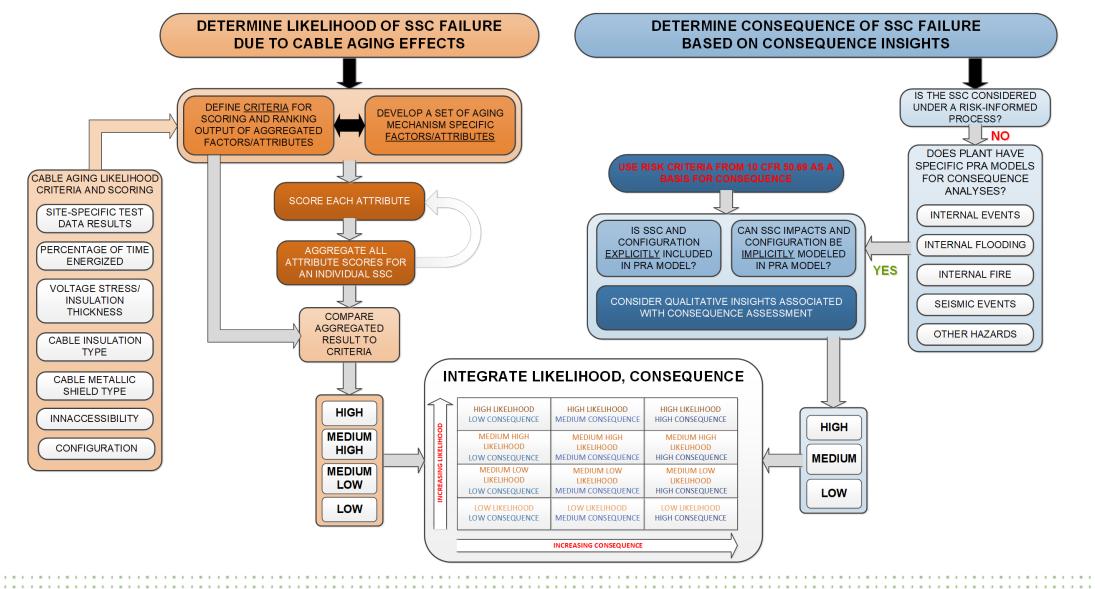


NRC RIC 2022

Risk-Informing License Renewal – Exploring the Potential Callaway Cable Pilot Example

Jessica Bock, Callaway Energy Center (Ameren) Cable Program Engineer

Cable Pilot Background



- EPRI initiative for risk-informing aging management
- Callaway participated in a pilot on the XI.E3 AMP (Inaccessible non-EQ cables)
 - The focus on this AMP is aging of cables from moisture
- Large scope of cables means significant time & resources for AMP required testing
- Objective: Provide solid technical bases for extending the test frequency of low risk MV cables from 6 years to 10 years
- Approach: Leverage risk insights to
 - Reduce efforts for cables with lower likelihood of failure and limited plant impact
 - Focus resources on cables where risk insights suggest more significant risk contribution

Overview of the risk-informed process utilized

Callaway Energy Center

Likelihood Table Development

- Likelihood aspects were developed specific to cable degradation due to wetting.
- Goal to create a likelihood index that can work for most plants.
- Parameters were determined, scored, and weighted based on influence to the failure mechanism.
- Scoring ranges were developed for low/medium-low/medium-high/high likelihood risk.
- Likelihood = living process that will require occasional updates if testing/inspection conditions change

Likelihood – Reference Table

LIKELIHOOD INDEX						
	5	4	3	2	1	0
Insulation	XLPE, Butyl rubber, compact				Pink/Brown EPR, TR- XLPE	PILC
Inaccessibility	Can't keep dry		Occasional wetting	Historically wet, but now kept dry	Always dry	
Shield Type			Zinc - wet	Zinc - dry	Copper, concentric, etc.	
Splices			Multiple splices	One splice	No splices	
Voltage Stress Ratio (V rating / service V)	<1		≥1 & ≤3 with 100% insulation rating *If shielded and unknown, assume 100%	 ≥1 & ≤3 with ≥133% insulation rating *If unshielded and unknown, assume ≥133% 	>3	
Energization			>50% energized	≥25% & ≤50% energized	<25% energized	Never energized (installed spare)
Test Data	Action required	Further study required	No data – wet *assume previous wet cases until tested otherwise	No data - dry	One good test	Multiple good tests

Likelihood Scores & Callaway results

LIKELIHOOD SCORES:	
HIGH	≥23
MEDIUM-HIGH	19-22
MEDIUM-LOW	15-18
LOW	≤14
Minimum Score: 3	

Maximum Score: 27

 Each Callaway cable was evaluated and scored for likelihood

- Callaway results for 59 test groups (111 individual MV cable #s):
 - LOW = 43 test groups
 - MEDIUM-LOW = 12 test groups
 - MEDIUM-HIGH = 4 test groups
 - HIGH = no test groups
 - This result was expected due to Callaway cable types and dewatering systems on most locations.

