Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards BWRX-300 Subcommittee
Docket Number:	(n/a)
Location:	teleconference
Date:	Friday, March 18, 2022

Work Order No.: NRC-1887

Pages 1-106

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	BWRX-300, REVIEW TOPICAL REPORT NEDO-33914,
8	"ADVANCED CIVIL CONSTRUCTION AND
9	DESIGN APPROACH LTR" SUBCOMMITTEE
10	+ + + +
11	FRIDAY
12	MARCH 18, 2022
13	+ + + +
14	The Subcommittee met via Video
15	Teleconference, at 8:30 a.m. EDT, Jose March-Leuba,
16	Chairman, presiding.
17	COMMITTEE MEMBERS:
18	JOSE MARCH-LEUBA, Chair
19	RONALD G. BALLINGER, Member
20	VICKI BIER, Member
21	CHARLES H. BROWN, JR. Member
22	VESNA DIMITRIJEVIC, Member
23	GREG HALNON, Member
24	DAVID PETTI, Member
25	JOY L. REMPE, Member
	I

		2
1	ACRS CONSULTANT:	
2	STEPHEN SCHULTZ	
3		
4	DESIGNATED FEDERAL OFFICIAL:	
5	LAWRENCE BURKHART	
6	HOWARD KENT	
7		
8	ALSO PRESENT:	
9	OSSAMA ALI, GEH	
10	DAVID CALHOUN, Black & Veatch	
11	JOSEPH COLACCINO, NRR	
12	JESUS DIAZ-QUIROZ, GEH	
13	MICHAEL DUDEK, NRR	
14	AMITAVA GHOSH, NRR	
15	BRANDON GOMER, Black & Veatch	
16	DAVID HINDS, GEH	
17	TANYA KIRBY, GEH	
18	AI-SHEN LIU, GEH	
19	JUN MATSUMOTO, GEH	
20	LISA SCHICHLEIN, GHH	
21	ALINA SCHILLER, NRR	
22	JAMES SHEA, NRR	
23	ANGELO STUBBS, NRR	
24	EDWARD STUTZCAGE, NRR	
25	JORDAN SUPLER, GEH	
Į	1	

		3
1	LUBEN TODOROVSKI, GEH	
2	JER-WEI "MICHAEL" TZANG, GEH	
3	GEORGE WADKINS, GEH	
4	WEI ZHENG, Black & Veatch	
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I		

	4
1	C-O-N-T-E-N-T-S
2	PAGE
3	Opening Remarks
4	Discussion of GE-Hitachi Topical Report,
5	"BWRX-300 Advanced Civil Construction and
6	Design Approach"
7	Staff's Evaluation of GE-Hitachi's
8	Topical Report
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
Į	I

	5
1	PROCEEDINGS
2	(8:30 a.m.)
3	CHAIR MARCH-LEUBA: Okay, the meeting will
4	now come to order.
5	This is a meeting of the BWRX-300 and the
6	ACRS Subcommittee. I am Jose March-Leuba, the SC
7	Chairman.
8	Because of Covid-19 concern, this meeting
9	is being conducted in a hybrid manner. In addition to
10	the in-person attendance at NRC Headquarters, the
11	meeting is broadcasted via MS Team.
12	Members in attendance are Ron Ballinger,
13	Greg Halnon, Dave Petti, Joy Rempe, and myself. We
14	also have our consultant Steve Schultz.
15	MEMBER BIER: Jose?
16	CHAIR MARCH-LEUBA: And, Vicki Bier has
17	made it.
18	MEMBER BIER: Totally.
19	CHAIR MARCH-LEUBA: Today's topic is
20	topical report NEDC-33914P by General Electric-
21	Hitachi, entitled BWRX-300, Advanced Civil
22	Construction and Design Approach.
23	All our meeting will be open to the
24	public.
25	We have not received request to provide
	1

(202) 234-4433

	6
1	comments, but we have an opportunity for a spur of the
2	moment public comments before the end of the meeting.
3	The ACRS was established by a statute and
4	is governed by the Federal Advisory Committee Act,
5	FACA.
6	As such, the committee can only speak
7	through its published letter reports. The rules for
8	participation in all ACRS meetings were announced in
9	the Federal Register, on June 13, 2019.
10	The ACRS section of the U.S. NRC public
11	website, provides our charter, bylaws, agendas, letter
12	reports, and full transcripts for the open portions,
13	and all, of all full and subcommittee meetings,
14	including the slides presented there.
15	The designated federal official today is
16	Kent Howard.
17	A transcript of the meeting is being kept,
18	therefore, speak into the microphones clearly, and
19	state your name for the benefit of the court reporter.
20	Especially if you are joining the meeting using the
21	bridge line.
22	Please keep the microphone on mute when
23	not in use, and don't use videotape to minimize
24	bandwidth problems.
25	We are expecting to address this topic
I	

(202) 234-4433

	7
1	during the full committee meeting on April 7, and
2	possibly write a letter.
3	At this point, I would like to request
4	Mike Dudek from NRC, to present his opening remarks.
5	Go ahead, Mike.
6	MR. DUDEK: Thank you, sir.
7	Good morning, Subcommittee Chairman March-
8	Leuba, and the rest of the ACRS Subcommittee. Thank
9	you for your attention in this very important matter
10	today.
11	GE-Hitachi submitted this licensing
12	topical report to the staff in January of 2021,
13	entitled the Advanced Civil Construction and Design
14	Approach Methodology.
15	And, really at the end of the day, they
16	submitted this topical report as a, as to help their
17	design and analysis approach for construction during
18	future licensing activities.
19	But really, the purpose of the licensing
20	topical report is to provide guidelines for design
21	analysis, monitoring, and requirements for the
22	construction of their new, small modulate reactor
23	design, the BWRX-300.
24	This comprehensive approach and safe
25	operation was evaluated, design approach was evaluated
ļ	I

(202) 234-4433

	8
1	by the staff over the last eight to 10 months.
2	We diligently had several discussions,
3	public meetings, and RAI clarification calls with GE-
4	H, that went very, very well.
5	This was a very good technical back and
6	forth with the NRC's technical staff, and their
7	counter-parts at GE-H. And, I think we developed a
8	very good product.
9	So, the staff is excited about presenting
10	this to you today, and we hope to hear your feedback,
11	and your insights.
12	So, without any further ado, I'll turn it
13	back over to you, Subcommittee Chairman March-Leuba.
14	CHAIR MARCH-LEUBA: Thank you, Mike.
15	And, we're going to transfer to General
16	Electric, who will make their first presentation. I
17	believe probably George Wadkins is going to give us
18	some introduction remarks.
19	GE, go ahead.
20	MR. WADKINS: Yes, thank you.
21	Good morning, my name is George Wadkins.
22	I am the Vice-President New Power Plants and Products
23	Licensing for GE-Hitachi.
24	I wish to thank the ACRS Subcommittee for
25	allowing us to present this overview of the BWX-300
	I

(202) 234-4433

```
www.nealrgross.com
```

	9
1	Small Modular Reactor Design, with emphasis on the
2	description of the content for this licensing topical
3	report, NEDO-33914, BWX-300 Advanced Civil
4	Construction and Design Approach.
5	Today we will be providing an overview of
6	the layout of the BWRX-300 buildings, and describe the
7	design analyses, construction, inspection, and
8	monitoring approaches used for the BWX-300 deeply
9	embedded below-grade reactor building.
10	As noted in our previous discussions with
11	ACRS members, the BWX-300 builds upon our extensive
12	experience in boiling water reactor technology.
13	Including our most recent experiences in development
14	and certification, of the economic simplified boiling
15	water reactor, or ESBWR.
16	A major difference between the ESBWR and
17	the BWX-300 is in the use of a below-grade reactor
18	building, and in the innovative construction approach
19	to be used.
20	The ESBWR utilized a much larger nuclear
21	island, using tradition site excavation and
22	preparation methods, and traditional design for the
23	building foundations and structures.
24	The innovative design of the deeply
25	embedded below-grade reactor building, affords
Į	I

(202) 234-4433

	10
1	significant cost savings and materials, and in
2	construction labor, and time, while providing a robust
3	structure for housing the safety related systems and
4	components of the BWRX-300.
5	I first want to thank the NRC staff for
6	their in-depth, professional review of this licensing
7	topical report.
8	The interactions with the NRC staff were
9	extremely useful in ensuring that the content of the
10	licensing topical report were complete,
11	understandable, accurate, and met the applicable
12	regulatory requirements and guidance.
13	I look forward to continuing this, and
14	future interactions, with the NRC staff and ACRS.
15	Next slide, please.
16	For this meeting, we are providing for an
17	extensive open session discussion of the content of
18	this licensing topical report, as shown in this
19	agenda.
20	This licensing topical report does not
21	contain any proprietary information.
22	During our presentation, we will pause at
23	the end of each slide to allow for questions from the
24	ACRS members, but please feel to raise questions at
25	any time.
ļ	

(202) 234-4433

```
www.nealrgross.com
```

	11
1	In the unlikely event that discussions do
2	involve proprietary information, then we will request
3	tabling that question until a closed session can be
4	established.
5	Next slide, please.
6	I will now turn over the presentation to
7	Lisa Schichlein, the U.S. Licensing Manager for the
8	BWX-300.
9	CHAIR MARCH-LEUBA: Lisa, let me interrupt
10	you for a moment. Two things first.
11	I referred to this topical report as an
12	NEDC in my opening remarks, and I note it is an NEDO.
13	It's just a, sorry, I mean, almost all reports we
14	review are always proprietary. And the NEDOs are not.
15	And I also wanted to mention that members
16	Vesna Dimitrijevic and Charlie Brown, have joined us.
17	Go ahead, GE.
18	MR. WADKINS: Thank you.
19	MS. SCHICHLEIN: Thank you.
20	Good morning, my name is Lisa Schichlein
21	as George mentioned, and I am the U.S. Licensing
22	Manager, for new power plants and products at GE-
23	Hitachi Nuclear Energy Americas.
24	I would like to thank the ACR Subcommittee
25	for the opportunity to present the BWRX-300 Advanced
ļ	I

(202) 234-4433

	12
1	Civil Construction and Design Approach licensing
2	topical report.
3	With me on the call today are Licensing
4	Engineer Lamia Chouha, Ossama Ali, the Engineering
5	Manager for Civil and Balance of Plant Systems, Luben
6	Todorovski, Principal Engineer for Civil and
7	Structural, Tanya Kirby, a Senior Project Engineer.
8	Jordan Supler, a Senior Civil and
9	Structural Engineer, David Hinds, the Principal
10	Engineer for Plant Integration, and Jesus Diaz, the
11	U.S. Licensing Manager for the U.S., for the BWRX-300.
12	And, from Black & Veatch, we have Brandon
13	Gomer and Wei Zheng, Geologist and Geotech Engineer,
14	respectively.
15	We also have Engineering Manager Michael
16	Tzang, and Nuclear Chief Engineer David Calhoun. And
17	finally with us today, are Bernard Gilligan and Jun
18	Matsumoto, from Hitachi America, Ltd.
19	As questions arise, I may call upon one or
20	more of these people to address the question.
21	Before we begin, I understand it would be
22	helpful to show the ACRS Subcommittee, the BWRX-300
23	buildings discussed in the topical report, along with
24	their seismic classifications, and clarify the grade
25	level for the reactor building shaft.
I	

(202) 234-4433

This figure illustrates the conceptual site plot plan for a BWRX-300 single unit plant. The control building, turbine building, and rad waste building structures, are supported by a near-surface base mat foundation, and are located adjacent to the deeply embedded seismic category 1 reactor building structure.

8 The control building, turbine building, 9 and rad waste building structures, are separated from 10 the reactor building by seismic gaps.

The rad waste building, which houses the systems for management of radioactive gas, liquid, and solid radiological waste, is categorized as an RW2A, in accordance with Regulatory Guide 1.143.

The control building, which houses the 15 control room, electrical control and instrumentation 16 17 equipment, and the turbine building, which encloses the turbine generator, main condensor, condensate and 18 19 feedwater systems, condensate purification system, refrigerant 20 off-qas cooler and dryer, turbine generator support systems and the bridge crane, are 21 non-seismic. 22

23 CHAIR MARCH-LEUBA: So, let me, it's okay,
24 you can keep the slide. This is better.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

The only seismic class 1 is the reactor

(202) 234-4433

25

1

2

3

4

5

6

7

	14
1	building, the one that contains the nuclear island?
2	MS. SCHICHLEIN: Correct.
3	CHAIR MARCH-LEUBA: And, everything else
4	interfaces to it? That you have to deal with?
5	MS. SCHICHLEIN: Correct.
6	CHAIR MARCH-LEUBA: Thank you.
7	MS. SCHICHLEIN: Moving on to slide 5, this
8	figure is a cut away of the plant, which illustrates
9	the ground level.
10	The reactor pressure vessel, the pressure
11	containment vessel, and other important safety related
12	systems and components, are located in the below-grade
13	reactor building, vertical right cylinder shaft, to
14	mitigate the effects of possible external events,
15	including aircraft impact, adverse weather, flooding,
16	fires and earthquakes.
17	MEMBER BROWN: Lisa, what is the, in the
18	seismic gas, what material is in there?
19	MS. SCHICHLEIN: I'm going to defer that
20	question, if possible, to Luben Todorovski, with
21	please unmute and address that question.
22	Thank you.
23	MR. TODOROVSKI: Yes, I think the better
24	one will be David Hinds to answer this.
25	MEMBER BROWN: Could you show where the

	15
1	seismic gaps are also?
2	MR. TODOROVSKI: Oh, the seismic gaps.
3	MEMBER BROWN: In between the buildings.
4	CHAIR MARCH-LEUBA: No, the
5	(Simultaneous speaking.)
6	MEMBER BROWN: Okay, I got it.
7	CHAIR MARCH-LEUBA: The amounts that you
8	see is minor there, so.
9	MEMBER BROWN: Oh, okay. All right, I
10	figured that was it, I just needed to make sure I
11	knew.
12	Thank you.
13	MR. HINDS: Yes, there's no plans for
14	anything in the seismic gap, if that was the question.
15	There's of course, some coverage to keep
16	the weather out, and to maintain the materials. But
17	there's no plans for any equipment, or any materials
18	in that gap.
19	MEMBER HALNON: Okay, so how do you keep
20	water from coming up and down based on ground table
21	issues, and ground water issues, and rain and stuff?
22	I mean, you said a covering. I can
23	understand the outside, but is it open to just the
24	ground if the groundwater should come up?
25	MR. HINDS: Luben or others
I	I

(202) 234-4433

	16
1	(Simultaneous speaking.)
2	MR. TODOROVSKI: Yes, yes, it will be
3	protected from the roof so no water can enter inside.
4	And, there will be a gap. It will be the
5	(Simultaneous speaking.)
6	MEMBER HALNON: Okay, so it's an open gap.
7	MR. HINDS: Between the structure, right.
8	MEMBER HALNON: There's no cork or any
9	other material in it?
10	MR. HINDS: No.
11	MEMBER HALNON: Okay. Thanks.
12	MS. SCHICHLEIN: Any further questions
13	before I move to the next slide?
14	(No audible response.)
15	MS. SCHICHLEIN: Let's now shift gears to
16	discuss the purpose and scope, for the topical report.
17	GE-H is seeking NRC approval for the
18	application of an alternative approach to the
19	construction, analyses and design, of the BWRX-300
20	below-grade reactor building.
21	To that end, the topical report presents
22	design analysis, and monitoring guidelines and
23	requirements, to support our request for approval for
24	an innovative and comprehensive construction approach,
25	for the construction of the below-grade BWRX-300 small
	1

