

ProTechnics A Division of Core Laboratories LP

6510 W. Sam Houston Pkwy N. Houston, Texas 77401 USA Tel: 713.328.2320 Fax: 713.328.2163 www.protechnics.com

DAVID TRINKER Radiation Safety Officer Director Health, Safety, and Environmental

November 2, 2022

Neil O'Keefe, Jr., Chief Materials Licensing Branch U.S. NRC Region IV 1600 East Lamar Boulevard Arlington, Texas 76011-4511

Re: ProTechnics Request for Amendment to License No. 42-26928-01, Current Amendment No. 54

Dear Mr. O'Keefe:

ProTechnics, a Division of Core Laboratories L.P., hereby requests an amendment to our Nuclear Regulatory Commission (NRC) license cited above to obtain authorization to discharge well completion fluids containing de minimis amounts of short-lived radioactive tracers in offshore waters in the U.S. Outer Continental Shelf (OCS) of the Gulf of Mexico (GOM). In connection with well logging in the GOM, ProTechnics uses its Zero Wash[™] radioisotope tracers, consisting of Iridium-192 and Scandium-46, in performing single well subsurface tracer studies for client well owners and/or operators onshore and well lease operators offshore in established oil and gas production basins located in OCS waters. These radioactive tracers have been and presently are licensed for use by both the NRC and various Agreement States where well logging activities are performed.

ProTechnics offshore well logging and tracing services are a recognized key element supporting the oil and gas industry's proven practice of efficiently developing, optimizing, and extracting U.S. held oil and gas resources in a manner that is safe to humans and environmentally sound. These services are vital to the U.S. oil and gas industry.

ProTechnics modeling of potential radiation exposure to humans using recognized International Atomic Energy Administration (IAEA) methodology indicates discharges of Zero Wash[™] tracers to the GOM will have insignificant, if any, impact on human health and safety. Accordingly, this letter also serves to formally request NRC approval for ProTechnics to continue offshore oil and gas well tracer operations in the U.S. GOM during the period required for NRC to evaluate and make a formal determination of the acceptability of this request.

Disposal of similar concentrations of Zero Wash[™] tracers contained in reversed-out well completion fluids in offshore applications has previously been authorized by NRC for on-land disposal in well-site earthen burial pits and licensed disposal facilities and is an established practice for disposal of such materials following frac'ing operations in onshore oil, gas, and geothermal wells. Neil O'Keefe, Jr. Page 2 November 2, 2022

Background

The NRC previously authorized ProTechnics to dispose of Zero Wash[™] tracers onshore in limited concentrations up to 1,000 pCi/g. For offshore well logging and subsurface tracer studies, ProTechnics has been operating in good faith pursuant to authorization it received from the United States Environmental Protection Agency (USEPA) to discharge its Zero Wash[™] radioisotope tracers containing Iridium-192 and Scandium-46 into offshore waters of the OCS. The USEPA indicated by letter dated August 19, 2003 that offshore discharge of these isotopes entrained in well treatment fluids in concentrations up to 2,000 pCi/g would be in compliance with National Pollutant Discharge Elimination System (NPDES) General Permit requirements in the Offshore Subcategory of Oil and Gas Extraction in the Western Outer Continental Shelf of the Gulf of Mexico (GMG290000), and as such no additional monitoring would be required.

However, in its proposed reissuance of NPDES General Permit No. GMG290000, the USEPA noted that the renewal permit will no longer authorize discharge of radioactive materials that are expressly within the jurisdiction of the NRC. The USEPA stated in its fact sheet supporting its proposed general permit that the discharge of Iridium-192 and Scandium-46 in the OCS, historically used in small amounts in connection with proppant injection, cannot be authorized by the USEPA unless separately authorized by the NRC. The current NPDES General Permit, re-issued on October 1, 2017, expired at midnight, Central Time, on September 30, 2022. Since the 2017 permit expired before its reissuance, the USEPA notified permittees that the 2017 permit would automatically enter administrative continuance as provided by the Administrative Procedures Act until reissuance. As of the date of this letter, the 2017 permit remains effective in "Administratively Continued Status" according to the USEPA.

ProTechnics is therefore seeking express approval from the NRC to discharge radioisotope tracers in offshore marine waters in accordance with the disposal methods covered in 10 CFR Subpart K – Waste Disposal - §20.2001, and supplemented by the IAEA's specific assessment procedure for discharge of radioactive materials at sea, as described in IAEA-TECDOC-1759, "Determining the Suitability of Materials for Disposal at Sea Under the London Convention 1972 and London Protocol 1996: A Radiological Assessment Procedure."

ProTechnics' assessment of individual and collective dose rates to humans is based on the IAEA's specific assessment procedure, which the IAEA describes as an "inherently conservative procedure" using "conservative models and cautious assumptions that result in the overestimation of the doses due to candidate materials that might be disposed of at sea in near coastal waters under de minimis provisions." ProTechnics' injection of licensed radioactive tracers occurs in wells at average depths of 1,000 meters or greater below the water surface and at distances averaging approximately 100 nautical miles offshore. As such, and consistent with IAEA guidance, the radiological consequence of disposal at sea would be expected to result in significantly lower radiation exposures than those calculated using the conservative IAEA methodology.

For purposes of calculating dose and expected impacts on human health and the environment, ProTechnics used the following concentrations:

• Routine (i.e., average) estimated radioisotope discharge concentrations up to 1,350 pCi/g, based on ProTechnics' "traditional" injection rate for historical GOM frac design tracer studies. These concentrations are approximately equivalent to an injection rate of 0.604 mCi per 1,000 lbs. of proppant sand.

- Routine (i.e., average) injected radioisotope concentrations approximating 1,000 pCi/g. This is the same concentration limit previously approved by NRC for disposal of onshore well completion flowback waste streams containing Zero Wash[™] tracers using either (i) decay-in-storage inside local earthen-covered burial pits at a well-site or (ii) disposal in a landfill or Class II disposal well licensed to receive and store Zero Wash[™] tracer waste.
- Estimated worst-case (i.e., maximum) injected radioisotope concentrations approximating values up to 1,550 pCi/g.

Analysis and Basis of Conclusions

Process Description

ZeroWashTM tracers are manufactured using a patented process that fixes non-water-soluble tracer metal oxide particles into the matrix of a non-water-soluble high strength ceramic bead. The ceramic bead is the size of typical frac'ing proppants (approximately 40/70 mesh size). This design is intended to decrease the impact on any environmental system, whether it's topographical, geological, meteorological, or hydrological. Documented testing from Texas A&M University confirms there is no leaching or wash-off of radioactive material into any fluids, including water tables, or mechanical equipment of wells or downstream production equipment. In other words, ZeroWashTM ceramic tracer beads, and radioisotope metal oxide particles affixed within the ceramic beads' structure, are chemically inert, insoluble, and molecularly non-binding to water or other solvents, as well as other solid materials contained inside frac and reverse-out well streams. The ZeroWashTM product will not dissolve or leach out of the bead to combine with water. Thus, the nature of adjacent environmental settings is of no consequence, and there are no adverse effects on the environment. Please refer to ProTechnics' Safety Data Sheet (SDS) for ZeroWashTM radioisotope tracers, attached as <u>Appendix 1</u>, and the test results performed by Texas A&M University, attached as <u>Appendix 2</u>.

ProTechnics performs tracer studies predominantly in single well applications. In the course of well logging operations, ZeroWash[™] tracers are injected during the proppant pumping stages of the frac job. After the formation is sufficiently pressurized, tracer-laden solid proppant and completions fluids remaining in the well bore are returned to the surface during the fluid flush stage. For a well that goes to completion, the final flush stage of a frac schedule pushes as much of the proppant into the formation as possible, leaving approximately 5 barrels of proppant, tracer, and completions fluids outside of the formation. Generally speaking, all of the proppant and tracer material that enters the formation will be retained behind the screen mesh, which operates as a check valve, and will not return to the surface during reverse-out. Only the material remaining on the well bore side of the screen mesh, consisting of a slurry of tracer, proppant, and completions fluids, is returned to the surface. For safety reasons and principles of ALARA, the flushed-out fluid is pumped directly overboard into the GOM rather than contained in storage on a drilling rig or marine vessel. The weight of the traced proppant returned to the surface is accurately determined and reported on the post treatment field report for each frac job.

Please refer to <u>Appendix 3</u> for a more detailed description of the reverse-out process as well as a basic frac system schematic of the fluid flow path.

Neil O'Keefe, Jr. Page 4 November 2, 2022

Offshore Discharge (Disposal)

10 CFR §20.2001 authorizes various methods of radioactive (byproduct) material disposal, including by transfer to an authorized waste disposal site, by decay in storage, by release in effluent streams within prescribed limits, and as otherwise authorized pursuant to Subpart K, §20.2002 et seq.

10 CFR §20.2003, covering disposal by release into sanitary sewerage, is not applicable to ProTechnics' well logging and tracing activities for two reasons. The tracers are discharged directly in the GOM and therefore do not enter sewer systems offshore or on land, and furthermore, the tracers are not soluble in water.

Effluent disposal pursuant to the dose limits cited in 10 CFR §20.1301 and 1302 are applicable in the context of discharges into the general environment where it is assumed that the radioactive material will enter freshwater aquifers. The dose limits established by this disposal method are exceedingly low and arguably not applicable to discharge into marine waters. OCS discharge of ZeroWashTM tracers do not interface with inland surface water drainage systems, including streams, rivers, lakes, ponds, water tables, and other natural bodies or sources of freshwater that could become potential sources of potable water.

Appendix B to 10 CFR Part 20, Table 2, provides effluent concentration limits in water equal to 1.0×10^{-5} µCi/ml for both Iridium-192 and Scandium-46. The notes to Table 2 indicate that the water concentrations were derived "by taking the most restrictive occupational stochastic oral ingestion Annual Limit on Intake (ALI) and dividing by 7.3 x 10^7 ml." The factor of 7.3 x 10^7 (ml) includes the following components:

- a factor of 50 to relate the 5-rem annual occupational dose limit to the 0.1-rem limit for members of the public,
- a factor of 2 to adjust the occupational values (derived for adults) so that they are applicable to other age groups; and
- a factor of 7.3×10^5 (ml), which is the annual water intake of "Reference Man."

Subpart D, §20.1302 provides that a licensee may demonstrate compliance with the annual dose limit in §20.1301 by demonstrating (i) that the annual average concentrations of radioactive material released in liquid effluents at the boundary of an unrestricted area do not exceed the values set forth in Table 2 of Appendix B to part 20, and (ii) that if an individual were continuously present in an unrestricted area, the dose from external sources would not exceed 0.002 rem (0.02 mSv) in an hour and 0.05 rem (0.5 mSv) in a year. §20.1302(c) further provides that the effluent concentrations in Appendix B may be adjusted, upon approval from the NRC, to take into account the actual chemical and physical characteristics of the effluents, including solubility, density, radioactive decay equilibrium and chemical form.

Importantly, the public would likely never be exposed to discharges into the GOM at distances tens of nautical miles offshore, and further still, any such discharge would not enter the public drinking water system. Therefore, we submit the effluent concentration limit of $1.0 \times 10^{-5} \,\mu\text{Ci/ml}$ should be adjusted to reduce the annual water intake assumption. According to the EPA's Exposure Factors handbook, the average amount of seawater ingested during a 45-minute swim is approximately 27 ml. Assuming an adult spends 1,600 hours on the shore and approximately twenty-five percent of that time in the water, the total amount of water ingested per year is 1.42×10^4 ml. Making this adjustment, the revised effluent concentration limit would be $6.35 \times 10^{-4} \,\mu\text{Ci/ml}$. This adjustment does not take into account two additional unique characteristics of ZeroWashTM tracers, that is, they are insoluble in water and therefore will not uniformly disperse in solution, and further the tracer beads have a specific gravity that is more than 2.5 times the density of seawater, causing the solid beads to settle out of the liquid phase. Using the IAEA

Neil O'Keefe, Jr. Page 5 November 2, 2022

methods, the projected external dose to the public from any radionuclide-bearing proppants that might wash up on the shore is well below the limit set out by the IAEA. Please refer to <u>Appendix 5</u> for a summary of the calculation methodology and data supporting the adjusted effluent concentration limit.

The two Zero WashTM tracers used in offshore GOM wells, Iridium-192 and Scandium-46, have radioactive half-lives of 74 and 84 days, respectively. From a public safety perspective, considering water depth and distance from land as well as the physical and radiological characteristics of the tracer beads, offshore disposal during isotope decay is arguably safer to humans given the exceedingly low probability of exposure.

Collection, transfer, and transport of completion fluids containing ZeroWash[™] tracers to an authorized onshore land disposal facility has a significant disadvantage relating to safety compared to offshore discharge at sea, tens of nautical miles from human populations. Offshore collection and containment on surface oil rigs and transfer to marine service vessels for transport to land, followed by additional transfer from marine vessels to overland transport trucks, increases worker exposure and thus is contrary to ALARA principal objectives of minimizing human exposure. Such transport also increases the risk of spills to areas in close proximity to human populations and freshwater sources of drinking water.

IAEA Methodology and Results

ProTechnics also evaluated individual and collective dose limits in accordance with guidelines established by the IAEA (IAEA-TECDOC-1759, "Determining the Suitability of Materials for Disposal at Sea Under the London Convention of 1972 and London Protocol 1996: A Radiological Assessment Procedure"). The IAEA publication describes a comprehensive method for evaluating the impact on humans of releasing radioactive material into an ocean environment.

ProTechnics performed calculations using the IAEA methodology to estimate representative discharge concentrations for three discharge scenarios: (i) a routine case (average case) estimated discharge concentration based on its "traditional" frac design; (ii) a routine case (average case) estimated discharge concentration based on a redesigned well frac injection rate; and (iii) a worst credible case (maximum case) estimated discharge concentration. Both discharge concentrations are expressed as a ratio of tracer activity concentration in the solids component of reverse-out well completion fluids.

Calculations are based on job data specific to 20 actual frac jobs performed in the U.S GOM during CY2022, beginning January 2022 through early September 2022. The job data was extrapolated to estimate an expected forty jobs per year to assess potential Individual Dose to the Public and Collective Public Dose as outlined in IAEA-TECDOC-1759. For U.S GOM subsurface tracer studies, ProTechnics uses only two isotopes, Iridium-192 and Scandium-46. Scandium-46 is always injected first in the frac job, followed by Iridium-192. Once a well "screens-out", meaning the reservoir is pressurized to the point that it will not accept any additional injected proppant, residual proppant and tracer mix that has not passed through the downhole frac gravel pack assembly will be returned to the frac injection equipment located at the water surface. Reverse-out fluids flow is based on the last-in, first-out principle. Thus, in every offshore frac job, the reverse-out frac stream contains Iridium-192 in measurable quantities and only negligible, if any, quantities of Scandium-46.

ProTechnics performed three sets of calculations for each discharge case. The first set of discharge concentrations was performed based on a target design tracer injection value equal to 0.604 mCi Iridium-192 per 1,000 lbs. of proppant sand (approximately 1,350 pCi/g), representing a "traditional" frac design maximum injection concentration for GOM well frac designs. Subsequently, a redesigned frac design

Neil O'Keefe, Jr. Page 6 November 2, 2022

maximum injection concentration was calculated with the intent to limit discharge concentrations into OCS waters to 1,000 pCi/g or less. Finally, a third calculation was performed using a worst credible case discharge concentration of up to 1,550 pCi/g. Results of these calculations are presented in the tables below using the following concentrations:

- Routine estimated discharge concentration up to 1,350 pCi/g, based on "traditional" GOM frac design tracer injection rate approximately equivalent to 0.604 mCi per 1,000 lbs. of proppant sand.
- Routine estimated discharge concentration up to 1,000 pCi/g based on a redesign of well frac tracer injection rates. The "redesigned" frac design injection rate, effective October 1, 2022, is equal to 0.454 mCi per 1,000 lbs. of proppant sand.
- Worst credible case estimated discharge concentration up to 1,550 pCi/g based on a "traditional" GOM frac design tracer injection rate approximately equal to 0.697 mCi per 1,000 lbs. of proppant sand. This number represents the worst case of 20 jobs performed during CY2022 through early September.

Neil O'Keefe, Jr. Page 7 November 2, 2022

		Cal	Calculated Value			
Individual Public Dose	Symbol	Redesigned 1,000 pCi/g	Traditional 1,350 pCi/g	Worst 1,550 pCi/g	Units	
Dose from External Exposure	$E_{ext, public}$	8.93E-02	1.19E-01	1.37E-01	µSv/year	
Dose from Ingestion of Seafood - fish	E _{ing, food,} public	1.74E-05	2.31E-05	2.67E-05	μSv/year	
Dose from Ingestion of Seafood - shellfish	E _{ing, food,} public	2.61E-05	3.46E-05	4.01E-05	μSv/year	
Dose from ingestion of Beach Sediment	Eing shore, public	1.39E-05	1.85E-05	2.14E-05	μSv/year	
Dose from inhalation of Beach Sediment	E _{inh shore,} public	2.77E-09	3.69E-09	4.26E-09	µSv/year	
Dose from Inhalation of Sea Spray	Einh, spray, public	1.88E-06	2.50E-06	2.89E-06	μSv/year	
Dose from ingestion of seawater	Eing, seawater	2.71E-06	3.61E-06	4.04E-06	µSv/year	
Total Individual Dose to Members of the Public	$E_{\text{ind, public}}$	8.94E-02	1.19E-01	1.37E-01	µSv/year	

Individual Public Doses Calculated for Redesigned, Traditional and Worst-Case Scenarios

Collective Public Dose Calculated for Redesigned, Traditional and Worst-Case Scenarios

		Ca	Calculated Value			
Collective Public Dose	Symbol	Redesigned 1,000 pCi/g	Traditional 1,350 pCi/g	Worst 1,550 pCi/g	Units	
Collective Dose from Exposure on Shore	E _{coll, shore,} public	1.12E-03	1.48E-03	1.72E-03	man-Sv/year	
Collective Dose from Seafood Consumption - fish	E _{coll ing,} public	3.32E-06	4.42E-06	4.42E-06	man-Sv/year	
Collective Dose from Seafood Consumption - shellfish	E _{coll ing,} public	5.81E-06	7.73E-06	7.73E-06	man-Sv/year	
Total Collective Dose	$E_{coll, Public}$	1.13E-03	1.50E-03	1.73E-03	man-Sv/year	

The supporting calculations for the results in the foregoing tables are set forth in Appendix 5.

Neil O'Keefe, Jr. Page 8 November 2, 2022

In both Individual Public Dose and Collective Public Dose, using actual sample data from ProTechnics' 2022 GOM tracer operations, the levels returned to surface were determined to be de minimis under the IAEA-TECDOC-1759 guidance. Please refer to <u>Appendix 4</u> for a detailed discussion of the IAEA methodology, together with results and conclusions based on actual frac job data for ProTechnics' tracer studies in the GOM.

In closing, ProTechnics requests a license amendment pursuant to 10 C.F.R. §20.2002 approving the disposal of limited concentrations of short-lived radioactive tracers in the Gulf of Mexico. Because ProTechnics offshore well logging and tracing services are a vital element supporting the U.S. oil and gas industry, we ask that the Commission use its enforcement discretion to allow ProTechnics to continue offshore well logging and tracing services pending a final action on our request.

We appreciate your consideration of this matter and look forward to working with you toward resolution.

Sincerely,

.1)

rike

David W. Trinker Radiation Safety Officer Core Laboratories – ProTechnics Division

List of Appendices:

Appendix 1	ProTechnics Safety Data Sheet (SDS) for ZeroWash™ Radioisotope Tracers
Appendix 2	Results of ZeroWash TM Tracer Testing Performed by Texas A&M University
Appendix 3	Offshore Oil and Gas Well Completions Fluids and Materials Reverse-Out Process Description and Schematic Flow Diagram
Appendix 4	Evaluation of Impacts Related to Discharging De Minimis Amounts of Short-Lived Radioisotopes to the Gulf of Mexico
Appendix 5	Public Dose Calculation and Supporting Data (Excel files)

APPENDIX 1

ProTechnics Safety Data Sheet (SDS) for ZeroWash[™] Radioisotope Tracers

SAFETY DATA SHEET

Date-Issued: 05-2015 SDS Ref. No: ZW Date-Revised: 5/12/2021 Revision No:003

1. PRODUCT AND COMPANY IDENTIFICATION

1.1 Product Identifiers

Product name	:	Zero Wash Tracer
Product number	:	NA
Generic name	:	IRZW, SCZW, SBZW, and low Density (LD)

1.2 Relevant identified used of the substance or mixture and uses advised against

Identified uses	:	Diagnostic
Uses advised against	:	Not available

1.3 Details of the supplier of the safety data sheet

Company	:	ProTechnics Division of Core Laboratories 6510 W. Sam Houston Parkway N. Houston, Texas 77041
Telephone	:	713-328-2320

1.4 Emergency telephone number

Emergency phone number Transportation emergency	:	713-328-2320 1-800-535-5053 (inside US)
		1-352-323-3500 collect (outside US)

2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

GHS classification in accordance with 29 CFR 1910 (OSHA HCS)

Not Classified – Radioactive Material

2.2 GHS Label elements, including precautionary statements

Pictogram: None

Signal word: None Associated – Radioactive Material

Hazard statement(s): No hazard statement associated – Radioactive Material. Zero Wash is a small bead that emits low gamma radiation in small quantities.

