

April 08, 2022

Report to: Kent Applegate Rio Algom Mining Company P.O. Box 218 Grants, NM 87020 Bill to: Accounts Payable Rio Algom Mining Company P.O. Box 218 Grants, NM 87020

cc: Michaella Gorospe, jcarroll, Jeremy Scott Collyard, Marcus Powell, Sharon Clouse, Drew Werth, Casandra Woodward, Shubhangi Agarwal, Anupama Subbakrishna, Revathi Ekambaram, Clark Short, Angela Pe

Project ID: 4512060294 ACZ Project ID: L71379

Kent Applegate:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on February 10, 2022. This project has been assigned to ACZ's project number, L71379. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L71379. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after May 08, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Mark Monenl

Mark McNeal has reviewed and approved this report.

April 08, 2022

Project ID: 4512060294 ACZ Project ID: L71379

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 2 groundwater samples from Rio Algom Mining Company on February 10, 2022. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L71379. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

Any analyses not performed within EPA recommended holding times have been qualified with an "H" flag.

Sample Analysis

These samples were analyzed for inorganic, radiochemistry parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures. In addition the following has been noted with this specific project:

1. Qualifier: (N1) Applies to: L71379-01, L71379-02 CYANIDE

Failing ICV = high biased calibration. All undetect values for sxs past hold date accepted with case narrative.

Prior analyses performed while troubleshooting instrument. Reanalysis after resolving issue is likely more representative of true values and should be favored over prior data.

2. Qualifier: (N1A) Applies to: L71379-02 THORIUM 230

Duplicated sample tracer recovery fails low due to sample loss during filtration step.

3. Qualifier: (N1) Applies to: L71379-01, L71379-02 THORIUM 230

Prep Blank Water (Th-230) fails high by 0.2pCi/L. Due to elevated blank activity, unable to rule out possible contamination in samples where the activity is 0.2pCi/L higher than 2X Lower Level of Detection.

Project ID:	4512060294
Sample ID:	33-01 TRA-02082022

Inorganic Analytical Results

ACZ Sample ID: L71379-01 Date Sampled: 02/08/22 15:07 Date Received: 02/10/22 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	2	166			mg/L	0.2	1	02/22/22 20:51	jlw
Iron, dissolved	M200.7 ICP	2	0.294	В		mg/L	0.12	0.3	02/22/22 20:51	jlw
Magnesium, dissolved	M200.7 ICP	2	52.7			mg/L	0.4	2	02/23/22 14:36	jlw
Molybdenum, dissolved	1 M200.8 ICP-MS	2	0.00285			mg/L	0.0004	0.001	02/21/22 21:05	kja
Nickel, dissolved	M200.8 ICP-MS	2	<0.0008	U		mg/L	0.0008	0.002	02/21/22 21:05	kja
Potassium, dissolved	M200.7 ICP	2	5.92			mg/L	0.4	2	02/22/22 20:51	jlw
Selenium, dissolved	SM 3114 B, AA-Hydride	1	<0.002	U		mg/L	0.002	0.005	02/14/22 12:18	mlh
Sodium, dissolved	M200.7 ICP	2	584			mg/L	0.4	2	02/22/22 20:51	jlw
Uranium, dissolved	M200.8 ICP-MS	2	0.00045	В		mg/L	0.0002	0.001	02/21/22 21:05	kja
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	82.2			mg/L	2	20	02/18/22 0:00	eep
Carbonate as CaCO3		1	<2	U		mg/L	2	20	02/18/22 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	02/18/22 0:00	eep
Total Alkalinity		1	82.2			mg/L	2	20	02/18/22 0:00	eep
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-4.9			%			04/07/22 0:00	calc
Sum of Anions			43			meq/L			04/07/22 0:00	calc
Sum of Cations			39			meq/L			04/07/22 0:00	calc
Chloride	SM4500CI-E	1	32.0		*	mg/L	0.5	2	02/25/22 14:01	mjj1
Conductivity @25C	SM2510B	1	3350			umhos/cm	1	10	02/16/22 0:49	eep
Cyanide, Total	D7511-09	1	< 0.003	UH	*	mg/L	0.003	0.01	03/04/22 15:20	md
Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	1	<0.02	U	*	mg/L	0.02	0.1	02/25/22 2:46	pjb
Residue, Filterable (TDS) @180C	SM2540C	1	2690			mg/L	20	40	02/10/22 15:51	anc
Sulfate	D516-02/-07/-11 - TURBIDIMETRI	c 50	1920		*	mg/L	50	250	02/21/22 17:25	syw
TDS (calculated)	Calculation		2810			mg/L			04/07/22 0:00	calc
TDS (ratio - measured/calculated)	Calculation		0.96						04/07/22 0:00	calc

ACZ	Laboratories, Inc.
2773 Downhill Drive	Steamboat Springs, CO 80487 (800) 334-5493

