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Additional Response
NRC Question RAI 14 — Additional Response
Background

The NRC staff’s current understanding of the process used to calculate the reconciled uncertainty is that
this calculation does not result in the variance of the reconciled measurement, but rather the variance in
the mean of the reconciled measurement. Suppose n samples of the reconciled measurement were
made, and then the mean of those n samples was generated. The reconciled value represents that
mean, and the reconciled variance is the variance in that mean. However, the quantity of interest is not
the variance in the reconciled mean, but the variance in the reconciled measurement itself. To get the
variance in the reconciled measurement we need to multiply the variance in the reconciled mean (the
outcome of the DVR process) by n.

Response

To establish a common, unambiguous context for discussion, it is useful to define and clarify some of the
specific data reconciliation terminology that is used in the field, especially around inputs and outputs of
the DVR method.

Figure 1 shows two areas relevant in this RAI: data preprocessing and actual application of DVR.

In the preprocessing step measurement data is averaged over a certain time interval. Averaged data
then is used in DVR to calculate reconciled values.
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Figure 1: Data preprocessing and application of process data reconciliation

In general, the input of DVR is referred to as measurements stated with their respective measurement
uncertainty. Although this concerns averaged measurements and consequently uncertainty of averaged
measurements, this is normally not explicitly mentioned.

The results of DVR are reconciled values together with the uncertainties of those reconciled values.
Uncertainties in DVR are normally expressed as a 95% confidence interval.

Note that the output of DVR is called reconciled ‘value’, not reconciled ‘measurement’. This helps to
avoid confusion between in- and output of DVR. In addition, many reconciled values are unmeasured
process values and consequently the term ‘reconciled measurement’ would be inadequate to describe
them.

The uncertainty of the reconciled value is often referred to as ‘reconciled uncertainty’ although this is
strictly spoken not correct, since DVR does not reconcile uncertainties.

Adopting the terminology above, the RAI background statement would read:
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The NRC staff’s current understanding of the process used to calculate the uncertainty of a reconciled
value is that this calculation does not result in the variance of the reconciled value, but rather the
variance in the mean of the reconciled value. Suppose n samples of the measurement were made, and
then the mean of those n samples was generated. The reconciled value represents that mean, and the
variance of the reconciled value is the variance in that mean. However, the quantity of interest is not the
variance in the reconciled mean, but the variance in the reconciled value itself. To get the variance in
the reconciled value we need to multiply the variance in the reconciled mean (the outcome of the DVR
process) by n.

Response
Interpretation of the given measurement uncertainties

In this RAI there seems to be a misconception of the estimated measurement uncertainty as input to
DVR. In the example calculation presented, the measurements are stated as 245 kg/s + 12.25 and 250
kg/s £ 12.50.

In the RAIl example calculation, the uncertainty intervals + 12.25 and + 12.50 are divided by n (after
conversion to variance) before input to the DVR method, in order to convert to an uncertainty of the
mean value. They are apparently interpreted as (random) uncertainty of the single measurement.

However, as mentioned above, the inputs to DVR are mean measurements and uncertainties of mean
measurements, and the uncertainty intervals provided (+12.25 and +12.50) already represent the
uncertainties of the mean values, including any effects of sampling (see “Meaning of the measurement
uncertainty as input to DVR”, below). Consequently, no conversion (division by n) is required before
input to DVR and no reciprocal conversion of the result (multiplication by n) is required.

Figure 2 illustrates this issue.

E Data acquisition ! : Application of data reconciliation :
i " :
: : 1 1
i Average n i Data i
T I reconciliation g I
1 Measurement samples Averaged 1 -Measurement -Reconciled values 1
' samples measurement ! | -Measurement uncertainty -Uncertainty of reconciled :
H A values i 1 values '
N . 1 N } ____________________________________ :
%12, T12.254/n 245 kg/s + 12.25 247.45kg/s + 8.75
+£12:50 + 1258/yn 250 kg/s + 12.50

Figure 2: lllustration of the incorrect interpretation of the example uncertainties — these are uncertainties of the mean
measurements and not (random) uncertainties of the single measurement.
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Meaning of the measurement uncertainty as input to DVR

It is helpful to understand that the uncertainty of the mean measurement (the resulting uncertainty
after sampling and averaging) represents the uncertainty of the single measurement due to systematic
error.

This can be explained as follows:

Measurements contain both random and systematic errors. When calculating a mean value of n
samples, the random error in the measurement vanishes with large enough sample size (the random
variance is divided by n), but the systematic error of the measurement remains in the mean value (see
Attachment A in the EPRI response).

