PROCEEDINGS OF THE
SEVENTH ANNUAL
PROBABILISTIC FLOOD
HAZARD ASSESSMENT
RESEARCH
WORKSHOP

February 15-18, 2022

Date Published: September 2022

Prepared by:
Elena Yegorova, Tom Aird, Joseph Kanney

U.S. Nuclear Regulatory Commission
Rockville, MD 20852

Joseph Kanney, NRC Project Manager
Disclaimer

Legally binding regulatory requirements are stated only in laws, NRC regulations, licenses, including technical specifications, or orders; not in Research Information Letters (RILs). A RIL is not regulatory guidance, although NRC’s regulatory offices may consider the information in a RIL to determine whether any regulatory actions are warranted.
ABSTRACT

The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) is conducting the multiyear, multi project Probabilistic Flood Hazard Assessment (PFHA) Research Program to enhance the NRC’s risk-informed and performance-based regulatory approach with regard to external flood hazard assessment and safety consequences of external flooding events at nuclear power plants. RES initiated this research in response to staff recognition of a lack of guidance for conducting PFHAs at nuclear facilities that required staff and licensees to use highly conservative deterministic methods in regulatory applications. Risk assessment of flooding hazards and consequences of flooding events is a recognized gap in the NRC’s risk-informed, performance-based regulatory framework. The RES Probabilistic Flood Hazard Assessment Research Plan describes the objective, research themes, and specific research topics for the program. While the technical basis research, pilot studies, and guidance development are ongoing, RES has presented annual PFHA research workshops to communicate results, assess progress, collect feedback, and chart future activities. These workshops have brought together NRC staff and management from RES and user offices, technical support contractors, interagency and international collaborators, and industry and public representatives.

These conference proceedings transmit the agenda, abstracts, and presentation slides for the Seventh Annual NRC Probabilistic Flood Hazard Assessment Research Workshop held virtually in February 2022 via web conference software. The workshop took place February 15–18, 2022 and was attended by members of the public; nuclear industry and nuclear industry consultants; NRC technical staff, management, and contractors; and staff from other Federal agencies and academia. The workshop began with an introductory session that included perspectives and research program highlights from RES, the Federal Emergency Management Agency, and international working groups. NRC contractors and staff, as well as invited Federal and public speakers, gave technical presentations (including virtual poster sessions) and participated in various styles of panel discussion. The workshop included eight focus areas:

1. overview of flooding research programs of the NRC, other Federal agencies, and selected international organizations
2. sensors
3. climate influences on flooding hazards
4. precipitation processes and modeling
5. riverine flooding processes and modeling
6. coastal flooding processes and modeling
7. Duane Arnold derecho operational experience
8. Tornado wind loads in the ASCE/SEI 7-2022 Standard
9. U.S. Army Corps of Engineers National Inventory of Dams and National Levee Database updates
TABLE OF CONTENTS

1 INTRODUCTION.. 1-1
 1.1 Background .. 1-1
 1.2 Workshop Objectives .. 1-2
 1.3 Workshop Scope .. 1-2
 1.4 Organization of Conference Proceedings ... 1-3
 1.5 Related Workshops ... 1-3

2 WORKSHOP AGENDA .. 2-1

3 PROCEEDINGS... 3-1
 3.1 Day 1: Session 1A – Introduction ... 3-1
 3.1.1 Presentation 1A-1: Opening Remarks .. 3-1
 3.1.2 Presentation 1A-2: NRC Probabilistic Flood Hazard Assessment Research Program Overview .. 3-5
 3.1.3 Presentation 1A-3: Moving FEMA towards Probabilistic Flood Risk Analysis and Probabilistic Flood Hazard Analysis ... 3-13
 3.1.4 Presentation 1A-4: Committee on the Safety of Nuclear Installations (CSNI) Working Group on External Events (WGEV) .. 3-27
 3.2 Day 1: Session 1B – Flood & Fire Sensors for Resilient Communities 3-32
 3.2.1 Presentation 1B-1 (KEYNOTE): Flood and Fire Sensors for Resilient Communities .. 3-32
 3.2.2 Presentation 1B-2: USACE Instrumentation and Monitoring Program 3-41
 3.2.3 Presentation 1B-3: USGS Water Mission Area Observing Systems Research and Development Program .. 3-60
 3.2.4 Presentation 1B-4: State and Local Experience in Virginia Implementing IoT Sensors and Data Systems .. 3-70
 3.2.5 Flood & Fire Sensors for Resilient Communities Panel Discussion (Session 1B-5) .. 3-78
 3.3 Day 1: Session 1C – Climate .. 3-82
 3.3.1 Presentation 1C-1 (KEYNOTE): Big Stories from the Historic Winter of 2020/21 .. 3-82
 3.3.2 Presentation 1C-2: Linking Arctic variability and change with extreme winter weather in the US including the Texas Freeze of February 2021 ... 3-99
 3.3.3 Presentation 1C-3: 2021 U.S. Billion Dollar Weather and Climate Disasters in Historical Context including New County-Level Exposure, Vulnerability and Projected Damage Mapping ... 3-117
 3.3.4 Climate Panel Discussion (Session 1C-4) .. 3-134
 3.4 Day 2: Session 2A – Precipitation ... 3-137
 3.4.1 Presentation 2A-1: Uncertainty in Precipitation Frequency Estimates Under Current and Future Climate ... 3-137
 3.4.2 Presentation 2A-2 (KEYNOTE): Gridded Surface Weather Data with Uncertainty Quantification - Daymet V4 .. 3-151
 3.4.3 Presentation 2A-3: Utility of Weather Types to Improve Nonstationary Frequency Analysis of Extreme Precipitation ... 3-164
 3.4.4 Presentation 2A-4: Characteristics and Causes of Extreme Snowmelt over the Conterminous United States .. 3-175
 3.4.5 Presentation 2A-5: LIP PFHA Pilot Study .. 3-186
Day 2: Session 2B – Riverine Flooding .. 3-195

3.5.1 Presentation 2B-1 (KEYNOTE): Flood Typing and Application to Mixed Population Flood Frequency Analysis: An Interagency Collaborative Effort ... 3-198

3.5.2 Presentation 2B-2: Applying Stochastic Weather Generation and Continuous Hydrologic Simulation for Probabilistic Flood Hazard Assessments ... 3-215

3.5.3 Presentation 2B-3: IWRSS Flood Inundation Mapping for Flood Response .. 3-228

3.5.4 Presentation 2B-4: Using HEC-WAT for NRC’s PFHA Process .. 3-238

3.5.5 Riverine Panel Discussion (Session 2B-5) .. 3-252

Day 3: Session 3A – Poster Session ... 3-256

3.6.1 Poster 3A-1: Flood Fragility Function Methodology for a Conceptual Nuclear Power Plant .. 3-256

3.6.2 Poster 3A-2: Quantifying Uncertainty in Hurricane Warning Times to Inform Coastal Hazard PRA ... 3-261

3.6.3 Poster 3A-3: HEC-WAT Interface and Set Up for the Trinity River PFHA Pilot Project 3-268

3.6.4 Poster 3A-4: Riverine Flooding HEC-WAT Pilot Project Dam Break Modeling .. 3-273

3.6.5 Poster 3A-5: Flooding from Below – The Groundwater Emergence Hazard ... 3-283

3.6.6 Poster 3A-6: External Flooding PRA Guidance .. 3-291

Day 3: Session 3B – Coastal Flooding ... 3-297

3.7.1 Presentation 3B-1: An Overview of CSTORM Model Development and Results for the South Atlantic Coastal Study (SACS) ... 3-297

3.7.2 Presentation 3B-2: Compound Flood Hazard Assessment using a Bayesian Framework 3-313

3.7.3 Presentation 3B-3: Coastal Flooding PFHA Pilot Study .. 3-325

3.7.4 Presentation 3B-4: Probabilistic Wave Height Hazard Assessment Method at the NPP Site Considering Storm Surge ... 3-344

3.7.5 Presentation 3B-5: Comparative Assessment of Joint Distribution Models for Tropical Cyclone Atmospheric Parameters in Probabilistic Coastal Hazard Analysis .. 3-357

Day 3: Session 3B-6 – Coastal Panel Discussion .. 3-369

Day 4: Session 4A – Duane Arnold Derecho Operational Experience 3-372

3.8.1 Presentation 4A-1: Duane Arnold Energy Center (DAEC) Loss of Offsite Power (LOOP) Due to Derecho .. 3-372

3.8.2 Presentation 4A-2: The NRC’s Regional Response to the Duane Arnold Derecho 3-379

3.8.3 Presentation 4A-3: Why the Risk of the Extended Loss of Offsite Power Was Almost a Significant Precursor? .. 3-390

3.8.4 Presentation 4A-4: The NRC’s Response to the Duane Arnold Derecho Event using the LIC-504 Process .. 3-397

3.8.5 Duane Arnold OpE Panel Discussion (Session 4A-5) .. 3-405

Day 4: Session 4B – ASCE-7 Tornado Wind Loads .. 3-411

3.9.1 Presentation 4B-1: Introduction to Tornado Loads in the New ASCE 7-22 Standard - Including Long Return Period Tornado Hazards Maps with Applications to Nuclear Facilities .. 3-411

Day 4: Session 4C – USACE Dam and Levee Database Updates 3-428
1 INTRODUCTION

This research information letter (RIL) details the Seventh Annual U.S. Nuclear Regulatory Commission (NRC) Probabilistic Flood Hazard Assessment (PFHA) Research Workshop held virtually from February 15–18, 2022. These proceedings include presentation abstracts and slides. The workshop was attended by members of the public; nuclear industry and nuclear industry consultants; NRC technical staff, management, and contractors; and staff from other Federal agencies and academia.

The workshop began with an introduction from Ray Furstenau, Director, NRC Office of Nuclear Regulatory Research (RES). Following the introduction, staff members from RES and the Federal Emergency Management Agency (FEMA) described their flooding research programs. Additionally, John Nakoski, RES, provided an overview of external hazard efforts (including flooding) underway by the Nuclear Energy Agency, Committee on the Safety of Nuclear Installations (CSNI), Working Group on External Events (WGEV).

Technical sessions followed the introduction session. Most sessions began with an invited keynote speaker, followed by several technical presentations, and concluded with a panel of all speakers, who discussed the session topic in general. At the end of each day, participants provided feedback and asked generic questions about research related to PFHA for nuclear facilities. At the end of the third day, a virtual poster session was held with each poster presenter being assigned a unique web conferencing room where attendees were free to attend and leave at will.

1.1 Background

The NRC is conducting the multiyear, multi project PFHA Research Program. It initiated this research in response to staff recognition of a lack of guidance for conducting PFHAs at nuclear facilities that required staff and licensees to use highly conservative deterministic methods in regulatory applications. The staff described the objective, research themes, and specific research topics in the “Probabilistic Flood Hazard Assessment Research Plan,” Version 2014-10-23, provided to the Commission in November 2014 (Agencywide Documents Access and Management System (ADAMS) Accession Nos. ML14318A070 and ML14296A442). The NRC Office of Nuclear Reactor Regulation and the former Office of New Reactors endorsed the PFHA Research Plan in a joint user need request (ADAMS Accession No. ML15124A707). This program is designed to support the development of regulatory tools (e.g., regulatory guidance, standard review plans) for permitting new nuclear sites, licensing new nuclear facilities, and overseeing operating facilities. Specific uses of flooding hazard estimates (i.e., flood elevations and associated affects) include flood-resistant design for structures, systems, and components (SSCs) important to safety and advanced planning and evaluation of flood protection procedures and mitigation.

The lack of risk-informed guidance with respect to flooding hazards and flood fragility of SSCs constitutes a significant gap in the NRC’s risk-informed, performance-based regulatory approach to the assessment of hazards and potential safety consequences for commercial nuclear facilities. The probabilistic technical basis developed will provide a risk-informed approach for improved guidance and tools to give staff and licensees greater flexibility in evaluating flooding hazards and potential impacts to SSCs in the oversight of operating facilities (e.g., license amendment requests, significance determination processes, notices of
enforcement discretion) as well as the licensing of new facilities (e.g., early site permit applications, combined license applications), including proposed small modular reactors and advanced reactors. This methodology will give the staff more flexibility in assessing flood hazards at nuclear facilities so the staff will not have to rely on the use of the current deterministic methods, which can be overly conservative in some cases.

The main focus areas of the PFHA Research Program are to (1) leverage available frequency information on flooding hazards at operating nuclear facilities and develop guidance on its use, (2) develop and demonstrate a PFHA framework for flood hazard curve estimation, (3) assess and evaluate the application of improved mechanistic and probabilistic modeling techniques for key flood-generating processes and flooding scenarios, (4) assess potential impacts of dynamic and nonstationary processes on flood hazard assessments and flood protection at nuclear facilities, and (5) assess and evaluate methods for quantifying reliability of flood protection and plant response to flooding events. Workshop organizers used these focus areas to develop technical session topics for the workshop.

1.2 Workshop Objectives

The Annual PFHA Research Workshops serve multiple objectives: (1) inform and solicit feedback from internal NRC stakeholders, partner Federal agencies, industry, and the public about PFHA research being conducted by RES, (2) inform internal and external stakeholders about RES research collaborations with Federal agencies, the Electric Power Research Institute (EPRI), and the IRSN, and (3) provide a forum for presentation and discussion of notable domestic and international PFHA research activities.

1.3 Workshop Scope

The scope of the workshop presentations and discussions included the following:

- overview of flooding research programs of the NRC, other Federal agencies, and selected international organizations
- sensors
- climate influences on flooding hazards
- precipitation processes and modeling
- riverine flooding processes and modeling
- coastal flooding processes and modeling
- Duane Arnold derecho operational experience
- Tornado wind loads in the ASCE/SEI 7-2022 Standard
- U.S. Army Corps of Engineers National Inventory of Dams and National Levee Database updates
1.4 Organization of Conference Proceedings

Section 2 provides the agenda for this workshop. The agenda is also available from NRC's Agencywide Documents Access and Management System (ADAMS) at Accession No. ML22061A099.

Section 3 presents the proceedings from the workshop, including abstracts and presentation slides and abstracts for submitted posters.

The summary document of session abstracts for the technical presentations is available at ADAMS Accession No. ML22061A100. The complete workshop presentation package is available at ADAMS Accession No. ML22061A095.

Section 4 lists the workshop attendees and Section 5 summarizes the workshop.

1.5 Related Workshops

The NRC’s Annual PFHA Research Workshops take place approximately annually at NRC Headquarters in Rockville, MD. The proceedings from the Sixth Annual PFHA Research Workshop (held February 22–25, 2021) have been published as RIL-2022-02. The proceedings from the Fifth Annual PFHA Research Workshop (held February 19–21, 2020) have been published as RIL-2021-01. NRC has published the collected proceedings from the first four workshops, listed below, as RIL-2020-01, available on the agency’s public Web site:

- First Annual NRC PFHA Research Workshop, October 14–15, 2015
- Second Annual NRC PFHA Research Workshop, January 23–25, 2017
- Third Annual NRC PFHA Research Workshop, December 4–5, 2017
- Fourth Annual NRC PFHA Research Workshop, April 30–May 2, 2019

In addition, an international workshop on PFHA took place January 29–31, 2013. The workshop was devoted to sharing information on PFHAs for extreme events (i.e., annual exceedance probabilities (AEPs) much less than 2x10^{-3} per year) from the Federal community. The NRC issued the proceedings as NUREG/CP-302, “Proceedings of the Workshop on Probabilistic Flood Hazard Assessment (PFHA),” in October 2013 (ADAMS Accession No. ML13277A074).
WorkShop Agenda

Day 1 (February 15, 2022) Oral Presentations

* denotes speaker

<table>
<thead>
<tr>
<th>Session 1A: Introduction</th>
<th>Chair: Joseph Kanney, NRC/RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A-0 Webinar Logistics</td>
<td>Kenneth Hamburger*, NRC/RES</td>
</tr>
<tr>
<td>1A-1 Opening Remarks</td>
<td>Ray Furstenau*, Director, NRC Office of Research</td>
</tr>
<tr>
<td>1A-2 NRC PFHA Research Program Update</td>
<td>Tom Aird*, NRC/RES</td>
</tr>
<tr>
<td>1A-4 Committee on the Safety of Nuclear Installations (CSNI) Working Group on External Events (WGEV)</td>
<td>John Nakoski*, NRC/RES (WGEV Chair)</td>
</tr>
</tbody>
</table>

Break
11:20 11:35

<table>
<thead>
<tr>
<th>Session 1B: Sensors</th>
<th>Chair: Joseph Kanney, NRC/RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B-1 (Keynote) Flood & Fire Sensors for Resilient Communities</td>
<td>Jeffrey Booth*, Department of Homeland Security, Science & Technology Directorate</td>
</tr>
<tr>
<td>1B-2 USACE Instrumentation and Monitoring Program</td>
<td>Georgette Hlepas*, Christopher Schaal*, U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>1B-3 USGS Water Mission Area Observing Systems Research and Development Program</td>
<td>R. Russel Lotspeich*, U.S. Geological Survey</td>
</tr>
<tr>
<td>1B-4 State and Local Experience in Virginia Implementing IoT Sensors and Data Systems</td>
<td>David Ihrie*, Virginia Innovation Partnership Corporation</td>
</tr>
<tr>
<td>1B-5 Sensor Panel Discussion</td>
<td>All Presenters</td>
</tr>
</tbody>
</table>

Lunch
13:35 14:35
Session 1C: Climate

1C-1 (KEYNOTE) Big Stories from the Historic Winter of 2020/21

David Novak*, National Oceanic and Atmospheric Administration, National Weather Service (NOAA/NWS)

14:35 15:05

1C-2 Linking Arctic variability and change with extreme winter weather in the US including the Texas Freeze of February 2021

Judah Cohen*, Laurie Agel2, Mathew Barlow2, Chaim Garfinke3, Ian White3; 1Atmospheric and Environmental Research, 2University of Massachusetts Lowell, 3Hebrew University of Jerusalem

15:05 15:30

1C-3 2021 U.S. Billion Dollar Weather and Climate Disasters in Historical Context including New County-Level Exposure, Vulnerability and Projected Damage Mapping

Adam Smith*, National Oceanic and Atmospheric Administration, National Centers for Environmental Information (NOAA/NCEI)

15:30 15:55

1C-4 Climate Panel Discussion

All Presenters

15:55 16:25

1D Day 1 Wrap-up

16:25 16:30
Session 2A: Precipitation

<table>
<thead>
<tr>
<th>Session 2A-1</th>
<th>Uncertainty in Precipitation Frequency Estimates Under Current and Future Climate</th>
<th>Chair: Kevin Quinlan, NRC/NRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presenter(s)</td>
<td>Azin Al Kajbaf*, Michelle Bensi, Kaye Brubaker; University of Maryland</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>10:05 10:30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2A-2</th>
<th>(KEYNOTE) Gridded Surface Weather Data with Uncertainty Quantification - Daymet V4</th>
<th>Chair: Kevin Quinlan, NRC/NRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presenter(s)</td>
<td>Peter Thornton*, Oak Ridge National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>10:30 11:00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2A-3</th>
<th>Utility of Weather Types to Improve the Nonstationary Frequency Analysis of Extreme Precipitation</th>
<th>Chair: Kevin Quinlan, NRC/NRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presenter(s)</td>
<td>Giuseppe Mascaro*, Arizona State University</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>11:00 11:25</td>
<td></td>
</tr>
</tbody>
</table>

Break

<table>
<thead>
<tr>
<th>Session 2A-4</th>
<th>Characteristics and Causes of Extreme Snowmelt over the Conterminous United States</th>
<th>Chair: Kevin Quinlan, NRC/NRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presenter(s)</td>
<td>Joshua Welty*, Xubin Zeng; ¹U.S. Navy Fleet Numerical Meteorology and Oceanography Center, ²Univerity of Arizona</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>11:35 12:00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2A-5</th>
<th>LIP PFHA Pilot Study</th>
<th>Chair: Kevin Quinlan, NRC/NRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presenter(s)</td>
<td>Rajiv Prasad*, Arun Veeramany, Rajesh Singh; Pacific Northwest National Laboratory (PNNL)</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>12:00 12:25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2A-6</th>
<th>Precip Panel Discussion</th>
<th>Chair: Kevin Quinlan, NRC/NRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presenter(s)</td>
<td>All Presenters</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>12:25 12:55</td>
<td></td>
</tr>
</tbody>
</table>

Lunch

| Time | 12:55 14:00 |
Session 2B: Riverine Flooding

Chair: Joseph Kanney, NRC/RES

<table>
<thead>
<tr>
<th>Session 2B-1</th>
<th>(KEYNOTE) Flood Typing and Application to Mixed Population Flood Frequency Analysis: An Interagency Collaborative Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nancy Barth*, Michael Bartles², John England², Jory Hecht¹, Gregory Karlovits², William Lehman²; ¹U.S. Geological Survey (USGS), ²U.S. Army Corps of Engineers (USACE)</td>
</tr>
<tr>
<td>Time</td>
<td>14:00 - 14:30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2B-2</th>
<th>Applying Stochastic Weather Generation and Continuous Hydrologic Simulation for Probabilistic Flood Hazard Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Joe Bellini*, Bill Kappel², Dennis Johnson², Doug Hultstrand²; ¹Atterra Solutions, ²Applied Weather Associates</td>
</tr>
<tr>
<td>Time</td>
<td>14:30 - 14:55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2B-3</th>
<th>IWRSS Flood Inundation Mapping for Flood Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>14:55 - 15:20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2B-4</th>
<th>Using HEC-WAT for NRC’s PFHA Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>William Lehman*, Gregory Karlovits, David Ho, Leila Ostadrahimi, Brennan Beam, Sara O’Connell, Julia Slaughter; U.S. Army Corps of Engineers Hydrologic Engineering Center (USACE/HEC)</td>
</tr>
<tr>
<td>Time</td>
<td>15:20 - 15:45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2B-5</th>
<th>Riverine Panel Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>All Presenters</td>
</tr>
<tr>
<td>Time</td>
<td>15:45 - 16:15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2C</th>
<th>Day 2 Wrap-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>16:15 - 16:25</td>
</tr>
</tbody>
</table>
Day 3 (February 17, 2022) Poster Presentations

Session 3A: Posters

<table>
<thead>
<tr>
<th>3A-1</th>
<th>Flood Fragility Function Methodology for a Conceptual Nuclear Power Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A-2</td>
<td>Quantifying Uncertainty in Hurricane Warning Times to Inform Coastal Hazard PRA</td>
</tr>
<tr>
<td>3A-3</td>
<td>HEC-WAT Interface and Set Up for the Trinity River PFHA Pilot Project</td>
</tr>
<tr>
<td>3A-4</td>
<td>Riverine Flooding HEC-WAT Pilot Project Dam Break Modeling</td>
</tr>
<tr>
<td>3A-5</td>
<td>Flooding from Below – The Groundwater Emergence Hazard</td>
</tr>
<tr>
<td>3A-6</td>
<td>External Flooding PRA Guidance</td>
</tr>
</tbody>
</table>

Chair: Thomas Aird, NRC/RES

Joy Shen, Michelle Bensi, Mohammad Modarres; University of Maryland
10:00 - 11:00

Somayeh Mohammadi, Michelle Bensi; University of Maryland
10:00 - 11:00

David Ho, William Lehman, Brennan Beam, Sara O’Connell, Leila Ostadrahimi; U.S. Army Corps of Engineers, Hydrologic Engineering Center
10:00 - 11:00

Brennan Beam, William Lehman, Sara O’Connell, David Ho, Leila Ostadrahimi; U.S. Army Corps of Engineers, Hydrologic Engineering Center
10:00 - 11:00

Kevin M. Befus, Patrick L. Barnard, Peter W. Swarzenski, Clifford Voss; ¹University of Arkansas, ²U.S. Geological Survey
10:00 - 11:00

Marko Randelovic, Raymond Schneider; ¹Electric Power Research Institute (EPRI), ²Westinghouse Company
10:00 - 11:00

Break

11:00 - 11:10
<table>
<thead>
<tr>
<th>Session 3B: Coastal Flooding</th>
<th>Chair: Joseph Kanney, NRC/RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B-1 (KeyNote) An Overview of CSTORM Model Development and Results for the South Atlantic Coastal Study (SACS)</td>
<td>Margaret Owensby*, Chris Massey¹, Tyler Hesser¹, Mary Bryant¹, Andrew Condon²; ¹U.S. Army Corps of Engineers (USACE), Engineer Research and Development Center, Coastal and Hydraulics Laboratory, ²USACE Jacksonville District</td>
</tr>
<tr>
<td>3B-2 Compound Flood Hazard Assessment using a Bayesian Framework</td>
<td>Somayeh Mohammadi*, Michelle Bensi¹, Shih-Chieh Kao², Scott DeNeale², Joseph Kanney³, Elena Yegorova³, Meredith Carr⁴; ¹University of Maryland, ²Oak Ridge National Laboratory, ³U.S. Nuclear Regulatory Commission, ⁴U.S. Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory</td>
</tr>
<tr>
<td>3B-3 Coastal Flooding PFHA Pilot Study</td>
<td>Victor M. Gonzalez*, Meredith L. Carr, Karlie Wells, Norberto C. Nadal Caraballo; U.S. Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory</td>
</tr>
<tr>
<td>3B-4 Probabilistic Wave Height Hazard Assessment Method at the NPP Site Considering Storm Surge</td>
<td>Beom-Jin Kim*, Daegi Hahm, Minkyu Kim; Korea Atomic Energy Research Institute</td>
</tr>
<tr>
<td>3B-5 Comparative Assessment of Joint Distribution Models for Tropical Cyclone Atmospheric Parameters in Probabilistic Coastal Hazard Analysis</td>
<td>Ziyue Liu*, Michelle Bensi¹, Meredith Carr², Norberto Nadal-Caraballo²; ¹University of Maryland, ²U.S. Army Corps of Engineers Engineer Research and Development Center Coastal and Hydraulics Laboratory</td>
</tr>
<tr>
<td>3B-6 Coastal Panel Discussion</td>
<td>All Presenters</td>
</tr>
<tr>
<td>3C Day 3 Wrap-up</td>
<td>13:50 14:00</td>
</tr>
</tbody>
</table>
Day 4 (February 18, 2022) Oral Presentations

<table>
<thead>
<tr>
<th>Session 4A: Duane Arnold Derecho Operational Experience</th>
<th>Chair: Joseph Kanney, NCR/RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A-1 Duane Arnold Energy Center (DAEC) Loss of Offsite Power (LOOP) Due to Derecho</td>
<td>Terry Brandt*, Nextera Energy</td>
</tr>
<tr>
<td>4A-5 Duane Arnold OpE Panel Discussion</td>
<td>All Presenters</td>
</tr>
</tbody>
</table>

Break

| Lunch |
| 12:25 13:25 |

Session 4B: ASCE-7 Tornado Wind Loads

<table>
<thead>
<tr>
<th>Chair: Elena Yegorova, NRC/RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4B-1 Introduction to Tornado Loads in the New ASCE 7-22 Standard - Including Long Return Period Tornado Hazards Maps with Applications to Nuclear Facilities</td>
</tr>
</tbody>
</table>

Lunch

| 12:25 13:25 |

Session 4C: USACE Dam and Levee Database Updates

<table>
<thead>
<tr>
<th>Chair: Joseph Kanney, NCR/RES</th>
</tr>
</thead>
</table>

Workshop Wrap-up Discussion

| 14:25 14:45 |
3 PROCEEDINGS

3.1 Day 1: Session 1A – Introduction

Session Chair: Joseph Kanney, NRC/RES/DRA

There are no abstracts for this introductory session.

3.1.1 Presentation 1A-1: Opening Remarks

Speaker: Raymond Furstenau, Director, NRC Office of Nuclear Regulatory Research

3.1.1.1 Presentation (ADAMS Accession No. ML22061A138)
Workshop Participation Snapshot

~270 Participants
~70 NRC
~200 External

NRC Participation (~70 total)

~5 Other
~20 Research
~10 Regions
~10 Nuclear Material Safety and Safeguards
~25 Nuclear Reactor Regulation
3.1.2 Presentation 1A-2: NRC Probabilistic Flood Hazard Assessment Research Program Overview

Authors: Thomas Aird, Joseph Kanney, Elena Yegorova, NRC Office of Nuclear Regulatory Research

Speaker: Thomas Aird

3.1.2.1 Presentation (ADAMS Accession No. ML22061A137)
NRC Probabilistic Flood Hazard Assessment Research Program Update

Thomas Aird*, Joseph Kenney, Elena Ye gor ova
Fire and External Hazards Analysis Branch
Division of Risk Analysis
Office of Nuclear Regulatory Research

7th Annual PFHA Research Workshop
NRC HQ, Rockville, MD
February 15 – 18, 2022

Outline

- Objectives, key challenges, approach
- Phase 1 Overview (Technical Basis)
- Phase 2 Projects (Pilot Studies)
- Thoughts on Phase 3 (Guidance)
PFHA Research Objectives

- Develop resources, tools and selected guidance to:
 - Address significant gap in the technical basis for guidance for probabilistic assessment of external hazards
 - Probabilistic: seismic, high winds
 - Deterministic: flooding
 - Support risk-informed licensing and oversight activities involving assessment of flooding hazards and potential consequences
 - Licensing and oversight in operating reactor program
 - Design basis flood hazard assessments for new facilities
 - Readiness for licensing of advanced reactors

Key Challenges

- Hazard Estimation
 - Range of annual exceedance probabilities (AEPs)
 - Moderately rare to extreme floods
 - Multiple flooding mechanisms
 - Coincident and correlated mechanisms
 - Uncertainty characterization and estimation
 - Aleatory (e.g., storm recurrence rates)
 - Epistemic (e.g., model structure, parameters)

- Fragility
 - Information on reliability of flood protection features and procedures is sparse
 - Cliff-edge effects
Phased Research Approach

Phase 1
Technical Basis Projects
Application

Phase 2
Pilot Studies
Inform & Update

Phase 3
Guidance

• Phase 1 – Technical Basis Research - Complete
 – Climate and precipitation
 – Mechanistic, statistical and probabilistic modeling of flooding processes
 – Reliability of flood protection features and procedures
 – Modeling Frameworks
 – Natural Hazard Information Digest (NHID)

• Phase 2 – Pilot Studies - In Progress
 – Local Intense Precipitation (LIP) Flooding
 – Riverine Flooding - Complete
 – Coastal Flooding

• Phase 3 – Develop Guidance - In Progress

Phase 1 Technical Basis Research

• Climate
 – Historical trends and future projections for U.S. regions

• Mechanistic, statistical and probabilistic modeling of flooding processes
 – Extreme precipitation
 – Riverine flooding
 – Coastal flooding

• Methods for Estimating Joint Probabilities of Coincident and Correlated Flooding Mechanisms
 – Riverine flooding
 – Coastal flooding

• Reliability of flood protection features and procedures
 – Flood barriers (seals, etc.)
 – Environmental effects on natural actions

• Modeling Frameworks
 – Structured hazard assessment committee process for flooding (SHAC-F)
 – Dynamic analysis of flooding events
 – USACE HEC-WAT

• Natural hazards information digest (for internal NRC staff use)
 – Collect and organize natural hazard information for operating reactors

For more details on Phase 1 completion see Digital Exhibit #11 at the 34th Annual Regulatory Information Conference (RIC), March 8-10, 2022:
Phase 2: Pilot Studies

Objective: Synthesize results from technical basis research
- Multiple flooding mechanism contribution to hazard curves
- Quantify key aleatory variabilities and epistemic uncertainties

- LIP Flooding PFHA Pilot
 - PNNL
 - In Progress; completion expected in March 2022

- Riverine Flooding PFHA Pilot
 - USACE/HEC
 - Completed in January 2022

- Coastal Flooding Pilot PFHA Pilot
 - USACE/ERDC/CHL
 - In Progress; completion expected in June 2022

Phase 2: LIP Pilot Study

- Objectives
 - Inform guidance development for probabilistic assessment of site-scale flooding hazards due to local intense precipitation
 - Synthesize results from technical basis research
 - Incorporate site-scale features (curbs, buildings, drains)

- Key elements
 - Point rainfall (aleatory variability) based on NOAA Atlas 14
 - Sensitivity study to identify key epistemic uncertainties with site features
 - Propagation of uncertainties to construct hazard curve families for selected flood hazard metrics (e.g., depth, velocity, duration)
 - Monte Carlo simulation with stratified sampling

- More detailed information:
 - Presentation 2A-5 (Wednesday at 12:00)
Phase 2: Riverine Pilot Study

- **Objectives**
 - Inform guidance development for probabilistic assessment of riverine flooding hazards
 - Synthesize results from technical basis research
 - Incorporate multiple flooding mechanism contributions to hazard curves

- **Key elements**
 - Stochastic rainfall model (aleatory variability)
 - Epistemic uncertainties in hydrologic (runoff and routing), reservoir, and hydraulic models
 - Multiple dam failure scenarios
 - Propagation of uncertainties to construct hazard curve families for selected flood hazard metrics (e.g., elevation, velocity, duration)
 - Monte Carlo simulation approach using HEC-WAT

- **More detailed information:**
 - Presentation 2B-4 (Wednesday at 15:20)
 - Posters 3A-4 and 3A-5 (Thursday at 10:00)

Phase 2: Coastal Pilot Study

- **Objectives**
 - Inform guidance development for probabilistic assessment of coastal flooding hazards
 - Synthesize results from technical basis research
 - Incorporate multiple flooding mechanism contributions to hazard curves

- **Key elements**
 - Tropical cyclone rainfall model (aleatory variability)
 - Epistemic uncertainties in hydrodynamic (surge), hydrologic (runoff and routing), and hydraulic modules
 - Flooding due to surge and rainfall-induced riverine discharge
 - Propagation of uncertainties to construct hazard curve families for selected flood hazard metrics (e.g., elevation, velocity)
 - USACE Probabilistic Coastal Hazard Assessment (PCHA) framework

- **More detailed information:**
 - Presentation 3B-3 (Thursday at 12:05)
Phase 3: PFHA Guidance

- FY 22/FY23: Develop draft guidance based on:
 - Technical basis research
 - Pilot projects
 - User office needs
 - Stakeholder & public interests
- FY23: Publish draft guidance for public comment
- FY23: Finalize guidance based on public comment

Past Workshops

- Proceedings of 1st-4th Annual NRC PFHA Research Workshops
 - NRC Research Information Letter (RIL) 2020-01
- Proceedings of 5th Annual NRC PFHA Research Workshop
 - RIL 2021-01
- Proceedings of 6th Annual NRC PFHA Research Workshop
 - RIL 2022-02

NRC Research Information Letters are available at:
https://www.nrc.gov/reading-rm/doc-collections/index.html#ril
Questions?

Contacts:
Joseph.Kanney@nrc.gov
Thomas.Aird@nrc.gov
Elena.Yegorova@nrc.gov
3.1.3 Presentation 1A-3: Moving FEMA towards Probabilistic Flood Risk Analysis and Probabilistic Flood Hazard Analysis

Authors: David Rosa*, Christina Lindemer, Federal Emergency Management Agency (FEMA)
Speakers: David Rosa
Moving FEMA towards Probabilistic Flood Risk Analysis and Probabilistic Flood Hazard Analysis

7th Annual NRC PFHA Research Workshop
February 15, 2022

David Rosa, Ph.D. FEMA Engineering Resources Branch
Christina Lindemer, PE FEMA Engineering Resources Branch

Flood Insurance Rate Maps: A Binary Snapshot of Risk

FLOODWATERS DON’T STOP AT A LINE ON THE MAP.

What do FIRMs show?
FIRMs show a specific condition: the Special Flood Hazard Area (SFHA).

What makes them regulatory?
Regulatory FIRMs are used for flood insurance purchase requirements and floodplain management.
- Regulatory FIRM leads people to believe that if they are ‘out’ of the SFHA, they are not at risk.
- Leads to communities to focus on lines on a map as a complete picture of flood risk.

A more complete picture
- Flooding can take many forms, can be minimal or severe, can have several driving factors.
- FEMA’s Future of Flood Risk Data (FFRD) initiative seeks to improve the state of mapping, adopting a probabilistic, risk-based approach to displaying graduated data.

FEMA

Transition to Future of Flood Risk Data (FFRD)

Feedback from stakeholders
- Technical Mapping Advisory Council (TMAC)
- GAO
- National Academy of Sciences
- Other Agencies

Also, unmet statutory authorities including identifying residual risk behind levees.
The NFIP in transforming to a risk-informed framework that enhances the Nation’s understanding of risks from flood hazards. Risk Rating 2.0 and Future of Flood Risk Data are two components of this initiative.

NFIP Transformation

Risk Rating 2.0 (RR 2.0)
Future of Flood Risk Data (FFRD)

What is different about FFRD?

<table>
<thead>
<tr>
<th></th>
<th>Risk MAP</th>
<th>Future Flood Risk Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Model</td>
<td>Project driven - base data only generated for project areas</td>
<td>Data service model, user decision behavior driven product</td>
</tr>
<tr>
<td>Investments</td>
<td>Patchwork of models and flood hazard assessment</td>
<td>National scale base data with federal partners</td>
</tr>
<tr>
<td>Model Coverage</td>
<td>Optimized around 1-percent annual chance</td>
<td>Nationwide flood hazard/risk assessments</td>
</tr>
<tr>
<td>Frequency Interval</td>
<td>Multiple flood hazards, multiple frequencies</td>
<td>---</td>
</tr>
</tbody>
</table>
Reimagining the Opportunities created by improved Hazard and Risk Data

- FFRD Concept/Use Case Alignment to Individual Stakeholders

Applications of FFRD

- Data applications by multiple stakeholders with cross-cutting benefits
- Flexibility for FEMA, other agencies, state and local partners, private entities, and other data users to develop tools and products to help meet their needs in reducing flood risk and increasing resiliency
What does FFRD tell us about the Nation’s Risk?
Comparison of Probabilistic Data to Traditional FIS Products

- Incorporates uncertainty in parameters, boundary conditions.
- Captures spatial (rainfall-induced) flood hazards.
- Helps identify areas where mitigation actions are likely to produce the greatest benefits and impacts.
- More effectively communicates flood hazard variations based on depth, duration, frequency, etc.
- Generates structure-level risk assessments.

What does FFRD tell us about the Nation’s Risk?
FFRD improves the understanding of unique flood hazards

- FFRD accounts for a range of conditions, frequencies, and severities.
- Instead of being "inside" or "outside" the floodplain, each structure can have an associated annual exceedance probability (AEP) for each dimension of flood hazards studied.
FFRD highlights where there is RISK

- Flood Hazards
- Structures
- Damage
- Loss

 Potential Applications for Graduated Flood Risk Data
Hazard Data Beyond the SFHA

Existing Scenario

Existing NFHL Zones
- AE, Floodway
- AE
- X500
- K

Hazard Data Beyond the SFHA

Floodplain
Regulations within 100-yr Floodplain
Beyond the SFHA: Fluvial Scenarios

Beyond the SFHA: Pluvial Scenarios
Beyond the SFHA: Graduated Hazard

Graduated Flood Zones by Hazard Level
Graduated Flood Zones by Hazard Level

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Combined (F+H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregated Hazard</td>
<td></td>
</tr>
<tr>
<td>Annual Chance of Flooding</td>
<td></td>
</tr>
<tr>
<td>Average Annualized Depth</td>
<td></td>
</tr>
<tr>
<td>Average Annualized Loss</td>
<td></td>
</tr>
<tr>
<td>Annual Probability of Flooding</td>
<td></td>
</tr>
<tr>
<td>5% - Extreme</td>
<td></td>
</tr>
<tr>
<td>10% - Very High</td>
<td></td>
</tr>
<tr>
<td>2% - High</td>
<td></td>
</tr>
<tr>
<td>1% - Medium</td>
<td></td>
</tr>
<tr>
<td>.2% - Low</td>
<td></td>
</tr>
<tr>
<td>.1% - Very Low</td>
<td></td>
</tr>
</tbody>
</table>

Stricter Building Regulations within 50-Yr Floodplain

Graduated Flood Zones by Hazard Level

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Combined (F+H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resilient Development within Designated Future Floodplain</td>
<td></td>
</tr>
<tr>
<td>Aggregated Hazard</td>
<td></td>
</tr>
<tr>
<td>Annual Probability of Flooding</td>
<td></td>
</tr>
<tr>
<td>Average Annualized Depth</td>
<td></td>
</tr>
<tr>
<td>Average Annualized Loss</td>
<td></td>
</tr>
<tr>
<td>Annual Probability of Flooding</td>
<td></td>
</tr>
<tr>
<td>5% - Extreme</td>
<td></td>
</tr>
<tr>
<td>10% - Very High</td>
<td></td>
</tr>
<tr>
<td>2% - High</td>
<td></td>
</tr>
<tr>
<td>1% - Medium</td>
<td></td>
</tr>
<tr>
<td>.2% - Low</td>
<td></td>
</tr>
<tr>
<td>.1% - Very Low</td>
<td></td>
</tr>
</tbody>
</table>
Graduated Risk at the Building Level

Graduated Risk Hot Spots
Graduated Flood Zones by Existing Risk

Example:
City of Boston Coastal Flood Resilience Zoning Overlay
Authorities of FEMA and Other Federal Agencies

The increased data set and methodology for the shift to graduated risk can't be done by FEMA alone...

...so we are currently exploring the best way to leverage the strengths of our federal, state, local, tribal, and territorial community partners to develop and deliver graduated risk data.

Q & A
3.1.4 Presentation 1A-4: Committee on the Safety of Nuclear Installations (CSNI) Working Group on External Events (WGEV)

Speaker: John Nakoski, NRC/RES/DRA (WGEV Chair)

3.1.4.1 Presentation (ADAMS Accession No. ML22061A135)
WGEV Administration

- **WGEV Chair**: Min Kyu Kim (KAERI, South Korea)
- **WGEV Bureau**: John A. Nakoski – Vice Chair (NRC, USA), ShiZhong Lei (CNSC, Canada), Dana Havlin Novakova (SONS, Czechia), Vincent Rebour (IRSN, France), Gernot Thuma (GRS, Germany), Stef Carelsen (ANVS – Netherlands)
- **WGEV Participants from:**
 - Belgium (BelV), Bulgaria (Kozloduy NPP), Canada (CNSC, OPG), Czech Republic (SONS), Finland (STUK), France (IRSN, EdF), Germany (GRS), Japan (NRA), Netherlands (ANVS), Poland (PPA), Romania (Cernavoda NPP), Spain (CSN), South Korea (KAERI), Sweden (SSM), Switzerland (ENSI), United States (NRC, DOE, EPRI)
 - International Atomic Energy Agency, and World Metrological Organization
- **NEA Technical Secretariat**: Taehee Kim
- Established in 2014
- Meets twice a year

Completed Activities

- NEA/SEN/SIN/WGEV(2015)1 – Technical Note on Severe Weather with Concurrent Flooding and High Winds
- NEA/CSNI/R(2017)13 – Proceedings for the Workshop on Severe Weather and Storm Surge
- NEA/CSNI/R(2018)7 – Examination of Approaches for Screening External Hazards
- NEA/SEN/SIN/WGEV(2018)13 – Proceedings for the Workshop on Riverine Flooding
- NEA/CSNI/R(2020)9 – Concepts and Definitions for Protective Measures in Response to External Flooding Hazards
Ongoing Activities (1 of 4)

- Benchmark on Hazard Frequency and Magnitude Model Validation for External Events
 - Approved by CSNI in June 2021, currently in publications
 - For more information contact Curtis Smith (Curtis.Smith@inl.gov) or Vincent Rebours (Vincent.Rebours@irsn.fr)

- High winds and tornadoes
 - Survey responses – February 2020
 - Preparation of initial draft report – June 2020
 - Final report – June 2021
 - Workshop – March 22nd – 25th, 2022 (Virtual)

Ongoing Activities (2 of 4)

- High winds and tornadoes Workshop March 22nd – 25th, 2022 (Virtual)
 1. Phenomenological aspects of HW & T – Main objective is to have subject matter experts share their understanding of the phenomena associated with HW&T.
 2. Data – Main objective is to have subject matter experts share their understanding of the sources of the data associated with HW&T.
 3. Design & Operation – Main objective is to better understand how the impacts from the HW&T are reflected in design and operation, including the issues associated with direct and indirect effects, and their combinations.
 4. Safety case approaches – Main objective is to better understand the development of the safety case based on deterministic, probabilistic or combined assessments to demonstrate the design and operation of the facility will be done safely considering HW&T. Also considering how climate change and/or combination of effects influences the safety case.
Ongoing Activities (3 of 4)

- **Combinations of External Hazards**
 - Hazards and Impact Assessment and Probabilistic Safety Analysis for Nuclear Installations (joint project of WGEV and WGRISK)
 - Kick-off meeting – February 2020
 - Survey responses – September 2020
 - Preparation of initial draft report – September 2021
 - Final survey response report – June 2022
 - Joint WGEV/WGRISK workshop – Fall of 2022

Ongoing Activities (4 of 4)

- **Uncertainties in the Assessment of Natural Hazards**

 Phase 1 - Sources of Uncertainty
 - Decision on Spectrum of natural hazards to consider – March 2021
 - Draft report based on literature review – March 2022
 - Workshop on Sources of Uncertainty – April 15th to 18th, 2022 (hybrid – virtual/in person in Prague)

 Phase 2 - Methods to Deal with Uncertainties
 - Report Structure and Content decided – September 2022
 - Workshop on Methods to Deal with Uncertainties – March 2024
Potential Future Activities

- **Local Intense Precipitation** – under development
- **Topical discussions and issues being considered**
 - Geomagnetic Storms and Space weather
 - Improving data sources for hazards assessment
 - Climate Change Impacts on Hazards Assessment

Thank you for your attention!
3.2 **Day 1: Session 1B – Flood & Fire Sensors for Resilient Communities**

Session Chair: Joseph Kanney, NRC/RES/DRA

3.2.1 **Presentation 1B-1 (KEYNOTE): Flood and Fire Sensors for Resilient Communities**

Author: Jeffrey Booth, Department of Homeland Security, Science & Technology Directorate

Speaker: Jeffrey Booth

3.2.1.1 **Abstract**

Flooding and Wildland Fires are the nation’s leading natural disasters, accounting for the greatest loss of life, property damage and economic impact while threatening the resiliency of communities across the country. Current flood damage is estimated at $5 billion per year and wildland fires annualized losses are estimated to range from $63.5 billion to $285 billion. The human cost is much greater.

The Department of Homeland Security (DHS) has been working with small businesses on the development, evaluation, and commercialization of low-cost Internet of Things (IoT) flood and wildland fire sensors. The goal is to provide earlier alerts, warnings and notifications of rising waters and fire ignitions, allowing communities the ability to better respond, mitigate and possibly prevent catastrophic disasters.

3.2.1.2 **Presentation (ADAMS Accession No. ML22061A134)**
Executive Summary

Flood and Fire Sensors for Resilient Communities

Flooding and Wildland Fires are the nation’s leading natural disasters, accounting for the greatest loss of life, property damage and economic impact while threatening the resiliency of communities across the country.

Current flood damage is estimated at $5 billion per year and wildland fires annualized losses are estimated to range from $63.5 billion to $285 billion.

The human cost is much greater.
Low-Cost IoT Flood Sensors

Flood Sensor Technology Video:
https://www.dhs.gov/medialibrary/assets/videos/19974

Low-Cost IoT Flood Sensors: Phased Approach

Phase I
- 2016
- 6 months
- 1 prototype

Phase II Alpha
- 2017
- 12 months
- 300 Alpha

Phase II Alpha 2
- 2018
- 12 months
- Enhancement

Phase II Beta
- 2019
- 24 months
- 300 Beta

Phase III Production
- 2022
- 24 months
- 400 Production
Low-Cost IoT Flood Sensors: Relative Accuracy

“The DHS APEX gauges have assisted Howard County in our efforts to improve and advance the flood warning system in Ellicott City.”

Additionally, we shared data with US National Weather Service (NWS) and they indicated that among the gauges there was data provided by the pilot program that could “absolutely” be accepted into their system.”

