Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards SHINE Subcommittee
Docket Number:	(n/a)
Location:	teleconference
Date:	Wednesday, July 20, 2022

Work Order No.: NRC-2041

Pages 1-172

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	SHINE SUBCOMMITTEE
8	+ + + + +
9	WEDNESDAY
10	JULY 20, 2022
11	+ + + + +
12	The Subcommittee met via Teleconference,
13	at 9:30 a.m. EDT, Ronald G. Ballinger, Chairman,
14	presiding.
15	
16	COMMITTEE MEMBERS:
17	RONALD G. BALLINGER, Chairman
18	VICKI M. BIER, Member
19	CHARLES H. BROWN, JR. Member
20	VESNA B. DIMITRIJEVIC, Member
21	GREGORY H. HALNON, Member
22	JOSE MARCH-LEUBA, Chairman
23	DAVID A. PETTI, Member
24	JOY L. REMPE, Member
25	MATTHEW W. SUNSERI, Member
ļ	I

		2
1	ACRS CONSULTANTS:	
2	DENNIS BLEY	
3	STEPHEN SCHULTZ	
4		
5	DESIGNATED FEDERAL OFFICIAL:	
6	CHRISTOPHER BROWN	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I		

	3
1	AGENDA
2	Opening Remarks and Objectives 4
3	Chapter 12, Section 12.10, Operator
4	Training/Requalification 5
5	Chapter 12, Section 7.9, Human Factors
6	Engineering
7	Chapter 12, Conduct of Operations
8	(Organization, Review and Audit
9	Activities, Procedures, Required
10	Actions, Reports/Records)
11	Chapter 12, Section 12.11 Startup Plan 138
12	Public Comments
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	I

	4
1	PROCEEDINGS
2	(9:30 a.m.)
3	CHAIRMAN BALLINGER: Good morning,
4	everyone. This is the second day of the meeting of
5	the SHINE Subcommittee of the Advisory Committee on
6	Reactor Safeguards. I'm Ron Ballinger, chairman of
7	today's subcommittee meeting. Today's meeting is an
8	extension or a continuation, if you will, of
9	yesterday's meeting.
10	Members present so that I'll be clear are
11	myself, Charlie Brown, Charles Brown, Vicki Bier, Dave
12	Petti, Greg Halnon, Jose March-Leuba, Matt Sunseri,
13	Vesna Dimitrijevic, and our consultants, Dennis Bley
14	and Stephen Schultz. If I have missed anybody, I
15	apologize.
16	Today, we will be covering the following
17	topics, operator training and requalification, human
18	factors, conduct of operations, a startup plan, and
19	any other loose ends that we might find that we need
20	to discuss by the end of the day.
21	So, with that, are there any members or
22	consultants that wish to bring up a topic that we
23	discussed yesterday but might need further
24	clarification? Okay, thank you. So, Josh, I
25	understand that you're going to make a few comments?
	I

(202) 234-4433

	5
1	MR. BORROMEO: I don't have anything in
2	addition to what I said yesterday, so we can move onto
3	SHINE.
4	CHAIRMAN BALLINGER: Okay, okay, great.
5	So, the first presentation is the SHINE presentation
6	on operator training and requalification, and I see
7	the slides are up, so we're off and running. Thank
8	you.
9	MR. WALLER: All right, good morning,
10	everyone, and thank you for taking the time to let me
11	present our operator training program. My name is
12	Brent Waller and I am the training manager for SHINE.
13	First, we'll talk about our initial
14	training program which actually starts before a
15	candidate ever shows up. We have to select the
16	candidates that would be appropriate for our training
17	program.
18	The guidance that we use is ANSI-15.4-
19	2016, selection and training of personnel for research
20	and test reactors. We use that as the screening
21	process during our hiring to make sure that candidates
22	have the requisite background and experience to enter
23	for the role that they are coming in, for example,
24	licensed operator or senior licensed operator, and our
25	medical screenings that we conduct are also per ANSI-
I	I

(202) 234-4433

	6
1	15.4-2016.
2	Upon identifying a candidate that we
3	believe meets the requirements of ANSI-15.4-2016, they
4	are enrolled in our initial training program. Our
5	initial training program has a couple of phases. The
6	first phase is the fundamentals phase. That includes
7	topics that you would expect to be covered in a
8	fundamentals type training program.
9	Examples of topics would include
10	thermodynamics, heat transfer and fluid flow, nuclear
11	theory and kinetics, and also includes components of
12	training such as electrical components, sensors, that
13	kind of thing, and then we also have a couple of
14	topics that are unique to SHINE's application, for
15	example, plasma physics.
16	We also have a radiation protection and
17	administration requirements phase. That program goes
18	into more detail about radiation protection
19	principles, for example, calculating dose rates,
20	shielding, that kind of stuff.
21	And then we also have an administrative
22	requirements phase. That covers administrative topics
23	relevant to licensed operators. That would include
24	things like configuration management, conductive
25	operations, and technical specifications.
ļ	1

(202) 234-4433

www.nealrgross.com

7 1 We then go into a systems phase where we then teach the operators the systems that are in the 2 3 SHINE facility, both safety related and non-safety 4 related systems. 5 It then progresses into a plant evolutions includes our normal, abnormal, 6 phase. That and 7 emergency operating procedures, and that's also where 8 the candidates have dedicated on-the-job training 9 quides that they would be in the plant performing 10 evolutions for their qualification. We follow that up with an exam preparation 11 phase to get our candidates ready to take the NRC 12 written and operating exam, 13 and then for those 14 candidates designated as senior licensed operators, we 15 have an additional supervisory training element to 16 that. 17 For our initial program examinations, we follow the requirements of ANCI-15.4, which has a 18 19 passing criteria of 70 percent. Any candidates that scores less than that 70 percent on our internal 20 examination has to go through a remediation process 21 and a reexamination process. 22 Examinations are good for checking of 23 24 knowledge items. For performance items, we have on-25 the-job evaluations that are used for their

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

8 1 performance test. That coincides with their on-thejob training session. 2 3 And then we have the option in our program 4 to use oral exams as needed to do level of knowledge 5 checks of individuals or groups. We can also use it 6 as an alternative in case we have to go through a 7 deeper remediation. 8 As far as the contents of the initial 9 license training program, they come from several 10 sources. So, 10 CFR Part 55 lists several topics to be covered in the initial program. We cover all of 11 those that are applicable to the SHINE design. 12 ANCI-15.4-2016 13 also provides some 14 additional guidance and they are incorporated. 15 Chapter 12, Section 10 of the FSAR has some topics 16 delineated that are also covered, and then anv 17 additional topics that are determined by the systems approach to training that would be in addition to 18 19 those listed above. MEMBER SUNSERI: Hey, Brent, this is Matt 20 Sunseri, just a question and a comment, or a comment 21 and a question I should say. I realize you pulled the 22 cut score of 70 percent from the reg guide. 23 24 It's mγ experience that the nuclear industry has moved away from 70 percent as the cut 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	9
1	score, especially when you use the systematic approach
2	to training which is supposed to be a higher level of
3	preparation for the candidates, and they really use 80
4	percent as a good industry standard now. Did you give
5	any thought to that or
6	MR. WALLER: Yes, so the difference
7	between 70 and 80 percent is, as someone who comes
8	from a commercial power plant background as well,
9	commercial power regs and INPO accredited training,
10	they all drive you towards an 80-percent standard.
11	When you look at the NUREGs and ANSI
12	standards that are invoked for research and test
13	reactor and production facilities, they all reference
14	a 70-percent standard. And while we use 70 percent as
15	the programmatic standard, we have internal controls
16	that we take for candidates that are scoring or
17	trending less than an 80 percent.
18	MEMBER SUNSERI: Yeah, I understand that.
19	I mean, you can see the optics though as a commercial
20	facility if you're, you know, passing your operators
21	at a C level versus a B level. It might, you know,
22	just create some optics. Anyway, it's just a comment.
23	I mean, I know you're meeting the regulations.
24	And then my question, or, yeah, that was
25	a comment, and the question I have is back on your
ļ	I

(202) 234-4433

	10
1	fundamentals preparation. Is it your intention to
2	have your candidates sit for the generic fundamentals
3	exam offered by the NRC or is that too much outside of
4	the analysis of your systematic approach to training?
5	MR. WALLER: Yeah, so that's a good
6	question. The generic fundamentals exam by regulation
7	is unique to power plants when you look at the
8	research and test reactor standards, including NUREG
9	1478.
10	The fundamentals portion as administered
11	by the NRC is not required, and in some cases, would
12	be detrimental to how we want to train our operators.
13	The nuclear theory topics specifically
14	focus a lot on critical operations with a nuclear
15	theory behind that where we are a subcritical facility
16	and our concerns were the operations. Their knowledge
17	are in a different area.
18	So, it's not really a good fit and would
19	provide mostly probably some negative training value
20	if we were to use the GFE as-is, and we also know that
21	the NRC on the power plant side is getting away from
22	administering the GFE anyway.
23	MEMBER SUNSERI: Yeah, okay, all right,
24	that's a fair response. I would just you know, I
25	don't disagree with what you just said. I would
	I

(202) 234-4433

www.nealrgross.com

	11
1	maybe, caution is too strong a word, but don't
2	underestimate the value of having your operators
3	understand critical operations.
4	I mean, they're going to be operating at
5	the subcritical, but they need to understand what
6	crossing that line is and what a critical reactor
7	looks like so they can recover from that if necessary.
8	It's kind of like a pilot. You don't ever
9	want to stall your airplane, but you better darn sure
10	know how it approaches and what it does when it does
11	stall. Anyway, that's my comment.
12	MR. WALLER: Yeah, so that is a good, good
13	point, and all of our operators, they do have to pass
14	internal fundamentals exams, and one of the topics
15	that's specifically identified is the identification
16	of a critical state and how that critical state gets
17	mitigated during their fundamentals training.
18	MEMBER SUNSERI: Okay, thanks.
19	MEMBER BIER: Hi, this is Vicki Bier. I
20	had a couple of questions, one of which I think you
21	just addressed, but my familiarity also is mainly from
22	the commercial power reactor, so I wanted to make sure
23	that there is a focus on how to avoid criticality and
24	what to do about criticality, which wouldn't be a big
25	deal for a commercial operator, but would be in your
Į	I

(202) 234-4433

	12
1	context, so I don't know if you want to comment
2	anymore about that?
3	MR. WALLER: Sure, so we, for the training
4	aspect of it, and there are other aspects beyond
5	training for how it's handled, but for how we train
6	the licensed operators on that, in the fundamentals
7	training, as previously stated, we cover indications
8	of criticality, reactivity effects of criticality and
9	what we expect those effects to have on an irradiation
10	unit.
11	We also cover the theory and operation,
12	and then the implementation of criticality avoidance
13	such as one over M plots. When we get into the
14	systems training, we have a specific system that deals
15	with criticality detection. That is covered during
16	their systems training.
17	During their integrated operations phase
18	training, which includes the normal, abnormal, and
19	emergency operations, we cover the procedural steps
20	that operators take to check for getting close to
21	criticality and avoiding it.
22	We cover the actions to take upon receipt
23	of a criticality alarm, and then also emergency plan
24	training deals with actions to take upon detection of
25	a criticality event. So, it's covered in theory, it's
I	I

(202) 234-4433

	13
1	covered in system design, and it's covered multiple
2	times during the operations.
3	MEMBER BIER: Great, thank you. One other
4	question, I'm wondering whether you have a sort of
5	chicken and egg issue with initial operation.
6	If part of licensee training, or operator
7	training is performing evolutions in the plant, what
8	is the level of training before you eventually operate
9	at all and what's that transition look like to who's
10	going to be doing those first evolutions, et cetera?
11	MR. WALLER: All right, so that's also a
12	good question and something that we have considered
13	for the initial class because the initial class will
14	obviously be different than any subsequent class just
15	because of the nature of the construction and
16	commissioning.
17	We so have some models to follow from
18	other recently constructed facilities and NRC
19	licensing programs. The main thing that we're going
20	to do for the on-the-job in the field training phase
21	is the operators are an integral part of the
22	commissioning and testing of the plant.
23	At the commissioning and testing of the
24	plant, the tasks that the operators will perform line
25	up very well with what we would identify as operators
I	I

(202) 234-4433

	14
1	performing as part of their on-the-job training.
2	So, we intend to take credit for
3	operations that operators perform during the
4	commissioning phase, and that's also in line with what
5	ANCI-15.4 states as taking credit for evolutions for
6	training that are not part of the training program as
7	specified.
8	We also have we're using, for example,
9	on the slide that we're about to cover in the
10	application process, using the 398(a). We do have
11	tools in the 398 via the waiver process, so for some
12	things, it can't be done until we reach an operating
13	license state to have those requirements performed at
14	that point with appropriate levels of supervision in
15	place.
16	MEMBER BIER: Thank you.
17	MR. WALLER: Okay, so moving onto the
18	application process, the application process for us is
19	really no different than any other place that has an
20	NRC licensed operator.
21	We use the NRC form 398 for the
22	application of the candidate. We follow the research
23	and test reactor standards when filling it out, and we
24	also use an NRC form 396 for medical evaluations and
25	that medical evaluation is already set up with the
I	

(202) 234-4433

15 1 local hospital in the area in their occupational safety health department. 2 3 We do an internal review of a SHINE 4 candidate before we sent them to the NRC exam. This 5 is a review to make sure that the medical requirements are met, that the eligibility requirements are met, 6 7 and that we are confident that they would pass an NRC 8 written exam and NRC operating exam. 9 As far as a review of the program for 10 initial training, there's two avenues that we use to One is part of the systems approach to 11 assess it. training. 12 There is an actual performance evaluation 13 14 after training that's targeted for a specific time 15 frame after a candidate graduates the training program for feedback incorporation and improvement of the 16 17 program. It's also assessed by the review and audit committee every three years. 18 19 CHAIRMAN BALLINGER: This is Ron I have, I guess, a two-part question, not 20 Ballinger. being an expert in this area at all, so I'm probably 21 going to duplicate things, but the application form is 22 generally for operating a nuclear facility and I'm 23 24 assuming that means the accelerators here, but there's SHINE which involves 25 additional part of the an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	16
1	separation and the chemistry side. Would you be
2	modifying the application in some way to evaluate a
3	candidate's aptitude for this kind of thing? I guess
4	that's the question that I have.
5	MR. WALLER: Okay, so I interpret that
6	question as you're asking about the
7	radiopharmaceutical technicians that are performing
8	the chemical operations for the hot cells?
9	CHAIRMAN BALLINGER: Yes, yes.
10	MR. WALLER: Okay, so those positions are
11	currently not a licensed operator position
12	CHAIRMAN BALLINGER: Right.
13	MR. WALLER: but they are under the
14	supervision of a licensed operator, so the answer to
15	that is two parts, the licensed operators that would
16	be overseeing those personnel, their training program
17	for the systems training, their integrated operations
18	training, and anything as far as specific
19	administrative controls. They are trained on all of
20	those as relevant to what a radiopharmaceutical
21	technician would do.
22	Radiopharmaceutical technicians also have
23	a training program that's based on a systems approach
24	to training, so they get a version of operator
25	training. It's just not a licensed operator training

(202) 234-4433

	17
1	program.
2	CHAIRMAN BALLINGER: Yeah, thanks. I
3	mean, I'm sure that's absolutely correct. I'm just
4	there is at least the potential nexus with safety on
5	the nuclear side, so that's why I asked the question.
6	MR. WALLER: All right, so that's how we
7	train operators when they come in through the front
8	door. Now let's talk about how we train an operator
9	that has a license.
10	So, we'll start our licensed operator
11	continuing training program within three months of
12	receiving our first operator license, whenever that
13	happens to be. It conforms to the requirements of 10
14	CFR 55.59(c) and follows the guidance of ANSI-15.4-
15	2016.
16	Basically, what all of the regulations
17	specify is you have to have a requalification program
18	that is continuous and no more than 24 months in
19	length, so that's what we used.
20	We have a 24-month long biennial
21	requalification cycle. As soon as one cycle ends, the
22	next cycle starts up immediately. The 24-month long
23	cycle is divided into two 12-month long annual cycles.
24	The medical certifications are done every
25	two years in accordance with ANSI-15.4-2016. That
I	I

(202) 234-4433

1 two-year period ISI is independent of the biennial. 2 It is its own period ISI. It is tracked separately. 3 And then as part of our requalification 4 program, we do inform the NRC per 10 CFR 50.74 of any significant changes to operator license status, for 5 example, if a licensed operator transfers internal to 6 7 SHINE and is no longer in that role, if a licensed 8 operator leaves the company, or if a significant 9 medical event has occurred that would change the 10 licensed operator status. MEMBER HALNON: Hey, Brent, this is Greq 11 Can you go back on your requal cycle and just 12 Halnon. kind of frame it up for us from the way the operating 13 14 shifts look like, how many shifts, how often? You know, what is their shift rotations 15 16 and how do they attend requal training? Is it -- you 17 know, can you kind of just walk us through what a -you know, is it a six-week cycle, a five-week cycle, 18 19 whatever the case may be? MR. WALLER: All right, so I'll handle the 20 training piece and then I'll defer to our operations 21 manager who is here for the actual operator shift 22 23 cycles. 24 We do quarterly cycles for licensed operator continuing training, so four cycles a year, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

18

	19
1	eight cycles in a biennial requalification cycle. As
2	far as the rotation, I'm going to turn it over to the
3	ops manager, Kris Ruetz.
4	MR. RUETZ: Good morning, everyone. This
5	is Kris Ruetz, the operations manager. So, as far as
6	our operational shift schedule, we're going to use,
7	follow kind of a typical DuPont type of schedule where
8	we're going to have four crews of people that are
9	going through rotating 12-hour shifts, day and night
10	shifts. So, it's a four-week rotation until you start
11	the rotation over again, so
12	MEMBER HALNON: Okay, on the
13	MR. RUETZ: does that answer the
14	question about shift rotation?
15	MEMBER HALNON: Yeah, on the is there
16	going to be like a reserve shift that's on sometimes
17	or, I mean, or are they just one shift only?
18	MR. RUETZ: So, as of right now, we have
19	no plans for a reserve shift. That's going to kind of
20	depend on how our meeting looks coming out of the
21	licensed operator training program.
22	MEMBER HALNON: Okay, that's fair. The
23	first 12-month cycle, are you going to stagger them?
24	Is there going to be a lucky group of people that get
25	to do requal in 12 months or are you going to just
l	I

(202) 234-4433

	20
1	keep them all on the same two-year cycle?
2	MR. WALLER: Okay, so we plant to, when we
3	have the initial license class comes through, we would
4	expect all of the licenses to come in roughly within
5	the same period of time. We would start our
6	requalification cycle almost as soon as we have our
7	licensed operators and that would start our biennial
8	requalification cycle.
9	At some point in the future, we may short
10	cycle a continuing training cycle to get the starting
11	in any month at a more convenient point either for us
12	or for the NRC examiners, but at the moment right now,
13	that's a future thing and we just intend to start the
14	biennial requalification cycle within three months of
15	our first license.
16	MEMBER HALNON: Yeah, that makes sense.
17	Thank you.
18	MEMBER BIER: One other question, do you
19	envision that people would be permanently on day or
20	night shift or could that change over the course of a
21	month or two?
22	MR. WALLER: No, so the schedule I
23	mentioned previously is our current plan and that is
24	subject to change, but the plan is for people to
25	rotate through the day and night shifts.
I	I

(202) 234-4433

	21
1	MEMBER SUNSERI: This is Matt. One more
2	question maybe for the operations manager. Are you
3	going to have the, like an active license and an
4	inactive license arrangement where an operator has to
5	stand so many watches to keep the license active?
6	MR. WALLER: Yeah, so there is a
7	proficiency requirement. When we go to the next
8	slide, you can kind of see where we have the check.
9	As far as the intention, I'll defer that
10	to the operations manager, but as far as the
11	capability goes, we do track anybody that has a
12	license and making sure that they meet all of the
13	requirements to maintain their license, which is
14	medical, proficiency, manipulations that have to be
15	performed in the plant, and up to date on training.
16	So, the program can support it. It's
17	whether or not ops has the staffing to have that.
18	I'll defer to the operations manager.
19	MR. RUETZ: Yes, so currently we have no
20	plan for maintaining the inactive license type state
21	that you had mentioned.
22	MEMBER SUNSERI: Okay, all right, that's
23	fine.
24	MR. RUETZ: Just the maintaining of
25	tracking of proficiency like Brent, the training
I	I

(202) 234-4433

	22
1	manager, mentioned.
2	MEMBER SUNSERI: Yeah, yeah, no, that's
3	good. Thanks.
4	MR. WALLER: All right, so this table kind
5	of breaks down the, how often we're tracking various
6	things that are part of the continuing training
7	program. Like I said, we plan on doing licensed
8	operator continuing training quarterly.
9	This doesn't take the place of we have the
10	ability to do just in time training for any special
11	evolutions that come up in the plant, but for any one
12	cycle of training, we would cover any facility design
13	changes, procedure changes, or license changes that
14	are applicable to a licensed operator.
15	We'll do training lectures every quarter.
16	We check and make sure documentation of proficiency is
17	accomplished every quarter. We do abnormal and
18	emergency procedure reviews once per annual cycle, and
19	we verify that all reactivity significant control
20	manipulations are complete once per annual cycle.
21	We administer an operating test once per
22	annual cycle. A written exam, the NRC written exam is
23	administered once per biennial cycle, and then the
24	medical exam is independent of the biennial training
25	cycle, but that occurs every two years in accordance
I	I

(202) 234-4433

	23
1	with COC 54 2016.
2	As far as the content for the continuing
3	training program goes, it lines up very close with the
4	initial training program, so the applicable parts of
5	10 CFR Part 55, any facility modifications, procedure
6	changes, topics that are identified by the systematic
7	approach to training, relevant industry experience,
8	and then any identified operator weaknesses, gaps,
9	anything observed on shift would also be covered.
10	The program is reviewed via two methods.
11	We have the systems approach to training which has a
12	built-in feedback mechanism and we also have an
13	assessment by the review and audit committee every 24
14	months. And that's the last slide for the operator
15	training program presentation.
16	CHAIRMAN BALLINGER: Thank you.
17	Questions, additional questions from the members or
18	consultants? Thanks again. Can we switch over to the
19	NRC side? There we go. Thank you.
20	MR. TATE: Good morning. Can you hear me
21	okay?
22	CHAIRMAN BALLINGER: Very well.
23	MR. TATE: Thank you. So, good morning.
24	My name is Travis Tate and I am the Branch Chief of
25	the Non-Power Production and Utilization Facility
I	

(202) 234-4433

www.nealrgross.com

	24
1	Oversight Branch or UNPO. UNPO is conducting the
2	review of FSAR Chapter 12.10, SHINE operator training
3	and requalification program.
4	I think it is important to note that there
5	are no specific regulations for operator licensing of
6	a facility such as SHINE. However, SHINE has provided
7	the requalification training program as part of their
8	application.
9	The staff is conducting a review of the
10	program based upon specific application of the
11	applicable portions of Part 50 of regulations to
12	SHINE's operations. Next slide, please?
13	So, the SHINE facility is under NRC review
14	for licensing in accordance with the applicable
15	requirements under Part 50. In accordance with
16	Paragraph B8 of 10 CFR 50.34, an applicant for a
17	facility operator license is required to submit a
18	description and plans for implementation of an
19	operator requalification program that meets the
20	requirements in 10 CFR 55.59.
21	The operator requalification program is
22	intended to ensure that operators are competent to
23	operate and safely shutdown the facility.
24	Additionally, SHINE submitted an initial training
25	program. However, there are no applicable regulatory
	I

(202) 234-4433

	25
1	requirements or guidance associated with an initial
2	training program.
3	The only regulatory requirements that
4	exist for training and qualification of licensed
5	personnel are contained in 10 CFR 50.120 and applies
6	to the training and qualification of nuclear power
7	plant personnel.
8	So, none of the requirements in 50.120
9	apply to SHINE, which is being reviewed for licensing
10	as a production and utilization facility. Therefore,
11	the NRC staff will not render a sufficiency
12	determination on the initial training program. Next
13	slide, please?
14	So, just an overview of the government
15	regulations for this review. They are 10 CFR 50.34
16	which is the contents of applications and technical
17	information, 50.54 which is conditions of licenses,
18	and 50.59, which is requalification. Next slide,
19	please?
20	The NRC staff evaluated the sufficiency of
21	the SHINE requalification training program using the
22	guidance and acceptance criteria from Section 1210 in
23	NUREG 1537, Parts 1 and 2, and the ISG augmenting
24	NUREG 1537, Parts 1 and 2.
25	Part 1 gives guidance to non-power reactor
	I

(202) 234-4433

	26
1	licensees and applicants on the format and content of
2	applications to the NRC for licensing actions and Part
3	2 gives guidance on the conduct of licensing action
4	reviews to NRC staff who review non-power reactor
5	licensing applications. Next slide, please?
6	The requalification program elements
7	evaluated by the staff include the schedule, the
8	preplanned lectures, on-the-job training activities,
9	operator evaluations, and the required recordkeeping.
10	Next slide?
11	So, the SHINE continuing training program
12	describes how the applicant's program for operators
13	and senior operators will meet the requalification
14	program requirements in 55.59.
15	The NRC notes that SHINE also commits to
16	following industry guidance in ANSI Standard 15.4, the
17	2016 version, related to the selection and training of
18	personnel for research reactors.
19	SHINE's two-year requalification program
20	cycle meets the acceptance criteria for program
21	duration contained in the NUREG and is consistent with
22	the guidance in Section 6.2 of the ANSI standard.
23	The program must include preplanned
24	lectures on a regular and continuing basis throughout
25	the license period in those areas where operator and
	I

(202) 234-4433

1 senior operator written examinations and facility 2 experience indicate that emphasis in scope and depth 3 of coverage is needed. SHINE's preplanned lectures 4 are based on topics related specifically to the 5 operations of a SHINE facility.

6 The program must include on-the-job 7 training such so that the licensed operator 8 manipulates the plant controls and each licensed 9 senior operator either manipulates the controls or 10 directs the activities of individuals during plant manipulations during the time 11 control of the operator's license. The SHINE program requires ten 12 reactivity manipulations per annual requalification 13 14 cycle.

The program must include on-the-job training so that each licensed operator is cognizant of facility design changes, procedure changes, and facility license changes.

So, SHINE's program includes document reviews that will be conducted to ensure that licensed individuals are cognizant of all design, procedure, and license changes.

