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EXECUTIVE SUMMARY

Kairos Power is pursuing the design, licensing, and deployment of a Fluoride Salt Cooled, High
Temperature (KP-FHR) test reactor. To enable these objectives, the development of a technology-specific
core design and analysis methodology is required. This report describes the methodology for core physics
and thermal hydraulic analysis of the KP-FHR.

The KP-FHR core design methodology is comprised of the Serpent 2 nuclear design and STAR-CCM+
thermal, fluid, and discrete element modeling design codes. These codes are connected by a series of
wrapper codes. The verification and validation (V&V) methodology for Serpent 2 and STAR-CCM+ codes
is described. The methodology is informed by a Phenomena Identification and Ranking Table (PIRT)
evaluation.

Serpent 2 and STAR-CCM+ and the associated wrapper codes are used to calculate core composition at
various phases of operation and corresponding parameters such as core reactivity coefficients, control
and shutdown element worth, shutdown margin, power distribution and thermal hydraulic parameters.
The scope of this report applies to normal operation and postulated events. The methodology for using
the codes to perform these calculations and the limitations on the use of this methodology are provided.
In addition, a methodology for calculating the uncertainty in these calculations is provided. Sample
neutronic and thermal hydraulic results for a KP-FHR are provided as an appendix.
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1 INTRODUCTION

Kairos Power is pursuing the design, licensing, and deployment of a Fluoride Salt Cooled, High
Temperature Reactor (KP-FHR). This report is being submitted in support of a construction permit
application being submitted in accordance with 10 CFR 50.34(a), “Preliminary Safety Analysis Report,” for
a non-power test reactor known as Hermes. This report describes the core design and analysis
methodology for the KP-FHR test reactor at the beginning of life, startup, power ascension and at
equilibrium conditions. This methodology is uses as an appropriate means to develop and analyze the
core design for normal operation and downstream use in nuclear safety analysis for the Kairos Power test
reactor.

1.1 FHR DESIGN FEATURES

The KP-FHR test reactor is a graphite moderated, randomly packed pebble-bed reactor with molten
fluoride salt coolant operating at high temperature and near-atmospheric pressure (Reference 1). The
fuel in the KP-FHR is based on the Tri-Structural Isotropic (TRISO) carbonaceous-matrix coated particle
design. The fuel kernel and some of the coatings on the particle fuel provide retention of fission
products. TRISO particles are dispersed within the graphite matrix of fuel pebble’s fuel layer. The KP-FHR
fuel pebbles are buoyant in reactor coolant under steady state and postulated events. The reactor
coolant is a chemically stable molten fluoride salt mixture, 2LiF:BeF; (Flibe) enriched in Li-7, which also
provides retention of fission products that escape from any fuel defects. A pebble handling and storage
system (PHSS) continuously inserts pebbles at the bottom of the reactor core and extracts them from
the top of the reactor vessel during normal operations. Pebbles are examined for burnup and damage
and are either returned to the vessel or directed to storage.

A primary coolant loop circulates the reactor coolant using pumps and transfers the heat to an
intermediate coolant loop via a heat exchanger for direct rejection to the atmosphere. The design
includes a decay heat removal system (DHRS) operating passively above a threshold power. The DHRS
relies on natural circulation within the vessel to transfer heat from the core to the DHRS through
thermal radiation and convection heat transfer from the outer vessel wall to the DHRS. A set inventory
of water in the DHRS is passively boiled off over the duration of a postulated event in which the primary
heat transfer system is unavailable.

Fission product control in the KP-FHR test reactor relies primarily on the multiple barriers within the TRISO
fuel particles and fuel pebble to ensure that the dose at the site boundary as a consequence of postulated
events meets regulatory limits. Additionally, the molten salt reactor coolant serves as a distinct secondary
barrier providing retention of solid fission products that escape the fuel particle and fuel pebble barriers.
This additional retention is a key feature of the enhanced safety and reduced source term in the KP-FHR.

Reactivity control in the KP-FHR test reactor is accomplished primarily by insertable control elements and
shutdown elements. The shutdown elements directly insert into the packed pebble bed core and the
control elements insert outside the pebble bed into the nearby side graphite reflector. For planned power
maneuvers of the KP-FHR reactor, only the control elements are used.

© 2022 Kairos Power LLC 1



KP-FHR Core Design and Analysis Methodology

Doc Number Rev Effective Date

Non-Proprietary

KP-TR-017-NP 1 September 2022

1.2 REGULATORY BACKGROUND

1.2.1 10 CFR Requirements

Nuclear Regulatory Commission (NRC) regulations in 10 CFR 50.34(a)(4) and (b)(4) requires an analysis
and evaluation of the design and performance of structures, systems, and components of the facility with
the objective of assessing the risk to public health and safety resulting from operation of the facility and
including determination of the margins of safety during normal operations and transient conditions
anticipated during the life of the facility, and the adequacy of structures, systems, and components
provided for the prevention of accidents and the mitigation of the consequences of accidents.

The methodology described in this report is used to analyze the fuel and core during normal operation
and postulated events.

1.2.2 Principal Design Criteria

The principal design criteria that apply to a KP-FHR test reactor are contained in the “Principal Design
Criteria for the Kairos Power Fluoride Salt-Cooled High Temperature Reactor Topical Report" (Reference
2). While these principal design criteria (PDC) do not apply directly to the methodology, the core and
analysis methodology is used to perform the necessary analyses which demonstrate compliance of the
design with the following PDC. The following PDC are relevant:

PDC 10, Reactor design

The reactor core and associated heat removal, control, and protection systems shall be designed with
appropriate margin to ensure that specified acceptable system radionuclide release design limits are
not exceeded during any condition of normal operation, including the effects of anticipated
operational occurrences.

