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Abstract2

In this research, artificial intelligence and machine learning (ML) methods are used to search an 
uncertain parameter space more efficiently for the most important inputs with respect to response 
sensitivities and then to construct, train, and test low-fidelity surrogate models. These methods are 
applied to the Extremely Low Probability of  Rupture (xLPR) probabilistic fracture mechanics code used 
at the U.S. Nuclear Regulatory Commission in support of  nuclear regulatory research. This presentation 
will show two separate but related efforts: 1) ranking important uncertain input features with respect to 
target outputs as determined by convergence in the confidence intervals for increasing sample sizes 
using simple random sampling; and 2) implementation of  a reduced-order surrogate model for fast, 
approximate sample generation. Unoptimized, readily available off-the-shelf  ML models were used in 
both efforts.

The results show that ML models can assist analysts in conducting sensitivity and uncertainty analyses 
with respect to typical xLPR use cases. The ML models help to reduce the number of  random 
realizations needed in the xLPR simulation by focusing on the most important input parameters (as part 
of  the first effort) and augment xLPR output generation by providing quick approximate time-series 
simulation (as part of  the second effort). This research involved several different kinds of  ML models, 
including linear, random forest, gradient boosting, and multi-layer perceptron regression techniques. 
Even though not all models perform well in each task or scenario, especially when data is scarce (i.e., low 
probabilities of  leak and rupture), the results show that there are cases where each ML model can 
perform well. Future efforts can focus on hyperparameter optimization, when appropriate. Both efforts 
were intended to augment xLPR simulations, which is what the results show.
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◦ Problem Space
◦ Probabilistic Fracture Mechanics (PFM)
◦ Extremely Low Probability of  Rupture (xLPR) Code

◦ Solution Space
◦ Artificial Intelligence (AI) and Machine Learning (ML)

◦ Sensitivity Analysis with xLPR
◦ Importance Sampling
◦ Determining Appropriate Sample Size
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◦ Time of  1st Leak, if  any
◦ Crack Propagation via Normalized Depth

◦ Results
◦ Potential Future Work
◦ Acknowledgments and Contacts



Problem Space – Probabilistic Fracture Mechanics (PFM)4

◦ Analysis

This figure illustrates a simplistic PFM analysis.  The curve on the left represents the distribution of crack driving force or applied 
stress intensity factor (SIF), which depends on the uncertainties in stress and crack size.  The curve on the right represents the 
toughness distribution or critical (i.e., allowable) SIF of the material.  When the two distributions overlap, there is a finite probability 
of failure, which is indicated by the shaded area.  Time dependent crack growth, such as from fatigue or stress-corrosion cracking or 
both, can be considered by applying the appropriate growth laws to the crack distribution.  Crack growth can cause the applied SIF 
distribution to shift to the right with time, thereby increasing the probability of failure.

Figure from U.S. NRC Technical Letter Report, TRL-RES/DE/REB-2022-13.



Problem Space – Extremely Low Probability of Rupture 
(xLPR) Code5

◦ Analysis Architecture

Figure from U.S. NRC Technical Letter Report, TRL-RES/DE/REB-2022-13.



Sensitivity Analysis with xLPR6

◦ Given input (uncertain parameter) distributions and associated 
Monte Carlo outputs

◦ Can we use AI/ML models to determine/rank importance of  
inputs while finding proper sample size with respect to output 
set?

