# U.S. Million Person Study of Low-Level and Low-Dose-Rate Health Effects

Human Health Radiation Risk Assessment in the Nuclear Power and Industrial Radiographer Worker Cohorts



#### Lawrence T. Dauer

















## Disclosure, L. Dauer

- y, Indian Point 3 NPP, Radiological Engineer/Supervisor.
- 20y, Memorial Sloan Kettering Cancer Center.
- ational Council on Radiation Protection and Measurements
- Council Member
- S. Million Person Study of Low-Level and Low-Dose-Rate Health.
- The NCRP currently holds several grants/contracts that provide funding for the M from: DOE, NASA, CDC, US Navy
- L. Dauer Scientific Director voluntary role assisting John Boice, PI

# 8: Human Health Radiation Risk Assessment in the lear Power and Industrial Radiographer Worker Cohorts



ics

Boice, et al. A Million Persons, a Mill Dreams... IJRB, 2022

## illion Person Study RC Cohorts

Nuclear Power Plant Workers

Industrial Radiographers

Dosimetry is key.

Selected Results



John D. Boice, Jr., ScD MPS Principal Investigator Vanderbilt University Medical Center, National Council on Radiation Protection and Measurements.



Lawrence T. Dauer, PhD,DAF MPS Scientific Director Memorial Sloan Kettering Cancer Center, National Council on Radiation Protection ar Measurements.

# Who? - Million Person Study Population





Oppenheimer, General Leslie Enrico Fermi, Hans Bethe,



| Sub-Cohort                               | Number  |
|------------------------------------------|---------|
| Manhattan Project and other DOE Sites    | 300,000 |
| Atomic Veterans (DOD)                    | 113,806 |
| Nuclear Power Plant Workers (NRC)        | 135,193 |
| Industrial Radiographers (NRC)           | 123,401 |
| Medical Radiation Workers (Landauer®)    | 109,019 |
| Nuclear Submariners and others (US Navy) | 210,000 |
| Radium Dial Workers (DOE)                | 3,200   |





Boice et al. The Million Person Study, Whence it Came and Why. IJRB April 2022

## w are the NRC Cohorts Different from the other MPS Cohor

### e Dosimetry is Exceptional

EIRS Recorded Personal Dose Equivalents

annual organ doses able to be estimated (NRCP Dosimetry Guidance)

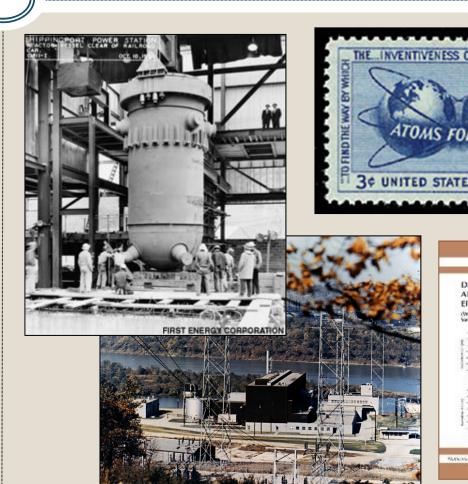
e Follow-up is Exceptional (>99%) for nearly 260,000 Workers

**Juclear Power Plant Workers** 

ndustrial Radiographers

reer Doses from other work/industries obtained from DOE REMS, Navy, Landauer, and other data sources.

oad Dose Distribution with maximum organ doses ~1 Gy or more.


Ip to 30 mSv/quarter, considering 5 x (N-18) limits at the time

# Nuclear Power Plant Workers (1957-1985)



efine Study Cohort
opulation Tracing & Vitals
EIRS/Landauer® Dose Data
vailable
adge Result to D<sub>T</sub>
eposure Source Term
eposure Conditions
80,000 Nuclear Utility Workers

red prior to 1985

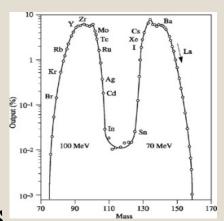


Shippingport Atomic Power Station, 1957

# Nuclear Power Plant Exposure Sources



#### rce Term


#### eactor Core & System

#### ission Products

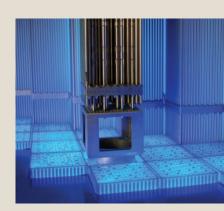
Cesium

Iodine

Krypton/Xenon



#### ctivation Products


Corrosion "Crud"
Cobalt-60, Cobalt-58
80%+ exposures in outage



#### **Source Term Parameters**

- System Design
- Operational History
- Operational Mode
- Coolant Chemistry
- Construction Materials
- Fuel Integrity
- ~0.6-1.5MeV
- ~0.7 MeV,