PDC 11, Reactor inherent protection

The reactor core and associated systems that contribute to reactivity feedback shall be designed so
that, in the power operating range, the net effect of the prompt inherent nuclear feedback
characteristics tends to compensate for a rapid increase in reactivity.

PDC 12, Suppression of reactor power oscillations

The reactor core; associated structures; and associated coolant, control, and protection systems
shall be designed to ensure that power oscillations that can result in conditions exceeding specified
acceptable system radionuclide release design limits are not possible or can be reliably and readily
detected and suppressed.

PDC 16, Containment design

A reactor functional containment, consisting of multiple barriers internal and/or external to the
reactor and its cooling system, shall be provided to control the release of radioactivity to the
environment and to ensure that the functional containment design conditions which are safety
significant are not exceeded for as long as postulated accident conditions require.

PDC 25, Protection system requirements for reactivity control malfunctions

The protection system shall be designed to ensure that specified acceptable system radionuclide
release design limits are not exceeded during any anticipated operational occurrence, accounting
for a single malfunction of the reactivity control systems.

© 2022 Kairos Power LLC 2
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PDC 26, Reactivity control systems
A minimum of two reactivity control systems or means shall provide:

(1) A means of inserting negative reactivity at a sufficient rate and amount to assure, with appropriate
margin for malfunctions, that the specified acceptable system radionuclide release design limits are
not exceeded and safe shutdown is achieved and maintained during normal operation, including
anticipated operational occurrences.

(2) A means which is independent and diverse from the other(s), shall be capable of controlling the
rate of reactivity changes resulting from planned, normal power changes to assure that the specified
acceptable system radionuclide release design limits are not exceeded.

(3) A means of inserting negative reactivity at a sufficient rate and amount to assure, with appropriate
margin for malfunctions, that the capability to cool the core is maintained and a means of shutting
down the reactor and maintaining, at a minimum, a safe shutdown condition following a postulated
accident.

(4) A means for holding the reactor shutdown under conditions which allow for interventions such as
fuel loading, inspection and repair shall be provided.

PDC 28, Reactivity limits

The reactivity control systems shall be designed with appropriate limits on the potential amount and rate
of reactivity increase to ensure that the effects of postulated reactivity accidents can neither:

(1) result in damage to the safety significant elements of the reactor coolant boundary greater than
limited local yielding nor

(2) sufficiently disturb the core, its support structures, or other reactor vessel internals to impair
significantly the capability to cool the core.

The methods described in this topical report are used to calculate the power distributions which are an
input to the fuel performance calculations that assure that specified acceptable system radionuclide
release design limits (SARRDLs) will be met as described in PDC 10. Similarly, core design methods are
used to calculate the reactivity coefficients to assure that the net effect of the prompt inherent nuclear
feedback characteristics tends to compensate for a rapid increase in reactivity as described in PDC 11. The
inherent characteristic of the KP-FHR test reactor (small core and long neutron diffusion length) ensure
that power oscillations do not result in conditions exceeding SARRDLs as described in PDC 12. The KP-FHR
uses a functional containment to ensure that radiological releases to the public are within required limits
as described in PDC 16. The methods described in this report provide the input for the fuel performance
calculation that assures that the barriers to radiological release from the fuel are not compromised. PDC
25 requires that the protection system be designed to ensure that the SARRDL is not exceeded for
anticipated operational occurrences and the methods in this report are used to support that design.
Shutdown margin calculations performed with the methodology in this topical report ensure that the
requirements of PDC 26, Reactivity Control Systems are satisfied. Finally, PDC 28 requires that reactivity
systems are designed such that the amount and rate of reactivity addition cannot result in damage to the
reactor coolant boundary or to the core, its support structure, and other reactor vessel internals. The
nuclear design methods described in this topical report are used to support the assessment that the KP-
FHR meets PDC 28.

© 2022 Kairos Power LLC 3
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2 CORE PHYSICS AND DESIGN

The core design and analysis methodology aligns very closely with the physical behavior of a KP-FHR core.
The following section describes the reactor core physics of the KP-FHR and will serve as reference for the
description of the modeling tools and capabilities used in core design.

2.1 DESCRIPTION

The KP-FHR core contains thousands of randomly packed buoyant fuel pebbles that slowly ascend through
the reactor core. Pebbles are continuously inserted at the bottom of the reactor and extracted from the
top. The dynamics of the reactor core is characterized by the transition from a startup core to an
equilibrium core over time. The fuel pebbles may contain natural uranium all the way up to 19.55 wt% U-
235 to reduce effective enrichment and core reactivity in early startup core operations. Depending on the
chosen startup and operational schemes, the core will also contain a fraction of graphite-only moderator
pebbles to maintain the desired carbon to heavy metal atom ratio. Similar to the water to fuel volume
ratio in light water reactors, the carbon to heavy metal atom ratio is used in FHRs to define the neutron
moderation conditions (over-moderated or under-moderated) and the mixing of different pebble types
facilitates maintaining the core in under-moderated conditions.