Precautionary statement(s)

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - Radioactive Material

3. COMPOSITION / INFORMATION ON INGREDIENTS

3.1 Substances

Substance/ mixture Mixture

Ingredient	CAS No.	Percent	Hazardous
Ceramic Proppant A mixture of inorganic earthen materials	Proprietary	100	Yes
(Earthen Oxides)			

4. FIRST AID MEASURES

4.1 Description of first aid measures

General advice

Move away from source. Use ALARA - Time, Distance, Shielding.

If inhaled

Not respirable.

In case of skin contact Remove from contact with skin. Keep distance.

In case of eye contact

Immediately flush eyes with plenty of water for two to three minutes. Remove any contact lenses and continue flushing for 15 minutes. If irritation continues, consult a physician.

If swallowed Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed

No side effects known with short term, avoid long term exposure.

4.3 Indication of any immediate medical attention and special treatment needed

Remove bead and place in shielding or create distance.

5. FIRE FIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media

Carbon Dioxide (this reduces the spread of Zero Wash material).

5.2 Special hazards arising from the substance or mixture

NA

5.3 Advice for firefighters

Low activity Gamma emitting radioactive material-low exposure

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

6.2 Environmental precautions

CONTROL THE AREA. Rubber gloves, boots and safety glasses should be worn when handling.

6.3 Methods and materials for containment and cleanup

Clean up spill area by scooping up spilled material and transfer to a container. If clothing indicates the presence of Zero Wash material, remove the bead with adhesive tape, hold tape containing bead for decay in proper storage area. If numerous beads are found on clothing, remove clothing and place in a container for later cleaning or disposal. When any spill or release occurs, ProTechnics should be notified (713-328-2320) to supervise clean-up efforts.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Only ProTechnics Trained tracer supervisors should handle this material as they are trained in how to contain, remove and find the material.

7.2 Conditions for safe storage

Normal

7.3 Specific end uses(s)

Diagnostic.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters

Non radiation workers should avoid any contact with material. Restricted area for use should be set at 2mR/hr and prevent any unintentional exposure.

8.2 Exposure controls

Appropriate engineering controls

Material stored in lead lined containers and used in restricted areas only. Only trained Tracing supervisors have access and control of the material.

Personal protective equipment

Eye/face protection

Safety glasses with side-shields conforming to EN166. Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN166 (EU).

Skin protection

Handle with chemical-resistant gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Body protection

Standard FRC should be adequate and use of proper surveying techniques used when material is being used.

Control of environmental exposure

All material should be captured and managed by ProTechnics, if material is noticed by survey please contact ProTechnics at 713-328-2320.

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

a)	Appearance	Form: Small grey colored ceramic bea Color: grey	d
b)	Odor	Odorless	
c)	Boiling point	NA	
d)	Freeze point	NA	
e)	Density/Specific Gravity	2.6 g/mL	
f)	Flash point	Not flammable	
g)	pH	Not available	
h)	Evaporation factor	Not determined	
i)	Solubility	not Soluble in water	
j)	Vapor pressure	Not determined	
k)	Oxidizing properties	Not determined	
1)	Vapor density	Not determined	
m)	Viscosity	Not determined	

9.2 Other safety information

No data available.

10. STABILITY AND REACTIVITY

10.1 Reactivity

NA

10.2 Chemical stability

The product is stable under normal ambient conditions of temperature and pressure.

10.3 Possibility of hazardous reactions

Will not polymerize.

10.4 Conditions to avoid

Combination of material with more like material could increase exposure levels. The smaller the amount the lower the exposure rates should be.

10.5 Incompatible materials

NA

10.6 Hazardous decomposition products

None. All ZW material decay to stable state.

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity – oral

May cause Eye and Mucous membrane irritation. Ingestion is the only method of internal consumption.

Acute toxicity – dermal Irritation or itching of the skin.

Acute toxicity – inhalation ZERO WASH particle is too large to inhale.

Skin corrosion/irritation NA

Serious eye damage/irritation NA

Respiratory sensitization ZERO WASH particle is too large to inhale.

Skin sensitization

Irritation or itching of the skin.

Germ cell mutagenicity

Genotoxicity – in vitro Based on available data the classification criteria are not met.

Genotoxicity- in vivo

Based on available data the classification criteria are not met.

Carcinogenicity

- IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible, or confirmed human carcinogen by IARC.
- ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.
- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

Reproductive toxicity – fertility

Based on available data the classification criteria are not met.

Reproductive toxicity – development

Based on available data the classification criteria are not met.

Specific target organ toxicity – **single exposure** Low doses not applicable.

Specific target organ toxicity – repeated exposure Internal – possible gamma exposure.

Aspiration hazard

Not anticipated to present an aspiration hazard, based on Physical structure.

To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

12. ECOLOGICAL INFORMATION

12.1 Toxicity

NA

12.2 Persistence and degradability

Half life: IRZW-74 days, SCZW-84 days, SBZW-60 days

12.3 Bioaccumulative potential

No data available.

12.4 Mobility in soil

Zero Wash does not plate and will not breakdown in soil.

12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment is not available as chemical safety assessment not required/ not Conducted for radioactive isotopes.

12.6 Other adverse effects

No data available.

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Product

DISPOSAL METHOD: Dispose of waste at an appropriate waste disposal facility according to current applicable laws and regulations.

PRODUCT DISPOSAL: Dispose of at a supervised appropriate waste disposal facility according to current applicable laws and regulations and product characteristics at time of disposal.

EMPTY CONTAINER: Contaminated containers should be cleaned and disposed of in the same manner as the product in accordance with applicable regulations.

GENERAL COMMENTS: Refer to Section 6, Accidental Release Measures for additional information.

Contaminated packaging

Contaminated containers should be cleaned and disposed of in the same manner as the product in accordance with applicable regulations. Please contact ProTechnics for Disposal guidance at 713-328-2320.

14. TRANSPORT INFORMATION

DOT (US)

DOT (DEPARTMENT OF TRANSPORTATION) PROPER SHIPPING NAME: Radioactive material, Type A package TECHNICAL NAME: Zero Wash Tracer LABEL: Diamond. Hazard Class/Division: 7 United Nations number: 2915

IMDG

VESSEL (IMO/IMDG) PROPER SHIPPING NAME: Radioactive material, Type A package TECHNICAL NAME: Zero Wash Tracer LABEL: Diamond. United Nations number: 2915

IATA

AIR – Forbidden on Passenger carrying aircraft. PROPER SHIPPING NAME: Radioactive material, Type A package TECHNICAL NAME: Zero Wash Tracer LABEL: Diamond Hazard Class/Division: 7 United Nations number: 2915

15. REGULATORY INFORMATION

SARA 302 Components

SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

SAR 311/312: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 311/312.

CERCLA (Comprehensive Response, Compensation, and Liability Act) Not Applicable.

TSCA (Toxic Substance Control Act) Not Applicable.

16. OTHER INFORMATION

HMIS Rating	
Health Hazard:	1
Chronic Health Hazard:	1
Flammability:	0
Physical Hazard:	0
NFPA Rating	
Health Hazard:	1
Fire Hazard:	0
Reactivity Hazard:	0

MANUFACTURER DISCLAIMER: Information given herein is offered in good faith as accurate, but without guarantee. Conditions of use and suitability of the product for particular uses are beyond our control; all risks of use of the product are therefore assumed by the user. Nothing is intended as a recommendation for uses which infringe valid patents or as extending license under valid patents. Appropriate warnings and safe handling procedures should be provided to handlers and users.

Prepared by: ProTechnics Environmental Compliance Department, Houston, Texas USA

Date of revision: 05/12/2021

Contact information: 713-328-2320

APPENDIX 2

Results of ZeroWash[™] Tracer Testing Performed by Texas A&M University

TEXAS ENGINEERING EXPERIMENT STATION

TEXAS A&M UNIVERSITY

COLLEGE STATION TEXAS 77843-3575

11 July 1991

ProTechnics International 14760 Memorial Drive, Suite 206 Houston, Texas 77079

We have completed the wash test on your patent pending radioactive carrier PTI-ZW under the testing criteria that you included in your guidelines and our input that we discussed. The test was performed and completed on June 19, 1991. Listed below are the test results.

Sincerely,

John 2 Knoh

John L. Krohn Assistant Director

JLK/ym

RECEIVED 13 JUL 1991

Radioactive Wash Test Results (PTI-ZW)

Washoff Washoff **Temp** 80⁰ F 180⁰ F <u>KCL Water</u> 12/1000 of 1% 40/1000 of 1% <u>15% HCL</u> 17/1000 of 1 % 41/1000 of 1 %

Note : These washoff amounts could be considered negligible in view of the probability of filter washby of production fines.

APPENDIX 3

Offshore Oil and Gas Well Completions Fluids and Materials Reverse-Out Process Description and Schematic Flow Diagram

This Appendix provides a high-level description of the well frac reverse-out process and a schematic flow diagram for reference.

Location of Frac and Tracing Equipment

Frac equipment typically belongs to the client operating company's well completions service contractor. Drilling rigs generally are located on either (1) the client operating company's combined drilling and production platform (which is in a fixed geo-coordinate location) or (B) the drilling contractor's temporary floating drilling ship used for servicing deep water wells, or a temporary jack-up rig used for servicing shallow water wells.

The frac service contractor's frac'ing equipment (tanks, pumps, and piping) can be located on either the drilling contractor's drilling ship or jack-up rig or floating barge / work boat. These floating or jack-up temporary work "platforms" are temporarily stationed (positioned) adjacent to the client's combined drilling and production platform or the drilling contractor's floating or jack-up drill rig. Typically, frac proppant (sand) tanks and pumps are located on floating barges, which are temporarily positioned adjacent to the permanent platform or temporary drill rig. Frac proppant/sand is located on the barge or work boat. Temporary piping and/or hose (CoFlex hose) connections are made between these vessels to complete the flow path during injection of proppant, tracer, associated frac fluids, and well completion reverse-out fluids.

ProTechnics' frac tracing equipment and supplies are co-located with the frac service contractor's frac equipment and supplies.

Summary Description of Well Frac Completion Fluids and Materials Reverse-Out Process

On a normal job, once stage 1 of the actual frac schedule has been completed the following tracer injection stages are executed during the period while proppant is injected into the well. Proppant is added until commencement of the final flush stage, which begins immediately when the proppant slurry injection process is stopped.

The frac company will accomplish three schedules, a primary schedule based on well information, a redesign schedule adjusted for onsite information and an actual schedule compiled from data collected during the actual job. Below is an example of a typical tracing operation.

	Actual Schedule						
Stage	Description	Clean Volume (BBI)	Pump Rate (BPM)	Average PPA	Slurry Volume (BBL)	Stage Proppant (Lbs.)	
1	PAD	166.10	18.70	0.00	166.10	0.00	
2	0.5 PPA Hold	48.20	18.70	0.54	49.30	1086.00	
3	1 PPA Hold	48.34	18.70	1.00	50.40	2038.00	
4	2 PPA Hold	48.05	18.70	2.04	52.20	4115.00	
5	3 PPA Hold	48.16	18.70	3.06	54.40	6185.00	
6	3 to 10 PPA Ramp	191.13	18.70	6.42	243.10	51513.00	
7	10 PPA Hold	47.89	18.70	10.01	68.20	20136.00	
8	10 PPA Hold	90.98	18.70	10.54	131.60	40267.00	
9	Flush	532.70	18.70	0.00	532.70	0.00	
Actual S	Schedule Totals	1221.56			1348.00	125340	

PPA = Pounds of Proppant Added Max (pounds of proppant/gallon of fluid)

Stage 1

• No proppant is added. The well is being prepped for the following stages.

Stages 2-8

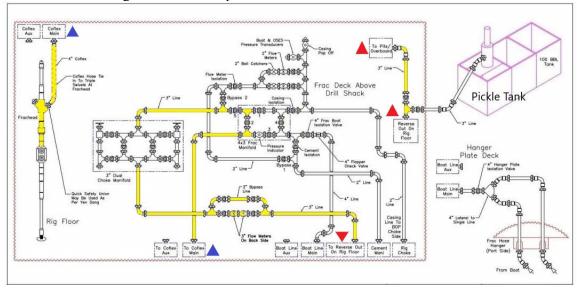
(0.5 - 6 PPA, Sc-46 injected)

- The main frac begins adding proppant to the fluid.
- Start trace as per schedule adding Sc-46 in the first half of the proppant stages 0.5 to 6 PPA.
- Sc-46 is traced during the first half of the frac stages and out into the formation for its ability to read at further distances from the well bore.

(7 - 10 PPA, Ir-192 injected)

- Ir-192 is traced during the second half of the frac stages 7 to 10 PPA until completion and therefore will account for most all tracer material reversed-out. There could be negligible amounts of Sc-46 if any material should adhere to the well bore or equipment.
- When the boat supervisor calls the end of sand stages, proppant injection is stopped by the Operator and ProTechnics stops tracing.

Stage 9


Flush

- A flush is performed to displace the frac material in the well down to the cross-over without overdisplacing the frac treatment.
- Once a screen-out is achieved or induced resulting in a rapid rise in pump pressure, proppant pumping will be shut down.

Reverse-out

• An announcement is broadcast restricting all non-essential personnel from the high-pressure reverse-out operations areas prior to commencement.

- The drill rig shifts the tool to the reverse position and starts reversing out the flush and the remaining sand/proppants left above the cross-over. While reverse-out volume is variable, displacement is typically just above 5 barrels of pipe volume from the crossover for wells that go to completion.
- The only tracer-laden fluids returned to the surface during reverse-out are those fluids remaining above the gravel pack assembly after the well screens out.
- Reverse-out travels through the restricted area and will go overboard until clear of sand/proppants.
- ProTechnics representatives on location will monitor the isotope activity to make sure reverse-out is clean of activity before returning flow back to the rig.
- During the reverse-out, and throughout the frac operation, no fluids or materials return to the frac boat. Flowback to frac boat is prevented by check valves in all lines. All reverse-out operations and responsibilities, including lines, valves and overboard piping are located and operated on the drilling rig itself.

Schematic Flow Diagram - Well Completion Reverse-Out

APPENDIX 4

Evaluation of Impacts Related to Discharging De Minimis Amounts of Short-lived Radioisotopes to the Gulf of Mexico

Core Laboratories has completed an assessment to determine the radiological impacts of discharging *de minimis* amounts of short-lived radioactive tracers in the Gulf of Mexico. Results show that there is no significant impact on human health and safety.

The analysis was conducted using the methodology set out in the IAEA's publication, "Determining the Suitability of Materials for Disposal at Sea Under the London Convention of 1972 and London Protocol 1996: A Radiological Assessment Procedure." This publication describes a comprehensive method for evaluating the impact of releasing radioactive material into an ocean environment. According to the IAEA, this document "… is expected to be used mainly by national regulatory authorities responsible for authorizing disposal at sea of candidate materials, as well as those companies and individuals applying to obtain permission from such authorities to dispose of these materials at sea. It is also intended to provide guidance to national radiological protection authorities that might become involved in determining whether candidate materials can be designated as de minimis for the purpose of the London Convention and Protocol."

The assessment process described in the report is inherently very conservative as provided in the London Convention and the London Protocol, both of which address the prevention of marine pollution by dumping of wastes and other matter at sea. In conducting the analysis described in this report, Core Laboratories has incorporated these conservative parameters and methods, except where site specific parameters were available and defensible.

The analysis was conducted using the procedure outlined in Section 5 and appendices I and II of the IAEA document. The specific inputs to the procedure consisted primarily of the fractional amount and quantity by dry weight of the reverse-out proppants from the well, and the measured quantity of the 74-day half-life, Ir-192, which is the radioisotope of concern. Because Core Laboratories is already licensed for the handling of the radioisotope and because doses to marine biota and fauna are not required in the applicable NRC regulations, the assessment was limited to impact on the public.

According to the IAEA, "... candidate materials comprising sediments containing only relatively minor amounts of artificial radionuclides may not need to be subjected to an unnecessarily detailed or complex assessment process." In that regard, Core Laboratories conducted a screening assessment as suggested by the IAEA. Using the screening coefficients and the activity concentration of the candidate material (irradiated Ir-192 oxide metal particles contained within insoluble high-strength ceramic Zero WashTM tracer beads), the calculated public individual dose and the collective public dose were well below the reference dose. Nonetheless, Core Laboratories has chosen to conduct a specific assessment in the interest of completeness.

Analysis

For this analysis, the methodology described in the IAEA document was used to assess radiation doses to members of the public most exposed to radionuclides from the material released from offshore platforms through the ingestion of marine foods, caught in the vicinity of the platform, and occupancy on adjacent beaches.

Generally speaking, all of the proppant and tracer material that enters the formation is retained behind the screen mesh and not returned to the surface during reverse-out under normal well operation. Only the material remaining on the well bore side of the screen mesh, consisting of a slurry of tracer, proppant, and completions fluids, is returned to the surface. For purposes of calculating dose and expected impacts on human health and the environment, ProTechnics used the following three concentrations:

- Routine estimated discharge concentration up to 1,350 pCi/g, based on "traditional" GOM frac design tracer injection rate approximately equal to an average value of 0.604 mCi per 1,000 lbs. of proppant sand.
- Routine estimated discharge concentration up to 1,000 pCi/g based on redesign of well frac tracer injection rates. The "redesigned" frac design injection rate is equal to 0.454 mCi per 1,000 lbs. of proppant sand.
- Worst credible case estimated discharge concentration up to 1,550 pCi/g based on a "traditional" GOM frac design tracer injection rate approximately equal to 0.697 mCi per 1,000 lbs. of proppant sand. This number represents the highest case of 20 jobs performed during CY2022 through early September.

The IAEA method calculates doses to the public for the following pathways:

- External exposure to radionuclides deposited on the shore.
- Ingestion of seafood caught in the area around the dumping site.
- Inadvertent ingestion of beach sediments.
- Inhalation of particles resuspended from beach sediments.
- Inhalation of sea spray.

One additional pathway evaluated was ingestion of seawater by adults, while wading or swimming near the shore in the Gulf of Mexico.

In this analysis, disposal occurs in deep water exceeding 1000-meter depth and averaging more than 185 km from the coast. The material discharged is exclusively ZeroWashTM ceramic tracer beads tagged with the radioisotope Ir-192. These beads are chemically inert, insoluble, and molecularly non-binding to water.

A rectangular box model $10^4 \times 10^4 \times 10^3$ meters is used to simulate the dispersion and dilution of the radionuclides in the water column surrounding the platform. The model assumes instantaneous mixing throughout the volume of water in the box and instantaneous equilibrium between radionuclides in the soluble phase and those adsorbed on particles suspended in the water column and on particles in the top sediment boundary layer. This is a very conservative assumption as the Ir-192 absorbed on the tracers is insoluble.

Where possible, site-specific parameters were substituted for generic values given in the IAEA technical document. These specific parameters are shown in the table below.

Specific Parameters					
Depth of Water Column	D	1.10E+03	meters		
Volume of Seawater in Box	V	1.10E+11	m ³		
Annual mass of material disposed	М	5.18E+05	kg		
Average concentration of Ir-192	С	4.95E+04	Bq/kg		
Number of disposal sites	N _{sites}	4.00E+01	sites		
Density of seawater	$ ho_{\rm w}$	1.05E+03	kg/m ³		

Generic Parameters							
Flux of water through region	F	4.00E+10	m ³ /year				
Radioactive decay constant Ir-192	$\lambda_{ m rad}$	4.93E+00	yr ⁻¹				
Thickness of boundary sediment layer in box	L _B	1.00E-02	m				
Effective sediment thickness	ds	1.00E-01	m				
Bulk sediment and waste density	ρ_s, ρ_B	1.50E+03	kg/m ³				
Suspended sediment concentration	S	3.00E-03	kg/m ³				
Sediment Distribution Factor	K _d	1.00E+02	m3/kg				
Dust loading on shore (kg/m ³)	DL _{shore}	2.30E-10	kg/m ₃				
Sea spray concentration in air (kg/m ³)	C _{spray}	1.20E-02	kg/m ³				
Density of seawater (Kg/m ³)	$ ho_{ m w}$	1.05E+03	kg/m ³				
Annual collective shore occupancy per unit length	O _{coll, shore}	5.00E+01	man-h/yr/m				
Coastline length for one site	L _{shore}	1.00E+04	m				
Annual fish catch in the area of a single site	N _B (fish)	5.00E+05	kg/year				
Annual shellfish catch in the area of a single site	N _B (shellfish)	2.50E+05	kg/year				
Fraction of fish utilized for human consumption	f _B (fish)	5.00E-01					
Fraction of shellfish utilized for human consumption	f _B (shellfish)	3.50E-01					

When site-specific parameters were not available, the following recommended generic values were incorporated.