(202) 234-4433

	17
1	modular reactor, reactor building vertical right
2	cylinder shaft.
3	Over the next few slides I've listed some
4	of the criteria methodologies recommendations, and
5	approaches in the topical report. We will be covering
6	these in more detail in later slides.
7	Details
8	(Simultaneous speaking.)
9	CHAIR MARCH-LEUBA: Lisa, let me interrupt
10	you at a high-level question that is dear to my heart
11	a little bit.
12	Topical reports are typically used to
13	define a methodology that later on, is referred by
14	reference in application.
15	So is this your intention that you will
16	have a final section license report, or license
17	request that will make a reference to this topical
18	report?
19	So this is not defining the design of the
20	BWRX-300?
21	MS. SCHICHLEIN: Correct.
22	CHAIR MARCH-LEUBA: It's only defining a
23	methodology that will be used in the future, to prove
24	that X-300 is correct?
25	MS. SCHICHLEIN: Yes, that is correct.
I	I

(202) 234-4433

	18
1	CHAIR MARCH-LEUBA: Okay, thank you.
2	And, one more question. Would you be very
3	upset if I called your reactor an X-300? Because
4	BWRX-300 is kind of long.
5	(Laughter.)
6	MS. SCHICHLEIN: For the purposes of this
7	meeting, that is acceptable. That's fine. Thank you.
8	CHAIR MARCH-LEUBA: Okay, in writing we
9	always put the long name, okay? Thank you.
10	MS. SCHICHLEIN: The details on this
11	includes the following. The topical report presents
12	deterministic and probabilistic evaluation approaches,
13	to demonstrate that the one-step approach provides
14	conservative design demands, on the deeply embedded
15	reactor building structure.
16	To support the NRC staff review of the
17	one-step model, the topical report includes the
18	approaches used for developing the equivalent linear
19	static and dynamic, sub-grade properties that are used
20	as inputs to the one-step design analysis model.
21	The requirements and methodologies for
22	developing safe shutdown earthquake ground spectra, to
23	define the design ground motion along the depth of the
24	reactor building embedment, the additional
25	requirements for generating acceleration time
	I

(202) 234-4433

19 1 histories, as input the seismic soil-structure interaction analyses. 2 3 The seismic soil-structure interaction 4 analysis approach, that provides then the bands for 5 the seismic design and qualification of structures, of 6 systems and components, for all frequencies 7 interest. information is included 8 This to 9 demonstrate that the approach adequately captures the effects of structure soil-structure interaction, for 10 the deeply embedded reactor building with adjacent 11 structures and foundations. 12 It also includes different approaches that 13 14 can be taken, to demonstrate consistency between the 15 results from deterministic soil-structure the 16 interaction analyses of the reactor building 17 structure, with the results from the probabilistic site response analyses. 18 19 It also includes approaches for performing sensitivity evaluations from the effects of concrete 20 cracking, soil-structure interface conditions, soil 21 separation, and groundwater variations on the seismic 22 response, and design of the deeply embedded reactor 23 24 building structure. It includes the comprehensive approach for 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 evaluating the effects of non-vertically propagating 2 seismic waves on the design ground motion, and seismic 3 response of the deeply embedded reactor building 4 structure.

5 Different approaches for considering structure interaction, 6 equipment to develop in-7 structure seismic response demands, for equipment 8 design and qualification.

Recommendations for performing non-linear 9 10 seismic soil-structure interaction analyses, for sensitivity evaluations, and the graded approach for 11 12 design of structures adjacent to the deeply the embedded reactor building, include 13 that seismic 14 category 2/1 interactions.

15 As well as the method for developing 16 generic seismic, and geotechnical design parameters. 17 The scope of the topical report includes the regulatory basis for this innovative approach, 18 19 quidelines for characterizing sub-surface conditions, guidelines for performing the foundation interface 20 requirements, 21 analysis, the design acceptance criteria, and quidelines for the analysis and design 22 of the deeply embedded reactor building. 23

An approach for addressing seismic category 2/1 interactions between the reactor

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	21
1	building, and the surrounding structures and
2	foundations, and the generic seismic and geotechnical
3	design parameters.
4	I'd now like to shift gears to discuss the
5	regulatory evaluation.
6	Before walking through the next few
7	slides, I want to state up front that the innovative
8	approach discussed in the topical report, meets the
9	intent of the current regulatory guidance for the
10	large light water reactors, and addresses the
11	specifics related to the seismic and structural
12	design, of deeply embedded small modular reactors.
13	I want to emphasize that GE-H is not
14	requesting NRC approval for exemptions from any
15	regulatory requirements, or exceptions to any
16	regulatory guidance.
17	The topical report complies with the
18	applicable Regulatory Guidance as written.
19	This slide, and the next few slides,
20	outline the regulatory basis specific to the
21	innovative approaches implemented for the analysis,
22	design, construction and maintenance, of the BWRX-300
23	important to safety structures.
24	So, on slide 12, the approach used for
25	defining and evaluating site sub-surface conditions,
Į	

(202) 234-4433

	22
1	meets the regulatory requirements in 10 CFR 100,
2	100.20(c)(1), and 10 CFR 100.23, and the regulatory
3	guidance found in Standard Review Plan, Section 254,
4	entitled Stability of Sub-Surface Materials and
5	Foundations. As well as Regulatory Guides 1.132, and
6	1.138.
7	We have also considered IAEA safety guide
8	NS-G-6, in support of future license applications
9	outside of the United States.
10	The approach to use for defining and
11	evaluating site design parameters, meets the
12	regulatory requirements in 10 CFR 100.23(d)(1), and
13	the regulatory guidance found in Standard Review Plan
14	Section 3.7.1, entitled Seismic Design Parameters;
15	and, in Regulatory Guide 1.208, and Interim Staff
16	Guidance 17.
17	The seismic analysis meets the
18	requirements of 10 CFR 50, Appendix S, Earthquake
19	Engineering Criteria, with specific aspects of the
20	analysis meeting Standard Review Plan regulatory
21	guidance, and American Society of Civil Engineers, and
22	Structural Engineering Institute industry standards,
23	as noted on the slide.
24	The seismic analysis encompasses the soil-
25	structure interaction analyses, fine element models,
l	I

(202) 234-4433

the effects of structure soil, structure interaction of the reactor building, with surrounding foundations, 2 3 and the effects of non-vertically propagating seismic waves, soil separation, concrete cracking, and soil secondary nonlinearity on the seismic response and design of the reactor building. 6

7 The approach used for evaluating the seismic category 2/1 interaction, meets the quidance 8 9 of Standard Review Plan sections 332, entitled Tornado Loadings; and, 372 entitled Seismic System Analysis, 10 as well as the industry standard ASCE SEI 43-05, 11 Seismic Design Criteria for Structures, Systems and 12 Components in Nuclear Facilities. 13

14 The approach used for performing the 15 inspection and monitoring, testing, meets the 16 regulatory requirements in 10 CFR 50, Appendix A, GDC 17 1, and 10 CFR 5065, and the regulatory guidance found in Regulatory Guides 1.132, 1.136, 1.138, 1.142, and 18 19 As well as NUREG 5738, and NRC Inspection 1.160. Manuals 88-131, 88-132, and 55-100. 20 CHAIR MARCH-LEUBA: Lisa? 21 MS. SCHICHLEIN: Yes? 22 CHAIR MARCH-LEUBA: Let me interrupt you 23 24 and make this presentation even more interesting. Ι

mean, you probably have been twice here as before. We

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1

4

5

	24
1	interrupt you all the time.
2	One concern we always have when we have
3	underground structures, is the coatings on the outside
4	of the concrete that you cannot inspect and test.
5	How do you handle 40/60/80 year lifetime
6	of a surface that you cannot inspect?
7	MS. SCHICHLEIN: That's a good question,
8	and I would like to defer that to some of my technical
9	colleagues. Luben Todorovski, or someone on your
10	team?
11	MR. TODOROVSKI: That particular aspect is
12	not powered by this topical report. We plan to issue
13	another topical report regarding that only in a
14	general sense, because it doesn't cover the, the
15	actual construction of the, of the reactor building.
16	We are working on that, and that will be
17	covered in a separate topical report.
18	CHAIR MARCH-LEUBA: So, we will hold our
19	breath and wait eagerly on that topical report.
20	(Laughter.)
21	MR. TODOROVSKI: Okay.
22	CHAIR MARCH-LEUBA: And, for what I have
23	read on the press releases, we should expect those
24	topical reports soon. So, we wait for it.
25	Thank you.
ļ	I

	25
1	MR. TODOROVSKI: Yes, thank you.
2	MS. SCHICHLEIN: Thank you.
3	New Mark 9301, industry guideline for
4	monitoring the effectiveness of maintenance at nuclear
5	power plants, is also used in the 10 CFR 5065
6	requirements.
7	I want to close out this section on the
8	regulatory evaluation, by restating that the design
9	and analyses described in the topical report, complies
10	with all applicable regulatory requirements and
11	guidance as written.
12	The approaches presented here meet the
13	intent of the current regulatory guidance for large
14	light water reactors, and address the specifics
15	related to the seismic, and structural design, of
16	deeply embedded small modular reactors.
17	GE-H is not requesting NRC approval for
18	exemptions from any regulatory requirements, or
19	exceptions to any regulatory guidance.
20	The methodology in this licensing topical
21	report ensures the safe operation of the BWRX-300 for
22	the life of the plant.
23	MEMBER HALNON: So, Lisa, if you're
24	complying with all the regulations and all the Reg
25	Guides, and all the guidance, what is innovative about
I	I

(202) 234-4433

	26
1	this?
2	CHAIR MARCH-LEUBA: Yes, let me rephrase
3	that.
4	MEMBER HALNON: Okay.
5	CHAIR MARCH-LEUBA: You refer to the
6	methodology as novel several times, even in writing.
7	For some of us that dump pool concrete into the ground
8	every other week, can you give us a layman's tutorial
9	on that?
10	MS. SCHICHLEIN: Actually, I would like to
11	defer that question as we go through the technical
12	evaluation, and that hopefully will answer some of
13	those questions.
14	CHAIR MARCH-LEUBA: Okay.
15	MS. SCHICHLEIN: But we will definitely
16	address that. But I'd like you to see our
17	presentation on the technical evaluation. Hopefully
18	that addresses that, that question.
19	Now let's shift gears and move into the
20	technical evaluation.
21	The topical report discusses the
22	innovative property characterization and monitoring
23	approach, which is driven by the reactor building
24	structure being deeply embedded.
25	There are several investigation, testing,
	I

(202) 234-4433

	27
1	and monitoring programs that will be used in
2	conjunction with the foundation interface analysis,
3	including a site investigation program, a sub-surface
4	material laboratory testing program, and construction
5	and in-surface monitoring programs.
6	Details of these programs were provided in
7	the topical report sections listed on the slide.
8	A three-dimensional foundation interface
9	analysis is performed to ensure the structure, and the
10	supporting media soil and rock, meet the stability
11	requirements of Standard Review Plan Section 2.5.4.
12	The analysis method includes interface
13	modeling, structural modeling, fuel, fluid-soil
14	interaction, and consideration of all plant life
15	stages.
16	The results of the foundation interface
17	modeling are used to evaluate construction plans,
18	including possible ground improvements, excavation
19	support, and foundation interface design.
20	The results are also used to verify the
21	reactor building shaft design.
22	CHAIR MARCH-LEUBA: Yes, and Lisa, I notice
23	on the SER there are some limitations and conditions
24	that impose, or at least remind the staff that during
25	the final review, they need to look at soil testing to
I	I

(202) 234-4433

	28
1	ensure that the stability is current.
2	Is that cover, I mean, are you comfortable
3	with those limitations?
4	MS. SCHICHLEIN: Yes. We had the
5	opportunity to review the limitations with the staff,
6	and found those limitations acceptable.
7	CHAIR MARCH-LEUBA: And, I find them very,
8	very useful that it will remind the staff when they
9	review the final design, what they need to do.
10	I mean, and they very logical to me. I
11	mean, make sure there are no big rocks close to the
12	containment that can fall on it if something slides.
13	MS. SCHICHLEIN: Certainly.
14	CHAIR MARCH-LEUBA: Yes. Thank you.
15	MS. SCHICHLEIN: Thank you.
16	On to slide 21. Various aspects of the
17	foundation interface analysis approach, go beyond
18	existing regulatory guidance of Standard Review Plan
19	2.5.4, entitled Stability of Sub-surface Materials and
20	Foundations.
21	Including the general modeling and
22	analysis requirements for stability evaluations,
23	guidelines for modeling the non-linear constitutive
24	response of soil and rock, and the approach for
25	calibrating the model based on data obtained from
I	

(202) 234-4433

	29
1	field instrumentation, guidelines for modeling
2	interfaces, and structural modeling requirements.
3	The foundation interface analysis, excuse
4	me, I should have been back at slide 21 for this.
5	The foundation interface analysis modeling
6	approach, including guidelines for using the
7	measurements for field instrumentation, for model
8	calibration and bench marking results, also go beyond
9	existing guidance in SRP 385, entitled Foundations.
10	CHAIR MARCH-LEUBA: Yes, another question.
11	We have been following very closely, and
12	I'm sure you have, too, the issue with the alkali-
13	silica reaction where the concrete expands over time.
14	And, obvious is additional stresses on
15	foundations, and especially a underground wall that
16	cannot expand easily.
17	Have you, and I'm sure you've thought
18	about this. How do we handle that in X-300?
19	MS. SCHICHLEIN: I'd like to defer this
20	question to David Calhoun, from Black & Veatch.
21	(No audible response.)
22	MS. SCHICHLEIN: David, if you could
23	unmute, please.
24	MR. CALHOUN: Good morning, this is David
25	Calhoun.
	I

	30
1	CHAIR MARCH-LEUBA: Yes, we can hear you
2	now.
3	MR. CALHOUN: It's just a moment to get
4	everything wired up again.
5	So, we're very familiar with the ASR as a
6	topic for long-term maintenance, and the degradation
7	mechanism for concrete structures.
8	And, largely it goes to quality of
9	materials that are used in the initial construction.
10	The alkali-silica properties in aggregates that are
11	used for construction, that's essentially the control
12	feature that we have for initial construction.
13	CHAIR MARCH-LEUBA: I will be asking the
14	same question from the staff that there will be
15	obviously an inspection, or an audit, or something
16	like that, to ensure that the materials don't include
17	
18	MR. CALHOUN: Right.
19	CHAIR MARCH-LEUBA: You always worry about
20	the next AS. I mean, obviously we know not to use
21	granite as an additive to concrete.
22	But which means what is going to be the
23	next ASR? You'll be looking for it.
24	MR. CALHOUN: Something similar to ASR but.
25	CHAIR MARCH-LEUBA: Yes.
ļ	I

(202) 234-4433

	31
1	MR. CALHOUN: Unknown as yet.
2	CHAIR MARCH-LEUBA: Unknown, right.
3	MR. CALHOUN: So, just in terms of the, the
4	construction methods. Of course the reactor building
5	as safety related, is going to have the types of
6	aggregate and other cement and so forth, controls that
7	are typical for safety-related concrete.
8	So, just in that regard, nothing unusual
9	there. That's our standard industry approach.
10	CHAIR MARCH-LEUBA: Okay. So, let me
11	summarize.
12	You will have a good quality control on
13	your materials
14	(Simultaneous speaking.)
15	MR. CALHOUN: Absolutely.
16	CHAIR MARCH-LEUBA: to prevent this
17	MR. CALHOUN: Segregation, and you know,
18	other testing on those materials.
19	CHAIR MARCH-LEUBA: And, you know, one of
20	the mitigation items that have been implemented on ASR
21	plans, is to add some I'm going to call it nails, or
22	markers, so that theoretically, they have to do it
23	every month. You measure the expansion of concrete.
24	Have you considered using, it's equivalent
25	to those coupons that you put on the vessels to make
	1

