.

Figure 6-1 k_{eff} Bias for the Cask Model

Figure 6-2 *k*_{eff} Bias Uncertainty for the Cask Model

Figure 6-3 *k*_{eff} Bias + Bias Uncertainty for the Cask Model

The results presented in Table 6-1 and illustrated in Figures 6.1 through 6.3 indicate the following:

- Bias varies in the range of 0.0033–0.0010, and it decreases with increasing burnup for burnups ranging from 5 to 50 GWd/MTU; bias is positive and conservatively set to 0 for burnups ranging from 55 to 70 GWd/MTU.
- Bias uncertainty varies in the range of 0.0136–0.0187 over burnups ranging from 5 to 70 GWd/MTU; the largest values plateau at around 0.018-0.019 for burnups in the 55– 70 GWd/MTU range.
- Bias + bias uncertainty values and variation with burnup are driven by the bias uncertainty values, which are much greater than the bias values.
- Bias + bias uncertainty values vary in the 0.0157 to 0.0198 range for burnups ranging from 5 to 70 GWd/MTU; the largest value occurs at 5 GWd/MTU, where the bias is maximum.

6.2 <u>*k*eff</u> Bias Uncertainty Comparison with NUREG/CR-7108 and ISG-8, Rev 3</u>

Comparison of k_{eff} bias uncertainty as a function of assembly-average burnup, which is based on data shown in Table 6-1 and corresponding values available in ISG-8 Rev.3 [1], is illustrated in Figure 6-4. These ISG-8 Rev.3 values are identical with those reported in NUREG/CR-7108 [4] for burnups \leq 45 GWd/MTU for the same cask analysis model; for burnups above 45 GWd/MTU, the values included are those calculated for a spent fuel pool analysis model. The NUREG-7108 does not report data for fuel compositions including both actinide and fission product burnup credit nuclides beyond 45 GWd/MTU. When compared to the previous values, the bias uncertainty estimated in this report is significantly smaller at high burnups. The absolute difference in bias uncertainty between the current and previous values is approximately 0.002 for burnups ranging up to 40 GWd/MTU. This difference increases above 0.002 with increasing burnup for burnups greater than 40 GWd/MTU: it varies from 0.005 at 45 GWd/MTU to 0.012 at 60 GWd/MTU.

Figure 6-4 Comparison of *k*_{eff} Bias Uncertainty for the Cask Model

7 CONCLUSIONS

The studies documented in this report build upon and complement the approach presented in NUREG/CR-7108 to estimate k_{eff} bias and bias uncertainty in burnup credit criticality safety analyses that are associated with calculated nuclide concentrations of spent nuclear fuel. This approach includes three main steps: (1) develop a model for the bias and bias uncertainty in calculated nuclide concentrations for a given set of nuclides and a burnup range of interest based on a comparison of measured and corresponding calculated data for these nuclides; (2) based on the bias and bias uncertainty in the calculated nuclide concentrations, sample the probability distribution of the nuclide concentrations in the fuel compositions of the criticality model within the range of their estimated uncertainties; and (3) using the stochastically sampled fuel compositions within the criticality safety model, calculate the corresponding k_{eff} , and estimate the k_{eff} bias and bias uncertainty based on the resulting distribution of k_{eff} values.

The approach applied herein is based on a new and standardized implementation of the stochastic sampling method that was used previously. This new implementation takes advantage of the capabilities in the Sampler uncertainty quantification tool, which was introduced in the SCALE modeling and simulation suite in 2016. All results presented herein correspond to burnup credit criticality safety calculations that consider 28 nuclides—12 actinides and 16 fission products—in the spent fuel compositions of the criticality safety model. All analyses described in this report were performed using computational tools in the 6.2.4 release of SCALE and ENDF/B-VII.1 cross sections. The analyses documented in NUREG/CR-7108 were performed using SCALE 6.1.3, with nuclear cross sections based on ENDF/B-VII.0.

The loading curve developed for the GBC-32 cask model in NUREG/CR-7108 was reassessed to verify its applicability when using the criticality calculation sequences in SCALE 6.2.4 with ENDF/B-VII.1 cross sections. It was observed that the use of this loading curve with ENDF/B-VII.1 cross sections led to k_{eff} values slightly lower than the 0.94 target value, by approximately 0.0024 to 0.0043. To ensure that the reference models used to determine k_{eff} bias and bias uncertainty in this study met the k_{eff} target value, a new loading curve was generated. The updated loading curve was derived using a new methodology that employs the ORIGAMI fast depletion computational tool in SCALE 6.2.4.

The validation basis for estimating the bias and bias uncertainty in calculated concentrations of burnup credit nuclides was significantly improved in this work. It includes measurement data for 129 spent fuel samples and extends the previous burnup range of up to 60 GWd/MTU in NUREG-7108 to 80 GWd/MTU herein. The current validation basis includes high-burnup measurement data from international experimental programs and from recent RCA measurements conducted at ORNL. These recent RCA measurements were performed under an ongoing experimental program jointly funded by the NRC and DOE.