External and internal dose coefficients, concentration factors and inhalation and ingestion coefficients were taken from IAEA-TECDOC-1759, Appendix II, Tables 5 through 9.

The partitioning of radionuclides between water and sediment is described by element dependent sediment distribution coefficients, K_{ds} . Removal of radioactivity from the water column to seabed sediments due to scavenging processes is not considered.

Calculation of radionuclide concentrations in water, sediment, and edible marine biota

The following discussion sets out the procedural steps outlined in the IAEA's technical document for assessing the impact of disposing radioactive material at sea in conformance with the London Convention and London Protocol.

The three scenarios considered for this analysis are the redesigned, traditional and worst-case scenarios, as set forth above.

The activity concentration of a radionuclide in the box depends on the rate of input of the radionuclide to the box, its radioactive decay, and its dispersion. The rate constant due to dispersion, λ_{dis} , (in 1/yr) is the reciprocal of the mean residence time in the area of the platform and is obtained from the equation:

$$\lambda_{dis} = F / V$$

where:

V is the volume of seawater in the box (in m^3); F is the average flux of water through the area of the platform (in m^3/yr).

The annual average input of activity of Iridium-192, Q (in Bq), is obtained from the equation:

$$Q = M \times C$$

where:

M is the annual mass of the reverse-out disposed of (in kg). C is the average concentration of Iridium-192 in the reverse-out (in Bq/kg, dry weight).

The equilibrium concentration of Iridium-192 in the box, C_{BOX} (in Bq/m³), is given by:

$$C_{box} = Q/(V^*(\lambda_{rad} + \lambda_{dis}))$$

where:

 λ_{rad} is the radioactive decay constant for Iridium-192 (in 1/yr).

The concentration C_{BOX} includes radioactivity in the dissolved phase of seawater and radioactivity associated with the suspended sediment particles and the sediment boundary layer. The concentration by volume of Iridium-192 in the dissolved phase of seawater, C_{DW} (in Bq/m³), is given by:

$$C_{DW} = C_{box} / (1 + K_d(S + (L_B * p_B/D)))$$

where:

 K_d is the sediment distribution coefficient for Iridium-192(in m³/kg);

S is the suspended sediment concentration (in kg/m^3);

L_B is the thickness of the sediment boundary layer (in m);

 ρ_B is the density of the sediment boundary layer (in kg/m³);

D is the depth of the water column (m).

The concentration, by mass, in the suspended particles, C_P (in Bq/kg, dry weight), is obtained from the equation:

$$C_p = K_d * C_{DW}$$

The total concentration in seawater, C_W (in Bq/m³), is given by:

$$C_w = (1 + K_d * S) * C_{DW}$$

The activity concentration of Iridium-192 in marine biota is given by:

$$C_{\rm B} = CR*(C_{\rm DW}/p_{\rm w})$$

Transfer of radioactivity to edible marine biota is calculated from the concentration of dissolved radioactivity in the water using element dependent concentration factors for biological material. Radionuclide concentrations in edible parts of the marine biota k are obtained from the concentrations in the dissolved phase in seawater, C_{DW} , multiplied by the appropriate concentration factors (CFs):

$$C_{EB} = CF * C_{DW}$$

where:

 $C_{EB}(k)$ is the activity concentration of Iridium-192 in the edible fraction of marine biota k (in Bq/kg, fresh weight).

CF(k) is the concentration factor of Iridium-192 in edible marine biota k (in m³/kg).

For the calculation of the external exposure from contaminated beach sediments, the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column. The surface contamination in the coastal sediment of Iridium-192, C_s (in Bq/m²), is obtained from the equation:

$$Cs = (Cp*p_s*d_s)/10$$

where:

 ρ_S is the density of coastal sediment (in kg/m3); d_S is the effective thickness of coastal sediment (in m).

Airborne fine coastal sediment particles considered for the inhalation pathway are assumed to have characteristics similar to suspended particles in the water column. Airborne particles and marine suspended material are fine-grained. Therefore, no allowance for differences in grainsize distributions between such particles and marine suspended matter is warranted.

The annual intake of seawater, $AI_{seawater}$ (Bq/L), from recreational activities at the shoreline can be obtained from the equation:

$$AI_{seawater} = (C_{box}/1000) * (AS*.18)$$

where:

 $C_{box}/1000$ is the concentration of Iridium-192 in seawater (Bq/L) AS is the annual amount of seawater consumed during recreational activities (in L) 0.18 is the fractional amount of the year spent in the water (1/yr)

Calculation of individual doses to members of the public

According to the IAEA guidance, a practice may be exempted without further consideration provided the following criteria are met for all feasible considerations:

- The effective dose to any one individual is less than $10 \,\mu$ Sv/year, or
- The annual collective dose does not exceed 1 man-Sievert.

The annual effective dose to members of the public from external exposure to radionuclides deposited on the shore, E_{ext} , _{public} (in Sv), can be calculated by:

$$E_{ext}$$
, public = $t_{public} * C_s * DC_{gr}$

where:

 t_{public} is the time spent by members of the public on the shore in a year (in h); DC_{gr} is the dose coefficient for ground contamination of Iridium-192 in Sv/h per Bq/m²); Cs is the surface contamination of Iridium-192 in the shore sediments (in Bq/m²).

The total annual effective dose from the ingestion of seafood, $E_{ing, food, public}$ (in Sv), can be calculated by:

$$E_{ing, food, public} = H_B * C_{EB} * DC_{ing}$$

where:

H_B (k) is the annual human consumption of seafood k (in kg); DC_{ing} is the dose coefficient for ingestion of Irdiumn-192 (in Sv/Bq); C_{EB} (k) is the concentration of Iridium-192 in the edible fraction of seafood k (in Bq/kg, fresh weight)

The annual dose from inadvertent ingestion of shore sediments, $E_{ing, shore, public}$ (in Sv), can be calculated by:

$$E_{ing shore, public} = t_{public} * H_{shore} * ((C_s/(p_s * L_B) * DC_{ing}))$$

where:

H shore is the hourly ingestion rate of beach sediment by humans (in kg/h).

The dose from inhalation of resuspended beach sediments, E_{inh, shore, public} (in Sv) can be calculated using

 $E_{\text{inh shore, public}} = t_{\text{public}} * R_{\text{inh, public}} * DL_{\text{shore}} * C_{p} * DC_{\text{inh}}$

where:

 $R_{inh, public}$ is the inhalation rate of members of the public (in m³/h); DL_{shore} is the dust loading factor for beach sediments (in kg/m³); DC_{inh} is the dose coefficient for inhalation for iridium-192 (in Sv/Bq).

The annual dose to members of the public from inhalation of airborne sea spray on the shore, $E_{inh, spray, public}$ (in Sv/yr), can be calculated by:

 $E_{inh, spray, public} = t_{public} * R_{inh, public} * (C_{spray}/p_w) * C_w * DC_{inh}$

where:

 C_{spray} is the concentration of sea spray in the air (in kg/m³); ρ_W is the density of seawater (in kg/m³); C_W is the concentration of Iridium-192 in seawater (in Bq/m³).

The annual dose to members of the public from ingestion of seawater on the shore, $E_{ing, seawater}$ (μ Sv/year) can be estimated from:

The total individual dose to a member of the public, $E_{ind,public}$ (in Sv), exposed to Iridium-192 released from materials disposed at sea, may be estimated as the sum of the dose contributions calculated

 $E_{ind, public} = E_{food} + E_{ing, shore} + E_{ihn, shore} + E_{inh, spray} + E_{ing, seawater}$

Results and Analysis

Calculated results are set out in the following tables.

- Factors Calculated for Redesigned, Traditional and Worst-Case Scenarios
- Individual Doses Calculated for Redesigned, Traditional and Worst-Case Scenarios
- Collective Dose Calculated for Redesigned, Traditional and Worst-Case Scenarios

The calculated results show the annual doses to individuals and the collective doses are well below the IAEA's benchmark doses. Moreover, the calculated doses are very conservative for the following reasons:

- ZeroWash proppants are insoluble in water. Therefore, the assumption that there will be a soluble portion in the seawater box is very conservative.
- The model assumes consumption of fish and shellfish. At the locations of the offshore wells, 185 km from shore, commercial and recreational fishing is limited. Therefore, the generic estimated consumption of fish and shellfish that might have ingested proppants containing Ir-192 is overestimated.
- The calculated recreational dose due to swimming, shore contamination, sea spray and seawater ingestion are overestimated because the shoreline is not likely to be contaminated by discharges from platforms that are on average 185 km from shore.

Conclusion

Both the individual doses and the collective doses for all three scenarios are well below the IAEA limits. Results show that there is no significant impact on human health and safety from the discharge of small quantities of short-lived radioisotopes from tracer operations offshore in the Gulf of Mexico.

APPENDIX 5

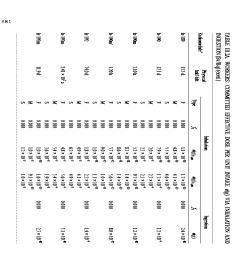
Public Dose Calculation and Supporting Data (Excel files)

Annual Intake (Bq) = average concentration (Bq/L) x annual intake (L)

AI =	1.87E-03	Bq/year
	2.49E-03	Bq/year
	2.89E-03	Bq/year

Annual Dose = Annual Intake (Bq) x Dose Conversion Factor (Sv/Bq)

Model	Dose					
Redesigned	2.62E-06	µSv/year	2.62E-07	mrem/year		
Current	3.49E-06	µSv/year	3.49E-07	mrem/year		
High	4.04E-06	μSv/year	4.04E-07	mrem/year		


1.40E-09 Sv/Bq

- E19. Datasets of activity concentration in drinking water collected by MHLW from May 2011 to April 2012 were used.
- E20. Doses for each radionuclide were calculated as follows:

 $Dose_{DW}(Sv) = \sum_{nationaclides} annual intake (Bq) \times dose coefficient_{mg}$

where the annual intake (AI) is determined by:

 $\label{eq:Annual intake (Bq)} Annual intake (Bq) = \sum_{u=1, u=1, u=1}^{u} average \ concentration \ (Bq/L) \times weekly \ or \ monthly \ intake \ (L)$

TABLE 5. RADIONUCLIDE DECAY CONSTANTS AND EFFECTIVE DOSE COEFFICIENTS FOR EXTERNAL AND INTERNAL EXPOSURE TO HUMANS

	Radioactive		oefficients (Sv/h lg/kg)		Internal dose co	efficients (Sv/Bq)	
Radio- nuclide	decay	Surface	Material on	Ingestic	n, DC _{ing}	Inhalati	on, DC inh
nuciide	constant (1/a)	deposit, DCgr	ship, DC _{ship}	Infants (1-2 years)	Adults	Infants (1–2 years)	Adults
				adionuclides			
Ag-110m	1.01×10^{0}	9.7×10^{-12}	5.4×10^{-11}	1.4×10^{-8}	2.8×10^{-9}	2.8×10^{-8}	7.6×10^{-9}
Am-241	1.60×10^{-3}	1.0×10^{-13}	0.0	3.7×10^{-7}	2.0×10^{-7}	6.9×10^{-5}	4.2×10^{-5}
Ca-45	1.55×10^{0}	1.7×10^{-16}	0.0	4.9×10^{-9}	7.1×10^{-10}	8.8×10^{-9}	2.7×10^{-9}
Ce-141	7.78×10^{0}	2.7×10^{-13}	6.3×10^{-14}	5.1×10^{-9}	7.1 × 10 ⁻¹⁰	1.1×10^{-8}	3.2×10^{-9}
Ce-144	8.90×10^{-1}	6.6×10^{-13}	1.4×10^{-14}	3.9×10^{-8}	5.2×10^{-9}	1.6×10^{-7}	3.6×10^{-8}
C1-36	2.30×10^{-6}	4.1×10^{-14}	0.0	6.3×10^{-9}	9.3×10^{-10}	2.6×10^{-8}	7.3×10^{-9}
Cm-242	1.55×10^{0}	3.8×10^{-15}	0.0	7.6×10^{-8}	1.2×10^{-8}	1.8×10^{-5}	5.2×10^{-6}
Cm-243	2.43×10^{-2}	4.6×10^{-13}	3.9×10^{-13}	3.3×10^{-7}	1.5×10^{-7}	6.1 × 10 ⁻⁵	3.1×10^{-5}
Cm-244	3.83×10^{-2}	3.4×10^{-15}	0.0	2.9×10^{-7}	1.2×10^{-7}	5.7×10^{-5}	2.7×10^{-5}
Co-57	9.34×10^{-1}	4.2×10^{-13}	3.3×10^{-14}	1.6×10^{-9}	2.1×10^{-10}	2.2×10^{-9}	5.5×10^{-10}
Co-58	3.57×10^{0}	3.4×10^{-12}	1.8×10^{-11}	4.4×10^{-9}	7.4×10^{-10}	6.5 × 10 ⁻⁹	1.6×10^{-9}
Co-60	1.32×10^{-1}	8.6×10^{-12}	6.2×10^{-11}	2.7×10^{-8}	3.4×10^{-9}	3.4×10^{-8}	1.0×10^{-8}
Cr-51	9.13×10^{0}	1.1×10^{-13}	2.1×10^{-13}	2.3×10^{-10}	3.8×10^{-11}	2.1×10^{-10}	3.7×10^{-11}
Cs-134	3.36×10^{-1}	5.6×10^{-12}	2.8×10^{-11}	1.6×10^{-8}	1.9×10^{-8}	7.3×10^{-9}	6.6 × 10 ⁻⁹
Cs-137	2.31×10^{-2}	2.2×10^{-12}	8.0×10^{-12}	1.2×10^{-8}	1.3×10^{-8}	5.4×10^{-9}	4.6×10^{-9}
Fe-55	2.57×10^{-1}	0.0	0.0	2.4×10^{-9}	3.3×10^{-10}	1.4×10^{-9}	3.8×10^{-10}
Fe-59	5.68×10^{0}	4.1×10^{-12}	3.0×10^{-11}	1.3×10^{-8}	1.8×10^{-9}	1.3×10^{-8}	3.7×10^{-9}
Hg-203	5.43×10^{0}	8.5×10^{-13}	1.6×10^{-12}	1.1×10^{-8}	1.9×10^{-9}	7.9×10^{-9}	2.4×10^{-9}
1-125	4.21×10^{0}	1.6×10^{-13}	0.0	5.7×10^{-8}	1.5×10^{-8}	3.7×10^{-9}	5.6×10^{-10}
I-129	4.41×10^{-8}	9.5×10^{-14}	0.0	2.2×10^{-7}	1.1×10^{-7}	8.6×10^{-8}	3.6×10^{-8}
I-131	3.15×10^{1}	1.4×10^{-12}	4.5×10^{-12}	1.8×10^{-7}	2.2×10^{-8}	7.2×10^{-8}	7.4×10^{-9}
Ir-192	3.42×10^{0}	3.0×10^{-12}	8.3×10^{-12}	8.7×10^{-9}	1.4×10^{-9}	2.2×10^{-8}	6.6×10^{-9}

II.3.5.2. Time of exposure of members of the public on the shore, t_{public}

If site specific values for the time per year spent by members of the public on the shore are not available, it is recommended that 1600 k/a for adults and 1000 h/a for infants be used [26] (see Table 8).

According to Schnet et al. (2011), the mean volume of water inpested by children (-15 years) during an evenape swimming poor event leading 51 minutes was 51 minutes was 61 minutes of 81 million (38 million). The values for childran were slightly obver for eventming in freshwater and seavater. For adults, the mean volume of water ingested ranged from 0.5 to 0.6 millioni (30 to 36 millioni) for men and 0.3 to 0.4 millioni (30 to 36 millioni) end (sea the slight).

Research highlights

▶ Less than 2% of limited-contact recreators at surface waters swallow a teaspoon or more of water. ▶ Swimmers in a pool are 25–50 times more likely to swallow a teaspoon of water compared to limited-contact recreators at a pool. ▶ Water ingestion during limited-contact recreation is determined in large part by whether or not capsize occurs. ▶ Mean and upper confidence estimates of water ingestion are about 3-4 mL and 10–12 mL during limited-contact recreation at surface waters. ▶ Mean and upper confidence estimates of water about 10 mL and 35 mL during swimming at a pool.

Chapter 3—Ingestion of Water and Other Select Liquids

	Adults				Children <15 years		
Parameter	Men		W	Women		Ciniuren <15 years	
	Mean	95% UCI	Mean	95% UCI	Mean	95% UCI	
Swimming Duration (min)							
Swimming Pool	68	180	67	170	81	200	
Freshwater	54	200	54	220	79	270	
Seawater	45	160	41	180	65	240	
Volume Water Swallowed (mL)							
Swimming Pool	34	170	23	110	51	200	
Freshwater	27	140	18	86	37	170	
Seawater	27	140	18	90	31	140	

Source: Schets et al. (2011).

		Sur	face Water Stu			Swin	ming Pool S	
Activity	N	Median	Mean	UCL	N	Median	Mean	UCL
			Limited Cor	tact Scenar	ios			
Boating	316	2.1	3.7	11.2	0	-	-	
Canoeing	766				76			
no capsize		2.2	3.8	11.4		2.1	3.6	11.0
with capsize		3.6	6.0	19.9		3.9	6.6	22.4
all activities		2.3	3.9	11.8		2.6	4.4	14.1
Fishing	600	2.0	3.6	10.8	121	2.0	3.5	10.6
Kayaking	801				104			
no capsize		2.2	3.8	11.4		2.1	3.6	10.9
with capsize		2.9	5.0	16.5		4.8	7.9	26.8
all activities		2.3	3.8	11.6		3.1	5.2	17.0
Rowing	222				0			
no capsize		2.3	3.9	11.8		-	-	
with capsize		2.0	3.5	10.6		-	-	-
all activities		2.3	3.9	11.8		-	-	-
Wading/splashing	0	-	-	-	112	2.2	3.7	1.0
Walking	0	-	-		23	2.0	3.5	1.0
			Full Conta	ct Scenario	s			
Immersion	0	-	-		112	3.2	5.1	15.3
Swimming	0	-	-	-	114	6.0	10.0	34.8
TOTAL	2,705				662			
N = Number	of particip	pants.						
			an +1.96 × sta	indard devia	ation).			
 = No data. 								