Activity weighted



# Nuclear Power Plant Exposure Conditions



| Mostly external photon                |
|---------------------------------------|
| Neutron and Internal (low)            |
| <b>Engineering controls &amp; PPE</b> |
| used frequently                       |

- O HEPA
- Respiratory Protection
- Gloves/boots
- Coveralls
- Eye shields

Most dose during outages Primarily AP

o With some CC, LAT, PA

| Work Function                             | % Collective<br>Dose<br>(1975-1985) |
|-------------------------------------------|-------------------------------------|
| Reactor<br>Operations and<br>Surveillance | 9-13%                               |
| Routine<br>Maintenance                    | 27-53%                              |
| Inservice<br>Inspection                   | 3-9%                                |
| Special<br>Maintenance                    | 19-47%                              |
| Waste Processing                          | 3-7%                                |
| Refueling                                 | 4-8%                                |

# NPP Plethora of "Higher Dose" Outage Tasks



Inspections

Decontamination

Health Physics

Valve Maintenance

Insulation

Control Rod Drives

Refueling

o Rx Vessel, Rx Cavity

Steam Generators

O Nozzle Dams, eddy current, tube plugging, girth welds

Drywell work

Diving

Scaffolding / Shielding

Rx Thermocouples

Transfer Canal Modifications





# Industrial Radiographer Exposure Sources

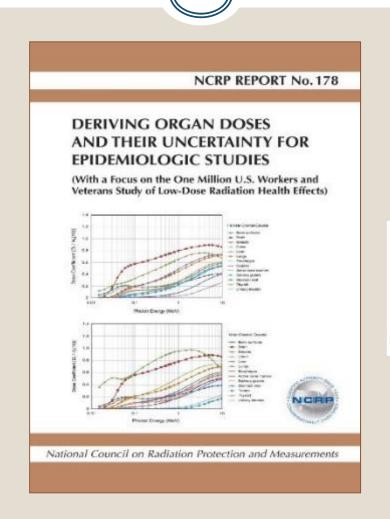


# External gamma Sypical

Ir-192/Co-60, ~ 200/1

**fuch less typical** 

Se-75


X-ray tubes

leutron (very low)

P geometry

~0.3 MeV

o CFR Part 34 ('65)









## Personal Dose Equivalent, $H_p(10)$ Distribution Nuclear Power Plant Workers (1957-1985)



#### REIRS



| Dose Category    | N       | %    |
|------------------|---------|------|
| < 10 mSv*        | 94,454  | 73.8 |
| 10 - <50 mSv*    | 20,303  | 15.9 |
| 50 - <100 mSv    | 6,804   | 5.3  |
| 100 - <500 mSv   | 6,278   | 4.9  |
| 500 - <1000 mSv  | 141     | 0.1  |
| >1000 mSv        | 20      | 0.02 |
| Study Population | 135,193 | -    |

stributions are based on information available in 2018 and slightly during the course of the epidemiologic study.

# Personal Dose Equivalent, $H_p(10)$ Distribution Industrial Radiographers (1939-2011)



REIRS Landauer®

|   |   | Ĭ |  |
|---|---|---|--|
| ļ | ľ |   |  |
| • |   |   |  |
| ŀ | Ġ | ì |  |
| ۰ | ļ | Į |  |

| Dose Category    | N        | %    |
|------------------|----------|------|
| < 10 mSv*        | 30,764   | 20.7 |
| 10 - <50 mSv*    | 77,383   | 52.0 |
| 50 - <100 mSv    | 21,578   | 14.5 |
| 100 - <500 mSv   | 18,846   | 12.7 |
| 500 - <1000 mSv  | 322      | 0.2  |
| >1000 mSv        | 22       | 0.01 |
| Study Population | 123, 401 | _    |

stributions are based on information available in 2018 and slightly during the course of the epidemiologic study.

# se Estimation in Epidemiology



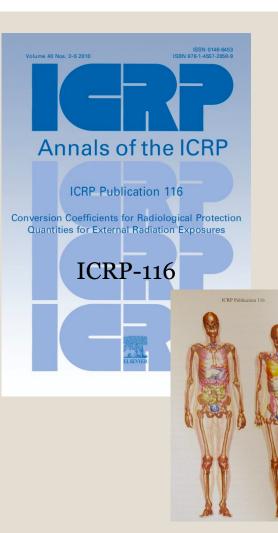
- stimation of Absorbed Doses (**Gy**) for the organ or tissue of interest RBM, lung, breast, brain, etc.)
- External for the year of exposure.
- Internal for the year of exposure and for each of the following 49 years.
- ▼ Using the latest biokinetic models available (in some cases updating the models based o MPS data, e.g. brain, autopsy and science-donated organs, uranium/plutonium USTUR
- Addition of External + Internal components of the absorbed dose to the organ or tissue of interest.