The significant improvement of the validation basis, along with the increase in the number of measurements, helped fill data gaps for burnup credit nuclides, especially at high burnups. As a result, the uncertainty in the calculated nuclide concentration for most of these nuclides was reduced. For example, the relative uncertainty for the major actinide ²³⁹Pu was reduced for burnups greater than 40 GWd/MTU by approximately half, from 7.3% to 4.5%, partly due to increase in the number of measurements and partly due to change of cross sections. This has practical impact on criticality safety with burnup credit for modern discharged fuel characterized by higher burnups.

The improvement in the validation basis led to an overall decrease in the k_{eff} bias uncertainty for the considered cask criticality model compared to the corresponding values shown in ISG-8 Rev.3. The k_{eff} bias uncertainty in the current report varies in the 0.0136 to 0.0187 range over burnups from 5 to 70 GWd/MTU. The bias uncertainty for burnups less than 40 GWd/MTU compared to the previous values is approximately 0.002 smaller. The reduction in k_{eff} bias uncertainty for burnups greater than 40 GWd/MTU varies from 0.005 at 45 GWd/MTU to 0.012 at 60 GWd/MTU compared to ISG-8 Rev.3. Part of this decrease resulted from a reduction in the bias uncertainty for the calculated nuclide concentrations. This reduction is a result of an increased number of measurements for burnup credit nuclides, the effect of nuclear data cross sections, and the addition of high-quality measurement data for impactful actinides and fission products.

8 **REFERENCES**

- 1. Interim Staff Guidance (ISG) 8, Rev. 3 Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks, Nuclear Regulatory Commission (2012). <u>https://www.nrc.gov/reading-rm/doc-collections/isg/isg-8R3.pdf</u>
- 2. Standard Review Plan for Spent Fuel Dry Storage Systems and Facilities Final Report, NUREG-2215, Nuclear Regulatory Commission (2020). <u>https://www.nrc.gov/reading-</u> rm/doc-collections/nuregs/staff/sr2215/index.html
- 3. Standard Review Plan for Transportation Packages for Spent Fuel and Radioactive Material: Final Report, NUREG-2216, Nuclear Regulatory Commission (2020). https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr2216/index.html
- 4 G. Radulescu, I. C.Gauld, G. Ilas, J. C. Wagner, *An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses—Isotopic Composition Predictions*, NUREG/CR-7108, US Nuclear Regulatory Commission (2012). <u>https://www.nrc.gov/docs/ML1211/ML12116A124.pdf</u>
- G. Radulescu, I. C.Gauld, G. Ilas, J. C. Wagner, "Approach for Validating Actinide and Fission Product Compositions for Burnup Credit Criticality Safety Analyses," *Nuclear Technology* 188, no. 2, 154 (2014). <u>https://doi.org/10.13182/NT13-154</u>
- 6. J. C. Wagner, *Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit*, NUREG/CR-6747, Nuclear Regulatory Commission (2001). <u>https://www.nrc.gov/docs/ML0130/ML013060035.pdf</u>
- 7. W. A. Wieselquist, R. A. Lefebvre, M. A. Jessee, eds, *SCALE Code System*, ORNL/TM-2005/39, V.6.2.4. (2020). <u>https://www.ornl.gov/file/scale-62-manual/display</u>
- M. B. Chadwick et al., "ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology," *Nuclear Data Sheets* **107**, 2931 (2006). <u>https://www.osti.gov/servlets/purl/900147</u>
- M. Williams, G. Ilas, M. A. Jessee, B. T. Rearden, D. Wiarda, W. Zwermann, L. Gallner, M. Klein, B. Krzykacz-Hausmann, A. Pautz, "A Statistical Sampling Method for Uncertainty Analysis with SCALE and XSUSA," *Nuclear Technology* **183**, no. 3, 515 (2013). <u>https://doi.org/10.13182/NT12-112</u>
- M. B. Chadwick et al., "ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data," *Nuclear Data Sheets* **112**, 2887 (2011). https://www.sciencedirect.com/science/article/pii/S009037521100113X
- R. D. Canaan, J. D. Couch, J. S. Delashmitt, J. M. Giaquinto, C. Hexel, G. Ilas, T. Keever, S. C. Metzger, J. D. Partridge, B. D. Roach, K. T. Rogers, N. A. Zirakparvar, *Analytical Report for Nuclear Regulatory Commission High Burnup Fuel Specimens*, ORNL/TM-2022/2788, Oak Ridge National Laboratory (2023). <u>https://www.osti.gov/servlets/purl/1923161</u>