(202) 234-4433

	32
1	sure that the vessel is not degrading, from nuclear
2	fluids. Adding some markers on the wall of the RARB,
3	so that in five or 10 years, you can measure that it
4	has not been expanding?
5	MR. CALHOUN: Sure.
6	CHAIR MARCH-LEUBA: If you design it from
7	the design, it cost nothing and it might help you a
8	lot in the future to ensure the regulators it's not
9	expanding. We don't have any problems.
10	MR. CALHOUN: Very well, and as I think
11	Luben said, those will go, those will be developed
12	going further.
13	I think the initial approach is we want to
14	do everything that has been learned in the industry,
15	to avoid ASR.
16	MEMBER BALLINGER: Yes, the best procedure
17	is not to have it.
18	MR. CALHOUN: Right.
19	CHAIR MARCH-LEUBA: But if you install some
20	markers, or some nails, to measure the distance and
21	make sure it's not expanding during construction,
22	doesn't cost anything.
23	MEMBER BALLINGER: Except for the
24	inspection program.
25	MEMBER REMPE: When it's down there.
Į	

(202) 234-4433

```
www.nealrgross.com
```

	33
1	MR. CALHOUN: Yes, I think Lisa mentioned
2	that so there
3	(Simultaneous speaking.)
4	CHAIR MARCH-LEUBA: Just an idea of
5	somebody who doesn't know anything.
6	MR. CALHOUN: Yes, so 5065 is going to
7	apply, and effectiveness, maintenance, and those types
8	of examinations, those are expected.
9	CHAIR MARCH-LEUBA: Thank you. Lisa, you
10	can continue.
11	MEMBER BALLINGER: This is Ron Ballinger
12	again.
13	MS. SCHICHLEIN: I'm sorry, before we
14	proceed, we have another gentleman on our GE-Hitachi
15	team who'd like to comment on that.
16	MR. TODOROVSKI: Right, I just want to
17	mention that the oldest procedure will depend on the
18	actual design of the structure, which is not covered
19	in this LPR.
20	For example, we are intending to use
21	different type of structure than the reinforced
22	concrete structure.
23	And basically all these measures will be
24	either less important for the type of construction we
25	plan to do, or they are not applicable.
ļ	1

(202) 234-4433

	34
1	CHAIR MARCH-LEUBA: Is that
2	(Simultaneous speaking.)
3	MR. TODOROVSKI: So that's why, yes, we
4	don't have it in the LTR. This LTR we won't cover
5	that.
6	CHAIR MARCH-LEUBA: Right, is that type of
7	construction proprietary? Because I've heard of
8	something, and I don't know if it's proprietary or
9	not.
10	MR. TODOROVSKI: It's not, not to my
11	knowledge. But it will be steel concrete composite.
12	CHAIR MARCH-LEUBA: Okay, composite with
13	steel, right?
14	MR. TODOROVSKI: Right, which will have the
15	steel plates, and then the concrete inside the steel
16	plates.
17	CHAIR MARCH-LEUBA: Right, and that will,
18	you expect to lower the cost and, under the schedule
19	significantly by using the
20	(Simultaneous speaking.)
21	MR. TODOROVSKI: Mostly schedule, yes,
22	mostly schedule.
23	MEMBER BALLINGER: And remember, there's we
24	looked at a Reg Guide. We looked at that concrete
25	composite.
	I

(202) 234-4433

	35
1	MALE: Uh huh.
2	MEMBER BALLINGER: These plants generally
3	have a very long life, and they keep getting extended,
4	hopefully in our case.
5	The rules with respect to concrete
6	construction differ depending on the perceived
7	importance of the structure, particularly in respect
8	to the cover thickness over concrete structure, over
9	the rebar.
10	Has there been thought to shall we say,
11	increasing the cover thickness on some of these
12	external structures, in anticipation that the life
13	might be a lot longer than 40 years?
14	MR. TODOROVSKI: Yes.
15	MEMBER BALLINGER: There's a, I think
16	there's a two-inch requirement on some structures; and
17	a three-inch on another; maybe a four-inch on some
18	others.
19	MR. TODOROVSKI: Yes, we are looking into
20	that but as I said, that will be a separate topical
21	report. Because at the time this topical report was
22	written, the design wasn't, I mean we were not sure
23	how to proceed.
24	MEMBER BALLINGER: Yes, I mean the ACIs,
25	they allow for certain minimum covers. But it doesn't
	1

(202) 234-4433

	36
1	require you to stick to that.
2	MR. TODOROVSKI: Yes, and for the SC
3	construction, for example, there are different
4	requirements related to the effect of the water
5	rusting, and stuff like that.
6	But as I said, I will defer that for the
7	next topical report topic.
8	MS. SCHICHLEIN: Yes, we appreciate that
9	question, and I think it will be covered in more
10	detail in that future topical report.
11	MEMBER BALLINGER: And, now also, I also
12	assume that this future topical report will address
13	the issue of groundwater. In particular, chloride
14	composition, chloride content and other chemicals,
15	which might affect the underground concrete if it gets
16	accessed through the, through the coating?
17	MR. TODOROVSKI: It
18	(Simultaneous speaking.)
19	MS. SCHICHLEIN: At this go ahead,
20	Luben, please.
21	MR. TODOROVSKI: Yes, that is the intent.
22	Basically, we want to cover a lot of aspects about the
23	new design of the structure. And, I don't know if
24	it's appropriate right now to discuss those topics,
25	but we are working on that.
I	

(202) 234-4433

	37
1	MR. ALI: So, the chloride content in the
2	groundwater as part of the corrosion mitigation
3	process, will be accounted for in the next LT.
4	MEMBER BALLINGER: Right, thank you.
5	MS. SCHICHLEIN: Thank you
6	(Simultaneous speaking.)
7	CHAIR MARCH-LEUBA: Before, Lisa, before
8	you continue, court reporter, we are not giving our
9	names before because everybody as a follower can see
10	except you, is joining through MS Teams.
11	Do you want us to give you the names ahead
12	of our presentation every time we speak, or are you
13	happy with MS Teams?
14	(OFF RECORD COMMENTS.)
15	CHAIR MARCH-LEUBA: Continue, Lisa.
16	MS. SCHICHLEIN: Thank you. And, this is
17	Lisa Schichlein continuing again. We're on slide 22.
18	The topical report discusses the
19	innovative static and seismic structure interaction
20	analysis approaches, for designing the deeply embedded
21	reactor building structure.
22	And, details the requirements,
23	methodologies, and recommendations for developing site
24	specific geotechnical, and seismic design parameters
25	based on the results of site investigations, and
l	1

(202) 234-4433

	38
1	laboratory testing programs.
2	Requirements and recommendations presented
3	in the topical report, ensure that the seismic soil-
4	structure interaction analyses, use input motion that
5	is adequate throughout the depth of the reactor
6	building embedment.
7	The topical report also outlines a
8	comprehensive recommended approach, for evaluating the
9	effects of non-vertically propagating seismic waves on
10	the design, ground motion, and seismic response of the
11	deeply embedded reactor building structure.
12	And, recommends approaches for developing
13	in-structure seismic response demands for equipment
14	design and qualification, considering
15	equipment/structure interaction.
16	The design analysis also introduces
17	additional requirements for generating multiple
18	acceleration time histories with refined time steps,
19	which ensure the mitigation of uncertainty in the
20	computed structural responses.
21	MEMBER BROWN: This is Charlie Brown. Can
22	I ask a question?
23	MS. SCHICHLEIN: Certainly.
24	MEMBER BROWN: I was noticing in the
25	technical, in the LTR, that you're talking about the
l	1

(202) 234-4433

39 1 stress and the, the stress demands and everything else 2 on the structure. 3 But you limited, I guess I've forgotten 4 what section it was in now, the depth you were 5 working, it was like 120 meters. And, for the 6 cylinder, the depth you can go to. And, then you've 7 got the base mat plane above that. 8 But how do you, is there any experience 9 anywhere with the cantilever loads, horizontal, 10 applied to the base mat when you have seismic I mean seismic waves that come through 11 structures? different levels? 12 That's deep. That's football field length 13 14 plus 20 percent roughly. So, that's a huge cantilever down there, and there's a lot of structure, soil-15 structure and layers, and everything else that are 16 different. 17 I'm not a civil engineer, but that seems 18 19 to be an obvious cantilever issue that. Is there any experience anywhere that you can back that, or are you 20 all developing all this on your own for a first time? 21 MS. SCHICHLEIN: I'd like to direct that 22 question to Luben Todorovski. 23 24 MR. TODOROVSKI: Yes, first one correction. The depth of the shaft is 120 feet, not meters. 25 So

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	40
1	it's like three times less than what is mentioned.
2	But nevertheless, we are looking into it,
3	actually the focus of this LTR is to address those
4	issues, that we have a very deeply embedded structure.
5	And, the analysis we are doing is to take
6	the effect of the soil on the structure. And,
7	basically what is happening when you have a deeply
8	embedded structure, especially in soil materials, they
9	tend to drive the structure. And, the structure
10	deforms based on the deformation of the soil.
11	So we have, we are using methodology,
12	which is a proven methodology in the nuclear industry.
13	It's called the SSI for soil-structure interaction,
14	that takes all these effects into account.
15	Now, there are a lot of items, details
16	about how the structure behaves when you have such a
17	design where it is deeply embedded, that are different
18	than what we are used in the nuclear industry.
19	Those have been identified both by the
20	NRC. There is a NUREG/CR-7193, actually that captured
21	this effects for a small modular reactors that are
22	deeply embedded in soil.
23	And, we also identifying others, and the
24	focus of this report is to address those differences
25	in the analysis and design approach.
	I

(202) 234-4433

	41
1	MEMBER BROWN: I just don't remember seeing
2	one where I've got a large cylinder extending down
3	from the basement. Most, at least that's my memory.
4	It's been a fundamental overall building, has been
5	sub, you know, sub-surface.
6	But not a base plane and then, I'm right
7	now looking at the section that says for BWR purposes,
8	the engineering depth is set at 120 meters. 120 feet,
9	that's still pretty deep.
10	So, that's why I asked the question. It
11	just seems
12	MR. TODOROVSKI: Right, and
13	MEMBER BROWN: and hadn't seen it in
14	any other, any other designs we've looked at over the,
15	at least over the last 12 years that we've, that I've
16	been participating in. And, not being a civil
17	engineer.
18	MR. TODOROVSKI: Another clarification, if
19	Lisa maybe you can show the 3-D presentation of the
20	plant.
21	Basically the reactor building itself is
22	not connected to the basement on the surface. It's
23	separated from it. So
24	(Simultaneous speaking.)
25	CHAIR MARCH-LEUBA: Slide 3 will be useful
I	

(202) 234-4433

```
www.nealrgross.com
```

Í	42
1	here.
2	MR. TODOROVSKI: Right.
3	CHAIR MARCH-LEUBA: For discussion.
4	MS. SCHICHLEIN: Here, let me go, excuse
5	me, let me try to get back to slide 3 if I can. If I
6	can get back to that. One second, please.
7	MEMBER BROWN: No problem.
8	(Pause.)
9	MS. SCHICHLEIN: Do you
10	(Simultaneous speaking.)
11	MR. TODOROVSKI: The other slide, actually.
12	Yes.
13	So, as you can see, this cylinder is
14	actually separated from the other buildings. So,
15	basically we have a deeply embedded cylinder inside
16	the, it's on the soils.
17	So, reactor building is supported by the
18	basement, which is deeply embedded down 120-feet below
19	the ground.
20	MEMBER BROWN: Okay, so that separation gap
21	is it in inches, or is it in feet?
22	MR. TODOROVSKI: It is approximately four
23	inches.
24	MEMBER BROWN: And, that's enough you
25	think, to handle the whatever horizontal loads that

(202) 234-4433

```
www.nealrgross.com
```

	43
1	you would be from any seismic disturbances that came
2	through in terms of the variation, the reactor
3	building from the other facilities?
4	MR. TODOROVSKI: Yes, we are considering
5	the interaction of this foundation and structures with
6	the, yes, and they are important. Quite important for
7	a design.
8	MEMBER BROWN: All right, thank you.
9	MR. TODOROVSKI: Thanks.
10	MEMBER HALNON: This is Greg. I got one
11	question back on the slide that you were on, on the
12	design, and I guess while you go back you can listen.
13	MS. SCHICHLEIN: Okay.
14	CHAIR MARCH-LEUBA: I think we were on 22.
15	MEMBER HALNON: 25.
16	CHAIR MARCH-LEUBA: 25?
17	MEMBER HALNON: Oh, I'm sorry, that's 25 on
18	the PDF. Twenty-two, slide 22.
19	The site investigations in order to make
20	this viable for people to look at to build. I mean,
21	clearly you want this thing, the methodology to be
22	able to bound all these different soil types, so that
23	you can show you can build it in many different
24	locations.
25	Do you perceive any additional site

(202) 234-4433

	44
1	investigations, beyond what's normally done for site
2	characterization because of the embedment?
3	MR. TODOROVSKI: Yes, correct. The
4	basically I think Section 3 of the LTR, we are
5	presenting methodology.
6	I mean, title is for the recommendations
7	for the site investigations, which go beyond the
8	current requirements for the large light water
9	reactors.
10	They are far more borings, or testings are
11	done to characterize the sub-grade materials, because
12	they are far more important for the stability of the
13	reactor building, than for a large building.
14	MEMBER HALNON: Did you guys talk about any
15	unintended consequences from that perspective? In
16	other words, finding, when you go deep like that,
17	you're going to find water tables are different than
18	what you thought, and I assume that this has to be
19	above the water table?
20	MR. TODOROVSKI: No, no. The water table
21	can be above the foundation, and then it is
22	waterproofing for that.
23	MEMBER HALNON: Okay.
24	MR. TODOROVSKI: But during the
25	construction, the buoyancy effects will be taken care

(202) 234-4433

	45
1	of.
2	MEMBER HALNON: Okay, so that goes back to
3	the earlier question that we'll get later on, on the
4	coatings?
5	MR. TODOROVSKI: Correct.
6	MEMBER HALNON: All right, thank you.
7	MS. SCHICHLEIN: On slide 23 now, a graded
8	approach is taken for the evaluation of seismic
9	category 2/1 interactions, between the seismic
10	category 1 reactor building, and the adjacent control
11	building, turbine building, and rad waste building.
12	The control building and turbine building
13	are non-seismic, and the evaluation also includes
14	determination of seismic and wind loads.
15	The rad waste building, which is category
16	RW2A, also includes determination of tornado wind, and
17	missile design loads.
18	CHAIR MARCH-LEUBA: Just have to (audio
19	interference) just because we know much about it. How
20	do you handle piping that goes to like a steam line,
21	that goes to containment?
22	MR. TODOROVSKI: You mean the, this is
23	Luben. Can you clarify when you say piping, do you
24	mean the piping going from the reactor building to the
25	turbine building, for instance?
I	I

	46
1	CHAIR MARCH-LEUBA: Correct. Say the
2	streamline for example.
3	MEMBER HALNON: This is Greg. Yes, the
4	rigidity of the lines going out
5	(Simultaneous speaking.)
6	CHAIR MARCH-LEUBA: Yes, because if you
7	have the RB, the reactor building completely
8	unisolated from the turbine building, and have this
9	four-inch, I mean you have penetrations going from one
10	to the other.
11	MR. TODOROVSKI: Yes, that is correct. I
12	mean, we are calculating the relative displacement
13	with the building. Can we make sure those can be
14	accommodated by the design of the piping and other.
15	But this is nothing you, actually all the
16	designs, the turbine building is seismically isolated
17	from the reactor building. Not just for BWR and the
18	previous designs, but also for pressure reactors.
19	So, it is a standard procedure.
20	CHAIR MARCH-LEUBA: Thank you.
21	MS. SCHICHLEIN: The topical report also
22	includes the method for developing generic
23	seismological and geotechnical site parameters, using
24	generic design response spectra, sub-grade dynamic
25	properties, static properties, and the use of generic
	1