## ifferences with regulatory method:

- Aim for realistic dose estimates, not 'lower than limits'.
- Direct no use of weighting factors ( $W_{\mathbb{R}}$  and  $W_{\mathbb{T}}$ ).
- Annual absorbed doses to all organs/tissues.

# se Reconstruction: Getting to D<sub>T</sub>




NCRP REPORT No. 163

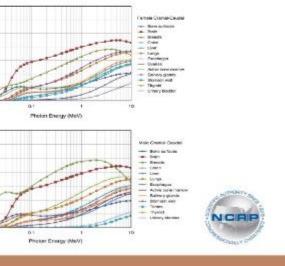
RADIATION DOSE RECONSTRUCTION: PRINCIPLES AND PRACTICES

NCRP - 163

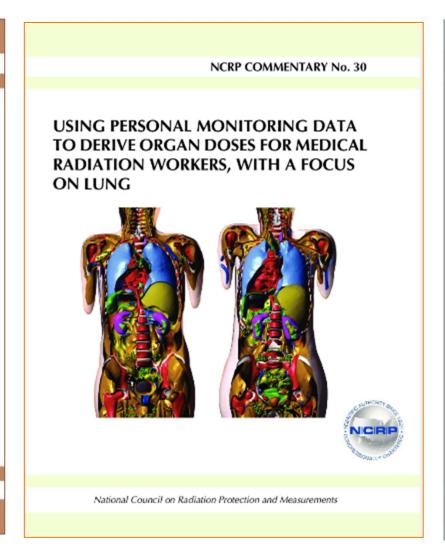







# MPS: NCRP Dosimetry Guidance






# VING ORGAN DOSES THEIR UNCERTAINTY FOR EMIOLOGIC STUDIES

Focus on the One Million U.S. Workers and is Study of Low-Dose Radiation Health Effects)



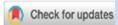
uncil on Radiation Protection and Measurements



#### NCRP COMMENTARY N

#### DEVELOPMENT OF KINETIC AND ANATOMICAL MODELS FOR BRAI DOSIMETRY FOR INTERNALLY DEPOSITED RADIONUCLIDES




National Council on Radiation Protection and Measurement

# PS: Nuclear Power Plant Cohort – IJRB, April 2022



NAL JOURNAL OF RADIATION BIOLOGY 98, NO. 4, 657–678 org/10.1080/09553002.2021.1967507





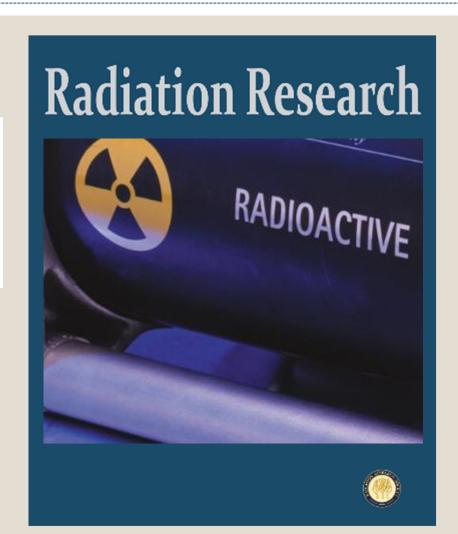
#### L ARTICLE

# lity from leukemia, cancer and heart disease among U.S. nuclear power workers, 1957–2011

Boice Jr<sup>a,b</sup> , Sarah S. Cohen<sup>c</sup> , Michael T. Mumma<sup>d,e</sup> , Derek A. Hagemeyer<sup>f</sup>, Heidi Chen<sup>e</sup>, P. Golden<sup>f</sup> , R. Craig Yoder<sup>g</sup> , and Lawrence T. Dauer<sup>h</sup>

Council on Radiation Protection and Measurements, Bethesda, MD, USA; <sup>b</sup>Division of Epidemiology, Department of Medicine, t Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA; <sup>c</sup>EpidStrategies, Cary, NC, ernational Epidemiology Institute, Rockville, MD, USA; <sup>e</sup>Vanderbilt University Medical Center, Nashville, TN, USA; <sup>f</sup>Oak Ridge d Universities, Oak Ridge, TN, USA; <sup>g</sup>Landauer Inc (Retired), Glenwood, IL, USA; <sup>h</sup>Department of Medical Physics, Memorial Sloan Cancer Center, New York, NY, USA




# MPS: Industrial Radiographers



pice, Jr., J. D., Cohen, S. S., Mumma, M. T., Walsh, L., agemeyer, D., Yoder, R. C. and Dauer, L. T.

ortality among Industrial Radiographers Exposed lonizing Radiation, 1969-2019.