- Brian Cleary, Howard County, MD
Storm Water Management Division

Low-Cost IoT Flood Sensors: Hardware Configuration

- Swappable 900 MHz Antenna
- 3x High Efficiency Solar Cells
- Reinforced Security Loop for Pulllock and Aircraft Cable
- IoT Module w/ Additional Solar Cell (Verizon/ATT LTE-M)
- Base Module (Power, Temperature, Pressure, & GPS)
- Nylon-Coated Perforated Locking Stainless Steel Ties for Harsh Environments (to Mount Unit)
- Universal Mounting Plate
- Water Level Pressure Sensor
- Camera Module
Flood Sensor Stakeholders and Use Cases

STAKEHOLDERS
- US Army Corps of Engineers
- US Geological Survey
- Kentucky
- North Carolina
- Texas
- Virginia
- Charlotte-Mecklenburg County, NC
- Montgomery County, MD
- Ellicott City, MD
- Nashville, TN
- Norfolk, VA
- Torrance, CA
- State University, Albany NY
- The Nature Conservancy

USE CASES
- Urban flash flooding
- Culvert runoff
- Coastal flooding
- Storm Surge
- Repetitive Loss valuation
- Dam Safety Monitoring
- Storm Water Management
- Water supply fire suppression
- Sheet wash over highways
- Critical Infrastructure shutdown
- Wetland mitigation monitoring
- Agriculture irrigation

Wildland Fire Sensors

National Fire Activity Synopsis

The 2020 fire season saw an increase in the annual number of acres burned with over 10 million acres. The large fire activity in 2020 was well above average.

A total of 17,904 structures were reported destroyed by wildfires in 2020, including 9,630 residences, 7,255 minor structures, and 1,119 commercial / mixed residential structures.

(2017, Santa Barbara County Fire Department)
Wildland Fire Sensors

Wildland Fire Sensor Technology Video:
https://www.dhs.gov/mediabulletin/assets/videos/21982

Wildland Fire Sensors: Phase 1 Prototype
Wildland Fire Sensors: Phase 2 Modeling and Testing

Conducted extensive modeling to define and understand the level of concentrations of smoke composition and particulate matter at a variety of distances and wind conditions.

Designed a Test Lab approach and mechanism to test the sensors at low levels of smoke concentrations in a repeatable manner using charcoal fuel.

Tested many scenarios of different burn characteristics (ignition, smoldering, flaming combination, etc.) and different environmental conditions.

Conducted test and demonstration at a prescribed burn over 2 days in Red Bluff, CA. Sensors repeatedly demonstrated ability to detect smoke, at ignition and at a distance.

Wildland Fire Sensors: Stakeholders

Thanks to our continuous Stakeholders from FEMA, Cal OES, Cal Fire, Cal OES, USFS, USFS throughout the Phases.
Wildland Fire Sensors: Phase 2 Findings

- Backend algorithms need revision and need to combine data from multiple sensors and meteorological conditions to provide greatest situational awareness of wildfires
- Multi-modal sensors are necessary to detect wildfires and avoid nuisance alarms (multiple gas types and multiple PM types)
- Multiple sensing algorithms should be developed for near vs. far detection (smoke particles clumped over longer distances and smaller particles traveled farther)
- Cellular data back-haul was most reliable with long-range radios, an option in cellular denied areas
- Initial ability to distinguish a new ignition vs. background smoke

Wildland Fire Sensors: Phase 3 Next Steps

- The sensors deployed in Phase 2 were spaced between 150 ft and 3 mi of the ignition sites. This led to the plan for Phase 3 sensors to be placed within 1 mile of each other to balance detection time vs. density
- 100 sensors / performer to be deployed to determine optimal densification of sensors vs. detection
- Stakeholder infrastructure discussions for sensor installation & monitoring
Engage with us:

scitech.dhs.gov SandT.Innovation@hq.dhs.gov

@dhscitech

Science and Technology

Low-Cost IoT Flood Sensors

QUESTIONS?

Wildland Fire Sensors

Ellicott City, MD
May 27, 2018

3077 (Santa Barbara County Fire Department)
3.2.2 Presentation 1B-2: USACE Instrumentation and Monitoring Program

Authors: Georgette Hlepas, Christopher Schaal, U.S. Army Corps of Engineers

Speakers: Georgette Hlepas, Christopher Schaal

3.2.2.1 Abstract

USACE’s instrumentation and monitoring program monitors over 700 dams and 4,000 miles of levees. As part of USACE’S advancement in monitoring, this presentation will focus on the MIDAS (Monitoring Instrumentation Data Acquisition System) project, an enterprise-wide instrumentation database. USACE will also provide an overview of their ongoing evaluation of DHS developed Low-Cost IoT Flood Inundation Sensors, and their potential use to complement USACE’s monitoring programs.
3.2.2.2 Presentation (ADAMS Accession No. ML22061A133)

USACE INSTRUMENTATION AND MONITORING

Georgette Hlepas, PhD, PE
Geotechnical, Geology, and Material CoP Lead, HQ USACE

Christopher Schaal, EIT
Geotech – Dam & Levee Section, Chicago District, USACE

NRC PFHA WORKSHOP
15 FEB 2022

US Army Corp of Engineers

~32,000 employees
HQ in DC
9 Divisions
44 Districts

DAMS & LEVEES OPERATED AND MAINTAINED BY DISTRICTS
National Inventory of Dams and Levees

- ~715 Dams
- Population at Risk +12.8M
- Property at Risk = +1T
- Total length of 267 miles
- 80% earthen/20% concrete

- ~2,137 levee systems
- Population at Risk +12M
- Property at Risk = +1.3T
- Total length = 14,100 miles
- 97% earthen/3% floodwall

Dams and Levees – Aging Infrastructure

Federal Guidelines Implemented in 1979

Risk Informed Decision Making
Risk Informed Decisions Making (RIDM)

Risk = f(Hazard, Performance, Consequences)

- Aging Dams
 - What are the hazards and how likely are they to occur?
 - How will the infrastructure perform in the face of these hazards?

- Growing Population
 - Who and what are in harms way?
 - How susceptible to harm are they? How much harm is caused?

Infrastructure Safety Program Focused on: People, Performance, and Risks

Instrumentation
✓ Quantitative Measurement of Performance
✓ Informs Likelihood of PFM Occurrence
✓ Reduce Uncertainty in Risk Estimate
Instrumentation Type overview

- Geotechnical, Survey, Structural, Hydraulic (Quantity/Quality) Monitoring Instruments
 - Piezometers, Inclinometers, Crackmeters, Survey Monitoring Points, Stage gauges, Precipitation, Water Chemistry Sondes, etc.
- Manual and Automated Instruments

Importance of Instrumentation Data

- Used in all Phases: Planning, Design, Construction, Ops,
 - Understand the baseline conditions to inform design
 - Monitor project performance & safety during construction
 - Evaluate short-term & long-term performance of the structure
 - Normal loading and Extreme events (post-seismic, flood, severe storms)
- Amount & Type of Instrumentation at Various Project Varies
 - Parameters Needed to be monitored
 - Frequency of data collection
 - Level of risk/concern associated with the project
Dam And Levee Instrumentation Inventory

- > 70,000 instruments have been inventoried to date
- Average 106 instruments/project
- ~10-15% of all instruments are automated

Data Volumes

Wolf Creek Dam
- 247 Piezometers: +6.7 million readings
- 74 Inclinometers: +360k readings/yr
- 164 Monuments: 719MB; 40MB/yr

J. Percy Priest Dam
- 130 Active Instruments: +4.3M readings total / ~0.5M readings/yr
- 423 MB since 1982 / 51 MB last year
MIDAS Concept Requirements

- National/centralized cloud based system
- USACE owned, developed, managed
- State-of-the-art tool and ability for future upgrades/updates
- USACE Standardized data model approach
- Ability to set and broadcast thresholds/alarms;
- Means of visualization/plotting integral to software/system
- Ability to assimilate historic data
- Web-accessible and meets DOD Security Requirements
- Interoperability with other databases
Flood Sensor Program
DHS-USACE

Inter-Agency Agreement

- Assess the functionality of flood sensors for commercial viability
- Provides sensors & technical support
- Provide physical installation, data monitoring & evaluation
- Document effectiveness and provide feedback
- Cellular Data Transmission
- Proprietary data storage and processing
- Sensors
 - Water level (~0.1 in)
 - Temperature
 - Atmospheric Pressure
 - Digital Camera
- Solar Panel
- Integral Battery
Currently 117 live sensors

Flood Sensors Supplement USACE Project Instrumentation
Instrumentation is great, but...

- Where do I install instruments?
- What type do I install?
- How often do I collect/review data?
- When am I concerned?
- How do I manage my data?
- When can I stop monitoring?
- What does the data mean?
- Is my program adequate?

EM 1110-2-1908 and EM 1110-2-4300 Updates

- EM 1908 (2021) Instrumentation of Embankment Dams & Levees
 - Vastly Expanded doc: SMP, RIDM, Evaluation, Data Management, Newer Technology

- EM 4300 (1987) Instrumentation for Concrete Structures
 - Update EM1908 with appropriate concrete structure monitoring guidance
 - Expected Complete end of FY22
ER 1110-2-103 and ER 1110-2-1802 Updates

- ER 103 Strong Motion Instruments for monitoring and recording earthquake motion *Published 2021* and replaced 1981 doc.
 - Applies to dam, levee, and navigation structures
 - Standardize instrumentation in accordance with USGS state-of-practice
 - Incorporated Risk Informed Decision Making into the site selection process
 - Requires the direct coord. w/ USGS;

- ER 1802 (2017) Reporting Earthquake Effects
 - Remove inconsistency with ER 103
 - Clarification on Reporting Requirements
 - Coordination with Operations
 - Expected Release FY22

Instrumentation Guide Specification

- **Expected Release April 2022**
 - for use with construction contracts where performance monitoring instrumentation is required
 - Includes furnishing all labor and equipment for the installation and maintenance of performance monitoring instrumentation through the duration of the contract.
 - Includes instrumentation data management and data interpretation/reporting requirements.
Federal Guidelines for Instrumentation and Monitoring

- Partnership with FEMA, FHWA, TVA, BoR
- Best Practices Document

ERDC Research Partnership

- Fully Grouted Vibrating Wire Piezometers
 - Grout Mix Design
 - Appropriate Applications
- FY21
 - Initial Field Install Visits and Numerical Modelling
 - Initial Lab Tests
- FY22-23
 - Continued Lab Tests and Field Testing – FY22
Instrumentation of Dams and Levees Course

- Georgetown, TX (in-person)
 - 5-8 May 2022
 - 7-9 June 2022

- Online Webex (no site visit)
 - 11-15 July 2022

- Advanced Course (next FY development, pending funding)

https://wulc.usace.army.mil/CrsSchedule.aspx

InSAR Data

- Proven at Mosul Dam
- Implementing at multiple projects

- Using TerraSAR-X
 - Hi-Res Spotlight
 - ~0.5m resolution
3.2.3 Presentation 1B-3: USGS Water Mission Area Observing Systems Research and Development Program

Authors: R. Russell Lotspeich, U.S. Geological Survey

Speaker: R. Russell Lotspeich

3.2.3.1 Abstract

The USGS has a long history of evaluating water technologies for use in monitoring and research applications carried out to characterize the nation’s water resources. This is done to verify manufacturer specifications as well as to evaluate technologies for use in new environments and under a range of environmental conditions. Not all technologies are well-suited for all environments and understanding instrument limitations is critical to selecting the best instrument for a given location and to properly interpreting the data generated.

The USGS Water Mission Area (WMA) began receiving congressional appropriations in 2018 to develop a Next Generation Water Observing System (NGWOS) program in select basins across the U.S. This program includes significant investments into evaluating new technologies and transitioning the most promising ones into national operations. Of interest to the program are new and innovative monitoring methods and instrumentation that result in increased efficiencies, accuracy, new data types, and(or) temporal and spatial resolution of water data across networks. Imagery, remote sensing, and artificial intelligence are just a few examples of technologies that are currently being evaluated through the NGWOS program.

The USGS has historically held all the traditional types of water data it provides to the public to a uniform standard for data quality and uncertainty. With advances in technology providing exciting and useful alternative methods for measuring parameters such as water level, water velocity, and water temperature, some of the most promising technologies, unfortunately, do not meet that single standard. Because these data are still of great value to stakeholders and the USGS in defining the temporal and geographic variability in hydrologic conditions, there is a desire to move forward with operational implementation of many of these new systems. So that the new data types and results of new collection methods can be interpreted by end users with as much confidence as the traditional USGS data, the USGS WMA is evaluating systems of data classification that will clearly identify differing levels of quality and uncertainty associated with each new data type, and the NGWOS program is leading this effort.
3.2.3.2 Presentation (ADAMS Accession No. ML22061A132)

USGS WMA Observing Systems Division
Research and Development Program

Objectives:

1. Provide overview of USGS Water Mission
 Area Observing Systems Research and Development

2. Discuss metadata enhancement to data delivery services (Fit-for-Purpose data)

3. Describe collaboration with DHS Science and Technology (S&T) Directorate

https://dashboard.waterdata.usgs.gov/app/nwd/
Next Generation Water Observing System (NGWOS)

Characteristics of a Next Generation Water Observing System:
- State-of-the-art measurements
- Dense array of sensors at selected sites
- Increased spatial and temporal coverage
- New technology testing and implementation
- Improved operational efficiency
- Modernized and timely data storage and delivery

The National Water Model

- Flood hazard assessment
- Flood protection/mitigation
- Flood risk assessment

https://water.usgs.gov/ about/nwm
R&D Program - Objectives

1. **Evaluate** innovative technologies and assess for operational implementation.
2. **Engage** industry and academia to leverage resources and stay informed
3. **Coordinate** R&D efforts to improve efficiency, communication, and transparency

R&D Program - Enhancing Operations

![Image of Frankford Creek at Castor Ave, Philadelphia, PA - DD: 1 Rating: 10](image)

Rating period from 2017-02-01
R&D Program - Evaluating New Technology

- Imagery
- IoT Telemetry
- Wireless sensors
- Edge computing
- Smart gages / Smart Cities
- Surface velocity methods
- Artificial Intelligence
- Power systems
- HABs and PFAS samplers
- Autonomous underwater samplers

Surface (Doppler) Velocity Radar

R&D Activities in Observing Systems
R&D Program - Evaluating New Technology

Camera-Based Monitoring

Ground-Penetrating Radar for bathymetry (prototype)

R&D Overview - Engaging Industry

USGS Partners with UA to Build Hydrologic Instrumentation Facility

The University of Alabama (ua.edu)

“Innovation is outpacing acquisition” - Scott Rayder (Director, Alabama Water Institute)
R&D Overview - Technology Transition

1 - Identification of Driving Need
- Unmet measurement need
- Reduction in O&M costs
- Network scale equipment upgrade
- Improve interoperability
Deliverables: User cases and specifications for technology performance

2 - Market Research
- Vendor engagement
- Technology Readiness Level assessment
- Risk assessment
- Intellectual property considerations
Deliverables: Proposals for evaluations, technology transfer agreements

3 - Evaluations
- Evaluation Test Plans
- Data collected during evaluation
- Assessment of results
Deliverables: Peer-reviewed evaluation plans, evaluation data, and summary reports (internal)

4 - Reporting
- Efficient and timely
- Comprehensive
- Provides direction for next steps
Deliverables: Evaluation summary report (public) and recommendations for implementation

5 - Operational Implementation
- Training modules
- Technology transfer to the field
- Database integration
- Publication of methods
Deliverables: Implementation plans, T&M documents, and implementation assessment

R&D Program - Research to Operations

Realtime Data Delivery

Hydroacoustics

R&D Activities in Observing Systems
QUESTIONs

Balancing water availability and quality in the Delaware River Basin

Russ Lotspeich
rlotspe@usgs.gov

3.2.4 Presentation 1B-4: State and Local Experience in Virginia Implementing IoT Sensors and Data Systems

Authors: David Ihrie, Virginia Innovation Partnership Corporation

Speaker: David Ihrie

3.2.4.1 Abstract

The Commonwealth of Virginia and local government partners now have increasing experience implementing IoT sensors such as flood and wildfire sensors, and their related data systems and user facing applications. This talk provides a description of the journey, lessons learned, and a look towards the future as these increasingly ubiquitous sensors become a primary driver for situational awareness and delivery of services.
3.2.4.2

Presentation (ADAMS Accession No. ML22061A131)

State and Local Experience in Virginia Implementing IoT Sensors and Data Systems

Presented to: 7th Annual NRC PFHA Research Workshop

Author: David Ihrie, VIPC

Abstract: The Commonwealth of Virginia and local government partners now have increasing experience implementing IoT sensors such as flood and wildfire sensors, and their related data systems and user-facing applications. This talk provides a description of the journey, lessons learned, and a look towards the future as these increasingly ubiquitous sensors become a primary driver for situational awareness and delivery of services.

Funding for many of the technologies in this presentation has been provided by the U.S. Department of Homeland Security, Science & Technology Directorate, under contract number 7615AT15C00000025

UNCLASSIFIED

February 2022

VIPA
VIRGINIA INNOVATION PARTNERSHIP AUTHORITY

State Legal Authority

VIPA Operating Arm & Managing Nonprofit

VIRGINIA INNOVATION PARTNERSHIP CORPORATION

Connecting Innovators with Opportunity

VIPC's Executive Office: Functions for VIPC and VIPA Divisions include Finance & Administration, Human Resources, Policy, Communications, and Government Engagement.

VIPC's Mission:
- Minimize the number of barriers to success for entrepreneurs and startup innovators and accelerators.
- Support and connection for entrepreneurial ecosystems and markets across Virginia, including startup innovators and accelerators.
- Grant funding in support of technology-based research, development, and commercialization to drive economic growth in Virginia.
- Seed and early-stage funding for Virginia-based companies with high potential for rapid growth and significant economic returns.
- Leadership for strategic initiatives that explore and deploy new programs designed to attract and grow technology and new industries.

January 2022
Virginia Smart Community Testbed

Smart Community IoT Flood Sensors

Stafford County Using Data for Emergency Management of Flooding
Smart Community IoT Flood Sensors

- Stafford lead site for statewide pilot
- Significant uptake from all communities – some buying their own supplements
- Low cost a primary factor
- Advanced uses in discussion for Stafford

Stafford County Using Data for Emergency Management of Flooding
Smart Community IoT Flood Sensors

Stafford County Using Data for Emergency Management of Flooding

Commonwealth Data Trust

VA-FIX Supports Airspace Coordination For Drone Operators

Legacy IFLOWS Network Informs NWS Flood Alerts

Data Security and Governance

Data Flow Diagram

- Real-time IoT Data streams shared via Data Trust permissions and governance
- VA-FIX now registered user, VIPC as Data Trust Member can upload streams or provide metadata for access

VIPC VIRGINIA INNOVATION PARTNERSHIP CORPORATION
IoT Device Security

- “Zero Trust Security”
- Makes groups of IoT devices invisible to hackers
- In place for Stafford Security cameras
- Wider applications demo at Ft. Belvoir for power infrastructure
IoT Data Infrastructure Supports Many Types of Sensors

- Wastewater data more accurate than VDH, presents earlier, enables passive monitoring
- Identifies both asymptomatic and pre-symptomatic cases
- Allows potential for more targeted response
- First of its kind testing in U.S.
Lessons Learned

- Get Started!
- Cost Matters
- Users Are the Best Innovators
- A secure, integrated architecture is critical for successful adoption
- Commonwealth Data Trust Provides a Model for Data Governance and Information Sharing

Thank You!

Funding for many of the technologies in this presentation has been provided by the U.S. Department of Homeland Security, Science & Technology Directorate, under contract number 70NSAT15C0000225.
3.2.5 Flood & Fire Sensors for Resilient Communities Panel Discussion (Session 1B-5)

Moderator: Joseph Kanney, NRC/RES/DRA/FXHAB
Jeffrey Booth, Department of Homeland Security, Science & Technology Directorate
Georgette Hlepas, U.S. Army Corps of Engineers
R. Russel Lotspeich, U.S. Geological Survey
David Ihrie, Virginia Innovation Partnership Corporation

Question:

What are your thoughts about the tradeoffs between using cellular communications for these instrumentation systems versus using a different type of communication system, such as the dedicated radio systems used for emergency management? Because cellular networks can get clogged up in emergencies. What are the tradeoffs of how the sensors would communicate with the databases or to be queried and things like that?

David Ihrie:

I think the actual sensing elements are independent of the radio system for the communications. Because there are a number of different potential user communities, my preference would be to have a more general type of communications backhaul rather than a single user, like the emergency management. But however that first hop occurs, our experience has been that the integration of the data on the backend and the sharing of that data is much trickier and it's kind of the critical piece. We've experimented with several different types of radios.

Question:

Can you say a little bit more about what different types of radios you have experimented with?

David Ihrie:

Sure. LoRa is one that is, I think, also pretty popular. We are doing some experimentation in the testbed directly with 5G and several mechanisms to kind of extend off the edge of the 5G network into areas without as much coverage. There has been a look at satellite communications. So, I think just a variety.

Jeff Booth:

For the flood sensors, we have done both cellular and LoRa. We had some challenges with LoRa in very steep terrain, granite hills, etc. So, they have both capabilities, in addition to Iridium satellite. But we are testing the next round of wildland fire sensors that will deploy 20 to 50 sensors with the US Geological Survey and the Feather River in California at LoRa sites that they have deployed for some of their monitoring to get a better sense of both the cell and LoRa comparisons.

Georgette Hlepas:

We often have these discussions with water management and geotech instrumentation. What is the best route? For normal operations cellular works just fine without an issue. Our concern is remote projects and those cellular systems not functioning during emergencies and not being
able to know what is happening at our projects. For those more critical projects, more remote projects, a lot of those are using satellite-based data. We transmit through the GOES satellite system. That’s more reliable for specific areas.

Russel Lotspeich:

We are also utilizing several different technologies for telemetry. Primarily we utilize GOES. The issue with GOES is the lack of bandwidth for things like imagery. So, we keep getting pushed to cellular for these kinds of higher bandwidth requirement data types. Our focus has been on getting data into our national water information system faster and building better web services and API points, so that people can access the data more readily through our system.

We have added alert radios to our system, so our monitoring stations have the ability to use multiple types of telemetry, much like Jeff was describing. If there is a need by a locality to add one of their local radios to our systems, that is not out of the question, but it creates an issue for us to get the data into our system. That is why we still want to rely primarily on GOES.

Question:

Most of the presentations concentrated on deploying the sensors in some sort of a network ahead of time. I was curious has anyone given a lot of thought or have concrete plans for a use case, which would be more like a campaign in response to an event or an evolving situation? For example, if certain state is in a real drought situation, could there be a campaign to deploy those fire sensors? Or if there has been a particularly wet spring in a certain area and you are worried about snow melt flooding happening in the early summer in a certain area, could there be a campaign to deploy flood sensors?

Jeff Booth:

We have deployed a thousand sensors, mostly flood sensors. And some of our stakeholders did keep several back just for those types of purposes, mostly coastal right now in terms of hurricane and surge. But clearly that is some of what they are concerned about is storm events where they can deploy ahead of time when an unknown event is coming. To follow up after David Ihrie, users are the most creative innovators. One of the more recent use cases with wildland fire sensors was a planned burn or a prescribed burn where one of the performers deployed sensors with a county in Colorado for a prescribed burn just to get some data. They left the sensors there overnight after the fire suppression was performed by the fire department. Later that night, they got triggered on smoke alerts and they actually notified the fire department an hour before the first 911 call that there was a spark up where it went from smolder to ignition. So they were able to redeploy the fire department to suppress it. We are finding more and more use cases. Again, it is the creativeness of the users that is really intriguing. We have got a variety of use cases we never planned on for the flood sensors, and now finding more with the fire sensors as well.

David Ihrie:

Following up on the fire sensors, another recent use case that came to light from one of our fire colleagues was after a small wildfire in an area. Often, they need to deploy people and equipment for the next day or two to make sure it does not flare up again. So the idea was to rapidly deploy a couple of these wildfire sensors, not to detect initial ignition, but to check and help make sure that there is no flare up afterwards.
Georgette Hlepas:

Most of the USACE folks using these sensors are testing in different environments and seeing how they behave and how they react. The great purpose of these is quick deployable when you need something right away and everyone is pretty excited for that use case. We’ve predetermined, preinstalled these in locations just to see how easy they are to install and how effective they are in different environments, different temperatures, etc. We covered a lot of that in our presentation, but the vast majority of folks agreed that in an emergency this is what we can quickly deploy.

Russel Lotspeich:

We have had what we call a rapid deployment gauge program pretty much since Hurricane Katrina, where we recognized the need to either put out additional monitoring stations during an event. It was primarily focused at coastal events that point in time, but we've also evolved. Now, if a gauge is going to get flooded out due to a flood, we’re putting these systems out in advance of that happening to maintain data continuity during the event, especially at forecast points. How those systems have been developed in the past are not very cheap. They are not very easy to install. So, we have been looking at ways to improve on those. We are targeting the Intellisense sensor, as well as some other technologies that are out there, for that purpose, as well as potential fixed continuous monitoring. But certainly, the rapid opportunistic deployment of sensors for various different applications is certainly on our map.

Question:

David, you had a couple of slides that did a good job of talking about the question of data sharing and data ownership, as well as the security aspect of using the sensors and sharing the data. Could I get some comments from the other presenters about how that is being handled in your organizations?

Jeff Booth:

So I can answer for S&T. The unique thing about the Science and Technology Directorate is that we don’t own the mission. We are the science edge for identifying gaps in the mission and then applying the technology. So from a data sharing standpoint, we aren't the ones that deploy the sensors or operate them. We're basically trying to find the technology to help the user. So from my standpoint it's not that big of an issue for my mission area.

Question:

Then my question to you Jeff would be: what technology best supports the data security and the data sharing? Are you doing research on that?

Jeff Booth:

David alluded to an effort we're doing right now with the Geological Survey on Cyber IoT security issues. In this case we'll use the Stafford County testbed and look at the flood and fire sensors for cyber vulnerabilities. There's a lot of sensors that are readily deployed because of their price points, but they introduce vulnerabilities for networks. So USGS and DHS have been
discussing some of the vulnerabilities with sensor deployments. We have a kick off meeting this week on that effort to look at some of the cyber vulnerabilities for those sensors.

Russel Lotspeich:

I’m sending a link in the chat (https://www.fedramp.gov). Data sharing, access to data, and data ownership have always been a big issue for the USGS to move forward with the use of any third party data services. The key is this Fedramp program and having fully documented, embedded APIs. We’re still working through this. We’re also looking at zero trust architecture that David mentioned. We have other cyber security projects that are underway looking at this exact question. How do we get data from these IoT based sensors in a way that doesn’t violate any of our federal cyber infrastructure rules. If a vendor is Fedramp certified, this currently gives us somewhat of a green light to move forward, because we’re moving everything into the cloud anyway. All of our database is moving to the cloud. Once everything is in the cloud, and we can have that handshake, then I think it makes things a lot easier. That has been a significant hurdle up to this point.

Georgette Hlepas:

Security has been a huge concern at the USACE. We had a lot of difficulties trying to find a good way to bring data, especially automated data, from the field into our Corps net. But once we implemented a cloud-based solution, (we have a government owned Amazon cloud system) that’s enabled us to do a lot more. We do meet all the government security requirements and make the appropriate handshakes to bring data in. But that cloud-based solution has provided a lot of relief.

We also do work with folks who have to go through the Fedramp certification process, and I chuckle at that because it’s a lengthy process. But if there is a third party who is Fedramp certified, it does make it a lot easier, because they have to have met all the security restraints that the DoD has.
3.3 Day 1: Session 1C – Climate

Session Chair: Elena Yegorova, NRC/RES/DRA

3.3.1 Presentation 1C-1 (KEYNOTE): Big Stories from the Historic Winter of 2020/21

Authors: David Novak, National Oceanic and Atmospheric Administration, National Weather Service (NOAA/NWS)

Speaker: David Novak

3.3.1.1 Abstract

This review will highlight some of the "big stories" of the 2020-21 historic winter season, including one of the snowiest Octobers on record in the CONUS, an historic early season ice storm in Oklahoma, a December nor’easter with 40” of snow in 15 hours, and most, notably, an historic and devastating February cold wave. Winter dryness over the west foreshadowed a devastating drought for the remainder of 2021. Notable events in the early part of the 21-22 season will also be reviewed. These events will be used to illustrate the impacts of extreme winter conditions on society and the national infrastructure, and the weather enterprise’s efforts in building public readiness for such events. Winter 2020-21 will be best known for the February cold wave - the most destructive and costly winter event to affect the United States in recorded history. The event was responsible for 172 deaths and over $20 Billion in direct losses (nearly doubling the inflation-adjusted cost of the 1993 Superstorm). This talk will review the rare meteorological circumstances of the event, which contributed to cascading failures in the power, water, and transportation infrastructure. In reviewing the events of the 2020-21 season, this presentation will also highlight successes and challenges in building industry readiness for winter weather, including new product and messaging innovations.
3.3.1.2 Presentation (ADAMS Accession No. ML22061A130)
The Weather Prediction Center

MISSION: Provide national weather situational awareness and precipitation expertise to enable readiness for hazardous weather events

National Weather Situational Awareness

- Heavy Rainfall
- Winter Weather
- Upcoming Hazards

Specialized Meteorological Expertise

Specialized meteorological expertise applied to challenges of intense rainfall, winter precipitation, and upcoming hazards.

Heavy Rainfall

Winter Precipitation

Upcoming Hazards
Extreme Weather Forecasts are Inherently Uncertain

- Predictability varies from event-to-event & by scale
- Impacts more difficult to predict than the meteorology
- Results in wide range of lead-time for partner decisions

Operational Approach

Products & Language Triggered by Level of Certainty

Impact-Based Decision Support

Adapted from Rothfusz et al. 2018
Probabilistic Outlooks Drive National Awareness

Outlooks calibrated to probability of impactful events

Winter of 2020-21
2020-21 Winter Climate Anomalies

Mean Temperature Percentiles
December 2020-February 2021
Rainfall Period: 1866-2021

- Southern Plains below average
- Much above in CA, ND, and ME

Total Precipitation Percentiles
December 2020-February 2021
Rainfall Period: 1866-2021

- Drier than average, except coastal Mid-Atlantic

NATIONAL WEATHER SERVICE

Seasonal Snowfall
(Oct 2020 - April 2021)

- Snow “Drought” across the West and Northern Tier
- Above normal snowfall along the Front Range, and Southern Plains

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 9
An Historic October 2020

18th: Great Falls, MT
Heaviest calendar-day snowfall on record for October (8.2"

23rd: Spokane, WA
Heaviest calendar-day snowfall on record for October (6.8"

20th: Minneapolis, MN
Heaviest snowstorm on record so early in the season (7.9"

26-28th: Historic Oklahoma Ice Storm

NOHRSC Snowfall Analysis

Oklahoma Ice Storm 2020

More Than 40,000 Still Without Power 10 Days After Oklahoma Ice Storm

By Jay McRitchie - November 05, 2020
Oklahoma Ice Storm 2020

NWS/WPC Winter Storm Outlooks leading to Ice Storm Warning on Oct. 26, 2020

Day 2 Outlook issued 3pm Oct. 25
Day 1 Outlook issued 4am Oct. 26
WWA Map at 8am Oct. 26

Historic Southern Plains Arctic Outbreak

The most destructive and costly winter storm to affect the United States in recorded history.

- 172 direct deaths [Source: NOAA Storm Data]
- $20+ Billion in direct losses

Historic meteorological event
- Cold
- For a long duration of time (~7 days)
- With successive snow/ice storms

Contributed to cascading failures in the power, water, and transportation infrastructure.
A Deadly Week of Winter: Arctic Air Mass and Coast-to-Coast Winter Storms Wreak Havoc

Thursday, Feb. 11, 2021
135-car pile up, I35, north TX
6 dead, dozens injured

Fri-Sat, Feb. 12-13, 2021
Major ice storm, NW Oregon

Sun-Mon, Feb. 14-15, 2021
All-time record cold, snow, and ice across Texas.

Sun, Feb. 14, 2021
8.9" at SEA, snowiest day since Dec. 1968!
Major ice storm, southwest Virginia

Mon, Feb. 15, 2021
All-time record snowfall Abilene & San Angelo, Texas (14.8 & 10.1 inches)

Mon, Feb. 15, 2021, at least
61 daily record low temps, max temps 40-50F below normal

Tue, Feb. 16, 2021

Wed-Thu, Feb 17-18, 2021
2nd snowiest day on record at Little Rock ,AR

WS Warning 24h criteria probability (ice) Thu-Friday

Largest areal coverage of NWS Winter Storm Warnings

3-day snowfall ending 12 UTC, Feb. 15, 2021.
Ten Days in Texas: Deadly Arctic Airmass Overspreads Lone Star State, Feb. 11-20, 2021

February 15, 2021
Historical Extreme Cold of February 1899

BUT - SHORT DURATION (~2 days)

Extremely strong high pressure system with central pressure greater than 1055 mb!

Examples of All-time record lows:

- **Oklahoma City**
 -17°F

- **Dallas Ft-Worth**
 -8°F

- **Tallahassee, FL**
 -2°F

(Feb. 13, 1899)

Mean temperature and departure from normal for 7-days centered on the coldest days for Dec. 1983 and Feb. 2021 cold air outbreaks over the Southern Plains. The December 1983 outbreak appears to be a reasonable analog to Feb. 2021.

Anomalously cold air does appear to have spread a bit farther west, south and east in the most recent Arctic outbreak, when compared to 1983.

(Note: Midwest Regional Climate Center (MRCC) online plotter does not go below -25°F departure.)

Plots made with Cli-MATE MRCC Applications Tool Environment.

Normals period of record 1981-2010.
Was it Forecast?

Evolution and departure from the daily normal min temperature for the day from:
6 days (144-hour lead time) to day 1 (24-hour lead time).
All forecast images are valid for minimum temperatures on:
Tue, Feb. 16, 2021
Taking the 17-station mean of forecast temperatures across TX, OK, and western LA, the mean error was about 10°F too warm at Day 6. Departures of 25-30 degrees below normal on Day 6 verified 40-50 degrees below normal on Tuesday. The error decay for the minimum temperature forecasts was linear with decreasing lead.

The images show temperature forecasts for different days, with a color gradient indicating temperature deviations from the normal.
A Few NWS Winter Predictive Tools
NWS Temperature Forecasts

Winter Storm Severity Index (WSSI)

Goal: Forecast the potential severity of community impacts from winter storms, including tree damage, property damage, transportation impacts, and disruptions to daily life

- Impacts relayed in a 5 category scale
 - Relates to rarity of meteorological event
- Algorithms connect official NWS meteorological forecast to general impact categories
- Incorporates non-meteorological factors
 - Population, tree cover, land use

Output available here: www.weather.gov/wssi
WSSI - Components & Scale

- **Snow Load**
 Indicates potential infrastructure impacts due to the weight of snow

- **Snow Amount**
 Indicates potential impacts due to the total amount of snow or snow accumulation rate

- **Ice Accumulation**
 Indicates potential infrastructure impacts due to combined effects and severity of ice and wind

- **Ground Blizzard**
 Indicates the potential travel-related impacts of strong winds interacting with pre-existing snow cover

- **Flash Freeze**
 Indicates the potential of flash freezing during or after precipitation events

- **Blowing Snow**
 Indicates the potential disruption due to blowing and drifting snow

Potential Winter Storm Impacts

<table>
<thead>
<tr>
<th>Impacts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Impacts</td>
<td>Impacts not expected.</td>
</tr>
<tr>
<td>Limited Impacts</td>
<td>Occasionally damaging to life and property. Typically results in little inconvenience.</td>
</tr>
<tr>
<td>Minor Impacts</td>
<td>Rarely a direct threat to life and property. Typically results in an inconvenience to daily life.</td>
</tr>
<tr>
<td>Moderate Impacts</td>
<td>Often threatening to life and property, some damage unavoidable. Typically results in disruptions to daily life.</td>
</tr>
<tr>
<td>Major Impacts</td>
<td>Extensive property damage likely, life saving actions needed. Will likely result in major disruptions to daily life.</td>
</tr>
<tr>
<td>Extreme Impacts</td>
<td>Extensive and widespread severe property damage, life saving actions will be needed. Results in extreme disruptions to daily life.</td>
</tr>
</tbody>
</table>

Winter Storm Severity Index (WSSI)

Able to show the impacts from different parts of the storm

- **Snow Amount**
- **Ice Accumulation**

NATIONAL WEATHER SERVICE

2021-2022 Winter Partners Webinar Building a Weather-Ready Nation // 29

3-97
Winter Storm Key Messages

The Purpose
- Galvanized partners and media around consistent, coordinated messages

Specifics
- Used for high-impact storms that are expected to cause travel disruptions or pose a hazard to life and property and/or rare events
- Collaborated among operational units
- Available on WPC homepage and integrated into WFO & WPC messaging

Summary
- Weather extremes are increasing, stressing critical infrastructure
 - The winter of 2020-21 was historic
 - The Southern Plains Cold Wave
 - Oklahoma Ice Storm
 - The National Weather Service provide critical observations and forecasts essential to public safety

National Weather Service: https://www.weather.gov
Weather Prediction Center: https://www.wpc.ncep.noaa.gov
3.3.2 Presentation 1C-2: Linking Arctic variability and change with extreme winter weather in the US including the Texas Freeze of February 2021

Authors: Judah Cohen*, Laurie Agel2, Mathew Barlow2, Chaim Garfinkel3, Ian White3
1Atmospheric and Environmental Research, 2University of Massachusetts Lowell, 3Hebrew University of Jerusalem

Speaker: Judah Cohen

3.3.2.1 Abstract

The Arctic is warming at a rate twice the global average and severe winter weather is reported to be increasing across many heavily populated mid-latitude regions, but there isn’t yet agreement on whether there is a physical link between the two phenomena. Here I will present observational analysis to show that a lesser-known stratospheric polar vortex (SPV) disruption that involves wave reflection and stretching of the SPV is linked with extreme cold across parts of Asia and North America, including the recent February 2021 Texas cold wave, and has been increasing over the satellite era (post 1980). I will also present numerical modeling experiments forced with trends in autumn snow cover and Arctic sea ice to establish a physical link between Arctic change and SPV stretching and surface impacts. This phenomenon is also active in January 2022 and if time permits, I will present on the weather of January 2022.
Linking Arctic variability and change with extreme winter weather in the US including the Texas Freeze of February 2021

Judah Cohen
AER/Dept CEE MIT
February 15, 2022

Extreme weather is the considered by economists to be the biggest global risk
--- The extreme weather climate scientists are most confident will change due to climate change is a decrease in extreme cold
A winter storm will hit Texas – bringing back memories of last year’s power grid failure

As Texas braces for a cold snap, officials promise the power grid will hold.

A Warmer Arctic is Related to Increased Severe Winter Weather in Central US
Arctic Oscillation (AO)/Polar Vortex

- Dominant mode of Northern Hemisphere climate variability. Also known as the North Atlantic Oscillation.
- Can be thought of as a metric of how much mixing of air masses is occurring in the atmosphere.
- Positive AO/strong polar vortex – little mixing with strong low pressure/cold air sitting over the pole and higher pressure/warmer air to the south.
- Negative AO/weak polar vortex – strong mixing causes warm air from the south to rush the Pole and Arctic air spills equatorward.

ARCTIC AMPLIFICATION
A Warmer Arctic is Related to Increased Severe Winter Weather in Dallas

Cohen et al. 2018

Snow and Sea Ice Trends during Era of Arctic Amplification

A October 1990-2020 SCE Trend

B Oct-Nov-Dec 1990-2020 SIC Trend
Location, location, location!
Differential heating creates a wave

STRETCHED POLAR VORTEX
Cluster Analysis of Polar Vortex and Trends

Strong Polar Vortex States

Cluster 1 (15%) Cluster 2 (30%) Cluster 3 (25%) Cluster 4 (14%) Cluster 5 (16%)

Weak Polar Vortex States

only a handful 99% of publications

Trends of five clusters over reanalysis

Cluster 4 i.e., stretched polar vortex shows strongest increasing trend

Kretschmer et al (2018)

Cohen et al (2021)
Precursors

Ridding across the Arctic
Troughing across East Asia

High pressure across the Arctic

Warm across the Arctic
Cold across Asia then North America

Late fall to early-winter Arctic amplification amplifies the natural standing wave over Eurasia, which leads to mid- to late-winter wave amplification over North America. Wave amplification on both continents favors extreme winter weather.

Before Arctic change

With Arctic change

Oct Nov Dec Jan Feb
Temperatures 2021 and 2022

Record snow cover extent in 2021
Summary

- The globe is warming and our climate system is much warmer than even a few decades ago.
- Global warming is not equal everywhere. Over the past three decades the Arctic has been warming the fastest while the mid-latitudes have cooled/no trend (in winter).
- Studies strongly suggests that the warming in the Arctic is related to the cooling in the mid-latitudes and the dynamical link is through the “polar vortex.”
- A rather esoteric behavior of the polar vortex is related to extreme winter weather east of the Rockies including Texas where the polar vortex becomes elongated or stretched.
- Winter days where the polar vortex “stretches” have been increasing during the period of accelerated Arctic warming, which can contribute to more severe winter weather.

SCIENCE PAPER

Thank you!
Stretched Polar Vortex

“Eurasia sneezes, North America catches a cold”

1. Wave amplification over Eurasia with strengthened Scandinavian/Urals blocking and deepened East Asian troughing

2. Upward wave energy flux

3. Stratospheric Polar Vortex Stretches

4. Reflected downward wave energy flux

5. Amplified high pressure ridge over Alaska and low pressure trough east of the Rockies produces cold air outbreaks across eastern North America
Conclusions

- Subseasonal timeframe (2-6 weeks) has exhibited the poorest forecast skill from days to months.
- Land surface influence may just be the sweet spot to provide a signal in the subseasonal timeframe and if the response is long-lived then also in the seasonal timeframe.
- Demonstrated snow cover extent pathway through troposphere-stratosphere coupling make it ideal for subseasonal prediction.
- But challenges remain on the observations snow-AO relationship has decreased over the past decade.
- Models have a difficult time simulating a snow-AO/polar vortex relationship especially free running simulations.
- Still our recent study both observational and modeling (snow forced) confirm snow-polar vortex relationship but not in the traditional SSW-AO pathway but rather a stretched polar vortex-North Pacific Oscillation pathway.

Outline

- A statistically significant correlation exists between fall Eurasian snow cover extent (SCE) and the dominant mode of Northern Hemisphere (NH) winter climate variability (AO/NAM).
- How SCE influences winter climate can be explained by a six-step process.
- There are challenges though, including most model ensembles and a failing observed AO-SCE relationship.
- However recent studies confirm a snow-troposphere-stratosphere connection but may be independent of the AO.
- That SCE anomalies is a precursor to polar vortex behavior and eventual severe winter weather makes it useful for seasonal to subseasonal prediction.
Precursors

Observational and modeling support
Winter Temperature Forecast

How Accelerated Arctic Warming Impact the Polar Vortex
“It is hard to make predictions, especially about the future.” (Yogi Berra, Niels Bohr)
3.3.3 Presentation 1C-3: 2021 U.S. Billion Dollar Weather and Climate Disasters in Historical Context including New County-Level Exposure, Vulnerability and Projected Damage Mapping

Authors: Adam Smith, National Oceanic and Atmospheric Administration, National Centers for Environmental Information (NOAA/NCEI)

Speaker: Adam Smith

3.3.3.1 Abstract

NOAA National Centers for Environmental Information (NCEI) released the final update to its 2021 billion-dollar disaster report (www.ncdc.noaa.gov/billions), confirming what much of the nation experienced throughout 2021: another year of frequent and costly extremes. The year came in second to 2020 in terms of number of disasters (20 versus 22) and third in total costs (behind 2017 and 2005), with a price tag of $145 billion. The events included: 1 winter storm/cold wave event (focused across the deep south and Texas); 1 wildfire event (combined impacts of wildfires across Arizona, California, Colorado, Idaho, Montana, Oregon and Washington); 1 drought and heat wave event (summer/fall across western U.S.); 2 flood events (in California and Louisiana); 3 tornado outbreaks (including the December tornado outbreaks); 4 tropical cyclones (Elsa, Fred, Ida and Nicholas); and 8 severe weather events (across many parts of the country, including the December Midwest derecho). The costliest 2021 events were Hurricane Ida ($75 billion), the mid-February Winter Storm / Cold Wave ($24.0 billion), and the Western wildfires ($10.9 billion). Adding the 2021 events to the record that began in 1980, the U.S. has sustained 310 weather and climate disasters where the overall damage costs reached or exceeded $1 billion. The cumulative cost for these 310 events exceeds $2.15 trillion. In broader context, the total cost of U.S. billion-dollar disasters over the last 5 years (2017–2021) is $742.1 billion, with a 5-year annual cost average of $148.4 billion, both of which are new records and nearly triple the 42-year inflation adjusted annual average cost. The U.S. billion-dollar disaster damage costs over the last 10-years (2012–2021) were also historically large: at least $1.0 trillion from 142 separate billion-dollar events. It is concerning that 2021 was another year in a series of years where we had a high frequency, a high cost, and large diversity of extreme events that affect people’s lives and livelihoods—concerning because it hints that the extremely high activity of recent years is becoming the new normal. 2021 marks the seventh consecutive year (2015–21) in which 10 or more separate billion-dollar disaster events have impacted the U.S. The 1980–2021 annual average (black line) is 7.4 events (CPI-adjusted); the annual average for the most recent 5 years (2017–2021) is 17.2 events (CPI-adjusted). To better reflect multi-hazard risk – the Billion-dollar disaster site now provides a new mapping tool that provides county-level information on natural disaster hazards across the United States. This interactive NOAA mapping tool provides detailed information on a location’s susceptibility to weather and climate hazards that can lead to billion-dollar disasters—such as wildfires, floods, drought and heat waves, tornado outbreaks, and hurricanes. The tool expands upon FEMA’s National Risk Index to provide a view of a location’s risk for, and vulnerability to, single or multiple combinations of weather and climate hazards for every county and county-equivalent in all 50 states: https://www.ncdc.noaa.gov/billions/mapping In addition, the 2021 annual U.S. billion-dollar disaster report is available here: https://www.climate.gov/news-features/blogs/beyond-data/2021-us-billion-dollar-weather-and-climate-disasters-historical
Presentation (ADAMS Accession No. ML22061A128)

2021 U.S. Billion-dollar Weather & Climate Disasters – New country hazard risk and vulnerability mapping expanding FEMA’s NRI

Better understanding U.S. disaster costs, hazard risk and resilience over space and time – integrating new county-level hazard risk mapping

Adam B. Smith, Applied Climatologist
NOAA National Centers for Environmental Information (NCEI)
Climate Science and Services Division

U.S Billion-dollar Weather and Climate Disasters

Outline:
- Context for Measuring Disaster Impact
- Data Sources / What we are Measuring
- 2021 U.S. Disasters in Review
- Historical Cost Comparisons, Maps, Tools
- County Multi-hazard Risk Mapping
Statutory mission to describe the climate of the United States and act as the "Nation’s Scorekeeper" regarding the trends and anomalies of weather and climate.

- As part of this responsibility we also analyze extreme weather and climate events in the U.S. that have great economic and societal impacts known as "U.S. Billion-dollar Weather & Climate Disasters".
- NCEI’s U.S. billion-dollar disaster analysis seeks to bring the best public and private disaster loss data together in a systematic approach. To that end, we maintain a consistent record of weather and climate disasters with costs equaling or exceeding $1 billion in damages (adjusting for inflation) using high-quality data sources and peer-reviewed methods.
 - Period of record: 1980-2021 (Quarterly updates)
 - The U.S. has sustained 310 separate weather and climate disasters since 1980 where overall damages/costs reached or exceeded $1 billion.
 - Total, direct costs exceed $2.15 trillion (CPI-adjusted to 2021).