(202) 234-4433

	47
1	values for friction coefficients.
2	In conclusion, I would like to wrap up
3	this presentation by restating that the design and
4	analyses described in the licensing topical report,
5	comply with all applicable regulatory requirements and
6	guidances written.
7	The innovative approaches discussed in the
8	topical report, meet the intent of the current
9	regulatory guidance for large light water reactors,
10	and addresses specifics related to the seismic and
11	structural design of deeply embedded small modular
12	reactors.
13	GE-H is not requesting NRC approval for
14	exemptions from any regulatory requirements, or
15	exceptions to any regulatory guidance.
16	The methodology in this licensing topical
17	report, will ensure safe operation of the BWRX for the
18	life of the plants.
19	CHAIR MARCH-LEUBA: So now that we go
20	through the whole presentation and without the
21	questions, can you give us a Reader's Digest version
22	of the novel features of this topical report? High-
23	level for layman's.
24	MS. SCHICHLEIN: I'd like to defer that to
25	Luben. I think we've tried to walk through some of
I	1

(202) 234-4433

	48
1	the high points, but if Luben and/or Brandon Gomer
2	would like, from Black & Veatch, would like to discuss
3	some of the details of the novel approaches, that
4	would be appreciated.
5	MR. TODOROVSKI: Okay, I will try my first,
6	and then maybe I can defer to Brandon as well.
7	For the high level, what this report is
8	doing is that we have a light water moving reactor,
9	which is not a new technology. What is different in
10	that is the way this design, the structure is
11	designed.
12	That is deeply embedded, which has some
13	safety features, safety benefits. But also it has
14	certain certainties into the design, which are new for
15	the industry.
16	For example, the effect of the surrounding
17	soil sampling conditions to the safety of this
18	reactor. We tried to address those new issues, and
19	ensure that the design is adequate and safe.
20	In the process, we have, we are in full
21	compliance with the regulatory guidance for the large
22	light water reactors. But we went beyond that in
23	order to address the specific issues of our design,
24	which is deeply embedded structure.
25	The newest thing about it is the whole
ļ	l

(202) 234-4433

	49
1	process we are following to meet this objective. So,
2	basically in that process, if I can share my screen,
3	is that going to be okay?
4	CHAIR MARCH-LEUBA: Lisa will have to stop
5	sharing hers, and then you will have to share yours.
6	MR. TODOROVSKI: Yes, I have one slide I
7	would like to show.
8	MS. SCHICHLEIN: Go ahead, Luben.
9	CHAIR MARCH-LEUBA: Yes, from the
10	administrative point of view, please send a copy of
11	this slide to our DFO, Kent
12	MS. SCHICHLEIN: Yes.
13	CHAIR MARCH-LEUBA: because this is
14	part of the record now.
15	MR. TODOROVSKI: Okay.
16	MS. SCHICHLEIN: Yes, we will submit that
17	slide on the docket after the meeting.
18	CHAIR MARCH-LEUBA: Thank you.
19	MR. TODOROVSKI: And, basically, this is
20	Figure 1-1 in the LTR, but it's simplified; it's
21	easier to read.
22	And, basically this is the figure that
23	describes the process that goes to make sure that when
24	we come to the end of that, the reactor building
25	design, we are safe.
I	I

(202) 234-4433

```
www.nealrgross.com
```

	50
1	So, as you can see, we have two processes
2	here, site investigation, and field and laboratory
3	tests.
4	Then we have monitoring programs, and the
5	in-service inspections also that go inside of this
6	process.
7	These three parts here are describing the
8	methodologies done, analysis done to develop the
9	inputs for our design, from which those symbols go to
10	the analysis, which are described in this yellow
11	boxes.
12	And, then basically those analysis that
13	provide the inputs for the design.
14	As a part of the design, we have a process
15	that goes, that has a sensitivity analysis, for
16	example, to address the known linear effects on the
17	seismic response.
18	And, also we have nonlinear foundation
19	interface analysis, that provide inputs that are used
20	to validate the design demands, and the design itself.
21	So, this is a unique process we have, that
22	we put all this different aspects of the design in
23	one. Not only to come to adequate inputs for the
24	design, but also to double-check, or to make sure the
25	design is safe.
ļ	1

(202) 234-4433

	51
1	CHAIR MARCH-LEUBA: So, let me repeat what
2	I think I heard, and you tell me if I heard wrong.
3	You didn't really change that much the
4	process you have used for ESBWR, except that you were
5	forced to add some items because of being deeply
6	embedded underground, right?
7	You're site investigations, and soil are
8	more in-depth because the particular details of this
9	design require it.
10	And, in addition, you have added some
11	confirmatory boxes in this background, to ensure that
12	everything you're doing is, is working.
13	So, that, those are the two big
14	differences?
15	MR. TODOROVSKI: Yes, that is correct. In
16	addition to the site investigation program, we have a
17	maintenance which go much deeper for the design.
18	For example, we develop unique methods for
19	developing the input parameters for the design, which
20	is based on linear elastic assumption.
21	And, also we have nonlinear analysis to
22	validate those assumptions, which are usually you
23	know, adopted in the design. They are the basis for
24	all the designs we have so far.
25	So, that is correct. That basically we
I	I

(202) 234-4433

	52
1	are following what we are using for ESBWR, but with a
2	lot of other features that raise the specifics of the
3	deeply embedded structure.
4	CHAIR MARCH-LEUBA: Okay, thank you very
5	much.
6	MEMBER BALLINGER: This is Ron Ballinger.
7	And, when I read through this, I for the life of me,
8	couldn't figure out what was unusual except now that
9	you've explained the way you've put things together.
10	But what I was looking for was an
11	identification of the hard point. What is the most
12	difficult part of this? And, is it unique to the
13	embedded structure design?
14	MR. TODOROVSKI: We have spent a lot of
15	time together with the NRC staff working on the rock
16	properties.
17	In my personal opinion, I think here there
18	is something that is quite, goes far beyond that what
19	we are doing for the large nuclear power plants, which
20	are less of capable of the let's say, the rock masses
21	abilities.
22	So, that is one of the things we went much
23	further than whatever is done right now for the, or
24	has been done for the design of large nuclear power
25	plants.
I	1

(202) 234-4433

	53
1	MEMBER BALLINGER: Okay, so it's just more
2	extensive analysis. But what I guess what I'm asking
3	is, where is, is there a fence here that results in
4	risk?
5	MR. TODOROVSKI: Inherently, going below
6	ground for example, for seismic, it's actually safer.
7	There are very few structures, underground structures,
8	that experience damage during earthquakes unlike
9	structures found on the surface.
10	But there are issues with for example,
11	with the rock stability, and the effects of how the,
12	the soil properties will affect the response of the
13	structure. Because when you are deeply embedded, the
14	soil has far more importance.
15	The in-situ soil mass has far more
16	importance on the design and the, and the response of
17	the structure than for a large building, which is.
18	And, basically that the only in the
19	construction process is such, which minimizes the
20	backfill for example. And, minimizes the excavation.
21	So, for a large plant, we will remove a
22	large quantity of soil, so the soil surrounding the
23	large plant will be basically engineered backfilled.
24	In this case, we minimize the excavation
25	so the in-situ soils as they are, we have far larger
ļ	I

(202) 234-4433

	54
1	effect on the design of the reactor building, than for
2	the large nuclear power plants.
3	And, that there are aspects on that we are
4	trying, aspects and uncertainties related to it, that
5	we have developed approaches to address.
6	MEMBER BALLINGER: Now, can you mitigate a
7	lot of any issues by using a backfill? In other
8	words, could you basically put this structure in what
9	amounts to a constant environment by using backfill?
10	MR. TODOROVSKI: That is not necessary, and
11	it doesn't mean that the basically, we will achieve
12	that unless there is a really adverse in-situ site
13	conditions, which maybe will result in the site not
14	being corrected for that.
15	And, actually, will increase the cost of
16	the construction to, not to be, it's better to have
17	large power plant.
18	MEMBER BALLINGER: Yes, you might end up
19	having to think about that, if you have a site which
20	is near a coast, and where you have a, it's a brackish
21	water site.
22	MR. TODOROVSKI: Correct. And, basically
23	our intention in the generic design, as it is written
24	in Section 7, is to make this design applicable for
25	variety of, a majority of candidate sites, which are
I	I

(202) 234-4433

	55
1	fit-able for building large industrial structures, and
2	especially nuclear structures, to cover 80 percent of
3	them.
4	But there certainly will be the site
5	conditions which won't be economically viable for
6	applying this design.
7	MEMBER BALLINGER: Thank you.
8	MR. TODOROVSKI: Thank you.
9	CHAIR MARCH-LEUBA: Members, any more
10	questions for GE?
11	(No audible response.)
12	CHAIR MARCH-LEUBA: Hearing none, we're
13	going to transfer to the staff, but first we are
14	scheduled for a 15-minute break. Let me get access to
15	the clock.
16	On our official clock if I can see it, no
17	that one is not the official one. Okay, 9:32. Let's
18	come back at 9:50. That gives time for the staff to
19	prepare for their presentation.
20	We are 15 minutes ahead of schedule so
21	we're doing fine.
22	So, we are in recess until 9:50.
23	(Whereupon, the above-entitled matter went
24	off the record at 9:32 a.m. and resumed at 9:50 a.m.)
25	CHAIR MARCH-LEUBA: Okay. So we are back
I	1

(202) 234-4433

	56
1	in session. The staff is going to present their
2	evaluation of this topical report.
3	Go ahead.
4	MS. SCHILLER: Good morning. Everybody
5	should see my screen. My name is
6	CHAIR MARCH-LEUBA: We are seeing it.
7	MS. SCHILLER: Okay. Thanks.
8	My Name is Alina Schiller. I am a Project
9	Manager in the NRC Office of Nuclear Reactor
10	Regulation, Division of New and Renewed Licenses, New
11	Reactor Licensing Branch.
12	I would like to thank the ACRS
13	Subcommittee, GE-Hitachi, Nuclear Americas, and the
14	general public for entertaining the NRC for the
15	presentation of the staff safety evaluation of GEH
16	BWRX-300 Advanced Civil Construction and Design
17	Approach Licensing Topical Report.
18	In January 2021, GEH submitted Revision 0
19	of this licensing topical report to NRC. After
20	acceptance of the topical report in March 2021, the
21	NRC issued two requests for additional information,
22	REIS, to GEH in July of the same year. GEH provided
23	answers to the NRC's REIs in August, September, and
24	November of the last year. GEH issued Revision 1 of
25	its topical report to the NRC November of 2021. We
ļ	I

(202) 234-4433

	57
1	are here today to discuss the staff's advanced safety
2	evaluation of the topical report.
3	The NRC staff reviewers are Dr. Amitava
4	Ghosh, who is the lead technical reviewer and
5	presenter; Dr. David Heeszel; Edward Stutzcage; Angelo
6	Stubbs; and Sujit Samaddar. I am the topical report
7	Project Manager, supported by Senior Project Manager
8	James Shea.
9	Before I introduce Dr. Ghosh, I would like
10	to open the floor to NRC management: Joseph Colaccino,
11	Branch Chief of the Structural, Civil, and
12	Geotechnical Engineering Branch.
13	MR. CHOLACCINO: Alina, thank you very
14	much, and good morning.
15	First, I'd like to address some of the
16	questions that came up in the GEH presentation.
17	Again, my name is Joe Colaccino. I am the Chief of
18	the Structural, Civil, and Geotechnical Engineering
19	Branch.
20	We regarded this as a unique topical
21	report, and I resonated with one of the member's
22	questions: what's really novel about this report? And
23	to be quite honest, we asked ourselves that question
24	after our first read. And to the credit of GEH, they
25	worked with us in a number of public interactions to

(202) 234-4433

	58
1	describe to us the areas that they wanted us to look
2	at in their topical report. It's quite extensive.
3	The way we decided to proceed on the
4	development of our safety evaluation is to go through
5	the topical report and systematically provide findings
6	on each one of the items there. It's fairly
7	comprehensive what we did, but quite honestly, some of
8	those things, where basically yeah, what you're
9	looking at looks reasonable.
10	So what we focused on, what we are about
11	to focus on in this presentation, is the limitations
12	and conditions. And Dr. Ghosh is going to give you
13	that with some background that will help him describe
14	what his process was in going through this.
15	The other thing is I heard some discussion
16	here of the alkali-silica reaction, ASR, and I heard
17	that the staff would be asked that question. So I'd
18	like to preempt that question with where we stand
19	right now. We did not have that as a consideration in
20	the review of this topical report. We do not have the
21	experts here today, which do reside in the Structural,
22	Civil, and Geotechnical Engineering Branch, that are
23	dealing with ASR issues.
24	My understanding is that ACRS has a
25	meeting on this next month. And we will be there, and
I	I

(202) 234-4433

	59
1	we will support that meeting.
2	So, with that, I'd like to turn over the
3	presentation to Amit. Thank you very much.
4	MR. GHOSH: Good morning, everybody. Can
5	everybody hear me?
6	CHAIR MARCH-LEUBA: Yes, loud and clear.
7	MR. GHOSH: Thank you. I am Amit Ghosh.
8	I am a geotechnical engineer at the Structural
9	Engineering Branch. Before joining NFC, I used to
10	work for the Center For Nuclear Waste Regulatory
11	Analysis of the Southwest Research Institute. We were
12	an FFRBC of the NRC for the Yucca Mountain Project.
13	I worked on the Yucca Mountain Project for
14	20 years. We did a lot of laboratory experiments,
15	field experiments, small-scale experiments for NRC to
16	understand how an excavation in a jointed, fractured
17	rock must behave, especially during an earthquake.
18	When I was a graduate student, my emphasis
19	on my studies were on the rock excavations. And as a
20	teaching assistant, I used to take the students to the
21	field to do a lot of those field experiments, which
22	we'll be talking in very shortly in the presentation,
23	and do the field measurement, come up with those
24	parameters and classification system which we'll be
25	talking.
I	I

(202) 234-4433

	60
1	With that background, I also have a very
2	good group of experts in their own areas, and we
3	together reviewed this LTR and developed a SE. So, on
4	their behalf, I will be presenting it today.
5	Next slide oh. I guess the next slide
6	is there.
7	So, first, I will give the big difference
8	what we saw with the traditional light-water reactor
9	and the BWRX-300 what is the main differences
10	talk about the regulatory vessels we used to do the
11	review.
12	We reviewed the entire LTR, and there are
13	many areas where GEH has proposed the methodology.
14	And it will be too much to go through each of them, so
15	we listed or will be concentrating on the important
16	ones which we thought are important, and we'll present
17	those and how and one of the reason is most of them
18	has a little limitation and condition at the end.
19	There are other topics we reviewed. I
20	listed some of them but will not be discussing in this
21	presentation today. Then I'll talk about our review
22	strategy, how we approach to review this LTR, because
23	as Joe said and others said, this is a very unique LTR
24	where they give the methodology at the high level, but
25	there is no data or site information because this is
I	I

(202) 234-4433

	61
1	non-site specific.
2	And so I'll be discussing these five areas
3	in my presentation, and then at the end, I'll
4	conclude.
5	Next slide, please.
6	This is what in my opening is the
7	difference between a traditional light-water reactor
8	and this BWRX. The BWRX will be deeply embedded with
9	120 feet today in the vertical shaft. Most of the
10	other traditional light-water reactors are on the
11	surface. We may do an excavation, get to the rock,
12	and place the foundation over it, but not in the
13	shaft.
14	CHAIR MARCH-LEUBA: Let me I just
15	wanted to say that this picture is really interesting
16	of what happens underground when you build a reactor
17	in something like this. And this one is very obvious
18	because you can see it, but most of the time, you
19	cannot. So I would be interested to know within our
20	limitation and conditions how you detect something
21	like this that maybe is 50 feet underground.
22	MR. GHOSH: Yes. I will try my best.
23	Thank you.
24	We had one of the I mean, some of the
25	advantages of having it deep underground is to avoid
I	I

(202) 234-4433

or minimize the effects of external hazards like aircraft crashes, fire, flooding, tornado, tornado missile. But it also poses some unique issues, like it may be in the soil, deep soil site, or it may be in the rock, where the soil is much less or the soil has been excavated before construction of the shaft, or it may have both.

8 And rock, as we just heard -- this is a 9 picture of a rock surface exposed, which is -- we can 10 see on the surface the rocks are fractured, so you can see all these different types of fractures which are 11 present, which -- naturally, rock are fractured. 12 Ιt has got joints. It may have bedding planes like the 13 14 different types of rock deposited at different 15 qeological time in the history. So we have this 16 interface between the two.