- 12. G. Ilas, B. Bevard, J. Giaquinto, "Extending the Validation Basis for High Burnup Fuel with New Radiochemical Assay Data," *Nuclear Science and Engineering* (submitted).
- 13. D. Boulanger, M. Lippens, L. Mertens, J. Basselier, and B. Lance, "High Burnup PWR and BWR MOX Fuel Performance: a Review of Belgonucleaire Recent Experimental Programs," ANS International Meeting on LWR Fuel Performance, Orlando, USA (2004).
- 14. J. M. Conde, C. Alejano, and J. M. Rey, "Nuclear Fuel Research Activities of the Consejo de Seguridad Nuclear," Trans. International Meeting on LWR Fuel Performance, Top Fuel 2006, Salamanca, Spain (2006).
- 15. J. M. Conde, J. M. Alonso, J. A. Gago, P. González, M. Novo, and L. E. Herranz, "Spanish R&DProgram on Spent Fuel Dry Storage," Trans. International Meeting on LWR Fuel Performance, TopFuel 2006, Salamanca, Spain (2006).
- 16. J. Hu, I. C.Gauld, J. L. Peterson, S. M. Bowman, *US Commercial Spent Nuclear Fuel Assembly Characteristics: 1968-2013*, NUREG/CR-7227, US Nuclear Regulatory Commission (2016). <u>https://www.nrc.gov/docs/ML1626/ML16267A351.pdf</u>
- 17. J. M. Scaglione, D. E. Mueller, J. C. Wagner, W. J. Marshall, *An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses Criticality (k_{eff}) <i>Predictions*, NUREG/CR-7109, Nuclear Regulatory Commission (2012). https://www.nrc.gov/docs/ML1211/ML12116A128.pdf
- 18. J. C. Wagner, M. D. DeHart, C. V. Parks, *Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses*, NUREG/CR-6801, Nuclear Regulatory Commission (2003). <u>https://www.nrc.gov/docs/ML0311/ML031110292.pdf</u>
- 19. I. C. Gauld, *Strategies for Application of Isotopic Uncertainties in Burnup Credit*, 2003. NUREG/CR-6811, US Nuclear Regulatory Commission. <u>https://www.nrc.gov/reading-</u> rm/doc-collections/nuregs/contract/cr6811/index.html
- 20. Standard Review Plan for Spent Fuel Dry Cask Storage Systems at a General License Facility, NUREG-1536, Revision 1, Nuclear Regulatory Commission (2010). https://www.nrc.gov/docs/ML1010/ML101040620.pdf
- 21. M. D. DeHart, Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages, ORNL/TM-12973, Oak Ridge National Laboratory (1996). https://www.osti.gov/biblio/814237
- 22. M. D. DeHart, A Stochastic Method for Estimating the Effect of Isotopic Uncertainties in Spent Nuclear Fuel, ORNL/TM-2001/83, Oak Ridge National Laboratory (2001). https://www.osti.gov/biblio/814362
- 23. R. Elzohery and G. Ilas, "Impact of Cross Section Libraries on Loading Curves for Burnup Credit Criticality Safety Analysis Models," *Transactions of the American Nuclear Society* vol. 128 (2023). (pending publication)
- 24. W. Wieselquist, B. Betzler, *SCALE 6.2.4: Validation Overview*, ORNL/TM-2020/1500/v1, Oak Ridge National Laboratory (2022). <u>https://www.osti.gov/biblio/1902803</u>