adiat. Res. …to be submitted





# Standard Mortality Ratio (SMR) ANALYSES Nuclear Power Plant Workers (N=135,193)

1957-2011 (mean 30.2 y follow-up)

| Cause                  | No. Deaths | SMR   | 95% CI    |
|------------------------|------------|-------|-----------|
| All Causes             | 29,076     | 0.89* | 0.88-0.90 |
| All Cancer             | 9,329      | 1.03* | 1.01-1.05 |
| All Solid Cancer       | 8,445      | 1.04* | 1.01-1.06 |
| Leukemia (non-CLL)     | 296        | 1.06  | 0.94-1.19 |
| Lung                   | 3,382      | 1.10* | 1.07-1.14 |
| Ischemic Heart Disease | 5,410      | 0.80* | 0.78-0.82 |
| Parkinson's Disease    | 140        | 0.90  | 0.76-1.06 |
| Pleura, Mesothelioma   | 251        | 5.66* | 4.98-6.40 |
| Asbestosis             | 87         | 9.15* | 7.33-11.3 |

Insulat

risons with the General Population can be informative but must be viewed sly because healthy workers are different from the entire population.

\* p<0.05

Mumma MT et al. Int J Radiat Biol 2022



### **SMR ANALYSES**

## Industrial Radiographers (N=123,401)

1939-2011 and followed through 2019 (mean 27.7 y follow-up)

| Cause                  | No. Deaths | SMR   | 95% CI    |
|------------------------|------------|-------|-----------|
| All Causes             | 30,537     | 0.92* | 0.91-0.93 |
| All Cancer             | 8,515      | 1.00  | 0.98-1.02 |
| All Solid Cancer       | 7,734      | 1.01  | 0.99-1.03 |
| Leukemia (non-CLL)     | 241        | 0.92  | 0.81-1.04 |
| Lung                   | 2,772      | 1.04* | 1.00-1.08 |
| Ischemic Heart Disease | 5,820      | 0.83* | 0.81-0.85 |
| Parkinson's Disease    | 235        | 0.96  | 0.84-1.09 |
| Pleura, Mesothelioma   | 248        | 6.08* | 5.35-6.89 |
| Asbestosis             | 134        | 13.4* | 11.2-15.9 |

Insulat

isons with the General Population can be informative but must be viewed sly because healthy workers are different from the entire population. Mumma MT et al. Int J Radiat Biol 2022

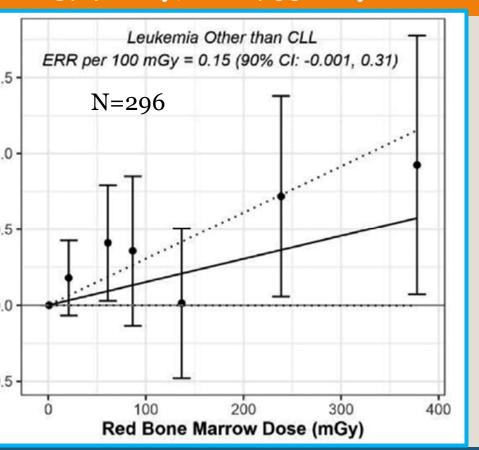
\* p<0.05

### MPS – NRC Cohorts - Select Results

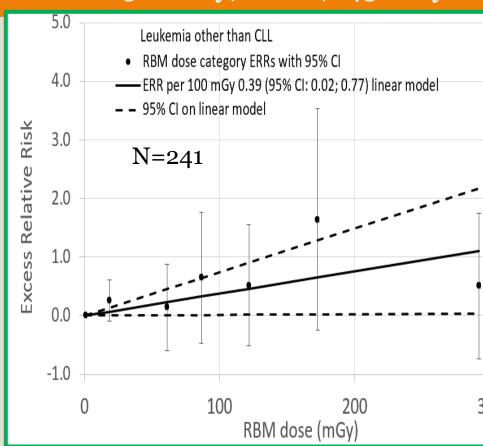


#### cted Outcomes (ERR per 100 mGy)

on-CLL Leukemia I Solid Cancers ing Cancer chemic Heart Disease arkinson's Disease


