

NRC Meeting: Fuel Qualification and Testing

May 10th, 2023

HOLTEC

Meeting Agenda

- Introductions
- Purpose and Outcomes
- Background
- Applicability Assessment
- Interface Requirements
- Timeline

Introductions

- NRC Staff
- Holtec Staff
- Framatome Staff

Purpose and Outcome

PURPOSE: To provide a high-level overview of the fuel qualification and testing program

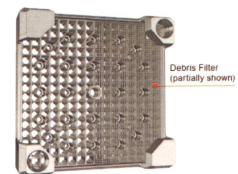
OUTCOME: To obtain feedback from the NRC staff on the high-level overview and identify specific topics that the NRC would like to discuss further in future meetings.

Background

- SMR-160 will incorporate Framatome's 17x17 GAIA fuel assembly and HARMONI rod cluster control assembly (RCCA)
- GAIA fuel is currently operating in various quantities in the US at three different Westinghouse three and four loop PWRs
- HARMONI 17x17 RCCAs have been supplied to more than 10 Westinghouse PWRs over the last 25 years
- SMR-160 will leverage Framatome's proven analysis methods, engineering experience and expertise, test facilities, and licensing experience to support the fuel qualification and testing program

GAIA 17x17 for Holtec SMR-160

Reconstitutable **Top Nozzle**



GAIA Mixing Grid

framatome

holtec.com | smrllc.com | Page 6

HMP[™] Grid

GRIP™ Bottom Nozzle

Debris Filter

Quick Disconnect (QD) **Upper Connection** QD Locking

Reconstitutable Lower Guide Tube Connection

Mechanism

Fuel Pellet GAIA Reconstitutable Lower Guide Tube Lower End

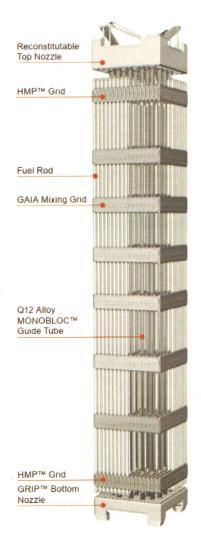
Cap

Fuel

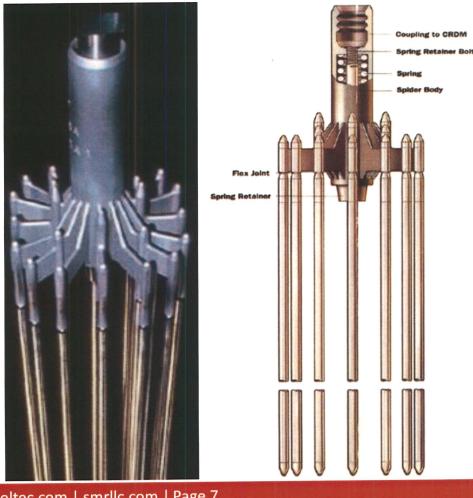
Rod

Upper End Cap

Low


Volume

Plenum


Spring

Cladding

WWW

HARMONI RCCA

Framatome has supplied over 7,700 HARMONI RCCAs operating in 97 reactors around the world, including the united states

GAIA Fuel Assembly Design Features

- M5[®] Fuel Rods
 - High resistance to corrosion and hydrogen uptake
 - ✓ High density pellets
- M5[®] GAIA Spacer Grids
 - ✓ Fretting resistance consistent with Framatome's HTP™ design
- Two Inconel 718 HMP[™] spacer grids at top and lowermost grid positions. Top HMP[™] grid has a reduced fuel rod grip force to reduce fuel rod bow.
- All three intermediate GAIA mixing grids (IGM) are removed for the SMR-160 application to reduce pressure drop and increase core flow rate
- Q12[™] MONOBLOC[™] Guide Tubes and Instrument Tube
 - Increased cross-sectional area to improve lateral stiffness
 - ✓ Q12[™] material based on M5[®], with improved creep properties
- GRIP debris resistant bottom nozzle
- W17x17 top nozzle with hold-down springs
- ¼-turn quick disconnect top nozzle connection
- Welded cage
- Nominal active fuel length of 144 inches

HARMONI RCCA Design Features

- Twenty-four control rods with stainless steel clad
- One-piece stainless steel spider
- Standard 17x17 rod configuration and position
- Flex joint formed by the combination of the pin, nut, upper end plug, and spider boss
- Inner rod stack support feature and lower end plug to mitigate life limiting phenomena
- Absorber is silver-indium-cadmium (AIC) bars (80% Ag, 15% In, 5% Cd) with a large diametral gap / reduced diameter in lower tip region
- Nominal absorber length is 142 inches

