Attachment 3

Proposed Technical Specification 5.5.16 Changes (Clean Pages)

(2 pages follow this cover sheet)

5.5.15 <u>Safety Function Determination Program (SFDP)</u> (continued)

- c. Provisions to ensure that an inoperable supported system's Completion Time is not inappropriately extended as a result of multiple support system inoperabilities; and
- d. Other appropriate limitations and remedial or compensatory actions.

A loss of safety function exists when, assuming no concurrent single failure, a safety function assumed in the accident analysis cannot be performed. For the purpose of this program, a loss of safety function may exist when a support system is inoperable, and:

- a. A required system redundant to the system(s) supported by the inoperable support system is also inoperable; or
- b. A required system redundant to the system(s) in turn supported by the inoperable supported system is also inoperable; or
- c. A required system redundant to the support system(s) for the supported systems (a) and (b) above is also inoperable.

The SFDP identifies where a loss of safety function exists. If a loss of safety function is determined to exist by this program, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered.

5.5.16 Containment Leakage Rate Testing Program

- a. A program shall be established to implement the leakage rate testing of the containment as required by 10 CFR 50.54(o) and 10 CFR 50, Appendix J, Option B, as modified by approved exemptions. This program shall be in accordance with the guidelines contained in Nuclear Energy Institute (NEI) Topical Report (TR) NEI 94-01, "Industry Guideline for Implementing Performance-Based Option of 10 CFR 50, Appendix J," Revision 3-A, dated July 2012, and the conditions and limitations specified in NEI 94-01, Revision 2A, dated October 2008, as modified by the following exceptions:
 - The visual examination of containment concrete surfaces intended to fulfill the requirements of 10 CFR 50, Appendix J, Option B testing, will be performed in accordance with the requirements of and frequency specified by ASME Section XI Code, Subsection IWL, except where relief has been authorized by the NRC.

(continued)

5.5.16 <u>Containment Leakage Rate Testing Program</u> (continued)

- 2. The visual examination of the steel liner plate inside containment intended to fulfill the requirements of 10 CFR 50, Appendix J, Option B testing, will be performed in accordance with the requirements of and frequency specified by ASME Section XI Code, Subsection IWE, except where relief has been authorized by the NRC.
- b. The peak calculated containment internal pressure for the design basis loss of coolant accident, P_a, is 48.1 psig.
- c. The maximum allowable containment leakage rate, L_a , at P_a , shall be 0.20% of the containment air weight per day.
- d. Leakage rate acceptance criteria are:
 - 1. Containment leakage rate acceptance criterion is \leq 1.0 L_a. During the first unit startup following testing in accordance with this program, the leakage rate acceptance criteria are < 0.60 L_a for the Type B and C tests and \leq 0.75 L_a for Type A tests;
 - 2. Air lock testing acceptance criteria are:
 - a) Overall air lock leakage rate is $\leq 0.05 L_a$ when tested at $\geq P_a$;
 - b) For each door, leakage rate is $\leq 0.005 L_a$ when pressurized to ≥ 10 psig.
- e. The provisions of Technical Specification SR 3.0.2 do not apply to the test frequencies in the Containment Leakage Rate Testing Program.
- f. The provisions of Technical Specification SR 3.0.3 are applicable to the Containment Leakage Rate Testing Program.

(continued)