Since DVR uses mean measurement values, the estimated uncertainties in DVR must include the
uncertainty of the single measurement due to systematic error.

This is illustrated in Figure 3. On the left, the measurement uncertainty is given for both the systematic
and random component. The random error is normally much smaller than the systematic error. Here a
value of 1.0 kg/s is taken as an example for the uncertainty due to random error. The uncertainty due to
systematic error is calculated to match the example. As can be seen, due its smaller size and due to
averaging, the random component almost completely vanishes, and the systematic error dominates the
error of the mean value. It becomes clear that for sufficiently large n, the uncertainty of the mean is the
uncertainty of the measurement due to systematic error and that this is independent from n.
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error /12.24922 + e 12.25 4
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+12.49%6 +1.0 12.49962 + =100 _ 12.50 should encompass the uncertainty of the measurement

due to systematic error

Figure 3: lllustration of the role of the systematic error of the measurement
Correction of the inputs to the example calculation

To further clarify to the response above, a number of corrections to Table 1 from RAI 14 are proposed.
Table 1 from RAIl 14 is reproduced below.
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Table A: Reproduction of Table 1 from RAI-14

x X+196s s s sz n
Flow
Meter mean 95% standard variance variance in the (number
flow confidence* deviation (kg?/sec mean of samples
rate Interval (kg/sec) ) (kg?/sec?) to obtain
(kg/sec) (kg/sec) the mean)
Flow 245.00 245 +12.25 | 12.25/1.96=6.25 39.06 39.06/50=0.7812 50
Meter A
Flow 250.00 250+12.50 | 12.50/1.96=6.38 40.67 40.67/100=0.4067 100
Meter B

*Difference between tolerance interval and confidence interval is discussed later in the response
Column 3 presents the confidence interval of the mean flow rate X:

x+196s

The values from the example being 245 + 12.25, 250 + 12.50.

Since s represents a confidence interval around X, and it would be appropriate to use sxinstead of s:

x£+1.96 sx

In Table 1 from RAI 14, s is treated as the (random) standard error of single flow rate measurements. s2
is subsequently divided by the number of samples n to derive a variance of the mean, but it already is

the variance of the mean. The adjustment for sample size is therefore not required.
Table B below shows a corrected version of Table 1 from RAI 14.

Table B: Corrected version of Table 1. Corrections are bolded.

X x+1.96 Sx Sx 572
Flow 95% standard deviation| variance of
Meter mean confidence* | of the mean flow | the mean
flow Interval of rate flow rate
rate the mean (kg/sec) (kg*/sec?)
(kg/sec) flow rate
(kg/sec)
Flow 245.00 245 +12.25 | 12.25/1.96=6.25 39.06
Meter A
Flow 250.00 | 250+12.50 | 12.50/1.96=6.38 |  40.67
Meter B

*Difference between tolerance interval and confidence interval is discussed later in the response
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Direct Response to first Question

“For such a situation in which the mean of all measurements is not calculated using the same number of
samples, how is the reconciled variance calculated?”:

As explained in the response above, no adjustment for the number of samples is required. The
uncertainties in the example represent the uncertainties of the mean and are input to DVR without
correction.

Direct Response to second Question

“Conversely, what is the correct reconciled variance that should be used from Table 2, and why?”:
Using the variances from Table B (39.06, 40.67) as input to the DVR calculation without division by n

yields correct and unambiguous results. The resulting reconciled variance is 19.93. See also Attachment
A of the prior RAI-14 response for the detailed calculation.
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RAI-14: Additional Response

After additional review of RAI-14 some errors were noticed in the example problem. Below are
Tables and Equations from RAI-14 pointing out where the suspected error is and its implications
on the calculation. Additional discussion is included regarding the interpretation of input and
output uncertainty values applied with the DVR method. There is a key mistake made in Table 1
and then it seems the same mistake is being implied at the end of the RAI-14 example.

Below is RAI-14 Table 1. The highlighted term appears to be a misinterpretation of the input
uncertainty as a tolerance interval and it should be a confidence interval. This causes errors in
adjacent columns. On its own the highlighted equation is correct for assessing a tolerance
interval, but that is not how the input uncertainty value is treated.