When defining the desired carbon to heavy metal ratio, it is also important to recognize the role of the
reactor coolant. Flibe is a moderator but also an absorber due mainly to lithium-6, a natural isotope of
lithium (7.59% abundance) with a large thermal absorption cross section. Enriching lithium in Li-7 is
required for acceptable core performance (i.e., fuel utilization) but also to ensure negative coolant
temperature feedbacks.

An increase in temperature of Flibe leads to a decrease of its density with two competing reactivity
feedbacks: a positive feedback due to reduced absorption and a negative feedback due to reduced
moderation by Flibe. The latter effect is a function of the carbon to heavy metal ratio; therefore, the
combined reactivity feedback can be designed to be negative by controlling the carbon to heavy metal
ratio. After some period of operation, Li-6 is consumed and its concentration is lower than in fresh Flibe.
Nevertheless, lithium-6 in Flibe is also produced by (n,a) reactions on Be-9 leading eventually to an
equilibrium concentration.. Salt impurities present in fresh Flibe are also parasitic absorbers in addition
to the accumulation of other corrosion material, each of which have an impact on the coolant reactivity
coefficients. The properties and specifications for the reactor coolant are described in "Reactor Coolant
for the Kairos Power Fluoride Salt-Cooled, High Temperature Reactor" topical report (Reference 18).

The ability to control the mixture of pebble types in the core allows excess reactivity to be minimized
during startup and operation. Core reactivity is also controlled by the movement of the control elements.
Shutdown elements are also available for insertion for safe shutdown at all core states. The KP-FHR
thermal energy transfer phenomena in the core are described in Figure 2-1. During normal operating
conditions, thermal power generated within the fuel is transferred by conduction to the pebble surface.
The thermal energy is mainly transferred via convection from the pebble surface by the coolant that flows
through the randomly packed bed. At the same time a smaller portion of the thermal energy is transferred
by a mixed regime of conduction and thermal radiation. Specifically, pebble to pebble heat conduction
through a stagnant fluid, pebble to pebble conduction, and pebble to pebble radiation. Figure 2-1 shows
these heat transfer modes and those outside the reactor core as well. Bypass flow, core barrel,
downcomer, reactor vessel and decay heat removal heat transfer mechanisms are also highlighted in this
figure.

© 2022 Kairos Power LLC 4
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A portion of the reactor coolant flow, referred to as the bypass flow fraction, does not flow through the
core. The thermal energy balance within the reactor core determines the temperature distribution within
the fuel, moderator and the coolant that flows through the core. Larger bypass flow fractions result in
higher coolant temperatures in the core. The temperature distribution is important because temperature
can influence core reactivity levels, burnup, and power shapes.

2.2 FUEL DESCRIPTION

2.2.1 TRISO Particles

The KP-FHR TRISO particles include a UCO kernel, a porous carbon buffer layer, and inner pyrolytic carbon
(IPyC), silicon carbide (SiC), and outer pyrolytic carbon (OPyC) layers, as shown in Figure 2-2. TRISO
particles are overcoated with a mixture of natural and synthetic graphite, and resin binder material. The
KP-FHR fuel particle kernels are composed of UCO, a mixture of UO,, UC, and UC,. The overcoat thickness
is specified to produce a nominal 37% particle packing fraction after isostatic pressing and heat treatment
in the pebble annular fuel region resulting in ~16,000 particles per KP-FHR pebble.

2.2.2 KP-FHR Fuel Pebbles

The KP-FHR fuel pebble design is 40mm in diameter and has three regions with specific functions that
complement the pebble-bed FHR design, which is shown in Figure 2-2. The inner-most region of the KP-
FHR fuel pebble contains a low-density carbon matrix core. The function of this region is to make the
pebble buoyant in the Flibe coolant. An annular fuel region shell is located on the surface of the inner
carbon matrix core. This region is composed of a carbon matrix embedded with TRISO fuel particles. The
fact that the fuel particles are closer to the pebble surface than in other designs (e.g., high temperature
gas reactor) reduces the fuel temperatures relative to those designs. A fuel-free carbon matrix shell is
located on the surface of the fuel region to protect the fuel region from mechanical damage during
handling and operation.

2.3 REACTOR CORE DESIGN

An axial section of the Hermes reactor can be seen in Figure 2-3. In a typical KP-FHR reactor core, there
are a few design features present that need to be captured in the analysis: the cylindrical pebble bed
region, the upper and lower conic regions, the fueling region, the defueling chute, coolant inlet and outlet
channels in the reflector, bypass and engineered channels in the reflector, and the reactivity control and
shutdown system (RCSS).

The core is the region of the pebble bed that produces considerable fission power density, determined as
the region from the top of the upper conic region of the core to the bottom of the lower conic region of
the core. Core geometrical characteristics such as the conic regions and defueling chute are designed to
support a more uniform burnup and fuel performance in the core, as the conic regions and relative
diameters of defueling chute and cylindrical section impact pebble velocity profile and residence time.
The function of the fueling region, located at the bottom of the reactor core, is to guide the pebbles
coming from the insertion line(s) into the reactor core. The defueling chute, located at the top of the
reactor core, is also designed to be a low power producing region where pebbles have adequate amount
of time to allow for the decay of short-lived fission products. The decay heat generation is then low
enough for the pebble handling system to operate within designed temperature limits to accept the
extracted pebble.
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Coolant inlet and outlet channels located in the bottom and top reflector, respectively, are designed to
reduce pressure losses while achieving acceptable flow distribution and flow rates through the core. The
block-type reflector design is characterized by the presence of radial and axial spoke gaps between blocks
and at the interface with the vessel core barrel. This geometry causes a portion of the mass flow rate to
bypass the core region. Engineered channels in the graphite blocks allow for the movement of reactivity
control elements placed ex-core and any additional channels required to reduce temperature in the
reflector.