– Excess Relative Risk = Relative Risk-1




### S: NRC Cohort Results – Dose-Response for Non-CLL Leukemia

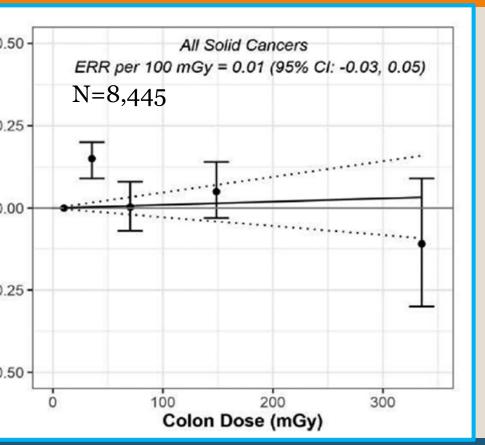


#### uclear Power Workers ean 37.9 mGy, Max 953 mGy

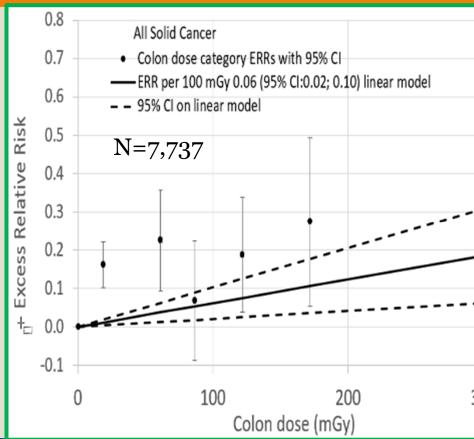


# **Industrial Radiographers**Mean 15.2 mGy, Max 1,243 mGy




e et al. Nuclear Power Plant Workers, IJRB 2022

Boice et al. Industrial Rad. Rad Res to be submitted 202


### S: NRC Cohort Results – Dose-Response for All Solid Cancers



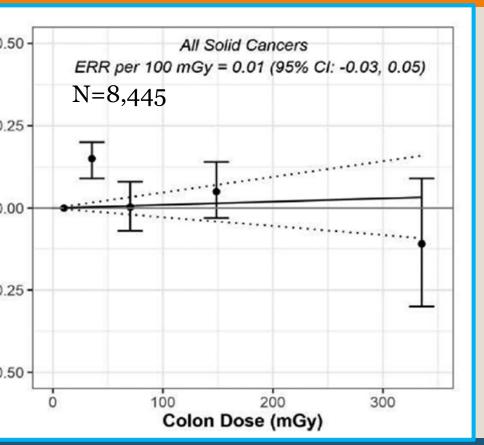
#### uclear Power Workers ean 43.7 mGy, Max 1,099 mGy



