

Advancing Nonelectric Applications of Nuclear Energy for Economy-wide Net Zero Solutions

NRC Regulatory Information Conference Reimagining Nuclear's Role in Energy and the Electric Grid (virtual) March 8, 2022

Shannon Bragg-Sitton, Ph.D.

Director, Integrated Energy & Storage Systems National Technical Director, DOE-NE Integrated Energy Systems shannon.bragg-sitton@inl.gov

Cross-sectoral energy solutions provide opportunities to achieve net-zero while maintaining grid stability and affordability

Future Energy System

Integrated grid system leverages contributions from nuclear fission and other low emission energy

 Maximize energy utilization and generator profitability

Goals:

- Minimize environmental impacts
- Maintain affordability, grid reliability and resilience

Summary of potential nuclear-driven IES opportunities

IES involve

- Thermal, electrical, and process intermediates integration
- More complex systems than cogeneration, poly-generation, or combined heat and power
- May exploit the economics of gridcoordinated energy systems
- May provide grid services through demand response (import or export)

Reactor sizes and temperatures align with the needs of each application

Source: INL, National Reactor Innovation Center (NRIC) Integrated Energy Systems Demonstration Pre-Conceptual Designs, INL EXT-21-61413, Rev. 1, April 2021

Natural gas versus LWR steam costs

- Plot shows estimated cost of high-pressure steam production using natural gas and nuclear energy
- Existing LWR plants produce high-pressure steam for \$4.00–5.25/1000-lb (\$8.80-11.55/1000-kg), depending on
 - Size of the nuclear plant
 - Capital recovery for upgrades to the plant.
 - This is currently 15–45% lower than the cost of producing steam using a NG package boiler (without CO2 emissions tax)
- Arrows indicate U.S. DOE Energy Information Agency (EIA) cost projections for natural gas

Figure extracted from Frick, et al., 2019, <u>Evaluation of Hydrogen Production for a</u> <u>Light Water Reactor in the Midwest</u>

Identifying the right configuration: Analysis and optimization of integrated energy system options

NPV (M\$)

- 1000

- 750

- 500

250

- 0

-250

-500

-750

-1000

Integrated Energy Systems

Step	Notes	NPV by
1. Identify IES scenarios of interest	Renewable availability, reactor type, energy needs, e.g., flexible electricity supply, heat, hydrogen, desalination	7.2
2. Specify data inputs for each scenario	Societal energy demand, approximate plant capacities, refueling cycle, outages, lifetimes, maintenance schedules, etc.	5.4 Market Size (kg
3. Specify economic inputs for each scenario	Capex, opex, energy price time series, interest rates, etc. using region-specific data	1.8
4. Apply suite of analysis tools to evaluate each scenario	Optimal sizing of coupled systems relative to societal energy demand and other production resources, optimal dispatch of energy from each resource, operational constraints, ranges of potential capex and opex during plant lifetimes, optimization of economic metrics,	Example: Differ co-generating i
	etc.	Discount rate =

y Capacity, Discount Rate = 8% 7.4 5.6 3.8 HTSE Capacity (kg/sec)

Example: Differential NPV over 17 years, co-generating nuclear station in PJM market, high hydrogen selling prices. Discount rate = 8%, corporate tax rate = 21%, yearly inflation = 2.188%.

Identifying the right configuration: Analysis and optimization of integrated energy system options

Step	Notes
1. Identify IES scenarios of interest	Renewable availability, reactor type, energy needs, e.g., flexible electricity supply, heat, hydrogen, desalination
2. Specify data inputs for each scenario	Societal energy demand, approximate plant capacities, refueling cycle, outages, lifetimes, maintenance schedules, etc.
3. Specify economic inputs for each scenario	Capex, opex, energy price time series, interest rates, etc. using region-specific data
4. Apply suite of analysis tools to evaluate each scenario	Optimal sizing of coupled systems relative to societal energy demand and other production resources, optimal dispatch of energy from each resource, operational constraints, ranges of potential capex and opex during plant lifetimes, optimization of economic metrics, etc.