The program also must include evaluations of the licensed operators and SHINE's program includes abnormal and emergency procedure reviews that will be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

28 1 performed once per annual qualification cycle. Specific content of training sessions is 2 3 based on an observation of operator performance and 4 items identified as weaknesses in the training program 5 or operator knowledge as determined by operating events, examination results, and crew and individual 6 7 performance gaps. Next slide, please? 8 The program includes license conditions, 9 license condition information for licensed operators. 10 Under the proposed program, licensed operators are to perform four hours of license duties on a quarterly 11 basis consistent with the requirement for research and 12 13 test reactors. 14 For licensed operators who have not met the proficiency requirements, will perform a minimum 15 of six hours of license duties under the direction of 16 17 a qualified individual holding the same or higher level license prior to being reinstated consistent 18 19 with the requirements of research and test reactors. I note that SHINE, in this area, SHINE is 20 not considered a research reactor or a test reactor, 21 and as such, the research and test reactor provisions 22 of 55.53(e) and F2 are not applicable to SHINE. 23 24 Following the staff request for information, SHINE submitted an exemption request from 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	29
1	the requirements of 55.53(e) and F to modify the
2	minimum number of requirements required for licensed
3	operators to maintain active status and to restore
4	active status. That exemption request is still,
5	review is still ongoing.
6	The program also implements a drug and
7	alcohol testing program for licensed operators that is
8	consistent with the requirements of 55.53 and
9	consistent with the guidance of Section 8 of the ANSI
10	standard.
11	Audits for the retraining and
12	requalification program for the operating staff are to
13	be conducted at least once every other calendar year
14	with the interval between audits not to exceed 30
15	months. Next slide, please?
16	So, evaluation findings and conclusions,
17	SHINE's licensed operator continuing training program
18	is in accordance with the applicable regulations for
19	requalification contained in 55.59, it meets the
20	acceptance criteria in NUREG 1537, and is consistent
21	with the ANSI standard.
22	The licensed operator continuing training
23	program provides reasonable assurance that
24	requalification for licensed operators and licensed
25	senior operators will be carried out in a manner that

(202) 234-4433

	30
1	ensures knowledge, skills, and proficiency will be
2	maintained and is sufficient for issuance of an
3	operator license. Next slide, please?
4	So, operator initial training is intended
5	to ensure that applicants will be prepared for a
6	license under Part 55 and the facility will be
7	operated by competent operators.
8	Again, Section 5120 of 10 CFR Part 50 does
9	not apply. An applicant is permitted to follow the
10	industry guidance and ANSI Standard 15.4 for selection
11	and training of personnel. Next slide, please?
12	The training program for SHINE is
13	described in the licensed operator initial training
14	program. SHINE's licensed operator initial training
15	program includes the commitment that trainees will
16	only operate controls under direct supervision of a
17	licensed operator, reactivity manipulation plans for
18	licensed operator candidates, plans to account for
19	previous experience and training, training program
20	scope and topics for operators, the scope and topics
21	for senior operators as well, the medical
22	certification and fitness for duty, licensed operator
23	candidate selection and qualifications, the evaluation
24	of the licensed operator candidates, periodic program
25	review and recordkeeping. Next slide?
l	I

(202) 234-4433

	31
1	SHINE's licensed operator continued
2	training program is consistent with the guidance
3	contained in industry standard ANSI 15.4, and that's
4	my last slide.
5	MEMBER HALNON: Hey, Travis, this is Greg
6	Halnon. It looks pretty good from an operator
7	training perspective. Have you guys thought through
8	how the NRC staff licensing folks will be educated and
9	trained on this so that they can ensure the operators
10	are competent?
11	MR. TATE: Yes, we have you know, we
12	are, I would say oops, did I can you still hear
13	me?
14	MEMBER HALNON: Yeah, we're good.
15	MR. TATE: Okay, I heard a click. I
16	thought I had muted. So, yes, we are looking at their
17	operations and trying to understand and making sure
18	that we understand, you know, how the facility will be
19	operated and, you know, how we would go about putting
20	together the examination of those operators.
21	MEMBER HALNON: Okay, there's still some
22	time, but you're working through that, okay, thanks.
23	MR. TATE: Correct.
24	MEMBER BIER: Hi, this is Vicki Bier
25	again, and I apologize. My questions are actually
I	

(202) 234-4433

	32
1	follow-ups for the SHINE people, so if I could do that
2	now. I just have more questions about the shift work.
3	One is do you anticipate that teams will stay together
4	and rotate through the shifts so that the same people
5	are working together?
6	MR. RUETZ: Yes, this is Kris Ruetz, the
7	operations manager. So, that is our intention at this
8	time. Again, that is subject to change, but our plan
9	is to generally keep the same shift complement, same
10	group of people together
11	MEMBER BIER: Okay.
12	MR. RUETZ: in a given shift.
13	MEMBER BIER: Yeah, and, of course, I
14	realize, you know, that may change with absences or
15	whatever, but that's the normal situation. Do you
16	anticipate that I guess one question is I don't
17	really have a good visualization of how busy or active
18	a typical shift will be, and this is towards the
19	question of is 12 hours going to be really fatiguing
20	or is operations going to be in steady state much of
21	the time where 12 hours is not that long?
22	MR. RUETZ: So, the amount of activities
23	during a shift will vary based on our planned schedule
24	such that we've kind of identified the fact that the
25	way our operational tempo will work will give us the
I	1

(202) 234-4433

1 ability to potentially identify high activity shifts, and if it's necessary, allow us to provide additional 2 3 personnel to that shift, such as if we had a Monday 4 day shift that was particularly busy for the schedule, 5 we could accommodate that ahead of time and plan for 6 additional operators as necessary. 7 MEMBER BIER: Okay, so that people still 8 get their breaks and et cetera. The one additional 9 question I have is did you give consideration to a 10 slower rotating schedule and was that not done because it doesn't fit the operational needs or, you know, 11 what was the consideration in going with the DuPont 12 schedule? 13 14 MR. RUETZ: So, is your question like a 15 longer period of time before the schedule repeats and 16 starts over or is it relating to the 12 versus eight 17 hours or something else? I'm asking like if MEMBER BIER: No, 18 19 somebody is assigned to days versus nights, there are shift schedules were somebody might be on a night 20 shift for like a whole month and then day shift for a 21 whole month for example. It just switches less often. 22 MR. RUETZ: Yeah, I understand, so we did 23 24 look at schedule alternatives, but just based on our experience here with the personnel that work at SHINE, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

33

	34
1	most of us do have the commercial reactor experience.
2	We felt that the DuPont schedule would be best for our
3	current operational tempo.
4	And again, like I said previously, it is
5	subject to change, so if we find out that, you know,
6	potentially another shift work schedule would be
7	better, then we could make that change later on.
8	MEMBER BIER: Yeah, I am far from an
9	expert on shift work, but I did look into it some
10	many, many years ago and my understanding is that just
11	from a physical health point of view of like sleep
12	hygiene and things like that, that slower rotations
13	are easier on the employees, but I'm not an expert on
14	how to fit that into, you know, an organization's
15	needs, et cetera, so I just wanted to raise that,
16	okay.
17	MEMBER HALNON: Yeah, this is Greg. I
18	just have kind of a follow-up. Actually, I lost my
19	train of thought.
20	MEMBER BIER: Oops, maybe you didn't get
21	enough sleep.
22	MEMBER HALNON: Yeah, I think I was going
23	to address your questions, Vicki. The four shift
24	rotation is pretty well established, and when we put
25	the fatigue rule in place, there was a tremendous
	I

(202) 234-4433

	35
1	amount of work by Dr. Desaulniers and the NRC staff on
2	working with the industry on the best way to do that
3	rotation, so I'm pretty confident in the four shift.
4	If it was a three shift rotation, I'd be a little bit
5	more concerned, but four shift is decent.
6	The question I had was whether or not
7	there will be a union contract. Is this a union
8	facility or a non-union facility?
9	MR. RUETZ: It's currently a non-union
10	facility.
11	MEMBER HALNON: Okay, so you'll have a
12	little bit more flexibility in adjusting first of a
13	kind technology to the human factors piece of this
14	then.
15	MR. RUETZ: That's correct.
16	MEMBER HALNON: Okay, thank you.
17	CHAIRMAN BALLINGER: Does that complete
18	the questions? Okay, let me I may be assuming
19	facts not in evidence, but we're going pretty quick,
20	and my question to the SHINE folks is if we have an
21	opportunity to move some of the afternoon
22	presentations into the morning, can that be done? The
23	staff has already said that they're fine, but I need
24	to be sure that the SHINE folks can do it.
25	MR. BARTELME: This is Jeff Bartelme. We

(202) 234-4433

	36
1	got considerable flexibility today. We should be able
2	to do that. We should be able to support that.
3	CHAIRMAN BALLINGER: Good, I've probably
4	condemned us by even asking the question, but okay.
5	So, let's now we have the section on human factors,
6	so the SHINE folks are up. I guess can we get the
7	SHINE presentation up?
8	MR. RUETZ: Can you guys see the
9	CHAIRMAN BALLINGER: Ah.
10	MR. RUETZ: Can everyone see the slides?
11	CHAIRMAN BALLINGER: Yes, now we can.
12	Thank you.
13	MR. RUETZ: All right, good morning,
14	everybody. This is Kris Ruetz, the operations manager
15	at SHINE and I'll be talking about human factors
16	engineering today.
17	So, just an outline of the slides I'll be
18	covering today, so I'm going to give a brief overview
19	of our human factors engineering, our HFE program,
20	talk about our HFE design guidelines, our HFE design
21	checklist, how we evaluate alarm hierarchy, some
22	additional information on equipment labeling, and then
23	finish off with a discussion about how we validate our
24	operating procedures.
25	So, to begin an overview of our HFE
ļ	I

(202) 234-4433

program, so SHINE incorporates HFE principles into the design of the facility control room, the display screens, and the operator interfaces. The SHINE operations department works with the engineering department to ensure that human factors are considered

So, SHINE evaluates HFE as part of kind of
three different phases. We evaluate it as part of
initial design, which I call the paper designs. So,
before anything is built and implemented into the
facility, we evaluate the intended design.

throughout the design process.

it 12 We evaluate from actual design implementation. Once the facility is being built and 13 14 equipment is installed, we confirm the as-built design 15 to the initial design. And then we also evaluate it from the future modification aspect, so that includes 16 17 both permanent and temporary modifications.

So, how we evaluate HFE factors, we perform a checklist that compares the design to the recommended design guidelines that we have in our HFE design guidelines that I'll cover briefly. HFE evaluations of those checklists are maintained as official records.

24 So, for our HFE design guidelines, again 25 this is implemented through the use of that checklist

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

	38
1	that I just mentioned. The design guidelines are all
2	recommendations. There are no requirements.
3	So, our design guidelines are kind of
4	split into four different categories. We have
5	instrumentation and control panel layout, main control
6	room layout, human system interface design criteria,
7	and alarm system criteria.
8	The design guidelines are provided to the
9	vendors that are working on the SHINE HSIs, so they
10	get a chance to look at them and review them, and make
11	comments on them prior to them beginning work on the
12	SHINE HSIS.
13	And then the design guidelines themselves
14	are derived from the relevant industry standards, the
15	majority of which are the NUREG-0700, the human system
16	interface design review guidelines.
17	MEMBER HALNON: Hey, Kris, this is Greg
18	Halnon. On this control room layout, was part of the
19	criteria to limit the distractions to the operators?
20	MR. RUETZ: In a way, yes. The holistic
21	view of implementing the HFE design guidelines is to
22	ensure that operators are able to efficiently perform
23	the duties and activities that are required of them,
24	so that would include elimination of distractions.
25	MEMBER HALNON: In the documentation, the
I	I

(202) 234-4433

two entry doors to the control room, every time somebody enters, it will drive the attention of the 2 3 operators to the door rather than the control board 4 because the operators are looking at the control board, but in their peripheral vision would be the two 6 doors.

7 Is that a set design or do you have some 8 other plans to limit the distraction every time 9 somebody comes into a control room to take the 10 attention of the operators away from the control board? 11

MR. RUETZ: Yeah, so the design of people, 12 personnel entering the control room, that is a set 13 14 design. Our intention is to limit normal access to 15 and from the control room through a single door such that you're not looking back and forth between the two 16 17 doors, so normal personnel access will be through a single door. 18

19 MEMBER HALNON: Okay, so the operators will just look to the left instead of to the right, 20 but still, it distracts every time somebody comes in 21 The operators -- it's going to have some 22 that door. kind of attention distraction regardless of whether 23 24 you're using two doors or just one.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

So, I guess my point, if it's already a

(202) 234-4433

25

1

5

1 set design, consider that because during critical evolution surveillances or other types of evolutions, 2 3 you know, the industry has worked extremely hard on 4 making sure that the distraction of the operators is 5 limited to only what's necessary, and that most of the entry doors to the control rooms that we've seen are 6 7 behind and they require permission to enter and those 8 types of things, so consider that in your protocols 9 for getting people into the control room.

10 MS. KOLB: So, thank you for those This is Catherine Kolb. One additional 11 comments. thing to consider is, you know, we do have access 12 controls on the various rooms such that we can limit 13 14 the people that have the ability to enter the control 15 We don't expect random staff to be wandering room. 16 into the control room at any given time.

17 MEMBER HALNON: Okay, yeah, that's good and I think that's consistent with what we see in the 18 19 industry. However, we don't normally see a door where the only place to come in and out of the control room 20 is in the eyesight of the operators of the control 21 board at the same time, so just consider that, maybe 22 some partitions or some other type of controls to 23 24 prevent the operators from being distracted.

MR. RUETZ: I appreciate the comments.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	41
1	Thank you. Any other comments or questions before
2	moving on?
3	DR. BLEY: This is Dennis Bley. In your
4	human factors engineering program, you don't seem to
5	do something that is done typically in power reactors
6	and that is try to identify critical human actions
7	which become important to think about as you design
8	your procedures and in your safety analysis. Have you
9	done some of that or is that done somewhere else?
10	MR. RUETZ: So, it is important to note
11	that SHINE does not rely on the operator actions to
12	respond to an event. So, when we discuss human
13	critical actions, we don't have specific timed
14	actions, whereas a nuclear power plant does have
15	those.
16	DR. BLEY: Yeah, but some of the ones we
17	find for a nuclear power plant don't come up unless
18	you have an abnormal condition that requires the
19	operator to get involved, which isn't your normal
20	operations and in the plan, so the things that
21	If you're in the middle of an event that
22	leads to an accident, there are things that operators
23	need to do, and perhaps some of those are very
24	important, and this is where typically they get
25	identified. I guess if I understand you right, they
	1

(202) 234-4433

only get identified in the safety analysis if somebody thinks of them there.

3 MS. KOLB: Yes, this is Catherine Kolb. 4 That is the place where we would have identified any important human actions of those kind that 5 are 6 required to mitigate accidents, but as discussed in 7 our safety analysis presentation, we did not identify 8 any human actions that were required to respond to 9 mitigate an event, so we didn't include that in our 10 human factors engineering program because there weren't any of those actions identified. 11

DR. BLEY: Okay, we have a little bit of a hole here since we don't have another facility like this out there, but operating experience may teach us we missed something here. I don't know how hard we've thought about that aspect.

MR. RUETZ: So, I am going to discuss in a little bit the way we do our procedure validation and that might shed some more light on what your comments and questions are.

21 DR. BLEY: I'm sure it will help. 22 MEMBER BIER: Hi, I have one other follow-23 up. Is the checklist that's used for the human 24 factors design, is that available to us somewhere or 25 can that be shared or --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

42

	43
1	(Simultaneous speaking.)
2	MEMBER BIER: maybe it's been shared
3	and I haven't found it.
4	MR. RUETZ: I don't believe we've made
5	those available. Those are something that we can
6	we can make those available.
7	MEMBER BIER: That would be super. And a
8	follow-up question, a checklist seems like a very good
9	tool for making sure that things are not missed, but
10	it also kind of focuses attention on the things that
11	are on the checklist and it may be useful to have kind
12	of an additional holistic review of just a sanity
13	check.
14	You know, what strengths and weaknesses do
15	we see in this design separate from the checklist and
16	can you talk about whether that kind of more holistic
17	review has taken place?
18	MR. RUETZ: Yeah, I think what you might
19	be referring to again might be covered when I talk
20	about procedure validation, just I guess I can kind of
21	hint at it now, but essentially for procedure
22	validation, we're going to take our procedures that
23	we've written and do an actual walkthrough in the
24	facility hand over hand to ensure the procedure can be
25	performed as written, so I think that would alleviate
	I

(202) 234-4433

	44
1	some of the issues that you might be referring to.
2	MEMBER BIER: Yeah, that's part of it, but
3	also I think even before construction of the
4	equipment, it just, you know, an additional
5	walkthrough of, you know, is everybody comfortable
6	with this design, you know, maybe getting an outside
7	expert to review it who wasn't involved in the design
8	process or whatever.
9	Because I know for the commercial power
10	plants, you know, we had an experience where a lot of
11	control rooms had major redesigns after they were
12	implemented, and obviously some of that is now in
13	lessons learned that anybody would know about before
14	doing their design, but it's a lot easier to change
15	designs before they're in hardware.
16	MR. RUETZ: I understand your comment and
17	I think one thing that kind of helps us out in that
18	aspect is the fact that the operations department is
19	incredibly involved in the whole human factors
20	engineering process and HSI design such that we work
21	with the vendors that are developing the HSI software
22	and interfaces on a nearly daily basis just as
23	operators, so we are the end users of it, so it's
24	extremely helpful for us to be involved in essentially
25	the design process of those.
I	1

(202) 234-4433

www.nealrgross.com

	45
1	MEMBER BIER: Okay, thank you.
2	MR. RUETZ: All right, so moving on, more
3	discussion on the human factors engineering design
4	checklist. So, those checklists are used to compare
5	the design to the recommended design guidelines.
6	The checklists are filled out by the
7	operations department and are used, again, during
8	those three phases I discussed, during initial design,
9	after installation, and as part of equipment
10	modifications, and again, the checklists are kept as
11	records.
12	Any issues that are identified during
13	performance of the checklists are tracked via the
14	SHINE issues management process which is our
15	corrective actions program.
16	All right, so next I'll cover alarm
17	hierarchy. So, most of our facility alarms will be
18	received in the control room via the process
19	integrated control system, the PICS. PICS displays
20	alarms on a consolidated alarm page on the control
21	room HSIs.
22	We also have stack lights in the control
23	room that alert operators to current facility alarm
24	status. These stack lights provide operators with
25	high level facility alarm status, and they're broken
I	

(202) 234-4433

1 out such that each irradiation unit has its own alarm 2 light and then there's additional alarm light for 3 common alarms that aren't specific to an individual 4 irradiation unit.

5 So, we have four different categories of We have high, which is a red light and 6 alarms. audible alarm, medium, a yellow light, and low, a blue 7 light, and then informational alarms, which there's no 8 9 stack light indication for, only a PICS alarm display. 10 MEMBER HALNON: Before you go on, could you go back and just give us a sense of what a high 11 alarm would be? 12 MR. RUETZ: Yeah, so high alarms would be 13 14 generally things that related to safety-related 15 equipment or parameters that might lead operators into tech spec space, LCO entries, things like that. 16 17 MEMBER HALNON: Okay, largely operator reaction required to address the alarm? 18 19 MR. RUETZ: That's correct. MEMBER HALNON: Okay, and that gets back 20 to Dennis's earlier question that even though no 21 license basis event requires operator action, there's 22 a tremendous amount of important operations that do 23 24 require operator response. Just a comment, thanks. 25 MR. RUETZ: Thank you. For equipment

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

46

	47
1	labeling, equipment and pipe labels are included
2	within the scope of the HFE program. Equipment labels
3	include a descriptive name and equipment designator,
4	which is our unique equipment identifier.
5	Equipment labeling includes components
6	such as valves, pumps, and tanks. Pipe labels include
7	the system name and the arrow showing direction of
8	flow.
9	During facility construction and
10	commissioning process, equipment and pipe label
11	verification is performed as part of turning over
12	systems to operations and here I have some pictures of
13	example labels.
14	And finally, I'll just talk about
15	operating procedure validation. So, operating
16	procedures, including abnormal and emergency
17	procedures, are validated prior to being issued for
18	use.
19	The process for procedure validation
20	varies based on the type and the content of the
21	procedure. However, most validations will consist of
22	a step by step facility walkthrough of a procedure
23	after the related equipment has been installed.
24	So, alternate methods may be used for a
25	procedure validation on a case by case basis. An
	I

(202) 234-4433

	48
1	example would be a tabletop discussion which might be
2	more, might be easier to perform for something like an
3	emergency procedure that kind of has several branching
4	steps in it, but the majority of validations will be
5	the walkthrough of the facility.
6	So, the point of the procedure validation
7	is to ensure that the operators can physically perform
8	the procedures and provides a diverse method of
9	checking for necessary equipment labels, kind of a
10	last stop to make sure that we have all of our labels
11	in place.
12	So, that's all I have for the presentation
13	portion. Any questions or comments from anybody?
14	CHAIRMAN BALLINGER: Hearing none, thank
15	you very much. Can we get the NRC folks up?
16	MR. SEYMOUR: This is Jesse Seymour from
17	the human factors and operator licensing branch.
18	Michael, could we go ahead and just get my first slide
19	up there?
20	CHAIRMAN BALLINGER: Got it. Thank you.
21	MR. SEYMOUR: Thanks a lot. I appreciate
22	it. My name is Jesse Seymour, and I'm a human factors
23	technical reviewer in NRR's Operator Licensing and
24	Human Factors Branch. I was the primary reviewer for
25	the human factors engineering portion of the SHINE
ļ	I

(202) 234-4433

	49
1	operating license application.
2	I will be providing an overview of the
3	regulatory basis for the review. The guidance and
4	criteria I used for it are audit activities, a basis
5	for how we scope and graded our review approach, our
6	technical evaluation, and, lastly, our conclusions and
7	findings.
8	Next slide, please?
9	Okay. So, in general, we conduct human
10	factors engineering reviews of operating license
11	applications in order to verify that applicants are
12	incorporating practices and applying guidelines that
13	are acceptable. It's important to note that the SHINE
14	FSAR follows the format used by non-power reactor
15	facilities, such as research and test reactors. That
16	format does not include a dedicated human factors
17	engineering chapter as would be the case with a power
18	reactor facility.
19	As a result, the areas covered by the HFE
20	area review span various portions of Chapters 3, 7,
21	12, and 13, and focus on whether the HFE-related
22	design and programmatic aspects of the application are
23	sufficient.
24	Next slide, please?
25	The specific regulatory basis associated
ļ	I

(202) 234-4433

with the SHINE application was key to the discussion of the HFE area review approach that was used. Here we have a description of the regulations that serve as the basis for the review. These regulations come into play whether we are talking about irradiation facility or the radioisotope production facility portions of the SHINE facility.

Design Criteria 6 addresses the SHINE 8 9 control room and certain actions that it is required 10 to be able to support. Later in the presentation we will discuss what the staff review identified 11 concerning the nature and scope of those actions. 12

Importantly, it must be recognized that no HFE programmatic requirement exists for SHINE due to their specific regulatory basis.

Next slide, please?

17 Now I will discuss the quidelines and associated acceptance criteria that we used for the 18 19 HFE area review of the SHINE application. As noted throughout the meeting so far, NUREG-1537 and its 20 associated interim staff quidance served 21 as the 22 overall review plan for the SHINE application. Consistent with how I noted that the SHINE regulatory 23 24 basis does not mandate an HFE program, NUREG-1537 does not contain any specific review criteria for human 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

16

	51
1	factors engineering.
2	However, NUREG-1537's Chapter 7 for
3	instrumentation and control, more specifically
4	Section 7.6, which addresses the control console and
5	display instruments, does contain certain criteria
6	that have HFE-related implications. These criteria
7	include those for the observability of outputs and
8	display devices, the accessibility and
9	understandability of important controls and displays,
10	and for control console, enunciators, and alarms.
11	Since these criteria are written in terms
12	of a non-power reactor facility, we adapted them, as
13	appropriate, using the guidance of the NUREG-1537
14	interim staff guidance as interpreted according to
15	SHINE-specific systems.
16	Next slide, please?
17	While SHINE is not a Part 70 facility
18	applicant, the application still contains certain
19	features that have similarities to those types of
20	facilities. Centrally, SHINE conducted a safety
21	analysis that identifies administrative controls that
22	are used to reduce the likelihood and consequences of
23	events in order to achieve acceptable levels of risk,
24	as well as certain programmatic measures that serve to
25	support the reliability of those administrative
I	

(202) 234-4433

	52
1	controls.
2	On account of this, we used guidance from
3	both the NUREG-1537 interim staff guidance and also
4	from NUREG-1520, which is referenced by the NUREG-1537
5	ISG, to consider these specific areas. We noted that
6	these administrative controls consisted of a variety
7	of procedurally directed and prohibited actions that
8	occurred throughout the facility, and that, in
9	general, those controls were supported by programmatic
10	measures in the areas of training and procedures.
11	Based upon that, we focused the HFE area
12	review on that particular aspect of the SHINE
13	application on procedure management, verification and
14	validation, as well as on the training and
15	qualification of the relevant facility personnel.
16	Next slide, please?
17	MEMBER HALNON: Jesse, it's Greg Halnon.
18	Given all of the review criteria that you just went
19	through, did you identify lessons learned that might
20	make the next review more I guess efficient relative
21	to finding the right guidance to review against?
22	MR. SEYMOUR: That's a great point. And
23	in my Part 53 discussions that I've had with the
24	with the committee, we've been talking about how we're
25	developing guidance going forward for scalable human
I	I

(202) 234-4433

	53
1	factors engineering reviews.
2	And one of the things that we've done is
3	try to take lessons learned from this review, where
4	we've had to, you know, really help pull apart what
5	the facility is and figure out what the relevant
6	guidance should be, and to apply that to that scalable
7	HFE guidance development going forward.
8	MEMBER HALNON: Okay. That makes sense.
9	So in the future something under Part 50 such as this,
10	which is sort of a one off, you can refer to the new
11	guidance that you're doing.
12	MR. SEYMOUR: That's correct. Yeah.
13	We're trying to you know, we're trying to take
14	those lessons and use them to build a better product
15	that we can use down the road.
16	MEMBER HALNON: Okay. Thanks.
17	MR. SEYMOUR: Okay. Let's see, Slide 6?
18	7?
19	Okay. So in order to scope and grade the
20	human factors engineering area review and to clarify
21	areas in which we have questions, we conducted an
22	audit. A central focus of this audit was to better
23	understand the specific role that SHINE facility
24	operators will play in facility safety as this was in
25	turn necessary for identifying what would be needed to
Į	

(202) 234-4433

	54
1	meet Design Criteria Number 6.
2	The overall audit included the areas of
3	the limited human factors engineering program that
4	SHINE elected to implement, the design of the facility
5	control room, the role of SHINE operators in
6	maintaining both facility safety and in providing for
7	defense-in-depth, administrative controls, operations
8	staffing, and portions of the operator training
9	programs.
10	The documents that we reviewed in the
11	course of this audit included, among others, the SHINE
12	safety analysis summary report, the SHINE human
13	factors engineering program, the SHINE human factors
14	engineering style guide, and the SHINE human factors
15	engineering design checklist.
16	Additionally, we also looked at SHINE's
17	operations procedure development program and portions
18	of the licensed operator initial and continuing
19	training programs. This audit report has been issued
20	and is available. However, I should note that a
21	portion of the audit that covers some of these
22	materials is proprietary in nature.
23	Next slide, please?
24	From the audit we gained certain insights
25	that served to inform our approach and acted as a
ļ	1

(202) 234-4433

1 means of scoping and grading our review of the 2 application. These insights included that operators 3 are not credited to take mitigative actions in 4 response to facility events.