…

inputs ranked features
NRC, Technical Letter Report TLR-RES/DE/REB-2021-14-R1, "Probabilistic Leak-Before-Break Evaluations of Pressurized-Water Reactor 
Piping Systems using the Extremely Low Probability of Rupture Code," April 2022, ADAMS Accession No. ML22088A006



Surrogate Modeling using ML for xLPR7

◦ Given input (uncertain parameter) distributions and associated 
Monte Carlo outputs

◦ Can we use AI/ML models to train surrogate model with 
respect to output set?

outputs
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Results8

◦ Using random forest regressor (scikit-learn)
◦ Mean decrease in impurity (MDI)
◦ Permutation importance values

◦ Using linear regression (scikit-learn)

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. https://dl.acm.org/doi/abs/10.5555/1953048.2078195

Outputs or Quantities of Interest (QoIs)

cc_depth_normalized

cc_ID_length_normalized

cc_OD_length_normalized

is_leaking

is_ruptured

total_leak_rate

inputs



Results – Using Random Forest Regressor9

◦ Multi-variate output set (6) given input set (65) w/ 200 samples
Input Variable Permutation Importance

WRS_axial_premitigation_pt01 0.5973

WRS_axial_premitigation_pt26 0.0680

WRS_axial_premitigation_pt24 0.0545

WRS_axial_premitigation_pt22 0.0501

WRS_axial_premitigation_pt05 0.0351

weld_material_PWSCC_growth_component_to_component_variabilit
y_factor_fcomp

0.0280

WRS_axial_premitigation_pt21 0.0255

weld_material_PWSCC_growth_activation_energy_Qg 0.0202

WRS_axial_premitigation_pt02 0.0158

WRS_axial_premitigation_pt07 0.0133

WRS_axial_premitigation_pt17 0.0107
Ranked permutation importance for those inputs with values greater than random feature mean + 2 * standard deviation.



Results – Using Random Forest Regressor10

◦ Multi-variate output set (6) given input set (65) w/ 2000 samples
Input Variable Permutation Importance

WRS_axial_premitigation_pt01 0.9740

weld_material_PWSCC_growth_component_to_component_variabilit
y_factor_fcomp

0.2029

weld_material_PWSCC_growth_within_component_variability_factor
_fflaw

0.1503

WRS_axial_premitigation_pt14 0.0301

WRS_axial_premitigation_pt26 0.0268

WRS_axial_premitigation_pt22 0.0230

WRS_axial_premitigation_pt02 0.0176

WRS_axial_premitigation_pt23 0.0163

WRS_axial_premitigation_pt24 0.0162

WRS_axial_premitigation_pt07 0.0158

Ranked permutation importance for those inputs with values greater than random feature mean + 2 * standard deviation.



Results – Using Random Forest Regressor11

◦ Multi-variate output set (6) given input set (65) w/ 20000 samples
Input Variable Permutation Importance

WRS_axial_premitigation_pt01 1.2146

weld_material_PWSCC_growth_component_to_component_variabilit
y_factor_fcomp

0.3489

weld_material_PWSCC_growth_within_component_variability_factor
_fflaw

0.2416

WRS_axial_premitigation_pt02 0.1115

initial_cc_full_length 0.0323

WRS_axial_premitigation_pt25 0.0226

weld_material_PWSCC_growth_activation_energy_Qg 0.0205

WRS_axial_premitigation_pt26 0.0177

WRS_axial_premitigation_pt24 0.0162

left_pipe_material_yield_strength 0.0155

Ranked permutation importance for those inputs with values greater than random feature mean + 2 * standard deviation.



Results – Using Random Forest Regressor12

◦ Determining appropriate sample size (all 6 QoIs) – Confidence 
intervals for 200, 2000 and 20000 samples
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Results – Surrogate Model13

◦ Can we predict time of  first leak?