17 We may have faults, like San Andreas Fault -- not at that scale of hundreds of miles, but maybe 18 19 several hundreds of feet -- at the site. It may have cast features, like cavities, if it is a Cal state 20 And all of these fractures, they do form a 21 region. network of -- fracture network, as you can see it 22 here. And I'll discuss this much detail later on. 23 Then we'll have the in-situ stress field 24 25 because we are deep there, 120 feet. So anything

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

www.nealrgross.com

62

	63
1	above the 120 feet, all the material is giving the
2	load, which transform into the vertical load.
3	There will be horizontal load too. And
4	measurement at different sites shows that the tectonic
5	stressors, the plate tectonics, can influence that,
6	the horizontal stressors, at a given site.
7	And then we heard about the issues of
8	water table. Water table can be it may be totally
9	saturated because the clear water table is very close
10	to the surface, or it may be dry; the water table is
11	way below or in between somewhere.
12	And then another issue is how the rock
13	mass with the fracture I mean sorry, with the
14	vertical shaft with the reactor reacts to the
15	earthquake. And we have to understand the response
16	under the Safe Shutdown Earthquake, SSC.
17	Next slide, please.
18	GEH showed a much better picture, but this
19	was the picture in their LTR, so I am showing it.
20	Only a small part of the reactor will be above ground,
21	and rest is below ground 120 feet. There will be
22	three other structures nearby with the seismic gap.
23	Next slide, please.
24	So we used these regulatory vessels to
25	conduct the review. For subsurface condition, we use
Į	I

(202) 234-4433

	64
1	10 CFR 100.20(c)(1). The Commission considers
2	physical characteristics of the site. 10 CFR 100.23
3	sets forth the principal geologic and seismic
4	considerations that guide the Commission in its
5	evaluation so that there is reasonable assurance that
6	a nuclear power plant can be constructed and operated
7	at the proposed site without undue risk to the health
8	and safety of the public.
9	For development of the site design
10	parameters, 10 CFR Part 50, Appendix A, General Design
11	Criteria, Criterion 2: design vessels for protection
12	against natural phenomena; and 10 CFR 100.23(d)(1),
13	requirements for defining the Safe Shutdown
14	Earthquake, SSC.
15	Next slide, please.
16	So I'll be going through these six topics
17	or approaches in this presentation as I discuss today,
18	and there are quite a bit of things which I'll not be
19	addressing through this presentation.
20	Next slide, please.
21	This is a list of other topics, plus there
22	are some more. There is design artificial load, how
23	they get the pressure on the reactor building, and
24	including the probabilistic artificial analysis, I
25	will be touching a little bit why probabilistic
ļ	I

(202) 234-4433

analysis may be a better option than the deterministic because a lot of uncertainties involved in determining that pressure.

4 Development of groundwater and 5 acceleration time histories, the nonparticle propagating seismic waves, approaches for meeting the 6 7 Interim Staff Guidance 017, modeling structure, soil 8 structure, interaction effect. You saw a very nice 3D 9 picture where we have this -- three other structures 10 close by about five inches apart with the seismic gap. So when there is earthquake 11 an SSC happening, those structures are also responding to it. 12 And some part of the ground motion may be transferred 13 14 back and impact how the reactor shaft is responding to 15 So there will be some analysis on that. it. I'll not 16 discuss on that more. 17 Soil separation effect, it is a separation of the reactor building from the surrounding medium, 18 19 which is a nonlinear effect. I'll not talk about that, but we'll discuss how they propose to address 20 those nonlinear effects. 21 Groundwater radiation -the GEH 22 has proposed to do a bonding analysis from completely dry 23

24 to completely saturated conditions and to bond the 25 effects of the groundwater and see whether the effects

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

	66
1	needs to be considered in the design. And we also
2	heard about 201 (phonetic) interaction. So I will not
3	go into it any more.
4	Next slide, please.
5	Before we started to review this unit LTR,
6	we thought how to approach that, and we thought this
7	might be the best way to approach our review is
8	whenever they have given this they propose
9	different approaches for different technical issues.
10	And we thought first we should see whether the
11	approach is appropriate.
12	If it is appropriate, has this been used
13	other places, especially other nuclear applications
14	if not, in other industries, in mining, constructions?
15	Because that gives the confidence that this method
16	works with similar areas. There may be different
17	tolerance in a nuclear application versus a mining,
18	but at least we know the method works, and then we can
19	work on the tolerance part.
20	Has the proposed has any limitations or
21	inherent assumptions which sort of restricts it to an
22	only small set of the parameters that can be used?
23	And whether there is a discussion that all the
24	parameter values will be appropriately determined in
25	site-specific applications so that we can complete the
I	

(202) 234-4433

	67
1	loop.
2	Next slide, please.
3	I'm showing the same picture again. The
4	rock, as everybody knows, is generally much harder
5	than the soil. But it has got these fractures. The
6	fractures is in this figure, you can see there was
7	a set of fractures which are dipping to the right,
8	about 45-, 50-degree angle.
9	And just as Alina is showing those set of
10	fractures, then there is another set which is dipping
11	sort of towards left, almost close to vertical, 80 to
12	85 degrees. And there is one set of fractures which
13	very faint, which is horizontal.
14	So these three fracture sets is forming
15	the isolated blocks in the rock mass. Each fracture
16	set has a dependent, how much it is dipping from the
17	horizon and then which direction it is dipping,
18	generally measured from the north. And each has a
19	spacing between the two fractures in the same set.
20	And as you can see in this illustrative
21	figure, there is a stochastic parameters. The numbers
22	are not constant. There is an average or mean value,
23	and there is a distribution around it, which will be
24	very useful to defining probabilistically how the load
25	will be coming onto the structure.
ļ	I

(202) 234-4433

68 1 So we, in a site-specific application, 2 will review how this rock fracture network has been 3 characterized. But we did not put in a limitation and 4 conditions because this is -- typically, these 5 fractures are mapped in any excavation, in a mining construction or a nuclear project, installations for 6 7 the basement foundation. 8 So we did not think we need to put any 9 lancing on that. But GEH has proposed a modeling 10 technique to how each of these fracture behaves or interface behaves. 11 Next slide, please. 12 This is a geological model given in the 13 14 LTR, Figure 4-2, to represent and tally the response 15 of any interface: rock versus rock, like joint bedding 16 planes, rock versus soil if we have two types of 17 materials, or rock versus a reactor structure, or soil versus reactor structure. 18 19 it is interface So - any can be represented by this model if we have the correct 20 The parameters needed for this model to 21 parameters. be -- are given in the bottom block, normal stress, 22

normal stiffness, shear stiffness. If we look in the first picture, that's how the -- it represents how the interface will behave normally in the (audio)

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 interference) across the interface. Second picture 2 gives how the interface will behave in -- along the 3 interface in the shear direction. And the third 4 picture gives how the interface will behave during 5 shear along the interface.

The normal strength is generally taking 6 7 the strength across the interface, generally taken as 8 zero. That means all are open. This type of -- I 9 have significant experience in using this model in the Yucca Mountain Project, and we used that extensively 10 in our small -- experiments in the lab, direct test, 11 small-scale or a model scale structure in a rock mass, 12 and also worked the same model or same geological 13 14 model for analyzing rock bursts on a real mining 15 excavation in a zinc mine, very deep underground mine 16 in Idaho.

17 And this model works if properties are given appropriately. And generally, an excavation in 18 19 a modeling will start with the pre-excavation stage. That means nothing has -- we start from the zero. 20 We develop the stress field in that model. And then we 21 take off some of the blocks to simulate the excavation 22 and see how the stresses reorients itself, whether 23 24 displacements are taking place, and whether any of these fractures slipping in that. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

And then GEH has proposed to have this 2 field instrumentation to measure those, so we can 3 correlate -- they can correlate very well with that actual observation with the prediction. And you find the modeling parameters as needed so that in the next stage, they can predict what may happen before it 6 happens and then correlate again, and progress till 8 the start-up and operation.

So this is a very useful way of doing it. 9 10 It is generally done in an important project.

MEMBER HALNON: Amit, this is Greq. 11 And I'm not an expert in this area, so indulge just for a 12 When you're applying these models 13 second. and 14 calculations and simulations pre-excavation, through 15 start-up and operation, is there anything that's 16 invalidated that you have to go back and look at again if you have a small earthquake in the area that could 17 have at least some shaking and could be detected on-18 19 site?

20 I mean, I'm thinking of the North Anna Earthquake where they had to do a lot of reanalysis of 21 plant systems. But is there anything here that would 22 require a reanalysis prior to a start-up from a small 23 24 earthquake that parameters could change enough to have to look at it? 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

4

5

7

	71
1	MR. GHOSH: This model, what you see
2	those three pictures, those are for an interface, like
3	a joint Alina, can we go back to the previous
4	slide, please?
5	It represents how any of these fractures
6	would behave given a load. The load could be static
7	or quasi-static or earthquake. In my previous job, we
8	did this study using an earthquake, and I'll be able
9	to show one of those pictures, how we tried to
10	simulate the effects of the earthquake.
11	But the North Anna is quite different
12	because there is no I don't know whether there is
13	or not underground excavation. I am not knowledgeable
14	about North Anna.
15	MEMBER HALNON: Well, there's some below
16	grade, but the reactor buildings typically do go a
17	little bit below grade. Yeah. But I was just
18	curious, in this, since it's so far below grade, if an
19	earthquake of a certain magnitude could affect the
20	point where we'd have to look at all these analyses
21	again to make sure that the joints are still where you
22	expect them, and the gaps and sliding frictions and
23	all those other stiffness parameters are the same. Or
24	could they change any significant amount based on
25	movement of the earth?
ļ	I

(202) 234-4433

	72
1	MR. GHOSH: We used this model for the
2	zinc mine, zinc and silver mine in the I don't know
3	how to pronounce it, Couer d'Alene District of Idaho,
4	where you have rock bursts, which are mini-
5	earthquakes. If you use the earthquake scale, it is
6	somewhere 2.23. Magnitude 2.23 earthquake, very
7	close by.
8	We monitor this every day. 24/7 we used
9	to monitor, and then we simulate that in our model,
10	whether we can see this very similar thing. And we
11	could see where the fractures I mean rock has
12	slipped and dislodged from the mine excavation, and we
13	could simulate that.
14	So this fracture model works. Given we
15	have appropriate properties, the model works. And
16	this model has been used, I can tell you, for many,
17	many projects around the world, like
18	MEMBER HALNON: Okay. So it could be used
19	again to verify post-event that the plant would still
20	be safe to start up.
21	MR. GHOSH: Yes. Yes, sir, because the
22	model has been working mass mining in Australia, South
23	Africa where there is a lot of rock burst problem, in
24	excavation cuts and where we have the highway passing
25	through the hilly areas. This model works. This

(202) 234-4433

	73
1	model gives us fundamentally, this is how a rock
2	joint will behave given
3	(Simultaneous speaking.)
4	MEMBER HALNON: Would that be a
5	consideration for a condition in their tech specs that
6	said post-earthquake, they would have to go back and
7	do some kind of reanalysis of the earth movement
8	around their plant to make sure the parameters are
9	within
10	MR. GHOSH: Yes. So they already said
11	that they have this in this highly specific
12	application, they will be having this instrumentation
13	to measure those displacements. And they will be
14	correlating with the simulated results. And if
15	anything needed, the parameter values may need to be
16	tweaked.
17	Maybe the what the parameter values
18	request some adjustment. So they are going to do that
19	and use that in the next stages of development. So
20	you sort of callibrate your model when you start
21	simulating the fast excavations.
22	MEMBER HALNON: Thank you, Amit.
23	MR. GHOSH: Thank you, sir.
24	Next slide, please.
25	And this is one of the direct shear tests,
	I

(202) 234-4433

	74
1	how you get these model parameters. This, you
2	generally do it in a laboratory. You collect the
3	natural rock joint samples during site investigation
4	stage at the site.
5	And so this is one rock surface that will
6	be a complementary rock surface, so wherever you see
7	the red, which are the high peaks or white, and blue
8	is the troughs. So you'll be having just a middle
9	image of that.
10	So in the laboratory, on that emission,
11	you put both the samples together and make them so
12	that they are in the original position. And then you
13	try to push the top rock, keeping the bottom rock
14	steady in the same position. So it is like we are
15	doing a shear displacement, like how the San Andreas
16	Fault moves.
17	Next slide, please.
18	And this is the experiments. We did it
19	with (audio interference) Apache lift-off near
20	Phoenix, Arizona. So this is shear displacement
21	versus shear sorry, shear stress versus shear
22	displacement, and normal stress was just normal
23	displacement. So first figure is along the joint how
24	the strength varies.
25	Initially, these asperities are all
I	1

(202) 234-4433

	75
1	metered. So they are locked. You start moving within
2	a millimeter. It is elastic displacement. At this
3	point, you start first getting the asperity breakage
4	and the stress dropped.
5	You can see all these wiggly things where
6	it moves, gets locked with the different asperities,
7	and breaks, and then you see that that's what happens
8	in very close to the same phenomena in an
9	earthquake.
10	So, from the peak, as it goes, it is also
11	wrapped along the other asperities to make them kind
12	of smoother. If we do these experiments for a long
13	time, it will come to, really, two plane surfaces.
14	And that's the residual values.
15	This is the normal displacement plus the
16	shear displacement. So when the asperities are riding
17	over, so they're trying to go up, open up the joint.
18	So you started seeing these asperities.
19	In this experiment, the problem was moved
20	over 37 millimeters to the right. And then we started
21	bringing it back just to simulate an earthquake
22	because in earthquake, the rock motion will be in one
23	direction, and then it will be reversed and then go
24	into other direction. And it will go like that.
25	So this is the first stage. We did one
	I

(202) 234-4433

	76
1	reverse to bring it close to the original point. And
2	as you can see, that building diverts, the joint
3	contracts, but never it covers all the dilation in
4	the first place because asperities have been sheared
5	off. They're not the same anymore.
6	Next slide, please.
7	We put a limitation and condition here
8	with the large site sample because as you can see in
9	those asperities and that could you go back two
10	slides, on that yes.
11	There had been a lot of asperities in the
12	rock joint surfaces. And if you take a small sample,
13	maybe half an inch, one inch, and do like this, there
14	is a possibility that a lot of things will be missed.
15	So we want to having large enough samples to capture
16	at least most of the features which are in the rock
17	joints.
18	Next slide next to the limitation and
19	conditions.
20	So during site-specific licenses, we'll
21	review the sample sizes, sample how it is collected
22	in the site, how the samples have been developed,
23	tested, the test results, and how those were
24	parameters have been derived from those two curves I
25	just showed in the previous slide. You can get all
	I

(202) 234-4433

	77
1	those parameters from those two curves.
2	MEMBER HALNON: So, Amit, this is Greg
3	again. If a site was going to do this on an existing
4	nuclear facility, large light-water reactor, am I
5	reading that they would have to do additional samples
6	and couldn't take credit for the seismic configuration
7	nor the soil configuration already established at
8	that
9	MR. GHOSH: Yes. See, they have done,
10	probably, for the soil, but they haven't done for the
11	rock. And the rock has fractures that hasn't tested.
12	So they need to test this
13	MEMBER HALNON: Okay.
14	MR. GHOSH: because without these test
15	results, the model as good as it is, it doesn't
16	make any difference.
17	MEMBER HALNON: All right. Thank you.
18	MR. GHOSH: Thank you, sir.
19	Next slide, please.
20	In my opinion, this is the most difficult
21	part of the testing and most important part, the
22	stable reactor shaft. The reactor shaft includes
23	this is a very poor way of showing because I can't get
24	inside the rock and see this. So I am showing it
25	around the surface, that we have excavated this shaft.
I	I