5 We did note the operators who were identified as providing manual actuations of safety-6 7 related TRPS and ESFAS systems for the purposes of 8 defense-in-depth. It should be noted, though, that 9 this is the sting from the operator's being credited 10 to do so.

also noted that operators 11 They were credited with the implementation of administrative 12 controls that are taken prior to the occurrence of 13 14 Operator actions were noted to not be events. 15 credited in response to events assigned from the need 16 evacuate the facility control room within a to 17 specific timeframe under certain circumstances.

Additionally, we identified through our 18 19 audit that SHINE had incorporated a human factors engineering program of a limited nature. This program 20 consists of a human factors engineering programmatic 21 document, a style guide that is based in part on the 22 interface design quidelines 23 system of human 24 NUREG-0700, and a human factors engineering checklist that is used both during the human system interface 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	56
1	design and installation phases.
2	Next slide, please?
3	Okay. So before we get into the details
4	of the technical evaluation, this graphic serves to
5	summarize the material that has been covered thus far
6	and to illustrate once more how the review, scope, and
7	focus was arrived at.
8	SHINE is applying under Part 50 but is not
9	a power reactor. Because of this, there is no
10	regulatory requirement for applying the state of the
11	art in human factors engineering to the control room
12	design. Similarly, the NUREG-1537 review plan does
13	not have any specific human factors engineering
14	criteria.
15	However, that being said, Design
16	Criteria 6 does address the need to have a control
17	room from where actions can be taken to operate the
18	facility safely and to perform any required acts and
19	actions. And NUREG-1537 has certain I&C criteria for
20	the control room that have related human factors
21	engineering aspects.
22	By way of our audit, we noted that the
23	accident response doesn't rely on operators taking
24	actions, and that the operator role under such
25	circumstances is to essentially serve as an added
	I

(202) 234-4433

	57
1	layer of defense-in-depth and to evacuate the control
2	room if necessary.
3	We also noted that SHINE applies a limited
4	human factors engineering program to their control
5	room. And that while not mandated by regulation, this
6	program applies guidelines that are derived from, in
7	part, NUREG-0700, and that the application of such
8	guidelines as these generally supports those
9	NUREG-1537 control console and display criteria that
10	have human factors human factors engineering
11	implications.
12	Finally, we also noted that SHINE credits
13	operators' implementation of administrative controls
14	and that these administrative controls are, in turn,
15	supported by specific programs. So taken together,
16	this information established the focus and scope of
17	our HFE review.
18	Next slide, please?
19	As noted earlier, the NUREG-1537
20	Section 7.6 criteria selected for the review were
21	adapted for use within the context of the SHINE
22	application using the guidance of the NUREG-1537
23	interim staff guidance, as interpreted, based on
24	SHINE-specific systems.
25	Under the first of these criteria, we
	I

(202) 234-4433

1 evaluated whether displays showing parameters related to facility safety would be readily observable by the 2 3 operator while positioned at SHINE's facility control 4 room operator workstations and the main control board. 5 In conducting this evaluation, we focused 6 on the PICS and NDAS workstations used by the 7 operators as well as on the main control board locations TRPS and ESFAS relative indications are 8 This included considerations of factors 9 provided. 10 such as accessibility and visibility. We noted that the control room displays 11 and operator interfaces incorporate human factors 12 engineering principles and that the associated human 13 14 factors engineering guidelines used by SHINE included 15 those associated with the readability, content, and 16 arrangement of displays. We found that this criteria is satisfied 17 outputs and displays showing parameters 18 because 19 related to SHINE facility systems that are related to safety are readily observable by the operator while 20 positioned at both the SHINE facility control room 21 PICS and NDAS workstations as well as at the main 22 TRPS 23 control board, and ESFAS manual actuation 24 controls, and that this is in turn supported by 25 SHINE's HFE program.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

58

	59
1	Next slide, please?
2	Next, we evaluated whether controls and
3	displays of other important parameters, such as for
4	reactivity, would be readily accessible and
5	understandable to the operator. In conducting this
6	evaluation, we divided the associated displays and
7	controls up into two groups for consideration.
8	The first group was more general in nature
9	and focused on displays and controls other than those
10	associated with the manual actuation of the
11	safety-related protection systems. This included the
12	operator workstations and their associated PICS and
13	NDAS interfaces, the super workstation, and the
14	features of the main control board.
15	The manner in which radiation monitoring
16	information is conveyed to the operators was also
17	considered. The digital interfaces used at the
18	workstations and the main control board were noted to
19	incorporate human factors engineering principles
20	within their designs.
21	The second group focused on the specific
22	displays and controls associated with the manual
23	actuation of the TRPS and ESFAS systems, since these
24	are integral to the ability of the operator to
25	implement manual protective actions as a means of
ļ	1

(202) 234-4433

providing	defense-in-depth
providing	derense-m-depen

1

2

3

4

5

6

17

This evaluation included both the manual controls on the main control board that are used to actuate the systems, as well as the displays that would provide information to the operators to cue them that such actions are warranted.

7 We found that the human system interface 8 will be capable of supporting the manual actuation of 9 protective actions because displays and controls will be available in the SHINE facility control room for 10 the manual system level actuation of safety functions 11 and for monitoring those parameters that support them. 12 Overall, we found that this criterion is 13 14 satisfied because the facility control room controls 15 displays readily and are both accessible and 16 understandable to the operator.

Next slide, please?

The third criteria of NUREG-1537 18 Section 7.6 that we evaluated was whether enunciators 19 and alarms on the control console clearly show the 2.0 status of systems, such as those associated with TRPS, 21 ESFAS, and radiation monitoring. We noted that alarms 22 are integrated into the PICS displays, that alarm-like 23 24 and audible sounds are also provided for irradiation unit and non-irradiation unit-related alarms, and that 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 human factors engineering principles are applied to 2 the design of the alarm systems. 3 Additionally, we noted that further alarm 4 systems were also provided to alert operators to both 5 criticality accident and fire conditions. We found that this criteria is satisfied because enunciators 6 and alarms on the control console clearly show the 7 operating 8 status of systems such as systems, 9 TRPS and ESFAS initiation, radiation interlocks, 10 fields, and concentration and confinement, and that this is further supported by SHINE's human factors 11 engineering program. 12 Next slide, please? 13 14 MEMBER BROWN: This is Charlie Brown. 15 Could you backtrack a slide? 16 MR. SEYMOUR: Sure. 17 MEMBER BROWN: Okay. You talk about evaluating displays. Are these the specific displays 18 19 that they are going to be using on their panels? Have they provided those to you all, or is this just what 20 the -- what you all would typically look at? 21 MR. SEYMOUR: So what we've -- what we've 22 looked at at this stage consists of the description of 23 24 those displays that's provided in the FSAR and via audit. We have also looked at the guidelines that we 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

61

	62
1	apply to those displays.
2	And an example of that that I will give
3	you is that SHINE's human factors engineering design
4	guidelines include guidelines that are related to the
5	observability, content, readability, and arrangement
6	of those displays.
7	So what we have seen via audit is that
8	SHINE intends to apply those guidelines during the
9	design and during the installation phase of those
10	displays, and then to subsequently track any
11	discrepancies that are identified.
12	MEMBER BROWN: Are they specific as to the
13	type of displays? Like are they touchscreens? Are
14	they screens that require pushbuttons or switch
15	manipulation in order to call up various screens or
16	functions on a screen?
17	MR. SEYMOUR: So all displays at the
18	workstations and the main control board are described
19	as being digital displays. In terms of if any are
20	touchscreens, I would have to I would have to defer
21	that question back to SHINE in order to clarify that.
22	My understanding is that the control
23	interfaces are not touchscreen in nature. However, I
24	would I would have to defer that question back to
25	them in the event that there has been any changes to
I	

(202) 234-4433

	63
1	their intention.
2	MR. RUETZ: Yeah. This is Kris Ruetz,
3	Operations Manager at SHINE. So Jesse is correct. In
4	the control room, at least for the PICS interface
5	there is no touchscreen capability. It's keyboard and
6	house interface. However, I do want to point out with
7	the remote PICS stations we do have touchscreen
8	capability, the ones that are outside of the control
9	room.
10	MEMBER BROWN: Okay. I was looking at the
11	I didn't pull up where is my stupid drawing?
12	When you talk about the remote, I was thinking that
13	there's a facility control room where you have your
14	basic controls. There's a production facility space
15	also. Is that in the facility control room?
16	MR. SEYMOUR: So is that question directed
17	at me or at SHINE?
18	MEMBER BROWN: At SHINE I guess, now that
19	they're on.
20	MR. RUETZ: Yeah. Sorry. Could you
21	repeat that question again?
22	MEMBER BROWN: Yeah. I was looking at my
23	overall I&C architecture diagram that you gave when we
24	were talking yesterday. And there it shows that
25	you have what's called a facility control room human
	1

(202) 234-4433

	64
1	interface human system interface, and then another
2	box which talked about a production facility
3	interface. Are they separate locations, or are they
4	all in the same space?
5	MS. KOLB: So this is Catherine Kolb. The
6	control room includes interfaces and displays for the
7	entire facility. So that is the irradiation units and
8	for instruments that provide indication of processes
9	in the radioisotope production facility as well.
10	What Kris is talking about as having
11	touchscreens so in addition to the main control
12	room where the operator sits and we can see on their
13	trays in front of them, you know, indications
14	throughout the facilities, there are also some local
15	control stations for specific processes.
16	So, for example, there is for the
17	tritium purification system, in the tritium
18	purification room there is a limited function display
19	screen with limited control specific to that system
20	located in that room and not in the control room.
21	All of the PICS displays are a networked
22	system, so the control room operators can see
23	information from all of the processes that are
24	connected in the facility, but the local displays are
25	the control is limited for those local displays,
I	I

(202) 234-4433

	65
1	the touchscreens.
2	MEMBER BROWN: Are the local displays used
3	for the normal operations, or is that just for some
4	specific things while the main control is under the
5	main control room?
6	MR. RUETZ: Yeah. So there won't be
7	specific evolutions and procedures. The normal
8	station will be the local stations, like Catherine had
9	mentioned in the tritium purification system room.
10	However, there is there is nothing that
11	is able to be performed at those local stations that
12	cannot also be performed in the main control room as
13	we're
14	MEMBER BROWN: Okay.
15	MR. RUETZ: doing that.
16	MEMBER BROWN: So those would be
17	typically, you would be looking at the main control
18	room operator controlling all of the processes.
19	That's what I understood basically from yesterday's
20	discussion.
21	MR. RUETZ: That is correct.
22	MEMBER BROWN: Okay. Is there an
23	emergency control screen of any kind, an emergency
24	screen?
25	MR. RUETZ: Can you describe what you mean
I	1

(202) 234-4433

	66
1	by "emergency screen"?
2	MEMBER BROWN: Something that says, "Hold
3	it. I've got a big problem going on." Something
4	that there's a failure, irradiation alarm failure. Is
5	there something that coordinates or evaluates the
6	specific problems you might have to face such that you
7	don't have to start dealing with multiple process
8	screens when something goes on.
9	I don't know whether I'm asking the
10	question right or not. This you all have the
11	last time I counted the process integrated control
12	system and counted the number of different systems
13	you've got, there's a lot. So, which is
14	understandable based on what you're doing.
15	So when I looked at that, it's difficult
16	to control some problems if you that you may be
17	evaluating, you've analyzed for, if you have to be
18	cognizant of, you know, three, four, five, six
19	different screens in the main control room.
20	That may be the wrong question. I have no
21	idea how that applies to the overall processes. But
22	you have a lot of different process stations from the
23	IUs into the process the tritium processes, the
24	purge systems, et cetera. So that's why I asked the
25	question, is there an emergency control screen based
I	1

(202) 234-4433

	67
1	on certain analyzed accidents or other type things
2	where you may have to have consolidated information to
3	do an evaluation as opposed to having multiple or
4	trying to get to multiple screens while you're dealing
5	with it.
6	MR. RUETZ: Yes. So I can provide some
7	clarification on that I think. So the operator
8	workstations that are in the control room, there are
9	two operator workstations and one supervisor station.
10	So three stations in total that are part of that PICS
11	network that we mentioned.
12	Each of those stations has three screens
13	on it. One of those three screens is designated
14	specifically as an alarm response screen, such that
15	that screen cannot be used for manipulating components
16	and equipment in the facility. And if an alarm comes
17	in, then that that screen will be designated to
18	show the alarm page.
19	So it the alarm page and currently
20	activated alarms will always be available to the
21	operator who is performing equipment manipulations at
22	the operator stations.
23	MEMBER BROWN: So that is continuously
24	that was continuously open, the alarm screen.
25	MR. RUETZ: The alarm screen is not
	I

(202) 234-4433

	68
1	continuously open. However, it it automatically
2	goes to the alarm screen if an alarm comes in, such
3	that you can't perform a process using the PICS on
4	that screen. You have to use one of the other
5	monitors to start an automated sequence, for instance.
6	Then, if an alarm comes in, that third
7	screen, which can be used for just monitoring purposes
8	only, will automatically populate with the alarm page
9	to bring that to the attention of the operators.
10	MEMBER BROWN: Okay. Let me let me
11	track back to the screen popping up. You've got, I
12	understand, three screens like you say. So if an
13	operator is controlling something and he is utilizing
14	one of the screens, would that screen all of a sudden
15	start populating with alarms and the rest of it
16	disappear and he'd have to shift screens in order to
17	complete his operations? Or has that even been
18	considered?
19	MR. RUETZ: No. No. So the screens that
20	are used for equipment manipulation are the other two
21	screens, so not the alarm designated screen.
22	MEMBER BROWN: Okay.
23	MR. RUETZ: So the alarm designated screen
24	is can only be used for monitoring purposes and
25	then it will automatically switch to the alarm page if

(202) 234-4433

	69
1	an alarm comes in.
2	MEMBER BROWN: Okay. But the but the
3	process information temperatures, pressures,
4	whatever you need, nuclear indications, what have you
5	they would not be blanked out if this thing starts
6	you know, it's a monitoring screen. They would not
7	be blanked out, and you'd have to look at something
8	else, or would they be on some other screen already
9	anyway?
10	MR. RUETZ: They would be on the other
11	screen already anyway. The way that the screens will
12	be set up is that they sort of drill down to lower
13	level systems and components as you click through
14	them, such that when you get to the screen that allows
15	you to start a process or manipulate equipment you
16	have the relevant information needed, the process
17	parameters that you are talking about.
18	MEMBER BROWN: Okay. And the other
19	question I wanted to ask several, rather are the
20	take an operation you're starting up. What you
21	know, you're going to start up the entire process for
22	getting your moly-99. Do you how many screens do
23	you have to access while you're doing a startup and
24	going through the entire operation? Do you is that
25	for normal ops startup, shutdown? Do you have to
I	I

(202) 234-4433

70 1 switch screens in order to do that? Or can you accomplish -- can the operator accomplish that from 2 3 one screen? MR. RUETZ: So the operators will be able 4 5 to see all of the necessary information to perform a startup from a single operator station. 6 So between 7 the three screens --8 MEMBER BROWN: Okay. 9 -- they are able to see MR. RUETZ: 10 everything they need to to essentially operate the facility. 11 But if the alarm screen MEMBER BROWN: 12 came up, they wouldn't lose something. 13 Is that --14 that's what I was trying to get at. If they're doing 15 the startup, they're using all three screens, and now these alarms come in, if they were using that screen, 16 17 do they lose something and have to look somewhere else? That's -- it's a matter of taking your 18 19 attention off of one thing and looking at something else. 20 Yeah. I see your point and 21 MR. RUETZ: your comment. So the three screens that are available 22 for the operators, they can switch between them, you 23 24 know, at will and as necessary for the procedure that's being performed. So, you know, they may be --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	71
1	to your point, they may be using that third monitor
2	that's designated for alarm response to monitor
3	components and equipment, and then that may
4	temporarily switch to the alarm screen.
5	However, the operator can navigate back to
6	that those indications as needed or switch one of
7	the other two screens to those indications as needed.
8	MS. KOLB: This is Catherine Kolb.
9	Perhaps it would help if so some of the times
10	involved are proprietary, but in general starting up
11	the facility isn't, you know, a five-minute evolution.
12	It is
13	MEMBER BROWN: I got that.
14	MS. KOLB: step-wise in accordance
15	in accordance with procedures, such that the, you
16	know, the step that the operator is on, they could set
17	up the screens that they are using to show all of the
18	parameters required for that step.
19	And then when a new step comes, you know,
20	maybe the difference between billing the TSD versus,
21	you know, starting the transfer for moly production,
22	that is that is separated in time significantly,
23	such that there would be ample time to set up your new
24	set of screens, so that you could see all of the
25	parameters you needed for that next evolution.
ļ	I

(202) 234-4433

So that, you know, being able to see everything all at once isn't really necessary.

MEMBER BROWN: I'm sorry to beat this thing to death, but because of the number of systems you have -- I guess I faced this in the naval program as well when we were developing it -- our main control stations.

8 One of the things we worried about -- and 9 I guess one of the things that fell out of the old TMI 10 evaluation -- that so many alarms were going off in 11 many cases that operators got distracted from what was 12 a critical alarm and what was just a nuisance alarm, 13 like an elevator failed or a door didn't open or 14 something like that.

15 And I'm not saying you're going to have 16 those types of alarms on these screens. That's not 17 the point. It was just the nature of the operations. It's a complex operation you all are dealing with, and 18 19 that's why I was -- I was asking these questions relative to that, relative to getting the operators 20 distracted, from seeing something that all of a sudden 21 became a critical problem. 22

23 So we don't need to go into proprietary 24 stuff. That's just all I was trying to get a feel 25 for. Let me --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

1

2

3

4

5

6

7

	73
1	MS. KOLB: So I think we had we
2	attempted to address some of those concerns with the
3	alarm prioritization, such that it will be clear which
4	alarms require, you know, immediate attention.
5	And not to mitigate things, but, you know,
6	the operator you know, the procedures would say to,
7	you know, verify that the safety actuation that all
8	of the components did arrive at their safe state, you
9	know, for confirming that things reacted appropriately
10	per the design.
11	And so those would have higher priority if
12	there was an actual issue in the plant versus the
13	yellow or the blue alarms and the ones that don't
14	cause the stack lights to illuminate, such that the
15	people will be trained on which which alarms are
16	more important than others.
17	MEMBER BROWN: Okay. The other thing you
18	said and I'm referring back to Section 7.1 as a
19	matter of fact of the FSAR you mentioned multiple
20	digital display space as well as what I call display
21	screens. Are those discrete meter I don't know if
22	meter style? Or are they just seven segment LEDs
23	that spin up and down as something changes rapidly?
24	MR. RUETZ: So typically speaking, I think
25	everything you're referring to on Figure 7.1, those
I	I

(202) 234-4433

	74
1	are just, you know, typical computer monitors that
2	relay the information to the operators.
3	MEMBER BROWN: But let me find the thing
4	I'm make sure I said this correctly to you. If I
5	can get the right paragraph here.
6	MS. KOLB: We refer to the computer
7	monitors that are in the front of the room as static
8	display screens, but those are just a series of
9	computer monitors. To distinguish them from the ones
10	that are at the desk where the people are sitting, I
11	think those are you know, could be control display
12	screens. They are they are both just digital
13	displays.
14	MEMBER BROWN: Okay. I mean, a typical
15	example, like you've got to take your temperature.
16	It's a digital display. You've got numbers come
17	up. That's what you're talking about relative to a
18	digital display.
19	MS. KOLB: Correct.
20	MEMBER BROWN: Okay. It's not like a
21	meter in the old days, an analog meter that had a
22	needle and it went from you know, from the lower
23	left to around to the lower right.
24	MS. KOLB: No. We don't have any of those
25	incorporated into the PICS.
	I

(202) 234-4433

```
www.nealrgross.com
```

	75
1	MEMBER BROWN: Okay. That's fine. Now,
2	would a single screen have more than one of these
3	digital displays? I take it they are not discrete?
4	These are digital displays of data that would be
5	reflected on a single screen, not separate little
6	digital displays themselves?
7	MS. KOLB: Correct.
8	MEMBER BROWN: Okay. All right. I might
9	be almost finished and you'll be as happy as I am.
10	DR. BLEY: Charlie, can I
11	MEMBER BROWN: Yeah.
12	DR. BLEY: jump in with something? I
13	think what Charlie is getting at is on a needle
14	display you can see what the reading is as it changes
15	on a set of numbers, kind of digital display. They
16	are spinning fast, and you might not be able to tell
17	where they are. But people have implemented something
18	akin to a meter in software, so you can follow the
19	trend.
20	I think he is asking if you can see what
21	an instrument reads if it's moving quickly.
22	MEMBER BROWN: Yeah. Let me thank you,
23	Dennis. I didn't phrase it that way, so I'll be
24	specific. In 1978, when we started developing these
25	systems for the naval nuclear control stations
	I

(202) 234-4433

program, all the meters you used out with the operators were KX241 meter -- you know, analog meters. When we started doing everything, all the vendors we went to, they were -- they loved designing displays. I mean, and everybody that came up wanted to design displays for their equipment that they got a contract for.

I ended up canceling contracts on five 8 9 different -- portions of five different contracts 10 because it would have been too expensive to live with so many multiple types of displays and how they work. 11 So we stopped it and developed a standard digital 12 meter that looked exactly like a KX241 meter, an old 13 14 analog meter. It had flying dots around the outside 15 and a large seven-segment readout in the middle.

16 So for the fast displays, you had 17 something moving -- you know, either going up the meter or down the meter, so you could tell even if you 18 19 couldn't read the specific value of the parameter that you were -- you were interested in. 20

Now I'm not saying you need something like that. I think what -- I mean, you could -- you could duplicate something like that on a -- on a screen, on a flight screen if you want to. That can be done. I'm just -- I was asking it in that context, and I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

www.nealrgross.com

76

	77
1	think Dennis knows I use more words than I normally
2	need to get to the point. So that helped me out.
3	That's what I was asking about, what these
4	types of digital displays are.
5	MR. RUETZ: Yeah. So I can appreciate
6	your common background. I was a former reactor
7	operator on a submarine as well. So I know exactly
8	what standard digital meters you're talking about. So
9	as far as as far as that goes, any parameter that
10	is displayed on the PICS board for the operators can
11	be clicked on. And if you click on it, it will have
12	a type of bar graph histograph of the, you know,
13	direction and trend that that parameter is going on.
14	MEMBER BROWN: Okay. All right. That's
15	good. That answers my that's good enough.
16	The next question I did have was if I
17	can count my paragraphs here they are in this
18	early section also, it talked about the supervisor
19	workstation is located at the rear of the facility
20	control room and acts as an extension of the operator
21	workstations.
22	The workstation is equipped with equipment
23	display screens that allow the supervisor to monitor
24	system status but not control facility components. So
25	that so does the supervisor not have backup
ļ	

(202) 234-4433

	78
1	capability? Or is he just somebody that sits there?
2	That's what I got out of that paragraph.
3	MR. RUETZ: He is the boss. He is the
4	engineering officer of the watch.
5	MS. KOLB: We're wondering if perhaps you
6	have an older revision of the of 7.6 or looking
7	for
8	MEMBER BROWN: Rev 2 is what I'm looking
9	at. It's Rev 2. I thought I incorporated I spent
10	half a day incorporating the proposed changes and
11	strikeouts. I've got Rev 2. That's the only copy
12	I've got.
13	MR. RUETZ: Yeah. So the supervisor
14	workstation is essentially identical to those operator
15	workstations. The part you might be focusing on is
16	the fact that the supervisor station does not have the
17	neutron driver console capabilities.
18	MEMBER BROWN: I don't that detail I
19	don't have. It just said the supervisor can monitor
20	system status but not control facility components. So
21	he can't shut something down if he thinks it's out of
22	control and somebody missed it. That one sentence,
23	that's all I was talking about.
24	MS. KOLB: This is Catherine Kolb. We did
25	find that sentence there. We will have to go back and
I	I

(202) 234-4433

79 1 look at that. But the current design of the PICS system is that the supervisor station is identical to 2 3 the operator stations. 4 We discussed that if maintenance needed to 5 be performed on one of the regulator operator stations, you know, switching out monitors or such, it 6 7 was unusable, that's -- the supervisor could use the I think the intent of that was that the 8 backup. 9 supervisor wouldn't normally be responsible for controlling equipment, but we can -- we can look at 10 our wording there and make sure that's consistent. 11

12 MEMBER BROWN: It's just my concern, after, you know, 35 years of -- a number of crew 13 14 quizzes, trials, qualification tests, watching 15 shifts, submarines, operators on and aircraft carriers, the engineering officer of the watch, or the 16 propulsion night watch officer on the carriers, while 17 they weren't the main operators, if they thought their 18 19 screwing up somewhere, they could do quys were 20 something.