Project ID:	4512060294
Sample ID:	31-01 TRA-R-02092022

Inorganic Analytical Results

ACZ Sample ID:	L71379-02
Date Sampled:	02/09/22 09:55
Date Received:	02/10/22
Sample Matrix:	Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	1	199			mg/L	0.1	0.5	02/22/22 20:54	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	02/22/22 20:54	jlw
Magnesium, dissolved	M200.7 ICP	1	83.5			mg/L	0.2	1	02/23/22 14:40	jlw
Molybdenum, dissolved	M200.8 ICP-MS	1	0.00449			mg/L	0.0002	0.0005	02/21/22 21:07	kja
Nickel, dissolved	M200.8 ICP-MS	1	0.00311			mg/L	0.0004	0.001	02/21/22 21:07	kja
Potassium, dissolved	M200.7 ICP	1	6.40			mg/L	0.2	1	02/22/22 20:54	jlw
Selenium, dissolved	SM 3114 B, AA-Hydride	1	<0.002	U		mg/L	0.002	0.005	02/14/22 12:24	mlh
Sodium, dissolved	M200.7 ICP	1	142			mg/L	0.2	1	02/22/22 20:54	jlw
Uranium, dissolved	M200.8 ICP-MS	1	0.00089			mg/L	0.0001	0.0005	02/21/22 21:07	kja
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	144			mg/L	2	20	02/18/22 0:00	еер
Carbonate as CaCO3		1	<2	U		mg/L	2	20	02/18/22 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	02/18/22 0:00	eep
Total Alkalinity		1	144			mg/L	2	20	02/18/22 0:00	eep
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-4.2			%			04/07/22 0:00	calc
Sum of Anions			25			meq/L			04/07/22 0:00	calc
Sum of Cations			23			meq/L			04/07/22 0:00	calc
Chloride	SM4500CI-E	1	14.7		*	mg/L	0.5	2	02/25/22 14:01	mjj1
Conductivity @25C	SM2510B	1	1900			umhos/cm	1	10	02/16/22 0:58	eep
Cyanide, Total	D7511-09	1	<0.003	UH	*	mg/L	0.003	0.01	03/04/22 15:22	md
Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	1	0.076	В	*	mg/L	0.02	0.1	02/25/22 2:47	pjb
Residue, Filterable (TDS) @180C	SM2540C	1	1620			mg/L	20	40	02/10/22 15:54	anc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	c 50	1030		*	mg/L	50	250	02/21/22 17:25	syw
TDS (calculated)	Calculation		1560			mg/L			04/07/22 0:00	calc
TDS (ratio - measured/calculated)	Calculation		1.04						04/07/22 0:00	calc