To capture losses requires a broad array of public and private data

<table>
<thead>
<tr>
<th>Insurance Service Office - Property Claim Services</th>
<th>Hurricanes/ Tropical Storms</th>
<th>Severe Local Storms</th>
<th>Winter Storms</th>
<th>Crop Freeze</th>
<th>Wildfire</th>
<th>Drought / Heat Wave</th>
<th>Inland / Riverine Flooding</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMA – Presidential Disaster Declarations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMA – National Flood Insurance Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USDA – Risk Management Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Interagency Fire Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Information Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Corps of Engineers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Agencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Account for **total direct losses** (i.e., insured and uninsured) for assets including:
- **physical damage** to residential, commercial, and government buildings
- material assets (content) within a building
- time element losses (i.e., time costs for businesses; hotel costs for loss of living quarters)
- vehicles, boats, offshore energy platforms
- public infrastructure (i.e., roads, bridges, levees, buildings)
- **Agricultural / forestry assets** (i.e., crops, livestock, commercial timber, wildfire fighting)

We do not account for:
- natural capital/env. degradation;
- mental or physical healthcare-related costs;
- all downstream (indirect) costs
Western wildfires, severe storms, inland flooding and hurricane costs all on the rise
5-year annual cost average >$148.4 billion - a record; costs over 5 years (2017-2021) $742 billion - a record
- 2021 - 20 events [11 severe storm events, 4 tropical cyclones, 2 floods, 1 winter storm, drought & wildfire]

- 2021 cost total ($145.0 billion – 3rd highest) vs. the 42-year period of record at $51.4 billion
- The top 3 most costly years for U.S. - 2017 ($346.1 billion); 2005 ($244.3 billion); 2021 ($145.0 billion)
From 1980–2021, the U.S. South, Central and Southeast regions experienced a higher frequency of billion-dollar disaster events than any other region.

- Reflects the frequency, diversity, & severity of weather & climate events impacting the regions.

From 1980–2021, the U.S. South, Central and Southeast regions experienced a higher cost from billion-dollar disaster events. CA, NY, NJ, PR and V.I. as well.

- Reflects the severity and vulnerability of weather & climate events impacting different regions.
- The top 3 most impacted states:
 - Texas ($343 billion)
 - Louisiana ($270 billion)
 - Florida ($248 billion)
- The relative costs are more acute in Louisiana, as its population and economic size is much smaller than Texas or Florida.
- Louisiana also has a high frequency of disaster events, which can leads to compounding, cascading socioeconomic impacts.
From 1980-2021, the U.S. has experienced **310** distinct billion-dollar weather & climate events - each causing at least $1 billion in direct losses

- **Total, direct losses** from these 310 events exceeds **$2.15 trillion** (CPI-adjusted, 2021)

<table>
<thead>
<tr>
<th>Disaster Type</th>
<th>Events</th>
<th>Events/Year</th>
<th>Percent Frequency</th>
<th>Total Costs</th>
<th>Percent of Total Costs</th>
<th>Cost/Event</th>
<th>Cost/Year</th>
<th>Deaths</th>
<th>Deaths/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drought</td>
<td>29</td>
<td>0.7</td>
<td>9.4%</td>
<td>$285.4B</td>
<td>13.2%</td>
<td>$9.8B</td>
<td>$6.8B</td>
<td>4,139</td>
<td>99</td>
</tr>
<tr>
<td>Flooding</td>
<td>35</td>
<td>0.8</td>
<td>11.3%</td>
<td>$164.2B</td>
<td>7.6%</td>
<td>$4.7B</td>
<td>$3.9B</td>
<td>624</td>
<td>15</td>
</tr>
<tr>
<td>Freeze</td>
<td>9</td>
<td>0.2</td>
<td>2.9%</td>
<td>$32.8B</td>
<td>1.5%</td>
<td>$3.6B</td>
<td>$0.8B</td>
<td>162</td>
<td>4</td>
</tr>
<tr>
<td>Severe Storm</td>
<td>143</td>
<td>3.4</td>
<td>46.1%</td>
<td>$310.7B</td>
<td>15.3%</td>
<td>$2.3B</td>
<td>$7.9B</td>
<td>1,800</td>
<td>45</td>
</tr>
<tr>
<td>Tropical Cyclone</td>
<td>56</td>
<td>1.3</td>
<td>18.1%</td>
<td>$1,148.0B</td>
<td>52.2%</td>
<td>$20.5B</td>
<td>$27.3B</td>
<td>6,697</td>
<td>159</td>
</tr>
<tr>
<td>Wildfire</td>
<td>19</td>
<td>0.5</td>
<td>6.1%</td>
<td>$120.2B</td>
<td>5.6%</td>
<td>$6.3B</td>
<td>$2.9B</td>
<td>401</td>
<td>10</td>
</tr>
<tr>
<td>Winter Storm</td>
<td>19</td>
<td>0.5</td>
<td>6.1%</td>
<td>$78.6B</td>
<td>3.6%</td>
<td>$4.1B</td>
<td>$1.9B</td>
<td>1,277</td>
<td>30</td>
</tr>
<tr>
<td>All Disasters</td>
<td>310</td>
<td>7.4</td>
<td>100.0%</td>
<td>$2,159.9B</td>
<td>100.0%</td>
<td>$7.0B</td>
<td>$51.4B</td>
<td>15,180</td>
<td>361</td>
</tr>
</tbody>
</table>

Deaths associated with drought are the result of heat waves. (Not all droughts are accompanied by extreme heat waves.)

Flood events (river basin or urban flooding from excessive rainfall) are separate from inland flood damage caused by tropical cyclone events.

Comparison of U.S. Billion-dollar disaster stats over time

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Billion-Dollar Disasters</th>
<th>Events/Year</th>
<th>Cost</th>
<th>Percent of Total Cost</th>
<th>Cost/Year</th>
<th>Deaths</th>
<th>Deaths/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980s (1980-1989)</td>
<td>29</td>
<td>2.9</td>
<td>$190.2B</td>
<td>8.8%</td>
<td>$19.08</td>
<td>2,870</td>
<td>287</td>
</tr>
<tr>
<td>1990s (1990-1999)</td>
<td>53</td>
<td>5.3</td>
<td>$293.0B</td>
<td>13.6%</td>
<td>$29.3B</td>
<td>3,045</td>
<td>305</td>
</tr>
<tr>
<td>2000s (2000-2009)</td>
<td>63</td>
<td>6.3</td>
<td>$556.8B</td>
<td>25.8%</td>
<td>$55.7B</td>
<td>3,091</td>
<td>309</td>
</tr>
<tr>
<td>2010s (2010-2019)</td>
<td>123</td>
<td>12.3</td>
<td>$872.9B</td>
<td>40.4%</td>
<td>$87.3B</td>
<td>5,224</td>
<td>522</td>
</tr>
<tr>
<td>Last 5 Years (2017-2021)</td>
<td>86</td>
<td>17.2</td>
<td>$742.1B</td>
<td>34.4%</td>
<td>$148.4B</td>
<td>4,519</td>
<td>904</td>
</tr>
<tr>
<td>Last 3 Years (2019-2021)</td>
<td>56</td>
<td>18.7</td>
<td>$295.9B</td>
<td>13.7%</td>
<td>$98.6B</td>
<td>994</td>
<td>331</td>
</tr>
<tr>
<td>Last Year (2021)</td>
<td>20</td>
<td>20.0</td>
<td>$145.0B</td>
<td>6.7%</td>
<td>$145.0B</td>
<td>688</td>
<td>688</td>
</tr>
<tr>
<td>All Years (1980-2021)</td>
<td>310</td>
<td>7.4</td>
<td>$2,159.9B</td>
<td>100.0%</td>
<td>$51.4B</td>
<td>15,180</td>
<td>361</td>
</tr>
</tbody>
</table>

The number and cost of disasters are increasing over time due to a combination of increased exposure (i.e., values at risk of possible loss), vulnerability (i.e., where we build; how we build) and that climate change is increasing the frequency of some types of extremes that lead to billion-dollar disasters. (NCA 2018, Chapter 2)
Severe storm and inland flooding events frequent during Spring and Summer. Wildfires and hurricanes most frequent during Fall months.

- Visualizing the 42-year frequency of climatology of extreme, damaging events across the Nation.
- A way for decision-makers to understand which types of large events typically occur at what times of year, by region.

As noted in the *Climate Science Special Report* of the Fourth National Climate Assessment, “The physical and socioeconomic impacts of compound extreme events (such as simultaneous heat and drought, wildfires associated with hot and dry conditions, or flooding associated with high precipitation on top of snow or waterlogged ground) can be greater than the sum of the parts.”
New: Integration & expansion of FEMA National Risk Index within the Billion-dollar disasters platform

- A strategy for reducing cost and eliminating inconsistent risk assessments in planning
- Identifies areas that offer high return on mitigation investment
- Reduces the cost of risk assessment allowing community planners to prioritize action
- Provides pre-calculated, top-down national baseline risk assessment

Federal Emergency Management Agency

Multi-hazard county weather and climate risk mapping

- NCEI worked with & expanded upon FEMA’s NRI to enhance the NOAA Billion-dollar disaster website producing 127 new, interactive U.S. county hazard risk maps for any combination of county-level hazard risk for:
 - hurricanes, severe storms (tornado, hail, damaging winds), inland/urban flooding, drought/heat wave, wildfire, winter storms and freeze/cold wave events.
- Importantly, these maps offer more granular information in relation to exposure, vulnerability and resilience to weather & climate hazards, at a county scale.
- These new hazard combination maps are useful as we see more focus on cascading hazard impacts. For example: drought-enhanced wildfires produce mountain-side burn scars, which often enhance debris flows from flooding. This is a compound hazard with cascading impacts that we see in California.
Calculating Risk

Risk = Expected Annual Loss × Social Vulnerability ÷ Community Resilience

where Expected Annual Loss (EAL) =

- Annual Frequency
 - Rate of occurrence
 - How likely is hazard to occur?

- Exposure
 - Property Value
 - People
 - Agriculture
 - How many people & how much property are potentially at risk?

- Historic Loss Ratio
 - Percentage of property/people/crop losses
 - What percent of property/people have historically been lost from hazard in a given area?

Estimating Annualized Frequency: Rate of hazard occurrence

SOURCE DATA

<table>
<thead>
<tr>
<th>HISTORICAL EVENT DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong Wind</td>
</tr>
<tr>
<td>HURDAT2 Boat Tracks</td>
</tr>
<tr>
<td>Hurricane</td>
</tr>
<tr>
<td>NWS</td>
</tr>
</tbody>
</table>

PROBABILISTIC MODELS

- Earthquake
- Wildfire
- Avalanche
- Volcano

HIGH-THREAT AREAS

- Ocean Flooding
- Mudflow
- Earthquake
- Wildfire
- Flood

CENSUS TRACT FREQUENCY ESTIMATES

of historical events or event days depending on hazard

- **Tornado**
 - 2 events/32 yrs
 - 0.06 events/yr

- **Heat Wave**
 - 36 days/12 yrs
 - 3 days/yr

- **Lightning**
 - 2200 events/22 yrs
 - 100 events/yr
Establishing Hazard Exposure: People/property/ag at risk

Many hazards impact the entire county/census tract while some are limited to susceptible zones

HAZARD SUSCEPTIBLE ZONE
- Population: 300K
- Building Value: $90B
- Agriculture: $120M

COUNTY WIDE
- Population: 1.3M
- Building Value: $250B
- Agriculture: $720M

Note: Susceptible areas determined by hazard-specific source data polygons

Characterizing Historic Loss Ratios: % of exposure lost in historic events

To address variance & lack of enough events for statistical significance, *county ratios* are calculating using Bayesian adjustments informed by averages from multiple geographic levels

BAYESIAN CREDIBILITY ADJUSTMENTS
- U.S.
- Region
- Area
- County

SOURCE DATA
Spatial Hazard Events & Losses Database for the U.S. (SHEDUS)

DATA

<table>
<thead>
<tr>
<th>Event</th>
<th>Loss / Exposure</th>
<th>Simple</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>8081</td>
<td>$50M/$250B = 0.02%</td>
<td>2.1%</td>
<td>1.3%</td>
</tr>
<tr>
<td>8007</td>
<td>$300M/$250B = 0.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>814</td>
<td>$15B/$250B = 6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Social Vulnerability and Community Resilience

Social Vulnerability Index: SoVI 2010-2014
- Grouped into 7 components with 29 variables (SoVI 2010):
 - Race and class (7 variables), Wealth (5 variables), Elderly residents (6 variables), Hispanic ethnicity (5 variables), Special needs individuals (2 variables), Native American ethnicity (1 variable), and Service industry employment (2 variables)
 - Comparative index at the county & census tract levels
 - Positive and negative component loading

Baseline Resilience Indicators for Communities: BRIC 2010-2014
- 6 resilience category scores, plus total score
 - Social, Economic, Community Capital, Institutional, infrastructural, Environmental
 - Comparative indicators at the county level
 - Indicators analyze the relationship between resilience, vulnerability, and the relative impact of disasters on rural and urban places

FEMA’s “Social Vulnerability and Community Resilience Working Group reviewed multiple top-down and bottom-up indices and chose to recommend the University of South Carolina’s Hazards and Vulnerability Research Institute (HVRI) Social Vulnerability Index (SoVI).”

Risk = \(\frac{\text{Expected Annual Loss} \times \text{Social Vulnerability}}{\text{Community Resilience}} \)

Illustration of Risk Component Scores

<table>
<thead>
<tr>
<th>County</th>
<th>Expected Annual Loss</th>
<th>Social Vulnerability</th>
<th>Community Resilience</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>County 1</td>
<td>100</td>
<td>45</td>
<td>52</td>
<td>100</td>
</tr>
<tr>
<td>County 2</td>
<td>76</td>
<td>94</td>
<td>58</td>
<td>55</td>
</tr>
<tr>
<td>County 3</td>
<td>54</td>
<td>48</td>
<td>35</td>
<td>51</td>
</tr>
<tr>
<td>County 4</td>
<td>16</td>
<td>92</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>County 5</td>
<td>32</td>
<td>36</td>
<td>44</td>
<td>24</td>
</tr>
<tr>
<td>County 6</td>
<td>22</td>
<td>45</td>
<td>43</td>
<td>22</td>
</tr>
<tr>
<td>County 7</td>
<td>9</td>
<td>69</td>
<td>59</td>
<td>15</td>
</tr>
<tr>
<td>County 8</td>
<td>25</td>
<td>21</td>
<td>57</td>
<td>13</td>
</tr>
<tr>
<td>County 9</td>
<td>10</td>
<td>44</td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>County 10</td>
<td>16</td>
<td>4</td>
<td>39</td>
<td>1</td>
</tr>
</tbody>
</table>

All scores are constrained to a range of 0 (lowest possible value) to 100 (highest possible value). To achieve this range, the values of each component are rescaled using min-max normalization, which preserves their distribution while making them easier to understand. EAL values are heavily skewed by an extreme range of population and building value densities between urban and rural communities. To account for this, a cube root transformation is applied before min-max normalization.

By applying cube root transformation, the National Risk Index controls for this characteristic and provides scores with greater differentiation and usefulness. If the minimum value of the EAL is a nonzero number before normalization, an artificial minimum is set to 99% of that value so that communities expected to experience loss do not receive a 0 EAL score.

Federal Emergency Management Agency
Each region faces unique hazard combinations, which are useful in a new era of more likely cascading hazard impacts (i.e., drought-enhanced wildfires produce mountain-side burn scars, which often enhance debris flows from flooding).

As noted in National Climate Assessment (2017) "the physical and socioeconomic impacts of compound extreme events (such as simultaneous heat and drought, wildfires associated with hot and dry conditions, or flooding associated with high precipitation on top of snow or waterlogged ground) can be greater than the sum of the parts."

This map provides county risk scores for combined severe storm events (i.e., tornado, hail, high wind damage) reflecting a county’s annualized hazard frequency; its potential hazard cost related to building value, crop value and population exposure; and its social vulnerability and resilience to recover from hazard impacts based on dozens of socioeconomic variables.

The map highlights that Dallas County, Texas has a very high score for severe storm risk due to its historic frequency of being impacted by these events in addition to having a large urban population and valuable exposure, which further increases the damage potential for severe storm impacts and costs.

Dallas County’s SOVI score (42.85) is also near the Texas average but is higher than the U.S. county-average score (38.35). A higher SOVI score indicates lower resilience.
Harris County, Texas - home to Houston as America's 4th most populous city - has a very high overall risk from damaging urban flood events.

The Houston area has been impacted by several 100-year urban flood events since the year 2015, in addition to Hurricane Harvey in 2017.

Harris County’s SOVI score (38.90) is below (more resilient) than the Texas county SOVI score average.

The new mapping interface also provides an interactive control slider that allows users to compare county hazard risks with county-level vulnerability “to prepare for, respond to, and recover from hazards,” via the Social Vulnerability Index (SoVI).

The SoVI is a widely referenced data set that is “a location-specific assessment of social vulnerability that utilizes 29 socioeconomic variables deemed to contribute to a community’s reduced ability to prepare for, respond to, and recover from hazards.”

The darker colors represent counties with higher scores of socioeconomic vulnerability. The dataset was developed by and is referenced to the University of South Carolina’s Hazards and Vulnerability Research Institute (HVRI).
Harris County, Texas - home to Houston as America’s 4th most populous city - has a very high overall risk from damaging urban flood events, severe storm and hurricane impacts.

The Houston area has been impacted by several 100-year urban flood events since the year 2015, in addition to Hurricane Harvey in 2017.

Houston’s large population and valuable infrastructure were also damaged from hazards such as the mid-February 2021 winter storm / cold wave, which crippled the regional power grid causing widespread damage and disruption.

From 1980–2021, the U.S. South, Central and Southeast regions experienced a higher frequency from billion-dollar disaster events. CA, NY, NJ, PR and V.I. as well.

Historically, the U.S. South, Central & Southeast regions have experienced the highest frequency and cost from billion-dollar disaster events (see state / event maps on billion-dollar disasters).

The same U.S. regions are projected to have the most negative future impacts across several socioeconomic metrics.

→ Reflects the severity & vulnerability of weather & climate events impacting different regions.
From 1980–2021, the U.S. South, Central and Southeast regions experienced a higher cost from billion-dollar disaster events. CA, NY, NJ, PR and V.I. as well.

Historically, the U.S. South, Central & Southeast regions have experienced the highest frequency and cost from billion-dollar disaster events (see state / event maps on billion-dollar disasters).

The same U.S. regions are projected to have the most negative future impacts across several socioeconomic metrics.

→ Reflects the severity & vulnerability of weather & climate events impacting different regions.

County-level median total direct economic damage across all sectors as a % of county GDP for the combined variables (A)-(H) using a future (2080-2099) high-emission scenario (RCP 8.5). This represents:

(A) Percent change in yields, area-weighted average for corn, wheat, soybeans, and cotton.
(B) Changes in all cause mortality rates, across all age groups. (C) Change in electricity demand. (D) Change in labor supply of full-time equivalent workers for low risk jobs where workers are minimally exposed to outdoor temperature. (E) Same as (D) except for high risk jobs where workers are heavily exposed to outdoor temperatures. (F) Change in damages from coastal storms. (G) Changes in violent crime rates. (H) Changes in property crime rates. Source: "Estimating economic damage from climate change in the United States" (Hsiang et al., 2017)
Spatial distributions of projected damages. County-level median values for average 2080 to 2099 RCP8.5 impacts. Impacts are changes relative to counterfactual "no additional climate change" trajectories. County socio-economic risk potential (RCP8.5 projections).

- Energy expenditures (% change)
- Agricultural yield (% change)
- Coastal damage (% county GDP)
- Total direct damage (% county GDP)
- High-risk labor (% change)
- Mortality (change in deaths per 100k)

For interactive data, charts, mapping, and disaster summaries (1980-2021): www.ncdc.noaa.gov/billions

New county hazard risk mapping: www.ncdc.noaa.gov/billions/mapping

For more detail on disasters, county data, methodology, and uncertainty, see:

3.3.4 Climate Panel Discussion (Session 1C-4)

Moderator: Elena Yegorova, NRC/RES/DRA/FXHAB
David Novak, National Oceanic and Atmospheric Administration, National Weather Service
Judah Cohen, Atmospheric and Environmental Research
Adam Smith, National Oceanic and Atmospheric Administration, National Centers for Environmental Information

Question:

Adam, you mentioned that the compound extreme events can be greater than the sum of the parts, so which regions of the country are more prone to the compound extreme events and what kind of events?

Adam Smith:

A few regions of the country have really popped out in recent years and have been really persistent. One would be the Gulf of Mexico, particularly Louisiana, with tropical cyclones, heavy rainfall, flood events, severe convective storm events. Those regions and the economies have really been bombarded by so many events and that lengthens the recovery time. It makes it more difficult to regain the pre-disaster impact status of how efficient the economies and livelihoods were. Certainly that region, but also, as I mentioned in the talk, the Western States, particularly Washington, Oregon, California. There you have got this persistent drought that then links into wildfire seasons. One thing I did not mention during the talk is just the persistent and damaging effects of wildfire smoke as weeks and months pass. That impacts outdoor economies or sensitive health groups. So, you get these chain reactions of hazards and impacts. Those would be the two regions I think that are most profoundly impacted so far in recent analysis.

Question:

Adam, you discussed that the south central and southeast US are experiencing the higher costs of the billion dollar weather events. The paper that you cited is referring to the business as usual scenario - the high emissions scenario. So, should we expect this trend to continue in the changing climate?

Adam Smith:

We also want to put the RCP 4.5 in the mapping. We are working with the authors to get that down scaled to the county level like the RCP 8.5, but what you have seen the data is still the same directional trends in regard to the socioeconomic outcomes, positive or negative, across the same regions. It is just of course more profound at the high emission scenario and it is important to consider. We do not know how policy or technology is going to change over the coming decades, but these are projections that happened to really align surprisingly close to the weather and climate extremes over the last four and a half decades. So I thought that was worth mentioning.

Question:
Judah, in the beginning you showed a figure concerning confidence and attribution of extreme weather to anthropogenic climate change. I really like that figure. It really stresses the importance of not attributing a single extreme weather event to climate change. Can you comment on that?

Judah Cohen:

There is a group that tries to attribute climate change every single weather event. There are people out there who do that. But I do not. The paper that my talk was based on was not trying to argue that winters are getting more severe or were in this cooling trend. I am really trying to argue is that kind of the orthodoxy that global warming only leads to warmer temperatures and less snowfall is an oversimplification of the impact of climate change on our weather in the United States. I try to argue that there is a thermodynamic influence: increasing greenhouse gases lead to warmer temperatures, warmer oceans especially. So there is a huge heat reservoir that can be released in the winter that leads to warmer weather and, if it is warmer, there is less chance of snow. But there's also this dynamic influence that we as scientists did not consider 10-20 years ago. the pattern of climate change is not universal or homogeneous, but it is heterogeneous and can impact the circulation of the atmosphere. My talk really focused on the polar vortex that can lead to more severe winter weather. As I showed my talk, these stretched polar vortexes, where they are elongated or take some of this oval shape, are occurring more frequently. And as I showed with the clustering analysis, that extreme cold is more likely, is more probable, when you have one of these stretch polar vortex events and those are increasing. The probability of getting one of these extreme winter weather events associated with these stretch polar vortex is increasing. Again, I'm not trying to argue, that's the only factor or influence to consider. But it's something that was, I believe, ignored or neglected or just not known about how it should be taken into account of in a more complete picture of how climate change can influence our weather. I do not attribute probabilities like saying the Texas freeze was 50% more likely because of climate change or anything like that. But I do think that because these stretched polar vortex events occur more frequently now than they used to, that it does increase the odds of these severe winter weather events.

Question:

Judah, have you looked at what will happen when all this sea ice melts in the Arctic?

Judah Cohen:

That’s an interesting question. The juxtaposition of the anomalies is important. You want to create a wave, that means you cannot have the temperature change equal everywhere. If all the ice melted and the warming became almost like a donut, centered over the North Pole and pretty much the same magnitude, pretty equal cross the entire Arctic Ocean, then I think everything I described in my talk would become irrelevant pretty much. Because of all that ice melting you would have this constant warming across the whole Arctic Ocean like a donut, you would have no wave. Then again, my whole argument hinges on amplifying waves. The mechanism I am describing is really sensitive to sea ice melting in favorable or preferred regions and not throughout the entire Arctic Ocean. I am trying to argue winters are not warming as fast because we are getting this balancing or offsetting influence from the polar vortex. If all the sea ice melted, and that went away, there could be a real acceleration of winter warming.

Adam Smith:
There does not appear to be relief on the way as a nation, in terms of protecting the infrastructure and such. This is going to become more important as we go forward, and you cannot take your ball off the winter weather hazard either. Maybe there was hope that maybe a few of these different hazard extremes would fall off [with climate change], but these extreme weather events and the increased exposure that Adam was talking about have to be taken seriously. On the front lines of the National Weather Service we are working on these extreme events every couple of weeks, it seems like. This is just something we are going to have to work into the national infrastructure.

Question:

David you mentioned that extreme weather forecasts are uncertain. What is the low hanging fruit for reducing this uncertainty?

David Novak:

There was recently a study, commissioned by Congress, called the Priorities for Weather Research Study. It was a one-year study looking at the next 10 years. The unsatisfying answer is there is no silver bullet. There is no one thing that is going to make it all better. That report mentions data assimilation, I think, 251 times. That is taking observations and putting them in a format that numerical weather prediction models can see and use well so that you have a better understanding of the initial state. And then the models can project that out into the future. So, getting the observations right and integrating that into the models is very important, but it does not stop there. Post processing, taking into account the different biases that the models have is also super important. Human forecasters understanding the different biases of the models. Human forecasters working with public safety officials to understand their critical thresholds and providing information in a way that's actionable is also important. So, all along this value chain, we need to make improvements to really prepare for extreme weather events.
3.4 **Day 2: Session 2A – Precipitation**

Session Chair: Kevin Quinlan, NRC/NRR

3.4.1 **Presentation 2A-1: Uncertainty in Precipitation Frequency Estimates Under Current and Future Climate**

Authors: Azin Al Kajbaf, Michelle Bensi, Kaye Brubaker, University of Maryland, Department of Civil and Environmental Engineering

Speaker: Azin Al Kajbaf

3.4.1.1 **Abstract**

Over the past decades, the intensity of precipitation events in the Northeast of the United States has shown an increasing trend. As climate change continues to affect the characteristics and frequency of rainfall events, it is important to account for these changes in the Intensity/Depth Duration Frequency (IDF/DDF) curves used in engineering design and planning. This study develops model-based precipitation frequency estimates under current and projected future climate in Maryland. Specifically, IDF/DDF curves for selected durations from 15 minutes to 48 hours are developed from statistical analyses of synthetic data from the North American Regional Climate Change Assessment Program (NARCCAP) suite of models. In the NARCCAP suite, 6 regional climate models covering most of North America at a spatial resolution of 50 km are driven by different atmosphere-ocean general circulation models, for a total of 12 climate simulations, both historic and future. NARCCAP synthetic time-series are available at a 3-hour temporal resolution. Machine learning models are used to temporally downscale the NARCCAP time-series to durations as short as 15 minutes. Using the developed time-series, suites of IDF/DDF curves are developed that account for a range of modeling decisions associated with climate model selection and other statistical assumptions. The suites are then used to produce averaged IDF/DDF curves. Graphical tools are developed to comparatively assess the uncertainty associated with climate model selection and the other modeling decisions used to develop IDF/DDF curves. A particular focus is placed on understanding differences in drivers of uncertainty under current and future climate conditions.
Uncertainty in Precipitation Frequency Estimates Under Current and Future Climate

Azin Al Kajbaf, Michelle Bensi, Kaye Brubaker

University of Maryland
Department of Civil and Environmental Engineering

Introduction

Motivation

- Increase in extreme precipitation due to climate change
- Need for IDF curves accounting for potential changes due to climate change
- Process of development of IDF curves associated with multiple uncertainty sources

Observed change in total annual precipitation (1901-2010).
Source: globalchange.gov
This study explores sources of uncertainty associated with the development of IDF curves considering climate change conditions under two main categories:

- Uncertainty arising from application of machine learning for temporal downscaling of climate model projections
- Uncertainty arising from choice of climate models and statistical modeling choices made in development of IDF curves

Gaps in application of ML in temporal downscaling:

- ML models mostly used for spatial downscaling of climate projections
- Mostly used ANN
- Few compared multiple ML methods
- Performance of ML methods not investigated in detail

Gaps in uncertainty assessment due to climate models and modeling choice:

- Most studies addressed uncertainty due to climate models and not statistical modeling choices
- Few studies compared uncertainty due to climate model and statistical modeling choices
Introduction

Application of Machine Learning for Temporal Downscaling of Climate Model Projections

Assessment of Uncertainty in Precipitation Frequency Under Current and Future Climate

Study Framework

NOAA = National Oceanic and Atmospheric Administration
NCEI = National Centers for Environmental Information
RT = Randomized Trees
UCAR = University Corporation for Atmospheric Research
NARCCAP = North American Regional Climate Change Assessment Program
Application of ML for Temporal Downscaling of Climate Model Projections

\[P_t = f(P_{t+1}, P_d, T_{\text{max}} d, T_{\text{min}} d) \]

<table>
<thead>
<tr>
<th>Input parameters</th>
<th>Target precipitation duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{t+1}, P_d, T_{\text{max}} d, T_{\text{min}} d)</td>
<td>(P_{2h})</td>
</tr>
<tr>
<td>(P_{t+1}, P_d, T_{\text{max}} d, T_{\text{min}} d)</td>
<td>(P_{1h})</td>
</tr>
<tr>
<td>(P_{t+1}, P_d, T_{\text{max}} d, T_{\text{min}} d)</td>
<td>(P_{30 \text{ min}})</td>
</tr>
<tr>
<td>(P_{t+1}, P_d, T_{\text{max}} d, T_{\text{min}} d)</td>
<td>(P_{45 \text{ min}})</td>
</tr>
</tbody>
</table>

\(P_t \) = Downscaled target precipitation
\(T_{\text{max}} d \) = Maximum daily temperature
\(P_{t+1} \) = Longer duration precipitation
\(T_{\text{min}} d \) = Minimum daily temperature
\(P_d \) = Daily precipitation

Study Framework
Application of ML for Temporal Downscaling of Climate Model Projections

Performance metrics of MAE, RMSE, R and R^2 at different precipitation truncation levels

$x_{\text{norm}} = \frac{(x_{\text{max}} - x_i)}{(x_{\text{max}} - x_{\text{min}})}$; $x = \text{MAE}, \text{RMSE}$

$x_{\text{norm}} = \frac{(x_{\text{min}} - x_i)}{(x_{\text{min}} - x_{\text{max}})}$; $x = R, R^2$

$R_I = \frac{\text{MAE}_{\text{norm}} + \text{RMSE}_{\text{norm}} + R_{\text{norm}} + R^2_{\text{norm}}}{4}$

MAE = Mean Absolute Error
RMSE = Root Mean Squared Error
R = Correlation Coefficient
R^2 = Coefficient of Determination
RI = Reference Index
Application of ML for Temporal Downscaling of Climate Model Projections

Response Functions

\[P_i = f(P_{i+1}, P_d, T_{\text{max}d}, T_{\text{min}d}) \]

- \(P_i \): Downscaled target precipitation
- \(T_{\text{max}d} \): Maximum daily temperature
- \(P_d \): Longer duration precipitation
- \(T_{\text{min}d} \): Minimum daily temperature
- \(P_1 \): Daily precipitation
Introduction

Application of Machine Learning for Temporal Downscaling of Climate Model Projections

Assessment of Uncertainty in Precipitation Frequency Under Current and Future Climate
Assessment of Uncertainty in Precipitation Frequency Under Current and Future Climate

12 Climate x 2 Downscaling x 2 Analysis x 6 Distributions x 3 Parameter = 432 Cases

Models Methods Types Estimation Methods

Averaged IDF curves in the current (left) and future (right) periods considering all eligible branches of logictrees for grid point 7

Future Period (2041-2070)
Assessment of Uncertainty in Precipitation Frequency Under Current and Future Climate

Tornado Plots

Future Period (2041-2070)

CM= Climate Model, DM=Downscaling Method, Dist=Distribution, PEM=Parameter Estimation Method
Conclusions

1. Aggregated error metrics can be modified to provide a more realistic evaluation of the performance of ML models through focusing on important events.

2. Response functions provide valuable insight regarding the behavior of ML models in predicting target response over a wide range of input variables.

3. The choice of the climate model is the dominant contributor to the uncertainty under both current and future climate conditions.

4. The order of importance of the other sources of uncertainty, including distribution, PEM, temporal downscaling method, and analysis type, differs from one duration and return period to the others. The order of the source of uncertainty also differs from the current to the future period.

Acknowledgement

The authors gratefully acknowledge the support of the Maryland Department of Transportation State Highway Administration (MDOT SHA) under Statewide Planning and Research (SPR) Task Number SHA/UM/5-36 and the Maryland Water Resources Research Center (US Geological Survey Award #G21AP10629). The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the funding agency.
Thank you
3.4.2 Presentation 2A-2 (KEYNOTE): Gridded Surface Weather Data with Uncertainty Quantification - Daymet V4

Authors: Peter Thornton, Oak Ridge National Laboratory

Speaker: Peter Thornton

3.4.2.1 Abstract

Observation-based estimates of surface weather are necessary inputs for many environmental studies and assessments. When uncertainties associated with surface weather estimates can be quantified, researchers and applications specialists can make informed decisions about the utility and appropriateness of data products to meet project requirements. The purpose of the Daymet gridded daily surface weather products is to provide necessary inputs to a broad range of environmental and ecological applications, while also providing the best possible quantification of uncertainty in those products. This presentation will briefly review the history of Daymet development, and will explore the improvements in algorithm and data processing that led to the recently released Daymet v4. The cross-validation metrics for precipitation and temperature will be described, with a focus on statistics for the spatial and temporal distribution of precipitation frequency and event size distributions. The relationship between surface weather and hydrological processes relevant to flooding hazards will also be discussed.

3.4.2.2 Presentation (ADAMS Accession No. ML22061A126)
Overview

- Filling a need for gridded surface weather data
- Following the observations: interpolation and extrapolation
- Truth in advertising: Cross-validation statistics
- Improvements in Daymet v4
- Discussion: applications in hydrology and flood hazard assessment

Filling a need for gridded surface weather data

- Developed as driver for gridded land ecosystem model
- Daily temperature, precipitation, radiation and humidity
- Free online access to the entire database
- Multiple data access methods
- ~6000 unique users and ~30 million data deliveries per year
daymet.ornl.gov

- Bulk data access for regional analysis
- Single point data access in CSV file for site-level analysis
- Restful API for automated access to large data subsets
- Deep collection of tutorials, webinars, and user-developed analysis tools

Following the observations: Interpolation and extrapolation

- Use the data as-observed, but try to eliminate instrumentation biases
- Input from multiple station networks, relying heavily on GHCNd (Menne et al. 2012)
- Objective assessment of vertical and horizontal gradients in temperature and precipitation (3d regression)
- Retain precipitation frequency-intensity distribution
- Retain spatial and temporal structure of extremes
Station networks highly variable in space and time

Generous inclusion of stations with missing data
Using the data as-observed reveals real patterns

- Population
- Average Annual Max Temperature

Daymet methods preserve climatology and events: Precipitation examples…
Daymet methods preserve extremes

Truth in advertising: cross-validation statistics

- Available online for every observed station-day
- Not every dataset is useful for every application: Users encouraged to assess suitability for their specific application
- Provides an objective basis for algorithm improvements
- Can be useful in assessing and correcting instrumentation biases
Spatial mean cross-validation data for temperature and precipitation

Temporal mean cross-validation statistics for Tmax
Temporal mean cross-validation statistics for precipitation

Improvements in Daymet v4

- Identify and correct time-of-observation biases
 - Affected maximum temperature and precipitation
- Identify and correct SNOTEL temperature sensor bias
- Removed some previous constraints on extremes
Correcting time-of-observation bias

<table>
<thead>
<tr>
<th>Year</th>
<th>Maximum Temperature°</th>
<th>Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Station Days</td>
<td>% TOO before noon</td>
</tr>
<tr>
<td>1988</td>
<td>1,729,277</td>
<td>49.53</td>
</tr>
<tr>
<td>1989</td>
<td>1,742,252</td>
<td>50.46</td>
</tr>
<tr>
<td>1990</td>
<td>1,746,314</td>
<td>51.24</td>
</tr>
<tr>
<td>2015</td>
<td>1,693,990</td>
<td>74.90</td>
</tr>
<tr>
<td>2016</td>
<td>1,676,722</td>
<td>74.90</td>
</tr>
<tr>
<td>2017</td>
<td>1,635,940</td>
<td>74.90</td>
</tr>
</tbody>
</table>

Artefact in V3 cross-validation errors for maximum temperature suggested a problem with the input station data.

Improved precipitation timing, with a compromise...

Best possible comparison with radar-based Stage IV QPE.

Time shift required for best fit to Stage IV QPE.
The compromise:

Splitting precipitation across days is better for daily error metric, but ruins the event frequency and raises bias.

<table>
<thead>
<tr>
<th>Year</th>
<th>Precipitation (Prcp): Total daily value shift</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%change mean dayMAE</td>
</tr>
<tr>
<td>1988</td>
<td>2.8483</td>
</tr>
<tr>
<td>1989</td>
<td>3.2680</td>
</tr>
<tr>
<td>1990</td>
<td>3.9852</td>
</tr>
<tr>
<td>2015</td>
<td>-8.3990</td>
</tr>
<tr>
<td>2016</td>
<td>-7.9365</td>
</tr>
<tr>
<td>2017</td>
<td>-9.2356</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Precipitation (Prcp): Fractional daily value shift</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%change mean dayMAE</td>
</tr>
<tr>
<td>1988</td>
<td>-7.6780</td>
</tr>
<tr>
<td>1989</td>
<td>-8.4567</td>
</tr>
<tr>
<td>1990</td>
<td>-8.0391</td>
</tr>
<tr>
<td>2015</td>
<td>-19.0945</td>
</tr>
<tr>
<td>2016</td>
<td>-17.8744</td>
</tr>
<tr>
<td>2017</td>
<td>-19.2281</td>
</tr>
</tbody>
</table>

Solution, keep observed daily precipitation intact, but shift by a whole day.

End result is improved correlation with Stage IV QPE.
Corrected bias related to change in temperature sensors at SNOTEL sites

- Used cross-validation framework to identify bias and design a correction
- Carried out a synthetic bias analysis to verify approach

Example data and applications

- Continental-scale data resource
- Downscaling climate model output
- Hydrologic modeling
Example continental-scale outputs: temperature

Precipitation and humidity...
Support climate model downscaling

Precipitation – Original GCM

Precipitation – After Downscaling

Temperature – Original GCM

Temperature – After Downscaling

Support hydrologic modeling

- Serve as the driving meteorologic forcing to support hydrologic modeling.
- Can be used to calibrate hydrologic models, and eventually produce historic reanalysis hydrology and streamflow.
3.4.3 Presentation 2A-3: Utility of Weather Types to Improve Nonstationary Frequency Analysis of Extreme Precipitation

Authors: Giuseppe Mascaro*, Arizona State University

Speaker: Giuseppe Mascaro

3.4.3.1 Abstract

Theoretical arguments suggest that extreme precipitation (EP) will increase in a warmer climate. Climate projections and, in part, observational studies support these arguments, indicating the need to incorporate nonstationarity in EP frequency analysis. Here, a statistical framework is presented that addresses this need through changes in weather type (WT) occurrence. The framework is based on mixed populations of peak-over-threshold (POT) series of EP associated with the dominant WTs in a given region. The Poisson distribution with time-varying parameters is used to model the WT occurrence, while the Generalized Pareto distribution with constant parameters is adopted to model POT series of EP. The value of the proposed method is demonstrated by focusing on the U.S. Midwest, where it has been recently showed that the occurrence of a dominant WT related to heavy precipitation has been increasing since 1949. It is first showed that the statistical uncertainty of the nonstationary framework is comparable to a stationary approach based on the Generalized Extreme Value distribution fitted to annual precipitation maxima, often used in current engineering design. Next, historical and future climate simulations of a set of general circulation models from CMIP6 are used to quantify projected changes in EP frequency in the region, along with the associated uncertainty.
Utility of Weather Types to Improve Nonstationary Frequency Analysis of Extreme Precipitation

Giuseppe Mascaro, Arizona State University

gmascaro@asu.edu

Session 1A: Precipitation
7th Annual NRC Probabilistic Flood Hazard Assessment (PFHA) Research Workshop

Outline

1. Motivation
2. Nonstationary statistical model of extreme precipitation (EP)
 based on weather types
3. Application in East North Central U.S.
 a. past climate (reanalysis)
 b. future climate (climate models)
4. Conclusions and future work
Outline

1. Motivation
2. Nonstationary statistical model of extreme precipitation (EP) based on weather types
3. Application in East North Central U.S.
 a. past climate (reanalysis)
 b. future climate (climate models)
4. Conclusions and future work

Motivation

Extreme precipitation (EP) is one of the most impactful natural hazards

- Primary input of floods and flash floods — In U.S.A., $137 billion damages and 2640 fatalities from 1990 to 2019 (Smith, 2020)
- Impact on public health by degrading water quality (Gershunov et al., 2018) and increasing outbreaks of waterborne diseases (Cann et al., 2013)
- Reduced crop production (Li et al., 2019)

Characterizing EP frequency is key to mitigate these impacts and design infrastructure
Motivation

Theoretical arguments suggest that EP frequency and magnitude will change in a future climate.

Clausius-Clapeyron (CC) scaling = 7% °C⁻¹

1-hr EP in the Netherlands

Conceptual diagram from Westra et al. (2014)

Lenderink et al. (2017)

Motivation

Observed increases in global temperature would suggest intensification of observed EP

(a) Annual Trend (% per decade), 1949–2016

- Increasing frequency of EP in the Midwest and north east
- Constant or decreasing trends in the west
- Link with trends in precipitable water

Kunkel et al. (2020)
Motivation

GCMs project increases in EP, but uncertainties at local scales are still high, even when using statistical or dynamical downscaling

Change factor $_{ARI} = \frac{P_{FUT,ARI}}{P_{HIST,ARI}}$

The direct use of P outputs from GCMs is challenging.
How can we more effectively use information from GCMs to characterize EP?

Outline

1. Motivation
2. Nonstationary statistical model of extreme precipitation (EP) based on weather types
3. Application in East North Central U.S.
 a. past climate (reanalysis)
 b. future climate (climate models)
4. Conclusions and future work
Utility of General Circulation Models (GCMs)

GCMs have been shown able to adequately reproduce occurrence of weather types (WTs) or dominant large-scale meteorological patterns controlling weather.

Nonstationary frequency analysis of EP based on WTs

Mixed model of peak-over-threshold (POT) distributions with time-varying frequency

\[F(x) = \sum_{j=1}^{M} p_j \cdot F_j(x | \vec{\theta_j}) \]

- \(M \): number of generating mechanisms (or WTs)
- \(p_j = \frac{n_j}{\sum_{k=1}^{M} n_k} \)
 \(n_j \sim \text{Poisson}(\lambda_j(t)) \)

\(\vec{\theta_j} = [\alpha_{0,j}, \xi_j, \zeta_{0,j}] \): parameters of generalized Pareto distribution (GPD) reparameterized for \(u = 0 \) (Deidda, 2010) - Constant in time

Zhang and Villarini (2019; 2020)
Outline

1. Motivation
2. Nonstationary statistical model of extreme precipitation (EP) based on weather types
3. Application in East North Central U.S.
 a. past climate (reanalysis)
 b. future climate (climate models)
4. Conclusions and future work

Application in East North Central U.S.

We computed the 5 WTs of Zhang and Villarini (2019) from 1949-2015

- K-means cluster analysis on 500 hPa Geopotential height from NCEP-NCAR
- GHNC daily P records
- EP = POT series above 95th quantile
- 1st and 2nd dominant WT in EP
Application in East North Central U.S.

We applied the mixed model to 3 populations

\[F(x | \theta) = \sum_{j=1}^{3} p_j \cdot F_j(x | \theta_j) \]

\[p_j = \frac{n_j}{\sum_{k=1}^{3} n_k} \quad n_j \sim \text{Poisson}(\lambda_j(t)) \]

<table>
<thead>
<tr>
<th>Gage ID USC00215638</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT1</td>
</tr>
<tr>
<td>WT2</td>
</tr>
<tr>
<td>WT3</td>
</tr>
<tr>
<td>Others</td>
</tr>
</tbody>
</table>

\[\lambda_j(t) = \exp(a + bt) \]

\[a \quad b \]

| WT1 | -4.9 | 0.0047 |
| WT3 | 24.5 | -0.01 |

Statistical simulations to compute return levels

1. For each year, \(t = 1949, ..., 2015 \)
 - WT1 → \(n_1 \sim \text{Poisson}(\lambda_1(t)) \)
 - WT3 → \(n_2 \sim \text{Poisson}(\lambda_2(t)) \)
 - Others → \(n_3 = 365 - n_1 - n_2 \)

2. Randomly draw \(n_1, n_2 \), and \(n_3 \) variates from respective GPDs (these include zero \(P \))

3. Repeat for 1-2 all years → time series of annual \(P \) maxima from 1949 to 2015

4. Repeat 1-3 for 10,000 times → 10,000 time series of annual \(P \) maxima

5. Compute return levels, \(EPr \), from empirical distribution of annual \(P \) maxima, along with associated sampling uncertainty
Comparison with models based on annual maxima

We compared return levels of mixed model and Generalized Extreme Value (GEV) distribution

![Graph showing return levels and metrics for Gage ID USC00215638 and Metrics for all 29 gages in ENC](image)

Similar performance with the GEV used in current design standards

Application of the mixed model in future climate

We applied the mixed model with ScenarioMIP simulations of EC-Earth3 for SSP8-8.5

1. We quantified temporal changes in WTs' occurrences and applied the mixed model

![Graph showing annual occurrences of WT1 and WT3](image)

- We have applied the mixed model with EC-Earth3-derived:
 \[\lambda(t) = \exp(a + bt) \]
- Constant GPD parameters
- We have tested other two GCMs with similar results
Application of the mixed model in future climate

We applied the mixed model with ScenarioMIP simulations of EC-Earth3 for SSP8-8.5

2. We computed metrics accounting for nonstationary frequencies of EP
 - We assumed an infrastructure is built in 2022 with a design life \(m = 50 \) years \(\rightarrow T_{2022}, EP_{2022} \)
 - We calculated expected waiting time (EWT) and risk of failure \(\rightarrow \) nonstationary geometric distribution

\[
EWT = 1 + \sum_{x=1}^{n} \prod_{r=1}^{x} (1 - p_t)
\]

Risk = \(1 + \prod_{r=1}^{n} (1 - p_t) \)

(Reproduced from Salas et al. (2018))

Outline

1. Motivation
2. Nonstationary statistical model of extreme precipitation (EP) based on weather types
3. Application in East North Central U.S.
 a. past climate (reanalysis)
 b. future climate (climate models)
4. Conclusions and future work
Conclusions and future work

- We have developed a nonstationary statistical model of EP based on mixed populations:
 - Populations identified by WTs, whose occurrence varies with time and is adequately simulated by GCMs
 - GPD with constant parameters modeling P in each population
- Statistical simulations are needed to apply the model. Performances and uncertainty are similar to current approaches based on annual maxima and the GEV distribution
- Preliminary model applications with future climate projections of CMIP6 GCMs suggest increasing intensity of EP in East North Central U.S.
- Future work: thoroughly test the approach in other regions and include a large ensemble of GCMs to characterize the uncertainty of future climate projections.