And I'm not advocating -- it's not the same. The spaces are much smaller, much more compact. This is -- and there's other people throughout the plant in those plants to do things. It's just having the supervisor, who supposedly really knows what's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	80
1	going on, if he sees something, can he shut the stuff
2	down, can he scram the plant. That's the thought
3	process.
4	I just
5	MS. KOLB: No.
6	MEMBER BROWN: I would just that's what
7	that sentence implied to me, and it seemed to me that
8	that station ought to be as capable as the operator
9	workstations. He may not do anything because he
10	shouldn't be. He should be supervising. But that's
11	that was my thought process.
12	MS. KOLB: No. We appreciate the
13	comments. The intent is that the supervisor station
14	is the same as the operator stations.
15	MEMBER BROWN: Okay. Well, I'm sorry to
16	have slowed slowed everything down here. I didn't
17	know whether to address this when we got to the PICS
18	discussions, but it once we got into this thing and
19	I was listening, it seems like this was as good a
20	place as any to at least get something on the record
21	in the transcript. I'll never remember all the
22	answers.
23	But I think you answered my question
24	satisfactorily, and I appreciate your taking the time
25	to do that.
I	I

(202) 234-4433

	81
1	Dennis, did you think I missed anything?
2	I mean, you have a lot of operator experience
3	yourself. You understand what I was looking for I
4	think.
5	DR. BLEY: Yeah, I did. And I've seen the
6	commercial plants when they went digital run into some
7	problems like that that you couldn't quite tell what
8	was going on. And then they started getting the
9	operators involved in the design of those systems.
10	And the only one that kind of comes to
11	mind here is if there are multiple stations that all
12	do the same things, command and control could get lost
13	somewhere, people start expecting the Joe on the other
14	panel is going to do something, and then somebody else
15	comes in on shift because Joe is sick, and you end up
16	having things happen in the plant that you weren't
17	expecting.
18	So there is a possibility of loss of
19	control, I would think, but you'll have to work out
20	the procedures for how those crews interact.
21	MR. RUETZ: Something I would like to
22	volunteer that I think will alleviate some of your
23	concerns here is the fact that those local stations
24	that we mentioned previously outside of the control
25	room, those stations normally can only have monitoring
I	1

(202) 234-4433

capabilities. It's not until they typically check out the system from the control room, such that a prompt appears in the control room on those workstations that such-and-such a person is trying to check out a system to perform local operations. And the control room has to grant permission to that local station before any control capabilities are allowed.

MEMBER BIER: So this is Vicki Bier. What 8 9 you just said taps into a question which I was going 10 to ask, which is, what happens in the event that there is not necessarily anything going wrong in the plant, 11 but there is a computer malfunction in the control 12 And, you know, that could be because of cyber 13 room? 14 hacking. It could be just because of a hardware 15 failure, something didn't boot properly, whatever.

So a two-part question. One, you know, does control automatically revert to the local stations in that circumstance? Or does the fact that the computer is down make it impossible to grant local control?

MEMBER BROWN: Let me --

MS. KOLB: This is Catherine Kolb. I guess it would depend on the failure, but, you know, if the failure was such that the PICS, you know, server or the entire network was down, then none of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

21

	83
1	the PICS systems would function.
2	MEMBER BROWN: Vicki, can I amplify?
3	MEMBER BIER: Please.
4	MEMBER BROWN: Okay. How many times did
5	you get on your computer and you move your mouse and
6	the pointer doesn't move? That's that's my biggest
7	concern when people say we're controlling with mouse
8	and keypads.
9	On the control systems that we did for the
10	Navy, for multiple systems in the plant, we always
11	have positive switch actuations for on/off,
12	stop/start, what were the critical things you needed
13	to do, increase frequency, what it was not not
14	done with a touchscreen, not done with a mouse, and
15	not done with a keyboard.
16	I only throw that out in that, you know,
17	this is a critical facility, subcritical facility.
18	You're irradiating things. And you've got a number of
19	very critical systems that deal with some pretty
20	hazardous materials.
21	And the last thing you want is an operator
22	trying to control a system, and all of a sudden
23	this is stuff you're designing now with stuff that's
24	out in the world. You're going to get stations, and
25	you're using a mouse, and all of a sudden the sucker
I	1

(202) 234-4433

	84
1	locks up. Forget the hacking. They will just do it
2	for no reason at all.
3	And it happens like when we're on Teams
4	and all of a sudden nobody knows I'm here because
5	Teams disappeared for me. Okay? So you've got to be
6	plugged back in.
7	So I'm just I am always very, very
8	leery. You're going to do what you want to do. I
9	just think for critical controls functions you might
10	want to rethink, are there places where we want
11	positive switch operation to start, stop, change
12	certain critical operations that we're doing.
13	So I'd just put that on the table to let
14	you know somebody is thinking about that from that
15	standpoint.
16	MS. KOLB: No. I this is Catherine
17	Kolb. I appreciate and understand your concern. A
18	little commentary there. The safety actuations are
19	pushbuttons. They are located on the main control
20	board, so those are independent of the PICS software.
21	So if it was necessary to shut down a unit, those are
22	those are physical buttons and switches that are
23	not related to the PICS that we do have.
24	And as for the reliability, it is it is
25	the distributed digital control system, but it is
ļ	I

(202) 234-4433

	85
1	it is an industrial one that is used in other
2	industrial facilities. And while it obviously can't
3	fail, it is not safety-related, and it is not required
4	to operate. But we've used, you know, reputable
5	equipment in our in our design.
6	MEMBER BROWN: Yeah. I kind of gathered
7	that, because I could see that at least for the TRPS
8	and the ESFAS stuff we were looking at when you looked
9	at the logic diagram and the words, there were
10	literally on/off signals coming in via the hardware
11	module and then over to the communication in order to
12	do stuff.
13	But that is a system that is not a control
14	system. You know, that's just the those two
15	specifics. And I was thinking all of the other
16	process systems as well. And if you if you're
17	saying that you're using pushbuttons for I just
18	it's just I would encourage looking at all of those
19	processes. You would be able to turn it on and off.
20	Or if there's a critical thing as you're
21	ramping something, or doing whatever else, there were
22	certain things that would be better to be done with
23	what I would call more hand-eye coordination,
24	mechanical, more like the potentiometer-type
25	operation.
ļ	I

(202) 234-4433

	86
1	I don't know how you would you know, in
2	an old-time radio, which nobody even knows about
3	anymore. I don't know why I said that.
4	DR. BLEY: Some of us do, Charlie.
5	MEMBER BROWN: Yeah.
6	DR. BLEY: But I'd mention something here.
7	They've got the manual control direct manual
8	control with the pushbutton switches on
9	MEMBER BROWN: Yes.
10	DR. BLEY: key things. Now, a ship on
11	the surface of the ocean and a submarine below the
12	ocean, losing process control is a really, really bad
13	thing. I think here, with the ability to shut down,
14	shutting down is perfectly okay, and you don't put
15	yourself in hazard because you tripped at all. But
16	it's a little different.
17	MEMBER BROWN: No, I agree. It's
18	they've got lots of processes, and the TRPS and the
19	ESFAS shut stuff down. And you have as long as you
20	can do those things manually as well, with a
21	pushbutton, not with a mouse, I think they are going
22	to be in fairly decent shape. But just this is a
23	very complex setup, and so that's why I was asking the
24	question.
25	There's other conversation in the
	I

(202) 234-4433

	87
1	background. I don't know who it is, but it's coming
2	through on my computer.
3	Anyway, that's I have exhausted my
4	questions. So thank you very much.
5	MEMBER BIER: Okay. So getting back to my
6	question, if there is a failure of a computer, is the
7	expectation that everything would just be shut down or
8	the control would revert to a local station?
9	MR. RUETZ: So, again, like Catherine
10	mentioned, it would probably depend on the specific
11	failure. So I will volunteer that the control room
12	does have the ability to revoke those privileges that
13	were previously granted to those local stations, such
14	that it's always an issue with a local station or
15	an operator at a local station. The control room
16	could take back over control, so to speak.
17	MS. KOLB: Yes. And then to your question
18	of
19	MEMBER BIER: Yeah.
20	MS. KOLB: if the control room went
21	dark and all of the screens went blank in some
22	situation, so we would have procedures in place for
23	what to do in that sense I don't have them in front
24	of me, but my expectation would be that they would
25	shut down the units because the operators wouldn't
ļ	

(202) 234-4433

	88
1	have any indication of what was going on.
2	MEMBER BIER: Got it. And are there also
3	access to physical instruments at the local station so
4	that there is monitoring of physical properties that
5	doesn't have to go through the computer?
6	MS. KOLB: Yes. There are some parameters
7	in the fields that are that don't have to go
8	through the PICS, like especially in some of the
9	utility systems. There are parameters that aren't
10	that you can walk up to locally.
11	MEMBER BIER: Yeah. Okay. Are there
12	other questions for SHINE now? Because I also have a
13	couple of questions for Jesse, but we've kind of
14	gotten off track here.
15	MEMBER BROWN: I'm sorry. I'm
16	MEMBER BIER: Well, that's okay. It's
17	part of the job.
18	MEMBER BROWN: I'm sorry about that,
19	Vicki.
20	MEMBER BIER: Okay. In that case, I'll
21	offer my questions for Jesse. And if you want to
22	postpone them or whatever, that's fine, too.
23	One, you said several times that SHINE is
24	implementing what you called a limited human factors
25	program. Can you talk about what some of the features
l	

(202) 234-4433

	89
1	would be in a more elaborate program for a plant that
2	was counting on human action as part of the licensing
3	basis?
4	MR. SEYMOUR: Yes. Absolutely. And,
5	again, this is Jesse Seymour. So typically what we
6	would see and this is what would come into play if
7	we were looking at a plant that was covered by, you
8	know, 50.34 Foxtrot 2II, which requires the state of
9	the art of human factors engineering to be applied
10	we would see the application of NUREG, you know, 0711,
11	right? So our human factors engineering guideline.
12	And what that would do is it would
13	implement a process-based approach that consists of,
14	you know, 12 individual steps, and that really it
15	takes you through this full systems engineering-based
16	design model where you you start with operating
17	experience, task analysis, you know, functional
18	requirements analysis, function and allocation, and
19	you move through to the design of a human system
20	interface.
21	And then from that step and, again,
22	this takes into consideration factors like staffing,
23	you know, training qualifications, and so forth.
24	And then once you've designed the human
25	system interface, you move back through, you know,

(202) 234-4433

1 sequentially verification and implementation work that 2 culminates in integrated system validation. So 3 typically, you know, you will put everything together 4 and in a, you know, full scope simulator type of 5 environment. You'll actually go through -- you know, put crews in there and make sure that things work, and 6 actually 7 then, you know, but there will be 8 performance-based testing that does that. 9 So, again, for, you know, a facility that 10 is obligated to apply the state of the art, that's what we -- we currently see as being the state of the 11 12 art. MEMBER BIER: Thanks. One other question. 13 14 Oh, I quess two other parts. It sounds like from your 15 description earlier that you have evaluated SHINE's 16 human factors program, not the actual ergonomics 17 engineering of specific displays. So that if they implement their program 18 19 properly, you have confidence that the displays will be reasonable and adequate, but that you haven't 20 evaluated them specifically. Is that correct? 21 SEYMOUR: That is correct. 22 MR. So in terms of, you know, doing a physical verification, 23 24 that is not something that, you know, we have been able to do at this point. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

90

	91
1	MEMBER BIER: Right.
2	MR. SEYMOUR: What we have done is we have
3	looked at, you know, the program and the process and
4	the guidelines that are used. And provided that those
5	guidelines are applied at the design and, you know,
6	verify that the installation and that discrepancies
7	are tracked, you know, that provides something that is
8	akin to a design implementation and verification type
9	of process that we would have seen with a more you
10	know, a more developed human factors engineering
11	program.
12	MEMBER BIER: Okay. And last question for
13	you before at least I let you move on. You mentioned
14	that you described the results of a quote/unquote
15	"audit." And is that adequately captured in the SER,
16	or is there a separate audit report that we should be
17	trying to look at?
18	MR. SEYMOUR: So there is a separate audit
19	report. And important thing to note is that there is
20	a portion of the audit report that is proprietary, so
21	there's a proprietary
22	MEMBER BIER: Got it.
23	MR. SEYMOUR: attachment. And so we do
24	we do touch upon, you know, a fair amount of that
25	material, you know, within the SE, pointing to it.
ļ	1

(202) 234-4433

	92
1	But I would you know, what I would say
2	is that if you really want to get into the details of
3	what we looked at kind of on a criteria-by-criteria
4	and a you know, what standards were being used
5	specifically
6	MEMBER BIER: Yep.
7	MR. SEYMOUR: you know, within their
8	HFE design guidelines, we'll really have to give you
9	a proprietary copy of that audit report, so that you
10	can see the fine detail. And that will get into even
11	discussing, you know, the individual accident analysis
12	sequences that we, you know, verified going through
13	this. So
14	MEMBER BIER: Okay. Thank you.
15	MR. SEYMOUR: Yep.
16	MR. BALAZIK: This is Mike Balazik, NRC
17	Project Manager for SHINE. I will send over the
18	proprietary version to Chris Brown after this meeting.
19	MEMBER BIER: Super. Thank you.
20	MEMBER BROWN: Can I make one other
21	observation, Vicki?
22	MEMBER BIER: Yeah.
23	MEMBER BROWN: Yeah. This is I just
24	and I didn't think about this when SHINE went through
25	their stuff. I wanted to give them some credit. I

(202) 234-4433

like their categories of alarms where they show, you know, red light, yellow light, blue, and then kind of an information-type thing. So that's a good way to categorize stuff so as not to distract the operators. I mean, we did something similar relative to warnings as opposed to alarms in the program I worked in and Dennis observed on his ship.

8 The thing I would think about when you're 9 doing that is don't have them show up in the same part 10 of screens. There are -- all of the alarms ought to 11 show up on the left, the mediums on the middle, and 12 the -- you know, that's where I'm -- don't mix and 13 match them in the same space, so that they don't get 14 confused -- red, yellow, and blue.

15 So it's just a matter of how you lay out 16 the screens. That's all. But it's a good idea to 17 have a categorization, so you don't distract people with stuff that they can ignore for a while. That was 18 19 just an observation. I wanted to give you credit. After beating you up, I thought I'd give you some 20 credit for some good stuff. 21 22 MR. SEYMOUR: Okay.

23 MR. RUETZ: So I appreciate the credit, so 24 thanks for that. One thing I will add to your comment 25 is that one of the advantages of using this digital

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

94 1 interface that we have, as opposed to more analog-type alarms, is that our alarms are easily sortable, so we 2 3 can sort by priority level, if necessary, or we can 4 sort by time that the alarm has actuated. So those are different methods operators can use to diagnose 5 6 the event that's in progress. 7 MEMBER BROWN: Got it. It certainly gives 8 you capability. I agree with that. But many times 9 the red light comes on and requires immediate action. 10 You can't worry about sorting. You've got to go do something. 11 Okay. Thanks a lot. I appreciate it. 12 Just wanted to say I wasn't trying to beat people up. 13 14 MR. SEYMOUR: Okay. Mike, could we move 15 on to the next slide, please? 16 So in the next part of Okav. our technical evaluation we considered whether SHINE's 17 administrative controls were adequately supported by 18 19 their programmatic measures for the management of procedures. 20 We noted that specific administrative 21 controls are incorporated into SHINE's procedures for 22 implementation by facility staff. 23 They noted that 24 these procedures undergo review by management and are 25 subject to provisions to ensure that they are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	95
1	technically accurate.
2	We also noted that procedures undergo
3	verification and validation prior to use by operators.
4	We found that the combination of processes used for
5	the preparation, use, and management control of
6	written procedures, the methods used for verifying and
7	validating procedures before use, and the methods used
8	for ensuring that current procedures are available to
9	the facility personnel collectively supports the
10	ability of SHINE operators to reliably implement
11	administrative controls.
12	Next slide, please?
13	Finally, we considered whether SHINE's
14	administrative controls were adequately supported by
15	the programmatic measures for the training and
16	qualification of operators. In reviewing this area,
17	we noted that the licensed operator training programs
18	include topics on both criticality control and
19	management measures.
20	Additionally, we further noted that the
21	training program is based upon a systems approach to
22	training. Based upon this, we found that the
23	combination of provisions for the initial training of
24	personnel, personnel qualifications, and the
25	retraining of personnel, supports the ability of SHINE
I	

(202) 234-4433

1operators to reliably implement administrative2controls.

Next slide, please?

3

4 Based upon our review, we made the 5 conclusions that are summarized here on this slide. that factors 6 First. we concluded the human 7 engineering-related aspects and programmatic considerations for the SHINE facility meet the human 8 9 factors engineering-related aspects of Criterion 6, 10 because within the specific context of the operator role and safety at the SHINE facility operators will 11 reasonably be able to take actions to control the 12 facility, be provided with controls designed 13 to 14 support safe actions, have sufficient knowledge about the status of the facility, be able to make decisions 15 16 about the appropriate course of action given a 17 particular operating circumstance, and be provided with the indications, displays, alarms, and controls 18 19 that are designed to reflect their cognitive needs.

20 Second, concluded that we the human factors engineering design aspects of 21 the SHINE facility control console and display instruments are 22 acceptable because all nuclear and process parameters 23 24 important to safe and effective operation of the SHINE facility will be displayed at the control console. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

The display devices for these parameters are easily understood and readily observable by an operator positioned at the facility controls. The controls are readily accessible, and the enunciator and alarm panels on the control console provide assurance of the operability of systems important to safe facility operation.

8 Furthermore, within the specific context 9 of the operator role and safety of the SHINE facility, 10 we concluded that the human system interface supports 11 the manual initiation of protective actions for safety 12 systems and provides displays and controls for manual 13 actuation of safety functions and for monitoring those 14 parameters that support them.

15 Finally, we concluded that the programs 16 for procedures management and training and 17 qualification are acceptable within the context of the operator role at SHINE for safety of the facility, 18 19 because they reasonably support the ability of SHINE reliably implement administrative 20 operators to controls at the facility. 21

22 So this concludes the prepared part of my 23 presentation. I'd now like to ask if there is any 24 additional questions from the committee.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

MEMBER BIER: One additional question for

(202) 234-4433

25

1

2

3

4

5

6

7

	98
1	SHINE. Which vendor is doing your control designs?
2	MR. RUETZ: So RoviSys is the vendor that
3	is doing our PICS design.
4	CHAIRMAN BALLINGER: Did we lose Vicki?
5	MEMBER BIER: I'm here. I have some audio
6	problems.
7	CHAIRMAN BALLINGER: Yeah. There's some
8	weird background stuff going on from somebody.
9	MEMBER BROWN: She's getting you're
10	getting it also. We're getting a lot of feedback.
11	MR. BALAZIK: Yeah. This is Mike Balazik,
12	NRC Project Manager. I think the feedback is coming
13	from the SHINE leaving their mic open. We're getting
14	an echo, and there also there is some sort of
15	static that seems to be coming from SHINE.
16	CHAIRMAN BALLINGER: Well, the static just
17	stopped. Well, I guess not.
18	MR. BARTELME: So is it so is it
19	whenever SHINE is speaking or
20	MR. BALAZIK: Yeah. Jeff, this is Mike.
21	It's almost constant when SHINE gets on. There's a
22	lot of static coming over.
23	DR. BLEY: And it's loud enough I'm not
24	sure if Vicki heard the answer to her question, but I
25	couldn't hear it through the static.
I	

(202) 234-4433

	99
1	MEMBER HALNON: I think SHINE needs to log
2	off and log back in.
3	MEMBER BIER: I was able to hear the
4	answer, Dennis. They said the contractor for the PICS
5	system is NoviSys.
6	DR. BLEY: Good.
7	MEMBER REMPE: It does seem to be better
8	now. So perhaps it's cleared up.
9	MR. BALAZIK: Well, Dr. Rempe, they're not
10	on they're not they're on mute right now.
11	MEMBER REMPE: Oh. That's why the
12	static
13	MR. BALAZIK: I guess that's why it
14	improved.
15	CHAIRMAN BALLINGER: Okay.
16	MR. BALAZIK: Jeff, do you want go
17	ahead, Professor. Sorry.
18	CHAIRMAN BALLINGER: No, no. What's up?
19	MR. BALAZIK: No. I was going to ask
20	SHINE to see if they could unmute to see if the static
21	is still there. They might be trying to rejoin the
22	meeting because now I don't see them on.
23	CHAIRMAN BALLINGER: Well, that's they
24	might be trying to fix it, but in any in any case,
25	as I mentioned this morning, I have probably condemned
I	I

(202) 234-4433

100 1 myself to not being able to move faster when I said we were moving faster. 2 3 And so we now have a question to answer, 4 and that is the next two presentations relate to the 5 conduct of operations. And I'm hesitant to want to separate those two because I'm guessing that based on 6 7 the questions and answers from the human factors part, 8 I'm thinking that there is going to be a fair amount 9 of crosstalk between those two. And so I'm not sure 10 that it's a good idea to start the first presentation at 20 minutes 'til the hour and this go over and then 11 have lunch. 12 So I'm proposing that we recess now until 13 14 1:00, so that we can have those two sessions back to So are there any objections to that from 15 back. members or the staff or SHINE? 16 17 MR. BALAZIK: This is Mike Balazik, NRC No objections. staff. 18 19 MEMBER BROWN: Do it. Do it, Ron. 20 CHAIRMAN BALLINGER: Okay. MEMBER BROWN: This is Charlie. 21 No objections from SHINE 22 MR. BARTELME: We were able to hop back on on Catherine's 23 either. 24 account. Were those last questions -- are there any 25 follow-ups or were the members able to hear SHINE's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	101
1	response?
2	MR. BALAZIK: Yes. This is Mike Balazik.
3	Can you just repeat the vendor for PICS one more time?
4	MS. KOLB: Yes. This is Catherine Kolb.
5	So the vendor is RoviSys with an R. And that is a
6	system integrator. The platform, the architecture, is
7	an Allen-Bradley System.
8	MEMBER BROWN: By the way, your static and
9	your reverberation has now gone away.
10	MS. KOLB: Excellent. We will use this
11	computer going forward.
12	CHAIRMAN BALLINGER: I thought we might
13	have had an electromagnetic block all of a sudden, or
14	a pulse.
15	Okay. So we will now, assuming there are
16	no other questions or comments from members,
17	consultants, or others, we will recess until 1:00
18	Eastern.
19	(Whereupon, the above-entitled matter went
20	off the record at 12:41 p.m. and resumed at 1:00 p.m.)
21	CHAIRMAN BALLINGER: Okay. It's 1:00 p.m.
22	We will now go back in session.
23	And the first presentation is from the
24	SHINE folks on the conduct of operations. So I can
25	see the slides. So let's proceed.
I	1

(202) 234-4433

	102
1	MS. KOLB: Thank you. This is Catherine
2	Kolb. I'm the Senior Director of Plant Operations for
3	SHINE. And I will be discussing conduct of operations
4	this afternoon.
5	So, in this presentation, we are going to
6	cover the topics of Chapter 12 that are, have not
7	already been covered in other ACRS presentations. So
8	that includes the organization, the review and audit
9	activities, procedures, required actions and reports,
10	and records.
11	So, starting with organization, this is a
12	depiction of the normal organization chart for SHINE.
13	This is not all the people that work for SHINE. This
14	is a subset of those who are most directly involved in
15	the operation of the facility. And I wanted to show
16	this just to depict that, the wide range of people
17	that are involved in making our facility run.
18	The next slide is the organization chart
19	that is found in Chapter 12 and in our technical
20	specifications. This describes the levels of the
21	operations organization as defined in ANSI/ANS 15.1.
22	So we have the CEO and the diagnostics
23	general manager comprising our Level 1 management.
24	Level 2 is director of plant operations and the
25	operations manager.
Į	I

(202) 234-4433

	103
1	Level 3 is the shift supervisor. So that
2	is a senior licensed operator. And that person will
3	be the most senior person at the facility, physically
4	at the facility at any given time. That is not a
5	single person. That is more of a role. So there will
6	be a shift supervisor at the facility at all times.
7	For example, we currently have four of them slated for
8	that role. And they will rotate in that four-shift
9	crew that we discussed previously.
10	The rest of the operators are comprising
11	Level 4. So those are other senior licensed
12	operators, licensed operators, and field operators,
13	which is what we are calling our non-licensed
14	operations individuals.
15	The philosophy for running the facility is
16	that there will be one shift supervisor there at any
17	given time. The licensed operators will be in the
18	control room. And the non-licensed operators, field
19	operators, or suitable technicians, those people will
20	perform duties at the direction of licensed operators
21	and under their cognizance.
22	The other organizations depicted on this
23	slide are the review and audit committee, which we'll
24	discuss in a little more detail in a couple of slides,
25	and the radiation safety function, which is filled by
	I

(202) 234-4433

	104
1	the radiation protection manager, who was shown on the
2	previous slide, and the radiation protection staff
3	that work for the radiation protection manager.
4	Are there any questions on our
5	organizational structure?
6	MEMBER SUNSERI: Catherine, this is Matt
7	Sunseri. Do you have the quality assurance manager or
8	director or something equivalent, and is that under
9	the review and audit function? And if it will be
10	discussed later, I can wait.
11	MS. KOLB: We do have quality assurance
12	personnel. I did not show those on the normal org
13	chart. They report to the Vice President of
14	Regulatory Affairs and Quality. And there is a
15	quality assurance manager that reports to that person
16	and quality assurance staff. So that's you know,
17	it's not shown, but it is part of our facility.
18	MEMBER SUNSERI: And do they have a dotted
19	line to the Chief Executive Officer or something
20	direct, some kind of direct access if they have to
21	report there?
22	MS. KOLB: Yes, that, the org chart
23	showing that relationship is in our quality assurance
24	program description document.
25	MEMBER SUNSERI: Okay. Thank you.
	I

(202) 234-4433

MS. KOLB: All right. The next slide shows the minimum staffing. So this slide presents both the technical specification required individuals. Those would be the first three. And I presented it this way to show that we have other documents that drive us to have additional people at the facility in addition to the technical specification required roles.

9 So the shift supervisor, who I mentioned 10 earlier, would be a senior licensed operator. And they are filling that role required in our technical 11 specifications for having a senior licensed operators 12 present at the facility or readily on call. 13 They also 14 fill the role of the emergency director described by 15 the emergency plan, which we presented in a previous 16 ACRS meeting.