#### **Industrial Radiographers** Mean 18.1 mGy, Max 1,478 mGy

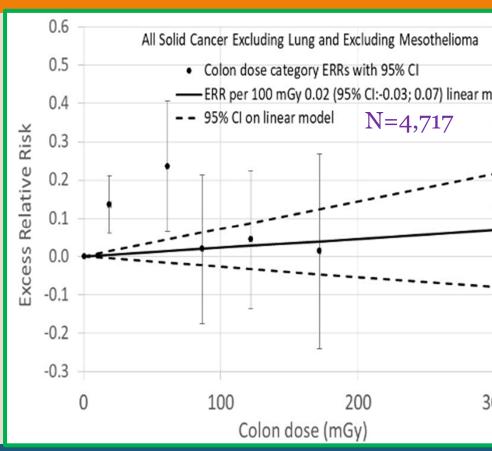


Boice et al. Industrial Rad. Rad Res to be submitted 202


e et al. Nuclear Power Plant Workers, IJRB 2022

### S: NRC Cohort Results – Dose-Response for All Solid Cancers



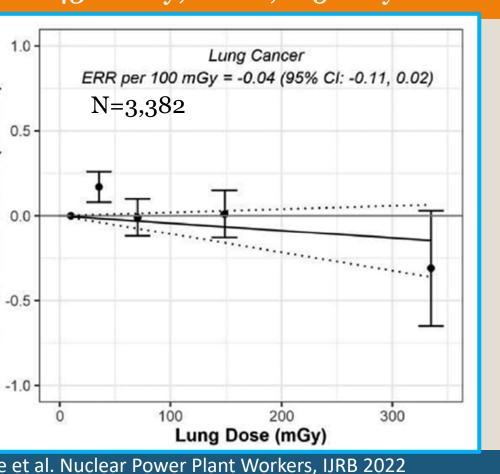

## uclear Power Workers

ean 43.7 mGy, Max 1,099 mGy

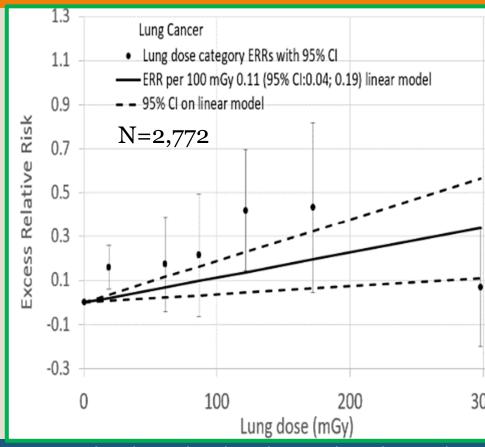


## Industrial Radiographers

(Excluding Lung and Mesothelioma




Boice et al. Industrial Rad. Rad Res to be submitted 202


### S: NRC Cohort Results – Dose-Response for Lung Cancer



#### uclear Power Workers ean 43.2 mGy, Max 1,085 mGy

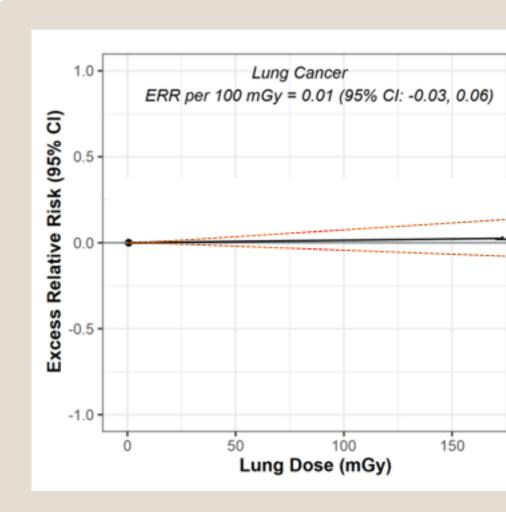


#### **Industrial Radiographers** Mean 17.2 mGy, Max 1,411 mGy



## S: NRC Cohort Results – Dose-Response for Lung Cancer




### Early Preliminary Pooling

Nuclear Power Workers +
 Industrial Radiographers

#### Mean Lung dose

o ~30 mGy, Max ~1,200 mGy

N >5,500



# S Cohort Results – Dose-Response for Lung Ca

| hort                  | Ref                                   | Workers | Absorbed Dose<br>mGy, Mean (Max) | ERR at 100 mGy<br>(95% CI) |
|-----------------------|---------------------------------------|---------|----------------------------------|----------------------------|
| clear Power Plant     | Boice et al 2022                      | 135,193 | 43.2 (1,085)                     | -0.04 (-0.11, 0.02)        |
| ustrial Radiographers | Boice et al 2023<br>(to be submitted) | 123,401 | 17.2 (1,411)                     | 0.11 (0.04, 0.19)          |
| S Medical Workers     | Boice et al 2022                      | 109,019 | 13.0 (1,272)                     | 0.15 (0.02, 0.27)          |
| P + IR + MW           | Boice et al 2021                      | 367,722 | -                                | 0.02 (-0.03, 0.07)         |
| mic Veterans          | Boice et al 2022                      | 114,270 | 6.2 (972)                        | 0.04 (-0.11, 0.19)         |
| und                   | Boice et al 2014                      | 4,954   | 98.7 (17,478)                    | 0.00 (-0.03, 0.04)         |
| llinckrodt            | Golden et al 2022                     | 2,514   | 69.9 (885)                       | -0.06 (-0.18, 0.06)        |
| eketdyne              | Boice et al 2011                      | 5,801   | 19.0 (3,560)                     | -0.02 (-0.18, 0.17)        |
| Alamos National Lab   | Boice et al 2022                      | 26,328  | 28.6 (16,811)                    | 0.01 (-015, 0.17)          |
| C                     | Boice et al 2022                      | 26,650  | 478 (18,500)                     | -0.09 (-0.19, 0.02)        |

## S - Sex-specific Lung Ca Risks at 100 mGy ess Relative Risk (ERR at 100 mGy)



| Preliminary Evaluations for:                            | FEMALES                    | MALES                      |
|---------------------------------------------------------|----------------------------|----------------------------|
| ort                                                     | ERR at 100 mGy<br>(95% CI) | ERR at 100 mGy<br>(95% CI) |
| nckrodt (U Processing) (~2.5K)                          | na                         | -0.003 (-0.02, 0.02)       |
| ic Veterans (~114K)                                     | na                         | 0.08 (-0.06, 0.22)         |
| ıd (polonium - Be) (~5K)                                | -0.01 (-0.07, 0.07)        | 0.01 (-0.02, 0.04)         |
| essee Eastman Corp (~27K)                               | 0.01 (-0.10, 0.12)         | -0.14 (-0.32, 0.08)        |
| ear Power Plant (NPP) (~135K)                           | 0.63 (-0.91, 2.17)         | -0.06 (-0.11, 0.01)        |
| strial Radiographers (IR) (~123K)                       | 0.73 (-1.06, 2.52)         | 0.11 (0.04, 0.19)          |
| cal Worker (~109K)                                      | 0.09 (-0.19, 0.36)         | 0.16 (0.01, 0.32)          |
| pined NPP, IR, Med, and Canadian oscopy cohorts (>400K) | -0.007 (-0.015, 0.002)     | 0.002 (-0.003, 0.008)      |