Consequence

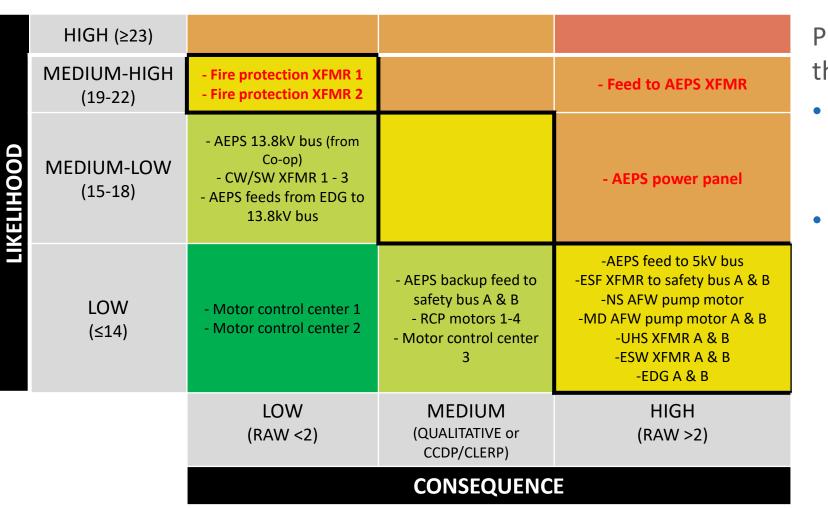
- Consequence evaluation can utilize existing plant PRA processes such as 50.69.
- Callaway does not have 50.69 yet; other PRA models and qualitative information was utilized.
 - This successfully showed different methods already available to the plant can be utilized.
- Consequence focused on single-failure of the cable and the loss of connected equipment.
- The equipment of the highest plant impact was evaluated.

Consequence

CONSEQUENCE SCORES:		
HIGH	PRA risk significant (max CDF or LERF RAW >2)	
MEDIUM	Not PRA risk significant, but augmented due to: -Qualitative: trip/partial trip or other higher significance to the plant, or impact to safety systems -CCDP/CLERP values	
LOW	Not PRA risk significant	

- Each cable was evaluated and classified as low, medium, or high consequence.
- Callaway results for the 59 test groups:
 - LOW = 16 test groups
 - MEDIUM = 13 test groups
 - HIGH = 30 test groups

Risk Matrix


- A risk matrix was developed using the 4 levels in the likelihood and 3 levels in the consequence
- Created three regions of proposed actions
 - Ensures the high likelihood cables remain at a frequency ≤6 years
 - High consequence cables either remain at a frequency ≤6 years or needs solid engineering justification to extend to 10 years (ONLY with low likelihood)

		Am. Misso		Callaway inergy Center
	HIGH	≤6	≤6	≤6
ПООН	MEDIUM-HIGH	6/10	≤6	≤6
LIKELIHOOD	MEDIUM-LOW	10	6/10	≤6
	LOW	10	10	6/10
		MOJ	MEDIUM	HIGH
		CONSEQUENCE		

SU

			PROPOSED FREQUENCIES:
	≤6	≤6	Keep 6 years or less
		≤6/10	Keep 6 years <u>OR</u> solid engineering justification to extend to 10 years
:	10	10	Consider extending to 10 years

Risk Matrix – Preliminary Callaway Results

PRELIMINARY results suggest of the 59 tan delta test groups:

- <u>54 test groups</u> have a technical justification to extend to a 10 year frequency
- 5 test groups currently suggest remaining at a 6 year frequency
 - 2 groups due to HIGH consequence and likelihood >LOW
 - 3 groups (fire protection xfmrs) due to OE on the cables and engineering judgment

Pilot insights:

- Adds flexibility and reduces burden for low risk cables
- Reduced risk of inherent intrusive maintenance and maintenance-induced failures
- For Callaway, estimated cost reduction of ~<u>\$6,500 to \$17,000</u> per eliminated test. Total cost avoided in a 20 year period is estimated <u>~\$600,000</u> based on elimination of an average of 2 test occurrences for each justified cable.
 - Potential application of framework to other AMP requirements = more cost/labor reduction
- Based on the success of the pilot, Callaway is pursuing other opportunities to apply the framework

Questions?