Inorganic Reference

	A distinct sot of complex analyzed at a presific time								
Batch	A distinct set of samples analyzed at a specific time								
Found Limit	Value of the QC Type of interest Upper limit for RPD, in %.								
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)								
MDL	Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).								
NIDL	Allows for instrument and annual fluctuations.								
PCN/SCN									
PQL	Practical Quantitation Limit. Synonymous with the EPA term								
QC	True Value of the Control Sample or the amount added to the								
Rec	Recovered amount of the true value or spike added, in % (exc		/Kq)						
RPD	Relative Percent Difference, calculation used for Duplicate QC								
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)								
Sample	Value of the Sample of interest								
Sample Ty AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicat						
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank						
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix						
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate						
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank						
ICB	Initial Calibration Blank	MS	Matrix Spike						
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate						
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil						
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water						
LUSS									
LCSS	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard						
			•						
LCSSD LCSW	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water	PQV	Practical Quantitation Verification standard						
LCSSD LCSW Sample Typ	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations	PQV SDL	Practical Quantitation Verification standard Serial Dilution						
LCSSD LCSW Sample Typ Blanks	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Verifies that there is no or minimal co	PQV SDL ontamination in th	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure.						
LCSSD LCSW Sample Typ Blanks Control Sar	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Verifies that there is no or minimal control of the method, Note: The second	PQV SDL ontamination in th including the prej	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. o procedure.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Nerifies that there is no or minimal control of the method, Verifies the accuracy of the method, Verifies the precision of the instrume	PQV SDL ontamination in th including the prej nt and/or method	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. o procedure.						
LCSSD LCSW Sample Typ Blanks Control Sar	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Nerifies that there is no or minimal control of the method, Verifies the accuracy of the method, Verifies the precision of the instrume	PQV SDL ontamination in th including the prej nt and/or method ces, if any.	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. o procedure.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations nples Verifies that there is no or minimal control from the method, verifies the accuracy of the method, verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration.	PQV SDL ontamination in th including the prej nt and/or method ces, if any.	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. o procedure.						
LCSSD LCSW Sample Typ Blanks Control San Duplicates Spikes/Fort	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration.	PQV SDL ontamination in th including the prej nt and/or method ces, if any.	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. o procedure.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations mples Verifies that there is no or minimal control structure ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F	PQV SDL ontamination in th including the prep nt and/or method ces, if any. PQL. The associa	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. o procedure.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration.	PQV SDL ontamination in th including the prep nt and/or method ces, if any. PQL. The associa in immediate hold	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. o procedure.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations mples Verifies that there is no or minimal control from the structure ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an	PQV SDL ontamination in th including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold.	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations mples Verifies that there is no or minimal control from the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg	PQV SDL ontamination in th including the prep nt and/or method ces, if any. PQL. The associa in immediate hold gative threshold. e level of the associated	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. botated value.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations mples Verifies that there is no or minimal control sample accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the same qu	PQV SDL ontamination in th including the prep nt and/or method ces, if any. PQL. The associa in immediate hold gative threshold. e level of the associated	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. botated value.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations mples Verifies that there is no or minimal control sample accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the same qu	PQV SDL ontamination in th including the prep nt and/or method ces, if any. PQL. The associa in immediate hold gative threshold. e level of the associate the sample detect	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. pociated value. tion limit.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations mples Verifies that there is no or minimal control frequencies mples Verifies the accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the taboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the taboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the taboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or taboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or taboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or taboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or taboratory defined neg The taboratory defined	PQV SDL	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. poiated value. tion limit. ch 1983.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations mples Verifies that there is no or minimal control from the precision of the method, Verifies the precision of the instrume of the matrix ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with and F Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water and	PQV SDL	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Number of the explanations Number of the explanations Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water at EPA 600/R-93-100. Methods for the Determination of Inorgan	PQV SDL	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U U Sthod Refere (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations mples Verifies that there is no or minimal control Sample - Water mples Verifies the accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals in	PQV SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associate in immediate hold gative threshold. e level of the associate the sample detection and Wastes, Marca- nic Substances in in Environmental	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U U thod Refere (1) (2) (3) (4) (5)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations werifies that there is no or minimal comples Verifies the accuracy of the method, verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.	PQV SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associate in immediate hold gative threshold. e level of the associate the sample detection and Wastes, Marca- nic Substances in in Environmental	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U U thod Refere (1) (2) (3) (4)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations werifies that there is no or minimal comples Verifies the accuracy of the method, verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.	PQV SDL	Practical Quantitation Verification standard Serial Dilution e prop method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U U thod Refere (1) (2) (3) (4) (5)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations mples Verifies that there is no or minimal control Sample accuracy of the method, Verifies the accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined nego The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewa	PQV SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associate in immediate hold gative threshold. e level of the associate the sample detection and Wastes, Marco in Environmental ater.	Practical Quantitation Verification standard Serial Dilution e prop method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U U Sthod Refere (1) (2) (3) (4) (5) Smments (1)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Verifies that there is no or minimal content mples Verifies the accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interferent Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly	PQV SDL ontamination in the including the prep int and/or method ces, if any. PQL. The association of the association pative threshold. The sample detection and Wastes, Marca in Environmental ater.	Practical Quantitation Verification standard Serial Dilution e prop method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U U thod Refere (1) (2) (3) (4) (5) mments (1) (2)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Verifies that there is no or minimal content mples Verifies the accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interferent Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewar QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are rep	PQV SDL ontamination in the including the prep int and/or method ces, if any. PQL. The associate in immediate hold gative threshold. The associate hold gative threshold. The level of the associate the sample detection and Wastes, Marca ic Substances in in Environmental atter.	Practical Quantitation Verification standard Serial Dilution e properties of the procedure. b procedure. e procedure. eted value is an estimated quantity. eted value is an estimated quantity. eted value. eted v						
LCSSD LCSW Sample Typ Blanks Control Sar Duplicates Spikes/Fort Standard Z Qualifiers B H L U U thod Refere (1) (2) (3) (4) (5) mments (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Imples Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with and T Target analyte response was below the laboratory defined nego The material was analyzed for, but was not detected above the T The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the A600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-93-100. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewa QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	PQV SDL ontamination in the including the prep int and/or method ces, if any. PQL. The associate in immediate hold gative threshold. The associate hold gative threshold. The level of the associate the sample detection and Wastes, Marca ic Substances in in Environmental atter.	Practical Quantitation Verification standard Serial Dilution e properties of calibration procedure. b procedure. b procedure. c procedu						