- 25. T. Greene, B. J. Marshall, SCALE 6.2.4 Validation: Nuclear Criticality Safety, ORNL/TM-2020/1500/v2, Oak Ridge National Laboratory (2022). https://www.osti.gov/biblio/1902818
- 26. G. Ilas, B. Hiscox, J. Burns, U. Mertyurek, *SCALE 6.2.4 Validation: Reactor Physics*, ORNL/TM-2020/1500/v3, Oak Ridge National Laboratory (2022). https://www.osti.gov/biblio/1902818
- 27. K. Bekar, J. Clarity, M. Dupont, R. L. Lefebvre, B. J. Marshall, E. M. Saylor, *KENO-V.a Primer: Performing Calculations Using SCALE's Criticality Safety Analysis Sequence (CSAS6) with Fulcrum*, ORNL/TM-2020/1601 (2020). https://www.osti.gov/biblio/1760129
- K. Bekar, J. Clarity, M. Dupont, R. L. Lefebvre, B. J. Marshall, E. M. Saylor, KENO-VI Primer: Performing Calculations Using SCALE's Criticality Safety Analysis Sequence (CSAS5) with Fulcrum, ORNL/TM-2020/1664 (2020). https://www.osti.gov/biblio/1760121
- 29. M. D. DeHart, S. M. Bowman, "Reactor Physics Methods and Analysis Capabilities in SCALE," *Nuclear Technology* **174**, 196 (2011). <u>https://doi.org/10.13182/NT174-196</u>
- 30. S. Skutnik, M. L. Williams, R. A. Lefebvre, "ORIGAMI: A New Interface for Fuel Assembly Characterization with ORIGEN," *Proc. 15th Int. High- Level Radioactive Waste Management Conf. (IHLRWM 2015),* Charleston, South Carolina (2015).
- I. C. Gauld, G. Radulescu, G. Ilas, B. D. Murphy, M. L. Williams, D. Wiarda, "Isotopic Depletion and Decay Methods and Analysis Capabilities in SCALE," *Nuclear Technology* **174**, 169 (2011). <u>https://doi.org/10.1016/j.anucene.2012.03.012</u>
- R. Montgomery, R. N. Morris, B. Bevard, J. Scaglione, "Key Results from Detailed Nondestructive Examinations of 25 Pressurized Water Reactor High Burnup Spent Nuclear Fuel Rods," *Nuclear Science and Engineering* 193:8, 884 (2019). <u>10.1080/00295639.2019.1573602</u>
- J. Eysermans, M. Verwerft, K. Govers, R. Ichou, G. Ilas, U. Meryturek, N. Messaoudi, P. Romojaro and N. Slosse, "REGAL International Program: Analysis of Experimental Data for Depletion Code Validation", Annals of Nuclear Energy, 172 (2022). https://doi.org/10.1016/j.anucene.2022.109057
- 34. G. Ilas, I. C. Gauld, *Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation Vandellos II Reactor*, NUREG/CR-7013, Nuclear Regulatory Commission (2011). <u>www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7013/</u>
- 35. I. C. Gauld, J. M. Giaquinto, J. S. Delashmitt, J. Hu, G. Ilas, T. J. Haverlock, C. Romano, "Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation," *Annals of Nuclear Energy* **87**, 267 (2016). <u>https://doi.org/10.1016/j.anucene.2015.08.026</u>
- 36. G. Ilas, B. Hiscox, U. Mertyurek, r. Elzohery, *SCALE 6.3.1 Validation: Spent Nuclear Fuel*, ORNL/TM-2023/2884/v5, Oak Ridge National Laboratory (2023). (pending publication)

- 37. F. Michel-Sendis, I. Gauld, J.S. Martinez, C. Alejano, M. Bossant, D. Boulanger, O. Cabellos, V. Chrapciak, J. Conde, I. Fast, M. Gren, K. Govers, M. Gysemans, V. Hannstein, F. Havlůj, M. Hennebach, G. Hordosy, G. Ilas, R. Kilger, R. Mills, D. Mountford, P. Ortego, G. Radulescu, M. Rahimi, A. Ranta-Aho, K. Rantamäki, B. Ruprecht, N. Soppera, M. Stuke, K. Suyama, S. Tittelbach, C. Tore, S. Van Winckel, A. Vasiliev, T. Watanabe, Toru Yamamoto, Toshihisa Yamamoto, "SFCOMPO-2.0: An OECD NEA Database of Spent Nuclear Fuel Isotopic Assays, Reactor Design Specifications, and Operating Data," *Annals of Nuclear Energy* **110**, 779 (2017). https://doi.org/10.1016/j.anucene.2017.07.022
- G. Ilas, I. C. Gauld, F. C. Difilippo, M. B. Emmett, Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation—Calvert Cliffs, Takahama, and Three Mile Island Reactors, NUREG/CR-6968, Nuclear Regulatory Commission (2010). www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6968/
- 39. G. Ilas, *Review of Experimental Assay Data for PWR Spent Fuel*, ORNL/SPR-2019/1143, Oak Ridge National Laboratory (2019). <u>https://www.osti.gov/biblio/1782069</u>
- 40. I. C. Gauld, J. C. Ryman, *Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel,* NUREG/CR-6700, Nuclear Regulatory Commission (2001). <u>https://www.nrc.gov/reading-</u> <u>rm/doc-collections/nuregs/contract/cr6700/</u>
- 41. G. Radulescu, I. C. Gauld, G. Ilas, SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions, ORNL/TM-2010/44, Oak Ridge National Laboratory (2010). https://www.osti.gov/biblio/983556/
- 42. G. Ilas, I. C. Gauld, G. Radulescu, "Validation of New Depletion Capabilities and ENDF/B-VII Data Libraries in SCALE," *Annals of Nuclear Energy* 46, 43 (2012). https://doi.org/10.1016/j.anucene.2012.03.012
- 43. G. Ilas, B. Hiscox, "Validation of SCALE 6.2.4 and ENDF/B-VII.1 Data Libraries for Nuclide Inventory Analysis in PWR Used Fuel," *Transactions of the American Nuclear Society* 124, 552 (2021). <u>https://www.ans.org/pubs/transactions/article-49653/</u>. <u>https://www.osti.gov/servlets/purl/1808380</u>
- 44. Spent Nuclear Fuel Assay Data for Isotopic Validation (State-of-the-Art Report), NEA/NSC/WPNCS/DOV(2011)5, OECD/NEA (2011). https://www.oecd-nea.org/science/wpncs/ADSNF/SOAR_final.pdf