Thanks!
For questions: gmascaro@asu.edu
3.4.4 Presentation 2A-4: Characteristics and Causes of Extreme Snowmelt over the Conterminous United States

Author: Joshua Welty*, Xubin Zeng1, 1U.S. Navy Fleet Numerical Meteorology and Oceanography Center, 2University of Arizona

Speaker: Joshua Welty

3.4.4.1 Abstract

Snowmelt is an essential process for the health and sustenance of numerous communities and ecosystems across the globe, though it also presents potential hazards when ablation processes are exceedingly rapid. Using 4-km daily snow water equivalent, temperature, and precipitation data for three decades (1988–2017), here we provide a broad characterization of extreme snowmelt episodes over the conterminous United States in terms of magnitude, timing, and coincident synoptic weather patterns. Larger-magnitude extreme snowmelt events usually coincide with minimal precipitation and elevated temperatures. However, certain regions, particularly mountainous regions and the northeastern United States, exhibit greater likelihood of extreme snowmelt events during pronounced rain-on-snow events. During snowmelt extremes, snowmelt rate often exceeds precipitation in many regions. Meteorological patterns and associated water vapor transport most directly connected to extreme events over different regions are classified via a machine-learning technique. Over the 30-yr study period, there is a weakly increasing trend in the frequency of extremes, though this does not necessarily signify an increase in snowmelt magnitudes.
Characteristics and Causes of Extreme Snowmelt over the Conterminous US

Josh Welty & Xubin Zeng
16 February 2022
7th Annual NRC PFHA Workshop
Session 2A: Precipitation
Why is snowpack important?

- Reflects potentially long-term changes in temperature and/or precipitation
- Represent ‘water towers’ for regions like the drought-prone western CONUS
- Conversely, can prove hazardous when melting process is rapid

What can be done with snowpack data?

- Spatial representation / heterogeneity of snowpack over the US
- Long-term trends in snowpack
- Evaluation of model representation of SWE relationship w.r.t. temperature and precipitation
- Post-processing of near-surface variables for soil moisture and drought monitoring
- Characterization of ablation in terms of magnitude, timing, and synoptic weather conditions
Maximum snowmelt magnitude

- Delta SWE: largest 2-day snow loss for the 30-year period at each pixel
- Largest over high elevations in the western CONUS and portions of eastern CONUS

Above-freezing temperatures are most pervasive
Limited precipitation is associated with snowmelt in most regions.

Timing usually during mid- to late spring, though more southerly regions and windward sides of mountains exhibit earlier timing.
Elevation impacts

- As expected, highest magnitude events tend to occur at higher elevations over western CONUS.

- Distribution is much more heterogeneous over variable topography
Trends

- There is a positive trend (p=0.25) in the occurrence of snowmelt extremes over the CONUS throughout the period, particularly during the month of May (p=0.03). Also, a positive trend in rain-on-snow occurrence (p=0.19).
- Though there is a weakly positive trend in frequency, no notable pattern for magnitude.
How do snowmelt extremes vary by region?

- Four high-impact flooding events over different regions
- In three out of the four case studies (exception being Northwest), dSWE>P contribution to runoff
- In some cases (e.g. Red River, burgundy dots in top, figure ‘c’ in bottom), dSWE>>P
Weather

- Used self-organizing maps to produce nine dominant patterns associated with extreme snowmelt over the CONUS
- These maps served as template to classify regional snowmelt extremes

Part of the utility of this approach is that there are more than one "meaningful" pattern associated with snowmelt over a given region (e.g. maps 'c' and 'e' for the Northeast)
Takeaways

- Large variation in the meteorological conditions associated with regional events
 - Over the western CONUS, anomalous high pressure and upstream AR activity
 - Over the eastern CONUS, frontal passage, Gulf warm air advection, and precipitation
- In many cases, SWE loss exceeds the precipitation contribution to runoff
- There is a weakly increasing trend in the frequency of extreme snowmelt events over the US
Acknowledgments/References

- UA SWE data are available from the National Snow and Ice Data Center (https://nsidc.org/data/nsidc-0719/versions/1). PRISM data can be downloaded from the PRISM Climate Group (https://prism.oregonstate.edu/). MERRA-2 data are available from the Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/).

3.4.5 Presentation 2A-5: LIP PFHA Pilot Study

Authors: Rajiv Prasad*, Arun Veeramany, Rajesh Singh, Pacific Northwest National Laboratory

Speaker: Rajiv Prasad

3.4.5.1 Abstract

As part of the U.S. Nuclear Regulatory Commission’s (NRC’s) Probabilistic Flood Hazard Assessment (PFHA) Research Program, the Pacific Northwest National Laboratory (PNNL) is currently performing a pilot study for probabilistic assessment of local intense precipitation (LIP) flood hazards at nuclear power plants (NPPs). The project includes (1) reviewing existing software packages used to perform LIP flood hazard assessments, (2) reviewing aleatory variability and epistemic uncertainty that influence LIP flood event modeling, (3) performing a LIP probabilistic flood hazard assessment (PFHA) for a hypothetical NPP site, and (4) transferring knowledge to the NRC.

PNNL has completed Tasks 1 and 2 of this project. The findings from these tasks were presented in previous PFHA Workshops. In Task 3, a PFHA was performed for a NPP site. The LIP flood model developed for the post-Fukushima flood hazard reevaluation was leveraged for this study. The LIP flood model was implemented using the FLO-2D™ flood simulation software package. The model was first subjected to a sensitivity analysis to determine the major sources of uncertainty in model predictions. The flood hazards were found to be sensitive to two sources: (1) input precipitation (aleatory variability) and (2) surface roughness (epistemic uncertainty). The flood hazards did not show significant variation with respect to initial soil moisture content, saturated hydraulic conductivity, and presence of storm drains.

LIP PFHA simulations are being performed using a stratified sampling approach. The input precipitation is obtained from the National Oceanic and Atmospheric Administration (NOAA) precipitation frequency data server. Point precipitation frequency estimates for annual maximum precipitation at the site were obtained and extrapolated to an annual exceedance probability of 1×10^-6. Storm temporal distributions from NOAA Atlas 14 were used to construct storms of 6, 12, 24, and 96-h durations. The relative frequencies of temporal distribution types (peak intensity in various quartiles) were preserved. The NPP site’s spatial distribution of surface roughness (represented by Manning’s surface roughness coefficient) were preserved. The epistemic uncertainty in surface roughness was represented by a uniform distribution of multipliers applied to the original spatial distribution.

The model runs for the PFHA simulations are being performed on PNNL’s high-performance supercomputer. To this end, the FLO-2D™ software was tested and modified to run under a Microsoft Windows™ emulator on the Linux system. A set of Python scripts are used to sample input parameters, populate input files, perform flood simulations, collect predicted results, and estimate the flood hazard curves. The total probability theorem is applied to estimate the flood hazard curves.
3.4.5.2 Presentation (ADAMS Accession No. ML22061A123)

Local Intense Precipitation PFHA Pilot Study

Rajiv Prasad, Arun Veeramany, and Rajesh Singh

Pacific Northwest National Laboratory

\[P(Z > z) = \int_{\Omega(I, \phi, \theta)} f(I, \phi, \theta) \, dI \, d\phi \, d\theta \]

Local Intense Precipitation (LIP) Probabilistic Flood Hazard Assessment (PFHA) Pilot Study

- **Objective**
 - To perform a pilot study to inform development of guidance for LIP PFHAs
 - Four tasks
 - Review available LIP flood modeling software
 - Completed May 2020 (Final Letter Report)
 - Review aleatory variabilities and epistemic uncertainties in LIP flood modeling
 - Completed May 2021 (Final Letter Report)
 - Perform a LIP PFHA for a NPP site
 - In progress
 - Knowledge transfer
 - In March 2022
LIP PFHA for a NPP site

- Task 3: Perform a LIP PFHA for a NPP site
 - Real NPP site selected
 - Characteristics of NPP site used in simulation
 - Buildings, vehicle barrier system, subsurface drainage system
 - Surface characteristics (soil types), surface roughness
 - Scope did not include performing a precipitation frequency analysis
 - Used NOAA Atlas 14 (limited to Annual Exceedance Probability [AEP] of 1×10^{-3} and higher) for precipitation
 - Extrapolated depth-area-duration curves to AEP 1×10^{-6}
 - FLO-2D as the flood simulation software package
 - Implemented on a regular 2-D grid
 - Combined hydrologic and hydraulic model
 - Solves full dynamic wave formulation of 1-D Saint-Venant equations
 - One flow direction at a time
 - Explicit, central finite difference scheme

PFHA

- AEP for a flood hazard
 \[P(Z > z) = 1 - P(Z \leq z) = 1 - F(z) = \int_{z}^{\infty} f(u) \, du \]

A flood hazard

A particular magnitude of the flood hazard

The cumulative distribution function for the flood hazard

\[Z = T[G(I, \Theta, \Phi)] \]

- Z = the set of flood hazards,
- G = the flood simulation model,
- I = the set of hydrometeorologic input variables,
- Θ = the set of the model parameters,
- Φ = the set of initial and boundary conditions, and
- T = any further transformations or analyses needed to estimate the flood hazards from the simulated flood parameters.
PFHA (cont.)

- AEP
 \[P(Z > z) = \int_{I, \Phi, \Theta: r[G(I, \Phi, \Theta)] > z} f(I, \Phi, \Theta) \, dI \, d\Phi \, d\Theta \]
 multi-dimensional integration is taken over this set of \((I, \Phi, \Theta)\)

- Numerical integration for \(P(Z > z)\)
 \[\hat{P}(z) = \frac{1}{N} \sum_{i=1}^{N} H(z_i - z) \]
 \(H(z_i - z) = 1\) for \(z_i = T[G(I_i, \Phi_i, \Theta_i)] > z\), and \(H(z_i - z) = 0\) otherwise

PFHA – Dimensionality and Sensitivity Runs

- Sample from joint PDF of \((I, \Phi, \Theta)\)
- \(I\): input
 - precipitation (for LIP, primarily rainfall)
- \(\Phi\): initial and boundary conditions
 - initial soil moisture content
- \(\Theta\): model parameters
 - Manning's roughness coefficient, saturated hydraulic conductivity
- Site configuration
 - Subsurface storm drains
Results of Sensitivity Runs – Initial Soil Moisture

Results of Sensitivity Runs – Storm Drains
Results of Sensitivity Runs – Storm Duration

Grid: 149479

LIP Input – Probabilistic Precipitation Magnitude

NOAA Atlas 14 → Extrapolation

Precipitation Depth (in.)

Annual Exceedance Probability
LIP Input – Probabilistic Storm Duration and Temporal Distribution

Rain Duration: 6hrs

<table>
<thead>
<tr>
<th>Duration</th>
<th>First Quartile</th>
<th>Second Quartile</th>
<th>Third Quartile</th>
<th>Fourth Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 hr</td>
<td>52</td>
<td>23</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>12 hr</td>
<td>51</td>
<td>22</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>24 hr</td>
<td>50</td>
<td>19</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>96 hr</td>
<td>53</td>
<td>19</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Next Steps

- Python coding
 - Sampling
 - Aleatory: precipitation magnitude, duration, and storm temporal distribution
 - Epistemic: Manning’s n
 - Preparing input files
 - Simulation management
 - Numerical integration to estimate hazard curves
 - Flood depth/water surface elevation, flood duration, flood velocity
- Reporting
 - NUREG/CR describing LIP PFHA
 - Webinar – tech transfer
- Archiving
 - All simulations saved
Thank you

Rajiv Prasad
Rajiv.Prasad@pnnl.gov
(509) 375-2096
3.4.6 Precipitation Panel Discussion (Session 2A-6)

Moderator: Kevin Quinlan, NRC/NRR
Azin Al Kajbaf, University of Maryland
Peter Thornton, Oak Ridge National Laboratory
Giuseppe Mascaro, Arizona State University
Joshua Welty, U.S. Navy Fleet Numerical Meteorology and Oceanography Center
Rajiv Prasad, Pacific Northwest National Laboratory (PNNL)

Question:

To what degree is the QA/QC of different data sources evaluated and accounted for in Daymet?

Peter Thornton:

For the temperature station observations, we go through a preliminary round of cross validation analysis. We have found that if a station has some questionable quality issues, it tends to stick out as an anomaly in that cross validation approach. So, we have set a pretty generous threshold and we will throw out a station if it exceeds mean absolute error or bias issues in that preliminary cross validation. That ends up being a small fraction of stations that get rejected that way, like less than 1%. We'd like to do something similar for precipitation, but there's so much variability and the daily mean absolute error rates are pretty high for individual precipitation events, which I think anybody familiar with this business is going to understand. So it's been hard to define what those statistics might look like. If you look in our paper, I showed this map of the precipitation mean absolute error as a Thiessen Polygon sort of approach for each station. There are stations even in the heavily instrumented regions in the US that stick out as having particularly high mean absolute error. We have not yet tried to go in and identify those stations and their particular problems. I'm sure that there are some quality issues with individual stations that, NCEI, hasn't found yet that we might be able to identify that way. We haven't gone through that level of analysis yet. We do summarize our statistics by network and so we can see, on average, whether the different networks are providing absolute errors that are higher or lower. That's complicated for precipitation as well, because snow observations are just inherently more uncertain.

Question:

How does the Daymet interpolation method for precipitation relate to PRISM?

Peter Thornton:

The Daymet and PRISM methods have both in the literature and in use widely in the community for a long time. They're fundamentally different, and I think there's real value in having both of those methods out there and in use. The PRISM stands for precipitation regressions on independent slopes, and they tend to have an a priori clustering of the observations on topographic facets. They get some real value out of doing that. We, on the other hand, have this Gaussian kernel filtered approach that includes the X-, Y-, and Z-dimension for the 3D regression that gives us a similar kind of answer. A lot of different analysis have shown that there's a lot of similarity between the two approaches. But there are definitely places with extreme precipitation gradients, in particular along the crest of the Cascades, where PRISM is doing a better job. And there are other places where various analyses have shown that the
Daymet approach is doing better. So, it is kind of a mixed bag there. But I think there is real value in having both approaches out in the community.

Question:

Joshua, for the extreme snow melt was a theoretical maximum melt determined? It would be very interesting to see how close some of those maximum SWE reductions are to a maximum limit.

Joshua Welty:

The simple answer is no, we didn't. I have relatively strong confidence that anywhere approaching the theoretical maximum limit is probably somewhere in the Cascades. If you look at the simple maps we made, a lot of the largest delta SWE magnitudes were generally in the Pacific Northwest, maybe Cascades. That would be the place to start. But no, we didn't identify theoretical maximum limit based on our observational study. But I appreciate the question, that would be really interesting to look at.

Question:

Rajiv, was there any consideration for separating the precipitation aleatory and epistemic uncertainty in the model?

Rajiv Prasad:

A short answer is no. We are only looking at NOAA Atlas 14, for better or worse, for now. But there are epistemic uncertainties related to precipitation. NOAA Atlas 14 basically looks at model parameter estimation errors only. You could extend that in a more comprehensive precipitation frequency analysis that looks at alternative models. For example, you could include alternative statistical distributions that fit extreme precipitation data and then try to look at those in collection as part of the epistemic uncertainty. You could bring that in. Because we are limiting the analysis scope to just the flood at the moment, we did not look at that.

Question:

Regarding precipitation estimates to drive flood hazard assessment modeling, there are several choices: (1) statistical analysis of historical information; (2) mechanistic synthetic approaches such as numerical weather prediction or climate models; and (3) statistical synthetic approaches such as point or multipoint weather generators. What are the strengths and weaknesses of each approach?

Rajiv Prasad:

The way we approach it right now, at least in this project, is to look at NOAA Atlas 14, extrapolated. That is not really satisfactory because NOAA Atlas 14 pretty explicitly says do not do that. Another thing with historical information is that we are, at least in the U.S., limited by record lengths. You can get around that by doing regionalized analysis. The question becomes do we rely on a regional analysis? And how do we translate that back to, at least in the case that we are doing, really, local scale modeling? Are we losing anything in that sense? If we do regionalization, do we lose local features? And how much confidence do we have in those approaches? Synthetic approaches, in terms of weather generators and things like those are
becoming more popular. We did review a few of them in our earlier reports. They could be a good approach to get to some of those things. Until we actually do an intercomparison of all of these data sources, I don't know. Maybe putting together a flood model and then try to evaluate the predictions from each of those for sites or watersheds where all of these [precipitation estimates] are available might be a good way of seeing what the strengths and weaknesses might be.

Azin Al Kajbaf:

I just wanted to add that with the historical information there are a lot of challenges. In my work there were a lot of missing data. I think each of the things that you have mentioned have their own weaknesses and challenges to work with. With the historical information there is this uncertainty due to missing data or uncertainty that can come from other sources such as the problems with recordings and things like that. Also, the synthetic models are associated with other sources of uncertainty because they are simplifications of natural processes. So, my opinion is that there are strengths and weaknesses to each one and it should be looked at comprehensively to decide in what situation which one is better to work with based on the limitations that we have.

Question:

What is the latency of the Daymet data? How quickly after the valid date/time is it available? Are the different versions made clear?

Peter Thornton:

Historically we've done this annually and it's taken a few months after the end of the year to get it updated. We've recently moved to a monthly experimental low latency data product which is bringing in updates from NCEI GHCNd dataset monthly and turning that around within, usually, a week of the end of the month. A good question about the marking of those changes in the data set. I might get the details here slightly wrong, but typically, we're storing each of those monthly updates so you can go back and see individual months and then at the end of the year we do a complete reprocessing of the entire year and do an update that would be marked as an extension of the main annual time series data set. So yes, in short, you can track that but there's certainly a lot more iterations with those monthly latency updates.

Question:

Joshua, could one take a climate model or an ensemble of models and using your methods develop future SWE maps? And what would be one of the major challenges to do this?

Joshua Welty:

Presumably, yes. Our approach is flexible, so as long as you have a large enough set of inputs, on the order of maybe 1000+ maps, to train the model this is conceivably an option. I think another benefit of the approach is obviously with self-organizing maps. There's some flexibility in that you can try different number of inputs, different neighborhood functions. You can use 500-millibar heights or 500-millibar height anomalies. So, I think the simple answer to the question is yes. I think the main challenge would be how accurate is the model or suite of models you choose. But I think to answer the question is, conceivably, yes. It's a relatively flexible approach, so that would be the hope.
Question:

Rajiv, there was a question that came in during your presentation about Manning's coefficient and has there been any thought to how that may change with the flood depth, and how that may impact your results?

Rajiv Prasad:

The short answer, when you think about it mechanistically and hydraulically, is yes it can. There are ways in which FLO-2D actually deals with it. They have some empirical ways of adjusting Manning's n when that happens, but I would really like to have a better theoretical understanding of it. The other thing that I haven't seen done, particularly at these local scales industrial Sites, is that you can have the water surface butt up against building walls, etc. So the wetted area as well as the friction on the walls might change, depending on where you are getting inundation. So yes, I think that can be something that we should think about. Surface roughness in this case really applies to all surfaces that the water touches. How do we deal with it? For now, the flood models are implemented in terms the momentum equation formulation that uses Manning's n. Could it be better, or at least can we think about calibrating it better? Yes, we could, but the challenge there is where do you get datasets that allow you to come up with some form of either calibration to look at your site or understanding theoretically how some of these resistance to flow changes might happen? So open question, good question. I don't have a great answer for that.

3.5 Day 2: Session 2B – Riverine Flooding

Session Chair: Joseph Kanney, NRC/RES

3.5.1 Presentation 2B-1 (KEYNOTE): Flood Typing and Application to Mixed Population Flood Frequency Analysis: An Interagency Collaborative Effort

Authors: Nancy Barth*, Michael Bartles; John England; Jory Hecht; Gregory Karlovits; William Lehman; 1U.S. Geological Survey (USGS), 2U.S. Army Corps of Engineers (USACE)

Speaker: Nancy Barth

3.5.1.1 Abstract

An improved understanding of the frequency and magnitude of floods is critical for the design of transportation and water-conveyance structures as well as insurance studies and floodplain management. Methods for estimating annual exceedance probabilities (AEPs) (or return intervals) in the United States were recently updated in Bulletin 17C. These methods assume homogeneous flood distributions but acknowledge that floods at a given location can be generated by multiple causal mechanisms, such as snowmelt, intense convective rainfall events, or tropical cyclones, representing a mixed population. Mixed population flood events may not only impact the fit of the flood frequency curve in the range of the observed floods but may also impact the quality of AEP estimates in the upper tail of the flood frequency distribution. The ‘Future Studies’ section in Bulletin 17C acknowledges shortcomings in the handling of mixed-population
datasets and highlights the need for additional studies before guidance for conducting mixed-population flood frequency analysis can be confidently developed. Classification of individual events by flood generating mechanisms, or flood type classification, might enable a mixed population analysis. The flood type classifications can be defined in terms of both proximal atmospheric causal mechanisms, such as different storm types, as well as antecedent watershed conditions, such as soil moisture storage and snowpack water content. Currently, the largest national database of annual peak flows, the U.S. Geological Survey (USGS) National Water Information System (NWIS) database, contains little information about the flood type classification for each annual peak-flow event. The U.S. Army Corps of Engineers (USACE) and USGS have begun a multi-year collaborative effort to develop methods for efficiently categorizing flood data stored in NWIS by causal mechanisms. In addition, this collaboration includes the design of a database framework for storing peaks-over-threshold (POT) events. This would ensure that all floods taking place in years with multiple large flood events would also be recorded in the database, including information on the mechanisms that generated them. The POT data could be used for mixed population analyses that includes frequency, duration, and volume.
Flood Typing and Application to Mixed Population Flood Frequency Analysis: An Interagency Collaborative Effort

7th Annual NRC Probabilistic Flood Hazard Assessment Research Workshop:
February 16, 2022

Nancy A. Barth, Ph.D.
Hydrologist, U.S. Geological Survey
Dakota Water Science Center
nbarth@usgs.gov

Motivation and objectives

Improving Hazard Assessment
Balancing flood control, water supply and reservoir operations with extreme meteorological events

Evaluating the impacts of hydrometeorological processes on flood frequency across the United States

Methodological developments to account for mixed populations in flood frequency analysis

Proposed workplan to update peak-flow databases and flood frequency analysis to recognize multiple causal mechanisms of floods
Diverse flood hydrology throughout Western United States

Distributing flood frequency at gaged sites—statistical analysis of annual peak discharge

Fit a probability distribution to the sample (recorded) data

Distribution used in the U.S. is the log Pearson Type III (LP3) (described in Bulletin 17B/17C)

Mixed population site in California
Complicated at-site streamflow data and flood frequency estimates

Mixed Populations:
low flood peaks with influence

Mixed Populations:
rain-on-snow flood events

USGS

“Future Work” (p.27) Bulletin 17B

1. Selection of distribution and fitting procedures.
2. The identification and treatment of mixed distributions.
3. The treatment of outliers both as to identification and computational procedures.
4. Alternative procedures for treating historic data.
5. More adequate computation procedures for confidence limits to the Pearson III distribution.
6. Procedures to incorporate flood estimates from precipitation into frequency analysis.
7. Guides for defining flood potentials for ungaged watershed and watersheds with limited gaging records.
8. Guides for defining flood potentials for watersheds altered by urbanization and by reservoirs.
“Future Work” (p.35) Bulletin 17C

1. The identification and treatment of mixed distributions, including those based on hydrometeorological or hydrological conditions;

6. Guides for estimating dynamic flood frequency curves that vary with time, incorporating climate indices, changing basin characteristics, and addressing potential nonstationary climate conditions;

Stochastic hydrology and physical processes

“In some circles, however, the obvious fact that these [annual peak flow] values represent a response to varying processes in the physical world has tended to become less important than the urge to statistically model flood values in search of the best fit of the observed data and therefore (ideally) the best predictive capability of future flows…” (Hirschboeck, 1988)

“[T]he main emphasis in stochastic analysis of hydrological processes…has been on the fitting of various preconceived mathematical models to empirical data rather than on arriving at a proper model from the physical nature of the process itself…Thus what we usually find is not, in fact, statistical hydrology but merely an illustration of statistical and probabilistic concepts by means of hydrologic data.” (Klemes, 1974, p.2)

“Major floods occur from at least two independent causes, tropical hurricane storms and extratropical cyclones. Hurricanes are comparatively rare, but produce extreme flows, and therefore cause an upward curvature of the frequency curve of annual maximum flows. Some improvement in frequency estimates in this region [New England] is attained by segregating hurricane and non-hurricane floods. However, this apparently does not solve entirely the problem of upward curvature of the frequency curves” (Beard, 1962)
The USACE / USGS / FEMA project proposal staff

U.S. Army Corps of Engineers (USACE)

Mike Bartles
John England, Jr.
Greg Karlovits
Will Lehman

U.S. Geological Survey (USGS)

Nancy Barth
Jory Hecht
Amy McHugh

Federal Emergency Management Agency (FEMA)

David Bascom
Christina Lindemer
David Rosa

Current and previous studies with potential mixed populations

Peak-Flow Frequency Estimates Based on Data Through Have Flow Data for Various Discharge Components of Various States

Peak-Flow Frequency Relations and Evaluation of the Peak-Flow Gaging Network

Water-Resources Investigations, Report 96-492
Recent USACE mixed population applications

Portland District
- Tides, storm surges, multiple runoff mechanisms
- Lower Columbia River

St. Paul District
- Wet/dry cycles, multiple runoff mechanisms
- Red River at Fargo, ND
- Upper Mississippi River (ongoing)
- Mississippi River / Minnesota River confluence (ongoing)

Omaha District
- Ice jams, multiple runoff mechanisms
- Lower Platte River
- Elkhorn River (ongoing)
- Williston Levee
- Garrison Dam
- Oahe Dam (ongoing)

Philadelphia District
- Ice jams, tropical storms, rain-on-snow, rainfall-only
- Lehigh River

Lower Platte River, Nebraska
Lower Platte River, Nebraska: Separating peaks by causal mechanism

Peak caused by rainfall

Accumulated Freezing Degree Days (AFDD)

SWE & Precipitation

Flow

Peak caused by snowmelt

AFDD

Flow

This step can take a lot of time. We need to make improvements.

USACE mixed population analysis steps

- Engineer Manual 1110-2-1415
- Visualize data
- Identify flood causal mechanisms, different populations, changes in trends, wet/dry periods, etc.
- Extract individual and identically distributed (iid) samples (usually annual maximum series)
- Fit distributions to each sample
- Combine using Probability of Union
Data visualization: Pembina River at Neche, North Dakota

Data visualization: Bulletin 17C analysis--testing stationary assumptions (Pembina River at Neche, North Dakota)

Autocorrelation
AKA
- Serial correlation
- Persistence
- Memory
- Hurst phenomenon

Monotonic trends
AKA
- Gradual trends
- Nonparametric trends

Change points
AKA
- Step trends
 - Median: 1991
 - Scale: 1993

(Preliminary results, USGS from the Transportation Pooled Fund Program)
Data visualization: Evaluating potential causal mechanisms of annual peak flow, maxima and peaks-over-threshold

- Annual peak-flow timing analysis
- Raster-seasonality analysis
- Peaks-over-threshold 2 (POT 2)
- Daily average flow
- Annual maximum daily average flow

Data filtering to recognize multiple causal mechanisms

Filter data using:
- Time window
- Season
- Min/max threshold
- Duration
- Annual maxima
- POT
- Starting pool stage/elevation
Data filtering enhancements to recognize multiple causal mechanisms

Improve the creation of iid samples
- Use more than just calendar date or magnitude:
 - pressure at one or more altitude,
 - integrated vapor transport (IVT),
 - precipitation (over a duration),
 - temperature,
 - antecedent soil moisture,
 - accumulated freezing degree days,
 - change in SWE, etc.

Example of separating annual peak flows based on causal mechanism in the Western United States

Four smaller regions with a mixture of ~30-70% atmospheric river (AR) and non-AR-generated flood peaks
Methodological developments to account for mixed populations in flood frequency analysis

- How do we perform flood frequency analysis by accounting for different flood generating mechanisms?
- What are the improvements in terms of quantile estimates obtained by accounting for mixed populations?

Mixed population analysis

- Combine multiple frequency curves using Probability of Union concept
- \(P_{combined} = P_1 + P_2 - (P_1 \times P_2) \)
- Results in a frequency curve that correctly reflects the occurrence of more than one type of flood per year
Mixed population analysis: Additional enhancements

- Compute uncertainty for mixed population curves
 - (Current) Order stats
 - Probability of Union for input analytical distribution uncertainty
 - Stochastic generation
 - Mixture model
- Convert from 1-day duration to instantaneous peak
 - Most continuous, long-term records are daily average flow
 - Need instantaneous peak for most applications

Mixed population analysis can better fit the observations

Station: 12414500
St. Joe River in Calder, ID

<table>
<thead>
<tr>
<th>Population</th>
<th>Record Length</th>
<th>At-site skew</th>
<th>No. PILF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>90</td>
<td>-0.02</td>
<td>0</td>
</tr>
<tr>
<td>AR</td>
<td>34</td>
<td>+0.04</td>
<td>0</td>
</tr>
<tr>
<td>NonAR</td>
<td>56</td>
<td>-0.25</td>
<td>9</td>
</tr>
</tbody>
</table>

*Potentially influential low floods (PILF)
Updating peak-flow databases to recognize multiple causal mechanisms of floods from a storm-typing approach

Identification of Storm Type (North America)

- Scale
- Seasonality
- Source of moisture
- Nature of uplift
- Location

- Local Storm (LS)
- Mesoscale Storm with Embedded Convection (MEC)
- Tropical Storm and Remnants (TSR)
- Mid-Latitude Cyclone (MLC)

<table>
<thead>
<tr>
<th>Property</th>
<th>LS</th>
<th>MEC</th>
<th>TSR</th>
<th>MLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>2 hours</td>
<td>6 hours</td>
<td>48 hours</td>
<td>48 hours</td>
</tr>
<tr>
<td>Scale</td>
<td>Mesoscale</td>
<td>Mesoscale</td>
<td>Synoptic</td>
<td>Synoptic</td>
</tr>
<tr>
<td>Extent</td>
<td>10^1-10^2 km^2</td>
<td>10^2-10^3 km^2</td>
<td>10^3-10^5 km^2</td>
<td>10^3-10^5 km^2</td>
</tr>
<tr>
<td>Season</td>
<td>All year</td>
<td>Spring-Summer-Fall</td>
<td>Summer-Fall</td>
<td>Winter-Spring</td>
</tr>
<tr>
<td>Uplift/Moisture Source</td>
<td>Convection</td>
<td>Orographic or Convection</td>
<td>Convection/Tropical</td>
<td>Frontal/Non-Tropical</td>
</tr>
<tr>
<td>General Location</td>
<td>Anywhere</td>
<td>Mid-Continent</td>
<td>Below 30°N</td>
<td>30°-60°N</td>
</tr>
</tbody>
</table>
Data-driven identification for storm typing

- Surface analysis/maps
 - Helpful when analyzing a storm type
 - Maps are not as straightforward to interpret by an algorithm
- Gridded precipitation
 - Useful for identifying spatial extent of storm and duration
 - Often first step to identify a storm event
- Reanalysis products
 - Provides information on wind fields, convective activity levels, gradient of pressure fields, etc.
- Track data (IBTrACS)
 - Archive of historical storms tracks primarily for identifying TSRs

The USACE / USGS / FEMA project proposal staff

Proposed Workplan

Updating peak-flow databases and flood frequency analysis procedures to recognize multiple causal mechanisms of floods

Mike Bartles
John England, Jr.
Greg Karlovits
Will Lehman

Nancy Barth
Jory Hecht
Amy McHugh

David Bascom
Christina Lindemer
David Rosa
Questions?

Thank you
(nabarth@usgs.gov)
3.5.2 Presentation 2B-2: Applying Stochastic Weather Generation and Continuous Hydrologic Simulation for Probabilistic Flood Hazard Assessments

Authors: Joe Bellini*, Bill Kappel, Dennis Johnson, Doug Hultstrand; 1Aterra Solutions, 2Applied Weather Associates

Speaker: Joe Bellini

3.5.2.1 Abstract

Applied Weather Associates teamed with Aterra Solutions to complete a stochastic weather modeling study to provide long term meteorological realization for hydrologic modeling, flood frequency analysis, and flood recurrence interval analyses. This utilized a multisite stochastic modeling approach using daily observations of precipitation, temperatures, and snow water equivalent (SWE) from 49 sites in the upper Midwest through the Multi-site Auto-regressive Weather GENerator (RMAWGEN) framework. Stochastic weather generators are statistical models that simulate realistic or plausible random sequences of atmospheric variables. Resulting sequences provide meteorological realizations that can be used for risk evaluations and reliability assessments for various systems such as dams and nuclear generating facilities. Observed precipitation and temperature records were used to calibrate RMAWGEN for the 1949–2019 period. Validation was performed on the calibration period data. Results demonstrate that the model was able to capture spatiotemporal characteristics of observed precipitation and temperature. The model generated 12 iterations of 1,000-years of daily weather sequences of precipitation, temperatures, and SWE. Climate change projections were applied using RCP 4.5 and 8.5 to generate 12 iterations of 1,000-years of future sequences of precipitation, temperatures, and SWE. Weather outputs were used in a continuous simulation hydrologic model built using HEC-HMS. This was calibrated against 3 different years of daily flow data at locations throughout an 88,000 mi^2 basin. Normal, wet, and dry years were used for calibration. The final calibrated model was used to simulate runoff for each 12x1000-year simulations, including the three climate change projections. Uncertainty analyses, using a Monte-Carlo framework within HMS, bracketed potential outflow possibilities based on variability in hydrologic inputs identified in the calibration phase. Annual maximum flows were used to characterize probabilistic flood hazards (to as low as a 10-6 annual exceedance probability), considering a wide range of event parameters such as snow accumulation, spring melt patterns, and rainfall. Results will be used in safety assessments and seasonal flood operation planning.
3.5.2.2 Presentation (ADAMS Accession No. ML22061A121)

Applying Stochastic Weather Generation and Continuous Hydrologic Simulation for Critical Infrastructure Design

Joe Bellini, PE, PH, D.WRE, Vice President/Principal Engineer, Aterra Solutions
Dennis Johnson, PhD, Senior Hydrologist, Aterra Solutions
Doug Huntstrand, PhD, Senior Hydrometeorologist, AWA
Bill Kappel, President/Chief Meteorologist, AWA

February 15-18, 2022 • PFHA Research Workshop

Background

• Purpose: Conduct a PFHA to characterize annual exceedance probabilities for a broad spectrum (to very low)
• Location: Site along the Upper Mississippi River
• Approach:
 ○ Stochastic weather modeling using daily observations of precipitation, min/max temperatures, snow-water equivalent, and two climate-change projections
 ○ Continuous hydrologic modeling for 12-1,000-year traces (seamed together) for 3 climate scenarios
 ○ Monte Carlo simulations performed to quantify uncertainty in hydrologic inputs
 ○ Other uncertainty factors considered
Stochastic Weather Generator

- A weather generator produces meteorological time series with the same statistical patterns of the observed
- Attempt to reproduce the spatial and temporal dynamics and correlation structures of the variables of interest
- Simulate realistic or plausible random sequences of atmospheric variables such as temperature, rainfall, wind speed, snow
- Synthetic sequences provide a set of alternate realizations that can be used for risk and reliability assessment

Stochastic Weather Model-RMAWGEN

- RMAWGEN because it can maintain temporal and spatial correlations among stations
- 49 locations selected to calibrate the model
 - Daily precipitation generated for the reference period 1949-2019
- Coupled with monthly mean weather variables to generate stochastic daily scenarios
- Account for seasonally changing weather variables, monthly or season time frame
- Calibrated model simulated twelve 1000-years of daily precipitation, maximum temperature, and minimum temperature
- Daily time series data used as input into SnowMelt model
Precipitation and Temperature Seasonality

- Account for seasonally weather variables of precipitation, maximum temperature, and minimum temperature

Precipitation and Temperature Simulation

- Calibrated VAR precipitation, maximum temperature, minimum temperature models compared to the observed and simulated data
- Observed vs simulated data were compared at quantiles from 0.1 to 0.99
- Average correlation among the observed and simulated values were excellent with all station’s correlation being greater than 0.98
Snow Water Equivalent Simulation

Example Daily Simulation for 100-year Period
Climate Change

- Projections utilized regional downscaled model output driven by RCP45 and RCP85 from CMIP5 global climate model output

- RCP45 and RCP85 represent a mid-level mitigation and no mitigation to limit radiative

![IPCC Representative Concentration Pathways](image1)

![Temperature Change graphs](image2)

- Increase in monthly mean temperatures
- Increase and decrease in monthly mean precipitation
Hydrologic Modeling Overview

- Hydrologic model (HEC-HMS) developed for 8 sub-watersheds using the following modeling methods:

<table>
<thead>
<tr>
<th>Element/Method</th>
<th>Chosen Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy Method</td>
<td>Simple Canopy</td>
</tr>
<tr>
<td>Surface Method</td>
<td>Simple Surface</td>
</tr>
<tr>
<td>Infiltration / Loss</td>
<td>Distributed & Constant</td>
</tr>
<tr>
<td>Transformation</td>
<td>Clark Unit Hydrograph</td>
</tr>
<tr>
<td>Basinflow</td>
<td>Linear Reservoir (3 Reservoirs)</td>
</tr>
<tr>
<td>Reach Routing</td>
<td>Muskingum</td>
</tr>
</tbody>
</table>

- Model calibrated for three 1-year continuous simulations (dry, normal, and wet) climatology – years chosen, 1988 (dry), 1991 (average), and 1993 (wet)

- Simulated daily data for three climate scenarios: i) current climate, ii) RCP45 climate projection, and iii) RCP85 climate projection

Study Area

<table>
<thead>
<tr>
<th>Sub-Basin</th>
<th>Area (Sq. Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minnesota</td>
<td>17,065</td>
</tr>
<tr>
<td>Chippewa</td>
<td>9,079</td>
</tr>
<tr>
<td>St. Croix</td>
<td>7,727</td>
</tr>
<tr>
<td>Anoka</td>
<td>19,905</td>
</tr>
<tr>
<td>Wapsipinicon</td>
<td>2,333</td>
</tr>
<tr>
<td>McGregor</td>
<td>7,882</td>
</tr>
<tr>
<td>Winona</td>
<td>5,969</td>
</tr>
<tr>
<td>Clinton</td>
<td>7,892</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>10,419</td>
</tr>
</tbody>
</table>
Hydrologic Modeling Approach

- Single vs **Continuous** Model
 - Deficit & Constant Method
 - Canopy, Surface, Infiltration, Transformation, Baseflow, Reach Routing
- Calibration
 - Select representative years
 - Develop MAP's & MAT's
- Apply to Long Term (1,000 year) Simulations
- Flow Frequency Analysis on computed annual maximum flows

Typical Calibration – Wet Year

February 15-18, 2022 • PFHA Research Workshop
Long Term (1,000 year) Simulations

- 12 unique “traces” of 1,000 years generated
- 3 Different climate scenarios
 - Normal (or current) climate, RCP45, and RCP85
- 36 Unique traces

Hydrologic Model Uncertainty Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sub-Basin Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Coefficient 1</td>
<td>Baseflow</td>
</tr>
<tr>
<td>Groundwater Coefficient 2</td>
<td>Baseflow</td>
</tr>
<tr>
<td>Groundwater Coefficient 3</td>
<td>Baseflow</td>
</tr>
<tr>
<td>Constant Loss Rate</td>
<td>Loss (Deficit & Constant)</td>
</tr>
<tr>
<td>Maximum Deficit</td>
<td>Loss (Deficit & Constant)</td>
</tr>
<tr>
<td>Percent Impervious</td>
<td>Loss (Deficit & Constant)</td>
</tr>
</tbody>
</table>
Annual Maximum Flows for Each Trace Extracted

Log-Pearson III Output
Normal Climate Scenario – 12,000 years

<table>
<thead>
<tr>
<th>Return Period</th>
<th>AEP</th>
<th>Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5</td>
<td>161,321</td>
</tr>
<tr>
<td>50</td>
<td>0.02</td>
<td>267,341</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>299,862</td>
</tr>
<tr>
<td>200</td>
<td>0.005</td>
<td>309,714</td>
</tr>
<tr>
<td>500</td>
<td>0.002</td>
<td>337,411</td>
</tr>
<tr>
<td>1,000</td>
<td>1E-03</td>
<td>358,376</td>
</tr>
<tr>
<td>10,000</td>
<td>1E-04</td>
<td>428,924</td>
</tr>
<tr>
<td>100,000</td>
<td>1E-05</td>
<td>501,931</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1E-06</td>
<td>578,283</td>
</tr>
</tbody>
</table>
Unsteady River Flow Model – Rating Curve

<table>
<thead>
<tr>
<th>Return Period (YR)</th>
<th>AEP</th>
<th>NORMAL WSEL (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5</td>
<td>578.4</td>
</tr>
<tr>
<td>50</td>
<td>0.02</td>
<td>584.6</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>585.6</td>
</tr>
<tr>
<td>200</td>
<td>0.005</td>
<td>586.6</td>
</tr>
<tr>
<td>500</td>
<td>0.002</td>
<td>587.6</td>
</tr>
<tr>
<td>1,000</td>
<td>1E-03</td>
<td>588.7</td>
</tr>
<tr>
<td>10,000</td>
<td>1E-04</td>
<td>591.2</td>
</tr>
<tr>
<td>100,000</td>
<td>1E-05</td>
<td>593.8</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1E-05</td>
<td>595.9</td>
</tr>
</tbody>
</table>

Final Results – Enhanced ET Analysis

February 15-18, 2022 • PFHA Research Workshop
Comparison with 17C Analysis for Higher AEPs

<table>
<thead>
<tr>
<th>Return Period</th>
<th>AEP</th>
<th>Flow (cfs) from Current Study</th>
<th>Flow (cfs) from Bulletin 17C Analysis</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5</td>
<td>151,321</td>
<td>143,000</td>
<td>5.5</td>
</tr>
<tr>
<td>50</td>
<td>0.02</td>
<td>267,341</td>
<td>257,000</td>
<td>3.9</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>288,652</td>
<td>274,000</td>
<td>5.1</td>
</tr>
<tr>
<td>200</td>
<td>0.005</td>
<td>309,714</td>
<td>290,000</td>
<td>6.4</td>
</tr>
<tr>
<td>500</td>
<td>0.002</td>
<td>337,411</td>
<td>309,000</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Summary of Uncertainties

- Climate change
- Variability in hydrologic inputs (Monte Carlo)
- Natural variation in river system
- Land use changes
- Probability distribution function (LPIII)
- Potential error in stage-discharge
- Event combinations
THANK YOU

Applied Weather Associates, LLC
PO Box 175, Monument, CO 80132
719-488-4311
billkappel@appliedweatherassociates.com

Aterra Solutions
300 Brookside Avenue, Building 18, Suite 160,
Ambler, PA 19002
joe.bellini@atterasolutions.com
3.5.3 Presentation 2B-3: IWRSS Flood Inundation Mapping for Flood Response

Authors: Robert Mason*1, Julia Prokopec*1, Adam Barker*2, Cory Winders*3, Darone Jones*4

Speaker: Julia Prokopec

3.5.3.1 Abstract

Traditionally, flood predictions and forecasts have focused on communicating near-term outlooks for flood-peak stages (water-elevations) and flow rates. But modern geospatial and hydrodynamic modeling techniques permit the rapid conversion of such information into flood inundation maps (FIMs) that communicate far more effectively the expected area extent and timing of a flood and the physical resources and community populations that will be impacted. Many agencies at the Federal, State, and local levels have evolved these techniques such they are now deployed routinely, and the resulting maps distributed to emergency management agencies.

Sometimes a diversity of approaches, assumptions, or inputs made by the modelers can result in divergent maps that can confuse users. In 2018, the Integrated Water Resources Science and Services (IWRSS; a consortium of the Federal Emergency Management Agency (FEMA), National Ocean and Atmospheric Administration (NOAA), U.S. Army Corps of Engineers (USACE), and the U.S. Geological Survey (USGS)) was tasked with developing a process for coordinating Federal, event-based FIMs and establishing an authoritative source for communication of the coordinated FIM to FEMA. The process was codified in a draft “playbook” that has been exercised and further developed through several recent floods. This presentation will describe the iFIM vision, the evolving playbook, agency roles and products, and efforts to develop a truly integrated and authoritative FIM for the Federal emergency management community.
Integrated Water Resources Science and Services (IWRSS)
Integrated Flood Inundation Mapping (iFIM)

Julia Prokopec, USGS and Casey Zuzak, FEMA
NOAA / USACE / USGS / FEMA
February 16, 2022

Integrated Water Resources Science and Services

- **2011 - Established by MOU between the USACE, USGS, and NOAA**
 - Originally focused on "Operational Hydrology"
 - Systems Interoperability and Data Synchronization
 - Flood Inundation Mapping
- **2016 - Renewed and expanded with the addition of FEMA**
 - Support flood impact assessments
- **2018 - Hurricane Season**
 - Multiple event-based inundation maps produced and distributed caused confusion
 - Science for Disaster Reduction (part of DSTP/CEO/NSC committee structure) convened review that resulted in request to IWRSS to develop integrated playbook for coordinated production of Federal flood-inundation maps
 - Integrated Flood Inundation Mapping (iFIM)
- **2021 - New IWRSS MOU includes BOR, FWS, EPA, DOE, and USDA and expanded scope**
 - Agencies and iFIM development and buildout
 - Flood Risk Data
 - Integrated science test basins and community model test beds
 - Drought
 - Waters of the US (WOTUS)
IWRSS iFIM Concept

The proposed concept maintains NOAA/NWS National Water Model maps as a background layer across the CONUS, with other maps slotting in to form the integrated map

- Enabled through a decision tree to identify the best available map given a variety of factors

The IFIM could be enabled through investment in either shared cloud computing and storage environment or “bring your own” infrastructure model.

- Additional details on these technical solutions are being developed

Agencies Contribution to IWRSS iFIM (USGS)

United States Geological Survey (USGS)

USGS Flood Inundation Mapping Program
- 140 of USGS streamgages have a FIM library
- Library polygons and depth grids available to download from the mapper
- Partnered with FEMA and have Hazus results for all current libraries

USGS Flood Event Viewer
- Short-term networks, rapid deployment gages, and high-water marks on event-based deployments

USGS Remotely Sensed Flood Inundation Maps
- Goal is to produce near-real time maps with enough spatial detail to be used in response
- In collaboration with NASA, NGA, University of Illinois and University of Alabama
Agencies Contribution to IWRSS iFIM (USACE)

United States Army Corps of Engineers (USACE)
- Library with multiple products
 - 500+ dam break inundation products
 - 180+ watershed models
 - Inundation from major floods and hurricanes since 2011
 - Some misc. inundation products such as local Silver Jackets projects by Districts
- Available models include: 1D HEC-RAS, 2D HEC-RAS, HEC-HMS, HEC-ResSim
- Library contains both inundation shapefiles and depth grids
- Model reports available for some products
- Library of products publicly available through USACE FIM Viewer

Agencies Contribution to IWRSS iFIM (NOAA/NWS)

FIM Libraries - Static maps at ~200 RFC forecast locations. water.weather.gov. Maps derived from engineering scale hydraulic models. < 1,000 miles

NWS Flood Categorical HAND FIM Libraries - Static maps at ~3,000 RFC forecast locations. Maps derived from 10-m HAND solution. ~ 30,000 miles

Forecast NWS River Forecast Center Flood Maps - Dynamic maps downstream of ~3,600 RFC forecast locations. Maps derived from RFC forecast and 10-m HAND solution. ~ 100K miles

Forecast National Water Model Flood Maps - Dynamic maps along NHDPplus reach locations. Maps derived from NWM forecast and 10-m HAND solution. ~ 3.4M miles
Agencies Contribution to IWRSS iFIM (FEMA)

Federal Emergency Management Agency (FEMA)

- Primary user of iFIM. Leveraged for integration and action for Event Response and Recovery
- Basis for flood inundation mapping through Risk MAP Program – including investing in LiDAR
- Call for actions for flood mapping community through Risk MAP Program Future of Flood Risk Data
- Risk assessment and loss estimation capabilities through FEMA's Hazus software and future OpenHazus application

iFIM Initial Development Strategy

- Creation of iFIM at NOAA/NWS National Water Center
 - Provide user interface to NWC operations for review and selection of multiple-sourced FIM during events
 - Allows for NWC forecaster to be “in the loop”
 - Sources initially include USACE, USGS, and NWS FIM
 - Manual output of “best available” FIM after evaluation of multiple-sourced FIM
- Dissemination of iFIM
 - Establish basic service for integrated FIM visualization for near real-time events in 2023
 - Publish ad-hoc updates for internal IWRSS awareness
2020 & 2021 Hurricane Seasons Coordination

- Record breaking Atlantic Basin 2020 season - 30 named systems
- Followed the IFIM Playbook both seasons to coordinate forecasts/activities to ensure understanding of FIMs being created and consistency of the message between agencies
 - Held IFIM Coordination Calls for 16 storms impacting CONUS
 - Call structure (15-30 minutes):
 - NWS provided situational awareness weather & water briefing, systems/service issues, NWS FIM considerations
 - FEMA provided mission updates and taskings
 - USACE provided project considerations and simulation information
 - USGS provided field deployment information and systems/service issues
IWRSS iFIM Next Steps

- IWRSS iFIM Team to draft an After-Action Report (AAR) on 2021 coordination (Q2 FY22)
 - Make adjustments to the iFIM Playbook ahead of 2022 season
- IWRSS iFIM Technical Team will be reinvigorated to explore data standards, management and accessibility to enable iFIM (data interoperability).
- Resume bi-weekly meetings, and conduct face-to-face workshops at the NWC
- Workshop Goals:
 - Review and exercise each IWRSS members data and services
 - Review and exercise the iFIM playbook
 - Provide a demonstration of how each IWRSS members data and services and the iFIM playbook culminate in a joint IWRSS inundation map.
 - Document the current iFIM capability, the necessary steps moving forward, and other pertinent information.