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

QUIVIRA

ACZ Project ID: L71379

Alkalinity as CaC	03		SM2320E	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG536892													
WG536892PBW1	PBW	02/17/22 16:14				15.7	mg/L		-20	20			
WG536892LCSW3	LCSW	02/17/22 16:31	WC220202-3	820.0001		806.8	mg/L	98	90	110			
WG536892LCSW6	LCSW	02/17/22 19:07	WC220202-3	820.0001		811.1	mg/L	99	90	110			
WG536892PBW2	PBW	02/17/22 19:13				6.5	mg/L		-20	20			
WG536892LCSW9	LCSW	02/17/22 21:38	WC220202-3	820.0001		828.7	mg/L	101	90	110			
WG536892PBW3	PBW	02/17/22 21:44				6.3	mg/L		-20	20			
L71379-01DUP	DUP	02/18/22 1:04			82.2	81.3	mg/L				1	20	
WG536892LCSW12	LCSW	02/18/22 1:32	WC220202-3	820.0001		831.1	mg/L	101	90	110			
WG536892PBW4	PBW	02/18/22 1:38				6.8	mg/L		-20	20			
WG536892LCSW15	LCSW	02/18/22 5:21	WC220202-3	820.0001		840.3	mg/L	102	90	110			
Calcium, dissolve	ed		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537168													
WG537168ICV	ICV	02/22/22 20:19	II220215-3	100		98.24	mg/L	98	95	105			
WG537168ICB	ICB	02/22/22 20:25				U	mg/L		-0.3	0.3			
WG537168LFB	LFB	02/22/22 20:38	II220215-2	67.99026		63.42	mg/L	93	85	115			
L71350-01AS	AS	02/22/22 20:44	II220215-2	339.9513	440	763	mg/L	95	85	115			
L71350-01ASD	ASD	02/22/22 20:47	II220215-2	339.9513	440	760	mg/L	94	85	115	0	20	
Chloride			SM45000	CI-E									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537384													
WG537384ICB	ICB	02/25/22 11:23				U	mg/L		-1.5	1.5			
WG537384ICV	ICV	02/25/22 11:23	WI210503-1	54.89		57.1	mg/L	104	90	110			
WG537384LFB1	LFB	02/25/22 14:01	WI210908-11	29.97		31.76	mg/L	106	90	110			
WG537384LFB2	LFB	02/25/22 14:05	WI210908-11	29.97		32.08	mg/L	107	90	110			
L71349-01AS	AS	02/25/22 14:36	10XCL	30	544	561.3	mg/L	58	90	110			M3
L71349-02DUP	DUP	02/25/22 14:36			551	546.6	mg/L				1	20	ine
Conductivity @2	5C		SM2510E	3									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG536739													
WG536739LCSW2	LCSW	02/15/22 17:14	PCN65017	1408		1405	umhos/cm	100	90	110			
WG536739LCSW5	LCSW	02/15/22 21:26	PCN65017	1408		1396	umhos/cm	99	90	110			
_71442-02DUP	DUP	02/16/22 1:34		1400	1330	1331	umhos/cm	55	50	110	0	20	
WG536739LCSW8	LCSW	02/16/22 1:40	PCN65017	1408	1000	1391	umhos/cm	99	90	110	0	20	
WG536739LCSW11		02/16/22 5:04	PCN65017	1408		1382	umhos/cm	98	90	110			
Cyanide, Total			D7511-09	9									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537617													
NG537617ICV	ICV	03/04/22 15:00	WI220218-7	.3003		.3332	mg/L	111	90	110			N1
WG537617ICB	ICB	03/04/22 15:00		.5005		.3352 U	mg/L	111	-0.003	0.003			141
WG537617LFB	LFB	03/04/22 15:02	WI220218-5	.1		.115	mg/L	115	-0.003 84	116			
L71349-01AS	AS	03/04/22 15:08	WI220218-5	.1	U	.1112	mg/L	111	84	116			
L71349-01AS	ASD	03/04/22 15:12	WI220218-5	.1	U	.1097	mg/L	110	84	116	1	20	
-11040-01A0D	700	00/04/22 10.14		.1	0	.1097	g, L	110	0-1	110	I	20	

QUIVIRA

ACZ Project ID: L71379

Iron, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537168													
WG537168ICV	ICV	02/22/22 20:19	II220215-3	2		1.954	mg/L	98	95	105			
WG537168ICB	ICB	02/22/22 20:25				U	mg/L		-0.18	0.18			
WG537168LFB	LFB	02/22/22 20:38	II220215-2	1.0001		1.011	mg/L	101	85	115			
L71350-01AS	AS	02/22/22 20:44	II220215-2	5.0005	U	5.12	mg/L	102	85	115			
L71350-01ASD	ASD	02/22/22 20:47	II220215-2	5.0005	U	5.095	mg/L	102	85	115	0	20	
Magnesium, dis	solved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537210													
WG537210ICV	ICV	02/23/22 14:04	II220215-3	100		95.49	mg/L	95	95	105			
WG537210ICB	ICB	02/23/22 14:10				U	mg/L		-0.6	0.6			
WG537210LFB	LFB	02/23/22 14:23	II220215-2	49.99828		49.48	mg/L	99	85	115			
L71350-01AS	AS	02/23/22 14:30	II220215-2	249.9914	259	502	mg/L	97	85	115			
L71350-01ASD	ASD	02/23/22 14:33	II220215-2	249.9914	259	502.5	mg/L	97	85	115	0	20	
Molybdenum, di	issolved	I	M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537121													
WG537121ICV	ICV	02/21/22 20:44	MS220105-1	.02		.02052	mg/L	103	90	110			
WG537121ICB	ICB	02/21/22 20:47				.00023	mg/L		-0.00044	0.00044			
WG537121LFB	LFB	02/21/22 20:49	MS220126-3	.05005		.04769	mg/L	95	85	115			
L71379-02AS	AS	02/21/22 21:14	MS220126-3	.05005	.00449	.04847	mg/L	88	70	130			
L71379-02ASD	ASD	02/21/22 21:16	MS220126-3	.05005	.00449	.05508	mg/L	101	70	130	13	20	
Nickel, dissolve	d		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537121													
WG537121ICV	ICV	02/21/22 20:44	MS220105-1	.05		.0515	mg/L	103	90	110			
WG537121ICB	ICB	02/21/22 20:47				U	mg/L		-0.00088	0.00088			
WG537121LFB	LFB	02/21/22 20:49	MS220126-3	.05		.04759	mg/L	95	85	115			
L71379-02AS	AS	02/21/22 21:14	MS220126-3	.05	.00311	.03842	mg/L	71	70	130			
L71379-02ASD	ASD	02/21/22 21:16	MS220126-3	.05	.00311	.04364	mg/L	81	70	130	13	20	
Nitrate/Nitrite as	s N		M353.2 -	H2SO4 pre	eserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537368													
WG537368ICV	ICV	02/24/22 22:23	WI211205-1	2.4161		2.332	mg/L	97	90	110			
WG537368ICB	ICB	02/24/22 22:24				U	mg/L		-0.02	0.02			
WG537371													
WG537371LFB	LFB	02/25/22 2:08	WI211001-5	2		2.021	mg/L	101	90	110			
L64832-50AS	AS	02/25/22 2:30	WI211001-5	2	U	1.972	mg/L	99	90	110			
L64835-50DUP	DUP	02/25/22 2:50			U	U	mg/L				0	20	RA