17 We'll have at least one accelerator operator, who is a licensed operator. They could also 18 19 be a senior licensed operator per the technical specifications. But either a licensed operator or a 20 second senior licensed operator must always be present 21 in the control room. 22

And in addition to that, we have an additional designated person. We expect that to be filled by either a non-licensed or an additional

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

106 1 licensed individual. But it could be anyone who is designated for that role and that fulfills 2 our technical specification requirements. 3 4 In addition to the technical 5 specifications staffing, the emergency plan drives us to have an additional person. 6 That's individual number two, which we expect to be filled by a non-7 8 licensed operator as an additional accelerator 9 operator or other designated individual to fill the role of emergency communicator, which we discussed in 10 a previous ACRS meeting. 11 The emergency plan also drives us to have 12 some individual with radiation protection experience. 13 14 We expect that to be normally be filled by a member of 15 the radiation protection staff. But it could be anyone who is trained and qualified for that role to 16 be able to fill that radiation safety coordinator role 17 identified in the E plan. 18 19 And then finally, we can't get into any details here, but we do have a physical security plan 20 that prescribes requirements for security personnel. 21 So this slide is depicting the minimum 22 staff that we would expect at any given time at the 23 24 facility. I'd like to ask you, this is 25 DR. BLEY:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

107 1 Dennis Bley, a question about authority. Who out of this cast of characters, including security, 2 can 3 direct the SRO to carry out specific operations in the 4 plant? 5 MS. KOLB: The shift supervisor, who is a senior licensed operator. 6 7 DR. BLEY: Who can direct him to carry out, or her to carry out specific actions in the 8 9 plant? 10 MS. KOLB: So they report to the operations manager. 11 DR. BLEY: Will the operations manager be 12 licensed? 13 14 MS. KOLB: The operations manager will not be licensed. 15 DR. BLEY: But the operations manager can 16 17 direct actions in the plant? MS. KOLB: No. Everyone has a supervisor 18 19 organization structure, but shift in our the supervisor is the senior licensed individual. 20 And that individual 21 DR. BLEY: Okay. 22 can't be overruled by other people the in organization. 23 24 MS. KOLB: No, not in terms of actions that affect the technical specifications or 25 the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	108
1	operations of the facility.
2	DR. BLEY: I like that. Go ahead.
3	MS. KOLB: Were there any other questions
4	about the minimum staffing for the facility?
5	All right. Moving on, this slide covers
6	topics that are not in Chapter 12 but are topics that
7	frequently come up when we discuss conduct of
8	operations at a high level. So I just wanted to
9	highlight a couple of topics that we do consider in
10	that area.
11	So we have at SHINE a safety culture
12	program, which emphasizes a commitment of safety over
13	other competing goals and includes promoting a safety
14	conscious work environment where people are encouraged
15	to raise safety concerns, free to raise concerns
16	without fear of retaliation.
17	We've defined in our internal programs a
18	concept of operational authority, including who can
19	manipulate controls, who can be present in the control
20	area, which we've defined as the control room, and how
21	to transfer operational authority between shifts
22	during turnover. This ensures configuration control
23	and awareness of the operations staff.
24	(Audio interference) look at conduct and
25	professionalism for our operating staff. That
Į	I

(202) 234-4433

	109
1	includes provisions for performance monitoring,
2	guidance on assignment of duties in order to ensure
3	the facility is safely and effectively operated.
4	We discussed training this morning. But
5	that's and here is a bullet, because I wanted to
6	reinforce the idea that training is not just the job
7	of the training department. The operating staff owns
8	their own training and participates with the training
9	department to ensure people are qualified and able to
10	do their jobs.
11	And then finally, procedures is discussed
12	in a little more detail later. But procedures are
13	just words. And without a commitment on how we're
14	going to follow them, it doesn't mean much.
15	So our internal programs emphasize that
16	procedure adherence is expected, that procedures will
17	be complied with as written, with processes for what
18	to do if a procedure cannot be executed as written.
19	And then operator aids aren't substitutes
20	for poor procedures. But we do have provisions on how
21	we will use and control them to ensure they're
22	accurate and not detrimental to the staff.
23	DR. BLEY: Will the senior licensed people
24	in the plant have a path through which they can
25	deviate from a procedure if they believe it's
Į	1

(202) 234-4433

	110
1	necessary for safety?
2	MS. KOLB: Yes, we have described that in
3	our documents for procedure preparation and use on how
4	to complete deviations and what is required in that
5	process.
6	DR. BLEY: Okay. They don't need approval
7	by more senior people outside of the plant?
8	MS. KOLB: No.
9	DR. BLEY: I know they'll have to defend
10	themselves.
11	MS. KOLB: No, I believe we have, you
12	know, rules for notifying and correcting the
13	procedures after the fact. But, no, they will be able
14	to deviate if necessary in accordance with our
15	processes.
16	DR. BLEY: Thanks for that clarification.
17	MEMBER BIER: Yeah, I just wanted to
18	emphasize that that's important, because, in fact, in
19	many cases, verbatim compliance with written
20	procedures can actually be used as a stop work
21	mechanism. So it may not always be possible to follow
22	the procedures as written.
23	MS. KOLB: Thank you for that. Yeah, we
24	do have that, those provisions. But in absence of
25	other direction, we do expect our staff to follow
I	I

(202) 234-4433

	111
1	procedures as written, but understand the concern
2	there.
3	Moving on to the next slide, so we have
4	established at SHINE a review and audit committee that
5	is described in Chapter 12 and in our technical
6	specifications. It defines the minimum membership.
7	The chair is the diagnostics general
8	manager, one of our Level 1 individuals or designee.
9	And then the membership of the committee includes
10	people with experience in engineering, operations, and
11	radiation protection.
12	The charter includes provisions where we
13	can use non-SHINE employees, especially when the
14	required expertise is not available from SHINE
15	employees.
16	And it's a requirement that facility
17	operations personnel, which would be people reporting
18	up through the director of plant operations, which
19	from the original org chart includes the operations
20	department, the maintenance department, and the
21	chemistry department, those people cannot constitute
22	a majority on the review and audit committee.
23	MEMBER HALNON: So this is Greg. Given
24	the facility's makeup of chemicals, why wouldn't that
25	chemistry manager not be a required minimum
I	I

(202) 234-4433

	112
1	membership?
2	MS. KOLB: The engineering and the
3	operations individuals are expected to have experience
4	in our facility, which, as you mentioned, is, has the
5	radioisotope production facility portion.
6	The chemistry manager is important. But
7	they are mostly in charge of the lab reporting,
8	specifically for doing testing and other required
9	things, both technical specifications and for our
10	product. But we believe that the engineering and the
11	operations experience should encompass that.
12	MEMBER HALNON: Okay. I guess we'll agree
13	to disagree. I think that the chemistry manager is
14	integral to the facility such as this, being the
15	unique nature of it. But I understand where you're
16	coming from.
17	MS. KOLB: I mean, there are provisions in
18	our charter for including people with expertise,
19	especially if we were doing an audit of some area that
20	had particular chemistry expertise that was required
21	of being able to assign people to that. They would be
22	able to perform that function and not be limited to
23	just these three people.
24	DR. BLEY: Let me push a little bit on
25	this if I can. I'm Dennis, again.
I	I

(202) 234-4433

One of the things this committee might be reviewing is a change to the facility, come in, cut 2 some parts out, put some new things in. Not having a chemical process engineer -- I mean, I'm sure you had them during the design of this system. And we've 6 talked about that a long time ago. Not having a chemical process engineer to confirm that the changes 8 aren't going to lead to some kind unexpected problem 9 seems I would say shortsighted.

We've seen lots of incidents in nuclear 10 plants and other facilities where changes to the 11 12 system have led later to problems because the people involved in the change didn't fully understand the 13 14 functions that could lead it into problem areas. So 15 I quess I'll be like Greq and agree to disagree.

16 MS. RADEL: This is Tracy. I want to 17 clarify, you know, the engineering team members is where the chemical process engineers would be. 18 You 19 chemistry department is know, the checking and verifying, you know, the parameters of the different 20 whether it be target solution or waste 21 streams, 22 streams.

But as far as system design or changes to 23 24 design or how you operate the equipment, engineering, 25 including chemical process engineers, would be

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

3

4

5

7

	114
1	involved in reviewing that and ensuring that it's
2	appropriately considered in the system design, as well
3	as the safety analysis.
4	DR. BLEY: That's what I was looking to
5	hear. So they, the chemical process guys, folks show
6	up under engineering and would participate depending
7	on what kind of review you're doing.
8	MS. RADEL: Correct.
9	MS. KOLB: That is correct. And the
10	this is Catherine. And the this is just the review
11	and audit committee requirements here. SHINE has
12	processes for preparing and reviewing and approving
13	individual engineering documents in addition to this.
14	So we're viewing this as a check of, you
15	know, other things. This isn't the only review of
16	documents that come before them. There are other
17	processes we have in place.
18	DR. BLEY: Okay. But this is a review,
19	and sometimes those kinds of committees spot the
20	problems that the people involved don't see because
21	they're looking towards success of what they're
22	designing. And these folks might be looking to find
23	ways that might not work right. So you don't always
24	get that in those reviews along the way.
25	MS. KOLB: Understand.
ļ	I

(202) 234-4433

1 MEMBER SUNSERI: Hey, Catherine, this is Sunseri. question about 2 Matt Ι had а this 3 organization. I've been studying it a little bit 4 here. To me, this review and audit role, function committee appears to be what I'm going to call a 5 hybrid of two classical organizations. 6 7 One is a station review and oversight committee comprised of these kind of people like you 8 9 described here to look at the things that we've been 10 talking about. Some call them operations review committee, station operation committee. 11 They come

under a variety of names. The audit function appears
to be a quality assurance part, performing audits
independently.

So do I have that kind of straight, or canyou clarify that for me?

17 MS. KOLB: Yes. You can move to the next 18 slide, Jeff.

19 So this committee is following the model 20 specified in Research Reactor Standards 15.1. But 21 you're right on how we intend to implement it.

So the review function, you know, is similar in the way that we're envisioning it to, you know, and then an oversight committee responsible for these items listed in the first major bullet here.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

The audit function, we do have quality assurance departments that we intend to use and take credit for as part of this to delegate to the actual performance of audits to them when possible, whenever we can. The -- but, yes, that is a QA function, as they both feed well to, in many if not all of the audits that we specified here.

MEMBER SUNSERI: So are the actual quality 8 9 assurance audits performed by independent team members and this is, this committee is just providing an 10 oversight of those audit results, or are these, is 11 this committee someway involved in the production 12 activity of performing the audit? 13 My question is 14 really trying to get at the independence of the 15 quality assurance function from production activities.

16 MS. KOLB: The attempt is to not have to 17 independently audit, you know, for example, the different emergency plan by independent 18 two 19 organizations.

So, if the quality group leads an audit of the emergency plan because they have no involvement in the emergency plan and they do it for their prescribed frequency, they would do it, you know, in conjunction with or at the direction of the review and audit committee as part of their required audit list and to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	117
1	take credit for that, because they would also be
2	independent of that program.
3	I don't know if that answers your
4	question.
5	MEMBER SUNSERI: So just let me throw out
6	a hypothetical situation as far as an example maybe.
7	So let's say that the quality, that you
8	were performing an audit of the technical
9	specifications. And we find some deficiency in the
10	way the tech specs are being implemented or tested or
11	whatever, right, the quality assurance finding. Can
12	the operations member of this review and audit
13	committee overrule that finding?
14	MS. KOLB: No, for a couple of reasons.
15	They can't constitute a majority of the review and
16	audit committee. So that member wouldn't have that
17	power to overrule. And if we got to the end of an
18	audit, the charter describes how audits work, that
19	they would, you know, commission the audit, and then
20	they review the results of.
21	So I'm not really seeing the opportunity
22	to overrule the results of the audit when it's just
23	being presented for a review I guess.
24	MEMBER SUNSERI: Okay. So, I mean, I
25	understand what you're saying. I guess I just
I	I

(202) 234-4433

	118
1	between this and my previous comment about where the
2	QA manager reports, I just kind of see a lack of
3	visibility of the importance of the quality assurance
4	role.
5	I mean, the review and audit committee
6	doesn't have a quality assurance member on it. The
7	audit function is kind of mixed in with operational
8	activities. The quality assurance manager doesn't
9	show up on the organizational chart.
10	It just I know it's not the case. But
11	it just appears to be a lack of high visibility of the
12	importance of that function. So I'll just leave it as
13	a comment.
14	MS. KOLB: I appreciate the comments. I
15	mean, the org chart at the beginning of this
16	presentation is a subset that is not actually in this
17	document. I created it specifically for this
18	presentation. The quality assurance people do exist
19	in the formal org chart.
20	MEMBER BIER: So one other question. This
21	is Vicki Bier. In terms of any major plant changes,
22	upgrades, modification, et cetera, is there a
23	procedure to document both the analysis that led to
24	that and, you know, a committee review or whatever
25	that approved the change?
I	I

(202) 234-4433

	119
1	MS. KOLB: The engineering department has
2	procedures and requirements for documenting their
3	engineering outputs, calculations and drawings and the
4	packages, design packages. So that would be the
5	documentation of the analysis there.
6	And then the documentation of this
7	independent, this extra review by the review and audit
8	committee, that is documented by memos that are
9	distributed within three months of the meeting where
10	it was reviewed.
11	MEMBER BIER: Okay. So, for instance, if
12	engineering made a recommendation and it was decided
13	to depart from that or engineering put forward three
14	options and they decided to go with number two or
15	whatever, that would be documented someplace, the
16	reasoning for that.
17	MS. KOLB: Yes.
18	MEMBER BIER: Thanks.
19	MS. KOLB: All right. So we've discussed
20	the function of the committee a little bit. But just
21	to reiterate they have a review function, which is
22	based on the topics that are provided in research
23	reactor ANSI standards, in some cases modified
24	slightly to be applicable to SHINE.
25	And the audit function, they will audit

(202) 234-4433

120 1 facility operation for conformance to technical specifications, training programs, 2 or resulted 3 corrective actions, and various facility programs and 4 plans, including the emergency plan, radiation 5 protection plan, the physical security plan, nuclear criticality safety program, and a few others. 6 7 Next slide. On this slide, we're talking 8 about procedures. So Kris covered earlier in the day 9 a process for verifying, validating them. But just to 10 reiterate, we have a defined process for preparing, approving, verifying, and validating 11 reviewing, provide procedures that direction for 12 normal, abnormal, and emergency situations. 13 14 The topics that must be covered by 15 procedures are included in this list. This list is 16 based on one that is found in ANS 50.1, modified 17 slightly to be applicable to the SHINE facility. That list was very reactor based, so we changed some of the 18 19 terminology there. Next slide. So this next slide combined 20 required actions and reports. The -- a little bit of 21 an echo there. But to put it in context, I've listed 22 the safety limits there. 23 24 So we have defined safety limits in our technical specifications. And the required actions to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

Reporting such event to Level 2 management, which is the operations manager or the 6 director of plant operations and the NRC. And there is a report that is prepared, reviewed by the review 8 and audit committee, and submitted. 9

10 Other required actions on the next slide relate to other special reports. 11 So those are also 12 defined in our Chapter 12 and in our technical 13 specifications, so events such as release of 14 radioactivity above limits, operations with the safety 15 system settings less conservative than required, 16 violation of LCOs established in our technical 17 specifications, and other events listed here.

Actions that would take the 18 we on 19 occurrence of an event that requires a special report would be to shut down the affected areas for the 20 processes, and operations shall not be resumed until 21 authorized by Level 2 management. 22 And it should be reported to Level 2 management and the NRC, the 23 24 occurrence reviewed by the review and audit committee. So these activities here, these events 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

7

www.nealrgross.com

121

	122
1	that might occur require a special report as shown in
2	Chapter 12.
3	We also, on the next slide, identify a
4	couple of other reports. So we have operator reports
5	that are required, including operating experience for
6	future radiation units, any unscheduled shutdowns or
7	corrective actions, tabulation of major changes,
8	summary of affluence and other environmental surveys,
9	and individual monitoring results required by 10 CFR
10	20.1502.
11	There are other special reports defined,
12	including permanent changes in Level 1 or Level 2
13	management and any significant changes in our
14	transient or accident analysis described in the FSAR.
15	We've also identified additional event
16	recording as required by 10 CFR 70.50 and 52 and a set
17	of requirements that are specific to SHINE but that
18	meet the intent of Appendix A to 10 CFR Part 70.
19	And finally, after the completion of the
20	startup testing, we specify that we will submit a
21	startup report.
22	And the next slide, final slide, is
23	records. So we've defined in Chapter 12 and in the
24	technical specifications a number of records that the
25	SHINE facility will maintain.
	I

(202) 234-4433

123 1 We have lifetime records related to affluence, environmental surveys, radiation exposure, 2 drawings of the facility, and records of reportable 3 4 occurrences as listed there. 5 We've defined a number of five-year records related to facility operations, maintenance, 6 7 other reportable occurrences, and the list as shown. 8 And finally, records that are only required to be 9 retained for one rated survey (audio interference) 10 radiation cycle related to training of licensed 11 operators. And this is the end of my prepared slides. 12 Are there any additional questions? 13 Yeah, this is Ron 14 CHAIRMAN BALLINGER: 15 So the ultimate authority during the Ballinger. 16 normal operation of the plant is the shift supervisor, 17 right? MS. KOLB: Correct. 18 So, if an abnormal 19 CHAIRMAN BALLINGER: occurrence occurs, it doesn't necessarily have to be 20 an alarm or, something which fits into one of your 21 categories which would require the plant to be shut 22 down or returned to a normal, if you want to call it 23 24 that, condition right away, is there а set of 25 conditions where you don't have to go through the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	124
1	shift supervisor to shut the plant down?
2	MS. KOLB: Yes. Any licensed operator has
3	the authority to shut down the facility in accordance
4	with their license if they believe that it is unsafe.
5	CHAIRMAN BALLINGER: Okay. So they don't
6	have to track down the shift supervisor every, if
7	something, if it's a bad hair day.
8	MS. KOLB: Hopefully they won't be
9	shutting down the facility for a bad hair day. But,
10	yes, they have, per their training and their license,
11	the authority to shut down the facility if they deem
12	it necessary.
13	CHAIRMAN BALLINGER: Thank you. Other
14	questions from members or consultants?
15	Thank you, then. So can we shift over to
16	the staff side?
17	MR. LYNCH: Good afternoon. I just want
18	to this is Steve Lynch, the Chief of the Advanced
19	Reactor Policy Branch. Before I begin with the NRC
20	staff remarks, I just want to confirm that everyone
21	can see my first slide on the screen.
22	MR. LYNCH: Okay then, I will get started.
23	So this is the NRC staff's review of SHINE's conduct
24	of operations looking at Chapter 12, Sections 12.1-
25	12.6.

(202) 234-4433

	125
1	This is largely an administrative portion
2	of our review as we look at the levels of organization
3	within the SHINE facility, including reporting the
4	communication lines, review and audit activities,
5	procedures, required actions, reports, and maintenance
6	of records.
7	So as we conducted this review, there are
8	a core set of regulatory requirements that we looked
9	at to ensure that SHINE was meeting necessary
10	requirements. 10 CFR 50.34 and paragraph B6 includes
11	the requirements for describing the organizations of
12	the facility.
13	Requirements 10 CFR 50.40 and 50.57
14	provide general findings for the NRC staff to make
15	regarding the technical qualifications of the
16	applicant to be able to carry out activities within
17	the facility.
18	The conditions of licenses paragraphs in
19	10 CFR 50.54, specifically paragraphs I, J, K, L, and
20	M-1 discuss minimum staffing requirements at the
21	facility. And 10 CFR Part 20 provides requirements
22	for the standards for protection against radiation.
23	So in implementing these regulatory
24	requirements, the NRC staff starts with NUREG 1537,
25	our standard review plan for non-power reactors, as

(202) 234-4433

П

1	augmented by our interim staff guidance to include
2	aqueous homogeneous reactors and radioisotope
3	production facilities. So that is the main guidance
4	that is applicable to SHINE.

5 And within this there are two ANSI standards that we primarily evaluated the information 6 7 in SHINE's application against for these sections, and that is ANSI/ANS 15.1, the development of technical 8 9 specifications for research reactors. And ANSI/ANS 15.4, selection and training of personnel for research 10 reactors. 11

in comparing the information SHINE 12 So provided in the FSAR, as they described in their 13 14 presentation a few minutes ago, they generally followed the guidance in both ANSI/ANS 15.1 and 15.4, 15 which is consistent with the information needs that 16 the NRC staff has in NUREG 1537 to satisfy those 17 regulatory requirements applicable that Ι just 18 mentioned. 19

For this presentation, since largely SHINE adopted the direct language from the ANSI standards, I do want to just highlight some of the exceptions that SHINE took to the -- to the standards that the NRC staff found to be acceptable on account of its specific design considerations or operations of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

126

	127
1	SHINE facility that are different from being a
2	research or test reactor.
3	Primarily, this looks at how SHINE has the
4	irradiation units containing an aqueous target
5	solution, the commercial nature of the facility, and
6	the production facility that SHINE is operating.
7	So over the next two slides I'll just
8	quickly go over some of the exceptions that SHINE took
9	to the ANSI standards and why the NRC staff found
10	these to be acceptable. And looking at Section 12.2
11	in the review function and audit function paragraphs,
12	SHINE had excluded looking at the review of
13	experiments at the facility.
14	So experiments are included in these ANSI
15	standards because at research reactors there are often
16	in-core experiments being conducted that are separate
17	from standard operations of the reactor.
18	Since SHINE is a commercial medical
19	radioisotope facility and not a research reactor, they
20	will not be conducting any of these experiments as a
21	research reactor would. So it is acceptable in this
22	section and in other sections that I'll highlight that
23	SHINE has excluded experiments from consideration.
24	Also, with the audit function, SHINE has
25	included additional elements within it audit function
I	1

(202) 234-4433

128 1 that go beyond the minimum provided in the ANSI standard. 2 3 So in its audit function, SHINE has 4 included its quality assurance program description, 5 its physical security plan, and nuclear criticality safety program within the scope of items that may be 6 7 audited. So since this goes beyond the minimum, the 8 NRC staff finds that acceptable. 9 So again, when we're looking at Section 10 12.3, SHINE did modify what it looks at for topics for which written procedures are prepared, reviewed, and 11 approved. They modified the language in here slightly 12 to deviate from the reactor-centric language to follow 13 14 closely with the technology that they have for 15 irradiation units and the associated target solution in place of a reactor fuel that they would have. 16 17 Again, this was another example of an area where SHINE will not have any written procedures 18 19 associated with this experiments since they will not be conducted at the facility. 20 And in Section 12.4, SHINE again, as in op 21 (phonetic) being a reactor, used broader language to 22 encompass looking at operations and processes both 23 24 within the irradiation facility and the radioisotope production facility as being within the scope of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

reportable events and actions to be taken should a reportable event occur.

And with this section, I'll just note that SHINE did highlight for the radioisotope production facility in their presentation that they are looking at the requirements for reporting in 10 CFR Part 70 as appropriate for events that affect a licensed material.

And then in the final two sections of 9 10 Chapter 12 covered in this portion of the presentation, for annual operating reports, they were 11 there were two deviations that I wanted 12 to highlight that the NRC staff found acceptable. 13 This 14 is the exclusion of tests or experiments from 15 reporting to the NRC as SHINE does not have these.

16 And then also SHINE did have a more results 17 conservative approach to providing of individual monitoring carried out for individuals for 18 19 whom monitoring is required by 10 CFR 20.1502. Bv following -- by reporting the monitoring results in 20 alignment with this regulatory requirement, it is more 21 conservative than what the ANSI standard requires. 22

According to the ANSI standard, reports would only need to be prepared if the doses that are contained in Part 20 are exceeded by greater than 25%.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

So SHINE has done away with that threshold and is reporting down at just the regulatory requirements for monitoring. It will report out on those. So because that is more conservative, the NRC found that acceptable.

And then in Section 12.6, for records to 6 7 be maintained at the facility, again, only two 8 exceptions for experiments, and then also SHINE has 9 modified the language to be more broad. It's in place 10 of heterogeneous reactor fuel, they will have radioactive material inventories associated with the 11 target solution they will have at the facility. 12

13 So they have used that appropriate 14 language to be all-encompassing of records that need 15 to be maintained related to that material.

So these next few slides just are a 16 17 summary of the findings that the NRC staff has made. In general, because closely followed SHINE 18 the 19 information in ANSI standards 15.1 and 15.4, the NRC staff was able to make all of the necessary findings 20 that were in NUREG 1537, Vol. 2, as augmented by the 21 staff 22 interim quidance to satisfy appropriate regulatory requirements. 23

24 So the organizational structure. As SHINE 25 had presented on their slide, that is consistent with

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

131 1 what is in the ANSI standard and it gave the NRC staff confidence that there is a complete organization of --2 3 all the way down from the operations staff up to the 4 ultimate license holder. 5 More detailed descriptions of each of these positions were provided in the FSAR such that 6 7 the NRC staff could understand their responsibilities 8 in relationship to one another. 9 This has also given us confidence that the 10 responsibility for the safe operation of the facility and for the protection of the health and safety of 11 both the SHINE staff and members of the public have 12 been demonstrably shown. 13 14 SHINE went over their staffing for minimum staffing at the facility, from shift supervisors that 15 also serve the function of a senior reactor operator 16 17 and other licensed operators at the facility. All of that satisfies the requirements in 10 CFR 50.4 for 18 19 minimum staffing. And also then supports the review that the NRC staff did separately on meeting the 20 operator requirements in 10 CFR Part 55. 21 22 For each of the personnel that are described, SHINE has provided a list of the necessary 23 24 experience, education, and training that needs to be provided for each of those individuals. 25 And also

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	132
1	SHINE has made a commitment within the FSAR to follow
2	the radiation training requirements that are in 10 CFR
3	19.12. This is also consistent with expectations that
4	are set in the ANSI standards.
5	SHINE has also described the radiation
6	safety organization that is acceptable. As we saw in
7	their pictorial organization graph, the organization
8	has direct access to upper management in the review
9	and audit committee to express concerns if necessary.
10	As we saw, that was highlighted by some of the audit
11	communication lines to ensure that there is access
12	outside of direct reporting.
13	And we also have confidence that the
14	radiation safety staff has the authority to interdict
15	and terminate activities to ensure safety.
16	So additional findings that the NRC staff
17	made. The Review and Audit Committee members appear
18	to be well-qualified, with a wide spectrum of
19	expertise. The Committee membership includes
20	provisions for including persons from outside.
21	To follow up on the conversation that we
22	had during SHINE's presentation of this, the NRC staff
23	is comfortable with the minimum staffing provided for
24	the Review and Audit Committee and that there is
25	sufficient flexibility and commitment to bring in the
l	

(202) 234-4433

133 necessary technical expertise out of those minimum 1 staffing to address specific issues on an as-needed 2 3 basis. 4 And the general descriptions, for example are broad enough to encompass 5 with engineering, various disciplines such as chemical processing to 6 7 address review and audit needs for the facility. 8 SHINE has proposed a charter and rules 9 that describe the number of times the Committee meets, 10 the way the Committee conducts business, the requirements for a forum when voting, and the way the 11 Committee distributes its reports and reviews. 12 13 SHINE has proposed а comprehensive 14 acceptable list of items that the Committee will 15 review and audit. As I mentioned earlier, SHINE has 16 gone beyond the minimum suggestions in ANSI 15.1 on the items that are included within the review and 17 audit list of document. 18 19 SHINE has proposed a set of required 20 procedures as appropriate to operation of the facility, and that the process and method described by 21 SHINE will ensure proper management control and proper 22 review of procedures. 23 24 And then for our last slide here, SHINE has defined a group of incidents as reportable events 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

and has described the required actions it will take if the reportable events occur. The definition of reportable events gives reasonable assurance that safety-significant events will be reported by the applicant.