Questions?

- NOAA/NWS - Darone Jones (darone.jones@noaa.gov)
- USACE - Cory Winders (Robert.C.Winders@usace.army.mil)
- USGS - Julia Prokopec (jprokopec@usgs.gov) and Robert Mason (rrmason@usgs.gov)
- FEMA – Casey Zuzak (casey.zuzak@fema.dhs.gov) and Adam Barker (adam.barker@fema.dhs.gov)
NOAA/NWS FIM Development Opportunities

NWM Enhancements (e.g. hydrology and hydraulics)

- LiDAR derived 1-m and/or 3-m Digital Elevation Models (DEMs)
- FY19 demonstration of LiDAR HAND FIM capabilities

Terrain Models (e.g. HAND based solution)
- LiDAR derived libraries at reach scale
- Additional model derived libraries at reach scale

Hydraulic Models
- HEC-RAS derived libraries at reach scale
- Additional model derived libraries at reach scale

Service Enhancements
- FIMpact: Intersection of forecast FIM with infrastructure
- Probabilistic: NWM ensembles, parameter sensitivity analysis

USGS 3DEP LiDAR Availability

- Lidar Point Cloud QL1 (Approx. 0.35m NPS)
- Lidar Point Cloud QL2 (Approx. 0.7m NPS)
- Lidar Point Cloud QL3 (Approx. 1.4m NPS)
- Lidar Point Cloud Other

NPS = Nominal Pulse Spacing
NOAA/NWS Evaluation of FIM Capabilities

- Benchmark Datasets
 - Point FIM Evaluations: AHPS & USGS FIM library locations
 - Watershed FIM Evaluations: FEMA Base Flood Elevation (BFE) models and Iowa Flood Center HEC-RAS models

![Map of the United States with FIM sites marked]

NOAA/NWS FIM Evaluation Services

Available for reference during events

![Map with FIM performance indicators and aggregate CSI score for HUC8]

Legend:
- FIM Performance (CSI) AHPS Site
- FIM Performance (CSI) HUC8s

15

16
NOAA/NWS Opportunities to Expand FIM Evaluations

- **Benchmark Data**
 - Rating Curves
 - Depth

- **Event Verification**
 - High water marks
 - Remote sensing
 - UAV
 - NWS FIM Reviewer
3.5.4 Presentation 2B-4: Using HEC-WAT for NRC’s PFHA Process

Authors: William Lehman*, Gregory Karlovits, David Ho, Leila Ostadrahimi, Brennan Beam, Sara O’Connell, Julia Slaughter

U.S. Army Corps of Engineers Hydrologic Engineering Center

Speaker: William Lehman

3.5.4.1 Abstract

This presentation describes the application of the Nuclear Regulatory Commission’s (NRC) Probabilistic Flood Hazard Analysis (PFHA) process through the Hydrologic Engineering Center Watershed Analysis Tool (HEC-WAT). PFHA provides a quantitative relation between the probability of occurrence (or frequency) and magnitude for various flood hazards. The modeling framework includes hydrologic processes such as infiltration, runoff, discharge routing, reservoir operations, and near-field hydraulic processes. A comprehensive flood hazard assessment comprised probabilistic modeling of individual processes as well as composite modeling of coincident and/or correlated processes. The result is computed flood hazard frequency curves described with uncertainty bounds at various sites across the watershed for many informative variables. HEC-WAT was applied to a pilot watershed to provide a concrete demonstration of methodology to produce the outputs required for PFHA. This pilot project is focused on inland flood riverine flooding mechanisms including upstream dam breaching that may impact Nuclear Power Plants (NPPs).

3.5.4.2 Presentation (ADAMS Accession No. ML22061A119)
Using HEC-WAT for PFHA

Will Lehman
USACE Hydrologic Engineering Center

Overview of HEC-WAT

• Plugin Architecture
 • Supports Integration of any water resources software
• Watershed Systems Approach
 • Model Linking
• Risk Analysis
 • Nested Loops
Customized Plugins

A Plugin allows us to manipulate inputs and outputs during a simulation

- RAS Max XS plugin
- Confidence Builder Plugin
- Improvements to Initial Conditions Plugin
- Improvements to Fragility Curve Plugin
- Improvements to HEC-ResSim Plugin
- Improvements to Duration Plugin
Data Flow Animation

Events, Stratification, and Realizations
Events, Stratification, and Realizations

Each Event in a Stratification bin has the same incremental likelihood (defined by the stratification bin).

Precipitation to Hazard Frequency

Uncertainties:
- Basin wetness
- Reservoir Operations

Uncertainties:
- Breaches
- Manning’s N
Events, Stratification, and Realizations

One Realization

Many Events

Many Stratification Bins

Events, Stratification, and Realizations

Each Realization represents a sample of Knowledge Uncertainty and can create a Frequency Curve
Distributed Computing

- We leveraged four compute clusters of 25 nodes each
- This could be done via AWS instead of on local infrastructure like we used.

Output Variables (Model)
- Basin Precip (Weather Generator)
- Basin Outflow (HMS)
- Reservoir (ResSim)
- River Flow/Stage (RAS)
Questions?
3.5.5 Riverine Panel Discussion (Session 2B-5)

Moderator: Joseph Kanney, NRC/RES/DRA/FXHAB
Nancy Barth, U.S. Geological Survey
Joe Bellini, Aterra Solutions
Robert Mason, U.S. Geological Survey
William Lehman, U.S. Army Corps of Engineers
Bill Kappel, Doug Hulstrand, Applied Weather Associates

Question:

Nancy, it seemed that from the scope of your presentation that the combinatorics could get out of hand very quickly when you start to combine nonstationarity and the idea of these mixed types. The mixed type could be from different types of storms or it could be coming from changes in the in the watershed over time even if the storm types are the same over a 40-year period. And if the watershed is changing, then you would also need some sort of a mixed model for that. How do you to prioritize or have some sort of target on the number of different mixed types that you think you might tackle?

Nancy Barth:

What we’re trying to do is address the question from the highest-level flood attribution for causation. So, we look at those peaks that are directly attributed to atmospheric rivers or snowmelt, the more common primary attributions rather than getting muddied into challenges in the watershed changes. We are trying to keep to more primary causes, more attributable to actual storm typing to get to flood type attributions.

Question:

This question is for Joe Bellini and colleagues. What steps were taken to account for extremes? For example, such as physically possible storms that weren’t seen in the record that was used for calibration. There are certainly plausible physical mechanisms for generating an extreme storm, but it just wasn't there on the record. What sort of steps were taken to account for things like that in the weather generator?

Doug Hulstrand:

To account for events that are not in the observed data itself, we rely on the probabilistic side in that we can sample a storm event, look at its rarity and artificially insert that into the time series. The methodology we follow is the SCHADEX methodology, which is common in European countries, where you're taking storms that have occurred in and around the basin that are considered to be transpositionable, and transposing those storms based on a frequency realm from where they occurred to the new storm center location. So that's the method. We ultimately selected several big events with 1000+ year return periods, just south of the basins in the Canadian Rockies and transpositioned them just to the north for several locations.

And when I say transposition, we are transposing the storm in probability realm. Then we can artificially insert that precipitation timeseries into the observed timeseries for the proper season. In this case, they are all June-time events. You can insert those and use the calibrated stochastic model to simulate those upper tail frequency precipitation events. There it becomes an issue. How do you insert?
Bill Kappel:

The bottom line is that it is a plug and play. Of course there are a lot subjective choices that are made in what storms to move, what values to replace, and where in the time frame to replace. But in the end, it’s basically replacing an observed event with a much larger event and rerun the time series with that the larger event as if it had occurred there versus what was observed.

Question:

This question is for all panelists. Have you ever been able to confirm the predicted extreme statistical events by some other independent data?

Doug Hulstrand:

In the realm of looking at extreme events, we do an independent analysis when we’re trying to quantify the annual exceedance probability of PMP. We do the regional frequency analysis, which is one independent method, and the second is a storm stochastic storm transposition which is a different method. We do these independently and see how the two methods kind of come together to estimate that probability or exceedance probability.

Joe Bellini:

This may address part of the question, at least for the study we did. As I mentioned in the presentation, we did look at an observed annual maximum flows. We developed the frequency curve using Log-Pearson III, sing observed data, not just stochastic data for higher probability frequencies. That might help address that question.

Question:

Any perspective on the use of paleoflood information in the types of flooding analysis that you’re doing?

Joe Bellini:

For our study, prior to the stochastic analysis, we used the Bulletin 17 C method. There were some regional paleoflood studies. We incorporated them as basically historical floods. You set the flow ranges and apply the expected moment algorithm to add to the systematic record. In that case, we had about 150 years of systematic record, and we had some additional historical flood records. We used some regional paleoflood data to set some maximum flows for specific periods of time (approximately 600-1200 CE and 1200-1800 CE), before the historic and systematic record began. That informed the statistical analysis of the annual maximum series, which was independently compared to the stochastic analysis we presented on.

Question:

If someone looks at the different talks in this session in terms of riverine flooding, you notice that there are basically three broad use cases: (1) forecasting; (2) real time event response; and (3) prediction and design. Is there any way that we could sort of integrate these together and have a common set of tools that could be used for all these different use cases? Could you see a
community model that could address all these uses? Something analogous to the Weather Research and Forecasting (WRF) model developed by the atmospheric sciences community.

Robert Mason:

I don't know that we have a community model that addresses all of the uses, but increasingly we're seeing more and more powerful models that can address multiple uses. It's entirely possible now to do simulations that are for design as well as prediction, and to really use essentially the same chassis, the same elements of the model may be run with slightly different data, but the models are very much the same. We're having conversations within IWRSS about trying to integrate agency models and to do that from two perspectives: one being sort of a design and the other being sort of focus on operations/forecasting.

William Lehman:

I believe that the community will prevail at some point, and I hope and pray for that day. But you know, everybody has got their turf wars that they live and breathe by. I think that there will always be room for innovation, which means there might be branches and what we need to figure out is how to merge the trunk. The Army Corps of Engineers Watershed Analysis Tool (WAT) and the Corps Water Management System (CWMS) share a common framework for how we sequence events with the WAT being more for planning/design like you were saying and CWMS being more for the real-time response. One thing I will say though is that models are as good as the project that they're built for the reason that they are built. The level of scrutiny on a response or a map to help someone evacuate might be different than a map that is one of 300,000 in a very large uncertainty analysis. What I find is that the scale associated with getting enough events to describe uncertainty sufficiently may be different than getting a really good map for an evacuation. So, to some degree, the models/software themselves may be the same, but the resolution that the model is developed at may differ between applications.

Bill Kappel:

This is always something the public private partnership and being able to utilize and leverage the great work that each these individual agencies and private companies are doing and try to consolidate that into one usable format would be ideal. It's always a matter of how it's done. Everybody has different objectives and agendas, but there certainly should be an overarching framework that can consolidate all this into one aspect and usability. This is a multi-agency thing, right? You have meteorology, climatology and hydrology. All these different aspects trying to solve the same types of problems from different angles. It seems obvious that there should be some kind of overarching, all-encompassing aspect to put all these pieces together and to make them usable for everybody.

Joe Bellini:

In the private sector we've had a variety of entities that we support. It ranges from the dam safety community, to dam owners, to communities with levies, to insurers. Both forecasting and combined tools that can increase the ability for forecasting. When we write an emergency action plan (EAP) or emergency operation plan for a levee system for operating gates and closure structure and so forth, we do link those plans to tools that are available from the federal agencies. And then also closing the gap between pluvial and fluvial (we work mostly in the realm of interior flooding), there's not a lot of tools available for localized flooding. So there are gaps to be filled, not only for design work, but also for helping
communities to improve their forecasting ability to take action well in advance of a flood occurring.

Bill Kappel:

We've obviously had lots of conversations and the conversations continue about how to make these things integrate. There's so much work being done, and in so many different areas. Sometimes there's overlap. Sometimes the work is done in "silos" where we're doing something and somebody else is doing something, and they might not know about it, and vice versa. If there was collaboration between those processes, it would be a much better outcome. For example, just a couple weeks ago during the American Meteorological Society meeting, I was listening to a presentation on some great work being done by UCAR on numerical modeling of PMP estimates and how to bring those together with the deterministic side and the things that have been done over the years by the Weather Service and the Corps of Engineers and private industry. It always comes down to having some leadership and the right people to recognize all the pieces that are out there and figuring out a way to put all the pieces together in a way that's most efficient and usable for the widest range of communities, versus a bunch of work being done individually, and not leveraging off of each other where it makes sense. I don't know the answer to that, but certainly we all recognize it and we have to figure out a way to put those pieces together.

Robert Mason:

I just wanted to mention that even on Monday we had a discussion with NOAA about coupling of our models. The PowerPoint was titled “Coupling Our Models” and the point of the discussion was not just to say we'll take NWS rainfall and add it to a USGS model. It was that we will take an element of a particular model and try to put that element, perhaps with another element from another agency or yet another supplier. I don't know that we will have a single model, but I think that we will see greater integration of them as we go forward.

Moderator:

So, if I paraphrase your answer to say that maybe interoperability is a more reasonable or maybe a preferable goal than a community model. Would that be a fair statement?

Robert Mason:

I won't say that it's preferable, but I say that it's achievable.
3.6 **Day 3: Session 3A – Poster Session**

3.6.1 **Poster 3A-1: Flood Fragility Function Methodology for a Conceptual Nuclear Power Plant**

Authors: Joy Shen*, Michelle Bensi, Mohammad Modarres; University of Maryland

Presenter: Joy Shen

Abstract: Fragility functions quantify the probability that a structure or component will be damaged or fail at a certain intensity measure (IM) of hazard severity (e.g., flood height). Due to limited experience in external flooding probabilistic risk assessment (PRA) in the nuclear energy sector, flooding fragility function development has not been a practical priority for nuclear power plants (NPPs). As a result, there is a gap in the literature related to flooding fragility assessments to support NPP PRAs. However, recent flooding events at Fukushima Daiichi NPP, Fort Calhoun NPP, and other facilities have highlighted the importance of advancing this field. The poster will present a conceptual, illustrative example of an emergency diesel generator (EDG) building with flood barrier components that act as protective measures during an external flood. In addition, this poster will include a brief description of the fragility function development for flood barriers such as penetration seals, doors, floodgates, and louver covers. The data gathered from a literature review and the conservative deterministic failure margin (CDFM) method is used to derive fragility parameters. This information is then used to determine damage states and their associated leakage rate as the external flood enters the building as a result of varying degrees of flood protection damage. Leakage rates and internal flood heights are generated from illustrative geometry and representative hazard characteristics.

Poster Material (ML22061A118):
Flood Fragility Function Methodology for a Conceptual Nuclear Power Plant

Joy Shen, Dr. Michelle Bensi, and Dr. Mohammad Modarres
University of Maryland, College Park
College Park, MD 20742

jshen132@umd.edu; mbensi@umd.edu; modarres@umd.edu

Introduction

• Risks of external flooding events are increasingly relevant
 • Climate change affecting flooding patterns
• Flood fragility functions are not robustly developed in current literature
• External flood PRAs are conservative

• Objectives:
 • Develop external flood fragility methodology
 • Convert external to internal flood height
Overview of Fragility

$$\Pr[g_k(X, \theta) \leq 0 | S = s]$$

- $g_k(X, \theta)$: Limit State Function comprised of demand and capacity
- X: Vector of random variables representing capacity and demand
- θ: Vector of parameters of limit state function
- S: Hazard Intensity/Severity Measure

Overview of High-Confidence-Low-Probability-of-Failure (HCLPF)

- Assume lognormal distribution
- Mean fragility curve can be estimated using HCLPF capacity
 - HCLPF Capacity can find the median capacity of a component
 $$C_{50\%} = c_{HCLPF}e^{2.326\beta_c}$$
 - Composite standard deviation is the combination of aleatory and random uncertainty
 - Given by ASCE standard for SSC design in NPPs for this case study
 $$\beta_c = \sqrt{\beta_k^2 + \beta_0^2}$$
Converting External to Internal Flood Height

\[
(h_{3\text{in}} - h_{1\text{in}}) = \left(\sqrt{2g(h_{2\text{ext}} - h_{3\text{ext}})A_f} \cdot T(h_{2\text{ext}} > h_1)\right) \cdot \frac{1}{l_{1\text{in}} \cdot w_{1\text{in}}}
\]

Obtained flood duration from NACCS study

<table>
<thead>
<tr>
<th>External Flood Height</th>
<th>Volumetric Flow Rate (Q)</th>
<th>Internal Flood Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_2 < 0 \text{ ft})</td>
<td>(Q = 0 \text{ ft}^3/\text{s})</td>
<td>0 ft</td>
</tr>
<tr>
<td>(h_2 < 3 \text{ ft})</td>
<td>(Q = 0.43 \text{ ft}^3/\text{s})</td>
<td>0 ft</td>
</tr>
<tr>
<td>(h_2 < 4 \text{ ft})</td>
<td>(Q = 1.44 \text{ ft}^3/\text{s})</td>
<td>61092 ft</td>
</tr>
<tr>
<td>(h_2 < 7 \text{ ft})</td>
<td>(Q = 2.85 \text{ ft}^3/\text{s})</td>
<td>97869.85 ft</td>
</tr>
<tr>
<td>(h_2 < 15 \text{ ft})</td>
<td>(Q = 5.00 \text{ ft}^3/\text{s})</td>
<td>61000 ft</td>
</tr>
<tr>
<td>(h_2 < 18 \text{ ft})</td>
<td>(Q = 5.66 \text{ ft}^3/\text{s})</td>
<td>0 ft</td>
</tr>
</tbody>
</table>

Future Work

- Develop fragility functions for internal components
- Use fragility functions to inform Bayesian networks
- Develop 3D fragility and hazard surfaces with flood duration and flood height
- Correlations
 - Among components
 - Between flood height and flood duration
Conclusion

- Flood Fragility Methodology
 - Demonstrated external flood fragility development using HCLPF capacity
 - Developed a conversion of external to internal flood height

The authors acknowledge and appreciate research support received from the A. James and Alice B. Clark Foundation. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the funding organization.

References

3. American Society of Civil Engineers, Structural Engineering Institute, Structural Engineering Institute, and Structural Engineering Institute, Educ., American Society of Civil Engineers seismic design criteria for structures, systems, and components in nuclear facilities. Reston, Va.: American Society of Civil Engineers, 2005.
3.6.2 Poster 3A-2: Quantifying Uncertainty in Hurricane Warning Times to Inform Coastal Hazard PRA

Authors: Somayeh Mohammadi*, Michelle Bensi; University of Maryland

Presenter: Somayeh Mohammadi

Abstract:

Nuclear power facilities and other critical infrastructure are often located in coastal regions exposed to the effects of tropical cyclones (e.g., hurricanes and tropical storms). These facilities may employ response strategies that involve actions to install temporary protection or mitigation features. The effectiveness of response strategies may be adversely affected by hardware failures. In addition, there is also a possibility that actions will be unsuccessful due to delayed organizational decision-making, human errors, and differences between the predicted and experienced coastal hazard characteristics. Accurate coastal hazard probabilistic risk assessments for critical infrastructure such as nuclear power facilities must include human reliability assessments that quantify the probabilities that protection and mitigation actions will be unsuccessful. These probabilities depend on the information available to support decisions and the environmental conditions under which actions are performed. A critical input to the human reliability assessment is the time available to perform actions. However, this estimated time is subject to uncertainty due to uncertainty in hurricane and tropical storm forecasts. This study seeks to quantify the uncertainty in the time available to execute actions that are triggered based on storm advisories. Uncertainty assessments are developed using NOAA GIS datasets related to advisory/forecast and observed storm track data from 2012 to 2020. Specifically, the differences between advisory forecasted track data (e.g., predicted landfall locations and times) at various time points are compared against the final observed track. This provides insights into the likelihood that the time available to perform proceduralized actions triggered by advisory information will be longer or shorter than assumed.

Poster Material (ML22061A117):
Quantifying Uncertainty in Hurricane Warning Times to Inform Coastal Hazard PRA

Somayeh Mohammadi, Michelle Bensi

University of Maryland, College Park
Department of Civil and Environmental Engineering,
College Park, MD, United States

7th Annual NRC PFHA Research Workshop
(February 15-18, 2022)

Motivation

Context/assumption:
When a hurricane is being monitored, plants will typically initiate proceduralized actions when a storm is forecasted to make landfall in the vicinity of a plant within x hours (e.g., 48 hours). This "trigger" for action determines the assumed "time available" to complete actions (e.g., for use in HRA/PRA).

Storm is predicted to make landfall in 12/24/48/72/96/120 hours.

How does the forecasted landfall time differ from actual landfall time?
What is the uncertainty in time available to complete actions?
Data structure

- Storm 1
 - Advisory 1
 - Observed value
 - 24 hr prediction
 - Advisory 2
 - Observed value
 - 24 hr prediction
- Storm 2
 - Advisory n
 - Observed value
 - 24 hr prediction
- Storm n

NHC data in GIS format (https://www.nhc.noaa.gov/gis/)
- 2012-2017
- 170 historical storms

Illustration of Method

Predicted and observed time differences
Methodology

Statistical analysis

Similar calculations performed for other metrics

Preliminary results

Note: Preliminary results are known to be overly sensitive to "near landfall" events.
Preliminary results

Scatter plot of predicted time to landfall and actual time to landfall for different target times to take protective actions.

<table>
<thead>
<tr>
<th>Target time periods</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-hr</td>
<td>70%</td>
</tr>
<tr>
<td>36-hr</td>
<td>73%</td>
</tr>
<tr>
<td>48-hr</td>
<td>78%</td>
</tr>
<tr>
<td>72-hr</td>
<td>82%</td>
</tr>
<tr>
<td>96-hr</td>
<td>84%</td>
</tr>
</tbody>
</table>

Correlation between predicted time to landfall and actual time to landfall for different target times.

Challenge: Results are overly sensitive to "near landfall" events.

Scatter plot of predicted time to landfall and actual time to landfall for different target times to take protective actions.
Preliminary results

Estimated difference between the first predicted and observed landfall times for different procedure “trigger” times

<table>
<thead>
<tr>
<th>Target time periods</th>
<th>Late predictions</th>
<th>Early predictions</th>
<th>Total predicted landfalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-hr</td>
<td>17 (51.5%)</td>
<td>36 (48.5%)</td>
<td>33</td>
</tr>
<tr>
<td>36-hr</td>
<td>16 (48.6%)</td>
<td>17 (51.5%)</td>
<td>33</td>
</tr>
<tr>
<td>48-hr</td>
<td>20 (66.6%)</td>
<td>13 (33.4%)</td>
<td>33</td>
</tr>
<tr>
<td>72-hr</td>
<td>23 (57.1%)</td>
<td>14 (42.9%)</td>
<td>31</td>
</tr>
<tr>
<td>96-hr</td>
<td>23 (67.6%)</td>
<td>11 (32.4%)</td>
<td>34</td>
</tr>
</tbody>
</table>

Note: Preliminary results are known to be overly sensitive to “near landfall” events.

Histogram of time differences between predicted and observed landfalls for different target time periods

Next steps

- Modify geospatial algorithm to address issues with sensitivity to “near landfall” events
- Extend the analysis beyond “centerline analyses” to consider wind radii and forecast cone of uncertainty
- Conduct the analysis for longer duration of data
- Develop distributions for the uncertainty in time available to perform actions as well as other storm characteristics
- Analyze the uncertainty related to other storm parameters including:
 - Central pressure deficit
 - Storm forward velocity
 - Heading direction
Thank you

Somaveh@terpmail.umd.edu
mbensi@umd.edu

The authors acknowledge and appreciate research support received from The Department of Energy, Nuclear Energy University Program. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the funding organization.
3.6.3 Poster 3A-3: HEC-WAT Interface and Set Up for the Trinity River PFHA Pilot Project

Author: David Ho*, William Lehman, Brennan Beam, Sara O’Connell, Leila Ostadrahimi
U.S. Army Corps of Engineers, Hydrologic Engineering Center

Presenter: David Ho

Abstract: The Nuclear Regulatory Commission’s (NRC) Probabilistic Flood Hazard Analysis (PFHA) utilized Hydrologic Engineering Center Watershed Analysis Tool (HEC-WAT) to provide a quantitative relationship between the probability of occurrence (or frequency) and magnitude for various flood hazards. HEC-WAT was applied to the Trinity River watershed to demonstrate a method of producing stochastic outputs required for the PFHA. The modeling effort required a number of different applications or “plugins” to perform the PFHA analysis. This poster will show the Trinity River HEC-WAT interface, how the project was set-up for the modeling, which plugins were added, and how the model order was selected.

Poster Material (ML22061A116):
HEC-WAT Interface and set up for the Trinity River Pilot Project

1 outer loop B = a realization

inner loop A varies natural variability, computes Stage Frequency,
outer loop B varies knowledge uncertainty, computes distribution of Stage Frequency

Story Map

- https://storymaps.arcgis.com/stories/1f1242cf6f834cef9662aa420dc1b14e
Plugin Architecture

- Plugins during Compute
 - Stochastic Data Importer
 - Takes in the weather generator data and passes to hydrologic model
 - HEC-HMS
 - Hydrologic Model to generate hypothetical flows
 - Fragility Curve
 - Probability of dam failure for a given elevation
 - HEC-ResSim
 - Reservoir simulation model to compute regulated flows
 - Time Window Modifier
 - Changes the time window of the simulation for RAS model
 - Initial Conditions
 - Links the starting point and outflow assumptions between HEC-RAS and HEC-ResSim
 - HEC-RAS
 - Hydraulics Model for computing dam breaks, flood stages, and reservoir velocities
 - RASCAL
 - Troubleshooting RAS results
 - RASXMAX
 - Extracted the maximum depth and velocity from RASHDF output and set as an output variable
 - Duration
 - Computes max average duration, max accumulated duration, stage/flow/velocity over threshold

[Diagram of HEC-WAT Framework]

Plugin Architecture

- Post Processing Plugins
 - Confidence Builder
 - Computes user-defined confidence intervals, de-stratifies output variables, simplifies plotting using Ramer-Douglas-Peuker algorithm
 - DCInvestigator
 - Reviews computed simulation dss file for missing lifecycles and/or events
 - Merger
 - Merge files computed from distributed compute into a single dss

Distributed Compute
3.6.4 Poster 3A-4: Riverine Flooding HEC-WAT Pilot Project Dam Break Modeling

Authors: Brennan Beam*, William Lehman, Sara O’Connell, David Ho, Leila Ostadrahimi
U.S. Army Corps of Engineers, Hydrologic Engineering Center

Presenter: Brennan Beam

Abstract:

This poster describes how the Hydrologic Engineering Center's Watershed Analysis Tool (HEC-WAT) is being used to include dam failure in their probabilistic flood hazard assessment (PFHA) process. The technical details associated with viewing a system wide dam failure for a single event using HEC-RAS and HEC-ResSim is the primary focus of the poster.

Poster Material (ML22061A115):
HEC-WAT Hydraulics for PFHA

Brennan B. Beam PE, CFM
USACE Hydrologic Engineering Center

Hydraulic Model

- Trinity River Watershed
- Dallas, TX
- Six Breaching Dams
- Two Sets in Series
Unique Challenges

- Reservoirs are modeled in two different software (ResSim & RAS)

- Model must remain stable, appropriate, and efficient for a wide range of events.

The Overview

- HMS: Inflows
- ResSim: Operations
- RAS: Breach Flows & Stages
Shared Modelling of Reservoirs

ISSUES
• How do we set the Time window for RAS?
• How do we set the initial condition in RAS?

Defining the Time window

• Define the anchor point. We want to extend the time window out from the Peak Flow in Dallas calculated in the ResSim model.
• Define a generous window around this.
 • START: Capture pre-event flows
 • STOP: Account for the difference in ResSim routing flows, and RAS’s hydraulic solution.
Defining the Time Window (2)

- Ensure we capture all dam breaches
 - START: Capture any Dam Breach occurring prior to the peak, plus a buffer.
 - STOP: Capture any Dam Breach after the peak, and it’s travel time

Setting Initial Conditions

- Set by the Initial Conditions Plugin
- Mines Values from the Starting timestep in the RAS Adjusted Time window.
- Need to set
 - Initial Flows out of Reservoirs
 - Initial Elevations of both US Cross Section and Storage Areas for Reservoirs

- The initial stream profile in the RAS Model is set by running the initial flows to steady state before beginning the actual timeseries simulation.
Modelling Breaches in HEC-RAS

A Moment of Panic

• First 2 Realizations take 20hrs instead of 10.
• Who’s to blame?
Building for Stability

• Modelling Decisions
 • Represent overbanks as Storage Areas instead of 2D
 • Removing Bridge decks and represent as XS
 • Adjust XS Spacing / Computational Timestep
 • Ensure Smooth Volume Elevation Curves

• Computational Options
 • Adjust Output Timestep
 • Adjust Solution Tolerances
 • Adjust Stability Coefficients
 • Change Solver

Paradiso vs Gaussian Solver

• Gaussian is the RAS default. Runs on a single core of your processor.
• Pardiso is less efficient but runs on multiple cores.

<table>
<thead>
<tr>
<th>Solver</th>
<th>LC20-20 Compute Time</th>
<th>LCS20-20 Compute Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>3:43</td>
<td>2:31</td>
</tr>
<tr>
<td>Pardiso (2-Core)</td>
<td>4:43</td>
<td>2:46</td>
</tr>
<tr>
<td>Pardiso (4-Core)</td>
<td>NA</td>
<td>2:49</td>
</tr>
</tbody>
</table>
Inline Structure Stability

As this coefficient increases, it dampens the first guess of the computation engine projecting an upstream energy slope. Increasing it theoretically increases computation time in stable locations, but can stabilize difficult inline structures, resulting in less instability.

<table>
<thead>
<tr>
<th>Stability Factor</th>
<th>LC20-1 Compute Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8:57</td>
</tr>
<tr>
<td>3</td>
<td>5:58</td>
</tr>
</tbody>
</table>

SUCCESS!
3.6.5 Poster 3A-5: Flooding from Below – The Groundwater Emergence Hazard

Author: Kevin M. Befus*, Patrick L. Barnard2, Peter W. Swarzenski2, Clifford Voss2
1University of Arkansas, 2U.S. Geological Survey

Presenter: Kevin M. Befus

Abstract:

Shallow groundwater levels create hidden flood hazards via ‘groundwater emergence’. In such areas, thin vadose zones could accentuate compound flooding events, and rising water tables could reach the ground surface and flood low lying areas. Even without groundwater emergence, a shoaling groundwater table can reduce the effectiveness and lifespans of coastal urban and rural infrastructure, such as storm drains, shoreline armoring, and other buried assets, as well as potentially remobilize soil contaminants. Wetter regional climate, more frequent and intense storms, focused urbanization and projected sea-level rise are just a few processes that will likely expand future zones of groundwater emergence in some regions. Downstream coastal communities and associated infrastructure are most at risk to the compounded effects of prolonged or chronic groundwater emergence. Numerical simulations of the California coastal region illustrate the expansive extent and nuances of shoaling and groundwater emergence hazards today and predict a substantial increase in groundwater-flooded areas with future sea-level rise. Low-lying areas are most vulnerable to flooding hazards from below due to groundwater emergence, as well as to episodic marine overland flooding and quasi-permanent inundation. Overall, societal exposure to shallow and emergent groundwater with rising sea levels was projected to be 6-9 times higher than overland flooding by the end of the century for coastal California. Thus, responsive flood protection policy and infrastructure should account for not only marine overland flooding but also for groundwater flooding from below. Ongoing work will extend these simulations to coastal aquifers across the southeastern United States.

Poster Material (ML22061A114):
Flooding from below – the groundwater emergence hazard

PFHA 2022
WS7

Kevin M. Befus¹, Patrick L. Barnard², Peter W. Swarzenski², and Cliff Voss³

¹University of Arkansas
²USGS Pacific Coastal and Marine Science Center
³USGS Water Science Mission Area, Emeritus

How sea-level rise affects the groundwater table
How much does a water table rise with sea-level rise?

Water tables become deeper with sea-level rise, K=1 m/day

Northern CA

Central CA

SF Bay

Southern CA

Befus et al. 2020
Societal impacts from rising groundwater: exposure vs vulnerability

Basements and drainage systems could flood
Roads and other structures weaken
Flooding and stream overflows increase
Damage to pipelines and sewage systems
Rising ocean

California (2 m of SLR)
- 4 million residents
- $1.1 trillion in property
- 33,000 km of roads
- 3,000 critical facilities (e.g., schools, police stations, hospitals)
*6-9 times greater exposure then overland flooding

Extending understanding of groundwater emergence

USGS
Point Blue
Sea Grant
NCCOS

Minimal Natural Managed Hybrid Gray

after Sutton-Grier et al. 2015 & www.fisheries.noaa.gov/nosgdi/understanding-living-shorelines
Data and code availability

1. Paper
 doi.org/10.1038/s41558-020-0874-1

2. Water table depths and groundwater head data:
 doi.org/10.5066/P9H5PBXP

3. Saline groundwater wedge footprints data:
 hydroshare.org/resource/1c95059edcf041a0959e0b4a1f05478c/

4. Python scripts: github.com/kbefus/ca_gw_slir

5. Interactive web maps and applications:

 Our Coast Our Future (OCOF) – ourcoastourfuture.org
 Hazard Exposure Reporting and Analytics (HERA) - www.usgs.gov/apps/hera/

Inland extent of water table responsivity with 1 m of sea-level rise

Befus et al. 2020
3.6.6 Poster 3A-6: External Flooding PRA Guidance

Author: Marko Randelovic*1, Raymond Schneider*2
1Electric Power Research Institute (EPRI), 2Westinghouse Company

Presenter: Marko Randelovic

Abstract:

EPRI is currently developing a guidance for performing an external flood PRA for use in the nuclear industry. The guidance establishes a structured framework for treating the spectrum of external flood hazards and provides background materials and examples for the PRA analyst to use. Specifically, the project aids the PRA analyst in:

1) Defining and characterizing the external flood hazard, considering event and plant-specific issues.

2) Estimating external flood hazard frequencies.

3) Developing external flood fragility curves for flood significant Systems, Structures, and Components (SSCs).

4) Preparing an external flood event tree, including consideration of actions preparing the plant for the flood, mitigating the flood hazard, and responding to random and flood-induced failures of initial flood mitigation strategies.

Guidance is being developed to be consistent with expected requirements of the ASME/ANS PRA Standard. To facilitate understanding simple hypothetical example applications illustrate the interface with the probabilistic flood hazard assessment (PFHA), parsing the flood analysis to characteristic event frequencies and the development of various PRA flood event trees and overall quantification overall process. This guidance also includes a potential screening approach for the flood related combined/correlated hazards.

Poster Material (ML22061A113):
External Flooding PRA Guidance
7th Annual Probabilistic Flood Hazard Assessment Workshop

Marko Randelovic - Principal Technical Leader, EPRI
Ray Schneider, Fellow Engineer, Westinghouse

February 17, 2022

Background

- Past EPRI projects have provided guidance supporting implementation of the ASME/ANS PRA Standard to assess risks of internal and external hazards.
- The current project expands the external flood PRA effort by integrating available information on external flood modeling to develop a practical methodology for the development of the external flooding PRAs.
- Flood related combined/correlated hazards screening methodology is currently being developed and will be captured in the final draft of the External Flooding PRA guidance.
- Lessons learned from the past external flood events will supplement the External Flooding PRA guidance and provide practical guidance in preparing for and mitigating external floods at NPPs.
External Flood Guidance for Probabilistic Risk Assessment

- Provides a structured roadmap for performing an External Flood PRA (XFPRFA) consistent with meeting requirements of the ASME/ANS PRA Standard.
- Includes guidance for:
 - Defining and characterizing the external flood hazard
 - Including estimation of external flood hazard frequencies, severity and associated uncertainties
 - Identifying flood induced failure modes and develop external flood fragility curves for flood significant Systems, Structures, and Components (SSCs).
 - Preparing and quantifying a PRA external flood event tree.

External Flood Guidance for Probabilistic Risk Assessment

- Guidance uses baseline internal events and internal flood PRAs as basis for developing relevant flood-induced failures for the External Flood PRA.
- Guidance is structured consistent with the ASME/ANS PRA Standard
- Guidance builds upon prior relevant EPRI references for hazard screening and example PFHA studies for representative NPPs
- Where available and appropriate USACE and NRC documents and methods are identified to support both PFHA and fragility assessments
- Methodology has been reviewed by EDF and found to be consistent with the EDF external flood PRA process
Flood Related Combined Hazards

- Process extends External Flood Hazard identification and characterization to consider impact of secondary flood and other coexistent hazards
- Provides basis for more realistic treatment of complex flood hazards for External Flood PRAs
- Process uses a framework that extends the EPRI Combined Hazard Screening Process (developed initially in EPRI TR 3002005287)
- Focus on characterization of complex flood hazards by identification of combined hazards and their respective impact on external flood PRA scenarios
Flood Related Combined Hazards

- Approach includes potential for considering multiple coexistent hazards within the External Flood PRA model
- Identifies those coexistent hazards that should be considered within the site-specific external flood hazard including those that may be Correlated, Consequential or Random
- Structured process provides a vehicle for evaluating completeness of primary External Flood PRA characterization; supplemental matrix identifies treatment considerations identified within the matrix

Practical Insights from External Flood Events

- New task to present insights from operational experiences to support development of actionable guidance/recommendations for developing flood hazard coping and mitigation strategies.
- Focus is on lessons learned from external flood events and findings at Fort Calhoun Station but will also consider insights from regulatory and international experience.
- Guidance supports development, validation, and improved procedural guidance and overall preparedness for responding to external flood challenges.
Major 2022 Project Activities

- Comparison between EPRI and EDF External Flooding PRA methodologies and combined hazards screening approach - In progress (target end of April)

- Final draft available for NRC-RES review – May 2022

- Draft EPRI white paper on the Operating Experience and Lessons Learned – July 2022
3.7 Day 3: Session 3B – Coastal Flooding

Session Chair: Joseph Kanney, NRC/RES/DRA

3.7.1 Presentation 3B-1: An Overview of CSTORM Model Development and Results for the South Atlantic Coastal Study (SACS)

Authors: Margaret Owensby*, Thomas Massey†, Tyler Hesser†, Mary Bryant†, Andrew Condon‡
†U.S. Army Corps of Engineers (USACE), Engineer Research and Development Center, Coastal and Hydraulics Laboratory, ‡USACE Jacksonville District

Speaker: Margaret Owensby

3.7.1.1 Abstract

The U.S. Army Corps of Engineers (USACE) South Atlantic Division and the Engineer Research and Development Center (ERDC) have been engaged in a large, multi-year project called the South Atlantic Coastal Study (SACS). Following the precedent of other large coastal studies within the USACE, such as the North Atlantic Coastal Comprehensive Study (NACCS), the SACS study was designed to identify and assess coastal hazards risks in the domain of concern on a regional scale and to support future resilience and sustainability efforts in coastal communities. Probabilistic coastal hazards analysis using a state-of-the-art innovative statistical and probabilistic framework for the comprehensive characterization of storm climatology was applied as part of one component of this study. Modeling was performed using the high-resolution Coastal Storm Modeling System (CSTORM-MS), and advanced joint probability analysis of atmospheric forcing and primary storm responses, including associated aleatory and epistemic uncertainties, was conducted. The study was broken into three domains: 1) the southern U.S. East Coast ranging from the border of North Carolina and Virginia to the southern tip of Florida, 2) the Gulf Coast from the southern tip of Florida to the Mississippi and Louisiana state boundary, and 3) Puerto Rico and the U.S. Virgin Islands. The focus of this presentation is on the South Atlantic (SA) and Gulf of Mexico (GoM) domains, for which 1700 unique synthetic tropical storm events, 15 historical tropical storms, and 70 historical extratropical events were simulated for present-day sea level as well as two sea level rise scenarios. An overview of the CSTORM model development and validation process for the two domains will be given, along with details about the storm suite and water levels. A summary of the modeled results and their inclusion in the Coastal Hazards System (CHS) will also be presented.

3.7.1.2 Presentation (ADAMS Accession No. ML22061A112)
AN OVERVIEW OF CSTORM MODEL DEVELOPMENT AND RESULTS FOR THE SOUTH ATLANTIC COASTAL STUDY

Margaret Owensby, Chris Massey, Ty Hesser, Mary Bryant, and Norberto Nadal
USACE-ERDC
Coastal & Hydraulics Laboratory

Andrew ‘Drew’ Condon
USACE Jacksonville District

Probabilistic Flood Hazard Assessment Research Workshop
February 17, 2022

SACS
South Atlantic Coastal Study

The South Atlantic Coastal Study was authorized by Section 1204 of WRDA 2016. Guidance was issued on Nov. 16, 2017, requiring the study to follow planning guidance for watershed assessments. Public Law 115-123 provided Federal funding in the amount of $16M to cover 100% of the Study costs.

Study Goals

- Provide a Common Operating Picture of Coastal Risk
 ▶ Provide decision-makers at all levels with a comprehensive and consistent regional assessment of coastal risk.
- Identify High-Risk Locations/Focus Current and Future Resources
 ▶ Enable resources to be focused on the most vulnerable areas.
- Identify and Assess Risk Reduction Actions
 ▶ Assess actions that would reduce risk to vulnerable coastal populations.
- Promote and Support Resilient Coastal Communities
 ▶ Ensure a sustainable coastal landscape system, considering future sea level rise scenarios and climate change. Provide information to stakeholders to optimize existing efforts to reduce risk.
- Promote Sustainable Projects and Programs
 ▶ Develop and provide consistent foundational elements to support coastal studies and projects; regionally manage projects through Regional Sediment Management and other opportunities.
Combined Joint Probability of Coastal Storm Hazards

- **Forcing**
 - Tropical cyclones
 - Extratropical cyclones
 - River Flows

- **Response**
 - Water level (storm surge, astronomical tide, SLC)
 - Currents
 - Wave height, peak period, direction
 - Wind speed, direction

Provides a robust, probabilistic, and standardized approach used for establishing the risk of coastal communities to future occurrences of storm events and evaluating flood risk management measures.
Three Distinct Study Regions for Modeling/Statistics

Storm Climatology and Hydrodynamic characteristics allow the SAD region to be split into 3 distinct study regions:

1. Puerto Rico & U.S. Virgin Islands
2. South Atlantic U.S. Coastline
3. Northern/Eastern Gulf of Mexico

South Atlantic Storm Suite

South Atlantic / Gulf of Mexico
1,700 TCs + 70 XCs

PR/USVI
300 TCs
Modeling Scenarios

- Sets of Modeling and PCHA results for CHS South Atlantic:
 1. Puerto Rico & U.S. Virgin Islands ~ 300 Storms
 - Storm surge + waves
 - Storm surge + waves + SLC 1 (2.33 ft)
 - Storm surge + waves + SLC 2 (6.95 ft)
 2. South Atlantic (North Carolina to South Florida) ~1200 Storms
 - Storm surge + waves
 - Storm surge + waves + astronomical tides
 - Storm surge + waves + SLC 1 (2.73 ft)
 - Storm surge + waves + SLC 2 (7.35 ft)
 3. Gulf of Mexico ~ 1200 Storms
 - Storm surge + waves
 - Storm surge + waves + SLC 1 (2.72 ft)
 - Storm surge + waves + SLC 2 (7.35 ft)

ADCIRC & STWAVE
South Atlantic Domain

Dr. Joannes Westerink and team at Notre Dame constructed this mesh using Oceanmesh2D software
ADCIRC & STWAVE Gulf of Mexico Domain

- ADCIRC mesh built by Scott Hagen and Matt Bilskie
- Approximately 7.8 M nodes, 15.6 M elements

Mesh Bathymetry/Topography

13 STWAVE domains
- Starred domains are 150-m (high population areas) while others are 200-m resolution
- Extended from at least 35 m depth contour to 10 m topographic contour
- Red dots indicate location of buoys for validation

Regional Topo/Bathy Data Sources

- Topography/bathymetry data taken from 3-m resolution DEM developed by JALBTCX (USACE), as well as SRTM, USGS, NOS, FEMA datasets

Example is from GoM area and is likewise for SA areas.

Image courtesy of Scott Hagen and Matt Bilskie
Closer View of ADCIRC South Atlantic Domain

View of SACS SA ADCIRC mesh elements in the Jacksonville, FL area.

Similar inland resolution to FEMA RISK Map Mesh

Same view of ADCIRC mesh elements from NOAA's HSOFS mesh.

GOM Domain ADCIRC Mesh Close-ups of Panama City, FL

a. Map with save point locations
b. Image of mesh elements
c. Image of mesh topography/bathymetry
d. Color-map image of mesh resolution
Save Point Locations

- Breakline at coast (WV3): ~2000 m spacing
- Coastline offset: ~50,000 m inland: ~7,000 m spacing
- Breakline at 40 m contour: ~9,000 m spacing
- 40 meter contour breakline offset: ~10,000 m out ~10,000 m spacing
- Additional points from 5m contour added: ~1,000 m spacing
- Key locations of interest added manually

WaveWatch III v5.16: SACS South Atlantic Domain Setup

- Fully Parallel phase-averaged spectral wave model developed by the NOAA National Centers for Environmental Prediction
- Runs in both structured and unstructured grids and has the option for explicit and implicit (not ready for primetime) solvers
- Presently being used by the Wave Information Study for the Atlantic and Pacific wave hindcasts.

WW3 will use two way coupling at the boundaries of 3 grids with nesting

<table>
<thead>
<tr>
<th>Grid</th>
<th>Longitude (W deg)</th>
<th>Latitude (N deg)</th>
<th>Resolution (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin_L1</td>
<td>-99.0, -55.0</td>
<td>5.0, 47.0</td>
<td>0.2 x 0.2</td>
</tr>
<tr>
<td>EC_L2</td>
<td>-84.0, -72.0</td>
<td>19.0, 41.0</td>
<td>0.1 x 0.1</td>
</tr>
<tr>
<td>EC_L3</td>
<td>-84.0, -73.0</td>
<td>21.0, 41.0</td>
<td>0.05 x 0.05</td>
</tr>
</tbody>
</table>

Similar setup used for Gulf of Mexico
Validation Storms for South Atlantic Domain

The paths of the seven historical storms used to calibrate and validate ADCIRC, STWAVE, and WaveWatch III simulations for the South Atlantic domain (Image Source: NOAA's Historical Hurricane Tracks website)

WW3 Validation for Historical Hurricanes: Atlantic

Statistics:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>TestB50 (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>-0.17</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.43</td>
</tr>
<tr>
<td>Corr</td>
<td>0.94</td>
</tr>
<tr>
<td>Eff</td>
<td>0.85</td>
</tr>
</tbody>
</table>
STWAVE Validation: Hurricane Matthew

Maximum Significant Wave Height

Time Series at Wave Buoys

Station 44056 Station 41108 Station 41113

Validation Storms for Gulf of Mexico Domain

The paths of the eight historical storms used to calibrate and validate ADCIRC, STWAVE, and the CSTORM coupled ADCIRC+STWAVE simulations for the Gulf of Mexico domain (source: NOAA's Historical Hurricane Tracks website)
Hurricane Michael Results

Model data comparison at gauges and for most high water marks is very good, although there is underestimation for the most extreme HWM's.