C _{box} =	3.30E-02 Bq/m ³
	4.39E-02 Bq/m ³
	5.08E-02 Bq/m ³

L/m ³ =	1.00E+03
--------------------	----------

C _{box} =	3.30E-05	Bq/L
	4.39E-05	Bq/L
	5.08E-05	Bq/L

Annual Intake seawater =	ml/min*min/yr*.18*L/ml =	5.68E+01 L/year	
--------------------------	--------------------------	-----------------	--

Effluent Discharge Limit per NRC is	1.00E-05	uCi/ml
Actual Discharge per Flush Pumped	2.53E-04	uCi/ml
Adjusted NRC limit	6.34E-04	μCi/ml

r Ir-192 correction from occupational to publ ction to cover all ages [al ingestion of drinking water ater ingested per minute spent swimming spent at beach per year onal time spent at beach 1600/8760 on time spent in water per year al public dose limit per NRC	2.00E+00 7.30E+05 2.70E+01 4.50E+01 1.60E+03 1.80E-01 2.50E-01	ml/yr ml minutes hours
ction to cover all ages [al ingestion of drinking water ater ingested per minute spent swimming spent at beach per year onal time spent at beach 1600/8760 on time spent in water per year	2.00E+00 7.30E+05 2.70E+01 4.50E+01 1.60E+03 1.80E-01 2.50E-01	ml/yr ml minutes hours
al ingestion of drinking water ater ingested per minute spent swimming spent at beach per year onal time spent at beach 1600/8760 on time spent in water per year	7.30E+05 2.70E+01 4.50E+01 1.60E+03 1.80E-01 2.50E-01	ml/yr ml minutes hours
ater ingested per minute spent swimming spent at beach per year onal time spent at beach 1600/8760 on time spent in water per year	2.70E+01 4.50E+01 1.60E+03 1.80E-01 2.50E-01	ml minutes hours
spent swimming spent at beach per year onal time spent at beach 1600/8760 on time spent in water per year	4.50E+01 1.60E+03 1.80E-01 2.50E-01	minutes hours
spent swimming spent at beach per year onal time spent at beach 1600/8760 on time spent in water per year	4.50E+01 1.60E+03 1.80E-01 2.50E-01	minutes hours
spent at beach per year onal time spent at beach 1600/8760 on time spent in water per year	1.60E+03 1.80E-01 2.50E-01	hours
onal time spent at beach 1600/8760 on time spent in water per year	1.80E-01 2.50E-01	
on time spent in water per year	2.50E-01	
· · ·		
al public dose limit per NRC		
al public dose limit per NRC		
	1.00E-01	mrem
ater ingestion ml per minute	6.00E-01	mi/min
es per day	1440	min/day
ber yesr	365	days/year
ater ingestion per vear	3 15F±05	ml/vr
• • •		
	0.230	
seawater ingested	1.42E+04	ml/yr
	6 34F-04	
	ater ingestion per year onal time spent at beach on time spent in water seawater ingested	onal time spent at beach 0.180 on time spent in water 0.250

Seawater ingested per swim	27	ml
Total minutes swimming	45	minurtes

Individual Public Dose					
Reference Dose	1.00E+01	μSv/yr			
Dose from External Exposure	9.58E-04	μSv/yr			
Dose from Ingestion of Seafood	4.66E-07	μSv/yr			
Dose from Ingestion of Beach Sediment	1.49E-07	μSv/yr			
Dose from Inhalatio of Beach Sediment	2.97E-11	μSv/yr			
Dose from Inhalation of Sea Spray	2.02E-08	μSv/yr			
Total Individual Dose	9.58E-04	μSv/yr			

Collective Public Dose					
Reference Dose	1.00E+00	man-Sv/year			
Collective Dose from Exposure on shore	1.20E-05	man-Sv/year			
Collefctive Dose from Seafood Consumption	0.00E+00	man-Sv/year			
Total Collective Dose	1.20E-05	man-Sv/year			

Same distribution Tables Image of the solution of a redication of a redication of the last of rought of the reductive data of the first of the solution of the soluti	Individual Dose to the Public			
medionality is the neighbor of additional the iso of additional the iso of additional the iso of additional the constant the iso of additional the constant the iso of additional the constant the cons		ļ		
$A_n = F/V$ Image: Second	The activity concentration of a radionuclide in the box depends on the rate of input of the radionuclide to the box, its radioactive decay and its dispersion. The rate constant due to dispersion, λ_{dis} , (in 1/a) is the reciprocal of the mean residence time in the coastal region and			
The annual average input of activity of radionuclide [, Q(j) (in Bq), is obtained from the equation: $Q = M \times C$ $Q = M \times C$ $Q = M \times C$ $P = equilibrium concentration of 1-192 in the box volume is given by Q = Q(r)(h_{un} + h_{un})P = equilibrium concentration of 1-192 in the box volume is given by Q = Q(r)(h_{un} + h_{un})P = equilibrium concentration of 1-192 in the box volume is given by Q = Q(r)(h_{un} + h_{un})P = equilibrium concentration to the loss in the submeter and radioactivity is socialed with the suspended submet particles and the submeter and radioactivity associated with the suspended submeter and radioactivity is the submeter and radioactivity is socialed with the suspended submet particles and the submeter and radioactivity is given by: P = C_{un}(1 + K_{un}(S + (u_{P}h_{P}D)))The concentration ty volume of radionuclide in the dissolved place of seawater and radioactivity is given by:P = C_{un}(1 + K_{un}(S + (u_{P}h_{P}D)))The concentration ty volume of radionuclide in the equation:P = C_{un}(1 + K_{un}(S + (u_{P}h_{P}D)))The total concentration to the submeter Q_{un}(1 + K_{un}(S + (u_{P}h_{un}(S + U_{un}(S + U_{un}$				
equation:Image: sequence of the sequ	λ _{dis} = F / V	3.63E-03		
The equilibrium concentration of 1r-192 in the box volume is given by $\begin{tabular}{ c c } \begin{tabular}{ c c c c c c c } \begin{tabular}{ c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q = M x C	1.93E+10		
Image constration Constration Constration Constraints Constraints <thconstraints< th=""></thconstraints<>	The equilibrium concentration of Ir-192 in the box volume is given by			
and radioactivity associated with the suppended sedimetry particles and the addiment boundar juper. The concentration by volume of radioucide in the dissolved phase of seawater, $C_{ov}(0)$ (in Bq(rn3), is given by: 1.33E-04	$C_{box} = Q/(V^*(\lambda_{rad} + \lambda_{dis}))$	3.54E-04		
The concentration, by mass, in the suspended particles, CP obtained from the equation: $C_{g} = K_{x}^{-}C_{w}$ 1.33E-02 1 The total concentration in seawater, C_{w} , (in Bq/m3), is given by: $C_{a} = (1+K_{x}^{-}S)^{*}C_{0w}$ 1.73E-04 1.73E-05 1.73E	and radioactivity associated with the suspended sediment particles and the sediment boundary layer. The concentration by volume of radionuclide j in the dissolved phase of			
$ \begin{array}{c c} c_{\mu} = K_{\mu}^{-} C_{\mu\nu} & 1.38 \\ c_{\mu} = K_{\mu}^{-} C_{\mu\nu} & 1.38 \\ c_{\mu} = K_{\mu}^{-} C_{\mu\nu} & 1.38 \\ c_{\mu} = (1 + K_{\mu}^{-} S)^{+} C_{\mu\nu} & 1.38 \\ c_{\mu} = (1 + K_{\mu}^{-} S)^{+} C_{\mu\nu} & 1.38 \\ c_{\mu} = (1 + K_{\mu}^{-} S)^{+} C_{\mu\nu} & 1.73 \\ c_{\mu} = (1 + K_{\mu}^{-} S)^{+} C_{\mu\nu} & 1.73 \\ c_{\mu} = (1 + K_{\mu}^{-} S)^{+} C_{\mu\nu} & 1.73 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu}) & 1.73 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu}) & 1.73 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu}) & 1.73 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu}) & 1.73 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu} = C R^{+} (C_{\mu\nu} / P_{\mu\nu}) & 1.75 \\ c_{\mu$	$C_{DW} = C_{box}/(1+K_{d}(S+(L_{B}*p_{B}/D))$	1.33E-04		
The bala concentration in seawater, C_{w_c} (in Bq/m3), is given by: Image: C_{w_c} = (1+K_d^{-1}S)^{*}C_{0w} $C_{w} = (1+K_d^{-1}S)^{*}C_{0w}$ 1.73E-04 1.73E-04 Activity concentration of radionucide j in marine biola 1.73E-04 1.73E-04 $C_{a} = CR^{*}(C_{0w}/p_{a})$ (fish) 2.54E-06 1.72E-05 $C_{a} = CR^{*}(C_{0w}/p_{a})$ (fish) 2.54E-06 1.27E-06 $C_{a} = CR^{*}(C_{0w}/p_{a})$ (fish) 2.54E-06 1.27E-06 Transfer of radioactivity in the vature using element dopenetic concentration of disolver ariadoxity in the vature using element dopenetic concentration for biological material. Radionucide concentration in edible parts of the marine biola k are oblamed from the concentration in factors (CFs): 1.33E-05 $C_{m} = Cr^{*}C_{0w}$ 1.33E-05 1.33E-05 $C_{m} = Cr((sub)^{*}C_{0w}$ 1.33E-05 1.33E-05 $C_{m} = Cr((sub)^{*}C_{0w})$ 1.33E-05 1.33E-05 $C_{m} = Cr((sub)^{*}C_{0w})$ 1.33E-05 1.33E-05 $C_{m} = Cr((sub)^{*}C_{0w})$ 2.00E-01 1.33E-05 $C_{m} = Cr((sub)^{*}C_{0w})$ 2.00E-01 1.33E-05 $C_{m} = Cr((sub)^{*}C_{0w})$ 1.33E-05 1.33E-05 $C_{m} = Cr(sub)^{*}C_{m}$	The concentration, by mass, in the suspended particles, CP obtained from the equation:			
$C_{u} = (1+K_{u}^{c}S)^{L}C_{0w}$ $I_{1.73E-04$ $I_{1.73E-06$ $I_{2.54E-06$ $I_{2.54$	$C_p = K_d^* C_{dw}$	1.33E-02		
Activity concentration of radionuclide i in marine biota Image: concentration of radionuclide i in marine biota $C_0 = CR^*(C_{ow}/p_n)$ Image: concentration of radionuclide in marine biota Image: concentration of radionuclide concentrations in calculated from the concentration of disolved radioactivity to estable marine biota is calculated from the concentration of disolved radioactivity in the disolved radioactivity in contaminator in the coastial sediment is assumed to be a factor of 10 lover than that radionuclike concentration in coastial sediment is assumed to be a factor of 10 lover than that radionuclike concentration in coastial sediment is assumed to be a factor of 10 lover than that radionuclike concentration in coastial sediment is assumed to be a factor of 10 lover than that radionuclike concentratity is assumater to the radio (25):	The total concentration in seawater, C _w , (in Bq/m3), is given by:			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C _w = (1+K _d *S)*C _{DW}	1.73E-04		
$ \begin{array}{c c} C_{B} \in \operatorname{CR}^{*}(C_{OM}/p_{a}) (\operatorname{fish}) & 2.54E.06 & 2.55E.06 & 2$	Activity concentration of radionuclide j in marine biota			
$ \begin{array}{c c} C_{B} \in \operatorname{CR}^{*}(C_{OM}/p_{a}) (\operatorname{fish}) & 2.54E.06 & 2.55E.06 & 2$	$C_B = CR^*(C_{DW}/p_w)$			
Transfer of radioactivity to edible marine biota is calculated from the concentration of dissolved radioactivity in the water using element dependent concentration factors for biological material Radionuclide concentrations in edible parts of the marine biota k are editained from the concentration factors (CFs): Image: Centrol Concentration factors (CFs): Cgs = CF (Crab) ^V Cpw 2.66E-06 2.66E-06 Cgs = CF (Crab) ^V Cpw 1.33E-05 2.66E-06 For the calculation of the external exposure from contaminated beach sediments the radionuclide constration in costal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide J. Cq(I) (in Bq/m2). Is obtained from the equation (25): 2 2 Dose from External Exposure P P P P Dose from Ingestion of Seefood P P P P P Dose from Ingestion of Seafood P P P P	$C_B = CR^*(C_{DW}/p_w)$ (fish)	2.54E-06		
discloved radioactivity in the water using element dependent concentration factors for biological materials. Radionuclide concentrations in edible parts of the marine biolata are obtained from the concentrations in the dissolved phase in seawater, CDW(j), multiplied by the appropriate concentration factors (CFs): $\frac{C_{EB} = CF(Tab)^{C}C_{DW} 2.66E-06 1 C_{EB} = CF(Tab)^{C}C_{DW} 2.66E-06 1 C_{EB} = CF(Tab)^{C}C_{DW} 1.33E-05 1 To the calculation of the external exposure from contaminated beach sediments theradionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than thatin suspended particles in the water column [16]. The surface contamination in the coastalsediment of radionuclide j, C6(j) (in Bg/m2), is obtained from the equation (25): \frac{C_{e} = (C_{e}^{-}p_{a}^{-}d_{a}^{-})/10}{2.00E-01} \frac{1.00E}{1.00E} \frac{1.00E}{$	$C_B = CR^*(C_{DW}/p_w)$ (shellfish)	1.27E-05		
$C_{EB} = CF(fish)^{L}C_{DW}$ 2.66E-06 $C_{EB} = CF(orsb)^{C}C_{DW}$ 1.33E-05 $C_{EB} = CF(oyster)^{C}C_{DW}$ 1.33E-05For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j. Cs(t) (in Bq/m2), is obtained from the equation (25): $C_s = (C_p^{-}p_s^{-}d_s)/10$ 2.00E-01 $Dose form External Exposure1Dose form Ingestion of Seafood1E_{ng, bode, puble} = H_potes^{-}C_n^{-1}DC_{up}9.58E-10Dose form Ingestion of Seafood1E_{ng, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ng}1.86E-13E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}1.49E-08Dose from Ingestion of Beach Sediment1E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}1.49E-08Dose from Ingestion of Beach Sediment1E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}1.49E-08Dose from Ingestion of Beach Sediment2E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}1.49E-08Dose from Induction of Beach Sediment2E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}2.02E-172.97E-172.97E-172.97E-17Dose from Inhalation of Beach Sediment2E_{ind, store, puble} = H_{inbatore}^{+}C_{in}DC_{ing}2Dose from Inhalation of Sea Spray2Dose from Inhalation of Sea Spray2E_{ind, puble} = $	dissolved radioactivity in the water using element dependent concentration factors for biological material. Radionuclide concentrations in edible parts of the marine biota k are obtained from the concentrations in the dissolved phase in seawater, CDW(j), multiplied by			
$C_{EB} = CF(fish)^{L}C_{DW}$ 2.66E-06 $C_{EB} = CF(orsb)^{C}C_{DW}$ 1.33E-05 $C_{EB} = CF(oyster)^{C}C_{DW}$ 1.33E-05For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j. Cs(t) (in Bq/m2), is obtained from the equation (25): $C_s = (C_p^{-}p_s^{-}d_s)/10$ 2.00E-01 $Dose form External Exposure1Dose form Ingestion of Seafood1E_{ng, bode, puble} = H_potes^{-}C_n^{-1}DC_{up}9.58E-10Dose form Ingestion of Seafood1E_{ng, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ng}1.86E-13E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}1.49E-08Dose from Ingestion of Beach Sediment1E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}1.49E-08Dose from Ingestion of Beach Sediment1E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}1.49E-08Dose from Ingestion of Beach Sediment2E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}1.49E-08Dose from Induction of Beach Sediment2E_{ing, bode, puble} = H_g^{+}C_{EB}^{-}DC_{ing}2.02E-172.97E-172.97E-172.97E-17Dose from Inhalation of Beach Sediment2E_{ind, store, puble} = H_{inbatore}^{+}C_{in}DC_{ing}2Dose from Inhalation of Sea Spray2Dose from Inhalation of Sea Spray2E_{ind, puble} = $	C _{FR} = C _F *C _{DW}			
C _{EB} = CF(oyster)*C _{DW} 1.33E-05 For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j, C _s (i) (in Bq/m2), is obtained from the equation (25): C _a = (C _p *p _a *d _a)/10 2.00E-01 Dose Calculation 2.00E-01 Dose from External Exposure 9.58E-10 E _{add} , public = t _{poblic} *C _a *DC _{pr} 9.58E-10 Dose from Ingestion of Seafood 9.58E-10 E _{ing} , toot, public = H _a *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot, public = H _b *C _{EB} *DC _{ing} 1.86E-13 E _{ing} , toot,		2.66E-06		
For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j. C _s (j) (in Bq/m2), is obtained from the equation (25): Image: Comparison of the external exposure C _s = (C _p *p _a *d _a)/10 2.00E-01 Image: Comparison of the external exposure Image: Comparison of the external exposure Image: Comparison of the external exposure Dose from External Exposure Image: Comparison of Seafood Image: Comparison of Seafood Image: Comparison of Seafood Eng. toot, public = Haf*Cea*DCing Image: Comparison of Seafood Image: Comparison of Seafood Image: Comparison of Seafood Eng. toot, public = Haf*Cea*DCing Image: Comparison of Seafood Image: Comparison of Seafood Image: Comparison of Seafood Eng. toot, public = Haf*Cea*DCing - shell fish Image: Comparison of Seafood Image: Comparison of Seafood Image: Comparison of Seafood Dose from ingestion of Beach Sediment Image: Comparison of Seafood	C _{EB} = CF(crab)*C _{DW}	1.33E-05		
radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j. C ₆ (1) (in Bq/m2), is obtained from the equation (25): C _s = (C _p *p _s *d _s)/10 C _s = (C _p *p _s *d _s)/10 2.00E-01 2.00E-14 2.00E-02 2.00E-14 2.00E-09 2.00E-14	$C_{EB} = CF(oyster)^*C_{DW}$	1.33E-05		
Dose Calculation Image: Calculation Image: Calculation Dose from External Exposure Image: Calculation Image: Calculation Eext, public = tpuble ^C Cs [*] DCgr 9.58E-10 9.58E-05 Dose from Ingestion of Seafood Image: Calculation Image: Calculation Eing, food, public = Ha [*] Ces [*] DCing Image: Cas [*] DCing Image: Cas [*] DCing Eing, food, public = Ha [*] Ces [*] DCing - fish 1.86E-13 1.86E-08 Eing, food, public = Ha [*] Ces [*] DCing - shell fish 2.79E-13 2.79E-08 Dose from Ingestion of Beach Sediment Image: Cas [*] DCing Image: Cas [*] DCing Eing store, public = tpublic [*] Hahrce [*] ((Cs/(Cs/ [*] La) [*] DCing) 1.49E-13 1.49E-08 mrem/yr Dose from Inhalation of Beach Sediment Image: Case Sediment	radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal			
Dose from External Exposure	$C_{\rm s} = (C_{\rm p}^{*} {\rm p}_{\rm s}^{*} {\rm d}_{\rm s})/10$	2.00E-01		
Eext, public = tpublic *Cs*DCgr 9.58E-10 9.58E-05 mrem/yr Dose from Ingestion of Seafood Eing, food, public = Hg*CcB*DCing Eing, food, public = Hg*CcB*DCing - fish 1.86E-13 1.86E-08 mrem/yr Eing, food, public = Hg*CcB*DCing - fish 1.86E-13 1.86E-08 mrem/yr Eing, food, public = Hg*CcB*DCing - shell fish 2.79E-13 2.79E-08 mrem/yr Dose from ingestion of Beach Sediment Eing shore, public = tpublic *Hshore*((Cg/(ps*LB)*DCing)) 1.49E-13 1.49E-08 mrem/yr Dose from inhalation of Beach Sediment Einh shore, public = tpublic *Rsinh, public *Dishore*Cp*DCinh 2.97E-17 2.97E-12 mrem/yr Dose from Inhalation of Sea Spray Einh, spray, public = tpublic *Rsinh, public *(CspraV/pw)*Cw*DCinh 2.02E-14 2.02E-09 mrem/yr Total Individual Dose to Members of the Public Eind, public = Eiood+Eing, shore+Einh, spray 9.58E-10 9.58E-05 mrem/year	Dose Calculation			
Dose from Ingestion of SeafoodImage: SeafoodEing, food, public = Hg*CEB*DCing1.86E-131.86E-08Eing, food, public = Hg*CEB*DCing - fish1.86E-131.86E-08Eing, food, public = Hg*CEB*DCing - shell fish2.79E-08mrem/yrDose from Ingestion of Beach SedimentImage: SeafoodImage: SeafoodEing shore, public = tpublic *Hshore*(Cg/(Ps*LB)*DCing)1.49E-131.49E-08Dose from Inhalation of Beach SedimentImage: SeafoodImage: SeafoodEing shore, public = tpublic *Rinh, public *Dishere*Cp*DCinh2.97E-172.97E-17Dose from Inhalation of Sea SprayImage: SeafoodImage: SeafoodEind, spray, public = tpublic *Rinh, public *Cgrad/pw)*Cw*DCinh2.02E-142.02E-09Total Individual Dose to Members of the PublicImage: SeafoodImage: SeafoodEind, public = Eind, public = Eind, spray9.58E-109.58E-05Image: SeafoodReference Dose, If cell D58 < 10 uSv acceptable, If >10 uSv not acceptable; If cell F58 < 1	Dose from External Exposure			
Eing, tood, public $= H_B^*C_{EB}^*DC_{ing}$ Image: Non-State State S	E _{ext, public} = t _{public} *Cs*DC _{gr}	9.58E-10	9.58E-05	mrem/yr
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
Eing, food, public $= H_B * C_{EB} * DCing - shell fish$ 2.79E-132.79E-132.79E-08mrem/yrDose from ingestion of Beach Sediment11 <td></td> <td>4.005 40</td> <td>1 065 00</td> <td>mombe</td>		4.005 40	1 065 00	mombe
Eing shore, public = t_public *H_shore*((Cs/(ps*Lg)*DCing) 1.49E-13 1.49E-13 1.49E-08 mrem/yr Dose from inhalation of Beach Sediment 2.97E-17 2.97E-12 mrem/yr Dose from Inhalation of Sea Spray 2 2.97E-17 2.97E-12 mrem/yr Dose from Inhalation of Sea Spray 2 2.97E-14 mrem/yr Dose from Inhalation of Sea Spray 2 2.02E-14 2.02E-09 mrem/yr Total Individual Dose to Members of the Public 2 2.02E-14 2.02E-05 mrem/yr Eind, public = Eitod+Eing,shore+Einh,spray 9.58E-10 9.58E-05 mrem/year Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; if cell F58 ≤ 1 1				
Eing shore, public = t_public *H_shore*((Cs/(ps*Lg)*DCing) 1.49E-13 1.49E-13 1.49E-08 mrem/yr Dose from inhalation of Beach Sediment 2.97E-17 2.97E-12 mrem/yr Dose from Inhalation of Sea Spray 2 2.97E-17 2.97E-12 mrem/yr Dose from Inhalation of Sea Spray 2 2.97E-14 mrem/yr Dose from Inhalation of Sea Spray 2 2.02E-14 2.02E-09 mrem/yr Total Individual Dose to Members of the Public 2 2.02E-14 2.02E-05 mrem/yr Eind, public = Eitod+Eing,shore+Einh,spray 9.58E-10 9.58E-05 mrem/year Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; if cell F58 ≤ 1 1	Dose from indestion of Beach Sediment			
Einh shore, public * Rinh, public *Dishore *Cp*DCinh 2.97E-17 2.97E-17 2.97E-12 mrem/yr Dose from Inhalation of Sea Spray <	·	1.49E-13	1.49E-08	mrem/yr
Dose from Inhalation of Sea Spray			0.075	
Einh, spray, public = tpublic *Rinh, public *(CspraVy/pw)*Cw*DCinh 2.02E-14 2.02E-09 mrem/yr Total Individual Dose to Members of the Public		2.97E-17	2.97E-12	mrem/yr
Eind, public ≈ Efood+Eing,shore+Einh,spray 9.58E-10 9.58E-05 mrem/year Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; If cell F58 ≤ 1		2.02E-14	2.02E-09	mrem/yr
Eind, public ≈ Efood+Eing,shore+Einh,spray 9.58E-10 9.58E-05 mrem/year Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; If cell F58 ≤ 1	Total Individual Dose to Members of the Public			
		9.58E-10	9.58E-05	mrem/year
	Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; If cell F58 ≤ 1 mrem acceptable, if > 1 mrem not acceptable.	10	1	mrem/vear