APPENDIX A STOCHASTIC UNCERTAINTY SAMPLING METHOD – IMPLEMENTATION USING SAMPLER

A.1 Sampler Template Input for *k*eff Stochastic Uncertainty Sampling

=sampler

read parameters

n_samples=1000 library="v7-252" perturb_xs=no perturb_geometry=yes run_cases=yes force_run=no end parameters

read case [PWR_cask]

sequence=csas6

gbc-32						
V/-252						
read comp	55 O	~	l/mtur onnia	hmon+-	5 70 °.	
· burnup-	55.0	gwc	i/mcu; enric	nment-t)./9 6	
• #{variar	in a	a}pı əəb	acenolder I	or each	i burnup	credit
	тп е	acn	or the to t	uer mai	Lerials	
noue[01]	101	\cap	1 683700-02	203 0	and	
0-10	101	0	4.003/0E-02 #(1)23/11	293.0	end	
u-234	101	0	$\#\{uZJ4I\}$	293.0	end	
u-235	101	0	$\#\{uzJJI\}$	293.0	end	
u-230	101	0	$\#\{u2301\}$	293.0	end	
u = 230	101	0	$\#\{UZJOI\}$	293.0	end	
np-237	101	0	$#\{np23/1\}$	293.0	end	
pu-238	101	0	$#\{pu2381\}$	293.0	end	
pu-239	101	0	$#\{pu2391\}$	293.0	end	
pu-240	101	0	$#\{pu2401\}$	293.0	end	
pu-241	101	0	#{pu2411}	293.0	end	
pu-242	101	0	#{pu2421}	293.0	end	
am-241	101	0	#{am2411}	293.0	end	
am-243	101	0	#{am2431}	293.0	end	
mo-95	101	0	#{mo951}	293.0	end	
tc-99	101	0	#{tc991}	293.0	end	
ru-101	101	0	#{ru1011}	293.0	end	
rh-103	101	0	#{rh1031}	293.0	end	
ag-109	101	0	#{ag1091}	293.0	end	
cs-133	101	0	#{cs1331}	293.0	end	
nd-143	101	0	#{nd1431}	293.0	end	
nd-145	101	0	#{nd1451}	293.0	end	
sm-147	101	0	#{sm1471}	293.0	end	
sm-149	101	0	#{sm1491}	293.0	end	
sm-150	101	0	#{sm1501}	293.0	end	
sm-151	101	0	#{sm1511}	293.0	end	
sm-152	101	0	#{sm1521}	293.0	end	
eu-151	101	0	#{eu1511}	293.0	end	
eu-153	101	0	#{eu1531}	293.0	end	

			•		
'node[02]					
0-16	102	0	4.68350E-02	293.0	end
u-234	102	0	#{u2342}	293.0	end
u-235	102	0	#{u2352}	293.0	end
u-236	102	0	#{u2362}	293.0	end
u-238	102	0	#{u2382}	293.0	end
np-237	102	0	#{np2372}	293.0	end
pu-238	102	0	#{pu2382}	293.0	end
pu-239	102	0	#{pu2392}	293.0	end
pu-240	102	0	#{pu2402}	293.0	end
pu-241	102	0	#{pu2412}	293.0	end
pu-242	102	0	#{pu2422}	293.0	end
am-241	102	0	#{am2412}	293.0	end
am-243	102	0	#{am2432}	293.0	end
mo-95	102	0	#{mo952}	293.0	end
tc-99	102	0	#{tc992}	293.0	end
ru-101	102	0	#{ru1012}	293.0	end
rh-103	102	0	#{rh1032}	293.0	end
ag-109	102	0	#{ag1092}	293.0	end
cs-133	102	0	#{cs1332}	293.0	end
nd-143	102	0	#{nd1432}	293.0	end
nd-145	102	0	#{nd1452}	293.0	end
sm-147	102	0	#{sm1472}	293.0	end
sm-149	102	0	#{sm1492}	293.0	end
sm-150	102	0	#{sm1502}	293.0	end
sm-151	102	0	#{sm1512}	293.0	end
sm-152	102	0	#{sm1522}	293.0	end
eu-151	102	0	#{eu1512}	293.0	end
eu-153	102	0	#{eu1532}	293.0	end
gd-155	102	0	#{gd1552}	293.0	end

gd-155 101 0 #{gd1551} 293.0 end

end sequence

•

```
' random numbers drawn from standard normal distribution,
' one random number per burnup credit nuclide, per perturbed case
read variable [R_u235]
distribution=normal
stddev=1
value=0
end variable
read variable [R_gd155]
distribution=normal
stddev=1
value=0
end variable
```

' variable for the concentrations $\mathcal{C}^m_{i,Bu}$ defined in Eq.(5) ' if value is less than 0, is set to 0

```
read variable [u2351]
```

distribution=expression

end

end response

A.2 Convergence of the keff Bias Uncertainty Estimate

The stochastic sampling approach summarized in Section 2.3 requires many random samples, or perturbed k_{eff} calculations, to ensure that the values of the mean and standard deviation for the resulting k_{eff} distribution are meaningful and converge to their best-estimate values. Figure A-1 is a histogram illustrating, for the 55 GWd/MTU burnup, an example of k_{eff} distribution corresponding to 1,000 perturbed cases. As indicated by a Shapiro-Wilk normality test at the 0.05 level, the illustrated k_{eff} values are drawn from a normal distribution.