(202) 234-4433

	78
1	You can see the very small blocks at the
2	site, which happens in every project. They will try
3	to (audio interference) because that has space enough
4	for them to move in. And these are very small
5	compared to what we are doing, doesn't bother, except
6	we don't want the workers to get injured. So either
7	there will be a temporary support or they will be
8	excavated and all.
9	And nobody takes them into account in
10	designing and all because this is part of the
11	construction process. But that doesn't mean we want
12	to have a very large block or large region or lots of
13	blocks sliding into that because there is an opening
14	the later one.
15	This and that thing, if it starts
16	coming out, that gets really bad because we don't want
17	that. The GEH has proposed not to use the permanent
18	support. See, if you look into the Washington, D.C.
19	Metro, if you are inside the tunnel, many places you
20	will see there is a shotcrete, liquid concrete, which
21	has been spread over that just to get the small blocks
22	not to fall onto anybody.
23	But during any of the I mean, at the
24	Metro stations, you have heavily supported because
25	that's what the (audio interference) support system is
ļ	I

(202) 234-4433

	79
1	that nobody wants an unstable block to fall. But
2	there was a case in the Boston Big Dig Tunnel. One of
3	the supportive blocks fell and killed a motorist.
4	That became big, big news and issue with that.
5	So nobody wants that thing happen, and
6	especially when we have a nuclear reactor in there.
7	And GEH has proposed want to use permanent support
8	there, which makes sense because once that support
9	system and reactor has been placed, the permanent
10	support may not be accessible, and which time for 30,
11	40 years it is very difficult to get into the support
12	system, which continue to function at that level when
13	it was installed, at time zero.
14	So they want to figure it out: is there
15	any unstable blocks in the surrounding medium that
16	could be affecting the nuclear reactor? There are
17	several ways to figure it out. One is this very
18	classic key block theory, very elegant solution 3D
19	geometry problem by Professor Goodman and Gen-hua Shi
20	at the University of California, Berkeley.
21	Or you can do some numerical simulation,
22	like you can use the (audio interference) model if you
23	had got all the fractures information in there. Once
24	you do that analysis, it will show which block or
25	blocks have a tendency to slide in which direction and
l	1

(202) 234-4433

	80
1	what it can be I mean, then you decide what needs
2	to be done.
3	Additionally, they have said that there
4	will be instrumentation installed around the shaft.
5	And so they can verify these true results, numerical
6	simulation and the results, to get a good confidence
7	that yes, they have found some unstable (audio
8	interference) and then act accordingly.
9	CHAIR MARCH-LEUBA: Can I ask you a
10	question about this?
11	MR. GHOSH: Yes, sir. Please.
12	CHAIR MARCH-LEUBA: Is this
13	instrumentation during construction, or is this an
14	addition that should last 80 years?
15	MR. GHOSH: This should last from
16	construction to the end of the reactor life because
17	they should have or, it may be the place may be
18	maintained, but they need, should have instrumentation
19	because to understand is there anywhere instabilities
20	growing with time. And I
21	(Simultaneous speaking.)
22	CHAIR MARCH-LEUBA: So you have
23	instrumentation, will require power and maybe embedded
24	down a hundred feet down the (audio interference)?
25	MR. GHOSH: Some of them may require power
l	

(202) 234-4433

	81
1	but most of them, like, you know I'm forgetting the
2	word but it is like a rock bolt, it's like a long
3	rod with several sleeves over it, and how the sleeves
4	are anchored at different locations and which time is
5	that is the moment that you can, this mechanical
6	device can measure that and give you an indication.
7	And basically you can put and now it is
8	with the advanced electronics, a lot of things can be
9	done. And they need not be from the reactor shaft,
10	can be from the top surface in the bore holes.
11	CHAIR MARCH-LEUBA: Okay. And those
12	instruments will be at the minimum audited during the
13	final implementation before a license is issued for a
14	site-specific location?
15	MR. GHOSH: Yes, sir.
16	CHAIR MARCH-LEUBA: Thank you.
17	MR. GHOSH: They have to be because, yes.
18	Next slide, please?
19	MEMBER BROWN: Can you leave it there for
20	a minute?
21	MR. GHOSH: Sure.
22	MEMBER BROWN: This is Charlie Brown, got
23	a question.
24	MR. GHOSH: Yeah.
25	MEMBER BROWN: Go back, please.
Į	I

	82
1	PARTICIPANT: The other way.
2	MEMBER BROWN: Thank you. At least, this
3	is rock, it looks even though there's all the sheer
4	all the planes that you show at an angle, are there
5	any criteria relative to non-uniformities?
6	For instance, if you came down 20 feet and
7	all of the sudden there was a, another 20 feet of
8	soil, different type of soil, clay or something, then
9	you go down another 20 feet and you find another set
10	of rock layers, and then you go down another 20 feet
11	and you find I mean, solid rock layers and you
12	go down and you find crushed rock layers.
13	Is there any criteria that you use for
14	saying in these bore holes, when you do it around the
15	area that you're interested in, that say, no, you
16	can't build here? Is there something built into your
17	all's evaluation?
18	MR. GHOSH: Yes. So, if you say, first 20
19	feet you have fractured rock, then next 20 feet is
20	some kind of soil, right? So there you'll have an
21	interface between the soil and the rock and the soil
22	parameters.
23	So soil parameters we will be
24	characterizing using the traditional ways, the rock
25	they will be characterizing with all this fracture

(202) 234-4433

	83
1	mapping and in site stress fail and their strength
2	determination.
3	So in the model we can have two types of
4	material, the (audio interference) can't take the
5	materials because now it is it's just changing the
6	material properties in the elements, and give
7	appropriate the interface values as given in that
8	figure 4-2.
9	So we'll have different values for (audio
10	interference) and sheer stiffness, normal stiffness,
11	and those strength parameters appropriate for that
12	soil and rock interface. So there is no restriction
13	on that.
14	MEMBER BROWN: So, what you end the way
15	I would read your comment then, there's no restriction
16	but that sounds like you would have to have a
17	recognition of the different stresses as you go down,
18	and it would change the construction of that shaft or
19	do you make the whole shaft uniform just to handle the
20	weakest area?
21	MR. GHOSH: No, the shaft should be as it
22	is in the field, as measured, as monitored, as in the
23	field, like, exactly all the layers of rock or soil,
24	and their interfaces.
25	MEMBER BROWN: But you can handle that is
	I

(202) 234-4433

	84
1	what you're saying
2	MR. GHOSH: You can handle that, yes.
3	MEMBER BROWN: Okay. All right, thank
4	you.
5	MR. GHOSH: You are welcome, thank you,
6	sir. Next slide, please.
7	So we'll have several excavations and it
8	has to be self-supported, that means there's no
9	permanent support to be used. We are not talking
10	about in the temporary reinforcement.
11	Some cases, it is like instead of
12	permanent support, like, if it is possible, given the
13	circumstances, that it can be over-excavated, the
14	shaft, because there's some loose pockets around. And
15	then fill it up with backfill of some cement material,
16	concrete, which is generally allowed, acceptable. In
17	the analysis we have to have appropriate properties
18	for those radiants.
19	So in the site-specific application we'll
20	review how they are identified, the unstable rocks or
21	radiants and to assess the pressure imparted by
22	them because they are assuming it is zero.
23	So we'll check those things in the site-
24	specific application so that we understand that our
25	shaft will be stable in reality.
Į	

(202) 234-4433

	85
1	CHAIR MARCH-LEUBA: Let me ask a question
2	that might be above your pay grade.
3	MR. GHOSH: Yes, sir.
4	CHAIR MARCH-LEUBA: You used the word
5	review as opposed to audit, in my mind an audit means
6	you are approved to do what we approved in this
7	topical report, unless we find something wrong in the
8	audit.
9	A review implies you cannot proceed until
10	you have a piece of paper from us, like a safety
11	evaluation in the future. Do you mean review in this
12	sense or do you mean, we'll look at it and review part
13	of the licensing process?
14	MR. GHOSH: Yes, I mean the one that you
15	just said, part of the licensing process. Review it,
16	and in that case, I also, like, when you're auditing,
17	we are also reviewing what they're presenting and they
18	have in their analysis, laboratory test and any
19	CHAIR MARCH-LEUBA: So, administratively,
20	you don't expect a topical report revision two issued,
21	or you to review on a safety evaluation report
22	associated with it. It would be part of the licensing
23	process, more like an audit. Like
24	(Simultaneous speaking.)
25	MR. GHOSH: Yes.
Į	1

(202) 234-4433

	86
1	CHAIR MARCH-LEUBA: You are approved
2	unless we find something wrong?
3	MR. GHOSH: Yes.
4	CHAIR MARCH-LEUBA: Okay. Thank you.
5	MR. GHOSH: Yes, because a lot of things
6	will be site-specific. Thank you, sir.
7	MEMBER HALNON: Amit, this is Greg. I
8	think the excavation process is going to be of great
9	interest because GE mentioned that it could be the
10	water table could be higher than the bottom of the
11	reactor building.
12	Are there techniques out there to be able
13	to dig down and de-water a huge pit like this so you
14	can start pouring concrete appropriately, and
15	backfilling as necessary, like you mentioned?
16	MR. GHOSH: Yes, sir. One of the thing is
17	like, you know, if there's a water table isn't, or
18	doesn't give you much of water, like, you know, small
19	amount of water, you can waterproof it, or you can
20	freeze the surrounding areas so that it doesn't flow
21	in there, and you could do the excavations and then
22	you waterproof the shaft, the cylindrical areas.
23	MEMBER HALNON: Okay
24	(Simultaneous speaking.)
25	MR. GHOSH: Yes, there are practical
I	

(202) 234-4433

	87
1	areas, like, I'll give you examples, like, when you do
2	the Metro tunnels, very close to, say, the Washington
3	I mean, Washington I mean Potomac River, yes,
4	they faced all those things in there.
5	MEMBER HALNON: Okay. So the temporary
6	reinforcement mitigation measures are, they're not
7	going to be exotic, they're well-established. I see
8	one of your colleagues over here saying this
9	MR. GHOSH: Yes.
10	MEMBER HALNON: Agreeing with that, so,
11	okay. All right, thanks.
12	MR. GHOSH: Next slide, please. Okay, now
13	I talk about soil structure interaction modeling,
14	which is very routinely done for, in the nuclear areas
15	or where there's earthquake is a problem in a single
16	structure.
17	So, here we have an embedded reactor shaft
18	surrounded by a media and we need to while you do
19	it so that we understand how much a load will be given
20	on the particulates component of the reactor.
21	So that we can design it against, for that
22	load, design load, have enough capacity with the
23	reinforcement requirement and do in-structure response
24	spectrum. And they will be doing a one-step analysis
25	as given in the American Society of Civil Engineer
Į	I

(202) 234-4433

88 Standard 4-16, which is an industry standard, and our 1 NUREG 0-800 is also, use that part of it. 2 And they will be using the SASSI code, 3 4 System for Analysis of Soil Structure Interaction 5 computer code to do this analysis in a computationally efficient way, because we have to do a lot more, a lot 6 7 many runs and all, that such an assumption are 8 generally taken -- and that's part of the SASSI code 9 too -- that subgrade material is continuous, that 10 means no more fractures, all the fractures have been somehow subsumed in the material properties, their 11 effect. 12 Then the material is isotropic 13 and 14 linearly elastic, so there is no nonlinearity of the 15 reactor surface and the surrounding medium. When I use soil, it's a generic term now 16 17 because soil can be rock, or soil and rock, so. And there is no static lateral pressure 18 19 because we have established that the shaft will be in a self-supported rock medium or soil medium. 20 Next slide, please. 21 So soil -- we have used it for many, many 22 nuclear projects, how to get the soil elastic modulus, 23 24 staff has experience, industry has experience. We use the standard cone penetration test, pressure meter. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	89
1	There are ASTM standards how to get this
2	elastic modulus on this test at the site, so I will
3	not deal with that in here.
4	For the rock, it is a function of the
5	intact rock modulus, rock fracture network because, as
6	you have seen in that picture, that the rock fracture
7	really controls the behavior of the rock mass because
8	all of the rock may be very strong, but the fractures
9	are weak, open, so they really control how the rock
10	mass gives under any load.
11	To use this develop the, you know,
12	mining and construction industry has developed rock
13	mass classification schemes, like rock mass rating,
14	RMR values, by Z.T. Bieniawski or Geological Strength
15	Index by Hoek and Brown.
16	They collected the behavior of rock mass
17	from different projects all over the world and tried
18	to use some parameters to develop one rating system,
19	so that in a new project we can classify the rock as
20	very strong, strong, and understand what possible
21	behaviors they may have.
22	So, each of them incorporates this rock
23	fracture information at the site, and there are other
24	parameters, we give it a numerical rating to that, and
25	at the end we add them together to get the final
I	I

(202) 234-4433

	90
1	rating of the site.
2	So this sort of helps the design engineer
3	to translate their experience all over the world, and
4	if a similar fractured rock mass into the project.
5	And then, using this intact sorry
6	using this rock mass classification number, or rating,
7	there are many empirical equations to develop or
8	estimate the rock mass modulus, and these are
9	empirical equations so, there are many, so in this
10	LTR, GEH has given for, using the RMR, and I saw one
11	paper where there are more than 30 they collected,
12	like, empirical equations, so we need to figure it
13	out.
14	When the ones they have given by if
15	they work have been used in different rock medium,
16	so one of the and you get at the end, what is the
17	elastic properties, elastic modulus of the rock mass,
18	one number, that means it becomes an isotropic medium,
19	we assume that is an isotropic medium.
20	Now, just assuming we have a rock mass
21	with a lot of horizontal bedding planes, like, lots
22	of, is a bedded deposit. Deposited at, in geological
23	time, different types of rock.
24	So only horizontal planes, several of
25	them, so the elastic modulus, the compliance how stiff
	I

(202) 234-4433

	91
1	all the material is will be different across the
2	vertical direction than in the horizontal direction,
3	because we have these fracture planes in there.
4	But this approach gives an isotropic
5	medium, that means it's uniform all over. Next slide,
6	please.
7	So that's what leads to the Limitation and
8	Condition number three, that you need site-specific
9	licensing application, the staff will review whether
10	the fracture network present at the site can make this
11	rock mass isotropic, behave like an isotropic
12	homogenous medium.
13	So we'll review that so that we understand
14	whether these empirical equations can be used in a
15	real case, a site-specific licensing case. Next
16	slide, please.
17	The strain-compatible sub-grade dynamic
18	properties, which we'll use as an input to the SSA
19	site, Soil Structure Interaction Analysis, they need
20	to be consistent with the soil or rock properties used
21	in generation and input motion because SSA Analysis is
22	a deterministic, and site response analysis is
23	probabilistic, that needs to be the same as given
24	in Reg Guide 1.208 and NUREG/CR-6728.
25	Just using the confirmed motion based on
	I

(202) 234-4433

92 1 generic rock site may not result in strain-compatible properties. 2 GEH has proposed an approach to develop 3 4 that has a consistent strain-compatible properties 5 consistent with the observed ground motion. They have assumed strain-compatible 6 the properties are 7 approximately log normally distributed, which for us, 8 parameters, (audio interference), parameters are soil, 9 rock related parameters, generally this is true. Next 10 slide, please. This approach seems reasonable but this 11 will be a first of our application to a nuclear 12 project, so in a site-specific application we'll audit 13 14 this to get a very good understanding of the use of 15 this approach. Next --16 (Simultaneous speaking.) 17 MR. SHULTZ: Amit --MR. GHOSH: Yes, sir? 18 19 MR. SHULTZ: Before you leave this slide on the Condition four -- this is Steve Shultz, given the 20 experience that you and the team has had with this and 21 the reviews that have been done now, would you think 22 it would be right to develop the audit plan in some 23 24 level of detail at this point in time? In other words, to say, we're going to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	93
1	audit this later on, may not ask the right questions,
2	may not be a scope of review that would be
3	appropriate, and some direction now could really help
4	both, the Applicant and a future licensee to
5	understand in more detail what is expected, especially
6	with the first ever application to a reactor project.
7	MR. GHOSH: At this level, in this LTR,
8	this is given at a high level that will be having this
9	normal, log normal distributions, and how the
10	epistemic uncertainties will be addressed in the
11	but this is, like, a theory.
12	So when the real application comes in, the
13	site-specific application, we like to understand this
14	theory and see how that has been implemented.
15	So, in my opinion, once we have a much
16	deeper information, detailed information, we will be
17	able to write a audit plan, do the audit, and then
18	maybe use that as a template for future application.
19	MR. SHULTZ: I was thinking of not
20	something within the safety evaluation but a separate
21	document that could capture the focus of the review
22	that you're going to be doing in the future.
23	You seem to know it all, in terms of the
24	overall evaluation but it also involves a number of
25	different disciplines to put that audit plan together
I	I