4.66E-13

Collective Public Dose				
The collective dose to members of the public is the combination of collective doses from exposures on the shore and the consumption of seafood.				
······································				
Collective Dose from Exposure on Shore				
E _{coll, shore, public} = (E _{ext, public} + E _{inh shore, public} + E _{inh spray, public}) * ((O _{coll} , public * L _{shore} * N _{sites})/t _{public})	1.20E-05	man-Sv/year		
Collective Dose from Seafood Consumption				
$E_{coll ing, public} = N_{sites} * f_B * N_B * C_B * DC_{ing}$				
$E_{coll ing, public} = N_{sites} * f_B * N_B * C_B * DCing (fish)$	3.56E-08	man-Sv/year		
E _{coll ing, public} = N _{sites} *f _B *N _B *C _B *DCing (shellfish)	6.23E-08	man-Sv/year		
Total Collective Dose				
E _{coll,public} = E _{coll shore, pubic} + E _{coll ing, public}	1.21E-05	man-Sv/year	1.21E-03	man-rem/year
Reference Dose, if cell D19 \leq D21 acceptable, if D19 > D21 not acceptable; If cell F19 \leq F21 acceptable, if > F21 not acceptable.	1	man-Sv/year	100	man-rem/year

Specific P	arameters		
Depth of Water Column	D	1.10E+03	meters
Volume of Seawater in Box	V	1.10E+13	m ³
Annual mass of material disposed	М	5.17E+05	kg
Avg concentration of Ir-192	С	3.72E+04	Bq/kg
Number of dump sites	Nsites	4.00E+01	sites
Density of seawater	ρω	1.05E+03	kg/m3

Generic Param	eters		
Flux of water through region	F	4.00E+10	m³/year
Radioactive decay constant Ir-192	λ _{rad}	4.93E+00	year ⁻¹
Thickness of boundary sediment layer in box	LB	1.00E-02	m
Effective sediment thickness	ds	1.00E-01	m
Bulk sediment and waste density	ρ_s, ρ_B	1.50E+03	kg/m3
Suspended sediment concentration	s	3.00E-03	kg/m3
Sediment Distribution Factor	Kd	1.00E+02	m3/kg
Dust loading on shore (kg/m3)	DL _{shore}	2.30E-10	kg/m3
Seaspray concentration in air (kg/m3)	Cspray	1.20E-02	kg/m3
Density of seawater (Kg/m ³)	ρ _w	1.05E+03	kg/m3
Annual collective shore occupancy per unit length	O _{coll, shore}	5.00E+01	man-h/yr/m
Coastline length for one site	L _{shore}	1.00E+04	m
Annual fish catch in the area of a single site	N _B (fish)	5.00E+05	kg/year
Annual shellfish catch in the area of a single site	N _B (shellfish)	2.50E+05	kg/year
Fraction of fish utilized for human consumption	f _B (fish)	5.00E-01	
Fraction of shellfish utilized for human consumption	f _B (shellfish)	3.50E-01	

Element	Concentration Factor			Co	oncentration Ra	tio	
		(m3/kg)			Bq/Kg per Bq/Kg	3)	
		CF			CR		
	Fish	Crustracean Mollusc		Flatfish	Shellfish	Seaweed	
Iridium	2.00E-02	1.00E-01	1.00E-01 1.00E-01		1.00E+02	1.00E+03	

_								
	External dose coefficients			Internal dose	e coefficients			P
1	(Sv/h pe	(Sv/h per Bq/kg)		(Sv/Bq)		Annual time spent on sediments on shore	t public	
	DCgr	DCship	DCing		DCinh		Public breathing rate	R _{inh,}
			Infants	Adults	Infants	Adults	Annual ingestion of fish	H _B (f
5	3.00E-12	8.30E-12	8.70E-09	1.40E-09	2.20E-09	6.60E-09	Annual ingestion of shellfish	H _B (s
-							Ingestion rate of sediment on beach	H _{sho}

Public					
Annual time spent on sediments on shore	tpublic	1.60E+03	1.00E+03	hours	
Public breathing rate	Rinh, public	9.20E-01	2.20E-01	m3/hour	
Annual ingestion of fish	H _B (fish)	5.00E+01	2.50E+01	Kg	
Annual ingestion of shellfish	H _B (shellfish)	1.50E+01	0.00E+00	Kg	
Ingestion rate of sediment on beach	H _{shore}	5.00E-06	3.00E-05	Kg/hour	

Conversions			
mCi to Bq coi	nversions		
2.70E-08	mCi/Bq		
3.70E+07	Bq/mCi		
lbs to Kg cor	nversion		
4.50E-01	Kg/lb		
Sv to m	rem		
1.00E+05	mrem/Sv		
meters pe	er foot		
0.3	m/ft		
km per	mile		
1.61	km/mile		

Average Summary Frac Jobs YTD Jan-Sep 2nd (20 Wells) - Redesigned to 0.454 mCi/k

Est. Jobs/Year

40

	Tracers		SI Units
Sc-46 1st Tracing (Avg)			31 01113
Proppant Traced Sc-46	48,111	lbc	2.17E+04
Sc-46 Total Injected		mCi	8.69E+08
Conc. Sc-46 mCi		mCi/k lbs proppant	8.092400
Sc-46 pCi		pCi/gm	-
	,	1 /0	
lr-192 2r	nd Tracing (Avg)		
Proppant Traced Ir-192	97,585	lbs	4.39E+04
Ir-192 Total Injected	42	mCi	1.56E+09
Conc. Ir-192 mCi	0.454	mCi/k lbs proppant	
Ir-192 pCi	1,336	pCi/gm	
Total Proppant Traced (Avg)	141,010	lbs	6.35E+04
Total Ir-192 & Sc-46	65.681	mCi	2.43E+09
Material Retu	rned to Surface (Avg)		
Proppant Reversed-out	28,733	lbs	1.29E+04
Reverse-out Ir-192	13.052	mCi	4.83E+08
Flush Pumped	475.35	bbl	
Concer	trations (Avg)		
Reverse-out Ir-192	1.31E+01	mCi	4.83E+08
Reverse-out Ir-192	1.31E+04	μCi	4.83E+08
Reverse-out Ir-192	1.73E-04	μCi/ml	
Well &	Job Data (Avg)		
Well Depth	3620	ft	1.09E+03
Well Depth	1103	meters	1.10E+03
Distance to Shore	102	miles	1.64E+02
Pumping Time Minutes	707	min	
Pumping Time Hours	12	hr	

SI Units	
2.17E+04	kg
8.69E+08	
4.39E+04	kg
1.56E+09	Bq
6.35E+04	kg
2.43E+09	
1.29E+04	kg
4.83E+08	
4.83E+08	Bq
4.83E+08	Bq
1.09E+03	
1.10E+03	
1.64E+02	km

Tracers				
Sc-46 1st Tracing (Total)				
	1 024 450	lha		
Proppant Traced Sc-46	1,924,459	lbs		
Sc-46 Total Injected	939	mCi		
Conc. Sc-46 mCi	0.488	mCi/k lbs proppant		
Sc-46 pCi	1,092	pCi/gm		
Ir-192 2nd	Tracing (Total)			
Proppant Traced Ir-192	3,903,396	lbs.		
Ir-192 Total Injected	1,688	mCi		
Conc. Ir-192 mCi	0.454	mCi/k lbs proppant		
Ir-192 pCi	1,335.976	pCi/gm		
Total Proppant Traced (Avg)	5,640,394	lbs		
Total Ir-192 & Sc-46	65.681			
Material Return	ed to Surface (Total)			
Proppant Reversed-out	1,149,338	lbs		
Reverse-out Ir-192	522	mCi		
Flush Pumped	19,014	bbl		

SI Units		Conv	ersions
8.66E+05	kg	mCi to Bq conv	versions
3.48E+10	Bq		
		2.70E-08	mCi/Bq
		3.70E+07	Bq/mCi
		lbs to Kg	conversion
1.76E+06	kg	4.50E-01	Kg/lb
6.25E+10	Bq		
3.72E+04	Bq/kg	Sv to	mrem
		1.00E+05	mrem/Sv
2.54E+06	kg	meters	per foot
		0.3	m/ft
		km p	er mile
5.17E+05	kg	1.61	km/mile
1.93E+10	Bq	-	

Well & Job	Data (Total)	
Well Depth	144784	ft
Well Depth	44130	meters
Distance to Shore	4066	miles
Pumping Time Minutes	28267	min
Pumping Time Hours	471	hr

**Nautical Miles to Grand Isle, LA 29.2339196776543, -89.9992938991118

Last 10-20-30 Jobs conducted from Broussard, LA

				Pumping	Pumping							Sc-46				lr-192	Total				Flush			
			Depth	Time	Time	Surface	Surface	Miles to	Amount	Sc-46	Conc. Sc-46	Picocuries/gr	Amount Traced	Ir-192	Conc. Ir-192	Picocuries/g	Picocuries/	Total	Reverse-out	Reverse-out	pumped	Flush Pumped		
Date	API #	Depth (ft)	(m)	(min)	(Hours)	Latitude	Longitude	Shore**	Traced Sc-46	(mCi)	(mCi/k)	am	Ir-192	(mCi)	(mCi/k)	ram	gram	Proppant	Pounds	Ir-192 (mCi) *	bbl.	ml	μCi	μCi/ml
1 1/1/2022	608114067901	3604	1098.5	564.57	9.41	27.56045503	-90.10466997	101	36,269	18	0.496	1094.137	89071	53	0.595	1311.820	1248.830	125,340	8,314	4.95E+00	533	8.47E+07	4.95E+03	5.84E-05
2 1/7/2022	608164029901	1290	393.192	295.5	4.93	28.97308168	-88.62599537	74	26,700	13	0.487	1073.413	105600	63	0.597	1315.259	1266.451	132,300	13,879	8.28E+00	170	2.70E+07	8.28E+03	3.06E-04
3 3/5/2022	608114068801	3603	1098.19	815.58	13.59	27.56045859	-90.10493052	101	33,604	17	0.506	1115.302	110973	67	0.604	1331.043	1280.898	144,577	8,694	5.25E+00	578	9.19E+07	5.25E+03	5.71E-05
4 3/7/2022	608164035601	1290	393.192	226.39	3.77	28.97302946	-88.62599143	74	24,662	12	0.487	1072.723	100529	60	0.597	1315.814	1267.926	125,191	21,064	1.26E+01	176	2.80E+07	1.26E+04	4.49E-04
5 3/10/2022	608114008703	760	231.648	341.41	5.69	27.94369889	-91.0291754	95	36,827	18	0.489	1077.558	167676	101	0.602	1327.960	1282.868	204,503	24,772	1.49E+01	174	2.77E+07	1.49E+04	5.39E-04
6 3/29/2022	608104016400	1570	478.536	374.9	6.25	28.07837889	-89.98232167	69	31,875	16	0.502	1106.635	70054	42	0.600	1321.755	1254.483	101,929	31,608	1.90E+01	182	2.89E+07	1.90E+04	6.55E-04
7 4/1/2022	608114071200	4958	1511.2	322.71	5.38	27.15409583	-90.30964083	126	93,605	47	0.502	1106.964	139951	84	0.600	1323.238	1236.559	233,556	89,075	5.35E+01	539	8.57E+07	5.35E+04	6.24E-04
8 4/11/2022	608114071200	4958	1511.2	181.32		27.15409583	-90.30964083	126	42,375	21	0.496	1092.557	57750	35	0.606	1336.136	1233.048	100,125	33,145	2.01E+01	530	8.43E+07	2.01E+04	2.38E-04
9 4/19/2022	608114074802	3606	1099.11	784.43		27.56100318	-90.10413894	101	34,260	17	0.496	1093.947	90378	63	0.697	1536.783	1415.058	124,638	12,289	8.57E+00	489	7.77E+07	8.57E+03	1.10E-04
10 4/19/2022	608174142901	3223	982.37	265.1		28.47060823	-88.9400004	72	80,992	40	0.494	1088.811	123511	74	0.599	1320.872	1228.966	204,503	42,258	2.53E+01	421	6.69E+07	2.53E+04	3.78E-04
11 4/25/2022	608114074802	3606	1099.11	754.13		27.56100318	-90.10413894	101	22,000	11	0.500	1102.312	66743	40	0.599	1321.262	1266.983	88,743	4,656	2.79E+00	498	7.92E+07	2.79E+03	3.52E-05
12 5/7/2022	608114065800	4979	1517.6	311.55		27.14571806	-90.319515	126	46,724	23	0.492	1085.232	122335	73	0.597	1315.548	1251.894	169,059	26,077	1.56E+01	603	9.59E+07	1.56E+04	1.62E-04
13 5/23/2022	608114071900	4987	1520.04	311.55		27.14567167	-90.31935528	126	42,375	21	0.496	1092.557	62322	37	0.594	1308.865	1221.317	104,697	26,697	1.58E+01	595	9.46E+07	1.58E+04	1.68E-04
14 6/4/2022	608114068000	3788		1207.42		27.49509917	-90.06402528	104	33,000	17	0.515	1135.716	57033	34	0.596	1314.278	1248.829	90,033	30,381	1.81E+01	621	9.87E+07	1.81E+04	1.83E-04
15 6/6/2022	60812400680	5190	1581.91	969.75		26.93265556	-90.520285	141	67,301	34	0.505	1113.761	55322	33	0.597	1315.075	1204.585	122,623	4,457	2.66E+00	571	9.08E+07	2.66E+03	2.93E-05
16 6/11/2022	608114068000	3788	1154.58	924.1		27.49509917	-90.06402528	104	45,151	23	0.509	1123.040	121582	73	0.600	1323.696	1269.358	166,733	4,416	2.65E+00	547	8.70E+07	2.65E+03	3.05E-05
17 7/16/2022	608174120900	3036		1109.54		28.15991111	-89.23903278	76	23,326	12	0.514	1134.163	142095	85	0.598	1318.787	1292.753	165,421	95,629	5.72E+01	99	1.57E+07	5.72E+04	3.63E-03
18 7/18/2022	608114068901	3760		1522.16		27.49786711	-90.06045106	104	52,657	26	0.494	1088.559	123505	74	0.599	1320.936	1251.476	176,162	14,776	8.85E+00	529	8.41E+07	8.85E+03	1.05E-04
19 8/15/2022	608174108401	6946	2117.14	1857.18		28.30785016	-88.20155808	110	106,000	46	0.434	956.724	93500	56	0.599	1320.417	1127.176	199,500	80,914	4.85E+01	135	2.15E+07	4.85E+04	2.26E-03
20 9/2/2022	608114074701	3450	1051.56	994.05	16.57	27.53643558	-90.16512122	102	26,360	13	0.493	1087.258	51768	31	0.599	1320.185	1241.597	78,128	2,219	1.33E+00	640	1.02E+08	1.33E+03	1.31E-05
21																								
22																								
23																								
24																								
25																								
20																								
Averages		3.620	1103.25	707	11.78			102	45.303	22	0.491	1.092	97.585	59	0.604	1,331	1,255	142.888	28.766	1.74E+01	432	6.86E+07	1.74E+04	2.53E-04

* Ir-192 is always pumped after the Sc-46 and should be the only tracer remaining above the crossover. **Nautical Miles to Grand Isle, LA 29.2339196776543, -89.9992938991118

For redesi	gned job at .454 mCi/k	pounds of	proppant																				
		3,620	1103.25	707	11.78		102	48,111	23	0.488	1,092	92,898	42.2	0.454	1,336	1,252	141,010	28,733	1.31E+01	475	7.56E+07	1.31E+04	1.73E-04

Individual Public Do	ose	
Reference Dose	1.00E+01	μSv/yr
Dose from External Exposure	1.27E-03	μSv/yr
Dose from Ingestion of Seafood	0.00E+00	μSv/yr
Dose from Ingestion of Beach Sediment	1.98E-07	μSv/yr
Dose from Inhalatio of Beach Sediment	3.95E-11	μSv/yr
Dose from Inhalation of Sea Spray	2.68E-08	μSv/yr
Total Individual Dose	1.27E-03	μSv/yr

Collective Public Do	ose	
Reference Dose	1.00E+00	man-Sv/year
Collective Dose from Exposure on shore	1.59E-05	man-Sv/year
Collefctive Dose from Seafood Consumption	0.00E+00	man-Sv/year
Total Collective Dose	1.59E-05	man-Sv/year

