

SAND2023-06170PE

Artificial Intelligence and Machine Learning Support for Probabilistic Fracture Mechanics Analysis

Stephen J. Verzi, Joseph P. Lubars, Satyanadh Gundimada, Michael J. Starr

Matthew Homiack, Raj lyengar

Sandia National Laboratories

U.S. Nuclear Regulatory Commission

Machine Learning / Deep Learning Workshop July 17-20, 2023

This presentation was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this presentation are not necessarily those of the U.S. Nuclear Regulatory Commission.

Sandia National Laboratories is a multimission laboratory many ged an operated by National Techogy of Engineering Solutions of S owned subsidiary of Hone Inc. for the U.S. Department, Energy S

National Nuclear Security Administratic under contract DE-NA0003525.

Abstract

In this research, artificial intelligence and machine learning (ML) methods are used to search an uncertain parameter space more efficiently for the most important inputs with respect to response sensitivities and then to construct, train, and test low-fidelity surrogate models. These methods are applied to the Extremely Low Probability of Rupture (xLPR) probabilistic fracture mechanics code used at the U.S. Nuclear Regulatory Commission in support of nuclear regulatory research. This presentation will show two separate but related efforts: 1) ranking important uncertain input features with respect to target outputs as determined by convergence in the confidence intervals for increasing sample sizes using simple random sampling; and 2) implementation of a reduced-order surrogate model for fast, approximate sample generation. Unoptimized, readily available off-the-shelf ML models were used in both efforts.

The results show that ML models can assist analysts in conducting sensitivity and uncertainty analyses with respect to typical xLPR use cases. The ML models help to reduce the number of random realizations needed in the xLPR simulation by focusing on the most important input parameters (as part of the first effort) and augment xLPR output generation by providing quick approximate time-series simulation (as part of the second effort). This research involved several different kinds of ML models, including linear, random forest, gradient boosting, and multi-layer perceptron regression techniques. Even though not all models perform well in each task or scenario, especially when data is scarce (i.e., low probabilities of leak and rupture), the results show that there are cases where each ML model can perform well. Future efforts can focus on hyperparameter optimization, when appropriate. Both efforts were intended to augment xLPR simulations, which is what the results show.

3 Outline

- Problem Space
 - Probabilistic Fracture Mechanics (PFM)
 - Extremely Low Probability of Rupture (xLPR) Code
- Solution Space
 - Artificial Intelligence (AI) and Machine Learning (ML)
 - Sensitivity Analysis with xLPR
 - Importance Sampling
 - Determining Appropriate Sample Size
 - Surrogate Model for xLPR Quantities of Interest (QoIs)
 - Time of 1st Leak, if any
 - Crack Propagation via Normalized Depth
- Results
- Potential Future Work
- Acknowledgments and Contacts

Problem Space – Probabilistic Fracture Mechanics (PFM)

• Analysis

This figure illustrates a simplistic PFM analysis. The curve on the left represents the distribution of crack driving force or applied stress intensity factor (SIF), which depends on the uncertainties in stress and crack size. The curve on the right represents the toughness distribution or critical (i.e., allowable) SIF of the material. When the two distributions overlap, there is a finite probability of failure, which is indicated by the shaded area. Time dependent crack growth, such as from fatigue or stress-corrosion cracking or both, can be considered by applying the appropriate growth laws to the crack distribution. Crack growth can cause the applied SIF distribution to shift to the right with time, thereby increasing the probability of failure.

Figure from U.S. NRC Technical Letter Report, TRL-RES/DE/REB-2022-13.

Problem Space – Extremely Low Probability of Rupture (xLPR) Code

• Analysis Architecture

Figure from U.S. NRC Technical Letter Report, TRL-RES/DE/REB-2022-13.

Sensitivity Analysis with xLPR

- Given input (uncertain parameter) distributions and associated Monte Carlo outputs
 - Can we use AI/ML models to determine/rank importance of inputs while finding proper sample size with respect to output set?

NRC, Technical Letter Report TLR-RES/DE/REB-2021-14-R1, "Probabilistic Leak-Before-Break Evaluations of Pressurized-Water Reactor Piping Systems using the Extremely Low Probability of Rupture Code," April 2022, ADAMS Accession No. ML22088A006

Surrogate Modeling using ML for xLPR

- Given input (uncertain parameter) distributions and associated Monte Carlo outputs
 - Can we use AI/ML models to train surrogate model with respect to output set?