Sample Results – Synthetic Tropical Storm 1230

Storm Track
Forward Speed: 5.52 mph
RMW: 12.3 nmi
Max. Wind Speed at Landfall: 117.01 mph (Cat. 3)
Min. Pressure: 965 mb

Max. Wind Speed
(image courtesy of N. Nadal-Caraballo)

Maximum Water Surface Elevation

Max. Significant Wave Height

Peak Wave Period

(image courtesy of N. Nadal-Caraballo)
CSTORM Production System

- The CSTORM Production System (CSTORM-PS) makes use of standard Linux/Unix tools (bash scripting) and readily available open source software, Python
- The production system allows for
 - Rapid preparation of input files (Reduces chances for human error)
 - Execution of the simulation and post processing (Optimized CPU usage)
 - Efficient hierarchical storage and archival of results
 - Project design condition evaluations enabled

CSTORM Production System

Coastal Hazards System (CHS)

- The CHS is the only national database and web-based data mining and visualization tool for probabilistic coastal hazard analysis (PCHA) results.
- Based on high-resolution / high-fidelity probabilistic, atmospheric and hydrodynamic modeling of coastal storms.
- Directly supports:
 - SMART planning/feasibility studies (3x3x3 rule)
 - PED, stochastic-forcing structure design
 - Hazard analysis and risk assessments

https://chs.erdc.dren.mil
Coastal Hazards System (CHS)

PCHA results and deliverables:
- Response Hazard Curves: surge, water level, waves, wind, currents
- Annual Exceedance Probability values: 1 to 10000 (1/years)
- Confidence Limits: 2%, 16%, 84%, 90%, 98%
- Uncertainty quantification & SLC nonlinear residuals
- Peaks and time series files for all storms in NetCDF/CSV formats
- Atmospheric and hydrodynamic model inputs
- Model grids, technical reports

https://chs.erdc.dren.mil

SACS Findings To-Date

Significant Risk
- Tier 1 & 2 identified 700+ high risk locations
- Back bay storm surge inundation is a key driver
- Sea level rise will non-linearly increase surge in some areas: San Juan vicinity, St. John, St. Croix, throughout the back bays of the Atlantic Coast
- Further understanding/application of compound flooding impact is needed
- Significant need for follow-on efforts to address complex risk related to combined inland/coastal flood risk and ecosystem restoration

Support Joint Responsibility
- Follow-on Corps studies (feasibility, CAP, etc.)
- Actions within current authorities (RSM, EDREs, Planning Assistance to States, Silver Jackets, etc.)
- Shared tools support actions within expanding at-risk areas

Slide Courtesy of Drew Condon, USACE-SAJ
Summary

The SACS CHS and CSTORM products will provide valuable data, both oceanographic and storms, in support of the Corp missions and those of other agencies and communities for many years to come, in order to:

• understand the likelihood and extent of present and future storm surge and storm waves

• design more reliable engineering projects and effective coastal storm damage solutions to reduce wave attack, provide flood protection, and create robust environments (Eng. w/ Nature) that can provide a buffer to coastal flooding

• allow communities to prepare for the future

CSTORM-MS

Coastal Hazards System

Team Acknowledgements

• USACE South Atlantic Division (SACS) Project Team
• Chris Massey – (CSTORM Modeling Team Lead)
• Norberto Nadal-Caraballo – (CHS Team Lead)
• Tyler Hesser and Al Cialone – (Deep Water Waves)
• Mary Bryant and Catie Dillon – (Nearshore Waves)
• Margaret Owensby, Leigh Provost, Amanda Tritinger, John Goertz, Fatima Bukhari, Abi Wallace, and Yan Ding – (Production Modeling Team)
• Victor Gonzalez, Madison Campbell, Debbie Green, Efrain Ramos-Santiago, Marissa Torres, and Jeff Melby - (Hazards Team)
• ERDC DSRC – (HPC Access)
• JALBTCX – (DEMs)
• Andy Cox of OceanWeather Inc. - (Storm Climatology & Storms Support)
• Joannes Westerink and Team at Univ. of Notre Dame - (Mesh)
• Scott Hagen of LSU and Matt Bilskie of UGA – (Mesh)
SACS Questions?
Contact Information

Chris Massey, PhD
Leader, Coastal Storm Modeling Team
U.S. Army Engineer R&D Center
Coastal and Hydraulics Laboratory
e-mail: Chris.Massey@usace.army.mil

Norberto C. Nadal-Caraballo, PhD
Leader, Coastal Hazards Group
U.S. Army Engineer R&D Center
Coastal and Hydraulics Laboratory
e-mail: Norberto.C.Nadal-Caraballo@usace.army.mil

Andrew “Drew” Condon, PhD, P.E.
SACS Engineering Technical Lead
U.S. Army Corps of Engineers
Jacksonville District
e-mail: Andrew.J.Condon@usace.army.mil
3.7.2 Presentation 3B-2: Compound Flood Hazard Assessment using a Bayesian Framework

Somayeh Mohammadi*, Michelle Bensi, Shih-Chieh Kao, Scott DeNeale, Joseph Kanney, Elena Yegorova, Meredith Carr
1University of Maryland, 2Oak Ridge National Laboratory, 3U.S. Nuclear Regulatory Commission, 4U.S. Army Corps of Engineers Engineer Research and Development Center Coastal and Hydraulics Laboratory

Speaker: Somayeh Mohammadi

3.7.2.1 Abstract

Compound flooding is a topic that has received high attention recently. These types of flood events are caused by the occurrence of more than one flood mechanism, such as storm surge, precipitation, and tides. Compound flood events can cause more severe impacts on societies and the built environment than flood events caused by just a single flood mechanism. In this way, a probabilistic assessment of compound flood hazards is necessary for a realistic assessment of flood hazards. This study focuses on the probabilistic assessment of compound flood hazards caused by the simultaneous occurrence of hurricane-induced surge, precipitation, tide, and antecedent river flow. A Bayesian framework is developed to include these flood drivers in the probabilistic flood hazard assessment for a case study on the Delaware River in Trenton. The inputs to this model include storm parameters (i.e., central pressure deficit, forward velocity, heading direction, radius to maximum wind and landfall location), antecedent river flow, and predicted tidal levels. A series of predictive surrogate models are developed to estimate total river discharge accounting for hurricane-driven surge, antecedent flow, and tides. The proposed model can be used to generate a probability distribution for total river discharge at the time of the storm occurrence in the study area. Furthermore, the model can be used to generate a hazard curve representing the annual exceedance frequency of total river discharge caused by the hurricane-induced flood mechanisms mentioned earlier.

3.7.2.2 Presentation (ADAMS Accession No. ML22061A111)
Multi-Mechanism Flood Hazard Assessment in Coastal Areas

Somayeh Mohammadi, Michelle Bensi, Shih-Chieh Kao, Scott DeNeale, Elena Yegorova, Joseph Kanney and Meredith L. Carr

(1) University of Maryland College Park, Department of Civil and Environmental Engineering, College Park, MD, United States
(2) Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, United States
(3) Nuclear Regulatory Commission, Rockville, MD, United States
(4) U.S. Army Corps of Engineers, ERDC/CHL, Vicksburg, MS, United States

7th Annual NRC PFHA Research Workshop
(February 15-18, 2022)

Research objective

Develop a Bayesian-motivated approach for probabilistic assessment of flood hazard due to simultaneous occurrence of storm surge, precipitation, tides and river flow.
Bayesian-Motivated Approach

Bayesian network

- Tropical cyclone-induced precipitation
- Tropical cyclone-induced surge
- Surge-, tide-, river-induced discharge (combined discharge)
- Total discharge

Case study location and data sources

- USGS gage 01463500
- NOAA tide gage 8539993
- CHS Save points (5373 & 7624)
Statistical analysis of river flow

- Gather daily discharge time-series
- Remove hurricane event dates from record
- Randomly sample a subset of data
- Perform statistical assessment to define distribution
- Lognormal distribution as the best fit distribution

Statistical analysis of tides

Data:
NOAA tide stage 8530903
Predictive models

Surge model

<table>
<thead>
<tr>
<th>Hurricane Parameter</th>
<th>Distribution</th>
<th>Functional Form</th>
<th>Distribution Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔP</td>
<td>Lognormal</td>
<td>$F(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$</td>
<td>$\mu = 25$ kPa, $\sigma = 7$ kPa</td>
</tr>
<tr>
<td>R_{max}</td>
<td>Lognormal</td>
<td>$F(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$</td>
<td>$\mu = 25$, $\sigma = 10$</td>
</tr>
<tr>
<td>γ</td>
<td>Normal</td>
<td>$F(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$</td>
<td>$\mu = 6.0$, $\sigma = 2.0$</td>
</tr>
<tr>
<td>Q</td>
<td>Normal</td>
<td>$F(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$</td>
<td>$\mu = 6.0$, $\sigma = 2.0$</td>
</tr>
</tbody>
</table>

Data source: [URL](https://www.usnrc.gov)
Wind model

Precipitation model

Source:
- Tropical Rainfall Measuring Mission (TRMM) rain rates (TRR) model
 https://journals.ametsoc.org/view/journals/jamc/57/12/p0173_1.xml
Compute total discharge (Q)

\[Q_{\text{Total}} = Q_F + Q_{TQR} \]

Decrease discretization error

Monte Carlo simulation
- Generating conditional probability tables (CPTs)
- Reducing the impact of discretization error
Inclusion of modeling error (epistemic uncertainty)

For all models:
- Normal distribution assumed for error
- Error discretized into 9 bins

Correct predicted response variables:
\[X = X_{pred} + \epsilon_X \]

Estimate annual exceedance frequency

\[\lambda + P(Q > q) \]

"Representative" hazard curve
Assessment of the model performance

Modeled probability distributions for total river discharge

| Name of the storm | ¶ | LAT | LONG | SLP | Pmax | # of | P90 | RMSE | Time at Cv 80% (h) | Cv | UCEG CV (%) | Model 50% of PMI | Morrisey 1850 (%)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WAVE</td>
<td>350.52</td>
<td>-78.95</td>
<td>31.61</td>
<td>774.5</td>
<td>78</td>
<td>57</td>
<td>57</td>
<td>0.96</td>
<td>2,000</td>
<td>75.00</td>
<td>51,000</td>
<td>125,000</td>
<td></td>
</tr>
<tr>
<td>NBR</td>
<td>38.75</td>
<td>-74.05</td>
<td>12.31</td>
<td>67</td>
<td>7</td>
<td>25</td>
<td>16</td>
<td>1.35</td>
<td>2,000</td>
<td>75.00</td>
<td>51,000</td>
<td>125,000</td>
<td></td>
</tr>
<tr>
<td>MDE</td>
<td>38.92</td>
<td>-73.08</td>
<td>15.63</td>
<td>22</td>
<td>5</td>
<td>20</td>
<td>16</td>
<td>2.25</td>
<td>10,000</td>
<td>10,000</td>
<td>51,000</td>
<td>125,000</td>
<td></td>
</tr>
</tbody>
</table>

*For discharge, units in millions, no. in years.

Next steps

- Consider the non-linearity between surge induced and precipitation induced discharge in the analysis
- Conduct the analysis using other methods (for comparison)
 - Copula based
 - Direct estimation of the joint distribution
- Inclusion of uncertainty in storm parameters
Thank you

Somayeh@terpmail.umd.edu
mbemi@umd.edu
3.7.3 Presentation 3B-3: Coastal Flooding PFHA Pilot Study

Authors: Victor M. Gonzalez*, Meredith L. Carr, Karlie Wells, Norberto C. Nadal Caraballo U.S. Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory (USACE/ERDC/CHL)

Speaker: Victor M. Gonzalez

3.7.3.1 Abstract

Inundation due to the compound effects of storm surge and rainfall associated with coastal storms can produce widespread damage to coastal infrastructure. A coastal probabilistic flood hazard assessment (PFHA) pilot study is being conducted to demonstrate the application of PFHA to external flooding at a hypothetical nuclear power plant (NPP) location on the Lower Neches River watershed in Texas. Compound flooding hazards being assessed in this study include storm surge, astronomical tide, waves, rainfall, and coincident riverine flooding along with associated uncertainties. The assessment requires the characterization of storm climatology for tropical cyclones (TCs) using the U.S. Army Corps of Engineers' (USACE) Coastal Hazards System (CHS) data based on its Probabilistic Coastal Hazard Analysis (PCHA) framework. The PCHA is a probabilistic framework for quantifying coastal storm hazards that includes storm climatology characterization, high-resolution, high-fidelity numeric atmospheric, hydrodynamic, and wave modeling, and advanced joint probability analysis of atmospheric forcing to develop storm hazard curves and uncertainty. The compound probabilistic modeling approach being implemented here incorporates rainfall within the PCHA framework though the use of a physics-based parameterized tropical cyclone rainfall (TCR) model driven by the same atmospheric forcing, allowing concurrent characterization of the compound flooding hazard and associated uncertainties. Simulation of both coastal and riverine processes driven by TCs will be completed using hydrologic, hydraulic, and hydrodynamic models: synthetic TC rainfall will be applied to a HEC-HMS model of the Neches Watershed and the flow output routed through the inland-coastal boundary through the use of a 2D HEC-RAS model. The compound hazards will be assessed through the application of a loosely coupled HEC-RAS and ADCIRC modeling framework and quantified through the integration of the combined responses, including uncertainty. As the coupled inland and coastal models are being implemented, the impacts of several modeling options are being explored including: precipitation-based infiltration parameters, antecedent flow conditions, precipitation in the hydraulic model, boundary condition geometry and additional runs of hydrodynamic models for multiple riverine flow conditions.

3.7.3.2 Presentation (ADAMS Accession No. ML22061A110)
Coastal Compound Study PFHA Pilot Study

- Presenter: Victor M. Gonzalez, PE (USACE ERDC-CHL)
- Meredith Carr, PhD, Karlie Wells, Norberto C. Nadal Caraballo, PhD (USACE ERDC-CHL).
- 17 February 2022

Presentation Outline

- Project Objectives
- Probabilistic Storm Surge Hazard Modeling
- Compound Flooding Hazard Approach
- Synthetic Tropical Cyclone Rainfall Assessment and Bias Correction
- Hydrologic Modeling and Antecedent Flow
- Hydraulic Modeling Approach
Study Objectives

Demonstrate the application of PFHA to external flooding at a hypothetical location in a coastal setting.

- Leverage existing data and models characterizing the hydrology, hydraulics, and hydrodynamics of the region.
- Primary region: Texas Coast
 - Available H&H data and models offered through SWG.
 - CTXS results through ERDC-CHL.
- Apply the Coastal Hazards System’s (CHS) Probabilistic Coastal Hazard Analysis (PCHA) framework developed by ERDC-CHL.
 - Extended to include precipitation-induced riverine flooding.

Probabilistic Storm Surge Hazard Modeling

- Approach dependent on type of cyclonic exposure:
 - Tropical Cyclones (TC): Joint probability analysis of TC forcing parameters.
 - Development of synthetic TCs through sampling of joint probability distribution of TC parameters.
 - Development of synthetic TCs wind and pressure fields and hydrodynamic modeling of response.
 - Extratropical Cyclones (XC): extreme value analysis of atmospheric and hydrodynamic modeling response of historical XCs wind and pressure fields.

Standard TC parameters

- Track position (reference location, \(x_0\))
- Track angle (heading direction, \(\theta\))
- Intensity (central pressure deficit, \(\Delta p\))
- Size (radius of maximum winds, \(R_{max}\))
- Translational speed (\(V_t\))
Probabilistic Storm Surge Hazard Modeling

JPM Integral

\[\lambda_r(\xi) = \sum_{i=1}^{n} \lambda_i P[r(\xi) + \epsilon > r|\xi, \epsilon] f_{\xi}(\xi) f_{\epsilon}(\epsilon) \, \text{d}\xi \text{d}\epsilon \]

where:
- \(\lambda_i(\xi) = \text{AEF of TC response } R \text{ due to forcing vector } f \)
- \(P[r(\xi) + \epsilon > r|\xi, \epsilon] \)
- \(\lambda_i = \text{probability mass (storms/yr) or } \lambda_i P \)
- \(\text{with } p_i = \text{product of discrete probability and TC track spacing (km)} \)
- \(\lambda_i P[r(\xi) + \epsilon > r|\xi, \epsilon] \text{ conditional probability that storm } i \text{ with parameters } \xi_i \)
- \(\epsilon = \text{unbiased error or aleatory uncertainty of } r \)

Compound Flooding

- Until recently, coastal probabilistic flood hazard studies have mainly focused on surge and wave climate components of the flooding hazard.
- Concurrent riverine flooding effects have typically been addressed in the hydrodynamic modeling through assignment of baseline flows representing a particular level of hazard.
- Hurricane Harvey brought to the forefront the risk of compound flooding, in particular rainfall generated flooding.
Compound Flooding Hazard Approach

Study approach:

- Incorporate rainfall within the PCHA framework though the use of a physics-based parameterized tropical cyclone rainfall (TCR) model.

- Hazard driven by the same atmospheric forcing than drives surge hazard (i.e. synthetic TCs).

- Concurrent characterization of the compound flooding hazard and associated uncertainties.

Site Location

- Evaluated locations within the Lower Neches River.
- Selected location labeled Site 4.
- Surge levels vary from:
 - 1×10^{-2} AEP ~10 ft
 - 1×10^{-4} AEP ~20 ft
- Developed area, industrial (petrochemical) and residential zones.
- All locations affected by riverine and storm surge flooding and within H&H modeling domains.
Existing Site Information

- LiDAR Topography
 - 70 cm resolution (SWG)

- 2019: Fort Worth District completed the Lower Neches Riverine Flooding Analyses (LNRA) (Mosser et al. 2019)
 - Evaluation of riverine flooding along both Sabine and Neches Rivers

- HEC-HMS and HEC-RAS models have been made available to ERDC-CHL through the SWG

Existing Site Information

Coastal Texas Study

Storm response and statistical analysis for entire coastal Texas region

- Characterization of storm climate
- 660 unique storms
- High-fidelity storm surge and wave computations
 - 18,000 savepoints
- AEP and average recurrence interval
Compound PCHA Development

Compound PCHA

Existing Models & Data
- PCHA based on Coastal Texas results
- ADCIRC and STWAVE models
- HEC-HMS & HEC-RAS inland models

Link by Joint Effects
- Tropical Cyclone Rainfall Model (Lu et al. 2018) using synthetic TC parameters.
- Boundary conditions for inland hydraulic and coastal hydrodynamic models.
- Storm Selection of subset of 150 storms using Genetic algorithm-based Design of Experiments (DoE) approach.

Uncertainty
- JPM
- H&H Modeling (e.g. antecedent flows, Manning n’s)
Compound PCHA

Loose Coupling under Review

1st Loop in BLUE
- Step through PCHA to Coastal Response and Hazard Curves
- Storm selection from PCHA Results to TC Rainfall Model and next surge model run
- Synthetic storm parameters used as input to TC Rainfall Model
- Coastal Response elevations as boundary condition (BC) for hydraulic model
- Step through TC Rainfall, H&H Models to Inland Response

2nd Loop in PURPLE
- From hydraulic model, distributed inland flow used as BC for coastal hydrodynamic models
- Coastal responses:
 - Used to develop compound hazard curves (or)
 - Coupling can be repeated

Tropical Cyclone Rainfall (TCR) Analysis
Tropical Cyclone Rainfall
Synthetic Rainfall Modeled from CHS Storms

- Parametric Tropical Cyclone Rainfall Model (TCRM, Lu et al. 2018)
 - Physics-based model with rainfall estimated by upward vapor flux
 - Accounts for major rainfall-generating mechanisms: frictional, topographic, baroclinic, vortex stretching
 - Produces gridded time-series data based on evolution of synthetic storm parameters (Wmax, Rmax, lation)
 - 0.1 x 0.1 degree spatial resolution (nominal 10 km); 1-hour temporal resolution
- Limitations: Like other TCR models, does not well account for storm outer rainbands or interaction with other meteorological features.

Collaboration for TC Rainfall
- Princeton University
 - Dazhi Xi, PhD student
 - Ning Lin, Associate Professor
 - Natural hazards & risk analysis; focus on hurricanes

Evaluation of TCRM results

- Assessment at three grid locations within the Neches River watershed representing lower, middle and upland areas and three rain gages (Beaumont, Rusk, and Jasper gages).

- Ability to model individual historical storms.

- TCRM precipitation frequency assessment at grid locations comparing with NOAA Atlas 14 and gage extreme value analysis.
 - IMPORTANT: NOAA Atlas 14 consists of mixed storm populations.
 - TCs found to be a primary driver of precipitation at lower Neches.

<table>
<thead>
<tr>
<th>ARI (years)</th>
<th>NOAA Atlas 14 24-hr Rainfall (mm)</th>
<th>GPD fitted 24-hr TC rainfall (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>368</td>
<td>350.4</td>
</tr>
<tr>
<td>100</td>
<td>442</td>
<td>431.0</td>
</tr>
<tr>
<td>500</td>
<td>666</td>
<td>688.6</td>
</tr>
</tbody>
</table>
Evaluation of TCRM results

- Comparisons of TCRM results with gage, NCEP Stage IV, and PRISM data for the three gage locations.

- The model underpredicted precipitation for various historical storms, particularly for storms with larger event total precipitation.

Comparing to NOAA Atlas-14 – Lower Neches River Watershed

- Lower Neches

<table>
<thead>
<tr>
<th>Duration</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-hr</td>
<td>100</td>
<td>123</td>
<td>175</td>
<td>213</td>
<td>251</td>
<td>302</td>
<td>354</td>
<td>406</td>
<td>501</td>
<td>606</td>
</tr>
<tr>
<td>2-day</td>
<td>114</td>
<td>154</td>
<td>209</td>
<td>265</td>
<td>304</td>
<td>354</td>
<td>406</td>
<td>501</td>
<td>606</td>
<td>756</td>
</tr>
</tbody>
</table>

Note: Estimates are in millimeters.
TCR Bias Correction

- Focused on tuning dominant physical parameters of the TCRM \((q_0, C_0)\)

- Bias correction using total rainfall:
 - Run TCRM for suite of historical storms
 - Compute observed rainfall totals for historical storms from PRISM dataset (when storm is within 300km of point of interest)

- For each point, minimize the error between the distributions of total rainfall for observations/TCRM simulations

\[
P_{T_{\text{case}}} = c_P \frac{P_{\text{air}}}{P_{\text{liquid}}} (w_f + w_h + w_t + w_s + w_f)
\]

Main Equation Driving the TCRM

Saturation specific humidity

Friction, \(w_f(C_D)\)

Results of Bias Correction

- Lower Neches

Event Total Rainfall Hazard Curve

<table>
<thead>
<tr>
<th>Duration</th>
<th>1</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-hr</td>
<td>100(79-123)</td>
<td>132(105-165)</td>
<td>175(138-216)</td>
<td>223(172-295)</td>
<td>281(218-356)</td>
<td>306(246-375)</td>
<td>420(306-549)</td>
</tr>
<tr>
<td>2-day</td>
<td>154(85-140)</td>
<td>154(117-186)</td>
<td>209(152-262)</td>
<td>263(204-335)</td>
<td>347(262-442)</td>
<td>422(309-517)</td>
<td>510(361-611)</td>
</tr>
</tbody>
</table>

FDD-based precipitation frequency estimates with 95% confidence intervals (in millimeters)

- Original TCRM
- Updated \(q_0\) Assignment
- Bias Correction

US Army Corps of Engineers • Engineer Research and Development Center
Hydrologic Modeling and Antecedent flow estimation for TCs

Automating HEC-HMS

- Dynamically create input files and run HMS (without the GUI) for desired storms
- Loss rates for each subbasin assigned based on storm frequency
 - Original HMS model used NOAA Atlas-14 rainfall estimates
 - Compare TCR totals from synthetics to NOAA Atlas-14 to assign storm frequency & calibrated loss

Pre HMS calculations, Prep Storms and ARF estimate

Storm Selection

Precipitation Hyetograph or ARF file input

Fred. Estimation
Determine frequency of the event in TC only rain space, convert to Atlas-14 ARF for basin flow estimation

Basin File Creation
Specify input and calculate loss rates for storm hydrograph/hourly frequency

Flow Output for HEC-RAS

Create New File
From template, change grid file, basin name, project name, and ASCII name

Create New Control File
From template, change grid file, basin name, and ASCII name

Create New Run File
From template, add grid name, basin name, date and time, basin name, and ASCII name

Create New Input File
From template, change projected name and attach submodel names to ARF input model, basin model, and control file

Run HEC-HMS
Antecedent Flow Approach

- Early parameter sensitivity analysis for hydrologic parameters were conducted early in the work.
- Antecedent flow parameters were assessed for:
 - increasing baseflow +/- 10% & +/- 50%
 - little change implied insensitivity
- Later, gage records for storm precursor flows demonstrated sensitivity
 - Tidally filtered data at USGS gage at the Neches River Saltwater Barrier
 - 2003-2021

Antecedent Flow

- HMS model runs showed we were often underestimating precursor flows.
- Considered solutions to the apparent sensitivity to antecedent flows.
Antecedent Flow

- The difference in antecedent flows was inconsistent, sometimes too large and sometimes too small.
- To select values for the synthetic storms, we needed a probabilistic approach to selecting an antecedent flow.

Developing an Antecedent Flow Approach

- First step was to determine an antecedent flow for the gage time series.
- Used a simple baseflow filter (Lynn and Holick with alpha = 0.955 and 3 passes) to separate out the antecedent flow.
Developing an Antecedent Flow Approach

- Reviewed Tropical Storms Events and Antecedent Flow Series at USGS Gage Saltwater Barrier

 Period: 2017-2022

![Graph showing flow rates with labeled events and dates]

US Army Corps of Engineers • Engineer Research and Development Center

Fit Distributions to the Daily Flows During Hurricane Seasons

- The black curve is the mean fit of the daily summer flows.
- The point values are for the min, max and mean flows in the 7 day prior to historical TCs
- Curves were ranked by AIC (Akaike Importance Criterion), a goodness of fit parameter

![Graph showing cumulative distribution function with various lines and labels]

US Army Corps of Engineers • Engineer Research and Development Center
Selecting Antecedent Flows from the Distribution for Pilot

- Estimate 3 antecedent flows to test to capture the range
- Will carry out a sensitivity analysis to make sure these antecedent flows are capturing effects
- Later, during model production, can decided how to weigh those flows

Recommended Values

<table>
<thead>
<tr>
<th>Selection</th>
<th>Reason</th>
<th>Approx Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12% percentile</td>
<td>1-yr</td>
<td>1000</td>
</tr>
<tr>
<td>50% percentile</td>
<td>median</td>
<td>2500</td>
</tr>
<tr>
<td>5% percentile</td>
<td>2-yr</td>
<td>8700</td>
</tr>
</tbody>
</table>

Distributions found for the selected antecedent flow parameters and during Hurricane Season

- Estimate 3 antecedent flows to test to capture the range
- Will carry out a sensitivity analysis to make sure these antecedent flows are capturing effects
- Later, during model production, can decided how to weigh those flows

Recommended Values

<table>
<thead>
<tr>
<th>Selection</th>
<th>Reason</th>
<th>Approx Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12% percentile</td>
<td>1-yr</td>
<td>1000</td>
</tr>
<tr>
<td>50% percentile</td>
<td>median</td>
<td>2500</td>
</tr>
<tr>
<td>5% percentile</td>
<td>2-yr</td>
<td>8700</td>
</tr>
</tbody>
</table>
Hydraulic Modeling Approach

HEC-RAS Model

- 2D HEC-RAS Model
- Upstream boundary condition
 - Flow Hydrograph from HMS outputs
- Downstream boundary condition
 - Stage Hydrograph from ADCIRC outputs
- Added precipitation and infiltration parameters to calculate rainfall runoff within domain
- Added Reference Points at locations of interest – written to results hdf5 file
HEC-RAS Boundary condition

- One-way coupled HEC-RAS - ADCIRC boundary
 - Testing boundary condition discretization, currently focused on physical characteristics (channels, swamp, etc.)
- Automate HEC-RAS:
 - Input file generation
 - “rascontrol” in python environment
 - Data extraction for necessary outputs

Automating HEC-RAS

- Dynamically create input files and run HEC-RAS (without the GUI) for desired storms
- Pull data of interest from output files and store elsewhere to use to create hazard curves and then overwrite results within RAS to run next scenario
- Allows for one model/project file to run all scenarios (using individual plan input files would limit each model version to 99 runs)

- **Plan Input File Prep**
 - Create planfiles (.prj) that calls the unstructured flow file (.udt) and geometry files (.g01)
- **Geometry File Prep**
 - Add information to geometry file
- **Add Infiltration Layer**
 - Add infiltration layer and select infiltration method for precip
- **Add Reference Period**
 - Add points reference to RAS to write out results to RAS results file

- **Cloud Selection**
- **Precipitation Hystograph**
 - Isolates cloud – calculates path for makings logical boundary
- **Flow Hydrograph**
 - In difstream format from HEC output – calls data path for upstream boundary condition
- **Stage Hydrograph**
 - In field format from ADCIRC output – calls data path for downstream boundary condition

- **Identify Storm Name**
 - Based on storm number
- **Edit Unstructured Flow File**
 - From template, change file, precipitation iso path, flow hydrograph iso path, stage hydrograph
- **Run HEC-RAS**
 - Call model controller SP, and run plan file (.prj)
- **Save Results**
 - Call HEC results file and save as separate folder to place all additional outputs processed

- **Output Points**
- Points of interest points in HEC, export HEC file and methods to create hazard curve
Next Steps

- Hydraulic Modeling of synthetic storms
- Execute “loosely-coupled” framework with hydrodynamic model
- Compute combined hazard curves

Contact Information

U.S. Army Engineer R&D Center
Coastal and Hydraulics Laboratory
Victor M. Gonzalez, PE.
Email: victor.m.gonzalez@usace.army.mil

U.S. Nuclear Regulatory Commission
NRC Project Manager
Joseph F. Kanney, Ph.D.
Phone: (301) 980-8039
Email: Joseph.Kanney@nrc.gov
3.7.4 Presentation 3B-4: Probabilistic Wave Height Hazard Assessment Method at the NPP Site Considering Storm Surge

Authors: Beom-Jin Kim*, Daegi Hahm, Minkyu Kim
Korea Atomic Energy Research Institute (KAERI)

Speaker: Beom-Jin Kim

3.7.4.1 Abstract

Due to the influence of recent climate change, typhoon invasions of the Korean Peninsula with extreme rainfall frequently occur. Between August and September 2020, three typhoons, Bavi, Maysak, and Haishen, attack to the Korean Peninsula, and the resulting heavy rains that fell caused flood damage. As typhoons Maysak and Haishen passed east of Korea, the local nuclear power plants were automatically shut down. In order to analyze the wave height, wave period, and wave direction characteristics in the front of the nuclear power plant site, the SWAN model was built in the near sea area through nesting technique. First, based on the data presented in the Deepwater design waves report, wave height, period, and sea wind were estimated according to the return period. Second, the SWAN model was established through SMS and GIS programs based on the sea-depth data around the nuclear power plant site. Finally, a probability distribution was applied based on the wave height data, the result of the SWAN model for each return period. Based on the result, the probabilistic wave height hazard assessment (PWHA) of the sea around the nuclear power plant site was estimated. The results of this study are expected to be the basis for the waterproofing design of nuclear power plant sites and the planning of various flood prevention measures caused by the combination of external hazard such as local intense precipitation (LIP) and storm surges.

3.7.4.2 Presentation (ADAMS Accession No. ML22061A109)
Probabilistic Wave Height Hazard Assessment Method
at the NPP Site Considering Storm surge

2021. 2. 17.

Beom-Jin Kim, Daegi Hahm, Minkyu Kim

Contents

Part 1. Study background and methodology

Part 2. Estimation of significant parameters

Part 3. SWAN simulation

Part 4. Probabilistic storm surge hazard assessment (PSHA)

Part 5. Conclusion
Part 1. Study background

- Due to the influence of recent climate change, typhoon invasion of the Korean Peninsula with extreme rainfall frequently occur. Between August and September 2020, three typhoons, Bavi, Maysak, and Haishen, attack to the Korean Peninsula, and the resulting heavy rains that fell caused flood damage. As typhoons Maysak and Haishen passed east of Korea, the local nuclear power plants were automatically shut down.

- Such as flooding can cause core damage to nuclear power plants. Therefore, it is necessary to analyze hazards in advance and take measures to prevent them.

Part 1. Methodology

- Probabilistic Storm Surge Hazard Assessment (PSSHA),
 EPRI Report 3002023/1111.

- Surge height data from deepwater design wave data.

- Lake level data from gauges and public water levels.

- Wind wave data from JASDC

- SWAN Modeling

- Water elevation according to the return period

- Estimate of probable wave height hazard curve

- Estimate of wave height data for the design wave.
Part 2. Estimation of significant parameters

- **Deepwater design wave estimation**
 - Currently, there are 535 design wave height points in the ocean of the Korean Peninsula.
 - In this study, analysis was conducted based on the ocean of the Gori nuclear power plant.
 - The design wave height point in the Ocean near the Gori nuclear power plant is No. 112-3.

< Fig. 1 Deepwater design wave height points near Gori NPP>

- One design wave height is divided into 16 directions (S, SSE, SE, SEE, E, ENE, NE, NEN, N, NNW, NW, NWW, WSW, SW, SWS). In addition, data of deepwater wave height (m), period (sec), and wind speed (m/s) are included.
- The 'National Deepwater Design Wave Report (2019)' was referred to predict the Gori Nuclear Power Plant waves. In the case of typhoons, 193 typhoons that affected the Korean Peninsula among typhoons that occurred between 1959 and 2017 were selected when calculating the deepwater design wave.
- Extreme value analysis was performed on the selected typhoon.
- As a result, the Weibull distribution was selected for the typhoon data.

< Table 1 Parameter estimation >

<table>
<thead>
<tr>
<th>Parameters (No. 112-3)</th>
<th>N</th>
<th>NE</th>
<th>ENE</th>
<th>E</th>
<th>ESE</th>
<th>SE</th>
<th>SSE</th>
<th>S</th>
<th>SSW</th>
<th>SW</th>
<th>WSW</th>
<th>W</th>
<th>WWW</th>
<th>NW</th>
<th>NNW</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>-</td>
<td>-</td>
<td>-24</td>
<td>-6</td>
<td>-56</td>
<td>-8</td>
<td>-27</td>
<td>-6</td>
<td>-46</td>
<td>-37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>scale</td>
<td>-</td>
<td>-</td>
<td>266</td>
<td>55</td>
<td>36</td>
<td>08</td>
<td>33</td>
<td>42</td>
<td>77</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>shape</td>
<td>-</td>
<td>-</td>
<td>39</td>
<td>28</td>
<td>19</td>
<td>09</td>
<td>1.4</td>
<td>15</td>
<td>5.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3-347
Part 2. Estimation of significant parameters

- After estimating the wave height according to the return period based on the calculated parameters, the wave height of 10 years, 20 years, 30 years, 50 years, and 100 years presented in the ‘National Deepwater Design Wave Report (2019)’ were compared and verified.

<table>
<thead>
<tr>
<th>Return period (y)</th>
<th>10</th>
<th>30</th>
<th>50</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Hs (m)</td>
<td>6.7</td>
<td>8.2</td>
<td>9.5</td>
<td>9.9</td>
<td>11.1</td>
</tr>
<tr>
<td>Estimation Hs (m)</td>
<td>6.748</td>
<td>8.163</td>
<td>8.948</td>
<td>9.970</td>
<td>11.866</td>
</tr>
</tbody>
</table>

Part 2. Estimation of significant parameters

- By applying the validated parameters, wave heights (Hs) corresponding to return periods of 200 years to 1 million years were estimated.

<table>
<thead>
<tr>
<th>Return period (y)</th>
<th>Estimation Hs (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>12.223</td>
</tr>
<tr>
<td>500</td>
<td>13.876</td>
</tr>
<tr>
<td>1000</td>
<td>14.729</td>
</tr>
<tr>
<td>2000</td>
<td>15.737</td>
</tr>
<tr>
<td>5000</td>
<td>17.023</td>
</tr>
<tr>
<td>10000</td>
<td>17.984</td>
</tr>
<tr>
<td>20000</td>
<td>18.804</td>
</tr>
<tr>
<td>50000</td>
<td>20.076</td>
</tr>
<tr>
<td>100000</td>
<td>21.092</td>
</tr>
<tr>
<td>200000</td>
<td>22.319</td>
</tr>
<tr>
<td>500000</td>
<td>23.742</td>
</tr>
<tr>
<td>1000000</td>
<td>25.742</td>
</tr>
</tbody>
</table>
Estimation of significant parameters

- **Period estimation**
 - The period according to the wave height was calculated by applying the robust regression curve formula.

 \[T_p = a[H_r]^b \ (0.2 \leq b \leq 0.8) \]

 - Here, a and b are variables, and the parameters are estimated by applying the Solver function according to the range of the variable b.

 - As a result, 'a' was calculated as 4.940527 and 'b' as 0.428656. By applying to the calculated parameters, the period according to the wave height was calculated and compared and verified with the values of the previous report as shown in Table 4.

<table>
<thead>
<tr>
<th>Return period (y)</th>
<th>Hs (m)</th>
<th>Report Tp (y)</th>
<th>Calculation Tp (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6.7</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>20</td>
<td>8.2</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>30</td>
<td>8.9</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>50</td>
<td>9.9</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>100</td>
<td>11.1</td>
<td>139</td>
<td>139</td>
</tr>
</tbody>
</table>

<Table 4 Verification of the period>

Part 2. Estimation of significant parameters

- By applying the verified parameters to the robust regression curve formula, the period for the wave height corresponding to the return period of 200 years to 1 million years was estimated.

<Table 5 Period estimation according to return period (T p)>

<table>
<thead>
<tr>
<th>Return period (y)</th>
<th>Estimation Hs (m)</th>
<th>Estimation Tp (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>12.209</td>
<td>145</td>
</tr>
<tr>
<td>500</td>
<td>13.056</td>
<td>152</td>
</tr>
<tr>
<td>1000</td>
<td>14.731</td>
<td>166</td>
</tr>
<tr>
<td>2000</td>
<td>16.727</td>
<td>181</td>
</tr>
<tr>
<td>5000</td>
<td>17.029</td>
<td>187</td>
</tr>
<tr>
<td>10000</td>
<td>17.384</td>
<td>190</td>
</tr>
<tr>
<td>20000</td>
<td>18.664</td>
<td>194</td>
</tr>
<tr>
<td>50000</td>
<td>20.069</td>
<td>199</td>
</tr>
<tr>
<td>100000</td>
<td>20.923</td>
<td>212</td>
</tr>
<tr>
<td>200000</td>
<td>21.892</td>
<td>215</td>
</tr>
<tr>
<td>500000</td>
<td>22.999</td>
<td>219</td>
</tr>
<tr>
<td>1000000</td>
<td>23.742</td>
<td>212</td>
</tr>
</tbody>
</table>
Part 2. Estimation of significant parameters

- **Ocean level and wind estimation**
 - The sea level was based on the Korea Atomic Energy Research Institute report 'Development of Typhoon and Tsunami Simulation for Domestic Nuclear Power Plant Sites (2017).'
 - The sea wind data used the NCEP wind data of NOAA (National Oceanic and Atmospheric Administration) from 1979 to 2017. After that, the same method as the deepwater design wave estimation method was applied.
 - The estimated sea wind data were compared and verified with the values presented in the previous report.

<Table 6 Verification of Sea wind>

<table>
<thead>
<tr>
<th>Report period (y)</th>
<th>13</th>
<th>25</th>
<th>30</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate (m/s)</td>
<td>193</td>
<td>213</td>
<td>229</td>
<td>239</td>
</tr>
<tr>
<td>Verification (m/s)</td>
<td>193</td>
<td>213</td>
<td>229</td>
<td>239</td>
</tr>
</tbody>
</table>

Part 2. Estimation of significant parameters

- The sea wind corresponding to the return period of 200 years to 1 million years was estimated by applying the verified parameters.
- Finally, the results of estimating wave height, period, sea wind and sea level height according to the return period are as follows.

<Table 7 Results of major parameter estimations>

<table>
<thead>
<tr>
<th>Return period (y)</th>
<th>Estimation (m/s)</th>
<th>Estimation (m)</th>
<th>Estimation Wind (m/s)</th>
<th>Estimation Sea level (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>12230</td>
<td>14.6</td>
<td>25.0</td>
<td>1.906</td>
</tr>
<tr>
<td>500</td>
<td>13676</td>
<td>15.2</td>
<td>26.3</td>
<td>1.953</td>
</tr>
<tr>
<td>1000</td>
<td>14129</td>
<td>15.6</td>
<td>27.2</td>
<td>1.950</td>
</tr>
<tr>
<td>2000</td>
<td>15730</td>
<td>16.1</td>
<td>28.1</td>
<td>1.950</td>
</tr>
<tr>
<td>5000</td>
<td>17022</td>
<td>16.7</td>
<td>29.1</td>
<td>1.950</td>
</tr>
<tr>
<td>10000</td>
<td>17964</td>
<td>17.0</td>
<td>29.9</td>
<td>1.950</td>
</tr>
<tr>
<td>20000</td>
<td>188804</td>
<td>17.4</td>
<td>31.6</td>
<td>1.950</td>
</tr>
<tr>
<td>50000</td>
<td>200789</td>
<td>17.9</td>
<td>31.6</td>
<td>1.950</td>
</tr>
<tr>
<td>100000</td>
<td>205520</td>
<td>18.2</td>
<td>32.3</td>
<td>1.950</td>
</tr>
<tr>
<td>200000</td>
<td>218102</td>
<td>18.5</td>
<td>32.9</td>
<td>1.950</td>
</tr>
<tr>
<td>500000</td>
<td>229196</td>
<td>18.9</td>
<td>33.0</td>
<td>1.950</td>
</tr>
<tr>
<td>1000000</td>
<td>237422</td>
<td>19.2</td>
<td>34.4</td>
<td>2.800</td>
</tr>
</tbody>
</table>
Part 3. SWAN simulation

- **SWAN(Simulation Waves Nearshore) modeling**
 - The Simulation Waves Nearshore (SWAN) model was selected as the model applied to the storm surge simulation.
 - The SWAN model can highly calculate wave deformation such as wave refraction, diffraction, wave dissipation due to wave breaking, and bottom friction according to the change in water depth. It can calculate waves in coastal areas, lakes, and rivers downstream.

Part 3. SWAN simulation

- Triangulated Irregular Network (TIN) was generated for the ocean of the Gori nuclear power plant based on the ocean depth data.
- Based on the generated TIN, a digital elevation model (DEM) was created to extract the Gori nuclear power plant area's ocean depth (Z). Also, based on the generated DEM, the sea depth was extracted to determine the suitability of this topographical data.
Part 3. SWAN simulation

- The nesting function of SWAN is used to analyze the wave height of the Gori nuclear power plant.
- A 50×50 m grid was constructed in the distant ocean of the nuclear power plant, and a 20×20 m grid was constructed in the ocean near the nuclear power plant.

![Fig. 4 Grid for Gori NPP](image)

Part 3. SWAN simulation

- Sensitivity analysis of SWAN model
 - After constructing the SWAN model, the optimal model was selected through sensitivity analysis of variables.
 - As a result of analyzing the SWAN model for wave conditions (16 directions) at the deepwater wave point (No. 112-3), the wave height in the S direction was the largest.
 - Therefore, in this study, the direction for wave height analysis by storm surge was determined to be the S direction.

![Fig. 5 Sensitivity analysis for SWAN](image)
Part 3. SWAN simulation

- **SWAN simulation**

 According to the return period, wave height analysis was analyzed through SWAN using estimated data of wave height, period, and wind, as shown in the figure below.

![Wave height analysis method](image1)

Part 3. SWAN simulation

- **SWAN results**

 - SWAN simulations were performed based on the estimated input data for wave height conditions in the 100 to 1 million year return period.
 - As a result, the wave height generated in the ocean near the nuclear power plant was estimated according to the return period.

![Wave simulation results](image2)
Part 4. Probabilistic storm surge hazard assessment

- Probabilistic Storm Surge Hazard Assessment (PSHA) is a preliminary step for probabilistic flood risk assessment due to storm surge at the Gori nuclear power plant site.
- For the probabilistic analysis of the storm surge wave height according to the return period, the ocean of the Gori nuclear power plant were classified for each power plant.
- In addition, the verification process of the probability distribution type was conducted by deriving the wave height of the analysis point at intervals of 10 m through the SWAN result for each return period.

<table>
<thead>
<tr>
<th>Return period (a)</th>
<th>Max (m)</th>
<th>Min (m)</th>
<th>Average (m)</th>
<th>Std.</th>
<th>AC Distribution</th>
<th>Parameter (a)</th>
<th>Parameter (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>3.81</td>
<td>1.96</td>
<td>2.71</td>
<td>0.67</td>
<td>Lognormal</td>
<td>271</td>
<td>92.32</td>
</tr>
<tr>
<td>300</td>
<td>3.96</td>
<td>2.00</td>
<td>2.89</td>
<td>0.48</td>
<td>Gamma</td>
<td>3525</td>
<td>0.08</td>
</tr>
<tr>
<td>500</td>
<td>4.07</td>
<td>2.11</td>
<td>2.96</td>
<td>0.45</td>
<td>Gamma</td>
<td>3700</td>
<td>0.08</td>
</tr>
<tr>
<td>1000</td>
<td>4.19</td>
<td>2.19</td>
<td>3.09</td>
<td>0.51</td>
<td>Gamma</td>
<td>3710</td>
<td>0.08</td>
</tr>
<tr>
<td>10000</td>
<td>4.90</td>
<td>2.47</td>
<td>3.16</td>
<td>0.57</td>
<td>Weibull</td>
<td>765</td>
<td>3.79</td>
</tr>
<tr>
<td>100000</td>
<td>4.97</td>
<td>2.80</td>
<td>3.90</td>
<td>0.64</td>
<td>PFM</td>
<td>498</td>
<td>4.67</td>
</tr>
</tbody>
</table>

† Table 8 Apply to probabilistic distribution (NPP 1) †

<table>
<thead>
<tr>
<th>Return period (a)</th>
<th>Max (m)</th>
<th>Min (m)</th>
<th>Average (m)</th>
<th>Std.</th>
<th>AC Distribution</th>
<th>Parameter (a)</th>
<th>Parameter (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>9.06</td>
<td>3.11</td>
<td>5.27</td>
<td>1.43</td>
<td>Pearson 5</td>
<td>1913</td>
<td>86.84</td>
</tr>
<tr>
<td>200</td>
<td>9.49</td>
<td>3.21</td>
<td>5.48</td>
<td>1.47</td>
<td>Pearson 6</td>
<td>1820</td>
<td>81.27</td>
</tr>
<tr>
<td>500</td>
<td>8.96</td>
<td>3.29</td>
<td>5.61</td>
<td>1.46</td>
<td>Pearson 5</td>
<td>1802</td>
<td>85.15</td>
</tr>
<tr>
<td>1000</td>
<td>10.07</td>
<td>3.38</td>
<td>5.74</td>
<td>1.68</td>
<td>Pearson 5</td>
<td>1819</td>
<td>81.20</td>
</tr>
<tr>
<td>10000</td>
<td>10.56</td>
<td>3.12</td>
<td>5.11</td>
<td>1.65</td>
<td>Lognormal</td>
<td>570</td>
<td>7.90</td>
</tr>
<tr>
<td>100000</td>
<td>10.86</td>
<td>3.46</td>
<td>5.36</td>
<td>1.68</td>
<td>Pearson 5</td>
<td>1827</td>
<td>81.20</td>
</tr>
<tr>
<td>1000000</td>
<td>10.83</td>
<td>3.88</td>
<td>5.47</td>
<td>1.66</td>
<td>Pearson 5</td>
<td>2046</td>
<td>81.40</td>
</tr>
</tbody>
</table>

† Table 9 Apply to probabilistic distribution (NPP 2) †
Part 4. Probabilistic storm surge hazard assessment

- The @RISK program was used to estimate the hazard curve of the probabilistic wave height caused by the storm surge.
- After applying the Latin hypercube sampling method to the wave height according to the return period, statistical analysis was performed with a 95% confidence interval through 50,000 iterations.
- Based on the results, wave heights of 5%, Mean, Median, Mode, and 95% were estimated according to the return period of each power plant.

