#### xLPR Update Planned/Proposed Industry Uses

Nate Glunt, Principal Technical Leader, EPRI MRP Craig Harrington, Technical Executive, EPRI MRP

Industry / U.S. Nuclear Regulatory Commission Materials Programs Technical Information Exchange May 25, 2022



in f
 www.epri.com
 © 2022 Electric Power Research Institute, Inc. All rights reserved.

## xLPR Update Agenda

- Leak-Before-Break (LBB) Application
- Estimation of LOCA Frequency for Fuels
  - Public Meeting
- Small Line LBB
- MRP-456
- New and Future xLPR Projects

|                                                                                                                                                                      | PR-2.1.gsp)                                                                                |                                                                                                                                                              |                                                                                                                                | - 0                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xLPR G                                                                                                                                                               | lobal Settings Dash                                                                        | board                                                                                                                                                        |                                                                                                                                | Version                                                                                                                                                                                                                                                                                       |
| Sampling Approact                                                                                                                                                    | h<br>p)<br>ize and random seed                                                             | Aleatory (Inner Loop)<br>Set up aleatory random se                                                                                                           | Click on 'Monte Carlo'<br>tab when window opens                                                                                | External Navigation<br>Inputs<br>Go to Excel Input Set                                                                                                                                                                                                                                        |
| Sample Size         1           (Display only)         1           Related Epistemic Sampling Inputs (Display Only)           Importance Sampling           Internal |                                                                                            | Sample Size<br>(Display only)     20       Related Aleatory Sampling Inputs (Display Only)       Importance Sampling     Adaptive Sampling       None     No |                                                                                                                                | Run TIFFANY<br>When Excel Input Set opens,<br>select 'Enable the add-in for this<br>session only: 'Double check all<br>values highlighted in pink to see<br>if they have changed. Go to the                                                                                                   |
| Discretization<br>No                                                                                                                                                 | Number of Strata*  1  Number of strata must be an integer greater than 1 and less than the | Discretization<br>No                                                                                                                                         | Number of Strata*<br>10<br>"Number of strata must be<br>an integer greater than 1<br>and less than the aleatory<br>sample size | top ribbon and select XLPR<br>Preprocessing' click on 'Run<br>TIFFANY: Pre-Mitigation State'<br>and let the code run. Click on<br>'Run TIFFANY: Post-Mitigation<br>State' and let the code run.<br>(Optional) Click on 'Inspect SDF<br>Database' to check the output<br>generated/input used. |
|                                                                                                                                                                      | epistemic sample size                                                                      |                                                                                                                                                              |                                                                                                                                |                                                                                                                                                                                                                                                                                               |



#### **LBB** Application Update

- EPRI-MRP is developing a series of MRP reports documenting various xLPR application studies and recommendations
  - 1. xLPR-LBB Application Summary documentation of collaboration work with NRC RES (2022)
    - Include index and summary of all xLPR runs made in the single weld analysis and generalization study (not just NRC runs in the TLR)
    - General discussion on combining single weld results into a system or plant wide conclusion
  - 2. Correlation between Deterministic LBB and Probabilistic LBB (2023)
  - 3. Small Line LBB (2022/2023)
    - Additional details later in presentation
  - 4. Use these individual reports to build a compendium of significant considerations, lessons learned, and recommendations for probabilistic applications (2023)
    - Additional discussion/guidance on PFM acceptance criteria
    - Potentially revising the report from time to time to include additional insights as the relevant experience base from application projects expands



## **Estimation of LOCA Frequency for Fuels Application**

- An EPRI study to determine alternative licensing approaches for high burnup fuels (EPRI 3002018457) identified two topics in which input from the xLPR code is desired
  - 1. Probability of Large and Medium Break LOCAs in PWRs
  - 2. Whether leakage may be detected in sufficient time to allow reactor shutdown precluding rupture
- To inform these topics EPRI has embarked on a two-phase project
  - Objective: Perform Probabilistic Fracture Mechanics (PFM) evaluation using xLPR to calculate the probabilities of LOCAs in PWRs as a function of line size and develop statistics on time between detectable leakage and rupture