RAI-14 Table 1: Example Values

2
S% 5
B variance in (number
x X+196:s . s? 2 (el of
Flow mean o U standard . (i.e., the
95% tolerance Interval - variance samples
Meter | flow rate (kg/sec) deviation (kg?/sec?) standard o IR
(kg/sec) 9 (kg/sec) 9 error the
squared)
mean
(kg?/sec?) )
Flow 12.25 39.06
Meter 245.00 245 +12.25 1.96 39.06 50 50
A = 6.25 = 0.7812
Flow 12.50 40.67
Meter 250.00 250 +12.50 1.96 40.67 100 100
B = 6.38 = 0.4067

Confidence Interval vs Tolerance Interval

This comes down to the difference between confidence interval and tolerance interval. The
confidence interval is intended to express how well a sample mean (x) is an estimate of a true
population mean value (M) by assigning confidence bounds (€95%). So we end up with a
statement that the population mean y has a 95% probability of falling into the confidence
interval x + €95%. In the case of DVR we are taking measurements of process parameters (flow,
pressure, etc.) and sample mean values of these measurements. We are using the mean value
(typically a 1-hour average) as our best estimate for the “true” value of that process parameter
(the population mean) for a given time period. We need to assign uncertainty to these inputs to
express how good the estimate is and this takes the form of a 95% confidence interval. This is
the intended purpose of the confidence interval, to express how well a sample mean estimates
an unknown population mean. A confidence interval can be expressed as:

_ S
Xt ta-yn-1) 75

Where: & = sample mean
s = sample standard deviation

Page 6 of 12



EPEI TR3002018337-RAl-14

Additional Response

t1y,n-1) = Student’s t-test value for selected confidence level y at (n -1)
degrees of freedom (at 95% confidence approximately 2, approaches
1.96 as n> )

One important consideration with instrumentation and measurement is that there can be
multiple unknown error sources that affect how well the measured sample mean approximates
the population mean (or the “true” process value). These error sources (systematic, random,
potential biases) are all estimated as 95% confidence intervals and combined to form a single
confidence interval and a more complete estimate about how close the observed sample mean
is to the true value.

With a tolerance interval there is no concern for how a sample mean compares to the population
mean. The tolerance interval is focused just on the spread of the sampled data and makes a
statement about spread of the population based on the sample data. The tolerance interval is
typically centered around the sample mean value (making it very similar to a confidence
interval) and requires specifying a confidence level and a fraction of the population. A tolerance
interval could be stated as: “we have y% confidence that (L,U) contains % of the population.”
A tolerance interval can be expressed as:

X+ ks (100Y,1001T) or x+ kS(-y%/ %)

Where: & = sample mean
s = sample standard deviation
k = k-factor from a reference table lookup, based on selected y confidence
level, selected 1T fraction of population, and sample size n '
L=x—ks
U=Xx+ks

If a tolerance interval is applied to a measured process parameter it will just examine the noise,
or spread, of the instrument based on a sample. The statement made by the tolerance interval
can tell us what process values we are most likely to measure in the future and the spread we
expect to measure. This can be useful some situations, but it only considers the repeatability of
the measurement (precision) and does not give us any space to account for the measurement
accuracy. The tolerance interval cannot account for any errors in measurement and effectively
assumes the data is without any error or bias.

The tolerance interval is describing how the process affects the measurement and the sample
data is treated as an outcome of the process. The confidence interval is focused on using the
measurement and sample data to make an inference about the process: an estimate of the
process parameter. The DVR process then seeks to make an improvement on this estimate
using redundant information and process equations.

! Note that with a 95% confidence level and 95% of population, the k-factor will approach a value of 1.96 as n
approaches infinity. This would match the formula shown in RAI-14 Table 1 for tolerance interval

Page 7 of 12



EPE' TR3002018337-RAl-14

Additional Response

Corrected Table 1

Below is a corrected version of RAI-14 Table 1 with what we consider the correct interpretation.
Additional text and columns are added to explain all the values.

Corrected RAI-14 Table 1: Example Values

S s)—c2
5 Combined i ' n

B s oe. s Loe. s t g y o §2 Variance in (number

X i =t (sjan ar Zar_] ?r Combined the mean of
Flow mean o . eviation eviation ) (i.e., the
Meter | flow rate ?nfie/?VCa)?nfldence in the of sample })/fasr':r‘:(:lz standard tsoa ?t)ptgeii

(kg/sec) mean (kg/sec) S P | error
(kg/sec) K (kg“/sec?) the
(kg/sec) squared) mean)
(kg?/sec?)