Tool suite for technoeconomic assessment and optimization

Tools for technoeconomic assessment of IES configurations with workflow automation

- FORCE
 - Integrate physical plant modeling with technoeconomic optimization
- **HERON**: Holistic Energy Resource Optimization Network
 - Dispatch flexible systems and optimize technoeconomic analysis
- **RAVEN**: Risk Analysis Virtual ENvironment
 - Integrate physical input uncertainties and probabilistic time series data
- **HYBRID**: High fidelity, dynamic model repository
 - Simulation of physical plant processes
- TEAL: Tool for Economic AnaLysis
 - Integrate economic input uncertainties and calculate financial metrics
- FARM: Feasible Actuator Range Modifier
 - Supervisory control

See <u>https://ies.inl.gov/SitePages/System_Simulation.aspx</u> for more information and to access open source tools. Training opportunity for FORCE, March 17, 18, 23, 24 (12 hours) – see <u>flyer</u> for details.

Framework for Optimization of ResourCes and Economics (FORCE)

<u>HERON</u>

RAVEN

- Stochastic Analysis
- Synthetic Histories

TEAL

- Economic Metrics
- Cash Flows

HYBRID

- Transient Modeling
- Experiment Validation

FARM

- Process Analysis
- Al Training, Control

Nuclear-H₂ production demonstration projects

Constellation (Exelon): Nine-Mile Point NPP

- 1 MWe Low Temperature Electrolysis (LTE)/PEM, nel hydrogen
- Using "house load" power
- PEM skid testing underway at NREL
- H₂ production beginning ~October 2022

Energy Harbor: Davis-Besse NPP

- 1-2 MWe LTE/PEM Vendor 2
- Power provided by completing plant upgrade with new switch gear at the plant transmission station
- Installation to be made at next plant outage
- Contract start October 2021; H₂ production ~2023/24
- Xcel Energy: Prairie Island NPP
 - 150 kWe High Temperature Electrolysis (HTE)/SOEC Vendor 1
 - Tie into plant thermal line engineering is being planned
 - Design complete Q4 2022; Installation, testing complete Q1 2024

APS/PNW Hydrogen: Palo Verde Generating Station

- 15-20 MWe LTE H2 production, ~6-8 tons H2/day
- Colocate H₂ production at the site of use
- H_2 storage + H_2 to gas peaking turbines (50%), syngas pilot
- H₂ production expected early 2024

https://ies.inl.gov

🜔 aps

Exelon.

energy harbor

2 Xcel Energy[™]

Nine Mile Point Nuclear Power Plant LTE/PEM Vendor 2

Thermal & Electrical Integration at Xcel Energy Prairie Island NPP HTE/Vendor 1 Davis-Besse Nuclear Power Plant LTE-PEM Vendor 1

Palo Verde Gen Station Hydrogen Production for Combustion and Synthetic Fuels

PRA for thermal integration of steam electrolysis: Summary conclusions

INL/EXT-20-6010

- Generic probabilistic risk assessment (PRA)
 investigation into licensing considerations
- Identified top hazards
 - Internal: Steam line break, loss of offsite power
 - External: HTE H₂ leak or H₂ detonation
- Key conclusions
 - Licensing criteria is met for a large-scale HTE facility sited 1 km from a generic PWR and BWR
 - Safety case for less than 1 km distance is achievable
- Other insights
 - Individual site NPP and geographical features can affect the results of the generic PRA positively or negatively
 - Generic PRAs in the study are examples for official site studies for use in licensing

Kurt Vedros, INL, <u>Kurt.Vedros@inl.gov</u>
Robby Christian, INL, Robby.Christian@inl.gov
OSTI link https://www.osti.gov/biblio/1691486

Light Water Reactor Sustainability Program

Flexible Plant Operation and Generation Probabilistic Risk Assessment of a Light Water Reactor Coupled with a High-Temperature Electrolysis Hydrogen Production Plant

NRC jurisdictional boundary for LWR servicing an HTE facility

October 2020

fice of Nuclear Energy

https://ies.inl.gov

Dynamic Energy Transport and Integration Laboratory (DETAIL) for electrically heated testing of integrated systems

IDAHO NATIONAL LABORATORY

Hydrogen Regulator Research & Review Group (H3RG)

Idaho National Laboratory

WWW.INL.GOV