QUIVIRA

ACZ Project ID: L71379

Potassium, diss	olved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537168													
WG537168ICV	ICV	02/22/22 20:19	II220215-3	20		19.6	mg/L	98	95	105			
WG537168ICB	ICB	02/22/22 20:25				U	mg/L		-0.6	0.6			
WG537168LFB	LFB	02/22/22 20:38	II220215-2	99.95169		99.69	mg/L	100	85	115			
L71350-01AS	AS	02/22/22 20:44	II220215-2	499.75845	17.5	520.5	mg/L	101	85	115			
L71350-01ASD	ASD	02/22/22 20:47	II220215-2	499.75845	17.5	523	mg/L	101	85	115	0	20	
Residue, Filterat	ole (TDS) @180C	SM25400	C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG536516													
WG536516PBW	PBW	02/10/22 15:07				U	mg/L		-20	20			
WG536516LCSW	LCSW	02/10/22 15:09	PCN64730	1000		982	mg/L	98	80	120			
L71385-02DUP	DUP	02/10/22 16:07			5820	5760	mg/L				1	10	
Selenium, disso	lved		SM 3114	B, AA-Hyd	ride								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG536614													
WG536614ICV	ICV	02/14/22 11:41	SE220124-2	.025		.026	mg/L	104	90	110			
WG536614ICB	ICB	02/14/22 11:43				U	mg/L		-0.006	0.006			
WG536614LRB	LRB	02/14/22 11:45				U	mg/L		-0.006	0.006			
WG536614LFB	LFB	02/14/22 11:47	SE220124-4	.0225		.0226	mg/L	100	85	115			
L71379-01LFM	LFM	02/14/22 12:20	SE220124-4	.0225	U	.0191	mg/L	85	85	115			
L71379-01LFMD	LFMD	02/14/22 12:22	SE220124-4	.0225	U	.0214	mg/L	95	85	115	11	20	
Sodium, dissolv	ed		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537168													
WG537168ICV	ICV	02/22/22 20:19	II220215-3	100		98.13	mg/L	98	95	105			
WG537168ICB	ICB	02/22/22 20:25				U	mg/L		-0.6	0.6			
WG537168LFB	LFB	02/22/22 20:38	II220215-2	100.0039		100.1	mg/L	100	85	115			
L71350-01AS	AS	02/22/22 20:44	II220215-2	500.0195	1530	2025.5	mg/L	99	85	115			
L71350-01ASD	ASD	02/22/22 20:47	II220215-2	500.0195	1530	2026	mg/L	99	85	115	0	20	
Sulfate			D516-02/	/-07/-11 - Tl	JRBIDIM	ETRIC							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537110													
WG537110ICB	ICB	02/21/22 10:50				U	mg/L		-3	3			
WG537110ICV	ICV	02/21/22 10:50	WI220215-3	20.46		19.5	mg/L	95	90	110			
WG537110LFB	LFB	02/21/22 16:20	WI220210-0	9.95		10.2	mg/L	103	90	110			
L71385-02AS	AS	02/21/22 17:25	SO4TURB	10	3760	3725.4	mg/L	-346	90	110			M3
L/ 1303-02A3													

QUIVIRA

ACZ Project ID: L71379

Uranium, disso	lved		M200.8 ICI	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG537121													
WG537121ICV	ICV	02/21/22 20:44	MS220105-1	.05		.05163	mg/L	103	90	110			
WG537121ICB	ICB	02/21/22 20:47				U	mg/L		-0.00022	0.00022			
WG537121LFB	LFB	02/21/22 20:49	MS220126-3	.05		.04901	mg/L	98	85	115			
L71379-02AS	AS	02/21/22 21:14	MS220126-3	.05	.00089	.04985	mg/L	98	70	130			
L71379-02ASD	ASD	02/21/22 21:16	MS220126-3	.05	.00089	.05667	mg/L	112	70	130	13	20	

4 **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Rio Algom Mining Company

ACZ Project ID: L71379

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L71379-01	WG537384	Chloride	SM4500CI-E	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG537617	Cyanide, Total	D7511-09	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
			D7511-09	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
			D7511-09	N1	See Case Narrative.
	WG537371	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG537110	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L71379-02	WG537384	Chloride	SM4500CI-E	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG537617	Cyanide, Total	D7511-09	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
			D7511-09	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
			D7511-09	N1	See Case Narrative.
	WG537371	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG537110	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