Flow 12.25 6.25 \/ﬁ 44.19%=
Meter 245.00 245 +12.25 1.96 =44.19 1953 1‘25 6.252=39.06 50
A = 6.25 '
Flow 12.50 6.38 63.782=
Meter 250.00 250 +12.50 1.96 * /100 4067 8'9 6.382=40.7 100
B =638 |=63.78 '

The uncertainty values in Table 1 (x12.25, +12.50) represent the total 95% confidence interval
for a sample mean value of each of the flow meters. They are intended to be an estimation of
unknown true flow values that fall within the interval. These uncertainty values are the Square
Root Sum of Squares (SRSS) of the systematic (or instrument) and random uncertainty
elements and can only apply to the mean measurement value:

1225 =+ /Sj,sys + gj,rand 12,50 = i\/fé_sys + gé,rand
Where:

EAsys , €B,sys = Systematic, or instrument channel uncertainties for flow meters

€Arand , €Brand = Random uncertainty of flow meter measurements (= 1.96 -

Ssample

)
If the uncertainty of a single flow reading was desired, instead of a mean value, the random
uncertainty portion would need to be considered differently. The benefit of using a mean
measurement value as an estimate is that the random uncertainty is reduced with the

becomes smaller). For

sample

incorporation of more measurement samples (with higher N, 1.96 - > N

an individual flow reading, random uncertainty would be €rand=7.96*Ssample. This requires
treating Ssample as an estimate of the measurement population’s true standard deviation (with
higher N, Ssampie won’t decrease). This individual measurement random uncertainty is higher
than uncertainty for the mean value by a factor of VN. The DVR process generally uses mean

values that are one-hour averages as inputs (T.R. Section 3.2.3, 6.2.10). The DVR results are
corrected mean values and individual measurement values are never considered.
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Based on the data in Table 1, the actual values of the systematic and random uncertainties are
not known. The raw sample data used to calculate the mean values would be needed to
calculate the standard deviation (ssample) and then apply the standard error formula.
Alternatively, the systematic uncertainty could be specified.

In the corrected Table 1 there are now “Combined” standard deviation and variance of the
sample. This is because we are taking a “combined” total uncertainty and then treating it as a
single standard error to solve for standard deviation and variance values that do not correspond
to the actual values that would come from the measurement data itself. This may work
mathematically because the SRSS total uncertainty value follows a normal distribution, but the
meaning and usefulness of these values is not clear. These values offer no information about
the measured data, they just describe the normal distribution of the combined total uncertainty.

The RAI-14 version of Table 1 applies the 1.960 definition of a 95% tolerance bound and for o is
applying the sample standard deviation. The corrected Table 1 shows the formula relating the
confidence interval, population standard deviation (s), standard deviation in the mean (5), and
the number of measurements (N). The definition of probabilistic confidence intervals requires
the application of § and not s. This is in accordance with numerous industry codes including
PTC 19.1, VDI-2048, and GUM.

An Updated RAI-14 Calculation

Below are updated equations and results from RAI-14 based on the changes made to Table 1
above. The original equation numbers were kept and some additional comments are also
included. The text in red indicates updated calculations and values based on the corrected
Table 1. Note that below the equations are evaluated as written in RAI-14 with the updated
values from Table 1. This still produces the wrong answer. To produce the correct answer
Equations 1, 4, and 5 should use values for 52 and not s°.

1 s4° — 54° —
_ - | X +t———"%
yA] si2+s52) M s 42 B

— = 2.2y _

fDVR(xA'xB'SA »Sp ) - [_ 2 2

Yp Sp _ 1 Sp _
—— Nt 1l-—— %
S42 + sp? Sp2 + sz

From the original RAI-14 Table 1, Equation 1 uses the variance terms (95% tol. Interval/1.96)?.
This was the correct numerical value to use, but it seems to be considered here a sample
variance when it should be considered the variance in the mean. We want (95% confidence
interval/1.96)? yielding 52, not s2. The correct reconciled value would be calculated with the
original RAI-14 Table 1 and Equation 1 as the number was correct (it was just labeled wrong).
However, when Table 1 is corrected, as discussed above, the result of Equation 1 would no
longer be the correct reconciled output because the values of s4 and sg are different.

2 _ (afDVR)Z s 24 (E)Z S}BZ Eq. 3

S5 = —
0x, M 0xy

y
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of 542 sg* 4067.89
#=<1— - 2>= = = 0.6756 Eq. 4
0x, 5%+ sp 54° + sp 1953.13 + 4067.89
of S4° sp? 1953.13

DR -2 = (1-——— )= = 0.3244 Eq. 5
Oxp S4° + sp Su° + s 1953.13 + 4067.89

The derivative terms for Equation 3 are recalculated above in Equations 4 and 5, applying the
“‘combined variance of the sample” term from the corrected Table 1. The above equations are
repeating what was demonstrated in RAI-14. The same issue with Equation 1 applies to
Equations 4 and 5, the variance values should be 52, not s>. When these values are applied the

results are 0.5103 (Eq 4) and 0.4897 (Eq 5) which, coincidentally, are the values originally
calculated in RAI-14.