(202) 234-4433

	94
1	appropriately.
2	MR. GHOSH: Yes, sir.
3	MR. SHULTZ: Something that might be
4	considered.
5	MR. GHOSH: Okay, thank you.
6	CHAIR MARCH-LEUBA: This is Jose, and I
7	think that's an excellent suggestion because we've
8	been doing reviews, and it is often that we hear, the
9	person that did the review just retire and I cannot
10	give you all the details.
11	So, I'm not urging you to retire, but
12	whenever this audit plan comes along, will you be
13	around? So it really would be helpful to have an
14	informal audit plan, certainly not modified SER.
15	I think it's a good
16	(Simultaneous speaking.)
17	MR. SHULTZ: That's what I was thinking,
18	not something in detail, that would be developed later
19	for the specific application, but just the general
20	sense of what the expectations would be.
21	MR. GHOSH: (Audio interference) so that
22	in a future application time, we don't forget that's
23	why we have a limitation and condition in place, so
24	that future reviewer will be directed to do this so
25	that it doesn't get lost.
I	I

(202) 234-4433

	95
1	CHAIR MARCH-LEUBA: Okay, you can
2	continue.
3	MR. GHOSH: Thank you. Next slide,
4	please.
5	And I'll discuss briefly about the
6	nonlinear soil structure interaction analysis because
7	one of the assumption was, everything is linear, if
8	there is a site which has a very high seismicity or
9	the material, subgrade materials are highly nonlinear,
10	will that but that may not area to the linear
11	assumptions.
12	Like, if there's a separation of the
13	reactor building with the surrounding media, soil
14	separation, all the rock fractures have very highly
15	nonlinear, how they respond to the earthquake.
16	So GEH would tried to do a sensitivity
17	nonlinear site-specific soil-structure interaction
18	analysis and following the national standard ASCE
19	4-16, appendix B.
20	One thing is that nonlinear SSA analysis
21	is quite complex and next slide, please.
22	So in a site-specific application, if we
23	see there is a nonlinear SSA analysis has been
24	presented, we'll review how the nonlinear area has
25	been characterized, how they have been modeled, and
ļ	

(202) 234-4433

	96
1	then how they have been put into the SSA analysis.
2	So we'll be doing a much more in-depth
3	review for this if we see nonlinear SSA analysis,
4	because this all (audio interference).
5	Next slide, please.
6	So, in conclusion, staff finds the
7	approaches proposed to characterized the surrounding
8	media is reasonable, are reasonable, the staff finds
9	the approaches proposed to develop the site design
10	parameters are reasonable.
11	And we have placed five Limitation and
12	Conditions to have a more in depth review of the
13	background information, and relevant design and site
14	information, characterization of the surrounding
15	media, and development of the site design parameters
16	associated with them.
17	With this, I conclude my presentation, and
18	any questions?
19	CHAIR MARCH-LEUBA: Members, any
20	additional questions for the staff?
21	MR. SHULTZ: Amit, this is Steve Shultz
22	(Simultaneous speaking.)
23	MEMBER DIMITRIJEVIC: This is Vesna
24	(Simultaneous speaking.)
25	MEMBER DIMITRIJEVIC: I have a question,
I	

(202) 234-4433

	97
1	what is your opinion on how would this affect, I mean,
2	you know, I'm so, just listening to all of this and
3	how it has changed some seismic risk perspective. So
4	what do you think, how will this affect the seismic
5	PRA and estimates, and maybe even seismic
6	qualification, what will be different from how the
7	things are done now?
8	MR. GHOSH: If I understand your question,
9	like, how what will be the different in a seismic
10	PRA of this
11	MEMBER DIMITRIJEVIC: Yeah, I heard in the
12	previous thing, the risk would be lower with this
13	structure, the seismic risk will be lower, but I'm not
14	sure what is that based on.
15	And it seems to me, since this is now much
16	more site-specific than just seismic, you know,
17	because it strongly depend on the materials, so my
18	question is, did you, you know, did you have any
19	thoughts how would this impact the seismic risk
20	assessment?
21	(Simultaneous speaking.)
22	MEMBER DIMITRIJEVIC: The seismic
23	qualification even, you know, will you qualify also
24	for the soil structure, I mean, I'm not sure. I'm a
25	little did not have time too much to think about
	I

(202) 234-4433

	98
1	that, so I'm just, like, could use what are your
2	thoughts on it.
3	MR. GHOSH: At this moment, what I can
4	tell you, like, the seismic fragility of any component
5	on a structure, that depends on what it is
6	experiencing and this, one thing, it has been observed
7	that if you go below the surface, your seismic
8	response may be lower.
9	But, at the same time, we have all these
10	fractures which work quite differently, so very
11	difficult to say whether the seismic risk will go up
12	or down, and this has to be analyzed for seismic
13	fragility of each of the important to safety
14	components, they need to be analyzed.
15	So once they develop an estimate, what is
16	the ground motion there, or seismic motion, there is
17	a component is going to experience that ISRS, in-
18	structure response spectra and others, then they can
19	use that to develop the seismic fragility from there.
20	But, at this moment, I don't know more
21	than that, whether it would be how to do it
22	differently rather than the very standard way.
23	MEMBER DIMITRIJEVIC: Because you know
24	that one of the standard things is now, in the design
25	applications they do the seismic margin assessment
l	I

(202) 234-4433

	99
1	which the components are qualify for this, you know,
2	certain ground motion then now detailed seismic
3	this thing, every (audio interference) extent of
4	hazards, you know, but makes the seismic much more
5	prominent, you know.
6	MR. GHOSH: Yes
7	MEMBER DIMITRIJEVIC: So I'm sort of very
8	curious, you know, what is going to be different, so.
9	MR. GHOSH: It's business to be worked out
10	and my knowledge doesn't go in there, I am so sorry.
11	MEMBER DIMITRIJEVIC: Thank you.
12	MR. GHOSH: Thank you.
13	MEMBER DIMITRIJEVIC: I think everybody's
14	thinking, in the thinking phase when comes to that but
15	far from the, having the real solution, so.
16	MR. SHULTZ: Amit, this is Steve Shultz.
17	MR. GHOSH: Hi.
18	MR. SHULTZ: I have just a general
19	question or comment, as you introduced the discussion
20	this morning, and as the GEH has also presented at the
21	end of their presentation, there's a lot of detail in
22	the overall evaluation that is proposed and reviewed.
23	And many of the approaches that have been
24	proposed, you listed on a slide, saying, we're not
25	going to discuss those today but they are discussed in

(202) 234-4433

	100
1	the safety evaluation.
2	But my general question is, your statement
3	that the approaches are reasonable, I'm thinking back
4	to that list of questions that you proposed at the
5	beginning of the presentation, or at the beginning of
6	your review, I thought they were very good questions.
7	Have those questions been adequately answered in your,
8	and the teams, view for all of the approaches that
9	have been proposed by GEH, can we take that away from
10	your review?
11	You've got the second bullet in the last
12	slide you have, we found the approaches to be
13	reasonable, is that a global statement for what GEH
14	has proposed?
15	MR. GHOSH: Yes, this is a global
16	statement, like, I mean, all the approaches, you know,
17	are reasonable because they has been used before or
18	somewhere in the nuclear application or other
19	industries.
20	When there is other industry, like, I'll
21	give you one example with the mining industry, their
22	definition of a stable excavation would not be proper
23	for a nuclear application.
24	Because, say, in a mining, they want to
25	excavate the material, they don't want to be stable
I	I

(202) 234-4433

	101
1	for years and years and years, because they want to
2	extract the whole body of the rock, take it to the
3	mill and get the metal or mineral out, and sell it.
4	So they want the excavation to be stable,
5	only until they mine it out, which is maybe one to two
6	years. Whereas we are talking 40 years, so some of
7	the tolerance level that their definition do not
8	easily translate.
9	So, yes, when we found only used in
10	mining, we need to do a lot more work in the nuclear
11	area because we don't that definition so it give
12	a confidence if method works, but gives us a that
13	we need to do a lot more homework when we do the
14	actual review.
15	And, see, there's some cases we found,
16	like, we need to have this limitation and conditions
17	because, like, say, stable excavations which is very
18	good but it's a very difficult to show that, what are
19	the ways to show that, it took us a lot of analysis.
20	So that the whole concept how do I say
21	that doesn't get lost during the actual review, we
22	put those things that we have a list of items to be
23	reviewed in detail, so that we go into the background,
24	develop and designing site information,
25	characterization, and site design parameters.
ļ	I

(202) 234-4433

	102
1	We do much more in depth review at least
2	on those areas, and it may so happen in a site-
3	specific applications we may find something else is
4	also important.
5	MR. SHULTZ: You have identified those in
6	the Limitations and Conditions, thank you for bringing
7	your expertise to both, the review and also to the
8	presentation today. It was very enlightening, thank
9	you.
10	MR. GHOSH: Thank you, sir. I appreciate
11	it very much, thank you.
12	CHAIR MARCH-LEUBA: I don't see any more
13	questions coming so, with that, we are going to have
14	to open the floor for comments from the public.
15	Anybody on the conference call that wants
16	to make a comment can do it now, if you are on Teams
17	just unmute yourself, if you're using the conference
18	phone line you need to use star-six.
19	(No audible response.)
20	CHAIR MARCH-LEUBA: Just a reminder that
21	the open comment portion of the meeting is an
22	opportunity to add comments to the public record for
23	committee consideration.
24	If you have any questions or particular
25	requests, please address them directly to our DFO,
ļ	I

(202) 234-4433

	103
1	Kent Howard, his email is kent.howard@nrc.gov.
2	So do we have any members of the public
3	that want to place some comments on the record?
4	I don't hear anybody, so, with that, let
5	me remind you that we are scheduled to have a full
6	committee meeting for this topic in a couple of weeks,
7	April 7, I believe, and scheduled to write a letter.
8	We will also have another BWRX-300 topical
9	report review this afternoon on containment, and we
10	are also scheduled to write a letter on that.
11	That said, unless anybody has anything
12	else to add?
13	MEMBER HALNON: Yeah, I just wanted to add
14	this is Greg to Steve's comment, appreciate both
15	the staff and GE. Very good presentations, brought
16	the right people, answered questions to us in layman's
17	terms, so I appreciate that very much.
18	(Simultaneous speaking.)
19	MEMBER BROWN: I would also comment and
20	echo Greg in that it's nice to see, get the
21	explanations see the NRC has.
22	CHAIR MARCH-LEUBA: Yeah.
23	MEMBER BROWN: A very talented and capable
24	group with which to address these types of issues.
25	That was a illuminating discussion, so much
	I

(202) 234-4433

	104
1	appreciated for those of us who are not steeped in
2	this lore. So thanks again.
3	CHAIR MARCH-LEUBA: I have time to think
4	and there is another topic preparation for the full
5	committee, we have almost every member present in this
6	subcommittee, only one member wasn't present, so the
7	primary purpose of the full committee presentations is
8	for the benefit of the public, so
9	(Simultaneous speaking.)
10	CHAIR MARCH-LEUBA: And Walt, yeah, two.
11	Yeah, two members were not here.
12	But the primary purpose of the full
13	committee is for the benefit of the public, so keep
14	the presentations at the higher level and cut them
15	down a little bit in time, I'll leave it to your
16	discretion.
17	Because we like to use additional time to
18	read our letter and work on our final product, which
19	is the letter. Speaking of which, I will be sending
20	a draft letter sometime next week to the staff for
21	proprietary review, even though this LTR has no
22	proprietary items, it's always good to make sure we
23	verify it, so we will be asking the staff and GE to do
24	a quick turnaround on that proprietary review, because
25	we don't have much time, and I see Mike saying yes.
	I

(202) 234-4433

	105
1	Hey, Mike, while I have you here I
2	thought you were not on the call anymore let me
3	bring up another topic, see how the members feel about
4	it and you feel about it, when we do the sign center
5	reviews, like on new reactors, often we write one
6	letter for two or three chapters, today we are going
7	to review two topical reports and my plan was to write
8	two letters, but maybe in the future or even for
9	today, we could write one letter for two topical
10	reports. Would that be a problem?
11	MR. DUDEK: So there are two independent
12	topics and two independent topical reports, I would
13	leave that up to the description of the committee.
14	I mean, you're the experts, but I could
15	see how there could be complications with combining a
16	letter on two independent topics, even though they're
17	presented on the same day. We'd want to explore that
18	a little bit, I think.
19	CHAIR MARCH-LEUBA: I was yes, I mean,
20	the letters are going to have to have, and will have
21	some commonality, description of what is BWRX-300 and
22	this and that, but I can see why you would like to
23	have it separate so that it's attached to the SER, so.
24	MR. DUDEK: Yeah.
25	CHAIR MARCH-LEUBA: Going forward we'll

(202) 234-4433

	106
1	assume we want one letter for every topical report
2	unless we hear otherwise.
3	MR. DUDEK: I think that's a good
4	assumption.
5	CHAIR MARCH-LEUBA: Yeah, understanding
6	that the ACRS has their own mind and we decide what we
7	want to do, but
8	(Laughter.)
9	CHAIR MARCH-LEUBA: Okay. Any more
10	topics?
11	With that, then meeting is adjourned.
12	And we'll see almost everybody here this
13	afternoon at 1:00 O'clock.
14	(Whereupon, the above-entitled matter went
15	off the record at 11:10 a.m.)
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	1

GE Hitachi Nuclear Energy

George E. Wadkins

GE-Hitachi Nuclear Energy Americas, LLC Vice President, New Power Plants and Products Licensing 3901 Castle Hayne Road Wilmington, NC 28402 USA

T 910.200.3295 George.Wadkins@ge.com

M220047 March 22, 2022

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555-0001

Canadian Nuclear Safety Commission 280 Slater Street P.O. Box 1046, Station B Ottawa, Ontario, K1P 5S9, Canada

Subject: Final ACRS Subcommittee Presentation Slides for NEDO-33914, BWRX-300 Advanced Civil Construction and Design Approach Licensing Topical Report

Enclosed are the final presentation slides that GE Hitachi Nuclear Energy (GEH) presented during the Advisory Committee on Reactor Safeguards (ACRS) subcommittee meeting on March 18, 2022. These final presentation slides include the addition of the back-up slide presented during the meeting. These slides support the ACRS review of NEDO-33914 Revision 1, BWRX-300 Advanced Civil Construction and Design Approach, and the corresponding Advanced Safety Evaluation Report (SER) with No Open Items.

Enclosure 1 contains non-proprietary information and may be made available to the public.

If you have any questions, please contact me at 910-200-3295.