EVALUATION OF A SEX-SPECIFIC DIFFERENCE IN LUNG CANCER RADIATION RISK AND APPROACHES FOR IMPROVING LUNG CANCER RADIATION RISK PROJECTION (WITH A FOCUS ON APPLICATION TO SPACE ACTIVITIES)



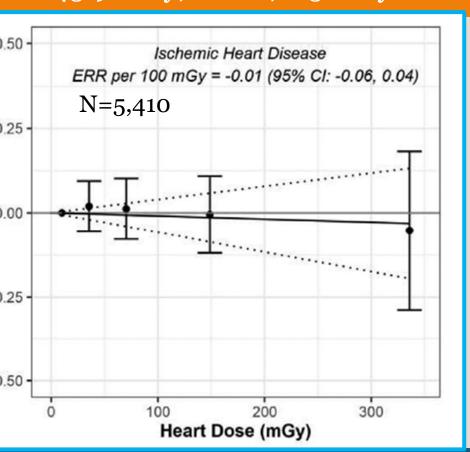
Commentary 32

NICIRIP

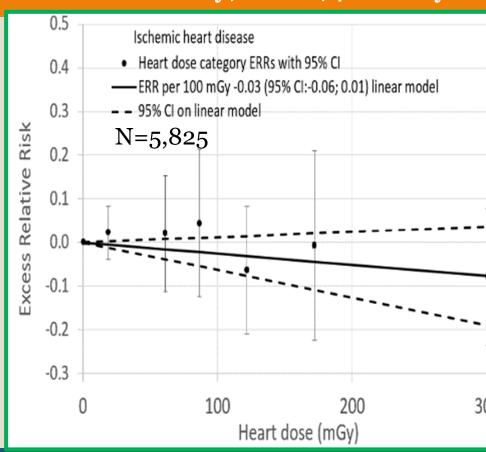
National Council on Radiation Protection and Measurements



IR 10% / 90%


Also see Boice *et al*. Sex-specific lung cancer risk. *IJF* 

Little evidence for a significant difference for chronic occupational exposures


### S: NRC Cohort Results – Dose-Response for Ischemic Heart Disease



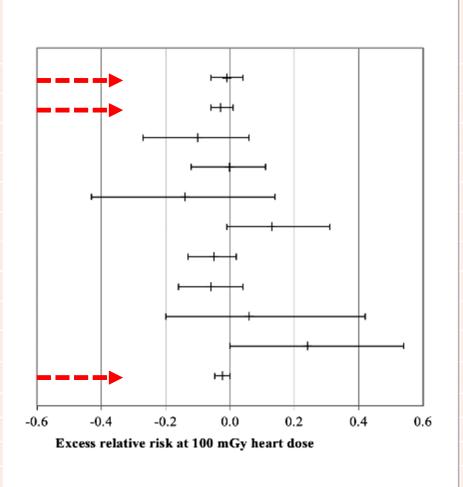
#### uclear Power Workers ean 43.9 mGy, Max 1,105 mGy



# **Industrial Radiographers**Mean 18.1 mGy, Max 1,480 mGy



#### Cohort Results – Dose-Response for Ischemic Heart Disease





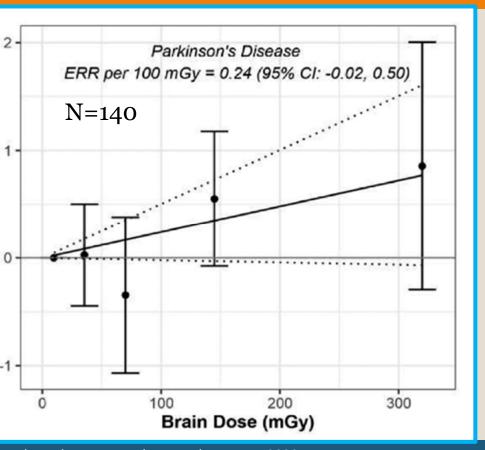

from published and \*preliminary results soon to be submitted)

| wer Plant      |
|----------------|
| adiographers * |
| orkers         |
| erans          |
|                |
| dt             |
| 3 *            |
| National Lab.  |
|                |