Concentration Tables Image: State in the scale of part of	Individual Dose to the Public			
radouncide to the box, he radioache design and the dispession. The rate constant due to a displayed from the equation: $h_{10} = 10^{-10} (h_{10} + h_{10}) = 10$				
a databased from the equation: $h_{hh} = F / V$ 3.358-50 The average input of activity of radionuclide j. Q(j) (in Bq), is obtained from the equation: $Q_{hh} = F / V$ 3.358-50 Q = M x C Q = M x C D	The activity concentration of a radionuclide in the box depends on the rate of input of the radionuclide to the box, its radioactive decay and its dispersion. The rate constant due to			
The annual average input of activity of radionuclide j. Q(j) (in Bq), is obtained from the equation: $a = M \times C$ $a = M \times C$ $2.56E + 10$ $c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the box values is given by c_{an} = C(-1) + 12E in the supended particles and the solved phase of seawater index of the general interval of adminished in the dissolved phase of seawater C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles in the supended particles CP obtained from the equation: C_{an} = C(-1) + 12E in the supended particles CP obtained from the constants the form the constant supended particles in the supend$	dispersion, λ_{dis} , (in 1/a) is the reciprocal of the mean residence time in the coastal region and is obtained from the equation:			
equation: 2.56E+10 $2 = M \times C$ 2.56E+10 The equilibrium concentration of 1-192 in the box volume is given by 2.56E+10 $C_{un} = O(V(h_{un}^{-k}h_{un}))$ 2.7E-04 The resultibrium concentration of volume is given by 2.7E-04 The resultibrium concentration of volume is disorded phase of seawater man rediscriptions and the solument particles and the solument particle particles and the solution of disolved particles and the solution of disolved particles and the solution particles particles particles and the solutis particles and the solutis	$\lambda_{dis} = F / V$	3.63E-03		
The equilibrium concentration of 1:192 in the box volume is given by $\begin{tabular}{ c } \begin{tabular}{ c } \begin{tabular}{ c } \begin{tabular}{ c } \begin{tabular}$	The annual average input of activity of radionuclide j, Q(j) (in Bq), is obtained from the equation:			
The equilibrium concentration of 1:192 in the box volume is given by $\begin{tabular}{ c } \begin{tabular}{ c } \begin{tabular}{ c } \begin{tabular}{ c } \begin{tabular}$	0-14-0	2.505 : 40		
$ \begin{array}{c c} C_{qn} = Q(V(C_{hm}^{-}h_{qn})) & 4.71E-04 \\ \hline \\ \hline \\ C_{qn} = Q(V(L_{hm}^{-}h_{qn})) & 4.71E-04 \\ \hline \\ $	Q=MXC	2.56E+10		
The concentration $C_{SQ}(0)$ in the box includes radioactivity in the described phase of served radio activity is socialed with the suspended externed the sectiment box includes radioactivity is the described phase of served radio ($R_{SQ}(0)$) ($R_{SQ}(0)$), is given by: $C_{CW} = C_{CW}(1+K_{S}(S+L_{W}^{-}P_{D}D))$ 1.77E-04 1.77E-04 1.77E-04 1.77E-02 1.77E-04 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-03 1.77E-02 1.77E-03 1.77E-03 1.77E-03 1.77E-03 1.77E-04 1.77E-02 1.77E-04 1.77E-02 1.77E-04 1.77E-04 1.77E-04 1.77E-05 1.77E	The equilibrium concentration of Ir-192 in the box volume is given by			
and radioactivity associated with the suspended sedment particles and the sedment boundary layer. The concentration by volume of radionucide j in the disaved phase of seawater, $C_{w0}(0)$ (in Bq(rds)), is given by: $C_{pm} = C_{w0}(1+k_1(S+ll_h, Tby(D)))$ 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-02 1.77E-03 1.77E-02 1.77E-05 1.77E-02 1.77E-05 1.77E	$C_{box} = Q/(V^*(\lambda_{rad} + \lambda_{dis}))$	4.71E-04		
The concentration, by mass, in the suspended particles, CP obtained from the equation: $C_p = K_n^* C_{q_m}$ The total concentration in seawater, C_{w_n} (in Bq/m3), is given by: $C_v = (1+K_s^*S)^* C_{e_M}$ 2.30E-04 $C_v = CR^* (C_{e_M} P_{a_M})$ $C_v = CR^* (C_{e_M} P_{$	The concentration $C_{BOX}(j)$ in the box includes radioactivity in the dissolved phase of seawater and radioactivity associated with the suspended sediment particles and the sediment boundary layer. The concentration by volume of radionuclide j in the dissolved phase of seawater, $C_{DW}(j)$ (in Bq/m3), is given by:			
$C_{p} = K_{n}^{-1}C_{m}$ $I = Tre total concentration in seawater, C_{w}, (in Bq/m3), is given by: C_{w} = (1+K_{q}^{-1}S)^{*}C_{m} 2 = (1+K_{q}^{-1}S)^{*}C_{m} C_{w} = (1+K_{$	$C_{DW} = C_{box}/(1+K_{d}(S+(L_{B}^{*}p_{B}/D))$	1.77E-04		
The total concentration in seawater, C_{w} , (in Bq/m3), is given by: $C_w = (1+K_s^{-1}S)^*C_{W}$ 2.30E-04 2.30E-05 2.30E-04 2.30E-04 2.30E-05 2.30E-04 2.30E-05 2.30E-04 2.30E-05 2.30E-04 2.30E-05 2.40E-05 2.40E-05 2.40E-05 2.40E-05 2.40E-05 2.40E-05 2.40E-05 2.40E-13 2.40E-05 2.40E-14 2.40E-13 2.40E-13 2.40E-06 2.40E-13 2.40E-13 2.40E-06 2.40E-13 2.40E-13 2.40E-06 2.40E-13 2.40E-13 2.40E-06 2.40E-13 2.40E-13 2.40E-13 2.40E-06 2.40E-13 2.40E-14 2.40E-13 2.40E-13 2.40E-13 2.40E-14	The concentration, by mass, in the suspended particles, CP obtained from the equation:			
C _u = (1+K _u *S)*C _{OW} 2.30E-04 Activity concentration of radionuclide j in marine biota C ₀ = CR*(C _{OW} /p _u) C ₀ = CR*(C _{OW} /p _u) (fish) C ₀ = CR*(C _{OW} /p _u) (fish) C ₀ = CR*(C _{OW} /p _u) (shellfish) Transfer of radioactivity to edible marine biota is calculated from the concentration of disolved radioactivity in the varier using element dipendent concentration factors for biological material. Radionuclide concentrations in eclible parts of the marine block are biological material. Radionuclide concentrations in eclible parts of the marine block are biological material. Radionuclide concentrations in eclible parts of the marine block are biological material. Radionuclide concentrations in eclible parts of the marine block are biological material. Radionuclide concentration is deviced phase in seawater, CDW(j), multiplied by the appropriate concentration in costal sediments in the dissolved phase in seawater, CDW(j), multiplied by the appropriate concentration in costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration in costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration in costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration in costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration in costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration in costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration in costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration is costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration is costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration is costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration is costal sediment is assumed to be a factor of 10 lower than that radionuclide concentration is c	$C_p = K_d * C_{dw}$	1.77E-02		
Activity concentration of radionuclide j in marine biota Image: concentration of radionuclide j in marine biota $C_a = CR^*(C_{OW}/P_a)$ 3.38E-06 $C_a = CR^*(C_{OW}/P_a)$ (fish) 3.38E-06 $C_a = CR^*(C_{OW}/P_a)$ (shellfish) 1.69E-05 Transfer of radioactivity to etible marine biota is calculated from the concentration of discover and acconcentrations in edite parts of the marine biota k are obliged amaterial. Radionuclide concentrations in edite parts of the marine biota k are obliged amaterial. Radionuclide concentration is neawater, CDW(j), multiplied by the appropriate concentration in edite parts of the marine biota k are obliged amaterial. Radionuclide concentration is neawater, CDW(j), multiplied by the appropriate concentration in edites based messawater, CDW(j), multiplied by the appropriate concentration in coastal settinent is assumed to be a factor of 10 lower than that in subprotectimation in coastal settinent is assumed to be a factor of 10 lower than that in subprotectimation in coastal settinent is assumed to be a factor of 10 lower than that in subprotectimation in coastal settinent is assumed to be a factor of 10 lower than that in subprotectimation in coastal settinent is assumed to be a factor of 10 lower than that in subprotectimation in coastal settinent (S). The surface contamination in the coastal settinent the radionuclide contration in coastal settinent (S). 2.65E-01 $C_a = C_a^+ C_a^+ d_a / 10$ 2.65E-01 2.65E-01 <td>The total concentration in seawater, C_W, (in Bq/m3), is given by:</td> <td></td> <td></td> <td></td>	The total concentration in seawater, C _W , (in Bq/m3), is given by:			
$C_n = CR^*(C_{OW}/P_n)$ $C_n = CR^*(C_{OW}/P_n) (fish)$ $C_n = CR^*(C_{OW}/P_n) (fish)$ $C_n = CR^*(C_{OW}/P_n) (shell fish)$ $C_n = Cr^*(C_{OW}/P_n) (shell fish) (C_{OW})$ $C_n = Cr^*(C_{OW}/P_n) (shell fish) (C_{OW}/P_n) (C_{OW}/P_n) (shell fish) (C_{OW}/P_n) (C_{OW}/P_n) (C_{OW}/P_n) (Shell fish) (C_{OW}/P_n) (C_{OW}/P_n) (Shell fish) (C_{OW}/P_n) (Shell fish) (C_{OW}/P_n) (C_{OW}/P_n) (Shell fish) (C_{OW}/P_n) (C_{OW}/P_n) (Shell fish) (C_{OW}/P_n) (C$	$C_{w} = (1+K_{d}*S)*C_{DW}$	2.30E-04		
$C_B = CR^*(C_{OW}(p_a), (fish)$ 3.38E-06 $C_B = CR^*(C_{OW}(p_a), (shellifsh)$ 1.68E-05 Transfer of radioactivity to edible marine blota is calculated from the concentration of disolved radioactivity in the water using element dependent concentration factors for biological material. Radionucide concentrations in edible parts of the marine blota k are obtained from the concentrations in the disolved phase in seawater, CDW(j), multiplied by the appropriate concentration factors (CFs): $C_{BB} = C_F^*C_{DW}$ 3.54E-06 $C_{BB} = CF(rab)^*C_{DW}$ 1.77E-05 $C_{BB} = CF(rab)^*C_{DW}$ 1.77E-05 $C_{EB} = C(P_a^*C_a)^{1/10}$ 2.65E-01 Dose from External exposure from contaminated beach sediments the radionuclide j. $C_{4(j)}$ (in $Bq/m2)$, is obtained from the equation (25): 2.65E-01 $C_{a} = C_{a}^*C_{a}^*C_{a}^*D_{Cm}^*$ 1.27E-04 mrem/yr Dose from External Exposure 1.27E-04 mrem/yr $E_{astact} = L_{bast}^*C_{a}^*D_{Cmg}^*$ 1.27E-08 mrem/yr Dose from ingestion of Seafood 2.48E-08 mrem/yr 1.98E-13 1.98E-08 mrem/yr </td <td>Activity concentration of radionuclide j in marine biota</td> <td></td> <td></td> <td></td>	Activity concentration of radionuclide j in marine biota			
$C_6 = CR^*(C_{OW}/P_a)$ (shellfish) 1.69E-05 Transfer of radioactivity to edible marine biota is calculated from the concentration of disolved radioactivity in the water using element dependent concentration factors for biological materials. Radionuclide concentrations in the dissolved phase in seawater, CDW(j), multiplied by the appropriate concentration is in the dissolved phase in seawater, CDW(j), multiplied by the appropriate concentration factors (CFs): $C_{EB} = CP^*COW$ 3.54E-06 $C_{EB} = CP(f(sh)^*C_{OW}$ 1.77E-05 $C_{EB} = C(royster)^*C_{OW}$ 1.77E-05 $C_{EB} = C(royster)^*C_{OW}$ 1.77E-05 $C_{EB} = C(royster)^*C_{OW}$ 1.77E-05 $C_{EB} = C(royster)^*C_{OW}$ 1.77E-05 $C_{EB} = C_{P}^*(royster)^*C_{OW}$ 1.77E-05 $C_{CB} = C_{P}^*(royster)^*C_{OW}$ 1.77E-05 $C_{CB} = C_{P}^*(royster)^*C_{OW}$ 1.77E-05 $C_{CB} = C_{P}^*(royster)^*C_{OW}$ 1.77E-05 $C_{CB} = C_{P}^*(royster)^*C_{OW}$ 1.77E-04 For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment of the equation (25): 2.66E-01 $C_{S} = (C_{P}^* r_{S}^* d_{J})^{1/0}$ 2.66E-01 2.66E-01 Dose form External Exposure 1.27E-09 1.27E-04 mrem/yr Eng. toot, paste	$C_{B} = CR^{*}(C_{DW}/p_{W})$			
Transfer of radioactivity to edible marine blota is calculated from the concentration of disolved radioactivity in the water using element dependent concentration factors for biological material. Radionuclide concentrations in edible parts of the marine blota k are obtained from the concentrations in the disolved phase in seawater, CDW(), multiplied by				
dissolved radioactivity in the water using element dependent concentration factors for biological materials. Radionuclide concentrations in edible parts of the marine biola k are obtained from the concentrations in the dissolved phase in seawater, CDW(j), multiplied by the appropriate concentration factors (CFs): C _{EB} = CF(fork) ^V C _{DW} 3.54E-06 C _{EB} = CF(fork) ^V C _{DW} 1.77E-05 C _{EB} = CF(rab) ^V C _{DW} 1.77E-05 C _{EB} = CF(rab) ^V C _{DW} 1.77E-05 C _{EB} = CF(ork) ^V C _{DW} 2.54E-06 C _{EB} = CF(ork) ^V C _{DW} 2.54E-07 For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal addiment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j. C _S (j) (in Bq/m2), is obtained from the equation (25): C _s = (C _p ⁻ p _s ⁻ d _b)/10 2.65E-01 Dose from Ingestion of Seafood E _{Bate, Padie} = t _{pable} ⁻ t _{pabl}	$C_{\rm B} = CR (C_{\rm DW}/\rho_{\rm W}) (sheilinsh)$	1.69E-05		
$C_{EB} = CF(Ish)^*C_{DW}$ 3.54E-06 $C_{EB} = CF(orsh)^*C_{DW}$ 1.77E-05 $C_{EB} = CF(orsh)^*C_{DW}$ 1.77E-05For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j. C ₆ (j) (in Bq/m2), is obtained from the equation (25): $C_s = (C_s^* p_s^* d_s)/10$ 2.65E-01Dose from External Exposure1.27E-04East, puble = H_s^* C_{EB}^* DC_{xg}1.27E-04Dose from Ingestion of Seafood1.27E-04Eng, tood, puble = H_s^* C_{EB}^* DC_{xg}2.48E-132.48E-132.48E-08Dose from ingestion of Beach SedimentEng, tood, puble = H_s^* C_{EB}^* DC_{xg}1.98E-08Dose from ingestion of Beach SedimentEng, tood, puble = H_suble * H_shore* (C_s^* DC_{yg})Dose from ingestion of Beach SedimentEng, tood, puble = H_suble * H_shore* (C_s^* DC_{yg})Dose from ingestion of Beach SedimentEng, tood, puble = H_suble * H_shore* (C_s^* DC_{yg})Dose from ingestion of Beach SedimentEng shore, puble * H_shore* * H_shore* C_s^* DC_{rg})Dose from inhalation of Beach SedimentEng shore, puble * H_shore* * C_s^* DC_{rh},End individual Dose to Members of the PublicDose from inhalation of Sea SprayEish, spray, puble * T_shore* C_s^* DC_{rh},Total Individual Dose to Members of the PublicEish, spray, puble * T_shore* E_shore* * E_shoreEish, spray, tobe * E_	Transfer of radioactivity to edible marine biota is calculated from the concentration of dissolved radioactivity in the water using element dependent concentration factors for biological material. Radionuclide concentrations in edible parts of the marine biota k are obtained from the concentrations in the dissolved phase in seawater, CDW(j), multiplied by the appropriate concentration factors (CFs):			
$C_{EB} = CF(Ish)^*C_{DW}$ 3.54E-06 $C_{EB} = CF(orsh)^*C_{DW}$ 1.77E-05 $C_{EB} = CF(orsh)^*C_{DW}$ 1.77E-05For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j. C ₆ (j) (in Bq/m2), is obtained from the equation (25): $C_s = (C_s^* p_s^* d_s)/10$ 2.65E-01Dose from External Exposure1.27E-04East, puble = H_s^* C_{EB}^* DC_{xg}1.27E-04Dose from Ingestion of Seafood1.27E-04Eng, tood, puble = H_s^* C_{EB}^* DC_{xg}2.48E-132.48E-132.48E-08Dose from ingestion of Beach SedimentEng, tood, puble = H_s^* C_{EB}^* DC_{xg}1.98E-08Dose from ingestion of Beach SedimentEng, tood, puble = H_suble * H_shore* (C_s^* DC_{yg})Dose from ingestion of Beach SedimentEng, tood, puble = H_suble * H_shore* (C_s^* DC_{yg})Dose from ingestion of Beach SedimentEng, tood, puble = H_suble * H_shore* (C_s^* DC_{yg})Dose from ingestion of Beach SedimentEng shore, puble * H_shore* * H_shore* C_s^* DC_{rg})Dose from inhalation of Beach SedimentEng shore, puble * H_shore* * C_s^* DC_{rh},End individual Dose to Members of the PublicDose from inhalation of Sea SprayEish, spray, puble * T_shore* C_s^* DC_{rh},Total Individual Dose to Members of the PublicEish, spray, puble * T_shore* E_shore* * E_shoreEish, spray, tobe * E_	$C_{EB} = C_F^* C_{DW}$			
$C_{EB} = CF(oyster)^*C_{OW}$ 1.77E-05For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j. $C_{6}(j)$ (in Bq/m2), is obtained from the equation (25): $C_{s} = (C_{p}^{-}p_{s}^{*}d_{a})/10$ 2.65E-01Dose form External Exposure Ead, public = I_puble, $C_{s}^{*}DC_{yr}$ 1.27E-09Dose from Ingestion of Seafood Eng. tool, public = H_{b}^{*}Ce_{b}^{*}DC_{ing}mrem/yr $C_{s} = tools, public = H_{b}^{*}Ce_{b}^{*}DC_{ing}$ 1.27E-08Dose from Ingestion of Beach Sediment Eng. tool, public = H_{b}^{*}Ce_{b}^{*}DC_{ing}mrem/yrDose from ingestion of Beach Sediment Eng. tool, public = H_{b}^{*}Ce_{b}^{*}DC_{ing}mrem/yrDose from ingestion of Beach Sediment Eng. tool, public = I_public "H_{incer}^{*}(C_v/(p_s^{-1}L_b)^{*}DC_{ing})1.98E-13Dose from ingestion of Beach Sediment Eng. tool, public = I_public "H_{incer}^{*}(C_v/(p_s^{-1}L_b)^{*}DC_{ing})mrem/yrDose from ingestion of Beach Sediment Eng. tool, public = I_public "H_{incer}^{*}(C_v/(p_s^{-1}L_b)^{*}DC_{ing})mrem/yrDose from industion of Beach Sediment End. torus, public = I_public "R_{incerbore"}^{*}(C_{incy}/V_b)^{*}Cw^{*}DC_{inh}3.95E-17Dose from inhalation of Sea Spray End. torus, public = I_public "R_{incerbore"}^{*}(C_{inc}) C_{inch}^{*}(C_{inc}) C_{inch}^{*}(C_{inc}) C_{inch}^{*}(C_{inc}) C_{inch}^{*}(C_{inc}) C_{inch}^{*}(C_{inc}) C_{inch}^{*}(C_{inch}) C_{inch}^{*}(C_{inch}) C_{inch}^{*}(C_{inch}) C_{inch}^{*}(C_{inch}) C_{inch}^{*}(C_{inch}) C_{inch}^{*}	$C_{EB} = CF(fish)^*C_{DW}$	3.54E-06		
Care Care Care Care For the calculation of the external exposure from contaminated beach sediments the radionuclide operation in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j, Cs(I) (in Bq/m2), is obtained from the equation (25): Cs = (Cp,*p,*d,)/10 2.65E-01 Dose Calculation 2 Dose from External Exposure 2 East, puble = t_puble; Cs,*DQr 1.27E-09 Dose from Ingestion of Seafood 2 Eng, tood, puble = Ha*CEa*DCng 2 Eng, tood, puble = Ha*CEa*DCng - fish 2.48E-13 Eng, tood, puble = Ha*CEa*DCng - fish 2.48E-13 Dose from ingestion of Beach Sediment 2 Eng, tood, puble = Ha*CEa*DCng - fish 2.48E-13 Eng, tood, puble = Ha*CEa*DCng - fish 2.48E-13 Eng, tood, puble = Ha*CEa*DCng - fish 3.72E-13 Dose from ingestion of Beach Sediment 2 Eng store, puble = Ha*CEa*DCng - fish 2.48E-13 Eng store, puble = Ha*CEa*DCng - Shell fish 3.72E-13 Dose from ingestion of Beach Sediment 2 Eng store, puble = Ha*CEa*DCng 1.98E-13 Eng store, puble = Ha*L		1.77E-05		
radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j. C ₈ (l) (in Bq/m2), is obtained from the equation (25): C ₈ = (C ₉ ⁻ P ₈ ⁺ d ₈)/10 C ₉ = (C ₉ ⁻ P	$C_{EB} = CF(oyster)^*C_{DW}$	1.77E-05		
Dose from External Exposure	For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j, $C_{\rm S}(j)$ (in Bq/m2), is obtained from the equation (25):			
Dose from External Exposure 1.27E-09 1.27E-04 mrem/yr Dose from Ingestion of Seafood 1 1.27E-04 mrem/yr Dose from Ingestion of Seafood 1 1.27E-04 mrem/yr Eing, food, public = His*CEB*DCing - fish 2.48E-13 2.48E-08 mrem/yr Eing, food, public = His*CEB*DCing - fish 2.48E-13 3.72E-08 mrem/yr Dose from ingestion of Beach Sediment 3.72E-13 3.72E-08 mrem/yr Dose from inlagation of Beach Sediment 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Beach Sediment 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Beach Sediment 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Sea Spray 1.98E-13 1.98E-08 mrem/yr Dose from Inhalation of Sea Spray 1.98E-14 2.68E-09 mrem/yr Dose from Inhalation of Sea Spray 1.27E-09 1.27E-04 mrem/yr Dose from Inhalation of Sea Spray 1.27E-09 1.27E-04 mrem/yr Dose from Inhalation of Sea Spray 1.27E-09 1.27E-04 mrem/yr Einh, spray, public = tipublic*Rinh, public*(Capray!/Pw)*Cw	$C_{s} = (C_{p}^{*} p_{s}^{*} d_{s})/10$	2.65E-01		
Eext, public = tpublic *Cs*DCgr 1.27E-09 1.27E-09 1.27E-09 mrem/yr Dose from Ingestion of Seafood Eing, food, public = Ha*CEB*DCing - fish Eing, food, public = Ha*CEB*DCing - fish C.48E-13 2.48E-08 mrem/yr Eing, food, public = Ha*CEB*DCing - shell fish 3.72E-08 mrem/yr Dose from ingestion of Beach Sediment Eing shore, public = tpublic*Hshcre*(Cs/(Cs/(Ps*LB)*DCing)) 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Beach Sediment Eins shore, public = tpublic*Rinh, public*Dishore*Cp*DCinh Dose from Inhalation of Sea Spray Einh, spray, public = tpublic*Rinh, public*Cs*DCinh Total Individual Dose to Members of the Public Eind, public = Eind, shore*Einh, spray Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; If cell F58 ≤ 1	Dose Calculation			
Eext, public = tpublic *Cs*DCgr 1.27E-09 1.27E-09 1.27E-09 mrem/yr Dose from Ingestion of Seafood Eing, food, public = Ha*CEB*DCing - fish Eing, food, public = Ha*CEB*DCing - fish C.48E-13 2.48E-08 mrem/yr Eing, food, public = Ha*CEB*DCing - shell fish 3.72E-08 mrem/yr Dose from ingestion of Beach Sediment Eing shore, public = tpublic*Hshcre*(Cs/(Cs/(Ps*LB)*DCing)) 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Beach Sediment Eins shore, public = tpublic*Rinh, public*Dishore*Cp*DCinh Dose from Inhalation of Sea Spray Einh, spray, public = tpublic*Rinh, public*Cs*DCinh Total Individual Dose to Members of the Public Eind, public = Eind, shore*Einh, spray Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; If cell F58 ≤ 1	Dose from External Exposure			
Eing, tood, public = Hg*C _{EB} *DCing fish 2.48E-08 mrem/yr Eing, tood, public = Hg*C _{EB} *DCing - fish 2.48E-08 mrem/yr Eing, tood, public = Hg*C _{EB} *DCing - shell fish 3.72E-13 3.72E-08 mrem/yr Dose from ingestion of Beach Sediment Eing shore, public = tpublic *Hshore*((Cg/(Dg*Lg)*DCing) 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Beach Sediment Einh shore, public = tpublic *Ushore*Cp*DCinh 3.95E-17 3.95E-12 mrem/yr Dose from Inhalation of Sea Spray Einh, spray, public = tpublic *Rinh, public*Dishore*Cp*DCinh 2.68E-14 2.68E-09 mrem/yr Total Individual Dose to Members of the Public Eind, public = Eind, shore*Einh, spray 1.27E-09 1.27E-04 mrem/year Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; If cell F58 ≤ 1	Eext, public = t _{public} = t _{public} *C _s *DC _{gr}	1.27E-09	1.27E-04	mrem/yr
Eing, food, public = H _B *C _{EB} *DC _{ing} - fish 2.48E-08 mrem/yr Eing, food, public = H _B *C _{EB} *DCing - shell fish 3.72E-13 3.72E-08 mrem/yr Dose from ingestion of Beach Sediment	Dose from Ingestion of Seafood			
Eing, food, public = HB*CEB*DCing - shell fish $3.72E-13$ $3.72E-08$ mrem/yr Dose from ingestion of Beach Sediment 1 1 1 Eing shore, public = tpublic*Hshore*((Cy/(Ps*LB)*DCing)) 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Beach Sediment 1 1 1 1 Einh shore, public = tpublic*Hshore*(Cy*Cp*DCing) 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Beach Sediment 1 1 1 1 Einh shore, public = tpublic*Rinh, public*Dishore*Cp*DCinh 3.95E-17 3.95E-12 mrem/yr Dose from Inhalation of Sea Spray 1 1 1 1 1 1 Einh, spray, public = tpublic*Rinh, public*(Cyrayl/Pw)*CW*DCinh 2.68E-14 2.68E-09 mrem/yr Total Individual Dose to Members of the Public 1 1 1 1 1 Eind, public = Eind, public 1 1 1 1 1 1 1 Reference Dose, if cell D58 < 10	$E_{ing, food, public} = H_B^* C_{EB}^* DC_{ing}$			l
Eing shore, public = tpublic *H_shore*((C _g /(p _s *L _B)*DC _{ing}) 1.98E-03 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Beach Sediment				-
Eing shore, public = tpublic *H_shore*((C _g /(p _s *L _B)*DC _{ing}) 1.98E-03 1.98E-13 1.98E-08 mrem/yr Dose from inhalation of Beach Sediment	Dose from indestion of Beach Sediment			
Einh shore, public = tpublic *Rinh, public *Dishore*Cp*DCinh 3.95E-17 3.95	Eing shore, public = tpublic +Hshore *((Cs/(ps+LB)*DCing)	1.98E-13	1.98E-08	mrem/yr
Dose from Inhalation of Sea Spray	Dose from inhalation of Beach Sediment			
E _{inh, spray, public} = t _{public} *R _{inh,public} *(C _{spra} y/p _w)*Cw*DC _{inh} 2.68E-14 2.68E-09 mrem/yr <i>Total Individual Dose to Members of the Public</i> 1.27E-09 1.27E-04 mrem/year E _{ind, public} = E _{food} +E _{ing,shore} +E _{ihn,shore} +E _{inh,spray} 1.27E-04 mrem/year Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; if cell F58 ≤ 1	$E_{inh shore, public} = t_{public} * R_{inh, public} * D_{ishore} * C_p * D C_{inh}$	3.95E-17	3.95E-12	mrem/yr
E _{inh, spray, public} = t _{public} *R _{inh,public} *(C _{spra} y/p _w)*Cw*DC _{inh} 2.68E-14 2.68E-09 mrem/yr <i>Total Individual Dose to Members of the Public</i> 1.27E-09 1.27E-04 mrem/year E _{ind, public} = E _{food} +E _{ing,shore} +E _{ihn,shore} +E _{inh,spray} 1.27E-04 mrem/year Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; if cell F58 ≤ 1	Dose from Inhalation of Sea Sprav			
E _{ind, public} = E _{food} +E _{ing,shore} +E _{inn,shore} +E _{inn,shore+E_{inn,shore+E_{inn,shore}+E_{inn,shore}+E_{inn,shore}+E_{inn,sh}}}	Einh, spray, public = tpublic *Rinh, public *(C spray/pw)*Cw*DC inh	2.68E-14	2.68E-09	mrem/yr
Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; If cell F58 ≤ 1	Total Individual Dose to Members of the Public			
	E _{ind, public} = E _{food} +E _{ing,shore} +E _{ihn,shore} +E _{inh,spray}	1.27E-09	1.27E-04	mrem/year
	Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; If cell F58 ≤ 1 mrem acceptable, if > 1 mrem not acceptable.	10	1	mrem/year