2
s, 1953.13
s; 2= = = 39.06 Eq. 6
4 n, 50

, Sg° 4067.89

_2- B — 407 Eq. 7
T T T 100 g

Equations 6 and 7 are reevaluated with the corrected Table 1 values.

Finally, with Equation 8 an updated variance in the reconciled mean value (s}—,z) is determined
based on the corrected Table 1 values:

afDVR ’ af ?
s5° = (f) sz,0 + (T) Sz~ = (0.6756)% - 39.06 + (0.3244)* - 40.7

0xy O0xp Eq. 8
syz = 22.11 (Variance in the reconciled mean value)
sy = 4.702 (Std Dev in the reconciled mean value)

196 xs; =9.21 (95% confidence interval)

The result of the reevaluated Equation 8, s}—,2 = 22.11, whereas the initial value calculated in the

RAI-14 example was 0.30. The updated result is actually much closer to the value calculated by
the DVR method presented in the first response to RAI-14 (s; = 19.93).

After solving for sj—,2 RAI-14 moves on to Equation 9 and discussing a need to convert this

“variance in the mean of the reconciled value” to “variance in the reconciled measurement
itself.”

yo =1, sy Eq. 9

This requires coming up with some value for n,, an equivalent number of measurements for the
reconciled value. This is not a task that has a clear method or approach and the DVR process
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does not take this step. Table 2 of RAI-14 presents possible values of n, and the resulting
values for s,. The original Table 2 and a recalculated Table 2 are shown below.

Table 1: Possible values of n,, Updated Table 2:
ny Sy” ny Sy”
=n, =50 15.045 =n, =50 1105.5
=8 =75 22.5675 = M1 =75 1658.2
=ng =100 30.09 =ng =100 2210.9
=ny =np 19.93 =ny =ng 1319.5

The s,?values in the updated Table 2 are much larger than the initial RAI-14 values and are in
line with the “Combined Variance of Sample” values in the corrected Table 1. However, now
when the special case where na=ng is applied, the answer no longer matches the DVR result
(19.93, as demonstrated in the first RAI-14 response). This goes back to the variance values
being implemented in Equations 1, 6, and 7. This is demonstrated below:

sy? =n, - s3* (Eq9)

2 2
s,2=mn,- ((m) 52,2 + (2248) szz) (substitute Eq 3)

0%y d%g

2 2
52 =n,- <(afﬂ) (i) + (afDVR) (S:;ZD (substitute Eq 6,7, assuming n,=na=ns)

69?A ny 622}3 y

s,% = (afﬂ)z sS4 + (a—f)z sg? (ny values cancel)
y 9%, axg) "B VY

s, = (0.6756)* - 1953.13  + (0.3244)? - 4067.89 = 1319.56

The resulting s,>=1319.56 is similar in magnitude to the “Combined Variance of Sample” values
in the corrected Table 1. This equates to a “Combined Standard Deviation of Sample” s,=36.32,
also similar to the corrected Table 1 values.

Imagine now we wanted to apply this result to our reconciled mean flow value. We need a 95%
confidence interval for practical application. We cannot simply take 1.96*s,, because sy and the
36.32 value is a standard deviation of some imaginary reconciled sample of data and it would
repeat the mistake initially made in Table 1. The 1.96*s,, would actually be an approximated
Tolerance Interval for the reconciled flow telling us an interval that would contain 95% of the
reconciled flows with 95% confidence. To make a confidence interval for the reconciled mean
we would need to solve for ny, and apply the standard error formula:

2
_S§ _ 131956

n, = g o 59.68 (using Eq 9)
_ Sy 3632 _
95% Conf Int = 1.96 T 1.96 N +9.21

The resulting 95% Confidence Interval is £9.21 and this is the same value that is shown above
where Equation 8 was reevaluated. It is the initial DVR output. The additional steps of Equation
9 and Table 2 did not produce anything useful. To create an applicable Confidence Interval we
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had to integrate the ny value we just solved for back into the standard deviation s, that we
solved for and it ends up where we started at the Equation 8 result.

The inputs to DVR are mean values with confidence intervals that represent estimates of true
process values. DVR then makes corrections, when possible, to improve these estimates and
provides a corrected mean value and confidence interval that represents an improved estimate
of the true process value. The focus and purpose in on estimating the process value and this
requires mean values with confidence intervals.
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