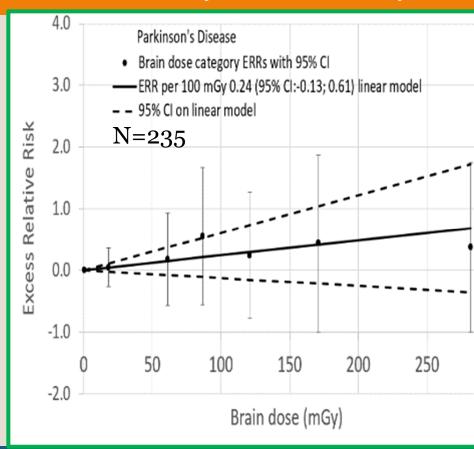




| n     | ERR at 100 mGy<br>(95% CIs) |
|-------|-----------------------------|
| n     | (95% CIS)                   |
| 5410  | -0.01 (-0.06; 0.04)         |
| 5825  | -0.03 (-0.06; 0.01)         |
| 1654  | -0.1 (-0.27; 0.06)          |
| 16625 | -0.001 (-0.12; 0.11)        |
| 221   | -0.14 (-0.43; 0.14)         |
| 563   | 0.13 (-0.01; 0.31)          |
| 995   | -0.05 (-0.13; 0.02)         |
| 3043  | -0.06 (-0.16; 0.04)         |
| 102   | 0.06 (-0.2; 0.42)           |
| 948   | 0.24 (0; 0.54)              |
| 35386 | -0.02 (-0.05; 0.00)         |
|       | based on data from > 530    |


ry results - to be submitted

erger, Dauer et al. IJRB, 2022. Boice et al. Million Dreams...IJRB 2022. Boice et al Ind Radiog 2022 to be submitted


#### S: NRC Cohort Results – Dose-Response for Parkinson's Disease



### uclear Power Workers ean 33.2 mGy, Max 834 mGy



# **Industrial Radiographers**Mean 11.9 mGy, Max 977 mGy



et al. Nuclear Power Plant Workers, IJRB 2022

Boice et al. Industrial Rad. Rad Res to be submitted 2023  $\,$ 

# S – Summary of NRC Cohorts to date



- Except for heart (IHD), most risk coefficients are positive
- No significant difference between females and males (Lung Ca)
- Further follow-up & pooling with other low-LET and high-LET MPS cohort studies will provide improved estimates of radiation risk following prolonged exposures
- Parkinson's disease a new finding, warrants additional study
- Cancer incidence, smoking, and chronic conditions information soon to come from MEDICARE linkages

# Future - Development of Models for Heart Dosimetry for Internally Deposited Radionuclides and External Exposures?

oposed - SC 6-14??

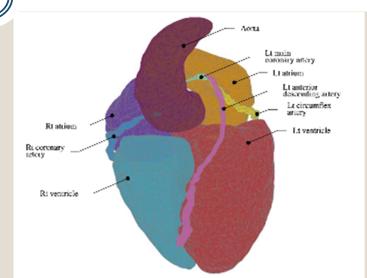
intly Sponsored by NCRP PAC 6/1/4

PS and Broad Application

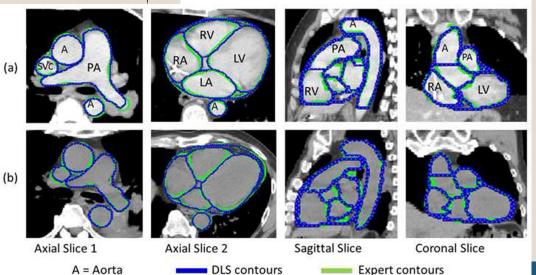
ational and International Interest

ternal/External

gh-LET/Low-LET


osimetry expertise

AC-1 – important tissues


AC-4 – clinical input, RT

ntouring...

b Organ / Flow modeling?



Borrego et al. J. Rad 39(2019):950-TB Fluoroscopy Patier Dose Modelir

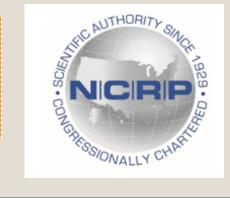


Cardio-pulmonary s segmentation of ra computed tomography convolutional neural clinical outcomes analy Alexandra Hotca, A Andreas Rimner, Jose Maria Thor. Physics a Radiation Oncolo Acknowledgments

hn D. Boice, Jr. NCRP, Vanderbilt University Medical Center

Sarah Cohen, EpidStrategies Mike Mumma, Vanderbilt University Medical Center ORNL (CRPK - Rich Leggett, Keith Eckerman, Caleigh Samuels, Derek Jokisch, Nicole Martinez, Nolan Hertel)

ORAU (Ashley Golder Sara Howard, Betsy Ell Dave Girardi)


MSKCC (Lawrence auer, Michael Bellamy, David Bierman)

USTUR (Sergei Tolmachev, Maia Avtandilashvili) VUMC (Laura Keohane, Loren Lippworth, Ben French, Cato Milder) Linda Walsh, Epidemiology and Modeling KSU (Amir Bahadori Dan Andresen, Eric Giunta)

National Council on diation Protection and Measurements (Kathy Held, Laura Atwell)

Risk Assessment Corporation (John Till)

Landauer (Craig Yoder)



Funding from DOE, NRC, U.S. Navy, EPA, CDC, NASA



#### THANK YOU!

Lawrence T. Dauer
Attending Physicist
Memorial Sloan Kettering
Cancer Center
dauerl@mskcc.org