The reactivity control and shutdown system consist of control elements that insert directly into the
reflector (near the periphery of the core) and shutdown elements that directly insert into the pebble bed.
The control elements are credited only for all planned power maneuvers of the KP-FHR reactor. To achieve
short-term shutdown (i.e. not considering delayed impact from xenon), only the control elements are
needed. To achieve safe shutdown conditions, the shutdown elements are used assuming the highest
worth shutdown element is fully withdrawn (stuck). The design of the reactivity control and shutdown
system must satisfy PDC 25 and PDC 26 (Reference 2).

2.4 OPERATIONAL REGIMES

There are four main periods of core operation in the life of the KP-FHR reactor with respect to criticality
and composition: startup, power ascension, approach to equilibrium core, and equilibrium core. An
illustration of these stages can be observed in Figure 2-4.

[

1]

While still subcritical, source range control element worth testing is performed by measuring changes in
neutron multiplication from a start-up source. The distribution of flux is also monitored and assessed
against predicted calculations during this stage. Once criticality is achieved and at zero power, isothermal
reactivity coefficient testing is performed and compared against predicted calculations.

Once all zero-power physics testing is completed, the ascension to the power phase begins. The primary
salt pump runs at reduced speed to provide forced circulation. As the power level increases from zero
power, negative reactivity feedbacks arise from temperature increases, the buildup of xenon, and the
depletion of fuel. To compensate for these effects, the reactivity control elements can be partially
withdrawn. This balance of excess reactivity and extraction of heat from the core continues until full
power is reached.

At full power (or the initial power plateau), the approach to equilibrium core begins. For the initial core
composition, the radionuclide inventory is mostly fresh fuel, and burnup has not yet accumulated. To
compensate for accumulated burnup, fresh fuel pebbles are added, and depleted pebbles removed, at a
rate that maintains core reactivity. After some period of power operation, the isotopic concentration will
be largely unchanged, and a stable rate of insertion and extraction of fuel will be reached (assuming
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constant power). At this point, the equilibrium core has been reached, which is designed to stay within
the designed coolant reactivity coefficients, power per particle limits, and the desired excess reactivity.

2.5 PHENOMENA IDENTIFICATION AND RANKING TABLE

A PIRT evaluation was conducted for the KP-FHR core design. A full review of the existing Georgia Institute
of Technology FHR neutronics PIRT (Reference 3), which uses the Advanced High-Temperature Reactor
(AHTR) reactor design as the basis, was performed prior to beginning the KP-FHR PIRT. The description of
Figures of Merit (FOMs) and knowledge level numbering used in the PIRT are as follows:

e FOM 1: Multiplication factor (1: Low impact, 2: Medium impact, and 3: High impact)

* FOM 2: Power distribution (1: Low impact, 2: Medium impact, and 3: High impact)

* Knowledge: Knowledge level (1: Low, 2: Medium, and 3: High)

A summary of the KP-FHR PIRT results are provided in Appendix B - Neutronics PIRT for the KP-FHR.
[l

1]

The predictive capabilities requirements for the KP-FHR core thermal hydraulics (TH) modeling follow the
most relevant core TH PIRT phenomena.
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3 CORE MODELING

3.1 MODELING

The KP-FHR core configuration is heterogeneous and non-stationary. The pebble bed continuously evolves
from an early startup phase to a statistically steady burnup equilibrium condition. KP-FHR core physical
characteristics such as core geometry, heterogeneity, and pebble bed motion require unique modeling
approaches. The core design also requires different modeling approaches due to the lack of existing KP-
FHR data.

3.2 MODELING PARADIGM

The methodology developed for core analysis and design aligns very closely with the physical behavior of
the core. The KP-FHR core model paradigm includes discrete elements methods (DEM), neutronics and
TH modules with several degrees of explicit coupling between them.

[l

11 The neutronic analyses of the KP-FHR core accounts for the
double-heterogeneity of TRISO particles and pebbles without any need of performing validation of lower
order methods, which also includes the use of continuous-energy Monte Carlo. The explicit neutronic
model of the core is used to inform the low-order thermal-hydraulic modeling power distribution used to
provide materials’ temperatures feedback for reactivity calculations; the model is also capable of coupling
with burnup calculations.

3.3 DATAFLOW

The KP-FHR steady state and pseudo-steady state core design modeling workflow and data exchange
consists of different degrees of coupling between DEM, neutronics and TH modules. Figure 3-1 presents
a graphical summary of the data flow and processing of the core modeling paradigm.

[

1]

3.4 MODELING BOUNDARIES AND OUTPUT PARAMETERS

The domains of interest for modeling are first determined before performing core analysis for calculating
quantities of interest for reactor safety and for input into downstream use in safety analysis and source
term calculations. Domains of interest are both the geometric and material boundaries that are
considered. These domains of interest are defined for each of the DEM, neutronics, and thermal-
hydraulics calculations and are shown in Figure 3-2. A representative figure showing the axial section of
the Hermes vessel (with simplified internals) along with a list of the geometric and material boundaries
for each calculation is provided in Figure 3-2.
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DEM considers the core shape, reflector material, the pebbles, and the coolant flow through the core
when performing calculations. The core shape, where the pebbles reside, is defined by the reflector
structure, which includes the cylindrical section of the core, the upper and lower conic regions, the

defueling chute, and the fueling region.