Collective Public Dose				
The collective dose to members of the public is the combination of collective doses from exposures on the shore and the consumption of seafood.				
Collective Dose from Exposure on Shore				
E _{coll, shore, public} = (E _{ext, public} + E _{inh shore, public} +E _{inh spray, public}) * ((O _{coll, public} * L _{shore} * N _{sites})/t _{public})	1.59E-05	man-Sv/year		
Collective Dose from Seafood Consumption				
$E_{coll ing, public} = N_{sites} * f_B * N_B * C_B * DC_{ing}$				
E _{coll ing, public} = N _{sites} *f _B *N _B *C _B *DCing (fish)	4.74E-08	man-Sv/year		
$E_{coll ing, public} = N_{sites} * f_B * N_B * C_B * DCing (shellfish)$	8.29E-08	man-Sv/year		
Total Collective Dose				
E _{coll,public} = E _{coll shore, pubic} + E _{coll ing, public}	1.61E-05	man-Sv/year	1.61E-03	man-rem/year
Reference Dose, if cell D19 \leq D21 acceptable, if D19 > D21 not acceptable; If cell F19 \leq F21 acceptable, if > F21 not acceptable.	1	man-Sv/year	100	man-rem/year

Specific P	arameters		
Depth of Water Column	D	1.10E+03	meters
Volume of Seawater in Box	V	1.10E+13	m ³
Annual mass of material disposed	М	5.18E+05	kg
Avg concentration of Ir-192	С	4.95E+04	Bq/kg
Number of dump sites	Nsites	4.00E+01	sites
Density of seawater	ρω	1.05E+03	kg/m3

Generic Param	eters		1
Flux of water through region	F	4.00E+10	m³/year
Radioactive decay constant Ir-192	λ_{rad}	4.93E+00	year ⁻¹
Thickness of boundary sediment layer in box	L _B	1.00E-02	m
Effective sediment thickness	ds	1.00E-01	m
Bulk sediment and waste density	ρ_s, ρ_B	1.50E+03	kg/m3
Suspended sediment concentration	S	3.00E-03	kg/m3
Sediment Distribution Factor	Kd	1.00E+02	m3/kg
Dust loading on shore (kg/m3)	DL _{shore}	2.30E-10	kg/m3
Seaspray concentration in air (kg/m3)	C _{spray}	1.20E-02	kg/m3
Density of seawater (Kg/m ³)	ρ _w	1.05E+03	kg/m3
Annual collective shore occupancy per unit length	O _{coll, shore}	5.00E+01	man-h/yr/m
Coastline length for one site	L _{shore}	1.00E+04	m
Annual fish catch in the area of a single site	N _B (fish)	5.00E+05	kg/year
Annual shellfish catch in the area of a single site	N _B (shellfish)	2.50E+05	kg/year
Fraction of fish utilized for human consumption	f _B (fish)	5.00E-01	
Fraction of shellfish utilized for human consumption	f _B (shellfish)	3.50E-01	

Element	C	oncentration Fact	or	Concentration Ratio						
		(m3/kg)		(E	Bq/Kg per Bq/Kg	3)				
		CF			CR					
	Fish	Crustracean	Mollusc	Flatfish	Shellfish	Seaweed				
Iridium	2.00E-02	1.00E-01	1.00E-01	2.00E+01	1.00E+02	1.00E+03				

	External dose	e coefficients		Internal dose	e coefficients			Pu
	(Sv/h pe	r Bq/kg)		(Sv	/Bq)		Annual time spent on sediments on shore	t _{public}
	DCg	DCship	DC	ing	DC	inh ,	Public breathing rate	R _{inh, p}
weed			Infants	Adults	Infants	Adults	Annual ingestion of fish	H _B (fis
0E+03	3.00E-12	8.30E-12	8.70E-09	1.40E-09	2.20E-09	6.60E-09	Annual ingestion of shellfish	H _B (sh
							Ingestion rate of sediment on beach	H _{shore}

	Public			
Annual time spent on sediments on shore	tpublic	1.60E+03	1.00E+03	hours
Public breathing rate	Rinh, public	9.20E-01	2.20E-01	m3/hour
Annual ingestion of fish	H _B (fish)	5.00E+01	2.50E+01	Kg
Annual ingestion of shellfish	H _B (shellfish)	1.50E+01	0.00E+00	Kg
Ingestion rate of sediment on beach	H _{shore}	5.00E-06	3.00E-05	Kg/hour

Convers	ions							
mCi to Bq conversions								
2.70E-08	mCi/Bq							
3.70E+07	Bq/mCi							
lbs to Kg cor	nversion							
4.50E-01	Kg/lb							
Sv to m	rem							
1.00E+05	mrem/Sv							
meters pe	er foot							
0.3	m/ft							
km per	mile							
1.61	km/mile							

Average Summary Frac Jobs YTD Jan-Sep 2nd (20 Wells)

Est. Jobs/Year

Tracers			
Sc-46 1st Tracing (Avg)			
Proppant Traced Sc-46	45,303	lbs	
Sc-46 Total Injected	22.250	mCi	
Conc. Sc-46 mCi	0.491	mCi/k lbs proppant	
Sc-46 pCi	1,092.068	pCi/gm	
Ir-192 2	nd Tracing (Avg)		
Proppant Traced Ir-192	97,585	lbs	
Ir-192 Total Injected	58.900	mCi	
Conc. Ir-192 mCi	0.604	mCi/k lbs proppant	
Ir-192 pCi	1,330.986	pCi/gm	
Total Proppant Traced (Avg)	142,888	lbs	
Total Ir-192 & Sc-46	81.150	mCi	
Material Retu	rned to Surface (Avg)		
Proppant Reversed-out	28,766	lbs	
Reverse-out Ir-192	17.362	mCi	
Flush Pumped	431.50	bbl	
	ntrations (Avg)		
Reverse-out Ir-192	1.74E+01	-	
Reverse-out Ir-192	1.74E+04		
Reverse-out Ir-192	2.53E-04	μCi/ml	

2.04E+04	kg
8.23E+08	Bq
4.39E+04	kg
2.18E+09	Bq
6.43E+04	kg
3.00E+09	Bq
1.29E+04	kg
6.42E+08	Bq
6.42E+08	
6.42E+08	Bq
1.09E+03	
1.10E+03	
1.64E+02	km
I	1

SI Units

Tracers							
Sc-46 1st Tracing (Total)							
Proppant Traced Sc-46	1,812,126	lbs					
Sc-46 Total Injected	890	mCi					
Conc. Sc-46 mCi	0.491	mCi/k lbs proppant					
Sc-46 pCi	1,092	pCi/gm					
Ir-192 2nd	d Tracing (Total)						
Proppant Traced Ir-192	3,903,396	lbs.					
Ir-192 Total Injected	2,356	mCi					
Conc. Ir-192 mCi	0.604	mCi/k lbs proppant					
Ir-192 pCi	1,330.986	pCi/gm					
Total Proppant Traced (Avg)	5,715,522	lbs					
	81.150						

40

Material Returned to Surface (Total)						
Proppant Reversed-out	1,150,640	lbs				
Reverse-out Ir-192	694	mCi				
Flush Pumped	17,260	bbl				

SI Units		Conversions							
8.15E+05	kg		mCi to Bq conve	ersions					
3.29E+10	Bq								
			2.70E-08	mCi/Bq					
			3.70E+07	Bq/mCi					
			lbs to Kg conversion						
1.76E+06	kg		4.50E-01	Kg/lb					
8.72E+10	Bq								
4.95E+04	Bq/kg		Sv to	mrem					
			1.00E+05	mrem/Sv					
2.57E+06	kg		meters	per foot					
			0.3 ו	n/ft					
			km pe	r mile					
5.18E+05	kg		1.61	km/mile					
2.57E+10	Bq								

Well & Job Data (Total)									
Well Depth	144784	ft							
Well Depth	44130	meters							
Distance to Shore	4066	miles							
Pumping Time Minutes	28267	min							
Pumping Time Hours	471	hr							

**Nautical Miles to Grand Isle, LA 29.2339196776543, -89.9992938991118

Well Depth Well Depth

Distance to Shore

Pumping Time Minutes

Pumping Time Hours

Well & Job Data (Avg)

3619.6 ft 1103.25 meters

101.65 miles

706.67 min

11.78 hr

Last 10-20-30 Jobs conducted from Broussard, LA

Г					Pumping	Pumping							Sc-46				Ir-192	Total				Flush			
				Depth	Time	Time	Surface	Surface	Miles to	Amount	Sc-46	Conc. Sc-46	Picocuries/gr	Amount Traced	Ir-192	Conc. Ir-192	Picocuries/	Picocuries/	Total	Reverse-out	Reverse-out	pumped	Flush Pumped		
	Date	API #	Depth (ft)	(m)	(min)	(Hours)	Latitude	Longitude	Shore**	Traced Sc-46	(mCi)	(mCi/k)	am	Ir-192	(mCi)	(mCi/k)	gram	gram	Proppant	Pounds	Ir-192 (mCi) *	bbl.	ml	μCi	μCi/ml
1	1/1/2022	608114067901	3604	1098.5	564.57	9.41	27.560455	-90.10466997	101	36,269	18	0.496	1094.137	89071	53	0.595	1311.820	1248.830	125,340	8,314	4.95E+00	533	8.47E+07	4.95E+03	5.84E-05
2	1/7/2022	608164029901	1290	393.192	295.5	4.93	28.9730817	-88.62599537	74	26,700	13	0.487	1073.413	105600	63	0.597	1315.259	1266.451	132,300	13,879	8.28E+00	170	2.70E+07	8.28E+03	3.06E-04
3	3/5/2022	608114068801	3603	1098.19	815.58	13.59	27.5604586	-90.10493052	101	33,604	17	0.506	1115.302	110973	67	0.604	1331.043	1280.898	144,577	8,694	5.25E+00	578	9.19E+07	5.25E+03	5.71E-05
4	3/7/2022	608164035601	1290	393.192	226.39	3.77	28.9730295	-88.62599143	74	24,662	12	0.487	1072.723	100529	60	0.597	1315.814	1267.926	125,191	21,064	1.26E+01	176	2.80E+07	1.26E+04	4.49E-04
5	3/10/2022	608114008703	760	231.648	341.41	5.69	27.9436989	-91.0291754	95	36,827	18	0.489	1077.558	167676	101	0.602	1327.960	1282.868	204,503	24,772	1.49E+01	174	2.77E+07	1.49E+04	5.39E-04
6	3/29/2022	608104016400	1570	478.536	374.9	6.25	28.0783789	-89.98232167	69	31,875	16	0.502	1106.635	70054	42	0.600	1321.755	1254.483	101,929	31,608	1.90E+01	182	2.89E+07	1.90E+04	6.55E-04
7	4/1/2022	608114071200	4958	1511.2	322.71	5.38	27.1540958	-90.30964083	126	93,605	47	0.502	1106.964	139951	84	0.600	1323.238	1236.559	233,556	89,075	5.35E+01	539	8.57E+07	5.35E+04	6.24E-04
8	4/11/2022	608114071200	4958	1511.2	181.32	3.02	27.1540958	-90.30964083	126	42,375	21	0.496	1092.557	57750	35	0.606	1336.136	1233.048	100,125	33,145	2.01E+01	530	8.43E+07	2.01E+04	2.38E-04
9	4/19/2022	608114074802	3606	1099.11	784.43	13.07	27.5610032	-90.10413894	101	34,260	17	0.496	1093.947	90378	63	0.697	1536.783	1415.058	124,638	12,289	8.57E+00	489	7.77E+07	8.57E+03	1.10E-04
10	4/19/2022	608174142901	3223	982.37	265.1	4.42	28.4706082	-88.9400004	72	80,992	40	0.494	1088.811	123511	74	0.599	1320.872	1228.966	204,503	42,258	2.53E+01	421	6.69E+07	2.53E+04	3.78E-04
11	4/25/2022	608114074802	3606	1099.11	754.13	12.57	27.5610032	-90.10413894	101	22,000	11	0.500	1102.312	66743	40	0.599	1321.262	1266.983	88,743	4,656	2.79E+00	498	7.92E+07	2.79E+03	3.52E-05
12	5/7/2022	608114065800	4979	1517.6	311.55	5.19	27.1457181	-90.319515	126	46,724	23	0.492	1085.232	122335	73	0.597	1315.548	1251.894	169,059	26,077	1.56E+01	603	9.59E+07	1.56E+04	1.62E-04
13	5/23/2022	608114071900	4987	1520.04	311.55	5.19	27.1456717	-90.31935528	126	42,375	21	0.496	1092.557	62322	37	0.594	1308.865	1221.317	104,697	26,697	1.58E+01	595	9.46E+07	1.58E+04	1.68E-04
14	6/4/2022	608114068000	3788	1154.58	1207.42	20.12	27.4950992	-90.06402528	104	33,000	17	0.515	1135.716	57033	34	0.596	1314.278	1248.829	90,033	30,381	1.81E+01	621	9.87E+07	1.81E+04	1.83E-04
15	6/6/2022	60812400680	5190	1581.91	969.75	16.16	26.9326556	-90.520285	141	67,301	34	0.505	1113.761	55322	33	0.597	1315.075	1204.585	122,623	4,457	2.66E+00	571	9.08E+07	2.66E+03	2.93E-05
16	6/11/2022	608114068000	3788	1154.58	924.1	15.40	27.4950992	-90.06402528	104	45,151	23	0.509	1123.040	121582	73	0.600	1323.696	1269.358	166,733	4,416	2.65E+00	547	8.70E+07	2.65E+03	3.05E-05
17	7/16/2022	608174120900	3036	925.373	1109.54	18.49	28.1599111	-89.23903278	76	23,326	12	0.514	1134.163	142095	85	0.598	1318.787	1292.753	165,421	95,629	5.72E+01	99	1.57E+07	5.72E+04	3.63E-03
18	7/18/2022	608114068901	3760	1146.05	1522.16	25.37	27.4978671	-90.06045106	104	52,657	26	0.494	1088.559	123505	74	0.599		1251.476	176,162	14,776	8.85E+00	529	8.41E+07	8.85E+03	1.05E-04
19	8/15/2022	608174108401	6946	2117.14	1857.18	30.95	28.3078502	-88.20155808	110	106,000	46	0.434	956.724	93500	56	0.599		1127.176	199,500	80,914	4.85E+01	135	2.15E+07	4.85E+04	2.26E-03
20	9/2/2022	608114074701	3450	1051.56	994.05	16.57	27.5364356	-90.16512122	102	26,360	13	0.493	1087.258	51768	31	0.599	1320.185	1241.597	78,128	2,219	1.33E+00	640	1.02E+08	1.33E+03	1.31E-05
21																									
22																									
23																									
24																									
25																									
26																									
27																									
A	verages		3,620	1103.25	707	11.78			102	45,303	22	0.491	1,092	97,585	59	0.604	1,331	1,255	142,888	28,766	1.74E+01	432	6.86E+07	1.74E+04	2.53E-04