<table>
<thead>
<tr>
<th>Table 9: Probabilistic wave height estimation results (MW 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return period</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 11: Probabilistic wave height estimation results (MW 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return period</td>
</tr>
</tbody>
</table>

Part 4. Probabilistic storm surge hazard assessment

- Finally, the probabilistic wave height hazard curves for power plants 1 and 2 by storm surge were estimated through statistical analysis using a probability distribution.
Part 5. Conclusion

- This study analyzed the probabilistic wave height caused by the storm surge according to climate change.
- A detailed sea bottom topography was constructed for the storm surge simulation. In addition, the parameters were estimated by applying the probability distributions for the deepwater wave height and wind caused by storm surge.
- Also, the SWAN model is linked with the nesting technique to analyze the characteristics of wave height, period, and wave direction by frequency in the front ocean of the Gori nuclear power plant.
- Based on the results of the SWAN model, statistical analysis was applied to calculate the probability distribution for the possible wave heights in the ocean in front of the nuclear power plant.
- A probability distribution model presented the possible wave heights of the ocean in front of the nuclear power plant according to the return period.
- Based on the results of this study in the future, it will be used as input data for the EurOpop model, and it is judged that valuable data will be utilized for the analysis of flooding caused by the overtopping of the nuclear power plant site.

Thank you for listening to my presentation

If you have any questions at any time, please contact me by my email.
beomjin88@kaeri.re.kr
3.7.5 Presentation 3B-5: Comparative Assessment of Joint Distribution Models for Tropical Cyclone Atmospheric Parameters in Probabilistic Coastal Hazard Analysis

Authors: Ziyue Liu*, Michelle Bensi, Meredith Carr, Norberto Nadal-Caraballo
¹University of Maryland, ²U.S. Army Corps of Engineers Engineer Research and Development Center Coastal and Hydraulics Laboratory

Speaker: Ziyue Liu

3.7.5.1 Abstract

The United States Army Corps of Engineers (USACE) has developed the Probabilistic Coastal Hazard Analysis (PCHA) framework to extend and advance the joint probability method, which has been used to establish probabilistic coastal hazard curves over the past decade. The PCHA framework requires characterization of the joint distribution of tropical cyclone (TC) atmospheric parameters (i.e., central pressure deficient, forward velocity, radius of maximum wind, and heading direction). While the assumptions made in developing this joint distribution have changed over the years, the current PCHA framework uses a meta-Gaussian copula (MGC) to characterize the dependence among TC atmospheric parameters. However, the MGC has limitations associated with modeling of circular variables such as storm heading direction as well as the degree to which it can capture tail dependence. This research investigates the performance of a series of joint distribution models, including the MGC and alternative models. A particular emphasis is placed on characterizing the dependence between linear and circular variables. Specifically, a von Mises kernel function (VKF) is proposed as an alternative to the Gaussian kernel function (GKF) typically in the calculation of the directional storm recurrence rate (DSRR) representing the probability model of heading direction. This study then builds a series of joint distribution models based on assumptions ranging from independence to full dependence models that consider a range of copula models (e.g., MGC and vine copulas combining linear-circular copulas with Gaussian or Frank copulas). The sensitivity of coastal hazard curves to different joint distribution models is assessed for selected locations around New Orleans, LA (USA). The stability of hazard curves generated using an MGC assumption related to the selection of the zero-degree convention is assessed, along with a comparison of tail dependence between copula models.

3.7.5.2 Presentation (ADAMS Accession No. ML22061A108)
Comparative Assessment of Joint Distribution Models for Tropical Cyclone Atmospheric Parameters in Probabilistic Coastal Hazard Analysis

7th Annual NRC PFHA Research Workshop
Speaker: Ziyue Liu, Ph.D. Candidate (UMD)
Co-authors:
Michelle T Bensi, Ph.D. (UMD)
Norberto C. Nadal-Caraballo, Ph.D. (USACE)
Meredith L. Carr, Ph.D., P.E. (USACE)

Introduction

Research Need:
JPM is used as the primary methodology for coastal hazard frequency analysis.

USACE implemented meta-Gaussian copula (MGC) in the latest PCHA framework.

PCHA results may be sensitive to the assumed joint distribution model.

Research Objective:
Investigate performance of different joint distribution models for TC parameters.
Study Process

Study Flow Chart
Study Flow Chart

Data Processing

Historical Data Resource:
HURDAT2 and EBTRK.

Data imputation:
Estimate missing p_c and R_{max} using GPR model.

Optimal sampling location:
Select a coastal reference location (CRL) and extract optimal sampling locations.

Distance-weight adjustment:
Adjust data based on its distance to reference location.

Preliminary Results
Marginal Distribution Analysis

Central pressure deficit (\(\Delta p\)):

Truncated Weibull distribution:

\[
f(x) = \begin{cases}
\frac{b}{\alpha} (\frac{x}{\alpha})^{b-1} \exp\left(-\left(\frac{x}{\alpha}\right)^b\right) & x \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

Forward velocity (\(V_f\)) and radius of maximum wind speed (\(R_{\text{max}}\)):

Lognormal distribution:

\[
f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \quad x > 0
\]

Marginal Distribution Analysis

Marginal of heading direction (\(\theta\)):

Probability model based on Directional storm recurrence rate:

\[
\lambda_\theta = \frac{1}{T} \sum_{i=1}^{n} w(d_i) w(\theta_i - \theta)
\]

Use von Mises kernel function (VKF) to replace GKF

GKF:

\[
w(\theta_i - \theta) = \frac{1}{\sqrt{2\pi}h_\theta} \exp\left(-\frac{1}{2} \frac{(\theta_i - \theta)^2}{h_\theta}\right)
\]

VKF:

\[
w(\theta_i - \theta) = \frac{1}{2\pi I_0(\kappa)} \exp(\kappa \cos(\theta_i - \theta))
\]
Joint Distribution Models

Independence model:

\[f(\Delta p, V_f, R_{\text{max}}, \theta) = f_{\Delta p}(\Delta p) \ast f_{V_f}(V_f) \ast f_{R_{\text{max}}}(R_{\text{max}}) \ast f_{\theta}(\theta) \]

Partial dependence model:

\[f(\Delta p, V_f, R_{\text{max}}, \theta) = f_{R_{\text{max}}}(\Delta p|R_{\text{max}}) \ast f_{\Delta p}(\Delta p) \ast f_{V_f}(V_f) \ast f_{\theta}(\theta) \]

Joint Distribution Models

Meta-Gaussian copula model:

- **Sklar's theorem:**
 \[H(x_1, ..., x_n) = C(F_1(x_1), ..., F_n(x_n)) \]

- **Expression of Gaussian copula CDF:**
 \[C_R^{\text{Gaussian}}(u) = \Phi_R(\Phi^{-1}(u_1), ..., \Phi^{-1}(u_n)) \]

\[R = \begin{pmatrix}
1 & \rho_{1,2} & \ldots & \rho_{1,n} \\
\rho_{2,1} & 1 & \ldots & \rho_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{n,1} & \rho_{n,2} & \ldots & 1
\end{pmatrix} \]

- **Dependence measurement:**
 \[\rho = \sin \frac{\pi}{2} \]

\[f(\Delta p, V_f, R_{\text{max}}, \theta) = c(\Phi(\Delta p), F(V_f), F(R_{\text{max}}), F(\theta)) \ast f_{\Delta p}(\Delta p) \ast f_{V_f}(V_f) \ast f_{R_{\text{max}}}(R_{\text{max}}) \ast f_{\theta}(\theta) \]

Dependence between Linear Variable and Circular Variable

Use North as 0-deg direction:

Use Southwest as 0-deg direction:

Change in measured dependence with shift of 0-deg direction:

Linear-circular Copula

A joint distribution of linear variable x and circular variable θ:

$$f(\theta, x) = 2\pi g(\xi) f_\theta(\theta)f_x(x)$$

$$\xi = \begin{cases}
2\pi(u - v), & u \geq v \\
2\pi(u - v + 1), & u < v
\end{cases}$$

$$u = F_\theta(\theta); \ v = F_x(x)$$

PDF of a mixture of two von Mises distribution

Apply Sklar’s theorem:

$$f(\theta, x) = c(F_\theta(\theta), F_x(x)) f_\theta(\theta)f_x(x)$$

$$c(u, v) = 2\pi g(2\pi(u - v))$$

$$C(u, v) = \int_{u_0}^u \int_v^u 2\pi g(2\pi(u - v)) du dv$$
Joint Distribution Models

Linear-circular Gaussian vine copula (LCGV) model:

\[X_1 = \Delta p; \ X_2 = V_t; \ X_3 = R_{max}; \ X_4 = \theta \]

\[f(x_1, x_2, x_3, x_4) = c_{1234}c_{14}c_{24}c_{34}f(x_1)f(x_2)f(x_3)f(x_4) \]

Joint Distribution Models

Linear-circular Frank vine copula (LCFV) model:

\[X_1 = \Delta p; \ X_2 = V_t; \ X_3 = R_{max}; \ X_4 = \theta \]

\[f(x_1, x_2, x_3, x_4) = c_{13424}c_{1234}c_{1234}c_{14}c_{24}c_{34}f(x_1)f(x_2)f(x_3)f(x_4) \]
Comparison of Full Dependence Models

Pair-wise joint pdf:

Comparison of Tail Dependence

Upper tail dependence between Δp and R_{max}:

$$\lambda_U = P(R_{\text{max}} \geq R_{\text{max}}^u | \Delta p \geq \Delta p^+)$$

<table>
<thead>
<tr>
<th>Model</th>
<th>Δp^+</th>
<th>Δp^+</th>
<th>Δp^+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>133.21 hPa;</td>
<td>137.47 hPa;</td>
<td>142.74 hPa;</td>
</tr>
<tr>
<td></td>
<td>$R_{\text{max}}^u = 131.56$ km</td>
<td>$R_{\text{max}}^u = 161.05$ km</td>
<td>$R_{\text{max}}^u = 170.53$ km</td>
</tr>
<tr>
<td>MGC</td>
<td>$\lambda_U = 6.4e-11$</td>
<td>$\lambda_U = 3.0e-12$</td>
<td>$\lambda_U = 2.1e-13$</td>
</tr>
<tr>
<td>LCGV</td>
<td>$\lambda_U = 9.8e-10$</td>
<td>$\lambda_U = 9.5e-11$</td>
<td>$\lambda_U = 8.4e-13$</td>
</tr>
<tr>
<td>LCFV</td>
<td>$\lambda_U = 1.4e-06$</td>
<td>$\lambda_U = 3.9e-07$</td>
<td>$\lambda_U = 9.5e-08$</td>
</tr>
</tbody>
</table>
Acknowledgement

The authors acknowledge and appreciate research support received from USACE. The statements, findings, conclusions, and recommendations are those of the funding organization and do not necessarily reflect the views of the authors and do not necessarily reflect the views of the funding organization.

References

Thank you

ERDC

CHL
3.7.6 Coastal Panel Discussion (Session 3B-6)

Moderator: Joseph Kanney, NRC/RES/DRA/FXHAB
Margaret Owensby, U.S. Army Corps of Engineers
Somayeh Mohammadi, University of Maryland
Victor Gonzalez, U.S. Army Corps of Engineers
Beom-Jin Kim, Korea Atomic Energy Research Institute
Ziyue Liu, University of Maryland

Question:
For different applications, one might choose different balance between the use of surrogate models versus the use of high-fidelity models. What's the optimum mixture or balance for the types of coastal hazard assessments that you're involved in?

Margaret Owensby:
It really just depends on what you're trying to accomplish with the particular study. The results from the South Atlantic Coastal Study were being used to develop flood maps for different regions and identify risk over a wide regional area. Your approach to that problem would be best assessed probably with high fidelity modeling. But if you're looking at some other problem, you're probably better off using surrogate models.

Question:
Somayeh, do you see any areas in your particular study where you could benefit from a high-fidelity model?

Somayeh Mohammadi:
I should mention that if we want to know where the best balance for use of surrogate and high fidelity models is, we have a limitation because in our case we also were trying to decrease the computational effort. However, there are not always data available that we can use for training a surrogate model. We just could use it for the surge model and For example, our target variable was total river discharge and there was some interactions that could be captured with physical models between precipitation-induced river and discharge and surge. For these types of things we didn't have much data. For surrogate model we need more than 1000 data points and we didn't find this type of data for the area under study. That was one limitation in balancing our work with more surrogate model. But yes, in our work we have made some simplified assumption and were some parts of our work that for sure can be improved by using a high-fidelity model. To capture interactions between precipitation induced discharge and tides and also surge induced discharge since the flow is going different direction, I believe that we can have a very more reliable result if we use more expensive and high-fidelity models.

Victor Gonzalez:
We use surrogate modeling in PCHA to make sure we cover probability space and finely discretize the parameter space of the synthetic storms. This of course allows us to incorporate in a more rigorous way the uncertainty when we generate the hazard curves for the uncertainty.
Even the probability mass comes from your storms without having to rely on other methods. I think another beneficial aspect of these surrogate models is on the downstream end of your analysis. Once you do a regional study and you need to do a study that is more location based. Then you would use the surrogate models to help you reduce the number of storms that you need to use. And there are many applications that you want to apply a response-based approach. For example, in computing the response on a per-storm basis, the surrogate modeling can help a great deal. I will end by saying that in the quantification of uncertainty in our study, where we were looking at the logic tree approach to estimating epistemic uncertainty, it would not have been possible to generate as many branches in the logic tree without the use of surrogate models.

Beom-Jin Kim:

High fidelity modeling should come first. Then based on the high fidelity models, I think it is important to create and analyze a simpler model, because high fidelity models can take a long time to simulate. I think simpler models are good in terms of time.

Question:

Has anyone thought about doing a meta study to mine the entire body of simulations that are in the Coastal Hazard System (CHS)? For example to investigate different approaches for modeling the error term or to evaluate different surrogate modeling approaches. Does anyone have any thoughts about that?

Margaret Owensby:

I haven't heard of any efforts to try to use all the data as a whole. I definitely think that's something that could be useful for people to do to use all the different data from the different studies that's available on the coastal hazard system.

Victor Gonzalez:

I think that would be a good idea. I would add that the CHS has been developed across time. It was started after hurricane Katrina. Then there was the Great Lakes Study, then the North Atlantic Study. Some of these studies have evolved over time and there are some differences in the different applications. Methods have evolved over time. One effort that is going on is redoing some of the old studies to have them all apply the same methods. Then that would lend itself well to a meta-analysis type of approach.

Question:

Somayeh, do you have any thoughts about applying some of the machine learning techniques you used in your work to the CHS?

Somayeh Mohammadi:

As much as I could in my work, I tried to. use the CHS. But the critical parts of my work was simultaneous occurrence of different flood mechanism. Related to capturing those physical interaction, I couldn't take that much advantage. For or the surge model. I could.
Question:
From the presentations and discussions on might conclude that for the compound hazard assessment perhaps we need to do more work on the rainfall. So, for anyone who’s sort of been involved in that aspect, do you have any thoughts about avenues of research that we should be looking at to improve on the rainfall model and how we incorporate it into the compound a flood hazard assessment for coastal regions?

Victor Gonzalez:
I think a first step is applying these models over a regional extent. We are starting to look at this for example, in the Texas region. But with all the issues we've encountered with bias correction and the representativeness of the model, we should probably have a good grasp first of how it applies across the several regions representative of the of the US coastline. There is more research needed in this area.

Question:
Do you think this might be an area where we may want to go to a higher fidelity model? There are some high-fidelity numerical weather prediction models used for forecasting tropical storm rainfall. That would be one more really big, computationally intensive high-fidelity model. But do you think that might be a viable approach.

Victor Gonzalez:
It could be, but the synthetic storms might be an issue, the parameterized synthetic storms. So, yes, if there are better models out there that can be linked to the synthetic storms in a reasonable way, it probably would be worthwhile to pursue.

Somayeh Mohammadi:
Based on the experience that I had in my work, precipitation effects could be from two different aspects. One is estimation of precipitation itself and the other is how precipitation is converted to runoff. For the second part, we always need distributed models for converting precipitation to runoff because we need land characteristic such as different curve numbers. I think that it is really difficult to have surrogate model for this type of distributed models which can give us runoff for precipitation based on precipitation. But the other part which is estimation of precipitation itself. One of the challenges that I had in my work was with that. I also saw that there was a gap for more refined physical based modeling. Again in this part there are two problems. One is related to developing physical models which are showing the relationship between precipitation and different parameters and the other is availability of a training database. Because in probabilistic work we usually did need a big sample of data, a database related to parameters which are showing the physical relationship between its storm parameters and precipitation. Even the database I think is not easily available and having these data sources and more developed physical models that can show the relationship will be helpful.
3.8 **Day 4: Session 4A – Duane Arnold Derecho Operational Experience**

Session Chair: Joseph Kanney, NRC/RES/DRA

3.8.1 **Presentation 4A-1: Duane Arnold Energy Center (DAEC) Loss of Offsite Power (LOOP) Due to Derecho**

Authors: *Terry Brandt*, Nextera Energy

Speaker: *Terry Brandt*

3.8.1.1 **Abstract**

This presentation will give you the initial conditions, timeline of events, and operator actions associated with the Duane Arnold Derecho Event.

3.8.1.2 **Presentation (ADAMS Accession No. ML22061A107)**
Duane Arnold Energy Center (DAEC) Loss of Offsite Power (LOOP) Due to Derecho

Terry Brandt
Fleet Online Director
NEXTera ENERGY

DAEC Overview

BWR/4 -
- An early BWR/4, the “B” loop of RHR is half of RHR (B+D pumps)
- Mark I Containment
- HPCI (3,100 gpm) & RCIC (425 gpm)
- Core Spray and RHR
- Rated Thermal Power 1,912 MW(t)
- Rated Net Electric Power ~615 MW(e)
- 368 Fuel Bundles in the Core

SRVs setpoints:
- 1 SRV 1,110 psig
- 2 SRVs 1,130 psig
- 1 SRV 1,120 psig
- 2 SRVs 1,140 psig

Two safety valves (SVs) discharge directly to the DW airspace at the RPV pressure of 1,240 psig
1. DAEC was operating at ~80% power due to coasting down to end of cycle (EOC). This power was selected to limit the cycling of a turbine control valve (TCV4) that would have occurred around ~84% power.

2. Diesel Driven Fire Pump (DFP) is inoperable due to maintenance.

3. LPC1 B train was inoperable due to testing prior to the event, it was not being tested during the event and was available for use if needed.

4. Two control rods are fully inserted to suppress a fuel leak.

5. Dry cask storage campaign under way in the spent fuel pool; time to boil is 64 hours.

- **11:38** A severe Thunderstorm watch is declared.
- **DAEC** entered the Abnormal Operating Procedure (AOP) for Severe Weather and began performing their preparation actions.
- **12:02** The Watch is upgraded to a Severe Thunderstorm Warning.
- **Shift Manager (SM)** directed that fuel handling be placed in a safe condition and secured.
August 10, 2020 Monday 12:30-12:35

- 12:30 Multiple alarms received due to grid issues
- 12:35 Grid perturbation occurs which causes the Emergency Diesel Generators (EDGs) to start but not tie on. The EDGs remain running
- Wind speeds > 100 mph with onsite peaks between 100 mph & 130 mph

August 10, 2020 Monday 12:35-12:49

12:49 Loss of offsite power due to sustained strong winds (> 100 mph) causes:
- Generator load reject, tripping the turbine and causing the Reactor to scram
- EDGs tie onto the safety buses A and B
- Recirculation pumps trip due to loss of power
August 10, 2020 Monday 12:49-12:51

- 12:49 All control rods fully insert
- RPV pressure rises quickly causing 2 SRVs to lift on low-low Set when pressure rose above 1,055 psig and initiation of an SRV on its setpoint (1,110 psig)
- 12:49 Ops enters EOP-1 on low level (+170° and lowering), RPV pressure 960 psig and steady. RPV Water level +135 and slowly lowering
- 12:50 Ops directed an initial level control band of 135° to 211°
- 12:51 RPV water level lowers to L2 (+119.5") due to loss of feedwater

August 10, 2020 Monday 13:00 – 24:00

- Continued Cooldown
- Level maintained high to facilitate natural circulation, in accordance with plant procedures.
- Restored Systems to facilitate plant reliability:
 - Reactor Water Cleanup System
 - Fuel Pool Cooling System
 - Well Water to keep pressure applied to the Fire System
 - General Service Water for equipment cooling
 - Set up DAEC Switchyard for emergent repairs
August 11, Tuesday

- 02:30 Ops established cold shutdown conditions using SDC
- 11:26 The 161kV Vinton line is restored to the switchyard restoring off-site power
- 12:15 Startup transformer is reenergized from off-site power
- 13:12 Safety Bus A is reenergized from off-site power
- 13:34 Safety Bus B is reenergized from off-site power
- 16:00 The NOUE is terminated

- Storm damage found on roof of the North FLEX building. FLEX function maintained by South FLEX Building equipment
- Forced draft Cooling towers severely damaged

August 17, 2020 Tuesday 12:49

- All six off-site power lines are restored
Interstate Transmission Company’s (ITC)
Off Site Heroes

Restoration of DAEC Off Site Power

DAEC - LOOP Insights

ESW Availability following the increase in dP of the strainer:

- The ESW strainer did not start “clogging” until the Torus Cooling was maximized later in the day with the operation of the HPCI System:
 - DAEC procedures required that maximizing of Torus Cooling with the operation of HPCI
 - This was also done to maintain the Torus under EOP-2 required temperatures
- The ESW system dPs remained low throughout the event
- The high strainer dP came into existence after shutdown cooling was placed in service
3.8.2 Presentation 4A-2: The NRC’s Regional Response to the Duane Arnold Derecho

Authors: John Hanna*, U.S. Nuclear Regulatory Commission

Speaker: John Hanna

3.8.2.1 Abstract

This presentation, as part of the greater panel on the Duane Arnold derecho, will address Region 3’s response to the event including the aspects of immediate event response by the inspection staff, the Management Directive 8.3 event assessment and other regional actions taken. Additionally, risk insights from this event will be shared.

3.8.2.2 Presentation (ADAMS Accession No. ML22061A106)
The NRC’s Regional Response to the Duane Arnold Derecho

John David Hanna
Senior Reactor Analyst
US Nuclear Regulatory Commission, Region III Office
Division of Reactor Projects

February 18, 2022

Overview of the Presentation

• General Information
• Regional response to the event
 – Immediate event response
 – Management Directive 8.3 assessment
 – Other regional actions
• Risk insights from this event
• Comments/Questions
General Information

• My Background and Experience

Duane Arnold derecho

• 10 August 2020 storms/high winds hit large sections of Midwest US with little warning
• Widespread destruction including damage to the electrical grid occurred
DAEC Immediate Event Response

- Operators performed well
- NRC inspectors responded to the site
 - On-site within 1 hour
 - Rapid assessments of immediate actions, plant stability, SM, DID, etc.
- Rapid risk assessment was done to inform the inspectors event response, i.a.w., what should they review?
- Initial response to the site was supplemented with regional inspectors with EP and Ops expertise
- The storm had impacts on IE and MS and lesser effects on BI and EP

Duane Arnold (continued)

Derecho Climatology

Illustration by Dennis Cain
DAEC Management Directive 8.3 Assessment

- RIII immediately realized the PRA risk from the event was very high.
- CCDP was approx. 2E-4 to 2E-3 range.
- MD 8.3 process was entered.
- RIII performed a focused baseline inspection under IP 71153 and supplemented the RIO with other inspectors (ML20314A150), but did not perform a Special Inspection.

<table>
<thead>
<tr>
<th>Estimated CCDP</th>
<th>No Additional Inspection</th>
<th>SI</th>
<th>AIT</th>
<th>IIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDP < 1E-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-4 -> 1E-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-5 -> 1E-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-4 -> 1E-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCDP > 1E-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MD 8.3 Assessment - Continued
ICCDDP Results Given Various 'B' ESW Strainer Failure Probabilities
Regional Response – Miscellaneous Items

- Requested that the LIC-504 “Integrated Risk-Informed Decisionmaking Process for Emergent Issues” process be entered
- Risk analysis paper written looking at commonalities between several events involving external hazards, including DAEC
- Supported the ongoing revisions to the MD 8.3 and IMC-0309, “Reactive Inspection Decision Basis for Reactors”

Risk Insights – what are these events “telling us?”

- “Sunny day” events can happen with little warning but relatively high-risk impact
- Synergistic effects are non-trivial
- Operator actions may be required in order to respond to the event which will initially INCREASE the risk during the event
- Small changes in the weather could have had disproportionately large impacts on the event
Questions or Comments?

Backup Slides
References & Additional Material

- Paper “Characterizing Previously Unknown Dependencies in Probabilistic Risk Assessment Models of Nuclear Power Plants,” ML21103A355
- NRC Inspection Report - ML20314A150
- MD 8.3 assessment document ML21022A415
- Non-Concurrence document ML21022A418
- John Hanna – John.Hanna@nrc.gov

Back up slides – DAEC

Storm damage from the derecho – State of Iowa, 10 August 2020
Back up slides – DAEC

Pictures of damage to Duane Arnold Energy Center due to derecho – 10 August 2020

Back up slides – DAEC

Cooling Towers

North FLEX Building

69 kV Electrical Yard

Transmission Tower
Back up Slides – DAEC
Plant Automatic Response

- **Immediate Response**
 - Generator Trip, Turbine Trip, Rx Scram
 - Diesel output breakers immediately closed to safety related busses; no loss of RPS; no Group I Isolation
 - 2 Safety Relief Valves lifted for approximately 10 sec
 - Reactor Water Level decreased to Level 2, Lo-Lo Level
 - HPCI and RCIC started
 - Reactor water level restored to Level 8, High Level Trip
 - HPCI and RCIC Tripped (as designed)

- **Two Minutes Later:**
 - Plant parameters were stable
 - A' and B' EDGs supplying power to their respective safety busses

Back up Slides – how do these events compare to others?

Risk Significance of DAEC Derecho compared to other High Profile US Events since 2000 (Conditional Core Damage Probabilities)

- 2002 Davis Besse vessel head leakage: 6×10^{-5}
- 2020 Duane Arnold Derecho: 8×10^{-4}
- SWGR Fires (2010 Robinson, 2011 Fort Calhoun): 4×10^{-4}
- Earthquake induced LOOP (2011, North Anna Unit 1): 3×10^{-5}
- Trans. & breaker failure induced LOOP (2012 Byron): 1×10^{-4}
Where is LOOP/SBO risk highest and/or where does FLEX make the most difference?

- Single unit sites
- Fewer EDGs +/or no SBO EDG
- No crosstie capability at multi-unit sites
- Absence of low leakage RCP seals
- Small DC batteries
- Higher LOOP likelihood
- Higher (LOOP/SBO or electrical) risk from internal events
3.8.3 Presentation 4A-3: Why the Risk of the Extended Loss of Offsite Power Was Almost a Significant Precursor?

Authors: Christopher Hunter*, U.S. Nuclear Regulatory Commission

Speaker: Christopher Hunter

3.8.3.1 Abstract

On August 10, 2020, a severe storm with heavy rains and very strong straight-line winds (called a derecho) resulted in an extended loss of offsite power (LOOP) at Duane Arnold Energy Center (DAEC). The National Weather Service later estimated wind speed peaks were likely near 130 mph, which resulted in extensive damage to offsite power lines and a number of plant structures including the reactor, turbine, and FLEX buildings, and nonsafety-related cooling towers. In addition, the high winds led to an ingress of debris into the essential service water that challenged the system strainers and required operator intervention to maintain adequate cooling to one of the two emergency diesel generators. This presentation will cover the important assumptions, results, and key risk insights from the accident sequencer precursor (ASP) analysis. In addition, a comparison with other recent LOOP precursors due to severe weather will show why the event at DAEC had substantially higher risk than these other events.

3.8.3.2 Presentation (ADAMS Accession No. ML22061A105)
Why the Risk of the Extended Loss of Offsite Power Was Almost a Significant Precursor?

Chris Hunter
Office of Nuclear Regulatory Research
Division of Risk Analysis
Performance and Reliability Branch

Event Overview

- On August 10, 2020, a derecho moved through Iowa and other parts of the Midwest.
 - The most extreme winds were estimated to be near 110 mph, wind gusts of 80–100 mph were common.

- Duane Arnold experienced a grid perturbation that caused the emergency diesel generators (EDGs) to automatically start, but initially ran unloaded.

- Approximately 15 minutes later, the main generator tripped resulting in a loss of offsite power (LOOP) and subsequent reactor trip.
 - The two EDGs automatically loaded to their respective safety buses.

- The licensee declared a Notice of an Unusual Event.
Additional Event Details

- Prior to the event, the licensee was loading fuel into a spent fuel canister.
- North FLEX building was damaged and equipment within was declared inoperable.
- The main steam isolation valves remained open, allowing operator to align main steam-line drains.
- Approximately 10 hours into the event, the essential service water (ESW) strainers started to get plugged due an ingress of debris.
- A small tear was discovered in the reactor building resulted in secondary containment being declared inoperable.

Accident Sequence Precursor (ASP) Evaluation
• Initial ASP analysis started within a few days of the event and showed that the event was potentially a significant precursor.

• Focused on early sequence results to determine which modeling/event assumptions that needed to be evaluated further.
 – FLEX modeling
 – Stuck-open SRV scenario modeling
 – ESW strainer challenge

• Provided some initial high-level information during ASP presentation to international precursor community.

• MELCOR calculations were performed to determine timing information for postulated stuck-open SRV scenarios.
 – Based on these calculations and discussions with the licensee revealed that operators would have enough time to connect and initiate either firewater or FLEX reactor makeup.

• Credit for FLEX mitigation strategies was applied.
 – Modified FLEX hardware reliability data based on initial data evaluation (3x multiplier was used).

• Modified ESW Strainer common-cause failure (CCF) parameters to use environmental causal alpha factors.
 – Added operator action to bypass clogged strainers to SPAR model, which largely mitigates significant CCF potential.

• Additional Changes
 – Eliminated some assumptions deemed needlessly conservative (72-hour AC power recovery requirement).
 – Removed EDG repair for scenarios where ELAP is declared due to potential for load shed activity preceding recovery.
Preliminary ASP Analysis

- The preliminary ASP analysis resulted in a mean conditional core damage probability (CCDP) of 1×10^{-3}.
 - Risk dominated by station blackout (SBO) scenarios.
 - Offsite power recovery credit not provided within 24 hours.

- Identified several key uncertainties.
 - Performed sensitivities to evaluate the impact of these uncertainties.

- Sent the preliminary ASP analysis to the licensee for a 60-day review per Regulatory Issue Summary 2006-24.

Industry Comments

- NextEra provided comments on the preliminary ASP analysis on February 9, 2021 (ADAMS Accession No. ML210242079).
 - In addition, the Pressurized-Water Reactor Owners Group provided comments.

- Offsite power was available to be restored to the safety buses approximately 22.6 hours after the event started.
 - This change resulted in mean CCDP decreasing to 8×10^{-4}.

- The PWROG showed that the rate for EDG failures to run (FTR) could be reduced from 1.4×10^{-3} per hour to 8.4×10^{-4} per hour.
 - Idaho National Laboratory performed an updated calculation that was only slightly smaller than current estimate and, therefore, no changes were made.

- A significant conservatism is that FTR events are assumed to occur at the start of the event.
 - The treatment of FTR events in the SPAR models is consistent with the current state-of-practice.
Storm-generated debris resulted in a LOOP to Unit 1 in August 2020.
- The LOOP lasted approximately 14 hours.

Electrical Design Elements
- Each unit has two EDGs and share an SBO EDG that can cross-tied to the other unit.

The mean CCDP was 2×10^{-5}.
- LOOP transient scenarios dominated risk; SBO risk was minimal.
- FLEX credit provided minimal risk reduction.
• LOOP caused by flashover of the switchyard insulators as a result of snowpack and salt spray in January 2015.
 – Offsite power was restored in ~60 hours.

• Electrical Design Elements
 – Unit has two EDGs and an SBO diesel.
 – A separate 23kV offsite power source remained available.

• The mean CCDP was 4×10^{-5}.
 – Risk equally distributed between transient LOOP sequences and postulated SBO scenarios.
 – FLEX mitigation strategies not credited.
3.8.4 Presentation 4A-4: The NRC’s Response to the Duane Arnold Derecho Event using the LIC-504 Process

Authors: Matthew Leech*, U.S. Nuclear Regulatory Commission

Speaker: Matthew Leech

3.8.4.1 Abstract

When the NRC saw that the risk of the Duane Arnold derecho event was high, the decision was made to perform a LIC-504 analysis to determine if a safety issue risk existed to other power plants in the fleet. The LIC-504 is a risk informed process that the NRC uses to disposition emergent safety issues. This presentation will discuss how the NRC evaluated the risk to a number of other power plants if they experienced a similar event, it will discuss the key insights, and recommendations from the LIC-504.

3.8.4.2 Presentation (ADAMS Accession No. ML22061A104)
Duane Arnold Derecho

PFHA Research Workshop - 2022

Matthew Leech
Reliability and Risk Analyst
Office of Nuclear Reactor Regulation
Division of Risk Assessment

Overview

✓ Re-cap of the event and its risk significance

✓ Description of the LIC-504

✓ Risk Insights and Sharing the Operating Experience (OE)
Re-cap of the Event

- A Loss of Offsite Power Occurred – and was not restored for 23 hours
- The plant scrambled offline and shutdown safely, power was provided by their EDGs until offsite power was restored
- Cooling towers were destroyed (non-safety)
- Transmission towers knocked down and damage occurred to a standby transformer in the switchyard – complicated offsite power recovery
- One FLEX building was damaged, but equipment inside remained functional.
- Secondary containment was damaged.
- Hours later ESW was challenged by debris clogging the strainers, one train of ESW and it’s EDG was declared INOP but still functional

Risk Significance of DAEC event – Why was the risk so high?

- Single unit site without the ability to crosstie power from another unit
- No Station Blackout diesel
- It took about 24 hours to restore offsite power
- Ultimate Heat Sink and Service Water Intake were vulnerable to debris generated by derecho
- Another insight was that the risk was significantly improved due to FLEX.
LIC-504

- The NRC’s LIC-504 process is a risk-informed decisionmaking process that the NRC uses for emerging issues.
- One of the recommendations from regional feedback of the DAEC event was that the NRC should evaluate the event for any generic implications to the nuclear fleet.
 - Is there a population of plants that could have unacceptable risk?
 - Are there risk insights that would be useful to share?
- The NRC decided to perform a LIC-504 in October of 2020.

The LIC-504 Analysis vs the ASP

ASP

Conducted by Office of Research focuses on examining the risk from the specific event for the Duane Arnold Plant.

LIC-504

Conducted by the office of Nuclear Reactor Regulation (NRR) examined several plants by running a similar scenario to the one Duane Arnold experienced during the derecho and examining the risk results.
LIC-504 in Two Main Steps

- The first step of the LIC-504 analysis is to determine if the risk from the issue warrants any immediate action:
 - Do any plants need to be shutdown immediately?
 - Are there any immediate compensatory actions or orders that need to be issued?
- The second step involves a more detailed analysis to assess the risk and develop recommendations.
- It’s also used to formally document how the NRC arrives at a decision.

Getting Started with the LIC-504

- To get started the NRC took a population of plants that had the same generic traits as DAEC.
 - Single unit sites
 - No station blackout diesels
 - Potentially vulnerable ultimate heat sinks*
- Plants were chosen to gain a representative look at the overall fleet vulnerability to a similar derecho using the characteristics identified as being risk significant from the event at DAEC.
- First step concluded that there was no immediate safety issue.
Second Step of the LIC-504

- Eight different plants were chosen for the analysis.
- They were a representative population of plants: PWR Westinghouse, PWR Combustion Engineering, BWR4 plants, and a BWR6.
- They were evaluated for the same conditions present during the DAEC derecho:
 - A weather-related loss of offsite power that was not recoverable for 24 hours
 - Challenge to the ESW system

Second Step of the LIC-504 (Cont.)

- The second analysis differs from the first in that it was a more detailed analysis and designed to increase accuracy and reduce conservatism.
 - Provided credit for FLEX actions and equipment
 - More scrutiny and detail looked at each plants service water modeling
 - Lessons learned from the DAEC ASP analysis was applied to this phase of the analysis.
LIC-504 Risk Insights

- When the risk analysis for the LIC-504 was completed some common plant design attributes were found to have an impact on plant risk.
 - Plants with extra diesel generators not dependent on service water cooling had significant benefit
 - Plants that had the ability to bypass a degraded strainer had improved risk
 - Some plants have alternate cooling strategies to their diesel generators in case ESW isn’t available (like fire protection water for instance) and that helps risk
 - Plants that have ESW traveling screens on an emergency power source that will still be available during a loss of offsite power have improved risk
 - FLEX equipment and strategies, demonstrated a significant safety benefit from this type of event

LIC-504 Follow Up Actions

- Held a public webinar with the industry to discuss the ASP, the LIC-504 and the results.
- Issued internal OE communication with more information, including updated risk insights from the LIC-504.
- Issued an Information Notice to share the OE, the results of the ASP & the LIC-504 & share the risk insights with the industry.
References and Contact Info

- Duane Arnold Derecho ASP Analysis: ML21056A382
- The Duane Arnold Energy Center LIC-504 recommendations: ML21078A127
- Information Notice 2021-03: ML21139A091

Matthew Leech – Risk Analyst
Matthew.leech@nrc.gov
(301) 415-8312
Question:

Chris, snowpack and salt spray were mentioned for the Pilgrim event. Was there a distinction between what the two weather-related events contributed to the analysis? Seems like for a near-shoreline event that the presence of accumulated salt spray would dominate.

Christopher Hunter:

To be quite frank, I don't know. If you follow Pilgrim, they've had a lot of these ice storms and a lot of these kind of issues where they've gotten these winter storms. They had one just a couple years previously for Winter Storm Nemo. So they had this continual experience. If you look at the history of Pilgrim they have had the most losses of off-site power, I think, of any any plant in the fleet and the majority of them were due to that their switch yard wasn't necessarily fully protected from ice and salt spray. But I can't tell you whether the salt spray or ice events were the worst.

Question:

Chris, were any reactive inspections done for the ASP analysis shown or for the Waterford hurricane event?

Christopher Hunter:

For Brunswick an MD 8.3 [incident investigaiton] was done, but there were no deterministic questions answered as 'yes', and so they determined not to perform a special investigaiton (SIT) because none of the questions were answered 'yes'. Even though they weren't required, they did a risk evaluation that came up with a 2 e-5 [CDF], which is basically the same answer that I got because, as I mentioned, the loop transient risk is dominant. At Pilgrim they did an MD 8.3 but they did do an SIT. They did answer some of the deterministic questions 'yes'. I think it had to do with the repeated switchyard issues, the fact that they they kept on getting these winter ice storm loops. But they also had some additional complications with some of the equipment so they answered yes and so they did do an SIT. With the Waterford event that just occurred, I'm currently working on the ASP analysis now. They did not do an MD 8.3 so there was no SIT performed for that.

Question:

Specific to Duane Arnold, what is the approximate size of debris that can pass through the river water system to the stilling basis? What is the approximate size of the openings for the ESW suction strainers? Was there any indication of suction issues for other pumps that take suction from that stilling basin?
Christopher Hunter:

At Duane Arnold during the event they had this late inrush of debris. Initially the traveling screens, that are powered by safety-related power, were not not running because they didn't need to. Then they transitioned from not running to slow speed to fast speed. So what happened during the event was debris comes in, and then the traveling screens start to pick up, but already debris is either getting overtopped or bypassed. Eventually the traveling screens were in fast speed and caught up and was preventing debris for coming down and loading the strainers. You can kind of see that from the the differential pressures on the strainers. Train B reached its differential pressure limit of 15 PSID. But the train A strainer peaked at 11 PSID and stopped there. So to me that kind of indicates that it seemed like the traveling screens finally, were going at a fast enough speed to handle the debris. But another issue is the fact of bypassing. I don't know the size of the strainers, but there could be potential issues of bypassing the strainers. You're sending dirty water downstream that could plug heat exchangers or could cause equipment issues. We didn't see any of that during the event, and I think it's kind of an open question on whether that was because the traveling screens caught up and it was no longer sending dirty water down there, and so the amount of debris being bypassed was kind of minimized because the traveling screens are caught up? Or was that just because the debris was small enough to where it wasn't really causing any issues with running the train B diesel generator? So it's an interesting question that we don't really know the answer, but obviously potentially a more severe event could have led to issues. You know, just bypassing the diesel generator is not necessarily a cure all and it could have caused some problems. But it didn't for Duane Arnold. I don't know if Terry and John or Matt want to jump in on that.

Terry Brandt:

The river water supply system allowed for larger debris to be filtered through. It was not uncommon to see sand pumped by the river water supply pumps into the stilling basin and we had a preventive maintenance that would clean out sand from the bottom of the stilling basin and the openings of the individual heat exchangers in the individual components and the ESW system. I think the opening of the systems were commiserate with the strainer design as to what would be strained out. We did have a procedure that allowed us to to monitor the differential pressure and we had instrumentation that's permanently installed, so we monitored that throughout the event. But I can't give you a design specs of each one of those. I'd have to go back and do some research to find those numbers.

Matthew Leech:

I'd also point out that what I learned during the LIC 504 analysis is all plants are different. They all have slightly different designs for their strainers, traveling screens, and even in terms of the openings, how big the traveling screens and their screens are. And in the design of the strainers, some are self backwashing, some are basket type strainers. All plants have slightly different types of straining systems.

John Hanna:

Terry, several hours into the event, things maybe have stabilized a little bit, but before 24 hours or when offsite power was restored, I think we had asked the station about whether there was an intent to pre stage any FLEX equipment. Given that, in our opinion, we thought the threat had really passed, the derecho had gone by and we were thinking maybe pre staging FLEX
equipment would be advantageous. Specifically, the phase two equipment because if you had a diesel failure or other equipment issues then it's less time to get that equipment and activate it and use it. But we heard back that there was not a desire or there was no plan to do that. Can you talk about the rationale, the mindset behind the decision not to go that path? To give a little bit of context, especially for those that are not in the industry, when the Fukushima orders came out and we required every licensee to be able to mitigate a Fukushima-type event and institute equipment and procedures, we did hear from the industry that there was a lot of desire to credit that equipment for a non-beyond-design-basis event. Whether it be for flexibility and refueling or maybe flexibility with taking other equipment out of service, that there was a general desire to credit that equipment for non-beyond-design-basis events. So we thought this was an event that FLEX equipment might have been used or credited or pre staged. But for whatever reason Duane Arnold didn't go down that path. Terry, could you speak to the mindset in the decision making there?

Terry Brandt:

We actually had a significant amount of discussions early on in the event with regard to the pre staging of FLEX equipment. If you go back to the initial conditions, we did have a diesel fire pump that was out of service in order to perform some preventive maintenance and we had some testing in progress. A couple of the small, and I would say minor, equipment issues that happened required operator response too. The Duane Arnold staffing at the time allowed for outside of the control room three equipment operators and we maintain a fire brigade with the maintenance organization also. So the FLEX assumptions assume that we have just those people on site. Now we weren't in FLEX assumption. It wasn't 2:00 o'clock in the morning on a Saturday night. It was a normal day shift, so we did have people on site. But the discussions that we had, were, you know, given the fact that we had both CSTs available, that they were undamaged as a suction source with both of our steam driven turbines being operational and in operation, maintaining level and maintaining the core covered very well. Our level was up above 214 inches to facilitate our natural circulation. We felt the need to get our operators out in the field and recover the plant. That would allow us to continue to use plant equipment first and then we could further evaluate the FLEX equipment afterwards. So the discussion initially was regarding maintaining the equipment or getting the equipment back to what we need. And then we go back further. So that was the background of why that decision was made in order to get some of the plant equipment back into a standby readiness state before we further evaluated that.

Question:

If Duane Arnold had not shut down, which of the model modifications that you made might have been rolled into the SPAR model? Or were all the changes you were making just really specific to the particular questions you were trying to get at in the ASP analysis?

Christopher Hunter:

Whenever we're doing this type of analysis there's going to be certain changes made just to support the analysis. There's other changes because we notice issues with the models. So for example, if Duane Arnold would have continued operating, one item that should have went in the model was the ability to initiate fire water in time to support a stuck open relief valve in SBO. That's the diesel driven fire water pump that Terry was mentioning. Although it was initially inoperable due to maintenance, they could have restored that in pretty short order. Because if you just open up the SPAR model from scratch, and ou run a long duration loop, that was what
was dominating. So that would be an item that should be accounted for and changed in the permanent model record. Now, some of the other things such as FLEX, we're kind of in a kind of a grey area with FLEX. We still have all the FLEX models turned off, so I don't know if the FLEX modeling would stay in there, but some of that stuff would make sense. Because, whenever you're opening it, and reviewing the FLEX, the final integrated plan, and it would make sense that you would, even if the FLEX credit is turned off, that some of those changes, would be made, so you're not losing that effort. So, next time someone comes in and uses the model, they don't have to make those changes and we're maybe more consistent across our analysis.

Matthew Leech:

During the the LIC-504 analysis when I was working with a group of plants, I did discover some modeling issues that you'll discover when you go in depth into an analysis. Some of them might be very specific just to that one analysis you're doing. But some of the things I found did require changing in the base model of record, not necessarily for derecho. But I found some errors in how service water was modeled or something that could be better modeled in the models. I did feed that back to our vendor, Idaho National Labs, which maintains the model, and I know that upgrades or updates were made to those based on some of those things that we found. So throughout the process we did update some models of record.

Question:

Terry, you mentioned a very early in your talk about monitoring the weather forecast and the watches and the warnings. Where are you getting your weather alerts and watches from? Are you getting specialized forecasts from an entity geared toward your industry? Or relying on forecasts available to the general public?

Terry Brandt:

We did not have any specific program that would allow us to monitor the weather. So I subscribe to National Weather Service warnings on my cell phone and we had designed our communication such that a cell phone on airplane mode with Wi-Fi was allowed to be used inside of our control room. So I got the weather warnings on my cell phone. That's just being a good steward. What behavior that we would see on site is if a warning or a watch would be issued we'd typically get about two dozen phone calls in the control room to ask us whether or not we were taking actions out of our abnormal operating procedure. So the monitoring from a local weather station, National Weather Service in our case, out of the Quad Cities is what we use to determine the watches and warnings.

Moderator:

A derecho is an example of meso scale convective system where you have large scale organization, more than just a single isolated thunderstorm. You have many thunderstorms that line up together in a large system. There is a convective outlook, produced by the Weather Service Storm Prediction Center. I think they go as far out as maybe four days in advance. These don't have the same level of definitiveness in terms of a warning. It's a long range view of weather systems of interest that may be coming up. The convective outlook would be something that would be useful to have somebody subscribing to so you would have some advance warming that the conditions are ripe for things like, large thunderstorms, tornadoes, derecho's and things of that nature.
Terry Brandt:

Thinking back to it, we did carry the emergency response pagers. Those were subscribed, so we would typically get a page. Whether or not it was timely, I can't remember, but we would get a page on the pagers if we had a watch or warning also. We had a couple different methods to be able to get informed of this. In this case, if I remember right, the two-day outlook was fairly clear with not a lot of chance of storms. So this was, to John's point earlier, that this was very fast moving and with very little warning of a storm.

John Hanna:

Terry, following the Robinson event and I'm not sure if you're familiar with that one. It was a major fire, a very risk-significant event. There was an augmented inspection team (AIT) During the restoration of power to get off the diesels and restoring normal lineup, they actually caused a second event, a high energy arc fault, to occur. Following that event, can you speak to what's changed in terms of offsite power restoration, the care and precautions you take before re-energizing buses? If you're not aware of what the industry overall is doing, maybe what changes Duane Arnold might have made.