ACZ	Laboratories, Inc	C.
2773 Downhill Drive	Steamboat Springs, CO 80487	(800) 334-5493

Rio Algom	Mining	Company
-----------	--------	---------

Project ID:	4512060294
Sample ID:	33-01 TRA-02082022
Locator:	

ACZ Sample ID: **L71379-01**

Date Sampled:	02/08/22 15:07
Date Received:	02/10/22
Sample Matrix:	Groundwater

Lead 210, dissolved EICHROM, OTW01							Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Lead 210, dissolved	04/06/22 9:36		-16	20	57	pCi/L	*	fdw
Polonium 210, dissolved							Pre	p Method:
HASL Po-01-RC								
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Polonium 210, dissolved	03/08/22 9:28		0.0	42	5.8	pCi/L	*	slc
Radium 226, dissolved							Pre	p Method:
M903.1								
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Radium 226, dissolved	03/18/22 0:23		1.2	0.11	0.25	pCi/L	*	fdw
							_	
Radium 228, dissolved M9320							Pre	p Method:
M9320								
Parameter	Measure Date 03/22/22 16:30	Prep Date	Result 2.3	Error(+/-) 0.96	LLD	Units	XQ *	Analyst
Radium 228, dissolved	03/22/22 16:30		2.3	0.96	2	pCi/L	^	ttg
Thorium 230, dissolved							Pre	p Method:
ESM 4506								
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Thorium 230, dissolved	03/28/22 14:32		0.641	0.36	0.48	pCi/L	*	amk

ACZ	Laboratories	s, Inc	
2773 Downhill Drive	Steamboat Springs. CO	80487	(800) 334-5493

ACZ Sample ID: L71379-02

Date Sampled:	02/09/22 9:55
Date Received:	02/10/22
Sample Matrix:	Groundwater

Lead 210, dissolved EICHROM, OTW01							Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Lead 210, dissolved	04/06/22 9:36		14	21	56	pCi/L	*	fdw
Polonium 210, dissolved HASL Po-01-RC							Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Polonium 210, dissolved	03/08/22 9:28		0.0	29	4	pCi/L	*	slc
Radium 226, dissolved							Pre	p Method:
M903.1								
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Radium 226, dissolved	03/18/22 0:24		0.43	0.08	0.26	pCi/L	*	fdw
Radium 228, dissolved M9320							Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Radium 228, dissolved	03/22/22 16:30		1.5	0.81	2	pCi/L	*	ttg
Thorium 230, dissolved ESM 4506							Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Thorium 230, dissolved	03/28/22 20:41		0.537	0.34	0.48	pCi/L	*	amk

Radiochemistry Reference

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

_		
R	eport Header	Explanations
	Batch	A distinct set of samples analyzed at a specific time
	Error(+/-)	Calculated sample specific uncertainty
	Found	Value of the QC Type of interest
	Limit	Upper limit for RPD, in %.
	LCL	Lower Control Limit, in % (except for LCSS, mg/Kg)
	LLD	Calculated sample specific Lower Limit of Detection
	PCN/SCN	A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis
	PQL	Practical Quantitation Limit
	QC	True Value of the Control Sample or the amount added to the Spike
	Rec	Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)
	RER	Relative Error Ratio, calculation used for Dup. QC taking into account the error factor.
	RPD	Relative Percent Difference, calculation used for Duplicate QC Types
	UCL	Upper Control Limit, in % (except for LCSS, mg/Kg)
	Sample	Value of the Sample of interest

QC Sample Types

DUP	Sample Duplicate	MS/MSD	Matrix Spike/Matrix Spike Duplicate
LCSS	Laboratory Control Sample - Soil	PBS	Prep Blank - Soil
LCSW	Laboratory Control Sample - Water	PBW	Prep Blank - Water

QC Sample Type Explanations				
Blanks	Verifies that there is no or minimal contamination in the prep method procedure.			
Control Samples	Verifies the accuracy of the method, including the prep procedure.			
Duplicates	Verifies the precision of the instrument and/or method.			
Matrix Spikes	Determines sample matrix interferences, if any.			

ACZ Qualifiers (Qual)

H Analysis exceeded method hold time.

Method Prefix Reference

М	EPA methodology, including those under SDWA, CWA, and RCRA
SM	Standard Methods for the Examination of Water and Wastewater.
D	ASTM
RP	DOE
ESM	DOE/ESM

Comments

(1)	Solid matrices are reported on a dry weight basis.
(2)	Preparation method: "Method" indicates preparation defined in analytical method.
(3)	QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
(4)	An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification
	qualifier associated with the result.