I think this is especially true since 6 7 SHINE taking into consideration the production 8 facility that they will be operating has looked to 10 9 CFR Part 70 for licensed material reportable events they might 10 that are separate that see at the irradiation units and has included this as part of 11 their reportable events. 12

13 So I believe that they have taken the 14 necessary look and been comprehensive in defining what 15 reportable events need to be included for the 16 facility.

17 SHINE has proposed actions to be taken if 18 the safety limit is violated or a reportable event 19 occurs. The NRC staff has determined that SHINE will 20 take whatever actions are necessary to protect the 21 health and safety of the public.

22 So this goes back to what SHINE had said, 23 that operators and senior operators at the facility 24 are able to take the actions that are necessary to 25 ensure the safe operation or shutdown of the facility.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

We had briefly touched on deviations, you know, if an operator needs to make decisions that are outside of what might be prescribed. ANS 15.1 does provide for temporary deviations from procedures that may be made by the responsible senior operator or higher individual present in order to deal with special or unusual circumstances or conditions.

8 Such deviations shall be documented and 9 reported within 24 hours or the next working day to a 10 level 2 or designated alternates. That is what is 11 included in ANSI 15.1 for deviations that may be made 12 by operators and SHINE has committed to implementing 13 that in the FSAR.

14 SHINE has described the content, the 15 timing of submittal, and the distribution of reports 16 to ensure that important information will be provided 17 to the NRC in a timely manner.

And finally, SHINE has described the types of records that will be retained by the facility and the period of retention to ensure that important records will be retained for an appropriate time.

And in SHINE's presentation they provided some lists of these documents and reports. And all of that is consistent with what is found in ANSI 15.1. So that concludes my prepared remarks, and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	136
1	I'm happy to address any questions that the members
2	may have.
3	DR. BLEY: Yeah, Steve, this is Dennis
4	Bley. I was unhappy with the way you began this
5	presentation, saying this stuff was all primarily
6	administrative. Well, there's lots of administrative
7	requirements here.
8	But if you don't think the things we were
9	talking about earlier, such as what can licensed
10	operators do, who can overrule licensed operators,
11	that sort of thing is important to safety, you and
12	your colleagues simply haven't read enough reports of
13	bad events in plants. I really wish you didn't
14	introduce it that way.
15	MR. LYNCH: I appreciate that. I will be
16	more careful with my word choice in the future.
17	MEMBER BIER: One question or comment,
18	Vicki Bier here. You mentioned that there was no need
19	to report experiments because this is not a research
20	reactor, which is certainly the case.
21	But it occurs to me that there may still
22	be still be experiments broadly defined if the plant
23	is considering, for example, a change in operating
24	procedures or chemistry parameters or whatever.
25	There may be some out-of-normal operation
I	I

(202) 234-4433

	137
1	that's undertaken deliberately before making a final
2	change or whatever. And I assume there is a mechanism
3	of reporting of that, even though it's not a formal
4	scientific experiment. But can you comment on that
5	briefly?
6	MR. LYNCH: Yeah. So as we're talking
7	about you know, SHINE would need to make would
8	need to report on that unless whatever I don't want
9	to use the word experiments since they said they
10	wouldn't be doing that.
11	But if there are some sort of processes or
12	operations that they're doing, they would need to
13	report that to the NRC and possibly look at 10 CFR
14	50.59 to see if it fits with any change that is being
15	made to the facility that can be done without a
16	license amendment, or is it a change to the facility
17	that they would need to come into the NRC for us to
18	review and approve before they conduct that.
19	MEMBER BIER: I guess I'm thinking of
20	things that may not even require a 50.59 approval but
21	may still be kind of outside of, you know, deviation
22	from normal operating procedure or something. And is
23	there a mechanism or is that entirely within their own
24	it doesn't require an approval for the change?
25	MR. LYNCH: Sure. So there are some
ļ	I

(202) 234-4433

1 there are some descriptions within the -- within the deviations covered for procedures that SHINE has at 2 3 the facility. And as part of our review, we did look 4 at how -- does SHINE have a mechanism in place to 5 appropriately modify or deviate from procedures and 6 how that is reported. So they do have that mechanism 7 in place. 8 Also, should there be changes in 9 procedures, the NRC staff does have the opportunity as 10 we conduct our oversight program and inspections to look at procedures when we are on -- we are on site to 11 see how they have been carried out and if it's been 12 done appropriately at the facility. 13 14 MEMBER BIER: Okay, thank you. 15 CHAIRMAN BALLINGER: Other questions from 16 members or consultants? Well, thank you then. Our last subject for the day will be the 17 startup plan and so can we -- let's transition over to 18 19 the SHINE folks, please. MR. DRURY: Can everyone see the slides? 20 CHAIRMAN BALLINGER: Loud and clear. 21 MR. DRURY: Hello, everybody, this is Tom 22 Drury, the Commissioning Coordinator for SHINE. 23 I'11 24 talk to you about the startup plan. We'll start with the purpose of the plan, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

138

1 how we're going to administer the plan, a description of the facility tests, and then the radiation unit 2 3 tests. 4 So the startup testing is conducted to 5 ensure that the as-built facility confirms to the design and that the specified safety functions of 6 7 systems, structures, and components are achieved. 8 To do this, we're going to verify key 9 parameters that are necessary for the safe operation of an irradiation unit, and also the key parameters 10 necessary for the safe handling of special nuclear 11 material outside of an IU. 12 will also be ensuring 13 We that the 14 operating characteristics of the facility are well 15 including confirming calculational understood, 16 parameters and also establishing operational 17 parameters, including set points. We will do this to ensure that the safety 18 19 of the plant is not dependent on the performance of untested SSCs during normal operation. And we will 20 also structure the testing in such a way that during 21 testing, we're never testing with untested SSCs. Next 22 slide. 23 24 The administration of the testing. So we will perform testing in accordance with approved test 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

139

	140
1	procedures and test plans. Within those plans, we
2	have predetermined acceptance criteria. The execution
3	of each of these tests will be led by a qualified test
4	lead and additional test personnel.
5	During the testing, deficiencies will be
6	documented and dispositioned. And following testing,
7	a startup test report will be written.
8	For each test, we'll outline the methods
9	and objectives of the test, have a comparison with
10	acceptance criteria, discuss design and construction
11	deficiencies and how to address those, justification
12	for any of the nonconformances, a summary of the
13	results of the test. And overall that report will be
14	submitted within six months of the completion of
15	testing activities.
16	So turning to the facility tests. These
17	are tests that are conducted to verify operation of
18	systems outside of IU cells. There are many tests,
19	this is just a representative list.
20	We verified the ability to handle uranium
21	and produce target solution via the FERC performance
22	of target solution preparation. We'll be testing and
23	balancing process vessel vent system flow rates to
24	ensure adequate sweep gas flow, for action mitigation.
25	We'll be verifying the operation of that
	1

(202) 234-4433

	141
1	transfer system's ability to move target solution
2	between storage locations. We will ensure the
3	functionality of the tritium purification system. And
4	also test the ability of the standby generator to
5	automatically start and take on load. Next slide.
6	MEMBER PETTI: This is Dave. I had a
7	question, go back. I understand, you know, at some
8	point you'll actually, you know, use uranium and
9	tritium.
10	But will you do tests before that with
11	just the sulfuric acid or watered down, you know,
12	without the radioactive material going in first to,
13	you know, to sort of SO test without, you know,
14	jumping straight to the radioactive material?
15	MR. DRURY: Absolutely, yeah, as much as
16	possible.
17	MEMBER PETTI: All right.
18	MR. DRURY: We are currently doing much of
19	what's in that first bullet point with depleted
20	uranium in a in a R&D facility. The verification
21	of the vacuum transfer system's ability to transfer.
22	The plan is to do that entirely with water throughout
23	the entire facility or at least as much as possible.
24	And the ability of the tritium
25	purification system to function, that is planned to be
	I

(202) 234-4433

142 1 tested with protium and deuterium prior to ever involving tritium. 2 3 MEMBER PETTI: Great, great. And I would 4 assume the same is true of the -- the actual 5 accelerator stuff, that you quys have done testing, so 6 you kind of know how it should work before it's 7 actually in the facility. 8 MR. DRURY: Yeah, I'll get to that in a 9 But yes, absolutely, we've run very little bit. 10 similar accelerators. We're running the exact same model of accelerator right now with deuterium, and do 11 So there's been extensive testing on the deuterium. 12 accelerators without much of the risk of radioactive 13 14 materials. 15 MEMBER PETTI: Okay, great, thanks. 16 MR. DRURY: So other facility tests are 17 done to verify design parameters. One thing we'll be doing throughout the facility is, a little jumping 18 19 ahead to use of radioactive materials, we'll be doing direct dose measurements throughout the facility and 20 comparing them to our chilling calculations. 21 We will also be testing the operability of 22 the uninterruptable power supply system. And testing 23 24 all the I&C systems, both safety-related and nonsafety-related control systems. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	143
1	Moving into each individual irradiation
2	unit, all these tests will be done for each unit, so
3	eight times on at least at least eight times on
4	these. We'll be verifying filling and drain rates
5	conform to design specifications.
6	I've already touched on that next bullet
7	point. The driver is extensively tested for leakage
8	operability, stability, and yield, both what we've
9	already tested in an R&D environment. Also in the
10	facility, it will be tested with deuterium and do
11	deuterium prior to introduction to tritium.
12	The offgas system will be tested to
13	determine the amount of water it holds up, leak
14	tightness, sweep gas flow rates, and its iodine
15	removal capabilities. The primary close loop to the
16	cooling system will be tested to make that it can
17	automatically maintain a temperature, tested for flow
18	characteristics. And its integrity will be
19	periodically tested via sampling for radioisotopes to
20	indicate leakage between the TSV and the PCLS. Next
21	slide.
22	We'll be testing a variety of nuclear
23	physics parameters as well. One of the first and key
24	parameters is determining through measurements what
25	the optimum concentration of solution is. We have
	1

(202) 234-4433

	144
1	calculations that say what it should be and it will be
2	very close.
3	But we will start by filling the TSV with
4	a solution below what we expect to be optimum
5	concentration and fill it multiple times, leading to
6	a concentration above the expected optimum
7	concentration, and interpolate between the results to
8	find a measured optimum concentration.
9	Once that is found, either with data from
10	finding the optimum concentration or additional fills
11	with greater-than-optimum concentration solution, we
12	will create a curve of critical height versus
13	concentration, which has also been calculated, so we
14	can make more comparisons calculated and measured
15	values.
16	And with the data gathered in these first
17	two tests of optimum concentration and critical
18	height, we'll be able to determine our calculational
19	bias both in terms of uranium concentration and in
20	terms of reactivity.
21	MEMBER MARCH-LEUBA: Hey, this is Jose
22	MEMBER PETTI: Go ahead, Jose.
23	MEMBER MARCH-LEUBA: Yeah, do you guys
24	have you guys have draft of procedures or draft of
25	plans for these tests, or is this just requirements?
Į	I

(202) 234-4433

	145
1	Because what I'm thinking, this is not going to take
2	a couple of hours, this is going to take a couple of
3	months.
4	MR. DRURY: Yes, I think we've scheduled
5	about two to three months for all this work. From at
6	least the hot commissioning portion I believe is about
7	two to three months. And we do have draft procedures
8	for the top level bullet point of these three, plus
9	about another 15 or so IU-specific procedures and a
10	few other procedures throughout the plant.
11	MEMBER MARCH-LEUBA: And do they know this
12	test, you will never reach criticality, you will
13	always stay subcritical? Because
14	MR. DRURY: Correct.
15	MEMBER MARCH-LEUBA: The nominal
16	condition, I don't remember if the number is
17	proprietary, is pretty close to k effective 1. So
18	when you go 5% above optimal, you might be above 1.
19	What happens then? You don't fill the time to the
20	nominal level?
21	MR. DRURY: No, the these fills are
22	stopped once we are a I'm choosing my words
23	carefully because it's an open session. But we
24	whenever we fill the TSV, we are constantly estimating
25	what critical is through an extrapolation of the last
I	

(202) 234-4433

	146
1	two count rates. And in all cases, we always stop at
2	the same percentage below critical in terms of volume.
3	So even when we do increase the
4	concentration above what is optimum, that just reduces
5	the volume of solution in the TSV.
6	MEMBER MARCH-LEUBA: Okay.
7	MEMBER PETTI: So this Dave, I had a
8	question. I'm assuming you're going to do these
9	curves for each radiation unit because there's may
10	be small changes in volumes, you know, given
11	tolerances on the geometries and the like, so that
12	they could be difference from one TSV to another TSV.
13	MR. DRURY: Yes, I think it's understood
14	that maybe as data is gathered, as you can see in the
15	second open bullet point, I say to be filled four
16	times. Maybe as time goes on, that becomes only three
17	as we get a better idea of where we should start.
18	But at least for the first one and the
19	second one probably, we'll start quite a bit below
20	what we would consider it to be optimum. Or what
21	calculations we chose to be optimum.
22	Yeah, there is some manufacturing
23	tolerances on each TSV, and I wouldn't expect each one
24	to have the exact same concentration within our
25	ability to measure concentration.
	I

(202) 234-4433

	147
1	MEMBER BROWN: You done, Dave?
2	MEMBER PETTI: Yes.
3	MEMBER BROWN: Yeah, it's Charlie Brown.
4	Interesting as you went through all the slides and
5	everything else, you and all the testing that you
6	plan on doing, curiously you left out the ESFAS and
7	TRPS. There are a lot of things that are going to
8	trigger those particular systems in terms of a
9	shutdown, either facility-wise or IU-wise.
10	And yet there's no mention of a test of
11	how that's going to be tested to ensure that all the
12	various parameters, etc., will result in the
13	satisfactory shutdown if necessary automatically.
14	It's just a curious leave-out that it's
15	not even mentioned in your testing program, neither
16	one of the systems. And those are the overall
17	protection systems for the overall facility and the
18	IUs.
19	MR. DRURY: I said on slides 5 and 6 that
20	these are just a representative sampling of facility
21	test. That there's a lot more to our facility than
22	can be put on just a couple of slides. I was hoping
23	to capture that in that last bullet point, a
24	functionality of instrumentation, both safety-related
25	and non-safety, is tested.
ļ	I

(202) 234-4433

	148
1	Yeah, it's understood that there'll be
2	many days to weeks of testing every input and output
3	and actuation to both ESFAS and TRPS.
4	MEMBER BROWN: The reason I asked the
5	question was because if you look at what the TRPS and
6	the ESFAS are supposed to respond to, those are, you
7	know, they're not all that easy to generate how you
8	generate the inputs that result in that, the
9	simulation of those. That just seemed to a bigger
10	a larger scale test.
11	I understand testing on a representative
12	sample. It's still just it was an explanation of how
13	you were going to go about making sure that the
14	overall safety system tests were actually conducted
15	and worked, like they were. It just seemed to be a
16	loose end. That's just my observation.
17	I presume the staff will make sure
18	something's going on with those, other than just the
19	slides here. I'll ask them the same question, or they
20	can answer it if they know what it's going to be.
21	MR. BALAZIK: Well this is Mike Balazik,
22	NRC staff. I will add that, you know, even though we
23	haven't presented the tech specs with ACRS at this
24	point, you know, the ESFAS and TRPS do have
25	surveillance requirements prior to being considered
ļ	I

(202) 234-4433

	149
1	operable. So that's one thing we can point to now.
2	MEMBER BROWN: Okay. It just seems to me
3	these are if you look at all the various systems
4	that are installed, there's all the operational, how
5	do you produce the stuff, and then there's these two
6	top-level systems which are for the overall safety of
7	the facility, as well as the performance of the
8	irradiation unit.
9	So it just (audio interference.) test is
10	one thing but making sure they're operational and
11	you've got, kind of a qualifying that they actually
12	work based on inputs seems to me to be something that
13	ought to be laid on the table, in terms of a little
14	bit more attention to the detail in how that was done.
15	The surveillance testing is not
16	necessarily it's almost like an operational set of
17	testing before the facility can go into operation,
18	after they've done all the other operating system
19	tests.
20	Just an observation based on about several
21	hundred test programs I've participated in for
22	shipboard systems, and submarine systems. That's just
23	an observation I'm just giving you.
24	MR. BALAZIK: No, I understand the
25	observation, I appreciate it, Charlie.
ļ	1

(202) 234-4433

www.nealrgross.com

	150
1	MR. DRURY: Thank you for the comment.
2	Jeff, if you could move to slide nine, it's the next
3	slide.
4	So after we've done the other irradiation
5	unit tests from that previous slide we'll be looking
6	at through measurements determining a few reactivity
7	coefficients, including the worth of PCLS somehow
8	draining, the worth of the TOGS holdup the water
9	holdup within TOGS, temperature coefficients
10	reactivity, and also the void coefficient reactivity.
11	MEMBER MARCH-LEUBA: Can I ask a few
12	questions? You said PCLS reactivity worth is draining
13	it or changing the temperature, or both?
14	(Simultaneous speaking.)
15	MR. DRURY: We will be changing the
16	temperature while we find the temperature reactivity
17	coefficient
18	MEMBER MARCH-LEUBA: The temperature of
19	PCLS without affecting the temperature of the TSV,
20	which is difficulty to do, but, I mean, what do you
21	mean by PCLS reactivity?
22	MR. DRURY: The worth of the water within
23	PCLS existing or not.
24	MEMBER MARCH-LEUBA: So you will drain the
25	PCLS and see how the reactivity changes?
I	I

(202) 234-4433

	151
1	MR. DRURY: Yes.
2	MEMBER MARCH-LEUBA: And you will measure
3	reactivity by filling the tank and reaching the
4	critical height, and see basically you will drain
5	the PCLS and find out what the critical height is by
6	measurement, and that will be your reactivity worth?
7	Because I don't know how you measure
8	reactivity, very difficult to do.
9	MR. DRURY: We will measure we will
10	fill the TSV with solution, with PCLS drained, measure
11	the count rate on the startup on the source range
12	detectors, and then fill PCLS. And a comparison of
13	those two count rates will give us a reactivity worth
14	of PCLS.
15	MEMBER MARCH-LEUBA: You will have the
16	detectors calibrated by then?
17	MR. DRURY: It's a relative count rate
18	between the two. It's a source range so it's counting
19	pulses, the relative pulse wouldn't need to be
20	calibrated.
21	MEMBER MARCH-LEUBA: So reactivity is the
22	ratio of power yeah, I agree with that.
23	Okay, the TOGS holdup, are you planning to
24	do different concentrations of solution and fill it up
25	again, or run it at full power for however long it
	I

(202) 234-4433

	152
1	takes the TOGS reach equilibrium? How do you plan to
2	do that?
3	MR. DRURY: The plan is to run at two
4	different concentrations, keeping the uranium mass the
5	same. So you'd have different concentrations,
6	different volumes that would be representative of
7	MEMBER MARCH-LEUBA: Of losing water,
8	holding water in the TOGS.
9	MR. DRURY: Yes.
10	MEMBER MARCH-LEUBA: Yeah, that's probably
11	good.
12	And now, void reactivity, I saved the best
13	for last. Measuring void is really hard, especially
14	where the TSV has a 3D void distribution radial axial.
15	Have you given any thought of how you're going to do
16	that? Or is you going to do a power coefficient,
17	you're going to change the power level?
18	MR. DRURY: We have a good idea now how to
19	get a qualitative measurement of void, but I don't
20	think we have a great handle on how much void is in a
21	TSV at power. So the in the next few months or
22	year before we do this, hopefully we can come up with
23	perhaps we can come up with a more quantitative way
24	of doing it.
25	But the qualitative way is that, as we

(202) 234-4433

1 startup we expect hydrogen and oxygen not to release immediately and then, at first, hydrogen will bubble 2 3 out and then followed by oxygen. So at, least 4 qualitatively, we want to say that void coefficient is 5 negative, and I would expect to be able to do that just by seeing two close two-step change drops in 6 7 response from the wide and power range detectors. 8 MEMBER MARCH-LEUBA: So you're not really 9 interested the absolute magnitude in of the 10 coefficient but the fact that this negative is good enough for you? 11 For right now, yeah, strong 12 MR. DRURY: and negative is good enough. If we can find a way to 13 14 actually quantify it -- like you said, it might be 15 very difficult or impossible -- that would be great. 16 And it would be added to the plan -- strong and 17 negative is good. MEMBER MARCH-LEUBA: Yeah, the problem is 18 19 that the void is a 3D environment, I mean, it's not to The void at the bottom will be higher and 20 scale. there will be a radial distribution on the whole TSV, 21 it will follow the flux, right? 22 So, yeah, I'm hoping you have final --23 24 because the idea here is that you are going to verify 25 that whichever void reactivity coefficient,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

153

	154
1	quote/unquote, you use for your safety analysis, you
2	have either you have something safer than what you
3	use. And I just don't see how we're to do that I
4	can see how you can do a power reactivity coefficient,
5	total power, that's relatively easy to do
6	MS. RADEL: Jose, this is Tracy. You
7	know, we have the ability to measure the volume of
8	solution and tell the be able to measure the total
9	void in the solution. But you're right, it's
10	distributed and, you know, depending on bubble size
11	and speed in the solution, and then, you know, power
12	distribution aspects, you know, we will be comparing
13	that total void to the models that we have and
14	adjusting our models on the bubble size and speed, and
15	those parameters to match as close as possible as we
16	can to the unit as somewhat of a bias and confirmation
17	of what we're seeing in all of the modeling. But, you
18	know, we will not be able to measure void in each
19	individual region within the TSV.
20	MEMBER MARCH-LEUBA: So let me ask you, do
21	you have an actual level measurement? Not collapse
22	level, but where the froth level is, where the actual
23	boundary between the water and the gas on top is?
24	MS. RADEL: So the level measurement is

done in a standpipe, kind of on the side of the TSV --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	155
1	(Simultaneous speaking.)
2	MEMBER MARCH-LEUBA: Yeah, that's collapse
3	level, that doesn't give you the void. You will need
4	some kind of I mean, some kind of level measurement
5	that looks for the boundary between the liquid and the
6	gas, and that will elevate as you get more voids.
7	Okay, that's not relevant, that would be
8	a nice way to measure the void. But the positive
9	thing you have is that you don't have any burn up or,
10	in BWRs, your power distribution changes daily.
11	In SHINE you always have the same power
12	distribution, there is no burn up. So day one of the
13	cycle have the same flux distribution in the TSV as
14	day seven or day 30, so you only have one void
15	distribution always, and whichever it is, it is. As
16	long as you can measure a reactivity coefficient for
17	the one and only void distribution you have, that will
18	be sufficient, I think. But anyway, I'm diverging
19	here.
20	So I'm just saying, this is a difficult
21	problem. We need to you need to figure out what is
22	it that you need and don't do more than you need to
23	demonstrate that you are within the safety analysis
24	assumptions. Okay. All better now.
25	MR. DRURY: Next slide.
ļ	I

(202) 234-4433

And this is our final slide, one of the last things to do during commissioning is the initial calibration of the wide and power range neutron flux, we will do a run where power is limited by limiting neutron production from the NDAS, from the neutron driver assembly system.

7 We will do a few hour run, somewhere in 8 the four to 10 hour run, at approximately 10 percent 9 power. From that the detectors will be calibrated the 10 way they were described yesterday during the INC 11 portion of this meeting, using a isotopic method, and 12 then extrapolated to 100 percent power.

13 If it looks like we need to do another run 14 before 100 percent power, we can do an intermediate 15 power and then followed by another few hour run at 16 full power to calibrate at the power conditions.

Then we will do a few more at higher 17 concentrations and lower fill heights to investigate 18 19 if there's any sensitivity to the detector calibration factors with solution geometry, the calculations 20 currently show that there probably 21 is а small sensitivity to that and we would like to confirm that. 22 And that's all I've got for startup 23 24 testing.

MEMBER SUNSERI: This is Matt, I guess --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1

2

3

4

5

6

I'm going to make just a comment here, I suppose. But the title of this section is StartUp Plan, there really is not a startup plan has been presented. There's a list of activities here, some system level test, a real startup plan would have a definition of a controlled, systematic and progressive approach from the construction to full power operation.

