Niowave’s Domestic Production of Mo-99 and other Fission Products without a Nuclear Reactor

NRC Pre-Application Meeting
Design
August 3, 2022
Open Session
Outline

• Conceptual Design
• Licensing Status
• Leveraged Experience
• Location
• Next Steps
Mo-99 Commercial Facility

Uranium Target Assembly (UTA)
- \(k_{\text{eff}} \leq 0.95 \)
- LEU Fuel Mass: XX kgU
- NU Target Mass: 54 kgU
- LEU Fission Power: \(~250\ kW\)
- NU Fission Power: 50 kW
- Mo-99 Activity Produced: \(2\ k\text{Ci/week}\) (5% US Demand)

Lead-Bismuth Eutectic (LBE) Neutron Source (2 per UTA)
- Electron Energy: 40 MeV
- Accelerator Power: 200 kW
- \(T_{\text{max, LBE}} \): 500 °C
- \(V_{\text{max, LBE}} \): 2 m/s
- Neutron Source Intensity: \(~2.0 \times 10^{15} n/s\)
NRC Licensing Achievements

✓ License to process NU
 • Close-loop uranium cycle
 • Extract and purify fission products
✓ Irradiate subcritical assembly of LEU and NU
✓ License to process radium
 • Isolate and handle radon and radium
 • Irradiate to produce Ac-225
✓ License to process Sr-90
 • Extract Y-90 from Sr-90
✓ Emergency Plan, Part 30.32(i)
 • Reviewed and Recommended by NRC Nuclear Security and Incident Response
✓ Category 2 Byproduct Security, Part 37
 • Partnering with the Office of Radiological Security
Leveraged Experience [1]

✓ National Lab and University Partners
✓ MSU Facility for Rare Isotope Beams (FRIB)
 • Submitted an Environmental Report to DOE
 • DOE published an Environmental Assessment
✓ Construction Partner
 • Christman Constructors, Inc.
✓ Niowave Regulatory Experience
 • NSIR Recommended Emergency Plan
 • Cat 2 Byproduct Security Plan
 • State of Michigan License
 • DOT and IATA Trained
 • NRC Region III SNM materials license
Leveraged Experience [2]

✓ Niowave’s FDA-Compliant Quality System
 • Process Failure Mode and Effects Analysis (PFMEA)
 • Management Measures (toward compliance with 70.61)
 • Document Control

✓ Niowave IT Department
 • Cyber Security
 • Redundant Data Recovery
 • Controls
National Lab & University Partners

ANL – UREX, Mo-99 Chemistry
LANL – LBE Target
ORNL – Neutronics and Shielding Calculations
PNNL – Dissolution & Gas Extraction
SRNL – UREX
Y-12 – Uranium Recovery and LEU

UNLV – UREX, Mo-99 Chemistry, Other Isotopes
MSU – Other Isotopes, Radiopharmaceuticals
Christman Constructors, Inc. (CCI) was awarded the cast-in-place concrete, carpentry and general trades work for the Facility for Rare Isotope Beams (FRIB), a new nuclear science facility at Michigan State University.

The project included:

- 42,000 cubic yards of concrete
- The use of high density 250 P.C.F. concrete
- Largest monolithic wall pour, 48’ tall, 7’ wide, and 650 cubic yards
Quality System

- Implemented 21 CFR 820 / ISO 13485 Quality System
- 200+ Documents released and trained
- ISO 13485 certified

- Passed multiple customer & certified body audits with zero findings within the last year
- FDA qualified supplier of Y-90 for clinical use
Mo-99 Commercial Facility
Mo-99 Commercial Facility

Office
Assembly
Shipping
Accelerator
UTA
Accelerator
Target Fab
Chemistry

500 feet

NIOWAVE
Accelerating the Fight Against Cancer
Airport Location

1 mile radius centered at Niowave’s Airport Facility

Facilities not in flight path
Next Steps

- Continue design development for commercial facility
- Move forward with leasing land
- Start building during review (if NEPA Cat Ex)
- Perform hazard and consequence analyses
- Prepare ISA summary and supporting documentation
- Prepare a license application following NUREG-1520 (informed, as appropriate by the ISG to NUREG-1537)
Next Meetings

• NEPA Categorical Exclusion Determination
• Security, Structural, Fire Safety, Emergency Management
• Management Measures QA, Cyber security, MCA, DFP
• Mechanical, Human Factors, Instrumentation & Controls
• Neutronics, Thermal Hydraulics, Shielding
• Radiochem, Waste
• ISA, Rad Protection, Crit Safety
Thank You