For a complete list of ACZ's Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP003.09.12.01

QUIVIRA

ACZ Project ID: L71379

Lead 210, diss	olved		EICHROM, (OTW01									Uni	ts: pCi/L		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG539097																
WG539097LCSW	LCSW	04/05/22	PCN64364	98.31				99	4.5	6.7	101	55	121			
WG539097PBW	PBW	04/05/22						-2.6	2.3	6.9			13.8			
L71280-01DUP	DUP-RPD	04/05/22			6.9	19	54	7.1	12	35				3	20	
L72132-01MS	MS	04/06/22	PCN64364	983	4.8	14	37	830	34	43	84	55	121			
L72132-02DUP	DUP-RPD	04/06/22			-34	25	70	7.7	16	43				317	20	RG
L72132-02DUP	DUP-RER	04/06/22			-34	25	70	7.7	16	43				1.4	2	
Polonium 210,	dissolved		HASL Po-01	-RC									Uni	ts: pCi/L		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG537575																
WG537575LCSW	LCSW	03/07/22	PCN64364	500				500	110	4.5	100	51	128			
L71349-02DUP	DUP-RPD	03/07/22			0	24	3.2	0	20	2.8				0	20	
WG537575PBW	PBW	03/07/22						.18	1.9	2.5			5			
L71379-01DUP	DUP-RPD	03/08/22			0	42	5.8	0	30	4				0	20	
L71353-04MS	MS	03/08/22	PCN64364	500	0	40	5.9	517	120	6.1	103	51	128			
Radium 226, di	issolved		M903.1										Uni	ts: pCi/L		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG537124																
WG537124LCSW	LCSW	03/18/22	PCN64374	20				16	0.45	0.41	80	43	148			
WG537124PBW	PBW	03/18/22						.11	0.1	0.7			1.4			
L71349-01DUP	DUP-RPD	03/18/22			2	0.16	0.41	1.9	0.16	0.43				5	20	
L71351-01MS	MS	03/18/22	PCN64374	20	2.2	0.15	0.29	9.4	0.28	0.23	36	43	148			M2
L/1331-011VI3	IVIO			20						0.20	50	40	140			

QUIVIRA

ACZ Project ID: L71379

Radium 228, di	ssolved		M9320										Uni	ts: pCi/L		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG538294																
WG538294LCSW	LCSW	03/22/22	PCN64684	9.48				11	1.4	2.4	116	47	123			
WG538294PBW	PBW	03/22/22						.61	0.81	2.1			4.2			
L71456-01DUP	DUP-RER	03/22/22			0.2	0.97	2.4	46	0.9	2.3				0.5	2	
L71456-01DUP	DUP-RPD	03/22/22			0.2	0.97	2.4	46	0.9	2.3				508	20	RG
L71456-02MS	MS	03/22/22	PCN64684	9.48	-0.02	0.76	1.9	11	1.2	2	116	47	123			
L71644-01DUP	DUP-RPD	03/23/22			0.45	0.9	2.3	.41	1	2.6				9	20	
Thorium 230, d	issolved		ESM 4506										111	to		
	looonrou		ESIVI 4500										Uni	ts: pCi/L		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Uni		Limit	Qual
		Analyzed		QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower			Limit	Qual
		Analyzed 03/25/22		QC 200	Sample	Error	LLD	Found 205	Error 26	LLD 0.31	Rec%	Lower 91			Limit	Qual
WG538651	Туре		PCN/SCN		Sample	Error 0.43	LLD 0.79						Upper		Limit	Qual
WG538651 WG538651LCSW	Type LCSW	03/25/22	PCN/SCN					205	26	0.31			Upper	RPD/RER		Qual
WG538651 WG538651LCSW L71282-01DUP	Type LCSW DUP-RER	03/25/22 03/25/22	PCN/SCN		0.081	0.43	0.79	205 .738	26 1	0.31 1.8			Upper	RPD/RER 0.6	2	
WG538651 WG538651LCSW L71282-01DUP L71282-01DUP	Type LCSW DUP-RER DUP-RPD	03/25/22 03/25/22 03/25/22	PCN/SCN		0.081	0.43	0.79	205 .738 .738	26 1 1	0.31 1.8 1.8			Upper	RPD/RER 0.6	2	RG
WG538651 WG538651LCSW L71282-01DUP L71282-01DUP WG538651PBW	Type LCSW DUP-RER DUP-RPD PBW	03/25/22 03/25/22 03/25/22 03/28/22	PCN/SCN PCN63437	200	0.081 0.081	0.43 0.43	0.79 0.79	205 .738 .738 1.2	26 1 1 0.45	0.31 1.8 1.8 0.5	103	91	Upper 126 1	RPD/RER 0.6	2	RG

2773 Downhill Drive Steamboat Springs, CO 80487 4

(800) 334-5493

Rio Algom Mining Company

ACZ Project ID: L71379

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L71379-01	WG539097	Lead 210, dissolved	EICHROM, OTW01	D1	Sample required dilution due to matrix.
			EICHROM, OTW01	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG537124	Radium 226, dissolved	M903.1	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			M903.1	RM	For a water matrix, the duplicate precision assessment (RPD or RER) exceeded the control limit. High sediment, turbidity, or presence of an immiscible liquid attributed to non-homogeneity of the sample.
	WG538294	Radium 228, dissolved	M9320	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG538651	Thorium 230, dissolved	ESM 4506	N1	See Case Narrative.
			ESM 4506	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
L71379-02	WG539097	Lead 210, dissolved	EICHROM, OTW01	D1	Sample required dilution due to matrix.
			EICHROM, OTW01	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG537124	Radium 226, dissolved	M903.1	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			M903.1	RM	For a water matrix, the duplicate precision assessment (RPD or RER) exceeded the control limit. High sediment, turbidity, or presence of an immiscible liquid attributed to non-homogeneity of the sample.
	WG538294	Radium 228, dissolved	M9320	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG538651	Thorium 230, dissolved	ESM 4506	N1	See Case Narrative.
			ESM 4506	N1A	See Case Narrative.
			ESM 4506	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.