It would start with prerequisite testing, 8 9 such as wiring continuity checks, system flushes, 10 instrument calibrations. Would proceed to system and component level testing, including performance tests 11 specifications the whatever technical 12 and plant allow, would 13 conditions would it specify what 14 conditions you want to test in pre-irradiation, post-15 irradiation, how the systems are (audio interference.) be, and ultimately some kind of integrated test to 16 17 show all the systems working together work together as you intend. 18

19 The purpose of that would be, as you earlier, validate 20 described would be to the construction against the design, validate the design 21 It's also an opportunity to exercise your 22 itself. operational procedures, which are newly developed and 23 24 haven't been operated. It would identify some things that maybe your design was weak on, or you had design 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	158	
1	deficiencies. And you could do this prior to either,	
2	irradiating material or introducing radioactive	
3	material to the system.	
4	So, you know, a lot of the questions you	
5	got today were simply because we don't see those	
6	connections, and it's hard to tell whether or not	
7	those systems that are listed here and in the SAR are,	
8	you know, comprehensive.	
9	And so I don't I think the staff is	
10	going to conclude that there's reasonable assurance,	
11	I probably could convince myself the same thing but	
12	without having to see the documented full-scope plan,	
13	it's really kind of hard to tell. I'll just leave it	
14	at that.	
15	CHAIRMAN BALLINGER: Yeah. This is Ron	
16	Ballinger, I sort of had the same opinion since I've	
17	been involved in at least two startups like this. But	
18	I think it's all in there, it's just not organized in	
19	a way that I'm used to seeing it. What do you think,	
20	Matt?	
21	MEMBER SUNSERI: Well certainly the SHINE	
22	facility isn't of the magnitude of a commercial power	
23	reactor. Reg Guide 1.68 describes the, you know,	
24	initial startup program for a reactor of that type.	
25	It would be a good example to look at it, at the	
ļ	I	

(202) 234-4433

	159	
1	things that you would want to, you know, ensure that	
2	you're covered, on a smaller scale, as applicable to	
3	the SHINE facility.	
4	But, I mean, you know, I suppose it's a	
5	given that whoever's building the place is going to do	
6	construction-level tests, they're going to flush the	
7	systems, they're going to do wiring continuity checks	
8	but without it being documented in a, you know	
9	what I'll say or prescribed, maybe not documented	
10	but prescribed in a plan, it's just hard to tell that	
11	all the pieces are going to add up to the total at the	
12	end.	
13	MS. KOLB: This is Catherine Kolb, the	
14	examples of testing that you gave there, so we don't	
15	have the kind of plan that's, you know, lays out every	
16	test that we're going to do and I admit that maybe	
17	we struggled a little bit on the slides to convey the	
18	scope of the startup testing, and the commissioning.	
19	But in our integrated schedule we have all	
20	the things that we mentioned, we have, you know,	

20 the things that we mentioned, we have, you know, 21 checking the continuity of wiring, system flushes, you 22 know, performing all of the technical specification 23 surveillances, individual component tests that then go 24 into integrated system tests prior to the introduction 25 of radioactive material. And then this series of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

160 1 testing for -- nuclear physics testing and other things that we discussed in a little bit more detail. 2 We also have in our integrated schedule 3 4 (audio interference.) line items to go and verify and 5 validate all of the individual operating procedures that Chris mentioned earlier, so, yeah, we do lack a 6 7 single document that lists all of these together. We're mostly relying on our project schedule to list 8 out and coordinate all of the activities that we're 9 10 going to do in order to ensure the facility will be operational. 11 Your required startup MEMBER SUNSERI: 12 report would be halfway written if you had such a plan 13 14 in place, because then all you would have to do is fill in the results when you get them done, so. 15 16 MS. KOLB: That is an excellent comment, 17 thank you for that. MEMBER PETTI: I had a guestion. I didn't 18 -- because, 19 aqain, hear а lot about it's not necessarily safety related, but the whole recovery of 20 the moly-99, etcetera, you know, you've got eight 21 units feeding, what is it, more than one tank. 22 But there's, you know -- I suppose it's hard to do much in 23 24 terms of quantifying yield, carryover issues, process variability until you get into it. Unless, you know, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

Í	161
1	someone's able to come up with a way to kind of do
2	some of that with non-radioactive Moly, you know, and
3	just do some other chemical analysis.
4	Are you guys doing, you know, thinking
5	about anything on that end? I mean, are you going to,
6	you know, gather data and do statistical process
7	control on some of this stuff so that you, you know,
8	you know where you sort of should be when something
9	looks wrong? That sort of stuff.
10	Again, it's not a safety issue, it's more
11	of a, you know, making sure you're meeting whatever
12	the production targets you have.
13	MS. KOLB: Yeah, so this is Catherine
14	again, we don't have plans to do statistical analysis
15	of that type in this initial facility startup, you
16	know, we may choose to do that as we, you know, run
17	our first year or two of operation.
18	But your comment about, you know, doing
19	some testing with cold materials, we have done that on
20	a little bit of a scale. You could use natural moly
21	and do some of the processes with non-irradiated
22	material and get, you know, some amount of information
23	from that, including, you know, varying different
24	parameters and seeing the results. It's not quite the
25	same as moly-99 but we do have a setup, using some
	1

(202) 234-4433

	162	
1	cold moly, that we're working on.	
2	MEMBER PETTI: You know, just a point	
3	that, if you, you know, are going to go there	
4	eventually it just means, collect as much data as you	
5	can now, even on things that you might not think are	
6	important but could end up being important when one	
7	looks at it, you know, as a process, if you will.	
8	That data could be quite helpful in informing your	
9	decision on how you really want to look at things, you	
10	know, down the line.	
11	MS. KOLB: Yes, that makes sense. Thank	
12	you.	
13	CHAIRMAN BALLINGER: Additional questions	
14	from members or consultants?	
15	(No audible response.)	
16	CHAIRMAN BALLINGER: Well thank you again,	
17	let's switch over to the staff, please.	
18	MR. BALAZIK: All right. Good afternoon,	
19	my name's Mike Balazik, I'm the project manager in the	
20	Office of Nuclear Reactor Regulation in the Non-Power	
21	Production and Utilization Facility Licensing branch,	
22	and I'll be presenting the NRC staff review of SHINE's	
23	startup plan, as described in FSAR chapter 12, section	
24	11. Next slide, please.	
25	Okay, big picture here, 5034 describes the	
ļ	1	

(202) 234-4433

1 information required to be in a safety analysis report. Section B6, item three, talks about plans for 2 3 pre-operational testing and initial operations, a 4 couple other regulations that apply, and these, you 5 know, provide reasonable assurance that the activities authorized by the operating license can be conducted 6 7 without endangering the health and safety of the 8 public, and that the activities will be conducted in 9 compliance with the regulation and not be inimical to 10 the common defense and security. So 5040 and 5057 are some of the standard 11 regulations we've been applying throughout the review. 12 The 5034-B6 is specifically tied to the startup plan. 13 14 Next slide, please. All right, so guidance, same guidance that 15 you've seen in some of the other reviews, NUREG 1537 16 17 part one and part two, and also the interim staff quidance for licensing radioisotope production 18 19 facilities, and aqueous homogeneous reactors. Next slide, please. 20 Okay, I just wanted to first talk about 21 the summary of the application in section 12.11, SHINE 22 did identify at a high level, the tested measurements 23 24 to verify safety-significant facility parameters for handling special nuclear material, and also validating 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

163

164 1 operating characteristics of the facility. While didn't receive 2 we acceptance 3 criteria within the startup plan, you know, the NRC 4 staff acknowledges that specific test plans will 5 contain this acceptance criteria which will be developed by the design information in the FSAR. 6 7 Also in the tech specs, SHINE is required 8 to submit the startup report which contains all of the 9 startup information, this is required by tech spec 5.84 which requires, like I said, the submission of 10 the information within six months after the completion 11 of the startup activities. 12 So continuing on with the summary 13 Okav. 14 of the application, SHINE identified, again, at a high 15 level, system testing for the facility and the IUs, they identified calibrations 16 individual of 17 equipment, system flow, fill, and drain rate, and leak rates to verify boundary integrity. 18 19 They also identified measuring certain nuclear parameters, such as uranium concentration, 20 critical height, temperature and void coefficients, 21 the TSV off-gas system and the primary closed loop 22 system reactivity worth, determining 23 cooling а 24 neutronic bias, and also determining flux distribution, and also to be looking at radiation 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	165	
1	measurements outside the biological shield.	
2	One thing I do want to add here is that,	
3	I did go back and look at some of the startup testing	
4	programs we've reviewed in the past, specifically I	
5	looked at some of the HEU to LEU conversions that we	
6	did for the TRIGA reactors. For those SARs, the	
7	licensees did submit a startup plan which was at a	
8	high level.	
9	I'll say that some of them did contain	
10	some acceptance criteria but it was, again, kind of	
11	qualitative. For example, I saw in there where, you	
12	know, they wanted to verify the temperature	
13	coefficient of reactivity was negative, or that they	
14	met the shutdown margin in their tech specs, or that	
15	their pulsing versus fuel temperature has a linear	
16	response.	
17	But I will say that, with those startup	
18	reports that were submitted this was probably back	
19	in the mid to late 2000s I'll say that SHINE's	
20	startup plan is on par with the information that was	
21	provided in those startup plans	
22	MEMBER SUNSERI: This is Matt again,	
23	wouldn't you agree, though, that SHINE is	
24	significantly more sophisticated than a TRIGA reactor?	
25	MR. BALAZIK: Yes, sir. I do agree with	
	I	

(202) 234-4433

that.

1

2

3

4

5

6

7

8

9

We've had quite a lot of operational experience with the TRIGA reactor, SHINE is a first of a kind, and, you know, at this (audio interference.) we'll have to move some of these activities to the oversights out of the house and inspect the testing that's going on with SHINE. I'll actually talk about that on the next slide here.

MEMBER SUNSERI: Okay.

MR. BALAZIK: So just evaluations and conclusions, you know, SHINE has identified plans to validate safety-significant parameters. They do plan on developing acceptance criteria based on FSAR design information to support their startup test procedures, they'll submit the information within six months of completion of startup activities.

And I'll conclude that the implementation 17 of this startup plan -- again, it's a high level plan, 18 19 I kind of call it a plan for, to support the test procedure, it provides reasonable assurance that the 20 facility can operate as described in the FSAR. And I 21 also want to add that the NRC will conduct inspection 22 activities to confirm the readiness of the startup 23 24 test program. Next slide, please.

So I do want to say that the Licensing

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

branch and the RTR Oversight branch are working closely together, we are developing a SHINE facility specific inspection plan that will include the SHINE startup test program. During those inspections we can verify the acceptance criteria for all the different tests and parameter measurements that SHINE discussed earlier.

Our main procedure that we plan on using 8 9 69002, which is inspections of operational is readiness during construction of non-power production 10 and utilization facilities. Within that inspection 11 procedure it talks about usinq other existing 12 operational inspection procedures as quidance. 13

You know, this inspection procedure is technology-neutral, it is written at a high level but one inspection procedure that we can use information from is inspection procedure 72401, this talks about part 52, Inspection of StartUp Test Programs.

19 Within that procedure it talks about, you know, reviewing the acceptance criteria, you know, if 20 the acceptance criteria wasn't met, you know, what 21 corrective actions that the licensee 22 were the implemented. It talks about lots of other inspection 23 24 quidance related to startup activities.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

That is my presentation, are there any

(202) 234-4433

25

1

2

3

4

5

6

7

	168
1	questions that I can answer?
2	MEMBER SUNSERI: Well this is Matt again,
3	and I'm just one member as you know, and don't speak
4	for the ACRS as a whole on this thing. I would give
5	a lot of weight to this inspection program for
6	validating the rigorousness rigor? Whatever the
7	strength of their startup test program.
8	Because, as you mentioned, this is a first
9	of a kind facility, it's got a unique operating
10	requirement, as that it's going to be operating close
11	to but not at critical. So, you know, you'd want to
12	make sure that the plant is going to operate that way,
13	and the only way the best way to do that is during
14	the test program, to make sure that its been
15	methodically tested, staged, incrementally progressed
16	to the point of which you assured that it's going to
17	operate below critical and not at or above, which is
18	a safety limit, I think, for the unit, so.
19	The test program's very important and it
20	just doesn't seem like it's gotten the attention that
21	I would've expected it should've gotten for a
22	licensing review. That's my opinion.
23	MR. BALAZIK: Yes, sir. No, one thing we
24	have identified when we're in developing these
25	inspection program is that we're going to need a lot
l	I

(202) 234-4433

more technical expertise to support the inspections. I mean, for a TRIGA reactor you can have one person knowledgeable about the design of that facility, but for SHINE, from a MC&A, from a criticality standpoint, you know, we're going to need those experts, those additional experts to support the inspections of this facility. And I'll also add that we have an ongoing construction inspection program, they're verifying the as-built facility, as-built now. It meets the information that's in the FSAR, so we're doing that and that's one place where we can also look at the digital INC that Mr. Brown was mentioning earlier. MEMBER PETTI: Mike, could you -- this is Dave, could just qo back a slide? MR. BALAZIK: Yep, sure. MEMBER PETTI: Yeah, so this last bullet, that's a hold point, they can't go forward until you give them an authorization or is it just something done in parallel?

Can you clarify what you 21 MR. BALAZIK: mean by hold point? 22 MEMBER PETTI: They can't start a startup 23 24 program until you do the inspection activities and --

> MR. BALAZIK: Yes. **NEAL R. GROSS**

COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

25

	170
1	MEMBER PETTI: Okay.
2	MR. BALAZIK: The pre-operational
3	readiness inspection supports the 5057 finding that
4	the facility is substantially complete.
5	MEMBER PETTI: Okay. I just, you know
6	I mean, I want to echo Matt's comments. The DOE
7	facility is the DOE complex is replete with
8	facilities that didn't do enough pre-op work and just,
9	you know, ended up doing it when they were, quote, in
10	operation. And of course the availability goes to
11	hell, I mean, all this stuff happens this is really
12	important stuff, and I'm sure SHINE appreciates. When
13	they're ready they want to really be ready, and so the
14	more you can do here, you're just, you know, saving
15	yourself headaches down the line.
16	MR. BALAZIK: And one thing I'd like to
17	add is that, you know, when SHINE informs the NRC that
18	they're ready for certain inspections, we want to get
19	those knocked out early so that this entire, I'll say,
20	inspection program for pre-operational readiness can
21	be done efficiently.
22	Any other questions?
23	MEMBER SUNSERI: This is Matt, I don't
24	have any. Thanks for listening to us.
25	MR. BALAZIK: Thank you.
I	

(202) 234-4433

	171	
1	MEMBER SUNSERI: Ron, are you there? I	
2	think that's it for us.	
3	CHAIRMAN BALLINGER: Yeah. No, I boy	
4	oh boy, I pulled a you know what and didn't unmute.	
5	Anyway, with this concludes the last presentation, and	
6	so, absent any questions from members or consultants,	
7	we need to go out for public comment.	
8	So I might would say that, if there are	
9	members of the public that would like to make a	
10	comment please unmute yourself, and state your name	
11	and make your comment.	
12	(No audible response.)	
13	CHAIRMAN BALLINGER: Well, not hearing	
14	any, I think there are no public comments. Now we	
15	need to have the discussion I think I know the	
16	answer, but we had scheduled closed sessions after	
17	this, if needed, and my question to the members is	
18	or anybody else involved, actually whether you	
19	think we need a closed session?	
20	MEMBER BROWN: None from me, I don't need	
21		
22	(Simultaneous speaking.)	
23	MEMBER SUNSERI: This is Matt, I don't see	
24	the need for any.	
25	CHAIRMAN BALLINGER: Okay, so I'm going to	
1		

	172
1	conclude that we don't need a closed session. And so
2	I would like to be the first to thank the staff and
3	the SHINE folks for presentations, they were, to my
4	mind, complete. And I think we got most of our
5	questions or all of our questions answered.
6	So are there any final excuse me, a
7	train is about to go by. No, you didn't hear it
8	are there any final questions from members or
9	consultants?
10	(No audible response.)
11	CHAIRMAN BALLINGER: Okay. And once again
12	I'd like to thank the staff and the SHINE folks for
13	their presentations. And I think we are finished for
14	the day, so thanks again.
15	(Whereupon, the above-entitled matter went
16	off the record at 2:45 p.m.)
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	1

SHINE

Operator Training and Requalification BRENT WALLER, TRAINING MANAGER

Initial Training Program

- Candidate Selection
 - SHINE follows the guidance of ANSI/ANS-15.4-2016, "Selection And Training Of Personnel For Research Reactors," for the selection of licensed operator candidates
 - Medical screening are conduction per the guidance of ANSI/ANS-15.4-2016
- Candidate Training
 - o Combination of classroom, on-the-job, and computer-based training
 - Phases:
 - Fundamentals
 - Radiation Protection and Administrative Requirements
 - Systems
 - Plant Evolutions (including normal, abnormal, and emergency procedures)
 - Exam Preparation
 - Supervisory Training

Initial Training Program

- Examinations
 - Written examination passing criteria is 70%
 - Remediation conducted and reexaminations administered for scores < 70%
 - On-the-job evaluations used for performance tasks
 - Oral exams used as-needed
- Program Content
 - o 10 CFR Part 55 requirements, as applicable
 - o ANSI/ANS-15.4-2016 guidance
 - Additional topics identified in Chapter 12.10 of the FSAR
 - Additional topics as determined by a systematic approach to training

Initial Training Program

- Application
 - $\circ~$ NRC Form 398 used for application
 - NRC Form 396 used for medical
 - Internal SHINE review of candidates conducted prior to sending to an NRC exam
- Program Review
 - Performance evaluation after training as part of the systematic approach to training process
 - Assessed by the Review and Audit Committee every three years

Continuing Training Program

- Starts within three months of receiving operator licenses
- Conforms to requirements of 10 CFR 55.59(c) and follows guidance of ANSI/ANS-15.4-2016
- Biennial Requalification Cycle
 - o 24 months long
 - Divided into two, 12-month long annual cycles
 - The next cycle starts immediately after the previous
- Medical certifications conducted per the guidance of ANSI/ANS-15.4-2016
- Changes in operator license status per 10 CFR 50.74 communicated to NRC within 30 days

Continuing Training Program

Continuing Training Program Requirements	Periodicity
Facility Design, Procedure, and License Changes	As Applicable
Training Lectures	Quarterly
Documentation of Proficiency	Quarterly
Abnormal and Emergency Procedure Reviews	Once per Annual Cycle
Reactivity Manipulations Completion	Once per Annual Cycle
Operating Test	Once per Annual Cycle
Written Exam	Once per Biennial Cycle
Medical Exam	Once every 2 years

Continuing Training Program

- Program Content
 - o 10 CFR Part 55 requirements, as applicable
 - Facility modifications
 - Procedure changes
 - Topics as identified by the systematic approach to training
 - Relevant industry operating experience
 - Identified operator weaknesses
- Program Review
 - o Assessments per the systematic approach to training
 - Assessed by the Review and Audit Committee every 24 months

Advisory Committee on Reactor Safeguards

SHINE Medical Technologies, LLC Operating License Application

Chapter 12.10 - Operator Training and Requalification

Travis Tate Branch Chief Office of Nuclear Reactor Regulation

July 20, 2022

Operator Requalification

- Operator Requalification is intended to ensure that the facility will be operated by competent operators
- SHINE will be issued a Part 50 facility operating license
- Paragraph (b)(8) of 10 CFR 50.34 applies
- Applicant is required to submit a description and plans for implementation of an operator requalification program

Regulatory Basis

- Regulatory Requirements
 - 10 CFR 50.34, "Contents of applications; technical information"
 - 10 CFR 50.54, "Conditions of licenses"
 - 10 CFR 55.59, "Requalification"

Acceptance Criteria

- Chapter 12.10, "Operator Training and Requalification," of NUREG-1537, Part 1, "Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors: Format and Content," (ADAMS Accession No. ML042430055)
- Chapter 12.10, "Operator Training and Requalification," of NUREG-1537, Part 2, "Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors, Standard Review Plan and Acceptance Criteria." (ADAMS Accession No. ML042430048)

Review Areas and Technical Evaluation

- Requalification Program Elements
 - Requalification Schedule
 - Pre-planned Lectures
 - On-the-job Training
 - Operator Evaluations
 - Recordkeeping

Requalification Program

- Requalification program is described in the SHINE Licensed Operator Continuing Training Program
- Regulations for requalification are found in 10 CFR 55.59
- SHINE licensed operator continuing training program includes:
 - Two-year (biennial) requalification program cycle
 - Pre-planned lectures based on topics related to the SHINE facility
 - On-the-job training applicable to the SHINE facility design: reactivity manipulations, facility procedures, and facility changes
 - Evaluations of licensed operators: annual operating tests, comprehensive written examinations, systematic observations, simulation of abnormal or emergency conditions, and provisions for accelerated requalification
 - Recordkeeping and retention periods for program documentation

Requalification Program (cont'd)

- SHINE licensed operator continuing training program also includes:
 - Definitions specific or unique to the SHINE facility
 - Additional information specific to license conditions for Part 55 licensed operators: biennial medical examinations, maintaining a license in active status, fitness for duty, changes in license operator status
 - Periodic requalification program audit

Evaluation Findings and Conclusions

- SHINE's licensed operator continued training program is in accordance with the applicable regulations for requalification contained in 10 CFR 55.59, meets acceptance criteria in NUREG-1537, and consistent with the guidance contained in industry standard ANSI/ANS-15.4-2016
- The licensed operator continued training program provides reasonable assurance that requalification for licensed operators and licensed senior operators will be carried out in a manner that assures knowledge, skills, and proficiency will be maintained and is sufficient for the issuance of an operating license

Operator Initial Training

- Operator Initial Training is intended to ensure that applicants will be prepared for licensure under 10 CFR Part 55 and the facility will be operated by competent operators
- SHINE will be issued a Part 50 facility operating license
- Section 50.120 of 10 CFR Part 50 does not apply
- Applicant committed to follow industry guidance in ANSI/ANS-15.4-2016, "Selection and Training of Personnel for Research Reactors"

Training Program

- Training program is described in the SHINE Licensed Operator Initial Training Program
- SHINE licensed operator initial training program includes:
 - Commitment that trainees will only operate controls under direct supervision of a licensed operator
 - Reactivity manipulation plans for licensed operator candidates
 - Plans to account for previous experience and training
 - Training program scope and topics for operators
 - Training program scope and topics for senior operators
 - Medical certification and fitness for duty
 - Licensed operator candidate selection and qualifications
 - Evaluations of licensed operator candidates
 - Periodic program review
 - Recordkeeping

Evaluation Findings and Conclusions

• SHINE's licensed operator continued training program is consistent with the guidance contained in industry standard ANSI/ANS-15.4-2016

SHINE

Human Factors Engineering KRIS RUETZ, OPERATIONS MANAGER

Outline

- Human Factors Engineering (HFE) Overview
- HFE Design Guidelines
- HFE Design Checklist
- Alarm Hierarchy
- Equipment Labeling
- Operating Procedure Validation

Human Factors Engineering Overview

- SHINE incorporates HFE principles into the design of the facility control room, display screens, and operator interfaces
- SHINE Operations works with SHINE Engineering to ensure human factors are considered throughout the design process
- The SHINE HFE program describes evaluating HFE as part of the following phases:
 - \circ Initial design
 - Design implementation (confirming as-built design)
 - Future modifications
- HFE evaluations are performed using a checklist that compares design to recommended design guidelines
- HFE evaluations are maintained as records

Human Factors Engineering Design Guidelines

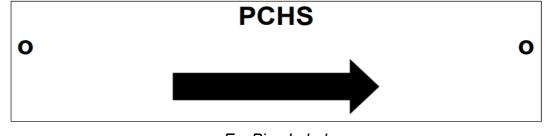
- HFE design guidelines are recommendations, not requirements
- Four Categories of design guidelines:
 - Instrumentation and control (I&C) panel layout
 - Main control room layout
 - Human-System Interface (HSI) design criteria
 - Alarm system criteria
- Design guidelines are provided to vendors developing the SHINE HSIs
- Design guidelines are derived from relevant industry standards, including NUREG-0700, Revision 2, "Human-System Interface Design Review Guidelines"

Human Factors Engineering Design Checklist

- HFE design checklists are used to compare design to the recommended design guidelines
 - Checklists are filled out by the Operations department
 - Checklists are used during initial design, after installation, and as part of equipment modifications
 - Checklists are kept as records
 - Issues identified that require corrective action are tracked via the SHINE Issues Management process (i.e., the SHINE corrective action program)

Alarm Hierarchy

- Most facility alarms will be received in the control room via the process integrated control system (PICS)
- The PICS displays alarms on a consolidated alarm page on the control room HSIs
- "Stacklights" in the control room alert operators to current facility alarm status
 - Provides operators with high-level facility alarm status
 - Each irradiation unit (IU) has its own alarm light
 - Additional alarm light for common alarms (non-IU specific alarms)
- Categories of alarms:
 - High (red light and audible alarm)
 - Medium (yellow light)
 - Low (blue light)
 - Information (no stacklight indication, PICS alarm page only)



Equipment Labeling

- Equipment and pipe labels are included within the scope of the HFE program
- Equipment labels include a descriptive name and equipment designator (unique identifier)
 Equipment labeling includes components such as valves, pumps, and tanks
- Pipe labels include the system name and arrows showing direction of flow
- During the facility construction and commissioning process, equipment and pipe label verification is performed as part of turning over systems to Operations

Ex. Equipment Label

Ex. Pipe Label

Operating Procedure Validation

- Operating procedures (including abnormal and emergency procedures) are validated prior to being issued for use
 - Process for procedure validation varies based on type and content of procedure
 - Most validations will consist of step-by-step facility walkthrough of procedure after related equipment has been installed
 - Alternate methods used for validation may be tabletop discussion
- Procedure validation ensures that operators can physically perform procedures and provides a diverse method of checking for necessary equipment labels

Advisory Committee on Reactor Safeguards

SHINE Medical Technologies, LLC Operating License Application

Chapter 7.4.9 - Human Factors Engineering (HFE)

Jesse Seymour HFE Technical Reviewer Office of Nuclear Reactor Regulation

July 19, 2022

Human Factors Engineering

- The NRC HFE staff evaluates applications for operating licenses
- These reviews support public health and safety by verifying that the applicants' HFE programs incorporate practices and guidelines that are acceptable to the NRC staff
- The NRC staff reviewed the HFE-related portions of SHINE FSAR Chapters 3, 7, 12, and 13 to assess the sufficiency of the HFE-related design aspects and programmatic considerations for the SHINE facility

Regulatory Basis

- 50.34(a)(3) requires the PSAR to include PDC
 - Design Criterion 6 states "a control room is provided from which actions can be taken to operate the irradiation units safely under normal conditions and to perform required operator actions under postulated accident conditions"
- 50.34(b) requires the FSAR to include a description and analysis of SSCs and the evaluations required to show that safety functions will be accomplished
- 50.57(a)(3) requires reasonable assurance that activities authorized by operating licenses will not endanger the health and safety of the public

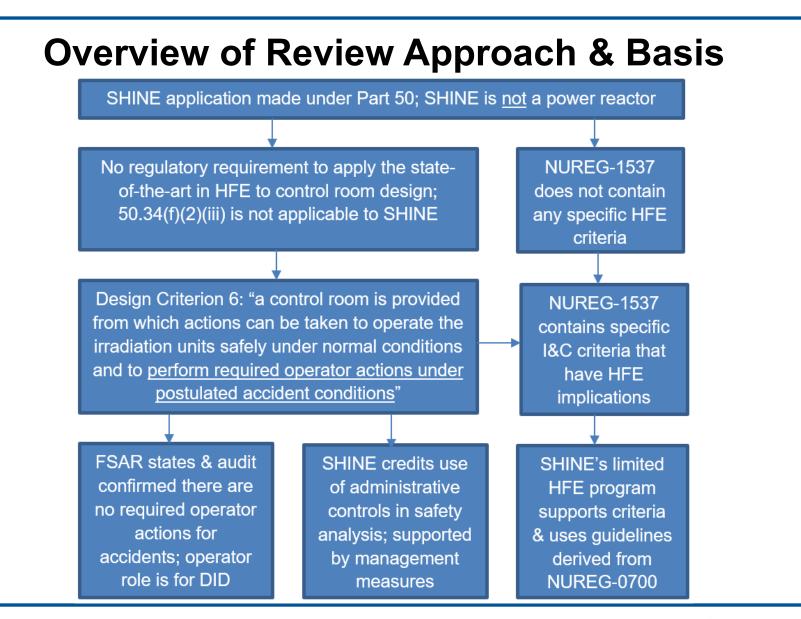
Acceptance Criteria

- NUREG-1537 and its associated ISG provide primary source of review guidance as the relevant SRP
- There are <u>no</u> specific HFE criteria in NUREG-1537
- Certain I&C review criteria from NUREG-1537 section
 7.6 have HFE-related aspects
 - \circ These criteria cover the following areas:
 - outputs and display devices observability
 - accessibility/understandability of important controls and displays
 - control console annunciators and alarms

Acceptance Criteria (continued)

- Administrative controls and HFE-related management measures supporting their reliability were evaluated using applicable criteria of the NUREG-1537 ISG
- NUREG-1520, was also consulted for general guidance regarding appropriate areas for evaluation in the review of SHINE's administrative controls
 - Procedure management
 - Procedure verification & validation
 - Training of personnel
 - Personnel qualifications

Regulatory Audit


- Used to scope review and understand operator role
- General topical areas covered included:
 - HFE program & control room design
 - operator role in facility safety & DID
 - o operations staffing & training programs
 - o administrative controls
- Reviewed documents included:
 - SHINE's Safety Analysis Summary Report
 - HFE program, style guide, & design checklist,
 - Operations Procedure Development
 - Licensed Operator Initial & Continuing Training Programs

Key Insights from Audit

- Role of operators with respect to safety at the SHINE facility is associated with:
 - DID actions (i.e., manual TRPS & ESFAS)
 - Implementation of administrative controls (note: there are no post-event mitigation actions)
 - This information was applied to scope the review used to make the regulatory findings
- HFE Program establishes design guidelines and implements a checklist for verifying HFE attributes during equipment design and following equipment installation; guidelines partly based on NUREG-0700

Technical Evaluation: Safety Displays (NUREG-1537 Section 7.6)

The staff evaluated whether displays showing parameters related to facility safety would be readily observable by the operator while positioned at the SHINE facility control room operator workstations and the main control board

- Focus placed on workstations for PICS and NDAS, plus main control board TRPS and ESFAS indications
- Main control board accessibility & visibility considered
- Design of control room, display screens, and operator interfaces incorporates HFE principles
 - HFE guidelines include those for observability, content, readability, and arrangement of displays

Technical Evaluation: Controls and Displays (NUREG-1537 Section 7.6)

The staff evaluated whether other controls and displays of important parameters (including reactivity) are readily accessible and understandable to the operator.