Figure A-1 Histogram of keff Perturbed Values for 55 GWd/MTU Burnup

The stochastic sampling method is inherently computationally intensive. Studying its convergence and understanding how convergence varies according to the number of perturbed cases is a prerequisite for making the application of the method practical. Convergence is considered reached when the difference in k_{eff} bias uncertainty values corresponding to N and N+1 perturbed cases is smaller than a target value, which in this case is set 0.0001. The minimum number of perturbed cases sufficient to reach convergence can indicate how the total computing time can be minimized.

Figures A-2 and A-3 present variations of k_{eff} bias and bias uncertainty as a function of the number of perturbed cases for burnup values of 10 and 45 GWd/MTU. Each figure illustrates (a) the mean k_{eff} calculated per Eq. (6) as a green line; (b) the k_{eff} bias calculated per Eq. (8) as the distance between the 0.94 reference value in blue and the mean k_{eff} , and (c) the k_{eff} bias uncertainty calculated per Eq. (9) as the distance between the green and red lines. Visual inspection of the plots in A2-2 and A2-3 indicates that k_{eff} convergence of bias and bias uncertainty is reached at around 200 perturbed cases. It also indicates that the number of perturbed cases required to reach convergence varies slightly with burnup.

Figure A-4 illustrates the variation of the k_{eff} bias uncertainty with the number of perturbed cases for burnups of 10, 30, and 50 GWd/MTU, indicating that the minimum number of perturbed cases to reach convergence can vary slightly with burnup. Per this convergence criterion, convergence is achieved for burnups of 10, 30, and 50 GWd/MTU at 180, 200, and 280 perturbed cases, respectively. The highest value of the minimum number of cases to reach convergence for a 70 GWd/MTU burnup is 280. Based on these observations, it can be concluded that 300 perturbed cases are sufficient to achieve convergence for this model.

Figure A-2 k_{eff} Bias and Bias Uncertainty vs. Number of Perturbed Cases for 10 GWd/MTU Burnup

Figure A-3 k_{eff} Bias and Bias Uncertainty vs. Number of Perturbed Cases for 45 GWd/MTU Burnup

Figure A-4 *k*_{eff} Bias Uncertainty Estimate vs. Number of Perturbed Cases

For any assembly-average burnup under consideration, the minimum number of perturbed cases to achieve convergence is inherently dependent on the considered convergence criterion and the analyzed criticality model. The 300 number of converged cases determined in this work is considered a representative estimate of the order (few hundreds) of perturbed cases that would be necessary for other, different criticality models.

A.3 Verification of Stochastic Sampling Method Implementation

The new implementation of the stochastic sampling method was verified for consistency with the method as applied in NUREG/CR-7108 using the 30 GWd/MTU burnup as a test case. The same CSAS5 reference input model for this burnup, 238-group ENDF/B-VII.0 cross section library, and the same bias and bias uncertainty for burnup credit nuclide concentrations that were applied in NUREG/CR-7108 were used in the present work with the Sampler-based implementation of the method and SCALE 6.2.4. The difference between the old and the new CSAS5 input was the source definition (here, gen=1200, nsk=200, npg=100,000) to ensure that all CSAS5 convergence tests pass. All calculations were performed using CSAS5 and Sampler in SCALE 6.2.4.

Results for 500 Sampler "samples" (CSAS5 inputs) with stochastically sampled nuclide concentrations vs. results reported in NUREG/CR-7108 for the same burnup are compared in Table A-1. The results obtained with the new implementation and those reported previously are relatively consistent. The differences of 0.0002 in bias and 0.0028 in bias uncertainty between the current and previous values are small. These small differences could be the result of differences in the stochastic method implementation, or differences between SCALE 6.1.3 and SCALE 6.2.4 for the CSAS5 criticality sequence, including in the self-shielding method applied to the multigroup cross sections used with the Monte Carlo neutron transport solver KENO-V.a.