Outputs or Quantities of Interest (Qols)492 of 2000 samples240 * 2000 samplescc_lop_length_normalized $\int_{0}^{0} \int_{0}^{0} \int_{$

Results

- Using random forest regressor (scikit-learn)
 - Mean decrease in impurity (MDI)
 - Permutation importance values
- Using linear regression (scikit-learn)

Outputs or Quantities of Interest (Qols)

cc_depth_normalized

cc_ID_length_normalized

cc_OD_length_normalized

is_leaking

is_ruptured

total_leak_rate

pipe outside diame pipe wall thickness nitial_cc_full_length_multiplie initial cc depth multiplier hydrogren_concentration_initia operating pressure period 1 operating_temperature_period_1 force along x axis normal thermal expansion period 1 t_about_y_axis_normal_thermal_expansion_period_1 PWSCC_growth_model_power_law_constant_alpha PWSCC_growth_model_power_law_exponent_beta PWSCC_growth_model_stress_intensity_factor_threshold_Kth PWSCC growth model factor of improvement PWSCC_growth_model_reference_temperature initial_cc_full_length initial_cc_depth left pipe material yield strength left_pipe_material_ultimate_strength left pipe material elastic modulus left_pipe_material_fracture_toughness_llo left pipe material fracture toughness coefficient C eft_pipe_material_fracture_toughness_exponent_m right pipe material yield strength right pipe material ultimate strength right pipe material elastic modulus right_pipe_material_fracture_toughness_llc right pipe material fracture toughness coefficient C ht_pipe_material_fracture_toughness_exponent_m weld_material_yield_strength weld material ultimate strength weld_material_elastic_modulus weld material fracture toughness lig eld_material_fracture_toughness_coefficient_C weld material fracture toughness exponent m weld_material_activation_energy_Qg weld material component to component variability factor fcomp weld_material_within_component_variability_factor_fflav weld material peak to valley ECP ratio minus1 P-1 characteristic_peak_width_vs_ECP_c WRS axial premitigation pt1 WRS_axial_premitigation_pt2 WRS_axial_premitigation_pt3 WRS_axial_premitigation_pt4 WRS axial premitigation pt5 WRS_axial_premitigation_pt6 WRS_axial_premitigation_pt7 WRS axial premitigation pt8 WRS_axial_premitigation_pt9 WRS axial premitigation pt10 WRS_axial_premitigation_pt11 WRS axial premitigation pt12 WRS_axial_premitigation_pt13 WRS axial premitigation pt14 WRS_axial_premitigation_pt15 WRS axial premitigation pt16 WRS_axial_premitigation_pt17 WRS axial premitigation pt18 WRS_axial_premitigation_pt19 WRS axial premitigation pt20 WRS_axial_premitigation_pt21 WRS_axial_premitigation_pt22 WRS_axial_premitigation_pt23 WRS_axial_premitigation_pt24 WRS axial premitigation pt25

WRS axial premitigation pt26

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. https://dl.acm.org/doi/abs/10.5555/1953048.2078195

inputs

• Multi-variate output set (6) given input set (65) w/ 200 samples

Input Variable	Permutation Importance
WRS_axial_premitigation_pt01	0.5973
WRS_axial_premitigation_pt26	0.0680
WRS_axial_premitigation_pt24	0.0545
WRS_axial_premitigation_pt22	0.0501
WRS_axial_premitigation_pt05	0.0351
weld_material_PWSCC_growth_component_to_component_variabilit y_factor_fcomp	0.0280
WRS_axial_premitigation_pt21	0.0255
weld_material_PWSCC_growth_activation_energy_Qg	0.0202
WRS_axial_premitigation_pt02	0.0158
WRS_axial_premitigation_pt07	0.0133
WRS_axial_premitigation_pt17	0.0107

Ranked permutation importance for those inputs with values greater than random feature mean + 2 * standard deviation.

• Multi-variate output set (6) given input set (65) w/ 2000 samples

Input Variable	Permutation Importance
WRS_axial_premitigation_pt01	0.9740
weld_material_PWSCC_growth_component_to_component_variabilit y_factor_fcomp	0.2029
weld_material_PWSCC_growth_within_component_variability_factor _fflaw	0.1503
WRS_axial_premitigation_pt14	0.0301
WRS_axial_premitigation_pt26	0.0268
WRS_axial_premitigation_pt22	0.0230
WRS_axial_premitigation_pt02	0.0176
WRS_axial_premitigation_pt23	0.0163
WRS_axial_premitigation_pt24	0.0162
WRS_axial_premitigation_pt07	0.0158

Ranked permutation importance for those inputs with values greater than random feature mean + 2 * standard deviation.