## **Estimation of LOCA Frequency for Fuels Application**

Phases

- Phase 1 complete
  - <u>EPRI 3002020358</u>, "An Assessment of xLPR Estimation of Loss-of-Coolant Accident Frequencies" was <u>published</u> in October 2021
    - Investigated the feasibility of using xLPR to develop analytically derived LOCA frequency estimates to complement and compare against those in NUREG-1829
    - Compiled estimates of time from leak-to-rupture
    - "Proof-of-concept" assessment to develop methodology
- Phase 2
  - Extend the methodology to a variety of other lines included in the scope of NUREG-1829
  - Currently gathering inputs and creating the run matrix for the PWR lines in NUREG-1829 that remain unanalyzed
    - Chemical volume and control system
    - Residual heat removal
    - Safety relief valve lines
    - Pressurizer spray lines
  - Once data gathering is complete the case matrix will be finalized and new runs can begin
    - Use the soon to be released xLPR V2.2 code



## **Public Meeting**

- A public meeting is planned to discuss further details on EPRI's use of xLPR in support of the broader Fuels Alternate Licensing Strategy
  - June 14<sup>th</sup>, 1:00 PM
- Topics to be discussed include:
  - Alternative Licensing Strategy Overview
  - Scoping Study Overview and Key Outcomes
  - Phase 2 Scope Description
  - Case Matrix Development
  - Inputs Development
  - Schedule



EPRI

#### **Small Line LBB**

- Objective: Explore LBB applicability to smaller line sizes below what is currently supported under US regulations by deterministic LBB – NPS 6 (DN 150) – using the xLPR code
  - Focused on PWSCC-susceptible DM welds
  - The evaluations considered a single initial surface crack as well as multiple cracks that have coalesced to form one long circumferential crack and the effect of mitigation by Weld Overlay
- Results
  - The study demonstrated the limitations in the underlying assumptions of deterministic LBB (e.g., throughwall flaw) and the broader insights that can be derived from a probabilistic methodology
  - Highlighted limitations in applying LBB to small diameter DM welds in the presence of PWSCC since rupture by surface cracks instead of through-wall cracks cannot be summarily dismissed (break-beforeleak)
  - WRS profile used in the evaluation has strong influence on the probability of rupture
    - In agreement with several other xLPR projects
  - When mitigated by Weld Overlay the occurrence of rupture is nearly zero
- EPRI report to be published late 2022/early 2023

#### Summary to be published in PVP2022-86180



## Assessment of Small Diameter DM Weld Inspection Intervals Using xLPR (MRP-456)

- Purpose: Utilize xLPR with MRP-420 crack growth rates to assess the prospect of aligning all unmitigated dissimilar metal (DM) butt welds at Cold Leg temperatures to the same inspection interval
- The PFM conclusions are summarized as follows:
  - The proposed 10-year inspection interval for the Medium DM butt welds met the acceptance criteria
  - The proposed 10-year inspection interval for the Small DM butt welds were conditional on two 7-year inspections having been previously performed
- The DFM evaluations indicate that sufficient margin exists to support an extended exam interval
  - Plants must demonstrate plant-specific applicability to the analysis
- <u>Materials Reliability Program: Evaluation of Cold Leg Piping</u> <u>Dissimilar Metal Butt Weld Inspection Frequencies (MRP-456)</u>

| Small Weld  | < NPS 8        |
|-------------|----------------|
| Medium Weld | >NPS 8 (< RCL) |



## New and Future xLPR Projects

- Identification of efficiency improvement options for the xLPR Framework
  - Goal of improving code efficiency allowing for simplified analyses and more diverse options for new applications
- Evaluate incorporation of IGSCC for BWR applications
  - Identify changes needed for xLPR to accommodate IGSCC
- Identification of Large Break LOCA Reduction Opportunities
  - Goal of identifying opportunities where xLPR can be used in a similar manner to the High Burnup Fuels alternate licensing approach to reduce the burden associated with Large Break LOCA
- Build on inspection optimization opportunities and expand on MRP-456
  - Results for several projects, although limited, show the probability of rupture after mitigation is extremely low



# 

#### Together...Shaping the Future of Energy®