[

Thermal-hydraulics calculations are also three-dimensional calculations [[

1]

Using these boundaries for core analysis, the calculated output quantities of interest from this

methodology include the following:
e Reactivity coefficients
o Fuel temperature
o Moderator temperature
o Coolant temperature
o Coolant void
o Reflector temperature
e Control and shutdown element worth
o Integral worth
o Differential worth
e Power distribution
o Peaking factor
o Axial and radial power profile
o Kinetics parameters
o Effective delayed neutron fraction

o Effective neutron mean generation time
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o Prompt neutron mean lifetime

For postulated event modeling of the KP-FHR, the following data is used: reactivity coefficients, kinetics
parameters, shutdown margin, differential rod worths, and power shape (axial and radial). The tools used,
the methodology, and example calculation at equilibrium for each of these quantities are provided in
Section 4, Section 5, and Appendix A, respectively. This data will be provided as inputs to safety analysis
at the following core compositional regimes (see Section 2.4): startup and the equilibrium core. This can
also be done for other core states between startup and equilibrium, as needed. Conservative selection of
the applied associated uncertainties is used for each of these quantities for the purposes of postulated
event analysis (upper or lower bound), and each parameter’s associated uncertainty analysis
methodology is described in Section 6.

The fuel composition at equilibrium core is also used for source term analysis. Conservative selection of
burnup uncertainties are applied for the purposes of source term analysis (whether upper or lower
bound), and the burnup uncertainty analysis methodology is described in Section 6.4.

© 2022 Kairos Power LLC 10



KP-FHR Core Design and Analysis Methodology

Doc Number Rev Effective Date

Non-Proprietary
KP-TR-017-NP 1 September 2022

4 CORE DESIGN TOOLBOX

In order to develop the modeling methodology described in Section 3, a series of software codes are used
along with different code “wrappers” for coupling and data exchange (see Figure 3-1). The software used
by Kairos Power for core design includes Serpent 2 for the neutronic module and STAR-CCM+ for DEM and
TH modeling. KACEGEN, Kairos Power Advanced Core Simulator (KPACS), and Kairos Power Advanced
Thermal Hydraulics (KPATH) are internally developed “wrapper codes” that have been developed to
process and exchange data between software codes and libraries. The software discussed in this report is
developed and maintained under the Kairos Power Quality Assurance (QA) program.

The verification, validation and uncertainty quantification methodology has been developed to reduce
and control all the sources of error and uncertainty between STAR-CCM+ models used in core design and
their FOMs predictive capabilities. The verification process consists of software and numerical solution
verification activities. Software verification aims to ensures that the discretized model is an accurate
representation of the continuous mathematical model, and that there are no user-defined code errors.
Validation is the process of determining the degree to which a mathematical model is an accurate
representation of the real world from the perspective of its intended use. This is done by comparing the
model outputs (FOMs) with experimental measurements and/or high order numerical results.

[
1]

4.1 CODES

4.1.1 STAR-CCM+
Description

STAR-CCM+ is used for DEM and TH modeling. The verification, validation and uncertainty quantification
methodology has been developed to reduce and control all the sources of error and uncertainty between
STAR-CCM+ models used in core design and their FOMs predictive capabilities. The V&V methods for DEM
and TH are very similar. The TH V&V methodology focuses on the prediction of the core material
temperatures (fuel, moderator and coolant) whereas the DEM methodology focuses on the pebble center
locations and their residence time within the core. Because design to reduce bypass flow is performed
independently due to the complexity of bypass flow paths, bypass flow is treated as a defined fraction of
total coolant flow which is an input parameter to core design and analysis.

V&V Plan
[l

© 2022 Kairos Power LLC 11



KP-FHR Core Design and Analysis Methodology

Doc Number Rev Effective Date

Non-Proprietary
KP-TR-017-NP 1 September 2022

[

1]

Table 4-2 summarizes the validation cases that will be used for STAR-CCM+.
4.1.2 Serpent2
Description

Serpent 2 (Reference 4) is the main neutronics tool for reactor core design and output to safety analysis.
Serpent 2 has been extensively used across academia and industry and has been validated against various
benchmarks. It is used at Kairos for a variety of calculations, including multiplication factor, control
element worths, reactivity coefficients, power distribution, kinetics parameters, nuclear heating, and
burnup calculations.

The use of Serpent 2 provides high-fidelity simulation, which is important due to lack of experimental FHR
operating experience. There are two key features that are available in Serpent 2: 1) the ability to explicitly
capture the double-heterogeneity of the fuel pebble and TRISO particles, and 2) the implementation of
Woodcock delta-tracking (Reference 4). The reduced computational burden with the implementation of
delta-tracking also allows for full 3D core modeling.

V&V Plan
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[

1]

4.2 WRAPPER CODES

The following wrapper codes are used to transfer information between the neutronic and
thermal/hydraulic codes.