• Multi-variate output set (6) given input set (65) w/ 20000 samples

Input Variable	Permutation Importance
WRS_axial_premitigation_pt01	1.2146
weld_material_PWSCC_growth_component_to_component_variabilit y_factor_fcomp	0.3489
weld_material_PWSCC_growth_within_component_variability_factor _fflaw	0.2416
WRS_axial_premitigation_pt02	0.1115
initial_cc_full_length	0.0323
WRS_axial_premitigation_pt25	0.0226
weld_material_PWSCC_growth_activation_energy_Qg	0.0205
WRS_axial_premitigation_pt26	0.0177
WRS_axial_premitigation_pt24	0.0162
left_pipe_material_yield_strength	0.0155

Ranked permutation importance for those inputs with values greater than random feature mean + 2 * standard deviation.

• Determining appropriate sample size (all 6 QoIs) – Confidence intervals for 200, 2000 and 20000 samples

2000 Samples are sufficient

Results – Surrogate Model

• Can we predict time of first leak?

492 out of 2000 samples result in leak

Results – Using Linear Regression

• 492 (out of 2000) samples - 75/25 % training/testing split

Predicted leak time (in months) for test set by sample index

Results – Using Linear Regression

• 492 (out of 2000) samples - 75/25 % training/testing split

Seems like we do not have enough training data

• 492 (out of 2000) samples - 75/25 % training/testing split

Seems to miss both high and low values (we probably do not have enough training data)

• 492 (out of 2000) samples – 100/0 % training/testing split

Predicted leak time (in months) for train set by sample index

• 492 (out of 2000) samples – 100/0 % training/testing split

Significant drop in mse - but model still not capturing high and low ends well

Results – Surrogate Model

19

• Can we predict normalized crack depth at next time step – Use Case: Leak occurs (when normalized crack depth is 1.0)?

2000 samples with 240 time steps each

²⁰ Results – Using Linear Regression

• 2000 samples – 75/25 % training/testing split

Seems to lose performance for larger normalized crack depth values

Results – Using Linear Regression

• 2000 samples – 75/25 % training/testing split

xLPR depth versus predicted time-series for single sample initial conditions

Attempts to extrapolate beyond unit normalized crack depth

• 2000 samples – 75/25 % training/testing split

• 2000 samples – 75/25 % training/testing split

xLPR depth versus predicted time-series for single sample initial conditions

Captures similar curvature, but predicts leak sooner than xLPR

• 2000 samples - train and test on 100% of data

Captures larger normalized crack depth, but with increased uncertainty

²⁵ Results – Using Random Forest Regression

• 2000 samples - train and test on 100% of data

xLPR depth versus predicted time-series for single sample initial conditions

Captures similar curvature, but predicts leak "even" sooner than xLPR or 75% training data indicates overtraining

• 2000 samples – 25/75 % training/testing split

Captures larger normalized crack depth values but with increased uncertainty

²⁷ Results – Using Random Forest Regression

• 2000 samples – 25/75 % training/testing split

xLPR depth versus predicted time-series for single sample initial conditions

Captures similar curvature, but predicts leak sooner than xLPR - not as overtrained

Potential Future Work

•Efficiently identify response sensitivities from an uncertain input parameter space

- Sensitivity analysis
- Sensitivity studies
- Uncertainty analysis

•Identify methods of creating tiered surrogate models (machinelearning/data-driven) with comparable accuracy to the physics-based xLPR model, including characterization of the increased computational efficiency of the potential surrogate models

- Start with one output and use neural network to predict
- Determine level of effort needed

, Our Team – Sandia

Sandia

- Michael Starr (PI)
- Stephen Verzi (staff, ML)
- Joseph Lubars (staff, ML/RL & statistics)
- Satyanadh Gundimada (staff, ML/DL)

U.S. Nuclear Regulatory Commission

- Matthew Homiack
- Raj Iyengar

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

This presentation was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this presentation are not necessarily those of the U.S. Nuclear Regulatory Commission.

• Questions?

ħ