Table A-1 Comparison of Results Obtained with New and Previous Implementations of the Stochastic Sampling Method for Consistent Input at 30 GWd/MTU Burnup

Results for cu	rrent method ir	nplementation	Results repo	orted in NUREG	/CR-7108 [4]
<i>k</i> _{eff} bias	<i>k</i> eff bias uncertainty	k _{eff} bias + bias uncertainty	<i>k</i> _{eff} bias	<i>k</i> eff bias uncertainty	<i>k</i> eff bias + bias uncertainty
0.0029	0.0133	0.0162	0.0031	0.0161	0.0192

A.4 <u>Comparison of Results Obtained with the New Implementation Using</u> <u>CSAS5 and CSAS6 with the Criticality Model</u>

The k_{eff} bias and bias uncertainty calculated using the GBC-32 cask criticality model with the CSAS6 criticality sequence in SCALE 6.2.4 and the corresponding values obtained using the same criticality model represented with the CSAS5 criticality sequence in SCALE 6.2.4 are the same. This similarity is as expected; criticality calculations for the same model represented with either KENO-V.a or KENO-VI are expected to produce the same k_{eff} for that model within the statistical uncertainty associated with the calculation.

Table A-2 includes more detailed information relevant to the bias and bias uncertainty values presented in Table 6-1. These data correspond to the use of CSAS6 for the cask criticality model. In addition to data in Table 6-1, Table A-2 includes:

 \circ k_{eff} and the associated standard deviation for the reference criticality model; in this model, calculated burnup credit nuclide concentrations are not adjusted in any way.

- k_{eff} and associated standard deviation for the "unperturbed" case in Sampler; calculated nuclide concentrations are modified to their best estimate values to account for the bias in nuclide concentrations $C_{i,Bu} \overline{X}_{i,Bu}$, where the terms are as defined for Eq. (5).
- k_{eff} mean and associated standard deviation from the distribution of k_{eff} values obtained with Sampler for the 1,000 instances of the criticality model with stochastically sampled concentrations for the burnup credit nuclides.

Table A-2 presents the same type of data as shown in Table A-1 for burnups up to 50 GWd/MTU, with the difference being that the criticality sequence used is CSAS5. The bias and bias uncertainty values obtained using CSAS5 are the same as those obtained using CSAS6, for the considered model. This is of consequence for computationally expensive calculations with Sampler. The use of a CSAS5 model would result in a significantly smaller total Sampler computing time than that applicable to CSAS6. However, the use of CSAS6 would provide capabilities of modeling more heterogeneous, complex geometries for which CSAS5 may have limited capabilities, depending on the actual configuration of interest.

Assembly	Initial				k _{eff} data fro	m Sampler				k _{eff} bias +
burnup	enrichment	Aeff IIO		nnpei	rturbed	m	ean	k _{eff} bias	k _{eff} bias uncertaintv	k _{eff} bias
(GWd/MTU)	(%)	value	stdev	value	stdev	value	stdev			uncertainty
5	2.13	0.94002	0.00008	0.93683	0.00007	0.93671	0.00957	0.0033	0.0165	0.0198
10	2.36	0.93990	0.00008	0.93661	0.00008	0.93672	0.00899	0.0032	0.0155	0.0187
18	3.03	0.94002	0.00007	0.93717	0.00007	0.93725	0.00820	0.0028	0.0142	0.0169
25	3.48	0.93993	0.00007	0.93777	0.00008	0.93763	0.00798	0.0023	0.0138	0.0161
30	3.98	0.93994	0.00006	0.93805	0.00007	0.93792	0.00788	0.0020	0.0136	0.0156
40	4.70	0.93989	0.00007	0.93824	0.00007	0.93908	0.00808	0.0017	0.0139	0.0157
45	5.06	0.94008	0.00007	60686.0	0.00006	0.93908	0.00878	0.0010	0.0152	0.0162
50	5.42	0.93986	0.00008	0.93876	0.00007	0.93877	0.00861	0.0011	0.0149	0.0160
55	5.79	0.94019	0.00007	0.94090	0.00007	0.94067	0.01083	-0.0005 ^a	0.0187	0.0187
09	6.16	0.94007	0.00007	0.94090	0.00007	0.94074	0.01067	2000.0-	0.0184	0.0184
65	6.52	0.93989	0.00007	0.94055	0.00007	0.94048	0.01054	9000.0-	0.0182	0.0182
20	6.89	0.94006	0.00007	0.94064	0.00007	0.94041	0.01041	£000 [.] 0-	0.0180	0.0180
^a A bias that r	educes the cal	Iculated va	lue of k _{eff} i	s not consid	dered; set to	0 in Table 6	-1.			