4.2.1 KACEGEN
Description

KACEGEN (Kairos ACE Generator) is an internal tool that NJOY21 uses to produce the ACE-format nuclear
data libraries. NJOY21 (Reference 9) is a nuclear data processing tool capable of producing both pointwise
and multigroup cross section data from the U.S. Evaluated Nuclear Data Files (ENDF) format. KACEGEN,
as an example, currently has the capability to generate ACE libraries from any ENDF-6 library, including
JEFF 3.3, ENDF-B-VII.1, and ENDF-B-VIII.0. Both neutron cross-sections and thermal-scattering libraries are
produced for each isotope available in the library, and thermal-scattering libraries can be discrete or
continuous in energy. ACE data has been generated at the following temperatures, tailored to the
temperature ranges in the KP-FHR design: 273.15, 300, 600, 700, 800, 900, 1000, 1100, 1200, 1500, 1800,
and 2200 degrees K.

The high-level data flow of the KACEGEN can be seen in Figure 4-1. To start, library fields and paths for a
particular library set are loaded, then the complete list of isotopes are run and written for neutron cross
section generation. If thermal scattering is also being generated, the LEAPRs module of NJOY21 is run for
either continuous and/or discrete thermal scattering law (TSLs).

Point-wise cross sections are compared between LANL-MCNP and OECD evaluated libraries and the ones
evaluated by KACEGEN/NJOY.
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4.2.2 KPACS
Description

KPACS is an internally developed fuel cycle analysis wrapper that loosely couples Serpent 2 and discrete
element modeling (DEM) in STAR-CCM+ for pseudo steady-state analysis. The major underlying
assumption in KPACS is shared with past codes such as VSOP (Reference 10) and PEBBED (Reference 11),
in that the behavior of neutron spectrum and temperature affecting pebbles in specifically defined
regions of the core (i.e., spectral zones) can be assumed constant due to slowly varying neutron flux and
temperature. [[

1]

The difference between KPACS and other codes is that it relies on the highest fidelity tools available.
Serpent 2 is used to perform the full-core transport and fuel depletion calculations, and the pebble
motion and locations are informed by DEM in STAR-CCM+. KPACS can also be loosely coupled with
KPATH , for update of core temperature distribution as needed throughout the KP-FHR operational life.

4.2.3 KPATH
Description

KPATH is the internally developed software infrastructure that couples STAR-CCM+ to Serpent 2. The
computational fluid dynamic (CFD)-neutronic steady-state two-way explicit coupling, is such that it
provides TH feedbacks for criticality calculations, power shape, and power peaking calculations.

Within the KPATH computational framework, STAR-CCM+ is utilized as a steady state solver for heat
transfer and fluid flow in the form of a 3D porous media model. Only normal steady state operating
conditions are considered. The coupling methodology that has been developed is capable of using KPATH
during all core phases from startup to equilibrium core conditions; this means that KPATH can be used at
different core phases in combination with KPACS.

The KPATH code wrapper manages the thermal power and materials temperatures exchange between
Serpent 2 spectral zones and STAR-CCM+ porous region as shown in Figure 4-2. Convergence is reached
when ket and core material temperatures differences with the previous iteration is within a specified
tolerance.
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5 CALCULATION METHODOLOGY
This section provides an overall description of the models used within the core design and analysis model.
5.1 DEM MODELING

The Discrete Element Method (DEM) is the methodology used to generate the reactor core geometry for
the explicit pebble modeling in Serpent 2. DEM is utilized to simulate the granular flow by describing the
motion of many interacting discrete solid pebbles. DEM modeling provides detailed resolution that other
methods cannot achieve. [[

1]

STAR-CCM+ models DEM pebbles based on a soft-particle formulation in which particles are allowed to
develop an overlap proportional to the contact force and can undergo large deformations without
rupture. This overlap is not physically realistic but is used to aid in ease of computation. The calculated
contact force is proportional to the overlap, as well as to the particle material and geometric properties.
STAR-CCM+ DEM provides a large amount of data for every single pebble such as time histories, velocity,
position, and forces. The data collected provide a statistical basis for neutronic calculations. DEM provides
the location of the centers of the fuel pebbles necessary for criticality calculations. Burnup calculations
need more information in addition to the location of the individual pebbles. DEM provides the pebble
flow profile inside the reactor core and pebble residence time. The methodology to calculate residence
time is based on recirculation of the pebbles in the core from the entry to exit point.

The FOMs used for the DEM V&V plan are:
[l

1]

5.2 NEUTRONICS

5.2.1 Monte Carlo Convergence

[
1]
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[
1]

5.2.2 Fuel Cycle Analysis
[l

5.2.3 Reactivity Coefficients

The calculation for reactivity coefficients is done using Equation 5-1. Where oy is the reactivity coefficient
with respect to quantity x, Ax is the change in quantity x with respect to reference conditions (positive or
negative), ks is the neutron multiplication factor of the core calculated from Serpent 2 at reference
conditions, and kayx is the neutron multiplication factor of the core calculated by Serpent 2 after quantity
x was changed by Ax.

Equation 5-1

Ay = — —-—

PAx — Pref _ 1 1 1
Ax Ax kref kAx

[
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5.2.4 Control Worth and Shutdown Margin

1]

Shutdown margin is also maintained at all core states. The control elements in the RCSS are responsible
for all planned, normal power maneuvers. The worth requirements depend on the KP-FHR design of
interest.

Control worth is calculated using Equation 5-2 where k¢ oy is the withdrawn position and k¢ i, is the
inserted position of interest. Differential control worth is calculated using Equation 5-3, where k¢ ; is
the neutron multiplication factor of the core for step i position of interest, k.¢r ;.1 is the neutron
multiplication factor of the core for step i + 1 position of interest, z; is the axial position of the control
rod(s) for step i position of interest, and z;,, is the axial position of the control rod(s) for step i + 1
position of interest.