A) Training process

xLPR QoI
is_leaking changes from 0 to 1

training trained
model

xLPR inputs

B) Use in prediction

predicted xLPR QoItrained
model

xLPR inputs

492 out of 2000 samples result in leak



Results – Using Linear Regression14

◦ 492 (out of  2000) samples – 75/25 % training/testing split

Seems like we do 
not have enough 
training data

mse = 662.7

Predicted leak time (in months) for test set by sample index
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Results – Using Linear Regression15

◦ 492 (out of  2000) samples – 75/25 % training/testing split

Seems like we do 
not have enough 
training data

mse = 662.7

Ground truth versus predicted for test set by sample
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Results – Using Random Forest Regression16

◦ 492 (out of  2000) samples – 75/25 % training/testing split

Seems to miss 
both high and 
low values (we 
probably do not 
have enough 
training data)

mse = 707.5

Ground truth versus predicted for test set by sample
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Results – Using Random Forest Regression17

◦ 492 (out of  2000) samples – 100/0 % training/testing split

Significant drop 
in mse

mse = 108.6

Predicted leak time (in months) for train set by sample index

le
ak

 t
im

e 
(m

on
th

s)

test sample index



Results – Using Random Forest Regression18

◦ 492 (out of  2000) samples – 100/0 % training/testing split

Significant drop 
in mse – but 
model still not 
capturing high 
and low ends 
well

mse = 108.6

Ground truth versus predicted for train set by sample
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Results – Surrogate Model19

◦ Can we predict normalized crack depth at next time step – Use 
Case: Leak occurs (when normalized crack depth is 1.0)?

A) Training process

training trained
model

xLPR inputs

xLPR QoI at time t
normalized_crack_depth

xLPR QoI at time t+1
normalized_crack_depth

B) Use in prediction

trained
model

xLPR inputs

xLPR QoI at time t
normalized_crack_depth

predicted xLPR QoI
at time t+1
normalized_crack_depth

2000 samples with 240 time steps each



Results – Using Linear Regression20

◦ 2000 samples – 75/25 % training/testing split

Seems to lose 
performance for 
larger 
normalized crack 
depth values

mse = 2.7e-5

xLPR depth versus predicted for test set by sample
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Results – Using Linear Regression21

◦ 2000 samples – 75/25 % training/testing split

Attempts to 
extrapolate 
beyond unit 
normalized crack 
depth

xLPR depth versus predicted time-series for single sample initial conditions
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Results – Using Random Forest Regression22

◦ 2000 samples – 75/25 % training/testing split

Captures larger 
normalized crack 
depth values and 
more of 
curvature

mse = 2.0e-6

xLPR depth versus predicted for test set by sample

xLPR depth
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Results – Using Random Forest Regression23

◦ 2000 samples – 75/25 % training/testing split

Captures similar 
curvature, but 
predicts leak 
sooner than xLPR

xLPR depth versus predicted time-series for single sample initial conditions
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Results – Using Random Forest Regression24

◦ 2000 samples – train and test on 100% of  data

Captures larger 
normalized crack 
depth, but with 
increased 
uncertainty

mse = 2.5e-7

xLPR depth versus predicted for train set by sample
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Results – Using Random Forest Regression25

◦ 2000 samples – train and test on 100% of  data

Captures similar 
curvature, but 
predicts leak 
“even” sooner 
than xLPR or 75% 
training data –
indicates 
overtraining

xLPR depth versus predicted time-series for single sample initial conditions
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Results – Using Random Forest Regression26

◦ 2000 samples – 25/75 % training/testing split

Captures larger 
normalized crack 
depth values but 
with increased 
uncertainty

mse = 2.7e-6

xLPR depth versus predicted for test set by sample
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Results – Using Random Forest Regression27

◦ 2000 samples – 25/75 % training/testing split

Captures similar 
curvature, but 
predicts leak 
sooner than xLPR
– not as 
overtrained

xLPR depth versus predicted time-series for single sample initial conditions
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Potential Future Work28

•Efficiently identify response sensitivities from an uncertain input parameter 
space
• Sensitivity analysis
• Sensitivity studies
•Uncertainty analysis

•Identify methods of  creating tiered surrogate models (machine-
learning/data-driven) with comparable accuracy to the physics-based xLPR
model, including characterization of  the increased computational efficiency 
of  the potential surrogate models
• Start with one output and use neural network to predict
•Determine level of  effort needed
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Thank You30

◦ Questions?