Terry Brandt:

I can tell you that during our restoration we reviewed, did a pre job brief and took a very slow and very cautious approach to the restoration, because we knew that we were very stable where we were at with both diesels operating. We took a very cautious approach, used our normal procedures in order to restore power, and actually followed the recommendation of the transmission company, in this case ITC (International Transmission Company), to warm up the transformers and have breakers closed and wait a period of time. In our case we waited 15 minutes just to make sure that everything was going right. We were very stable at that point. The other point that they [ITC] wanted to make with us, and on which we had very close conversations, is we just had a very significant event. They had just rebuilt some of our lines and they wanted to make sure that they weren't going to introduce anything to the lines by closing the breakers too. So, the Robinson event was not in the forefront of my mind. What was in the forefront of my mind was what we had built into the program from the Robinson event: (1) make sure you understand what you are doing; and (2) make sure you know where your fault is so that you don't reintroduce a fault by re-energizing the exact bus that you had a fault with.

Question: What's the timeline for ASP analysis and the LIC-504 process? How long after the event were these two processes completed?

Christopher Hunter:

For ASP, the normal process is to start when we get the Licensee Event Report (LER) and complete the analysis in about two months after receiving the LER. For Duane Arnold we started pretty early. We were waiting on the LER before we sent the preliminary analysis out. We completed the final analysis a little over 5 months from the event date.

Matthew Leech:

LIC-504 started a couple months after the event. We didn't act immediately. The recommendation to do the LIC-504 came in, management looked at it and discussed it and said
yes, let's go ahead and do it. There is one time metric for the first step of the LIC-504, where we have to decide whether or not we need to take immediate action or prompt action as it's worded. Do we need to shut the plant down? Do we need to issue some other type of order that would improve safety? There's a time frame for that, usually we want to get that done within 30 days. We did meet that goal for Duane Arnold. Once that was finished and there was a little bit less urgency, it took us about three more months before the LIC 504 was in a finished status. That's due to the fact that we were not looking at one plant. We were studying about 8 different plants and running that analysis. It took a little bit longer. But I will say there was one thing that the NRC did do in the interim before the ASP and LIC-504 was finished. As we had some information from a risk standpoint from Region III when this event occurred, we did issue some internal operating experience so that our inspectors would know initially what happened and some risk type information to focus on.
3.9 Day 4: Session 4B – ASCE-7 Tornado Wind Loads

Session Chair: Elena Yegorova, NRC/RES/DRA

3.9.1 Presentation 4B-1: Introduction to Tornado Loads in the New ASCE 7-22 Standard - Including Long Return Period Tornado Hazards Maps with Applications to Nuclear Facilities

Authors: *Marc Levitan*, National Institute of Standards and Technology

Speaker: *Marc Levitan*

3.9.1.1 Abstract

The American Society of Civil Engineers ASCE 7 Standard on Minimum Design Loads and Associated Criteria for Buildings and Other Structures is the national standard referenced in model building codes for determination of dead loads, live loads, and loads caused by environmental hazards such as earthquakes, floods and windstorms. This standard has not included loads caused by tornadoes – until now. The 2022 edition of ASCE 7 has a new chapter with requirements for consideration of tornado loads in the design of certain buildings and other structures. The tornado hazard maps and load methodology in ASCE 7 are the result of a decade of research and development led by the National Institute of Standards and Technology (NIST). Key to the tornado load provisions is a new generation of tornado hazard maps. These maps incorporate advances in the understanding of tornado climatology and regional properties of tornadoes, tornado wind fields, tornado wind speeds, and the very significant effects of target size (and shape) on wind speed risk. The Standard includes a series of 48 maps with design tornado speeds for six return periods (from 1,700 to 10 million years) at eight target sizes each (from point targets to 4 million square feet). The map development process included consideration of epistemic (modeling) uncertainties, with support from the Nuclear Regulatory Commission. This presentation provides an overview of the tornado load requirements in ASCE 7-22 and their development. Tornado maps are a main focus of the talk, including introduction of Appendix G (Long Return Period Tornado Hazard Maps) and the ASCE 7 Hazard Tool, which provides site-specific values for all environmental hazards (including tornadoes) through a webGIS application.

3.9.1.2 Presentation (ADAMS Accession No. ML22061A103)
Introduction to Tornado Loads in the New ASCE 7-22 Standard
Including Long Return Period Tornado Hazards Maps with Applications to Nuclear Facilities

Marc L. Levitan, Ph.D.
Lead Research Engineer, National Windstorm Impact Reduction Program

Why Haven’t We Considered Tornadoes in Conventional Engineering Design?

Common Misperceptions

- Too rare
- Losses from tornadoes are small compared to other hazards
- Nothing we can do about them
- Inadequate knowledge
- Buildings would all have to be concrete bunkers
- Too expensive

Perceptions may be shaped by the few violent tornadoes per year that make the headlines
How Rare are Tornadoes?

This plot shows the number of *reported* tornadoes per year. Many tornadoes go unreported.

Where do Tornadoes Occur?

U.S Tornadoes: 1995-2016
How Many Lives are Lost in Tornadoes?

Tornadoes kill more people per year in the U.S. than hurricanes and earthquakes combined

Tornado fatalities overwhelmingly occur inside buildings.

High Tornado Death Toll
5,600 killed (1950 – 2011)

Average deaths/year:
- Tornadoes: 91.6
- Hurricanes: 50.8
- Earthquakes: 7.5

Moore OK Tornado – 2013. Damage to the hallway and classrooms of the new main classroom building (complete loss of roof and many walls) where the 7 fatalities occurred (most of the debris has already been removed). This hallway area was a "designated area of safety." NIST SP 1164 (2013)

Storm Shelters for Life Safety Protection

We can design for mother nature’s worst
FEMA Safe Rooms are designed for ‘near-absolute’ life safety protection, ICC 500 Storm Shelters have almost identical requirements
- 250 mph tornado winds
- Impact of 15-pound 2x4 traveling at 100 mph
- No reported failures of safe rooms or shelters constructed to FEMA or ICC 500 requirements

In-Residence Safe Room
Joplin, MO, May 22, 2011

Source: FEMA

Winston County Commission
Community Safe Room
Arley, AL, November 30, 2016

Source: FEMA
How Much Damage do Tornadoes Cause?

Over the 20-year period, 1997 to 2016, events involving tornadoes, including other wind, hail and flood losses associated with tornadoes made up 39.9% of total catastrophe insured losses, adjusted for inflation.

Hurricanes and tropical storms were a close second largest cause of catastrophe losses, accounting for 38.2% of losses.

Isn’t Most Damage Caused by the Big Tornadoes?

Property damage and resulting losses per individual tornado (black curve) increase dramatically with EF rating.

However, aggregate losses for all tornadoes per EF number (red curve) are of the same magnitude (except EF0):

- because there are so many more tornadoes with lower intensities.

Source: NIST (2014)

https://doi.org/10.5020/NIST.NISTSTAR.3
Opportunity for Tornado Loss Reduction

We don’t have to design everything to withstand the most violent tornadoes in order to significantly reduce tornado damage

From 1995-2016, of the over 1,200 tornadoes/year
* 89.1% were EF0-EF1, 97.1% were EF0-EF2

Most of the area impacted by a tornado does not experience the greatest winds, e.g., in the 2011 EF-5 Joplin Tornado (NIST, 2014)
* 72% of area swept by tornado experienced EF0-EF2 winds
* 28% experienced EF3-EF5 winds

Paradigm Shift Needed

Ignoring tornado hazards in the design of our built environment is not an appropriate response
The first tornado study to include storm characteristics, building performance, emergency communication and human behavior together - with assessment of the impact of each on fatalities

16 recommendations for improving:

- Tornado hazard characterization
 - R3 - develop new tornado hazard maps considering spatial estimates of tornado hazard
- Design and construction of buildings and shelters in tornado-prone regions
 - R5 - develop performance-based tornado-resistant design standards
 - R6 - develop tornado design methodologies
- Emergency communications that warn of threats from tornadoes

NOTE: Summaries of the recommendations are provided in this presentation for context. The complete recommendations are available in the final report, available through the link shown at left.

Map Development Overview

- **Tornado Risk Mapping Project Components**
- **Six year effort, working with Applied Research Associates, Inc. (ARA) under contract to NIST, led by Dr. Larry Twisdale**
- **The US Nuclear Regulatory Commission supplemented NIST funding to include the analysis of epistemic uncertainties**
Consideration of Uncertainty

- Epistemic Uncertainties are often called “modeling uncertainties”
- Aleatory Uncertainties are often referred to as “randomness”
- Many epistemics in modeling tornado wind speeds
- Approach:
 - Modeled numerous random variables, many regionally, to capture randomness.
 - Modeled epistemic uncertainties in 5 key areas characterized by:
 - Significant uncertainties in mean values
 - Uncertainties in models/parameters
 - Expert judgment
- 12 Implementations
- The modeling philosophy for the uncertainty modeling was “best-estimate.”

Target Size Effects

Tornado risk and tornado speeds are a function of building or facility size and shape (effective plan area)

- Tornado strike probabilities increase with increasing plan area of the target building or structure (target size)
- For a given return period (i.e., mean recurrence interval), tornado speeds increase with increasing target size

Effects of building or facility plan area on tornado strike probability

“Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas?”
Edward U. Lorenz, Sc.D.
Professor of Meteorology
Massachusetts Institute of Technology, Cambridge
https://www.aps.org/education/physicsteam/G13410/0312.htm
Tornado Hazard Maps

Windspeed Exceedance Frequencies (WEFs)

WEFs developed for each region and subregion, for a range of target sizes

Final Tornado Regions/Subregions

Tornado Hazard Maps

Target Size Effects

- The effects of target size depend on the Region and the tornado wind speed
- The effect of target size is reduced for high return periods
- The effects of target size are greater in regions with lower wind hazard, such as Region 1, since the tornadoes are smaller and the impact of increasing target size has a more dominant effect on the resulting risk.

Note: Return Period (also referred to as mean recurrence interval or MRE) is the inverse of the annual exceedance frequency

Target Size Effects for Regions 1 (West) and 4b (Center)

Change in speed between smallest and largest target sizes

1,700 year return period – 46 mph increase
3,000 year return period – 43 mph increase

R1: Point Target
R1: 40K SF
R1: 4M SF
R4b: Point Target
R4b: 40K SF
R4b: 4M SF
Tornado Hazard Maps

Map Development Process
1. A six step process is used to develop maps.
2. The grid wind speeds for a given Return Period and Target Size were smoothed using Gaussian smoothing.
3. The Kriging was performed in ArcGIS with default parameters, similar to the current ASCE 7 non-tornadic maps.

Example Grid After Smoothing

4. Gaussian Smoothing
5. ArcGIS Kriging
6. INEX Smoothing & Hand Adjustments for Final Maps

Regional Boundary Uncertainties

<table>
<thead>
<tr>
<th>Region Boundary</th>
<th>Mean Distance (mi)</th>
<th>Percent, Number of 100-Year Grid Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1-Region 2</td>
<td>159</td>
<td>2.2</td>
</tr>
<tr>
<td>Region 1-Region 3</td>
<td>185</td>
<td>2.2</td>
</tr>
<tr>
<td>Region 2-Region 3</td>
<td>160</td>
<td>0.0</td>
</tr>
<tr>
<td>Region 4-Region 2</td>
<td>217</td>
<td>3.4</td>
</tr>
<tr>
<td>Region 4-Region 3</td>
<td>238</td>
<td>2.9</td>
</tr>
<tr>
<td>Region 5-Region 1 (South and East of Population)</td>
<td>272</td>
<td>4.0</td>
</tr>
<tr>
<td>Coastal Area</td>
<td>160</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Gaussian Smoothing Weights

Tornado Hazard Maps - Examples

Effective Plan Area, A_e (ft2)	Risk Category III (1,700 Year)	Risk Category IV (3,000 Year)
10K | 84 | 99 |
1M | 111 | 125 |

8 mapped effective plan area sizes (target sizes), from 1 to 4M sq ft
- 1 (Geometrical Point)
- 2,000 (45' x 45')
- 10,000 (100' x 100')
- 40,000 (200' x 200')
- 100,000 (316' x 316')
- 250,000 (500' x 500')
- 1,000,000 (1,000' x 1,000')
- 4,000,000 (2,000' x 2,000')

Mapped values are available through the ASCE 7 Hazards Tool, free of charge
https://neco7hazardsoftool.online/

Tornado speeds are 3-s peak gusts in mph at 33 ft (10 m) height

3-420
Tornado Hazard Maps – Long Return Periods

More information on the long return period maps was presented at 2021 RIC – Session T11

Mapped tornado speeds for longer return periods at each of the 8 sizes are provided in ASCE 7-22 Appendix G
- 10,000 years
- 100,000 years
- 1,000,000 years
- 10,000,000 years

ASCE 7-22 also includes a new Appendix F with longer return period wind speed maps

Tornado speeds are 3-s peak gusts in mph at 33 ft (10 m) height

Tornadic Wind Characteristics

Very different from straight-line winds
- Short duration
- Rapidly changing speeds and directions
- Strong updrafts
- Decreasing speed with height above ground
- Atmospheric Pressure Change

Worked closely with mobile radar community
- Analyzed radar-measured tornado wind speeds
- Developed tornado velocity pressure profiles

40K

4M

ASCE 7-22 Velocity Pressure Profiles for Tornadic and Straight-line Winds
Tornadic Wind-Structure Interaction

Very different from straight-line winds

- Short duration
 - Changes to gust effect factor
- Rapidly changing speeds and directions
 - Changes to directionality factor
- Strong updrafts
 - Addition of new factor to account for increase in uplift pressures on roofs

Conducted wind tunnel tests to simulate the effective change in wind angle at the leading edge of the roof

- Decreasing speed with height above ground
 - Changes to velocity pressure exposure coefficient
- Atmospheric Pressure Change
 - Changes to internal pressure coefficient to account for contributions of APC

ASCE/SEI 7-22
Tornado Provision Highlights

Marc Levitan
Chair
ASCE 7-22 Tornado Task Committee
Tornado Loads - New in ASCE 7-22

Chapter 1: General
- Add Tornadoes to Risk Categorization Table 1.5-1

Chapter 2: Load Combinations
- Add Tornado Loads to load combinations

Chapter 26: Wind Loads
- Add requirement to check Tornado Loads per Ch. 32

New Chapter 32: Tornado Loads
- Complete provisions to determine Tornado Loads

New Appendix G: Tornado Hazard Maps for Long Return Periods
- Tornado speed maps for longer return periods, in support of tornado PBD and other applications

Table 1.5-1 Risk Category of Buildings and Other Structures for Flood, Wind, Tornado, Snow, Earthquake, and Ice Loads

<table>
<thead>
<tr>
<th>Use or Occupancy of Buildings and Structures</th>
<th>Risk Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings and other structures that represent low risk to human life in the event of failure.</td>
<td>I</td>
</tr>
<tr>
<td>All buildings and other structures except those listed in Risk Categories I, III, and IV</td>
<td>II</td>
</tr>
<tr>
<td>Buildings and other structures, the failure of which could pose a substantial risk to human life.</td>
<td>III</td>
</tr>
<tr>
<td>Buildings and other structures designated as essential facilities</td>
<td>IV</td>
</tr>
<tr>
<td>Buildings and other structures, the failure of which could pose a substantial hazard to the community.</td>
<td></td>
</tr>
<tr>
<td>Buildings and other structures required to maintain the functionality of other Risk Category IV structures</td>
<td></td>
</tr>
</tbody>
</table>

Red indicates differences from ASCE 7-16
Ch. 32: Tornado Loads

- Built on ASCE 7 wind load procedures framework
 - Designed to provide similar look and feel with the wind provisions for improved ease of use
- Most wind load coefficients and equations are modified to account for differences in tornadic wind and wind-structure interaction
- Despite similarities in procedures, tornado loads are treated separately from wind loads

Scope

- Risk Category III and IV buildings and other structures
- Located in the tornado-prone region
- Design of MWFRS and C&C
- Must resist the greater of tornado loads or wind loads, using load combinations provided in Chapter 2

32.1 PROCEDURES

32.1.1 Scope

Buildings and other structures classified as Risk Category III or IV and located in the tornado-prone region as shown in Figure 32.1-1, including the main wind force resisting system (MWFRS) and all components and cladding (C&C) thereof, shall be designed and constructed to resist the greater of the tornado loads determined in accordance with the provisions of this chapter or the wind loads determined in accordance with Chapters 26 through 31, using the load combinations provided in Chapter 2.
User Note
- Highlights key features/ explanations of tornado load provisions
- Design tornado speeds range from 60-138 mph, approximately EF0-EF2 intensity,
 - Dependent on Risk Category, geographic location, and effective plan area (target size)
- Return periods for Risk Category III and IV are 1,700 and 3,000 years, respectively (the same as used for wind loads)
- Options for protection from more intense tornadoes include storm shelters and PBD
- Tornado shelters cannot be designed solely using Chapter 32 – pointers to commentary

User Note: The tornado loads specified in this chapter provide reasonable consistency with the reliability delivered by the existing criteria in Chapters 26 and 27 for MWFRS, and therefore are only required for Risk Category III and IV buildings and other structures (see Return Period discussion in Section C32.5.1 for more information). The tornado loads are based on tornado speeds using 1,700- and 3,000-year return periods for Risk Category III and IV, respectively (which are the same return periods used for basic wind speeds in Chapter 26). The tornado speed at any given geographic location will range from approximately Enhanced Fujita Scale EF0 – EF2 intensity, depending on the risk category and effective plan area of the building or other structure (see Section C32.5.1).

Options for protection of life and property from more intense tornadoes include construction of a storm shelter and/or design for longer-return-period tornado speeds as provided in Appendix G, including performance-based design. A building or other structure designed for tornado loads determined exclusively in accordance with Chapter 32 cannot be designated as a storm shelter without meeting additional critical requirements provided in the applicable building code and ICC 500, the ICC/NSSA Standard for the Design and Construction of Storm Shelters. See Commentary Section C32.1.1 for an in-depth discussion on storm shelters.

Where Tornado Loads are Likely to Control
Tornado loads are more likely to control at least some element(s) of the wind load design for structures that
- are located in the central and southeast US (except near the coast where dominated by hurricanes)
- are Risk Category IV
- are designated as Essential Facilities
- have large effective plan areas
- are located in Exposure B
- have low mean roof heights
- are classified as enclosed buildings for wind loads

Tornado loads can control over wind loads when tornado speeds are as little as half of the basic wind speeds

Where tornado loads control, design uplift pressures on roofs will typically increase. This will help reduce the most common tornado and other windstorm failures.
CURRENT STATUS OF ASCE 7-22

- Public Comment Draft was published in June for 45-day review period
- Published December 1, 2021
 - In e-book (pdf), paperback, and online versions

- ASCE 7 Hazard Tool - Available to the public
 https://asce7hazardtool.online/
Hazard Curves for Tornadic and Other Winds

ASCE 7 Hazards Tool provides data that can be used to construct site-specific wind speed hazard curves for:

- Design tornado speeds for range of target sizes
- Design wind speeds all other windstorm types combined (‘basic wind speeds’)

Introduction to Tornado Loads in the New ASCE 7-22 Standard
Including Long Return Period Tornado Hazards Maps with Applications to Nuclear Facilities

Marc L. Levitan
Marc.levitan@nist.gov

PFHA Workshop
Feb. 17, 2022

Questions?
3.10 **Day 4: Session 4C – USACE Dam and Levee Database Updates**

Session Chair: Joseph Kanney, NRC/RES/DRA

3.10.1 **Presentation 4C-1: National Inventory of Dams**

Authors: *Becky Ragon*, *U.S. Army Corps of Engineers*

Speaker: *Becky Ragon*

3.10.1.1 **Abstract**

The National Inventory of Dams (NID), a congressionally authorized database, has served as a central repository of information on dams in the U.S. and its territories since the 1980s. The site has been updated to make it easier to find and share dam-related data. The U.S. Army Corps of Engineers (USACE) maintains the NID and works in close collaboration with federal and state dam safety agencies to obtain accurate and complete information about dams in the database. The new NID allows agencies to update data in-real time – users can expect fresher data that can be downloaded and shared at any time. The NID also features new information for some dams. USACE is sharing flood inundation maps for its dams in the NID as well as narrative summaries about what their dams do, benefits they provide and risks they pose, and planned and ongoing actions to manage dam risks.

3.10.1.2 **Presentation (ADAMS Accession No. ML22061A102)**
NATIONAL INVENTORY OF DAMS

Becky Ragon
NID Manager

Probabilistic Flood Hazard Assessment
Research Workshop

Feb 18, 2022

PRESENTATION OUTLINE

- National Inventory of Dams Overview
- What's New in the NID?
- Why is USACE Publicly Sharing Inundation Maps?
- NID Map Viewers
- NID Live Demonstration
- Questions
NATIONAL INVENTORY OF DAMS (NID)

- Congressionally authorized database documenting dams in the United States and its territories
- Includes dams owned and operated by federal agencies, the military, states, territories, tribes, local governments, public utilities and private entities
- Contains information about dam’s location, size, purpose, type, last inspection and regulatory facts
- Data provided by state and federal dam safety agencies
- Maintained and published by U.S. Army Corps of Engineers

WHAT’S NEW IN THE NID?

What’s New in the NID?

- Public sharing of dam flood inundation maps (initially USACE only)
- Real-time data input and download
- User-friendly search functions
- Learning center for additional dam-related resources
- Additional information to explain benefits and risks of USACE dams

https://nid.sec.usace.army.mil/##/
WHY IS USACE SHARING INUNDATION MAPS AND RISK INFORMATION?

- Increases public understanding of dam flood risk
- Empowers the public to prepare for and respond to potential floods, better managing (their own) risk
- Helps the public at risk and risk managers to "visually" see how flooding from a dam may impact their community

NID PROJECT MAP VIEWER FOR USACE DAM

- Descriptions are included to explain the different scenarios
- Scenarios include breach and non-breach
NID ADVANCED MAP VIEWER FOR USACE DAM

- Add other map layers
- Customize with your own data
- Share the data with others
- Download or use the web services

NID – ADDITIONAL RESOURCES

Welcome to the NID (Exploring Our Nation's Dams)
Visualizing Dams - Routine Dam Operations

DAMS AND FLOOD INUNDATION MAPS

Welcome to the NID (Exploring Our Nation's Dams)
Visualizing Dams - Operational Flood Risk
NID DEMONSTRATION

- https://nid.sec.usace.army.mil/#/
- For additional information, contact Becky Ragon at rebecca.ragon@usace.army.mil.
3.10.2 Presentation 4C-2: National Levee Database

Authors: Brian Vanbockern*, U.S. Army Corps of Engineers

Speaker: Brian Vanbockern

3.10.2.1 Abstract

The National Levee Database (NLD), developed by the U.S. Army Corps of Engineers (USACE), is the focal point for comprehensive information about our nation’s levees. The database contains information to facilitate and link activities, such as flood risk communication, levee system evaluation for the National Flood Insurance Program (NFIP), levee system inspections, flood plain management, and risk assessments. The NLD continues to be a dynamic database with ongoing efforts to add levee data from federal agencies, states, and tribes.

3.10.2.2 Presentation (ADAMS Accession No. ML22061A101)
TOPICS

- NLD history
- NLD data holdings
- NLD and its expanded toolbox
- The National Levee Safety Program
NATIONAL LEVEE DATABASE HISTORY

- Authorized in WRDA 2007 due to Hurricane Katrina findings
- Started primary as a USACE levee database focused on federal projects
- Expanded in 2015 to include thousands of non-federal projects in cooperation with FEMA
- FEMA now uses NLD as sole source of levee data

NLD GOALS

1. Identifying the most critical levee safety issues;
2. Understanding the true cost of maintaining levees;
3. Quantifying the Nation’s flood risk exposure; and
4. Focusing priorities for future funding.
NLD DATA HOLDINGS

- 7000 levee systems
 - Inundation areas for each system
- Risk Assessment data for over 2000 systems and growing
- Detailed Inspection data for over 2000 systems and growing
- 500 Channel projects added as part of Flood Risk Management collaboration
- 90% of data is publicly retrievable

KEY NLD CAPABILITIES

- Robust data exploration tools
- Ability to download data individually or in bulk in multiple formats
- Online data management for users
 - Includes Inspection and Risk assessment tools
- Inundation areas – overtopping scenarios/worst case
- Capability to track multiple spatial features and hundreds of attributes with an in-depth data model.
- Access to current FEMA accreditation data
THE TOOLBOX

The NLD consists of a linked set of tools to aid users in compiling inventory, inspection and risk data for their projects:

- **Assess condition**
- **Mobile tool linked to NLD with NLD web report building**

- **Risk Assessment tool**
- **Web tool linked to NLD to assign risk and consequences**

- **Flood inundation Modeling**
- **Flood event and study model tool to display and share results**

FUTURE PLANS

- The new National Levee Safety Program will drive some change to the database.
 - www leveesafety org

- Focus currently is on non-federal projects where less is known on the levees

- Assisting states/tribes and other groups in levee safety data management.

- Provide a comparable basic risk measure across all levees in the National Levee Database.

- Use a scalable approach for data collection
LIVE Demo

National Levee Database: https://levees.sec.usace.army.mil/#/
4 WORKSHOP PARTICIPANTS

Hosung Ahn
Hydrologist
U.S. Nuclear Regulatory Commission

Azin Al Kajbaf
Graduate Student
University of Maryland

Ashley Allard
Special Agent
U.S. Nuclear Regulatory Commission

Ayhan Altinyollar
Nuclear Safety Officer
International Atomic Energy Agency

Audrey Amphoux
Electricite de France

Luke Aucoin
Research Physical Scientist
U.S. Army Corps of Engineers, Engineer Research and Development Center

James Barbis
Associate Water Resources Engineer
Wood, PLC

Patrick Barnard
Coastal Geologist
U.S. Geological Survey

Kevin M. Befus
Assistant Professor
University of Arkansas, Department of Geosciences

Chris Bender
Coastal Engineer
Taylor Engineering

Thomas Aird
Environmental Engineer
U.S. Nuclear Regulatory Commission

Steven Alferink
Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

Jamila Alsuwaidi
Senior Safety Assessment Specialist
United Arab Emirates Federal Authority For Nuclear Regulation

Christopher Amante
Research Scientist
U.S. National Oceanic and Atmospheric Administration

Victoria Anderson
Technical Advisor
Nuclear Energy Institute

Gregory Baecher
Professor, Civil and Environmental Engineering
University of Maryland

Lise Bardet
Section Head, Hydrogeology, Flood, Meteorological and Geotechnical Risk Assessment
France Institute for Radiological Protection and Nuclear Security

Laurel Bauer
Geologist
U.S. Nuclear Regulatory Commission

Joe Bellini
Principal Engineer/Vice President
Atterra Solutions, LLC

Michelle Bensi
Assistant Professor, Civil and Environmental Engineering
University of Maryland
Meredith Carr
Research Hydraulic Engineer
U.S. Army Corps of Engineers, Engineer Research and Development Center

Laura Chap
Senior Engineer
Atkins

Danny Chien
Reactor Systems Engineer
U.S. Nuclear Regulatory Commission

A. Egon Cholakian
P.I. / Visiting Researcher
Harvard University / NIH / Oxford University

Mary Casto
Student Co-op
U.S. Nuclear Regulatory Commission

Sushil Chaudhary
Dam Safety Engineer
New Mexico Office of the State Engineer, Dam Safety Bureau

Nilesh Chokshi
Consultant
Independent consultant

Rob Choromokos
Project Manager
Electric Power Resaerch Institute

Judah Cohen
Principal Scientist
Atmospheric and Environmental Research

Christopher Cook
Branch Chief, Instrumentation, Controls, and Electrical Engineering
U.S. Nuclear Regulatory Commission

Kevin Coyne
Senior Technical Advisor, PRA
U.S. Nuclear Regulatory Commission

Pedro Diaz
Safety analysis specialist
IDOM Consulting, Engineering, Architecture

Jonathan DeJesus
Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

Scott DeNeale
Water Resources Engineer
Oak Ridge National Laboratory

Claire-Marie Duluc
Deputy Head, Site and Natural Hazards Department
France Institute for Radiation Protection and Nuclear Safety
Maria Adriana Dutcec
Engineer
Romania Institute for Nuclear Research

Carville "Billy" Edwards
Supervisory Civil Engineer
U.S. Federal Emergency Management Agency

John England
Lead Civil Engineer - Hydrologic Hazards
U.S. Army Corps of Engineers Risk Management Center

David Esh
Senior Risk Analyst
U.S. Nuclear Regulatory Commission

Randall Fedors
Senior Hydrogeologist
U.S. Nuclear Regulatory Commission

Constantinos Frantzis
PhD Student
University of Maryland

Patrick Frias
General Engineer, Civil/Hydraulics
U.S. Department of Energy, Office of Nuclear Safety

Raymond Furstenuau
Director, Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Susan Gallier
Staff Writer
American Nuclear Society

Dennis Galvin
Project Manager
U.S. Nuclear Regulatory Commission

Sergio Garcia
Ph.D. Student
University of Maryland

Lucia Garces
IDOM Consulting, Engineering, Architecture

Emily Gibson
Project Engineer
Schnabel Engineering

Jeanne Godaire
Geologist
U.S. Bureau of Reclamation

Garrett Godbey
Risk Based Applications Engineer
Enercon

Victor Gonzalez
Research Civil Engineer
U.S. Army Corps of Engineers, Engineer Research and Development Center

Emily Granier
Operational Planner
U.S. Federal Emergency Management Agency

Kevin Griebenow
Civil Engineer
U.S. Federal Energy Regulatory Commission

Robyn Griffith
Self

Allen Gross
Risk Analyst
U.S. Nuclear Regulatory Commission

Christopher Grossman
Project Manager
U.S. Nuclear Regulatory Commission

Jin-Ping Gwo
Systems Performance Analyst
U.S. Nuclear Regulatory Commission
Alan Hackerott
PRA Engineer/Consultant
Westinghouse, Inc.

Samson Haile-Selassie
Senior Water Resources Engineer
California Department of Water Resources

Robert Hallowell
Technical Staff
Massachusetts Institute of Technology Lincoln Laboratory

John Hanna
Senior Reactor Analyst
U.S. Nuclear Regulatory Commission

Salman Haq
Reactor Engineer
U.S. Nuclear Regulatory Commission

Kathleen Harris
Research Civil Engineer
U.S. Army Corps of Engineers, Engineer Research and Development Center

Des Hartford
Principal Engineer, Dam Safety Management
BC Hydro

Cynthia Haynes
Investigations Assistant
U.S. Nuclear Regulatory Commission

Jory Hecht
Hydrologist
U.S. Geological Survey

David Heeszel
Geophysicist
U.S. Nuclear Regulatory Commission

Liv Herdman
Hydrologist
U.S. Geological Survey

Moises Hernandez
Clinical Pharmacologist
U.S. Air Force Medical Readiness Agency

Erich Hester
Associate Professor
Virginia Tech University

David Ho
Hydraulic Engineer
U.S. Army Corps of Engineers Hydrologic Engineering Center (USACE/HEC)

Todd Hilsmeier
Risk Analyst
U.S. Nuclear Regulatory Commission

Lihua Huang
China General Nuclear Power Group

William Holloway
GIS Unit Lead
U.S. Federal Emergency Management Agency

Matthew Humberstone
Risk Analyst
U.S. Nuclear Regulatory Commission

Doug Hultstrand
Senior Hydrometeorologist
Applied Weather Associates, LLC

Christopher Hunter
Sr. Reliability and Risk Engineer
U.S. Nuclear Regulatory Commission

Kelly Hunter
Chief Operating Officer
INTERA Incorporated

Anastasiia Ilina
Researcher
Ukraine State Scientific and Technical Center for Nuclear and Radiation Safety (SSTC NRS)
Mohammad Islam
Civil Engineer
U.S. Army Corps of Engineers

Albert Janes
External Events Evaluation - Project Manager
IDOM Consulting, Engineering, Architecture

Dennis Johnson
Senior Hydrologist
Aterra Solutions, LLC

Darone Jones
Director, National Weather Service Water Prediction Operations
U.S. National Oceanic and Atmospheric Administration

Joseph Kanney
Hydrologist
U.S. Nuclear Regulatory Commission

Bill Kappel
President/Chief Meteorologist
Applied Weather Associates, LLC

Keith Kelson
Paleoflood Technical Lead, Engineering Geologist
U.S. Army Corps of Engineers

Derek Kinder
Hydraulic Engineer
U.S. Army Corps of Engineers Risk Management Center

Oleksandr Kudrytskyi
Researcher
Ukraine State Scientific and Technical Center for Nuclear and Radiation Safety (SSTC NRS)

Aikaterini Kyprioti
PhD Candidate
University of Notre Dame

Charles Langley
Executive Director
Public Watchdogs

Hugo Jadot
External Events PRA expert
Electricite de France

Weixia Jin
Vice President- Principal Engineer
Moffatt & Nichol

Dustin Jones
Supervising Engineer
California Department of Water Resources

Ian Jung
Senior Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

Shih-Chieh Kao
Senior Research Staff
Oak Ridge National Laboratory

Manoj Kc
Water Resources Engineer
Michael Baker International

Beom-Jin Kim
Postdoctoral Researcher
Korea Atomic Energy Research Institute

Patrick Koch
Structural Engineer
U.S. Nuclear Regulatory Commission

Michael Kuprenas
Nuclear Engineer
U.S. Navy, Naval Sea Systems Command

Kyle Landon
Coastal Engineer
Moffatt & Nichol

Lawrence Lee
PRA Engineer
Jensen Hughes
Matthew Leech
Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

William Lehman
Sr Risk Analyst
U.S. Army Corps of Engineers Hydrologic Engineering Center (USACE/HEC)

Shizhong Lei
GeoScience Technical Specialist
Canada Nuclear Safety Commission

David Leone
Associate Principal
GZA, Inc.

Walter Leschek
Reliability and Risk Engineer
U.S. Nuclear Regulatory Commission

Bret Leslie
Senior Professional Staff- Geologist
U.S. Nuclear Waste Technical Review Board

Camille Levine
Graduate Research Assistant
University of Maryland

Dan Levish
Technical Specialist
U.S. Bureau of Reclamation

Marc Levitan
Lead Research Engineer, National Windstorm Impact Reduction Program
U.S National Institute for Standards and Technology

Chang-Yang Li
Sr. Safety and Systems Engineer
U.S. Nuclear Regulatory Commission

Yueh-Li Li
Senior Mechanical Engineer
U.S. Nuclear Regulatory Commission

Christina Lindemer
Coastal Engineer
U.S. Federal Emergency Management Agency

Tao Liu
Phd Student
Virginia commonwealth university

Ziyue Liu
Student
University of Maryland

Kelly Mahoney
Research Meteorologist
U.S. National Oceanic and Atmospheric Administration

Pathmathevan Mahadevan
Civil Engineer
U.S. Federal Energy Regulatory Commission

David Margo
Lead Civil Engineer
U.S. Army Corps of Engineers, Risk Management Center

Noel Marc
Project Manager
European Commission - Joint Research Centre

Robert Mason
Extreme Hydrologic Events Coordinator
U.S. Geological Survey

Giuseppe Mascaro
Assistant Professor, School of Sustainable Engineering and the Built Environment
Arizona State University

Petr Masopust
Principal Engineer
Aterra Solutions, LLC
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delza Mas-Penaranda</td>
<td>Project Engineer, U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>Michael Mazaika</td>
<td>Physical Scientist (Meteorologist), U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>Adeljalil Mekkaoui</td>
<td>U.S. Department of Homeland Security</td>
</tr>
<tr>
<td>Philip Meyer</td>
<td>Research Engineer, Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>Somayeh Mohammadi</td>
<td>PhD student, University of Maryland</td>
</tr>
<tr>
<td>Celso Moller Ferreira</td>
<td>Associate Professor, Department of Civil, Environmental, and Infrastructure Engineering, George Mason University</td>
</tr>
<tr>
<td>Norberto Ndal-Caraballo</td>
<td>Senior Research Engineer, U.S. Army Corps of Engineers, Engineer Research and Development Center</td>
</tr>
<tr>
<td>Muthu Narayanaswamy</td>
<td>Coastal Engineer, Michael Baker International</td>
</tr>
<tr>
<td>Kit Ng</td>
<td>Manager of Hydraulics and Hydrology, Bechtel Corp</td>
</tr>
<tr>
<td>Thomas Nicholson</td>
<td>Professional Hydrologist, U.S. Nuclear Regulatory Commission (Retired)</td>
</tr>
<tr>
<td>David Novak</td>
<td>Director, National Weather Service Weather Prediction Center, U.S. National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>Chris Massey</td>
<td>Research Mathematician, U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>Steve McDuffie</td>
<td>Seismic Engineer, U.S. Department of Energy</td>
</tr>
<tr>
<td>Nate Mentzer</td>
<td>Reactor Inspector, U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>Jeffrey Miller</td>
<td>Senior PRA Engineer, Enercon Services, Inc.</td>
</tr>
<tr>
<td>Jamal Mohmand</td>
<td>PRA Engineer, Sandia National Laboratory</td>
</tr>
<tr>
<td>Susmita Mukherjee Roy</td>
<td>India Atomic Energy Regulatory Board</td>
</tr>
<tr>
<td>jared nadel</td>
<td>Senior Resident Inspector, U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>Andy Neal</td>
<td>Actuary, U.S. Federal Emergency Management Agency</td>
</tr>
<tr>
<td>Ching Ng</td>
<td>Risk Analyst, U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>Shinsaku Nishizaki</td>
<td>Consultant, International Atomic Energy Agency</td>
</tr>
<tr>
<td>Nicole Novembre</td>
<td>Hydrologic Engineer, Brava Engineering, Inc.</td>
</tr>
</tbody>
</table>
William Orders
Senior Project Manager
U.S. Nuclear Regulatory Commission

Jeffrey Oskamp
Coastal Engineer
Moffatt & Nichol

Margaret Owensby
Research Hydraulic Engineer
U.S. Army Corps of Engineers, Engineer Research and Development Center

Emmanuel Paquet
Hydrologist expert
Electricite de France

Sunwoo Park
Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

Tye Parzybok
Lead, Integrated Multi-sensor Content
DTN, LLC

Mark Perry
Dam Safety Engineer
Colorado Dam Safety

Lucie Pheulpin
Research Engineer
France Institute for Radiological Protection and Nuclear Security

Jacob Philip
Civil Engineer
U.S. Nuclear Regulatory Commission (Retired)

Frances Pimentel
Sr. Project Manager
Nuclear Energy Institute

Marie Pohida
Senior Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

Oleg Ponochovnyi
Head of PSA laboratory
Ukraine State Scientific and Technical Center for Nuclear and Radiation Safety (SSTC NRS)

Chad Pope
Professor, Nuclear Engineering
Idaho State University

Michael Powell
PWROG Chairman & APS Chief Operating Officer
PWROG/Arizona Public Service Company (APS)

Alvin Prakash
Engineer
California Department of Water Resources

Rajiv Prasad
Earth Scientist
Pacific Northwest National Laboratory

Andreas Prein
Scientist
U.S. National Center for Atmospheric Research

Lundy Pressley
Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

Jamie Prochno
Civil Engineer
U.S. Federal Emergency Management Agency

Julia Prokopec
Hydrologist
U.S. Geological Survey

Kevin Quinlan
Meteorologist
U.S. Nuclear Regulatory Commission

Becky Ragon
Manager, National Inventory of Dams
U.S. Army Corps of Engineers
Marko Randelovic
Project Manager
Electric Power Research Institute

Mayasandra Ravindra
President
MKRavindra Consulting

Vincent Rebour
Department Head, Site and Natural Hazard Characterization
France Institute for Radiological Protection and Nuclear Security

Mehdi Reisi Fard
Branch Chief, Performance and Reliability
U.S. Nuclear Regulatory Commission

William Rhodes
Operational Planner
U.S. Federal Emergency Management Agency

Yann Richet
Scientific Advisor
France Institute for Radiological Protection and Nuclear Security

John Richins
PhD Student
University of Arkansas

David Rosa
Emergency Management Specialist
U.S. Federal Emergency Management Agency

Andrew Rosebrook
Senior Reactor Analyst
U.S. Nuclear Regulatory Commission

MarkHenry Salley
Branch Chief, Fire and External Hazards Analysis
U.S. Nuclear Regulatory Commission

Shane Sandal
Senior Reactor Analyst
U.S. Nuclear Regulatory Commission

Tim Sande
PRA Supervisor
ENERCON

Emiliano Santin
Statistician
U.S. Federal Emergency Management Agency

John Saxton
Hydrogeologist
U.S. Nuclear Regulatory Commission

Tim Schmitt
Engineering Supervisor
Framatome, Inc.

Raymond Schneider
Fellow
Westinghouse, Inc.

Leo Shanley
Principal Engineer
Jensen Hughes

Jamey Sharlow
Nuclear Support Services Supervisor
Duke Energy, Harris Nuclear Plant

Joy Shen
Graduate Research Assistant
University of Maryland at College Park

Sahas Shrestha
Engineer
Michael Baker International

Daniyal Siddiqui
Civil Associate
Michael Baker International

Hannah Skiles
Management Analyst
U.S. Federal Emergency Management Agency
Curtis Smith
Director, Nuclear Safety and Regulatory Research Division
Idaho National Laboratory

Christopher Smith
Research Geologist
U.S. Geological Survey

Adam Smith
Physical Scientist / Applied Climatologist
U.S. National Oceanic and Atmospheric Administration

Erik Smith
Climate Resilience Analyst
Electric Power Research Institute

Mathini Sreetharan
Senior Engineer, Associate
Dewberry, Inc.

Kristi Steinhilber
Meteorologist
Applied Weather Associates, LLC

Neda Stoeva
Associate Nuclear Safety Officer
International Atomic Energy Agency

Stuart Stothoff
Principal Scientist
Southwest Research Institute

Christine Suhonen
Project Manager
GZA, Inc.

Rajmani Subedi
Water Resources Engineer
California Department of Water Resources

Peter Swarzenski
Research Oceanographer
U.S. Geological Survey

Sarah Tabatabai
Project Manager
U.S. Nuclear Regulatory Commission

Alexandros Alexandros
Professor, Civil and Environmental Engineering and Earth Sciences
University of Notre Dame

Philip Tarpinia Jr.
Senior Staff Engineer / PRA Engineer
Exelon Generation (Constellation)

Stewart Taylor
Manager of Geotechnical & Hydraulic Engineering Services
Bechtel Global Corporation

Keith Tetter
Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

Mark Thaggard
Director, Division of Risk Analysis
U.S. Nuclear Regulatory Commission

Wilbert Thomas
Senior Technical Consultant
Michael Baker International

Arianne Thomas
Regional Hurricane Program Manager
U.S. Federal Emergency Management Agency

Charles Thompson
Chief, Dam Safety Bureau
New Mexico Office of the State Engineer

4-11
Peter Thornton
Scientist
Oak Ridge National Laboratory

Edgardo Torres
Reliability & Risk Analyst
U.S. Nuclear Regulatory Commission

Quentin Travis
Director of Applied Research
WEST Consultants, Inc.

Amanda Turk
Manager, River Analysis and Decision Support
Tennessee Valley Authority

Jessica Umana
Technical Assistant
U.S. Nuclear Regulatory Commission

Brian VanBocskern
Data Management Branch Chief - National Levee Database Manager
U.S. Army Corps of Engineers

Andrew Verdin
Hydrologic Scientist
Stantec

Clifford Voss
Emeritus Scientist (Hydrogeologist)
U.S. Geological Survey

Weijun Wang
Sr. Geotechnical Engineer
U.S. Nuclear Regulatory Commission

Bin Wang
Sr Technical Specialist
GZA, Inc.

David Watson
Senior Project Manager, Stormwater/Water Resources
AECOM, Inc.

Joel Tillery
Senior Water Resources Engineer
Freese & Nichols, Inc.

Tam Tran
Environmental PM
U.S. Nuclear Regulatory Commission

Jean Trefethen
Environmental Project Manager
U.S. Nuclear Regulatory Commission

Geoff Uhlemann
Water Resources Team Leader & Sr. Project Manager
Michael Baker International

Milton Valentin
Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

Marty Venticinque
Meteorologist
Applied Weather Associates, LLC

Gabriele Villarini
Professor, Civil and Environmental Engineering
University of Iowa

Kent Walker
Dam Safety Program Manager
U.S. Bureau of Reclamation

Zhanxian Wang
Coastal Engineer
Moffatt & Nichol

Zeechung Wang
Reliability and Risk Engineer
U.S. Nuclear Regulatory Commission

Jason White
Physical Scientist/Meteorologist
U.S. Nuclear Regulatory Commission
Thomas Williams
Senior Water Resources Engineer
Wood, PLC

Abbie Wilson
Project Manager/Coastal Engineer
Moffatt & Nichol

De (Wesley) Wu
Reliability and Risk Analyst
U.S. Nuclear Regulatory Commission

Elena Yegorova
Meteorologist
U.S. Nuclear Regulatory Commission

Xubin Zeng
Professor, Department of Hydrology and Atmospheric Sciences
University of Arizona

Casey Zuzak
Senior Risk Analyst
U.S. Federal Emergency Management Agency

Shawn Williams
Project Manager
U.S. Nuclear Regulatory Commission

Daniel Wright
Assistant Professor
University of Wisconsin-Madison

Madison Yawn
Research Physical Scientist
U.S. Army Corps of Engineers, Engineer Research and Development Center

Cale Young
Senior Reactor Analyst
U.S. Nuclear Regulatory Commission

Quinn Zheng
Geoscience Assessment Officer
Canada Nuclear Safety Commission
5 SUMMARY AND CONCLUSIONS

5.1 Summary

This report includes the agenda and presentations for the Seventh Annual PFHA Research Workshop, including all presentation abstracts and slides and abstracts for submitted posters. The workshop was virtually attended by members of the public; NRC technical staff, management, and contractors; and staff from other Federal agencies and academia. Public attendees over the course of the workshop included industry groups, industry members, consultants, independent laboratories, and academic institutions.

5.2 Conclusions

As reflected in these proceedings, PFHA is a very active area of research for the NRC and its international counterparts, other Federal agencies, industry, and academia. Readers of this report will have been exposed to current technical issues, research efforts, and accomplishments in this area within the NRC and the wider research community.

The NRC projects discussed in these proceedings represent the main efforts in the first phase (technical basis phase) and second phase (pilot studies) of the NRC’s PFHA Research Program. This technical basis phase is nearly complete, and the NRC has initiated a second phase (pilot project phase) that synthesizes various technical basis results and lessons learned to demonstrate development of realistic flood hazard curves for several key flooding phenomena scenarios (site-scale, riverine, and coastal flooding). The third phase (development of selected guidance documents) is an area of active discussion between RES and NRC user offices. The NRC staff looks forward to further public engagement on the second and third phases of the PFHA research program in future PFHA research workshops.
6 ACKNOWLEDGEMENTS

An organizing committee in the NRC RES Division of Risk Analysis, Fire and External Hazards Analysis Branch, planned and executed this workshop with the assistance of many NRC staff.

Organizing Committee Chair: Joseph Kanney

Organizing Committee Members: Tom Aird, Sarah Tabatabai, Elena Yegorova, and MarkHenry Salley

Workshop NRC Facilitator: Kenneth Hamburger

Several NRC offices contributed to this workshop and the resulting proceedings. The organizing committee would like to highlight the efforts of the RES administrative staff, as well as agency publishing staff. The organizers appreciated managerial direction and support from MarkHenry Salley, Mark Thaggard, Christian Araguas, and Ray Furstenau. Managers and staff from the NRC Office of Nuclear Reactor Regulation, Division of Engineering and External Hazards and Division of Risk Analysis, provided valuable support, consultation, and participation.

Members of the Probabilistic Flood Hazard Assessment Research Group:

MarkHenry Salley (Branch Chief), Joseph Kanney (Technical Lead), Tom Aird, Elena Yegorova, and Sarah Tabatabai.