General Work Scopes

- The fuel qualification and testing program consists of several key areas
 - ✓ Core Neutronics
 - ✓ Materials
 - ✓ Mechanics
 - Thermal-Mechanics
 - ✓ Core Thermal-Hydraulics
 - ✓ Safety Analysis (SRP Chapter 15)
 - 🖌 Testing

Applicability Assessment

Framatome performed initial applicability assessment of their NRC approved codes and methods against the SMR-160 operating conditions

MECHANICAL			
AND 10242D A	"GALA	Fuel	Accombly

ANP-10342P-A, "GAIA Fuel Assembly Mechanical Design"

ANP-10337P-A Rev. 0, "PWR Fuel Assembly Structural Response to Externally Applied Dynamic Excitations"

ANP-10337P-A, Rev. 0, Supplement 1P-A Rev. 0, "Deformable Spacer Grid Element"

ANP-10334P-A, "Q12 Structural Material Topical Report"

THERMAL-MECHANICAL

BAW-10231PA-01, COPERNIC Fuel Rod Design Computer Code

BAW-10183P-A, Rev. 0, "Fuel Rod Gas Pressure Criterion (FRGPC)"

BAW-10084P-A, Rev. 3, CROV "Program to Determine In-Reactor Performance of BWFC Fuel Cladding Creep Collapse"

BAW-10227P-A, Rev. 1, "Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel"

THERMAL-HYDRAULICS

ANP-10341P-A, "The ORFEO-GAIA and ORFEO-NMGRID Critical Heat Flux Correlations"

XN-75-32(P)(A), "Supplements 1-4, Computational Procedure for Evaluating Fuel Rod Bow"

BAW-10227P, Rev. 2, "Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel"

ANP-10311P-A, Revision 1 "COBRA-FLX: A Core Thermal-Hydraulic Analysis Code"

XN-NF-82-06(P)(A), Revision 1, "Supplement 2, 4, and 5, Qualification of Exxon Nuclear Fuel for Extended Burnup". Supplement 5 p.5 (DNB Propagation)

Applicability Assessment

- Framatome concluded SMR-160 is mostly within the applicably ranges and limitations of their topical reports based on SMR-160 data at this time
- Applicability assessments identified the following items to be addressed:
 - ✓ Fuel assembly damping ratios for analysis of seismic and LOCA events are not applicable due to lower flow rates. New ratios have been calculated.
 - ORFEO-GAIA and ORFEO-NMGRID CHF correlations do not cover entire SMR-160 operating range
 - ✓ COBRA-FLX
 - Thermal hydraulic conditions need to be verified by SMR-160 safety analysis calculations.
 - Low flow benchmarks were identified in VIPRE and should be included for COBRA-FLX

Interface Requirements

- Framatome and Holtec collaborated on interface requirements of the GAIA fuel assembly with SMR-160 design
- Goal was to minimize changes to GAIA fuel assembly
 - Top nozzle will be modified to accommodate top loaded in-core detectors
- No changes to critical design features of SMR-160 were required
 - Minor changes to SMR-160 upper and lower core plates were made to accommodate GAIA fuel assembly

Mechanical Analysis

- Stress and fatigue of all fuel structural components under normal operation and AOOs
- Axial growth analysis of fuel assembly and fuel rods
- Lateral growth analysis of spacer grids
- Flow Induced Vibration (FIV) assessment
- Seismic and LOCA (faulted) analysis
- Fuel assembly and fuel rod bow analysis
- Fuel assembly lift and drop analysis

Thermal-Mechanical Analysis

- Rod internal pressure
- Clad corrosion
- Clad creep collapse
- Transient clad strain
- Clad fatigue
- Clad stress
- Fuel centerline melt

Thermal Hydraulic Analysis

- Form loss coefficient (FLC) development
 - ✓ IGM grids were evaluated and determined to not be required, so they were removed to reduce RCS pressure drop and increase core flow rate
- Control component cooling evaluations

Test Program

- Flow Lift and Pressure Drop Coefficient
 - Analyses or testing will be utilized to validate these items in the SMR-160 operating range
- CHF Testing KATHY Facility in Karlstein
 - ✓ Required due to low flow and inlet temperature of SMR-160
 - Framatome performed two-phase CFD calculations to guide CHF test plan
 - ✓ 4 CHF tests are planned:
 - Unit cell with uniform axial power shape
 - Unit cell with cosine power shape
 - Guide tube cell with uniform axial power shape
 - Guide tube cell with cosine power shape

Timeline

[[

.

holtec.com | smrllc.com | Page 18

MRHOLTE

]]