* Ir-192 is always pumped after the Sc-46 and should be the only tracer remaining above the crossover. **Nautical Miles to Grand Isle, LA 29.2339196776543, -89.9992938991118

Individual Public Dose								
Reference Dose	1.00E+01	μSv/yr						
Dose from External Exposure	1.47E-03	uSv/vr						
Dose from Ingestion of Seafood	0.00E+00							
Dose from Ingestion of Beach Sediment	2.29E-07	μSv/yr						
Dose from Inhalatio of Beach Sediment	4.57E-11	μSv/yr						
Dose from Inhalation of Sea Spray	3.10E-08	μSv/yr						
Total Individual Dose	1.47E-03	μSv/yr						

Collective Public Dose									
Reference Dose	1.00E+00	man-Sv/year							
Collective Dose from Exposure on shore	1.84E-05	man-Sv/year							
Collefctive Dose from Seafood Consumption	0.00E+00	man-Sv/year							
Total Collective Dose	1.84E-05	man-Sv/year							

Individual Dose to the Public			
Concentration Factors			
The activity concentration of a radionuclide in the box depends on the rate of input of the radionuclide to the box, its radioactive decay and its dispersion. The rate constant due to dispersion h_{in} (in 1(a) is the regime and the mean residence time in the constant due to			
dispersion, $\lambda_{\text{dis}},$ (in 1/a) is the reciprocal of the mean residence time in the coastal region and is obtained from the equation:			
$\lambda_{dis} = F / V$	3.64E-03		
The annual average input of activity of radionuclide j, Q(j) (in Bq), is obtained from the equation:			
Q = M x C	2.96E+10		
The equilibrium concentration of Ir-192 in the box volume is given by			
$C_{box} = Q/(V^*(\lambda_{rad} + \lambda_{dis}))$	5.46E-04		
The concentration $C_{BOX}(j)$ in the box includes radioactivity in the dissolved phase of seawater and radioactivity associated with the suspended sediment particles and the sediment boundary layer. The concentration by volume of radionuclide j in the dissolved phase of seawater, $C_{DW}(j)$ (in Bq/m3), is given by:			
$C_{DW} = C_{box}/(1+K_d(S+(L_B*p_B/D)))$	2.05E-04		
The concentration, by mass, in the suspended particles, CP obtained from the equation:			
$C_p = K_d^* C_{dw}$	2.05E-02		
The total concentration in seawater, C _w , (in Bq/m3), is given by:			
$C_{w} = (1+K_{d}*S)*C_{DW}$	2.66E-04		
Activity concentration of radionuclide j in marine biota			
$C_B = CR^*(C_{DW}/p_w)$			
$C_{B} = CR^{*}(C_{DW}/p_{w}) \text{ (fish)}$ $C_{B} = CR^{*}(C_{DW}/p_{w}) \text{ (shellfish)}$	3.91E-06 1.96E-05		
	1.502-03		
Transfer of radioactivity to edible marine biota is calculated from the concentration of dissolved radioactivity in the water using element dependent concentration factors for biological material. Radionuclide concentrations in edible parts of the marine biota k are obtained from the concentrations in the dissolved phase in seawater, CDW(j), multiplied by the appropriate concentration factors (CFs):			
$C_{EB} = C_F C_{DW}$			
C _{EB} = CF(fish)*C _{DW}	4.09E-06		
$C_{EB} = CF(crab)^*C_{DW}$ $C_{EB} = CF(oyster)^*C_{DW}$	2.05E-05 2.05E-05		
	2.03E-03		
For the calculation of the external exposure from contaminated beach sediments the radionuclide concentration in coastal sediment is assumed to be a factor of 10 lower than that in suspended particles in the water column [16]. The surface contamination in the coastal sediment of radionuclide j, $C_s(j)$ (in Bq/m2), is obtained from the equation (25):			
$C_{s} = (C_{p}^{*} p_{s}^{*} d_{s})/10$	3.07E-01		
Dose Calculation			
Dose from External Exposure			
$E_{ext, public} = t_{public} * C_s * DC_{gr}$	1.47E-09	1.47E-04	mrem/yr
Dose from Ingestion of Seafood			
$\frac{E_{ing, food, public} = H_{B}^* C_{EB}^* D C_{ing}}{E_{ing, food, public} = H_{B}^* C_{EB}^* D C_{ing}^- fish}$	2.87E-13	2 075 00	mromh
Eing, food, public = 118 CEB DCing = 1181 Eing, food, public = H _B *C _{EB} *DCing - shell fish	4.30E-13	2.87E-08 4.30E-08	-
Dose from ingestion of Beach Sediment			
Eing shore, public = t _{public} *H _{shore} *((C _s /(p _s *L _B)*DC _{ing})	2.29E-13	2.29E-08	mrem/yr
Dose from inhalation of Beach Sediment			
Einh shore, public = tpublic *Rinh, public *DIshore *Cp *DCinh	4.57E-17	4.57E-12	mrem/yr
Dose from Inhalation of Sea Spray			
E _{inh, spray, public} = t _{public} *R _{inh,public} *(C _{spra} y/p _w)*Cw*DC _{inh}	3.10E-14	3.10E-09	mrem/yr
Total Individual Dose to Members of the Public	1.47E-09	1.47E.04	mrem//cor
Eind, public = Efood+Eing,shore+Einh,shore+Einh,spray	1.47E-09	1.47 ⊑-04	mrem/year
Reference Dose, if cell D58 ≤ 10 uSv acceptable, if >10 uSv not acceptable; if cell F58 ≤ 1 mrem acceptable, if > 1 mrem not acceptable.	10	1	mrem/year

Collective Public Dose				
The collective dose to members of the public is the combination of collective doses from exposures on the shore and the consumption of seafood.				
Collective Dose from Exposure on Shore				
E _{coll, shore, public} = (E _{ext, public} + E _{inh shore, public} + E _{inh spray, public}) * ((O _{coll, public} * L _{shore} * N _{sites})/t _{public})	1.84E-05	man-Sv/year		
Collective Dose from Seafood Consumption				
$E_{coll ing, public} = N_{sites} * f_B * N_B * C_B * DC_{ing}$				
E _{coll ing, public} = N _{sites} *f _B *N _B *C _B *DCing (fish)	5.48E-08	man-Sv/year		
$E_{coll ing, public} = N_{sites} * f_B * N_B * C_B * DCing (shellfish)$	9.59E-08	man-Sv/year		
Total Collective Dose				
E _{coll,public} = E _{coll shore, pubic} + E _{coll ing, public}	1.86E-05	man-Sv/year	1.86E-03	man-rem/year
Reference Dose, if cell D19 \leq D21 acceptable, if D19 > D21 not acceptable; If cell F19 \leq F21 acceptable, if > F21 not acceptable.	1	man-Sv/year	100	man-rem/year

Specific Pa	rameters		
Depth of Water Column	D	1.10E+03	meters
Volume of Seawater in Box	v	1.10E+13	m3
Annual mass of material disposed	м	5.18E+05	kg
Avg concentration of Ir-192	С	5.72E+04	Bq/kg
Number of dump sites	Nates	4.00E+01	sites
Density of seawater	ρ.	1.05E+03	kg/m3
	1		

Generic Paramo	ters		
Flux of water through region	F	4.00E+10	
Radioactive decay constant Ir-192	Anad	4.93E+00	year ¹
Thickness of boundary sediment layer in box	L	1.00E-02	m
Effective sediment thickness	d,	1.00E-01	m
Bulk sediment and waste density	ρ., ρ.	1.50E+03	kg/m3
Suspended sediment concentration	S	3.00E-03	kg/m3
Sediment Distribution Factor	Kd	1.00E+02	m3/kg
Dust loading on shore (kg/m3)	DLahore	2.30E-10	kg/m3
Seaspray concentration in air (kg/m3)	Capagy	1.20E-02	kg/m3
Density of seawater (Kg/m ³)	ρ"	1.05E+03	kg/m3
Annual collective shore occupancy per unit length	O _{col, shore}	5.00E+01	man-h/yr/n
Coastline length for one site	Luhore	1.00E+04	m
Annual fish catch in the area of a single site	N ₀ (fish)	5.00E+05	kg/year
Annual shellfish catch in the area of a single site	N ₂ (shellfish)	2.50E+05	kg/year
Fraction of fish utilized for human consumption	fg(fish)	5.00E-01	
E C (1 115 1 15 1 1 1 1	(aballiah)	0.505.04	

Element	Concentration Factor			Co	ncentration Ra	tio
	(m3/kg)		(m3/kg) (Bq/Kg per Bq/Kg)		g)	
		CF		CR		
	Fish	Crustracean	Mollusc	Flatfish	Shellfish	Seaweed
Iridium	2.00E-02	1.00E-01	1.00E-01	2.00E+01	1.00E+02	1.00E+03

External dos	se coefficients		Internal dose coefficients		
(Sv/h per Bq/kg)		(Sw/Bq)		/Bq)	
DCgr	DC _{shp}	DCing		DC _{ing} DC _{inh}	
		Infants	Adults	Infants	Adults
3.00E-12	8.30E-12	8.70E-09	1.40E-09	2.20E-09	6.60E-09

	Public			
Annual time spent on sediments on shore	t _{public}	1.60E+03	1.00E+03	hours
Public breathing rate	Rinh, public	9.20E-01	2.20E-01	m3/hour
Annual ingestion of fish	H ₂ (fish)	5.00E+01	2.50E+01	Kg
Annual ingestion of shellfish	H _a (shellfish)	1.50E+01	0.00E+00	Kg
Ingestion rate of sediment on beach	H _{store}	5.00E-06	3.00E-05	Kg/hour

Conversions				
mCi to Bq coi	nversions			
2.70E-08	mCi/Bq			
3.70E+07	Bq/mCi			
lbs to Kg cor	nversion			
4.50E-01	Kg/lb			
Sv to m	rem			
1.00E+05	mrem/Sv			
meters pe	er foot			
0.3	m/ft			
km per i	mile			
1.61	km/mile			

Average Summary Frac Jobs YTD Jan-Sep 2nd (20 Wells)

Est. Jobs/Year

	Tracers	
Sc-46 1st Tracing (Avg)		
Proppant Traced Sc-46	34,260 lbs	
Sc-46 Total Injected	17.000 mCi	
Conc. Sc-46 mCi	0.496 mCi/k lb	os proppant
Sc-46 pCi	1,093.947 pCi/gm	
Ir 102 3	nd Tracing (Avg)	
Proppant Traced Ir-192	90,378 lbs	
Ir-192 Total Injected	63.000 mCi	
Conc. Ir-192 mCi	0.697 mCi/k lb	s proppant
Ir-192 pCi	1,536.783 pCi/gm	is proppane
132 pci	1,550.765 per/gm	
Total Proppant Traced (Avg)	124,638 lbs	
Total Ir-192 & Sc-46	80.000 mCi	
Material Ret	28,766 lbs	
Reverse-out Ir-192	8,566 mCi	
Flush Pumped	489.00 bbl	
Conce	ntrations (Avg)	
Reverse-out Ir-192	8.57E+00 mCi	
Reverse-out Ir-192	8.57E+03 μCi	
Reverse-out Ir-192	1.10E-04 µCi/ml	
Well 9	Job Data (Avg)	
Well Depth	3619.6 ft	
Well Depth	1099.11 meters	
Distance to Shore	101 miles	

101 miles 784.43 min 13.07 hr

SI Units	
1.54E+04	kg
6.29E+08	Bq
4.07E+04	kg
2.33E+09	Bq
5.61E+04	kg
2.96E+09	Bq
1.29E+04	kg
3.17E+08	Bq
3.17E+08	
3.17E+08	Bq
4.005.03	
1.09E+03	
1.10E+03 1.63E+02	m km
1.63E+U2	KIII

Tracers				
Sc-46 1st Tracing (Total)				
Proppant Traced Sc-46		1,370,400	lbs	
Sc-46 Total Injected		680	mCi	
Conc. Sc-46 mCi		0.496	mCi/k lbs proppant	
Sc-46 pCi		1,094	pCi/gm	
Ir-192 2nd Tracing (Total)				
Proppant Traced Ir-192		3,615,120	lbs.	
Ir-192 Total Injected		2,520	mCi	
Conc. Ir-192 mCi		0.697	mCi/k lbs proppant	
Ir-192 pCi		1,536.783	pCi/gm	
Total Proppant Traced (Avg)		4,985,520	lbs	
Total Ir-192 & Sc-46		80.000		

40

Material Returned to Surface (Total)			
1,150,640	lbs		
343	mCi		
19,560	bbl		
	to Surface (Total) 1,150,640 343 19,560		

SI Units	SI Units		Conversions		
6.17E+05	kg		mCi to Bq conversions		
2.52E+10	Bq				
			2.70E-08	mCi/Bq	
			3.70E+07	Bq/mCi	
			lbs to Kg conversion		
1.63E+06	kg		4.50E-01	Kg/lb	
9.32E+10	Bq				
5.72E+04	Bq/kg		Sv to mrem		
			1.00E+05	mrem/Sv	
2.24E+06	kg		meters	per foot	
			0.3 1	n/ft	
			km pe	r mile	
5.18E+05	kg		1.61	km/mile	
1.27E+10	Bq				

Well & Job Data (Total)				
Well Depth	144784	ft		
Well Depth	43964	meters		
Distance to Shore	4040	miles		
Pumping Time Minutes	31377	min		
Pumping Time Hours	523	hr		

**Nautical Miles to Grand Isle, LA 29.2339196776543, -89.9992938991118

Distance to Shore Pumping Time Minutes

Pumping Time Hours

Last 10-20-30 Jobs conducted from Broussard, LA - worst case

				Pumping	Pumping							Sc-46				Ir-192	Total				Flush			
			Depth	Time	Time	Surface	Surface	Miles to	Amount	Sc-46	Conc. Sc-46	Picocuries/gr	Amount Traced	Ir-192	Conc. Ir-192	Picocuries/	Picocuries/	Total	Reverse-out	Reverse-out Ir-	pumped	Flush Pumped		
Date	API #	Depth (ft)	(m)	(min)	(Hours)	Latitude	Longitude	Shore**	Traced Sc-46	(mCi)	(mCi/k)	am	Ir-192	(mCi)	(mCi/k)	gram	gram	Proppant	Pounds	192 (mCi) *	bbl.	ml	μCi	μCi/ml
1 1/1/2022	608114067901	3604	1098.5	564.57	9.41	27.56045503	-90.10466997	101	36,269	18	0.496	1094.137	89071	53	0.595	1311.820	1248.830	125,340	8,314	4.95E+00	533	8.47E+07	4.95E+03	5.84E-05
2 1/7/2022	608164029901	1290	393.192	295.5	4.93	28.97308168	-88.62599537	74	26,700	13	0.487	1073.413	105600	63	0.597	1315.259	1266.451	132,300	13,879	8.28E+00	170	2.70E+07	8.28E+03	3.06E-04
3 3/5/2022	608114068801	3603	1098.19	815.58	13.59	27.56045859	-90.10493052	101	33,604	17	0.506	1115.302	110973	67	0.604	1331.043	1280.898	144,577	8,694	5.25E+00	578	9.19E+07	5.25E+03	5.71E-05
4 3/7/2022	608164035601	1290	393.192	226.39	3.77	28.97302946	-88.62599143	74	24,662	12	0.487	1072.723	100529	60	0.597	1315.814	1267.926	125,191	21,064	1.26E+01	176	2.80E+07	1.26E+04	4.49E-04
5 3/10/2022	608114008703	760	231.648	341.41	5.69	27.94369889	-91.0291754	95	36,827	18	0.489	1077.558	167676	101	0.602	1327.960	1282.868	204,503	24,772	1.49E+01	174	2.77E+07	1.49E+04	5.39E-04
6 3/29/2022	608104016400	1570	478.536	374.9	6.25	28.07837889	-89.98232167	69	31,875	16	0.502	1106.635	70054	42	0.600	1321.755	1254.483	101,929	31,608	1.90E+01	182	2.89E+07	1.90E+04	6.55E-04
7 4/1/2022	608114071200	4958	1511.2	322.71	5.38	27.15409583	-90.30964083	126	93,605	47	0.502	1106.964	139951	84	0.600	1323.238	1236.559	233,556	89,075	5.35E+01	539	8.57E+07	5.35E+04	6.24E-04
8 4/11/2022	608114071200	4958	1511.2	181.32	3.02	27.15409583	-90.30964083	126	42,375	21	0.496	1092.557	57750	35	0.606	1336.136	1233.048	100,125	33,145	2.01E+01	530	8.43E+07	2.01E+04	2.38E-04
9 4/19/2022	608114074802	3606	1099.11	784.43	13.07	27.56100318	-90.10413894	101	34,260	17	0.496	1093.947	90378	63	0.697	1536.783	1415.058	124,638	12,289	8.57E+00	489	7.77E+07	8.57E+03	1.10E-04
4/19/2022	608174142901	3223	982.37	265.1	4.42	28.47060823	-88.9400004	72	80,992	40	0.494	1088.811	123511	74	0.599	1320.872	1228.966	204,503	42,258	2.53E+01	421	6.69E+07	2.53E+04	3.78E-04
4/25/2022	608114074802	3606	1099.11	754.13	12.57	27.56100318	-90.10413894	101	22,000	11	0.500	1102.312	66743	40	0.599	1321.262	1266.983	88,743	4,656	2.79E+00	498	7.92E+07	2.79E+03	3.52E-05
12 5/7/2022	608114065800	4979	1517.6	311.55	5.19	27.14571806	-90.319515	126	46,724	23	0.492	1085.232	122335	73	0.597	1315.548	1251.894	169,059	26,077	1.56E+01	603	9.59E+07	1.56E+04	1.62E-04
13 5/23/2022	608114071900	4987	1520.04	311.55	5.19	27.14567167	-90.31935528	126	42,375	21	0.496	1092.557	62322	37	0.594	1308.865	1221.317	104,697	26,697	1.58E+01	595	9.46E+07	1.58E+04	1.68E-04
14 6/4/2022	608114068000	3788		1207.42	20.12	27.49509917	-90.06402528	104	33,000	17	0.515			34	0.596	1314.278	1248.829	90,033	30,381	1.81E+01	621	9.87E+07	1.81E+04	1.83E-04
15 6/6/2022	60812400680	5190	1581.91	969.75	16.16	26.93265556	-90.520285	141	67,301	34	0.505	1113.761	. 55322	33	0.597	1315.075	1204.585	122,623	4,457	2.66E+00	571	9.08E+07	2.66E+03	2.93E-05
16 6/11/2022	608114068000	3788		924.1		27.49509917	-90.06402528	104	45,151	23	0.509			73			1269.358	166,733	4,416	2.65E+00	547	8.70E+07	2.65E+03	3.05E-05
17 7/16/2022	608174120900	3036		1109.54		28.15991111	-89.23903278	76	23,326	12	0.514			85	0.598		1292.753	165,421	95,629	5.72E+01	99	1.57E+07	5.72E+04	3.63E-03
18 7/18/2022	608114068901	3760		1522.16		27.49786711	-90.06045106	104	52,657	26	0.494	1088.559		74	0.599		1251.476	176,162	14,776	8.85E+00	529	8.41E+07	8.85E+03	1.05E-04
19 8/15/2022	608174108401	6946		1857.18		28.30785016	-88.20155808	110	106,000	46	0.434	956.724			0.599	1320.417	1127.176	199,500	80,914	4.85E+01	135	2.15E+07	4.85E+04	2.26E-03
20 9/2/2022	608114074701	3450	1051.56	994.05	16.57	27.53643558	-90.16512122	102	26,360	13	0.493	1087.258	51768	31	0.599	1320.185	1241.597	78,128	2,219	1.33E+00	640	1.02E+08	1.33E+03	1.31E-05
21																								
22																								
23																								
24																								
25																								
26																								
2/					44.70																			
Averages		3,620	1103.25	707	11.78			102	45,303	22	0.491	1,092	97,585	59	0.604	1,331	1,255	142,888	28,766	1.74E+01	432	6.86E+07	1.74E+04	2.53E-04

* Ir-192 is always pumped after the Sc-46 and should be the only tracer remaining above the crossover. **Nautical Miles to Grand Isle, LA 29.2339196776543, -89.9992938991118