- Evaluation focused on two sets of controls & displays:
 - Controls & displays unrelated to manual protection
 - Controls & displays for manual protective actions
- The displays used at operator workstations, supervisor workstation, and main control board are digital displays
- Display & interface design incorporates HFE principles
- Both TRPS and ESFAS indications and manual actuation controls are located at main control board

Technical Evaluation: Alarms (NUREG-1537 Section 7.6)

The staff evaluated whether annunciators and alarms on the control console clearly show the status of systems (e.g., interlocks, TRPS & ESFAS initiation, and radiation)

- Alarms are integrated into the PICS display systems
- Stacklights produce audible alarm sounds and are programmed to represent both IU and non-IU alarms
- HFE design guidelines address the design of alarms
- Control room also contains a criticality accident alarm system and a panel for monitoring facility fire alarms

Technical Evaluation: Administrative Controls (NUREG-1537 ISG & NUREG-1520)

The staff evaluated whether the ability of SHINE operators to reliably implement administrative controls was adequately supported by SHINE's program for managing procedures

- SACs are incorporated into facility procedures
- Operating procedures are reviewed by management and controlled to ensure technical correctness
- Procedures are verified and validated prior to issuance for use within the facility

Technical Evaluation: Administrative Controls (NUREG-1537 ISG & NUREG-1520)

The staff evaluated whether the ability of SHINE operators to reliably implement administrative controls was supported by the training & qualification program

- Licensed operator training program contains topics on criticality control features and management measures
- Training is included within the areas of design features, reactivity, control systems, and uranium handling
- The operator training program utilizes a systems approach to training

Evaluation Findings and Conclusions

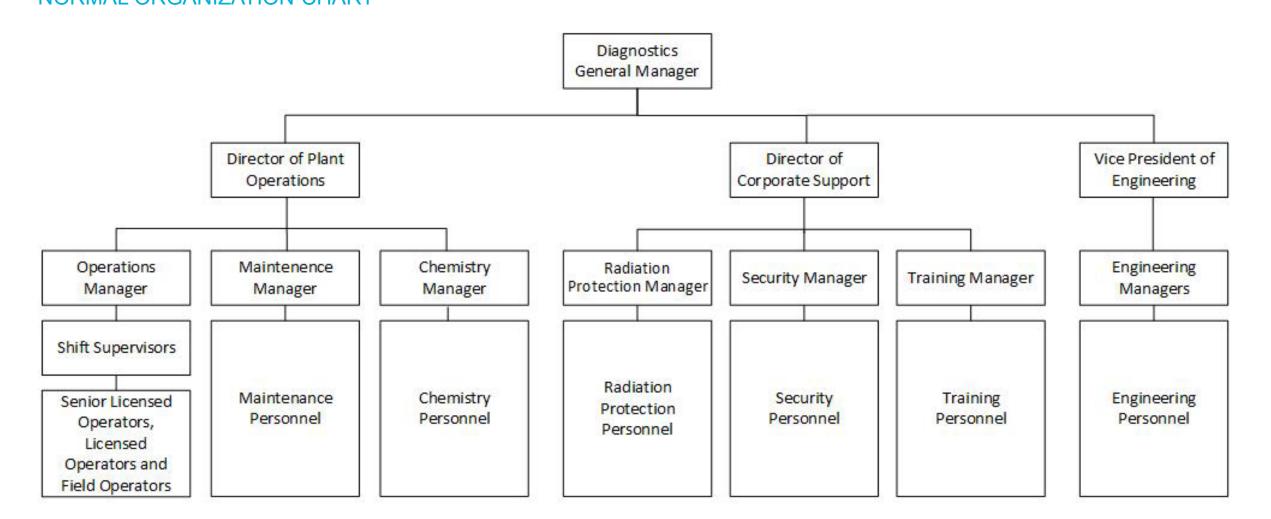
- HFE-related design and programmatic aspects for SHINE meet the HFE-related aspects of Criterion 6 within the specific context of the operator safety role
- HFE-related design aspects of control console and display instruments are acceptable because they:
 meet the relevant NUREG-1537 criteria, and
 - are generally consistent with NUREG-0700
- HSI supports the manual initiation of safety systems
- Programmatic considerations are acceptable for:
 - procedures management
 - operator training & qualification

Note: backup slide(s) follow this point

Regulatory Basis: Additional Information

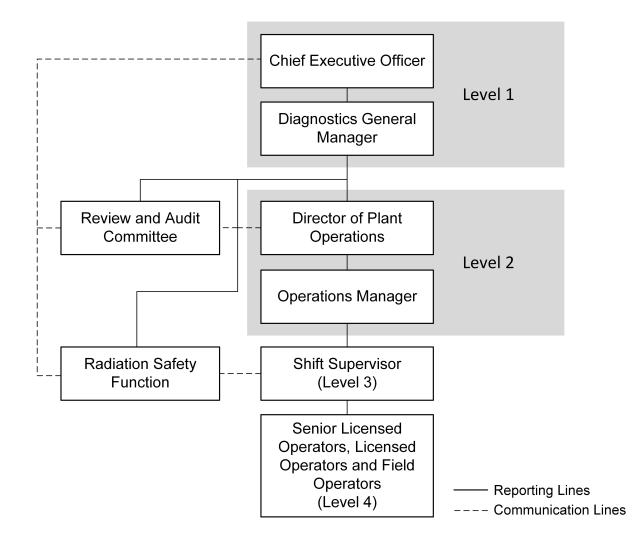
- SHINE is defined as a utilization facility under 50.2
 - 50.34(f) only applies to those applications either pending in 1982 or made under Part 52
 - 50.34(f)(2)(iii) for a control room design reflecting state-of-the-art HFE <u>not</u> applicable
 - 50.55a(h)(3) requires meeting the requirements for safety systems in IEEE Std. 603–1991; section 5.14 addresses HFE via IEEE 1023-1988
 - However, this applies <u>only</u> to power reactors
- <u>Regulatory basis does **not** require an HFE program</u>

SHINE


Conduct of Operations CATHERINE KOLB, SENIOR DIRECTOR OF PLANT OPERATIONS

Outline

- Organization
- Review and Audit Activities
- Procedures
- Required Actions and Reports
- Records



Organization NORMAL ORGANIZATION CHART

Organization

TECHNICAL SPECIFICATION POSITIONS

Organization

MINIMUM STAFFING (PRESENT AT THE FACILITY)

- Shift Supervisor
 - Fills Technical Specification requirement for "Senior Licensed Operator"
 - o Fills Emergency Plan requirement for initial "Emergency Director"
- Accelerator Operator
 - Must be present in the control room
 - o Fills Technical Specification requirement for "Licensed Operator or second Senior Licensed Operator"
- Field Operator/Additional Accelerator Operator/Other Designated Individual (#1)
 - o Fills Technical Specification requirement for "additional designated person"
- Field Operator/Additional Accelerator Operator/Other Designated Individual (#2)
 - o Fills Emergency Plan requirement for initial "Emergency Communicator"
- Radiation Protection Individual/Other Designated Individual (#3)
 - Fills Emergency Plan requirement for initial "Radiation Safety Coordinator"
- Security Personnel
 - As required by the Physical Security Plan

Organization OPERATIONS CONDUCT

- Safety Culture
- Operational Authority
 - o Only authorized individuals manipulate controls or are present in control areas
 - $\circ~$ Turnover processes are defined
 - $\circ~$ Configuration control of the facility is maintained
- Conduct and Professionalism
 - Performance monitoring of licensed personnel is conducted
 - Ancillary duties that may interfere with abilities to safety and effectively operate the facility are not assigned
- Training and Continuous Improvement
- Procedures and Operator Aids
 - Procedure adherence is expected
 - Operator aids shall be accurate and controlled, and are not used as a substitute for procedures

Review and Audit Activities

- Review and Audit Committee Composition
 - Minimum Membership
 - Chair (Diagnostics General Manager or Designee)
 - Engineering
 - Operations
 - Radiation Protection
 - May include non-SHINE employees where required expertise is not available from SHINE employees
 - Facility operations personnel (reporting to the Director of Plant Operations) cannot constitute a majority

Review and Audit Activities

- Review Function
 - 10 CFR 50.59 safety reviews;
 - New procedures and major revisions having safety significance;
 - Proposed changes in facility equipment or systems having safety significance;
 - Proposed changes in, or violations of, technical specifications or License;
 - Violations of internal procedures or instructions having safety significance;
 - Operating abnormalities having safety significance;
 - Reportable occurrences; and
 - Audit/Assessment reports
- Audit Function
 - Facility operations for conformance to Technical Specifications;
 - Training and requalification program for operating staff;
 - Results of corrective actions affecting nuclear safety; and
 - Facility programs and plans

Procedures

- Procedures provide direction for normal, abnormal and emergency situations
- Prepared, reviewed, approved, verified, and validated in accordance with document control processes and the Quality Assurance Program Description (QAPD)
- Procedure topics:
 - \circ startup, operation, and shutdown of the irradiation unit;
 - o target solution fill, draining, and movement within the SHINE Facility;
 - o maintenance of major components of systems that may have an effect on nuclear safety;
 - o surveillance checks, calibrations and inspections required by the technical specifications;
 - personnel radiation protection;
 - administrative controls for operations and maintenance and for the conduct of irradiations that could affect nuclear safety;
 - o implementation of required plans (e.g., emergency, security); and
 - o use, receipt, and transfer of byproduct material

Required Actions and Reports

- Safety Limits
 - Pressure and temperature for the primary system boundary (irradiation units)
 - Pressure for process tanks containing irradiated uranyl sulfate (radioisotope production facility)
- Safety Limit Violation Required Actions
 - SHINE Facility operations shall be shut down immediately and operation shall not be resumed until authorized by the NRC
 - Reported to Level 2 management and the NRC
 - Safety limit violation report prepared, reviewed by the Review and Audit Committee, and submitted to the NRC

Required Actions and Reports

- Events Requiring a Special Report
 - Release of radioactivity from the site above allowed limits;
 - Operations with actual Safety System settings for required systems less conservative than the limiting safety system settings;
 - Operation in violation of limiting conditions for operation (LCO) established in Section 3, unless prompt remedial action is taken as permitted in accordance with the LCO actions;
 - A Safety System component malfunction that renders or could render the Safety System incapable of performing its intended safety function;
 - Abnormal and significant degradation of the primary system boundary;
 - Abnormal and significant degradation in the primary closed loop cooling system and the light water pool; and
 - Observed inadequacy in the implementation of administrative or procedural controls such that the inadequacy causes or could have caused the existence or development of an unsafe condition with regard to operations
- Actions for Occurrence of Events Requiring a Special Report
 - The affected processes or areas of the facility shall be returned to normal conditions or shut down
 - o If shut down, operation shall not be resumed unless authorized by Level 2 management
 - o Reported to Level 2 management and NRC
 - Occurrence reviewed by the Review and Audit Committee

Required Actions and Reports

- Operating Reports
 - Operating experience for each irradiation unit
 - Unscheduled shutdowns and corrective actions
 - Tabulations of major changes in the facility and procedures allowed under 10 CFR 50.59
 - o Summary of radioactive effluents released
 - Summary of environmental surveys
 - Individual monitoring results required by 10 CFR 20.1502
- Other Special Reports
 - Permanent changes involving Level 1 or Level 2 management
 - Significant changes in the transient or accident analysis described in the FSAR
- Additional Event Reporting
 - 10 CFR 70.50 and 10 CFR 70.52, and SHINE-specific reporting requirements that meet the intent of Appendix A to 10 CFR Part 70
- Startup Report

Records

- Lifetime Records
 - o Gaseous and liquid radioactive effluents released to the environs;
 - o Offsite environment-monitoring surveys required by the technical specifications;
 - Radiation exposure for all monitored personnel;
 - Drawings of the SHINE Facility; and
 - Records of reportable occurrences involving violations of safety limits, limiting safety system settings, and limiting conditions for operation
- Five Year Records
 - Normal SHINE Facility operation;
 - Principal maintenance operations;
 - Reportable occurrences;
 - Surveillance activities required by the technical specifications;
 - Facility radiation and contamination surveys where required by applicable regulations;
 - o Radioactive material inventories, receipts, and shipments;
 - Approved changes in operating procedures; and
 - o Records of meeting and audit reports of the review and audit committee
- One certification cycle
 - Records of retraining and requalification of licensed operations personnel

Advisory Committee on Reactor Safeguards

SHINE Medical Technologies, LLC Operating License Application

Chapter 12 – Conduct of Operations

Steven Lynch Chief, Advanced Reactor Policy Branch Office of Nuclear Reactor Regulation

July 20, 2022

Scope of Review

- Section 12.1, "Organization"
 - Describes various levels of organization, including reporting and communication lines
- Section 12.2, "Review and Audit Activities"
 - Describes composition and qualifications; charter and rules; review functions
- Section 12.3, "Procedures"
 - Describes review and approval process for procedures, including changes to procedures
- Section 12.4, "Required Actions"
 - Describes the required actions, as provided in the technical specifications, to be taken
- Section 12.5, "Reports"
 - Provides the content and timing of submission of annual operating and special reports
- Section 12.6, "Records"
 - Describes the scope of record management program from identification to disposition

Regulatory and Guidance Framework Used

- The applicable regulatory requirements for the evaluation of SHINE's conduct of operations are as follows:
 - 10 CFR 50.34, "Contents of applications; technical information," paragraph (b)(6).
 - 10 CFR 50.40, "Common standards."
 - 10 CFR 50.54, "Conditions of licenses," paragraphs (i), (j), (k), (l), and (m)(1).
 - 10 CFR 50.57, "Issuance of operating license."
 - 10 CFR Part 20, "Standards for Protection Against Radiation."
- NUREG-1537, Interim Staff Guidance Augmenting (ISG) NUREG-1537, Part 2, "Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors: Standard Review Plan and Acceptance Criteria."
- ANSI/ANS 15.1-2007, "The Development of Technical Specifications for Research Reactors"
- ANSI/ANS 15.4-2016, "Selection and Training of Personnel for Research Reactors."

Evaluation of Final Safety Analysis Report

- SHINE generally followed the guidance in ANSI/ANS 15.1-2007 and ANSI/ANS 15.4-2016, which is consistent with the information needs described in the ISG Augmenting NUREG-1537 to satisfy applicable regulatory requirements
- SHINE took some exceptions were taken to the guidance documents to account for SHINE not being a research or test reactor; having irradiation units containing an aqueous target solution; and having a production facility

Summary of Exceptions

- In Section 12.2.3, "Review Function, the NRC staff finds it acceptable that SHINE has excluded experiments from its list of items to be reviewed since it will not be conducting experiments at its facility.
- In Section 12.2.4, "Audit Function," the NRC staff finds it acceptable that SHINE has included its quality assurance program description, physical security plan, and nuclear criticality safety program within the scope of items to be audited as this goes beyond the minimum provided in ANSI/ANS 15.1-2007.
- In Section 12.3, Because SHINE is not a reactor, the NRC staff finds it acceptable that the topics for which written procedures will be prepared, reviewed, and approved, will include topics related to SHINE's IUs and target solution. The NRC staff also finds that it is acceptable for SHINE to exclude topics related to experiments since it will not be conducting experiments at its facility.
- In Section 12.4, Because SHINE is not a reactor, the NRC staff finds it acceptable for SHINE to use language encompassing operations and processes within both its irradiation facility (IF) and radioisotope production facility (RPF) as being withing scope of reportable events and actions to be taken should a reportable event occur.

Summary of Exceptions

- In Section 12.5, for annual operating reports, the NRC staff finds the following deviations from ANSI/ANS 15.1-2007 acceptable:
 - Exclusion of the tabulation of new tests or experiments because SHINE will not be performing tests or experiments at its facility
 - Providing results of individual monitoring carried out by SHINE for each individual for whom monitoring is required by 10 CFR 20.1502, "Conditions Requiring Individual Monitoring of External and Internal Occupational Dose," because this is more conservative than the criterion provided in ANSI/ANS 15.1-2007
- In Section 12.6, For the records to be maintained for five years or for the life of the component involved if less than five years, the NRC staff finds the following deviations from ANSI/ANS 15.1-2007 acceptable:
 - Exclusion of records for experiments because SHINE will not be performing experiments at its facility
 - Maintaining records for radioactive material inventories rather than fuel inventories because SHINE will have special nuclear material in the form of an aqueous target solution rather than heterogeneous fuel

Evaluation Findings

- SHINE has presented an organizational structure that reflects the complete facility organization from the license holder to the operations staff. All organizational relationships important to safety have been shown, including the review and audit function and the radiation safety function.
- The responsibility for the safe operation of the facility and for the protection of the health and safety of the SHINE staff and the public has been shown.
- Consistent with the requirements of 10 CFR 50.54, paragraphs (i), (j), (k), (l), and (m)(1), SHINE's
 minimum staffing ensures that manipulation of controls of the facility will be performed by licensed
 operators or senior operators as provided in 10 CFR Part 55
- SHINE describes the necessary experience, education, and training for each of the four qualifications levels and other technical personnel. SHINE also provides for radiation training consistent with the requirements in 10 CFR 19.12, "Instruction to Workers."
- SHINE has described a radiation safety organization that is acceptable. This organization has direct access to upper management and the review and audit committee to express concerns, if necessary. The radiation safety staff has the authority to interdict or terminate activities to ensure safety.

Evaluation Findings

- The review and audit committee members appear to be well qualified, with a wide spectrum of expertise. The committee membership includes provisions for including persons from outside the company.
- SHINE has proposed a charter and rules that describe the number of times the committee meets, the way the committee conducts business, the requirements for a quorum when voting, and the way the committee distributes its reports and reviews.
- SHINE has proposed a comprehensive and acceptable list of items that the committee will review and audit.
- SHINE has proposed a set of required procedures that is appropriate to operation of the facility, and that the process and method described by SHINE will ensure proper management control and proper review of procedures.

Evaluation Findings

- SHINE has defined a group of incidents as reportable events and has described the required actions it
 will take if the reportable event occurs. The definition of reportable events gives reasonable assurance
 that safety-significant events will be reported by the applicant.
- SHINE has proposed actions to be taken if a safety limit is violated or a reportable event occurs. The NRC staff has determined that SHINE will take whatever actions are necessary to protect the health and safety of the public.
- SHINE has described the content, the timing of the submittal, and the distribution of the reports to ensure that important information will be provided to the NRC in a timely manner.
- SHINE has described the types of records that will be retained by the facility and the period of retention to ensure that important records will be retained for an appropriate time.

SHINE

Startup Plan THOMAS DRURY, COMMISSIONING COORDINATOR

Overview

- Purpose
- Administration
- Facility Tests
- Irradiation Unit Tests

Purpose

- Startup Testing is conducted to ensure the as-built facility conforms to the design and that the specified safety functions of structures, systems, and components (SSCs) are achieved.
 - Verify key parameters necessary for the safe operation of an irradiation unit (IU)
 - Verify key parameters necessary for the safe handling of special nuclear material outside the IU
 - Ensure that operating characteristics are well understood
 - Confirm calculational parameters
 - Establish operational parameters including setpoints
 - Ensure the safety of the plant is not dependent on the performance of untested SSCs

Administration

- Performance of tests
 - o Startup testing is conducted in accordance with approved test procedures and test plans
 - Acceptance criteria predefined
 - o Led by qualified personnel
 - Deficiencies documented and dispositioned
- Startup test report
 - Methods and objectives
 - Comparison with acceptance criteria
 - Design and construction deficiencies
 - Justification for acceptance of non-conformances
 - Results of test
 - Submitted within 6 months of the completion of all startup testing activities

Facility Tests

- Facility tests conducted to verify operation of systems outside of the IUs
 - Verify ability to handle uranium and produce target solution via performance of the first evolution of target solution preparation
 - Test and balance process vessel vent system flowrates to ensure adequate sweep gas flow for hydrogen mitigation
 - Verify operation of the vacuum transfer system's ability to transfer target solution between storage locations
 - Ensure functionality of the tritium purification system
 - Standby generator automatic start and load capability

Facility Tests

- Facility tests conducted to verify design parameters
 - Direct dose measurements are compared to expected dose rates in accordance with Radiation Shield Test Program.
 - Operability of uninterruptible electrical power supply system (UPSS) in accordance with technical specifications
 - Voltage and specific gravity
 - Charger and invertor voltages
 - Capacity
 - Functionality of instrumentation for both safety-related and nonsafety-related control systems

OPERATIONAL CHARACTERISTICS

- Verify target solution vessel (TSV) filling and drain rates conform to design specifications
- Neutron driver extensively tested for leakage, operability, stability, and yield
- TSV off-gas system (TOGS)
 - o Water holdup
 - Primary boundary leakage
 - Sweep gas flow rate
 - o lodine removal
- Primary closed loop cooling system (PCLS)
 - o PCLS ability to automatically maintain temperature tested
 - Flow characteristics tested
 - Integrity tested by periodically sampling for radioisotopes indicative of leakage

SUBCRITICAL ASSEMBLY SYSTEM NUCLEAR PHYSICS PARAMETERS OPTIMUM CONCENTRATION, CRITICAL HEIGHT, AND CALCULATIONAL BIAS

- Optimum Concentration
 - Calculations predict an optimum concentration (OC)
 - TSV to be filled four times with solution approximately 5% below to 5% above calculated OC
 - Fill two more times with concentration determined from interpolation of previous results
 - OC based on interpolation of previous results
- Critical Height
 - TSV filled with optimum concentration OC+5% and OC+10%
 - Comparison of critical height vs. concentration calculations
- Calculational Bias
 - Bias estimated in terms of uranium concentration and reactivity based on results from OC and critical height startup plans

SUBCRITICAL ASSEMBLY SYSTEM NUCLEAR PHYSICS PARAMETERS REACTIVITY COEFFICIENTS

- PCLS reactivity worth
- TOGS holdup reactivity worth
- Temperature reactivity coefficient
- Void reactivity coefficient

NEUTRON FLUX DETECTION SYSTEM CALIBRATION

- Initial calibration is similar to annual calibration
- Without calibrated power and wide range neutron flux detection system (NFDS) channels, power is limited by limiting neutron production
- Few hour run at approximately 10 percent power
- Potential for intermediate power run
- Few hour full power run
- Additional full power runs at higher concentration/lower fill height to investigate detector sensitivity to solution geometry

Advisory Committee on Reactor Safeguards

SHINE Medical Technologies, LLC Operating License Application

Chapter 12.11 - Startup Plan

Michael Balazik

Project Manager/Inspector Office of Nuclear Reactor Regulation

July 20, 2022

Regulatory Basis

- Regulatory Requirements
 - 10 CFR 50.34, "Contents of applications; technical information"
 - (b)(6)(iii) Plans for preoperational testing and initial operations
 - 10 CFR 50.40, "Common standards"
 - 10 CFR 50.57, "Issuance of operating license"

Guidance and Acceptance Criteria

- NUREG-1537, Part 1, "Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors, Format and Content," issued February 1996;
- NUREG-1537, Part 2, "Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors, Standard Review Plan and Acceptance Criteria," issued February 1996;
- Final Interim Staff Guidance (ISG) Augmenting NUREG-1537, Part 1 and Part 2, for Licensing Radioisotope Production Facilities and Aqueous Homogeneous Reactors

Summary of Application (continued)

- Identified tests and measurements to
 - Verify safety significant facility parameters
 - Verify parameters for safe handling of special nuclear material
 - Validate operating characteristics of the facility
- Specific test plans will contain acceptance criteria
- Required to submit startup report
 - TS 5.8.4 requires startup report submission within 6 months of startup activities

Summary of Application (continued)

- Identified system testing for facility and IUs
 - Calibrations of equipment
 - System flow, fill, and drain rates
 - Leak rates (boundary integrity)
- Identified nuclear parameters:
 - Uranium concentration
 - Critical height
 - Temperature and void coefficients
 - TOGS/PCLS reactivity worth
 - Neutronic bias
 - Flux distribution
 - Radiation measurements

Evaluation Findings and Conclusions

- Identified plans to validate safety significant parameters
- Plan to develop acceptance criteria based on FSAR design information for the startup test procedures
- Submit startup report 6 months of completion of startup activities
- Implementation of the startup plan provides reasonable assurance the facility can operate as described in the FSAR
- NRC will conduct inspection activities to confirm readiness of the startup test program

Startup Test Program Inspection

- NRC staff is developing a SHINE facility specific inspection plan that includes inspection of the SHINE startup test program.
- Verification of acceptance criteria
- Inspection Procedure (IP) 69022, "Inspections of Operational Readiness During Construction of Non-Power Production and Utilization Facilities"
 - Operational Program Inspections use existing operational IPs as guidance
- Apply certain guidance in IP 72401, "Part 52 Inspection of Startup Test Program"