[

1]

5.2.5 Kinetics Parameters

In addition to reactivity coefficients, kinetics parameters such as delayed neutron fraction and their
associated decay constant(s), neutron mean generation time, and neutron mean lifetime are also
calculated. As discussed in Section 3.4, kinetics parameters are used for modeling time-dependent
behavior of the KP-FHR. The calculation of these kinetics parameters is calculated using the iterated fission
probability method (Reference 14). The effective delayed neutron fraction is divided into six groups.

Delayed photoneutrons, from Be (y, n) reaction in Flibe, will also be assessed to understand their impact
on the effective delayed neutron fraction and delayed neutron group structure (Reference 15). This
impact from delayed photoneutrons is smaller than other reactors that have been impacted from this
particular source of delayed neutrons, such as from heavy water (D,0) reactors.

5.2.6 Reactor Coolant Depletion
[l
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5.2.7 Power Distribution
[l
5.2.8 Vessel Irradiation
[l
]
5.3 THERMAL-HYDRAULICS
[l
1]
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[l
1]

5.3.1 Porous Media Modeling

Packed beds are commonly used in chemical engineering systems because they have highly predictable
and uniform flow distributions and transport. The randomly packed pebble bed in the KP-FHR core
enables the use of low-order mathematical models to predict global flow distributions and heat transport.
The TH model used in core design, adopts a two-equation porous media model to describe the macroscale
behavior of the flow and energy transport within the reactor core region. The core porous region can be
thermally coupled with other in-vessel solid regions, including the reflector structure, by the use of
conjugate heat transfer modeling. The TH model resolved porous length scales characterize the
liquid/solid phase mixture of liquid coolant and solid pebbles. The core macroscale porous model is
derived by applying a volume averaging operator to the Navier-Stokes and two phase energy transport
equations over a representative elementary volume. The solid and liquid phases are assumed to be in
non-thermal equilibrium; this allows modeling two separate temperature fields for the coolant and
pebbles respectively. The solid porous phase representing the pebbles uses the fission power density from
Serpent 2 as an energy source term and provides the pebble average surface temperature distribution.

By removing information about resolved geometry, the volume averaging operator generates additional
unknown terms in the momentum and energy equations that need a modeling mathematical closure
correlation. As is conventional, experimental-based correlations are used to model the local momentum
and heat transfer information that are lost during the volume averaging process. Figure 5-3 shows an
example of local heat transfer phenomena that need a closure correlation.

Momentum closure model

[

1]
P,vg + P; vglvgl Equation 5-9

[

1]

Energy closure models

[
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[

5.3.2

Core Material Temperatures

1]

The pebbles and coolant temperature fields result from the porous medium volume averaged Navier-
Stokes equations and energy equations are used as baseline for the core material temperatures
evaluation. The core material temperatures that the TH model provides to the neutronic module are:

[

Flibe temperature
Graphite pebble temperature
Pebble layers material temperatures
o Low-density core
o Fuel matrix layer temperature
o Shell layer
TRISO layers material temperatures
o Outer PyC layer
o SiC Layer
o Inner SiC Layer
o Buffer Layer

Fuel Kernel temperature
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The spatial temperature distributions calculated for each material type that are fed back into the
neutronics module are volume-averaged based on zones for the level of fidelity that is required for the

calculated output parameter of interest.

The flexibility of the TH module implementation allows the thermal coupling with any other reactor vessel
internals of relevant neutronic importance, as a consequence additional core material temperatures can

be added to the list above for explicit coupling.

5.4 CORE BYPASS MODELING AND REFLECTOR TEMPERATURE

[l
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6 UNCERTAINTY ANALYSIS AND NUCLEAR RELIABILITY FACTORS
[l
1]

6.1 NUCLEAR DATA UA PROPAGATION METHOD
[l

11
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[l
1]
6.2 MANUFACTURING INPUTS UA PROPAGATION METHOD
[l
1]
6.3 KINETICS PARAMETERS CALCULATION UA METHOD
[l
1l
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6.4 BURNUP CALCULATION UA METHOD
[l
1l
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7 SUMMARY
7.1 CONCLUSION

This report documents the core design and analysis methodology which is used to perform nuclear
design and thermal hydraulic calculations for the KP-FHR, including reactivity coefficients, shutdown
margin, power distribution, and reactor core kinetics parameters. These methods apply to normal
operation and postulated events for a KP-FHR test reactor.

The methodology for performing core design and analysis is based primarily on the Serpent 2 and STAR-
CCM+ codes. These high fidelity analytical tools are used in a methodology specifically tailored to the
unique features of the KP-FHR.

V&YV of the Serpent 2 and STAR CCM+ codes is performed through comparisons with experimental results
and to analyses from other codes. The uncertainty in the results from these codes is established based on
industry experience and with a conservative bias due to the lack of operating experience with KP-FHRs.
The conservative determination of uncertainties is confirmed using the SCALE code system.

The completion of the V&YV of the codes and methodology will be submitted to the NRC as part of a future
licensing applications that makes use of this methodology. In addition, the values of the uncertainties
used in any applications will be documented as part of the safety analysis documents associated with the
application.