ACZ Project ID: L71379

Radiochemistry

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Lead 210, dissolved Polonium 210, dissolved Thorium 230, dissolved EICHROM, OTW01 HASL Po-01-RC ESM 4506

ACZ	Laboratories, Inc.
2773 Downhill Drive	Steamboat Springs, CO 80487 (800) 334-5493

Rio Algom Mining Company	ACZ Project ID:		L71379
4512060294	Date Received:		22 09:29
	Received By:		
	Date Printed:	2/	11/2022
Receipt Verification	YES	S NO	NA
1) Is a foreign soil permit included for applicable samples?			X
2) Is the Chain of Custody form or other directive shipping papers present?	X		
3) Does this project require special handling procedures such as CLP protocol?		Х	
4) Are any samples NRC licensable material?	X		
5) If samples are received past hold time, proceed with requested short hold time and	alyses? X		
6) Is the Chain of Custody form complete and accurate?	X		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the	samples?	Х	
Samples/Containers			
	YES	S NO	NA
8) Are all containers intact and with no leaks?	X		
9) Are all labels on containers and are they intact and legible?	X		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and	d Time? X		
11) For preserved bottle types, was the pH checked and within limits? $ ^{1}$	X		
12) Is there sufficient sample volume to perform all requested work?	X		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	X		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	X		
	NA inc	licates Not A	pplicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
6729	0.2	<=6.0	15	N/A

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

ACZ Project ID: L71379 Date Received: 02/10/2022 09:29 Received By: Date Printed: 2/11/2022

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

Accredited Environmental Testing	2773 Downhill Drive Steamboat Springs, CO (970) 879-6590	80487	Ľ	? 3	59		CHAI	N of	CUS	STODY
Report to:										
Name: Kent Applegate			Add	ress: 2	<u>01 C</u>	: Sa	nte F	e A	/enue	Э
Company: Rio Algom Mining		_	Grants NM 87020							
E-mail: Kent.Applegate	@bnp.com		Tele	phone:	505-	801-	1761			
Copy of Report to:										
Name: See Remarks			E-m	ail: Se	e Re	marks	3	_		
Company:				phone:				·		
Invoice to:										
Name: Kent Applegate				2		Cal	nte F	a A.		
Company: Rio Algom Mining		-		ants				e Av	enue	<u>}</u>
E-mail: Kent.Applegate	Obhn com	-								
			Tele	phone:	505-	001-	1/61			
Copy of Invoice to:										
Name: See Remarks			Addr	ess:						
Company:										
E-mail: See Remarks			Tele	ohone:						
If sample(s) received past holding	time (HT), or if insufficient	HT rem	ains to	comple	te				YES	~
analysis before expiration, shall Ad	Proceed with requested an. If neither "YES" nor "NO" is indicated	d short H	IT anal	yses?	el anna t				NO	
Are samples for SDWA Compliance	e Monitoring?		Yes		a anaiyses,	even if HT NO	is expired, a	nd data will	be qualified	
If yes, please include state forms. I	Results will be reported to	PQL for	Colora	ido.	1		L <u>·</u>			
Sampler's Name: <u>Kelly Hoehn</u> *Sampler's Signature:	_ Sampler's Site Informa	to the authen	State	alidity of the	s sample. 1	understan	de <u>8702</u>	malls: minte	Time Zo	one <u>MST</u> ne/date/location or
PROJECT INFORMATION	tamperin tamperin	ng with the sa	ample in an	yway, is con	sidered trat	id and pun	ishable by Si	ate Law.		
Quote #: BO48856				-			D (attach i	ist or use	quote nur	nber)
PO#: 4512060294			Jers							
Reporting state for compliance testing	······		of Containers	NRC-TRA						
Check box if samples include NRC lic			ŝ	U.						
SAMPLE IDENTIFICATION	DATE:TIME	Matrix		ЦЩ Ц						
33-01 TRA-02082022		GW	6	2						
31-01 TRA-R-02092022	2/9/2022 09:55	GW	-							
	2/0/2022 03.00	1000	<u> </u>	۲°-		_				
				<u> </u>						
	·······									
						_				
Matrix SW (Surface Water) · GW	(Ground Water) · WW (Waste W	/ater) · Dv	V (Drinki	ng Water) · SL (SI	udge) · (SO (Soil) ·	OL (Oil)	· Other (S	pecify)
REMARKS										
Please CC Report to	email list.									
Please refe	r to ACZ's terms & condit		otod -	n +k		a e	u	~		
RELINQUISHED BY:	DATE:TIN		ated o					C		
				R	CEIVE	DBY			DAT	E:TIME
UNE UNE.	Serm 2/9 15:	30			12	2_		2	142	6.29
·					$\overline{}$					
Qualtrax ID: 1984	Revision #: 2 White -	- Return	with s	ample.	Yell	ow - R	etain fo		ecorde	