Criticality Model
CSAS6
with the
Obtained
k _{eff} Results (
Detailed
Table A-2

A-8

Table A-3 Detailed *k*eff Results Obtained with the CSAS5 Criticality Model

Assembly	Initial		minal		k _{eff} data fro	m Sampler				k _{eff} bias +
burnup	enrichment	Aeff IIO		nnper	rturbed	m	ean	k _{eff} bias	k _{eff} bias uncertaintv	k _{eff} bias
(GWd/MTU)	(%)	value	stdev	value	stdev	value	stdev			uncertainty
5	2.13	0.93971	0.00007	0.93654	0.00008	0.93642	0.00957	0.0033	0.0165	0.0198
10	2.36	88686.0	0.00006	0.93651	0.00007	0.93646	0.00897	0.0034	0.0155	0.0189
18	3.03	69626.0	0.00008	0.93727	0.00007	0.93704	0.00820	0.0026	0.0142	0.0168
25	3.48	0.93976	0.00008	0.93750	0.00009	0.93743	0.00797	0.0023	0.0138	0.0161
30	3.98	0.93986	0.00007	0.93783	0.00008	0.93771	0.00788	0.0022	0.0136	0.0158
40	4.70	29626.0	0.00008	0.93815	0.00009	0.93797	0.00808	0.0019	0.0139	0.0145
45	5.06	0.93986	0.00007	0.93892	0.00008	0.93887	0.00878	0.0010	0.0152	0.0162
50	5.42	0.93970	0.00009	0.93866	0.00008	0.93857	0.00861	0.0011	0.0149	0.0160
55	5.79	0.93992	0.00008	0.94069	0.00007	0.94046	0.01083	-0.0005a	0.0187	0.0187
60	6.16	0.94006	0.00008	0.94060	0.00007	0.94053	0.01067	-0.0005	0.0184	0.0184
a h hine that	od::000 the co	or lotol vo	1 50 01		10201.00++0					

A bias that reduces the calculated value of k_{eff} is not considered; set to 0.

NRC FORM 335 (12-2010) NRCMD 3.7	U.S. NUCLEAR REGULATORY COMMISSION	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.)		
BIBLIO (S	GRAPHIC DATA SHEET	NUREG/C	CR-7303	
2. TITLE AND SUBTITLE		3. DATE REPO	ORT PUBLISHED	
Validating Actinides and Fission Analyses – Nuclide Composition	n Products for Burnup Credit Criticality Safety Ins Prediction with Extended Validation Basis	MONTH September	YEAR 2023	
		4. FIN OR GRANT NU	JMBER	
5. AUTHOR(S)		6. TYPE OF REPORT	г	
Germina Ilas, Rabab Elzohery		Tech	nnical	
		7. PERIOD COVERE	D (Inclusive Dates)	
8. PERFORMING ORGANIZATION - NAME AND A contractor, provide name and mailing address.) Oak Ridge National Laboratory, Managed by UT-Batelle, LLC Oak Ridge, TN 37831-6170	DDRESS (If NRC, provide Division, Office or Region, U. S. Nuclear Regula Oak Ridge, Tennessee	atory Commission, and	mailing address; if	
 SPONSORING ORGANIZATION - NAME AND Al Commission, and mailing address.) Division of Systems Analysis Office of Nuclear Regulatory Re U.S. Nuclear Regulatory Comm Washington, D.C. 20555-0001 	DDRESS (IfNRC, type "Same as above", if contractor, provide NRC Divisio esearch ission	n, Office or Region, U.	S. Nuclear Regulatory	
L. Kyriazidis, NRC Project Mana	ager			
11. ABSTRACT (200 words or less) Criticality safety evaluations acc associated nuclear data used to 7108 report published in 2012 d calculated neutron multiplication concentrations, using as validat concentrations. Studies docume bias and bias uncertainty in calc water reactor (PWR) spent fuel basis presented herein is exten- with practical impact on burnup recent RCA measurements perf jointly funded by the Nuclear Re the validation basis led to an ov model compared to the correspondent	counting for burnup credit require validation of the perform the fuel depletion and criticality calcula ocuments an approach for establishing the bias in constant (k _{eff}) that is associated to calculated spin basis radiochemical assay (RCA) measuremented in the current report build upon the NUREC culated k _{eff} for a representative analysis model the is determined by applying a stochastic sampling ded compared to that in NUREG/CR-7108 to fill credit for modern discharged fuel. This extended formed at Oak Ridge National Laboratory under segulatory Commission and the Department of Enerall decrease in the keff bias uncertainty for the onding values in ISG-8 Rev.3.	e computationa tions. The NUR and bias uncer pent nuclear fur ent data for nuc G/CR 7108 app at includes pre method. The v data gaps at hig d validation bas an experimenta ergy. The impro- considered an	I tools and REG/CR- tainty in the el nuclide clide roach. The ssurized validation gh burnups, is includes al program ovement in alysis	
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) Burnup credit, spent nuclear fuel, criticality safety, depletion, validation, uncertainty, fission products.		13. AVAILAB 14. SECURIT (This Page) U (This Repor U 15. NUMBE	13. AVAILABILITY STATEMENT unlimited 14. SECURITY CLASSIFICATION (This Page) unclassified (This Report) unclassified	
			15. NUMBER OF PAGES 16. PRICE	
NRC FORM 335 (12-2010)				

Federal Recycling Program

NUREG/CR-7303 Validating Actinides and Fission Products for Burnup Credit Criticality Safety Analyses – Nuclide Compositions Prediction with Extended Validation Basis September 2023