7.2 LIMITATIONS

This core design and analysis methodology is subject to the following limitations:

1. The pebble velocity needs to be a small fraction of the time constant of delayed neutron
precursors.

2. Range of coolant velocity is applicable to the range of the available heat transfer correlations.
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Table 4-1. Serpent 2 Requirements and Planned Code-to-code Benchmark Validation
[l
1]
© 2022 Kairos Power LLC 27



KP-FHR Core Design and Analysis Methodology

. Doc Number Rev Effective Date
Non-Proprietary
KP-TR-017-NP 1 September 2022
Table 4-2. STAR-CCM+ Validation Cases
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Table 6-1. Scope of Uncertainty Analysis for Core Safety Parameters
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Figure 2-1. Thermal Energy Transfer Phenomena in KP-FHR
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Figure 2-2. KP-FHR Fuel Pebble and Particle Design
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Figure 2-3. Axial Section of the Hermes Core
[l
© 2022 Kairos Power LLC 33



KP-FHR Core Design and Analysis Methodology

. Doc Number Rev Effective Date
Non-Proprietary

KP-TR-017-NP 1

September 2022

Figure 2-4. Reactor Core Operational Regimes of the KP-FHR
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Figure 3-1. Core Design Modules
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Figure 3-2. Core Analysis Boundaries
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Figure 4-1. High-level Data Flow of KACEGEN
[l
1]
© 2022 Kairos Power LLC 37



KP-FHR Core Design and Analysis Methodology

. Doc Number Rev Effective Date
Non-Proprietary
KP-TR-017-NP 1 September 2022
Figure 4-2. KPATH Framework
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Figure 5-1. Example lllustration of Algorithm for Pebble Circulation for the Core
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Figure 5-2. Spectral Zones Used for the Hermes Core
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Figure 5-3. Local Heat Transfer Phenomena in Pebble Bed Reactor Configuration
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Figure 5-4. Pebble and TRISO Layers Temperature
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Figure 6-1. SCALE workflow for an Example Demonstration Involving Perturbed Parameters (in

yellow)

b

Items in blue represent the flow of a single discrete calculotion (sampler
“case”) with stochastically sampled parameters (uncertainties).

Uncertainties in green are calculoted by looking ot the variance in the
distribution of output quantities of interest from the discrete
calculations. Sampler can post-processes most of these quantities.
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Figure 6-2. Depletion Methodology Flow Diagram for Burnup Calculations of Fuel Pebbles
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APPENDIX A EXAMPLE CORE DESIGN MODEL

This section presents an example of application of the core design modeling methodology for the
evaluation of a KP-FHR reactor with a 35MWth power level. Figure A-1 shows a typical sequence of

calculations performed by using the core design methodology described in this document.

Table A-1 summarizes the main Hermes core design input parameters considered in this example of

application of core design methodology.

Figure A-2 shows the core geometry and nomenclature associated with core main regions.
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Table A-1. Core Design Input Parameters
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Table A-2. Zone-based Power Density Distribution
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Table A-3. Reactivity Coefficients at Startup and Equilibrium Core
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Table A-4. Reactivity Control System Requirements for Short-term Hot Shutdown
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Table A-5. Reactivity Shutdown System Requirements for Safe Shutdown
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Table A-6. Kinetic Parameters at Equilibrium Conditions
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Table A-7. Group-wise Effective Delayed Neutron Fraction and Corresponding Decay Constant at

Equilibrium Core Conditions
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Table A-8. Kinetic Parameters at Startup Core Conditions
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Table A-9. Group-wise Effective Delayed Neutron Fraction and Corresponding Decay Constant at

Startup Core Conditions
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Table A-10. Coolant Temperature Reactivity Coefficients for Flibe of Different Compositions
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Table A-11. k-eff with and without TH Feedback
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Figure A-1. Core Design Calculation Diagram
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Figure A-2. KP-FHR Core Geometry
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Figure A-3. Cross-sectional Views of Normalized Instantaneous Pebble Residence Time
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Figure A-4.Spectral Zones used for the Hermes Core
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Figure A-5. Fast (> 0.1 MeV) (left), Intermediate (middle), and Thermal (< 1.86 eV) (right) Neutron

Flux in Hermes Equilibrium Core
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Figure A-6. Differential Worth of a Single Element Withdrawal, from All In (RCS only)
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Figure A-7. Reactivity Shutdown System Worth Curves, N-1
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Figure A-8. Power density (left), Flibe temperature (center), and Fuel Kernel Centerline Temperature

(right)
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Figure A-9. Axial Binned Power Density Profile in the core, excluding Converging and Diverging
Regions (left), and the Relative Difference of Axial Power Shape between Constant Temperature and

KPATH Results (right)
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Figure A-10. Radial Binned Power Density Profile in the Core (left), and Relative Difference of Radial
Power Shape between Constant Temperature and KPATH Results (right)
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APPENDIX B NEUTRONICS PIRT FOR THE KP-FHR

A Phenomena ldentification Ranking (PIRT) evaluation was conducted for the KP-FHR. A summary of the
results of the PIRT are included for information in this Appendix. The description of Figures of Merit

(FOMs) and knowledge level numbering are as follows:

e FOM 1: Multiplication factor (1: Low impact, 2: Medium impact, and 3: High impact)
e FOM 2: Power distribution (1: Low impact, 2: Medium impact, and 3: High impact)

e Knowledge: Knowledge level (1: Low, 2: Medium, and 3: High)
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