Sincerely,

George E. Wadsins

George E. Wadkins Vice President, New Power Plants and Products Licensing GE-Hitachi Nuclear Energy Americas, LLC

Enclosure:

1. Final ACRS Subcommittee Presentation Slides for NEDO-33914, BWRX-300 Advanced Civil Construction and Design Approach Licensing Topical Report – Non-Proprietary Information

M220047 Page 2 of 2

cc: James Shea, US NRC Chantal Morin, CNSC PLM Specification 006N9431 Revision 2 Document Components: 001 M220047 Cover Letter.pdf 002 M220047 Enclosure 1 Non-Proprietary.pdf

ENCLOSURE 1

M220047

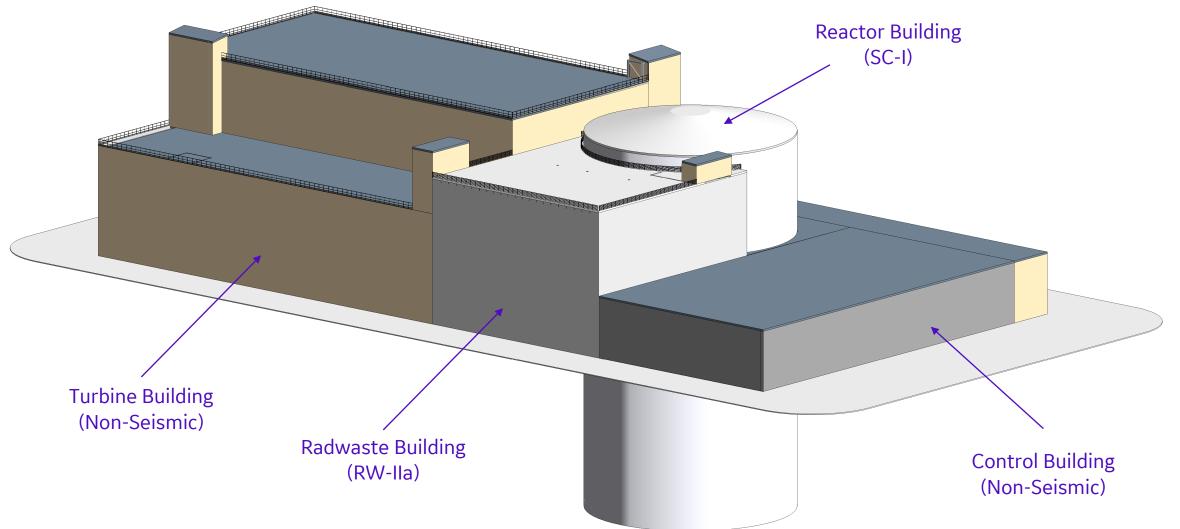
Final ACRS Subcommittee Presentation Slides for NEDO-33914, BWRX-300 Advanced Civil Construction and Design Approach Licensing Topical Report

Non-Proprietary Information

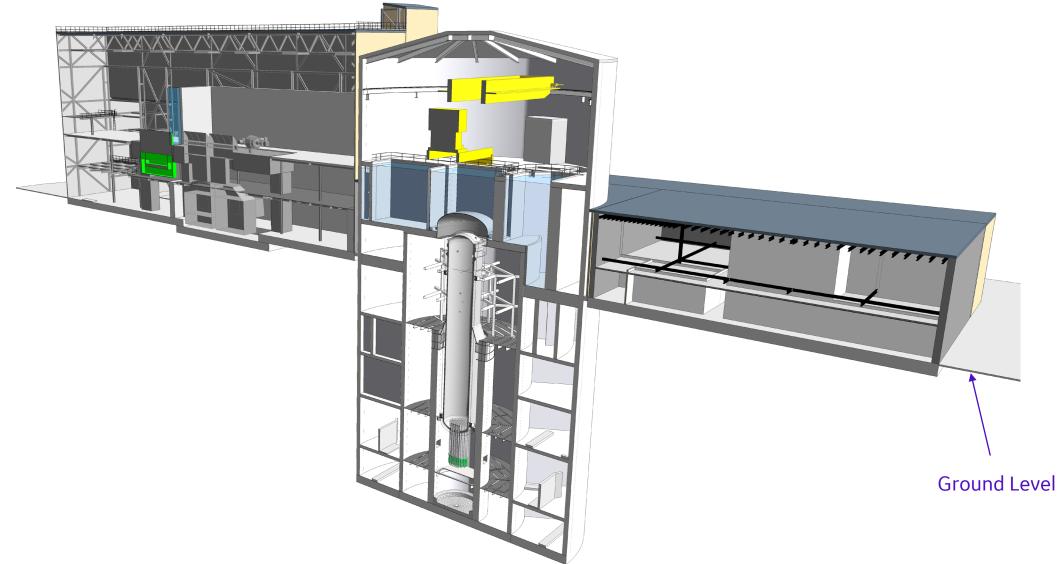
ACRS Subcommittee Presentation

GE Hitachi (GEH) Licensing Topical Report (LTR) NEDO-33914 BWRX-300 Advanced Civil Construction and Design Approach

March 18, 2022


Agenda

- Licensing Topical Report Purpose and Scope
- Regulatory Basis
- Investigations, Testing, Inspection and Monitoring Programs
- Foundation Interface Analysis
- Design Analyses
- Design Approach for II/I Interaction
- Generic Design Approach


BWRX-300 Buildings and Seismic Classification

BWRX-300 Building Seismic Categories

BWRX-300 3D Section View

Licensing Topical Report Purpose and Scope

Licensing Topical Report Purpose

GEH is seeking NRC approval for the application of an alternative approach to the construction, analyses, and design of the BWRX-300 below-grade Reactor Building.

The purpose of the LTR was to present design, analysis, and monitoring guidelines and requirements to support the request for NRC approval of the innovative and comprehensive construction approach for the construction of the below grade BWRX-300 small modular reactor (SMR) Reactor Building (RB) vertical right cylinder shaft (LTR Sections 1.3 and 1.4).

The following criteria, methodologies, recommendations, and approaches are addressed:

- Requirements and recommendation for site investigation and subsurface materials lab testing programs (LTR Section 3.1)
- Inspection and monitoring programs (LTR Sections 3.2 and 3.3)
- Compression strength testing program for safety-related concrete (LTR Section 3.2.2.1)
- Field monitoring program (LTR Section 3.4)
- Methods and approaches for non-linear Foundation Interface Analyses (FIA) (LTR Section 4.0)
- Requirements and recommendations for implementing a one step approach for static and seismic Soil Structure Interaction (SSI) analyses (LTR Section 5.1)

Licensing Topical Report Purpose

- Deterministic and probabilistic evaluation approaches to ensure the one step approach provides conservative design demands on the deeply embedded RB structure (LTR Sections 5.1.3 and 5.1.4)
- Approaches for developing equivalent linear static and dynamic subgrade properties used as inputs to the one step design analysis model (LTR Sections 5.2.1 and 5.2.4)
- Requirements and methodologies for developing Safe Shutdown Earthquake (SSE) design ground spectra to define the design ground motion along the depth of the RB embedment (LTR Section 5.2.2)
- Additional requirements for generating acceleration time histories for use as input to the seismic SSI analyses (LTR Section 5.2.3)
- Seismic SSI analysis approach that provides demands for seismic design and qualification of structures, systems and components (SSCs) for all frequencies of interest and adequately captures the effects of structure-soil-structure interaction (SSSI) for the deeply embedded RB with adjacent structures and foundations (LTR Sections 5.3, 5.3.2, and 5.3.7)
- Different approaches for demonstrating consistency between the results from the deterministic SSI analyses of the RB structure with the results from the probabilistic site response analyses (SRA) (LTR Section 5.3.4)

Licensing Topical Report Purpose

- Approaches for sensitivity evaluations from the effects of concrete cracking, soil structure interface conditions, soil separation and groundwater variations on the seismic response and design of the deeply embedded RB structure. (LTR Sections 5.3.5, 5.3.8, 5.3.9 and 5.3.10)
- Comprehensive approach for evaluating the effects of non vertically propagating seismic waves on the design ground motion and seismic response of the deeply embedded RB structure (LTR Section 5.3.3)
- Different approaches for considering Equipment Structure Interaction (ESI) for developing in structure seismic response demands for equipment design and qualification (LTR Section 5.3.6)
- Recommendations for performing non-linear seismic SSI analyses for sensitivity evaluations (LTR Section 5.3.11)
- Graded approach for the design of structures adjacent to the deeply embedded RB that includes Seismic Category II/I interactions (LTR Section 6.0)
- Methodology for developing generic seismic and geotechnical design parameters (LTR Section 7.0)

Licensing Topical Report Scope

This request was supported by the following information in the LTR:

- Regulatory basis specific for the innovative approaches implemented for analysis, design and construction (LTR Section 2.0)
- Guidelines and requirements for characterizing subsurface conditions, including geotechnical site investigations and laboratory testing programs, as well as the inspection and monitoring programs performed during excavation, construction, and operation (LTR Section 3.0)
- Requirements and guidelines for performing FIA to ensure the stability of both structure and the in-situ soil and/or rock during and after construction (LTR Section 4.0)
- Design requirements, acceptance criteria and guidelines for the analysis and design of the deeply embedded RB, including the development of site specific geotechnical and seismic design parameters (LTR Section 5.0)
- An approach for addressing Seismic Category (SC) II/I interaction between the SC I RB and surrounding structures and foundations (LTR Section 6.0)
- Generic seismic and geotechnical design parameters (LTR Section 7.0)

Regulatory Evaluation

Regulatory Basis – Defining Site Subsurface Conditions

The approach used for defining and evaluating site subsurface conditions complies with the following:

- 10 CFR 100 requires the consideration of site physical characteristics, including seismology and geology.
- 10 CFR 100.20(c)(1) and 10 CFR 100.23 establish requirements for conducting site investigations for nuclear power plant license applications.
- IAEA Safety Guide NS-G-6 provides guidance on the methods and procedures for analyses to support the assessment of the geotechnical aspects for the design of nuclear power plants.
- NUREG-0800 (SRP) 2.5.4 provides regulatory guidance for the investigation and reporting site specific geologic features and characteristics of ground materials, including static and dynamic engineering properties and groundwater conditions (LTR Sections 3.1, 3.2, 3.3, 3.4, 4.0)
- RG 1.132, "Site Investigations for Foundations of Nuclear Power Plants," Revision 2 describes methods acceptable to the NRC staff for conducting field investigations to acquire the geological and engineering characteristics of the site and provides recommendations for developing site specific guidance for conducting subsurface investigations. (LTR Sections 3.1, 3.1.1)
- RG 1.138 describes laboratory investigations and testing practices for determining soil and rock properties and characteristics needed for engineering analysis and design of foundations and earthworks for nuclear power plants. (LTR Section 3.1)

Regulatory Basis – Site Design Parameters

The approach for defining and evaluating design parameters complies with the following:

- 10 CFR 100.23(d)(1) specifies the requirements for defining the safe shutdown earthquake (SSE) ground motion for the site and the need for addressing result uncertainties in the site investigation performed (LTR Section 2.1)
- NUREG-0800 (SRP) 3.7.1 provides regulatory guidance for the development of site design ground motion acceleration response spectra and time histories (LTR Section 5.2.3)
- RG 1.208, "A Performance Based Approach to Define the Site-Specific Earthquake Ground Motion," Revision 0, specifies the performance-based approach Chapters 1 and 2 of ASCE/SEI 43 05 standard as an acceptable approach for defining the SSE Ground Motion Response Spectra (GMRS) that satisfies the requirements of 10 CFR 100.23.
- Interim Staff Guidance (ISG) DC/COL-ISG-017 "Interim Staff Guidance on Ensuring Hazard Consistent Seismic Input for Site Response and Soil Structure Interaction Analyses", specifies the requirements for ensuring the inputs used for the deterministic SSI analysis of embedded structures are consistent with the results of probabilistic SRA used to develop Foundation Input Response Spectra (FIRS) and Performance Based Surface Response Spectra (PBSRS) (LTR Section 5.3.4)

Regulatory Basis – Seismic Analysis

The seismic analysis complies with the following:

- 10 CFR 50 Appendix S, Earthquake Engineering Criteria for Nuclear Power Plants
- SSI analyses:
 - SRP 3.7.2
 - DC/COL-ISG-01
 - ASCE/SEI 4-16, Section 5
- Finite Element (FE) Models:
 - SRPs 3.7.1 and 3.7.2
 - RG 1.61, "Damping Values for Seismic Design of Nuclear Power Plants," Revision 1
 - ASCE/SEI 4-16 Section 3 (LTR Section 5.1) and ASCE/SEI 43-05
- Effects of structure soil structure interaction (SSSI) of the RB with surrounding foundations:
 - ASCE/SEI 4-16 Section 5.1.5 (LTR Section 5.3.7)
 - SRP 3.7.2 Subsection II.3.B (LTR Section 5.3.6)
- Effects of non vertically propagating seismic waves, soil separation, concrete cracking and soil secondary non-linearity on the seismic response and design of the RB:
 - ASCE/SEI 4-16, Section 5.1 (LTR Sections 5.3.3, 5.3.5, 5.3.8, 5.3.9, 5.3.10 and 5.3.11)

Regulatory Basis – II/I Interactions

The approach used for evaluating the seismic category two over one interactions complies with the following:

- SRP 3.7.2 (LTR Section 6.0)
- SRP 3.3.2 (LTR Section 6.0)
- ASCE/SEI 43-05 (LTR Sections 6.2 and 6.3)

Regulatory Basis – Testing, Inspection and Monitoring

The approach used for performing the testing, inspection, and monitoring complies with the following:

- 10 CFR 50 Appendix A GDC 1 inspection and testing requirements met by
 - RG 1.142, "Safety-Related Concrete Structures for Nuclear Power Plants (Other than Reactor Vessels and Containments)"
 - RG 1.136, "Design Limits, Loading Combinations, Materials, Construction, and Testing of Concrete Containments,"
 - NRC Inspection Manuals 88131 (geotechnical and foundation), 88132 (structural concrete), and 55100 (structural welding)
- 10 CFR 50.65 requirements met by (LTR Section 3.3):
 - RG 1.160, "Monitoring the Effectiveness of Maintenance at Nuclear Power Plants,"
 - NUMARC 93-01 "Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants"
- RG 1.132 and RG 1.138 (LTR Sections 3.1, 3.1.3, and 3.2)
- NUREG/CR-5738 (LTR Section 3.1.3)
- RG 1.142 (LTR Section 3.2.2)

Regulatory Basis – Summary

- The design and analyses described in the LTR comply with all applicable regulatory requirements and guidance as written.
- The implemented innovative approaches meet the intent of the current regulatory guidance for large light water reactors and address the specifics related to the seismic and structural design of deeply embedded SMRs (LTR Section 2.0).
- GEH is not requesting NRC approval for exemptions from any regulatory requirements or any exceptions to any regulatory guidance.
- The methodology in this LTR ensures safe operation of the BWRX-300 for the life of the plant.

Technical Evaluation

Investigations, Testing, Inspection and Monitoring Programs

- Innovative property characterization and monitoring approaches driven by RB structure being deeply embedded
- Investigation, testing, inspection, and monitoring programs, in conjunction with the results of a set of FIA (LTR Section 4.3.4), ensure the safe siting of the BWRX-300 plant:
 - Site investigation program (LTR Section 3.1.1)
 - Subsurface material laboratory testing program (LTR Section 3.1.2)
 - Construction and in-service monitoring programs (LTR Sections 3.2, 3.3, and 3.4)
 - Excavation and foundation inspection and testing programs (LTR Section 3.2.1)
 - Construction inspection and testing program for structural concrete (LTR Section 3.2.2)
 - Compressive strength testing program of SR concrete (LTR Section 3.2.2.1)
 - Structures Monitoring and Aging Management Program (SMAMP) in-service condition monitoring (LTR Sections 3.3.1 and 3.3.2)
 - Field instrumentation plan (LTR Section 3.4)

Foundation Interface Analysis

- To ensure structures and supporting media, soil, and/or rock meet stability requirements of SRP 2.5.4.
- Results of FIA used to evaluate construction plans, including possible ground improvements, excavation support and foundation interface design. Also used for verification of the RB shaft design.
- Non-linear constitutive 3D FIA numerical model (LTR Sections 4.1 and 4.2)
- Analysis approach includes interface modeling, structural modeling, fluid soil interaction, and consideration of all plant life stages (LTR Section 4.3.1 – 4.3.4)

Foundation Interface Analysis

Innovative approach implemented for the BWRX-300 FIA beyond the current regulatory guidance of SRP 2.5.4

- General modeling and analysis requirements for stability evaluations (LTR Section 4.1)
- Guidelines for modeling the non-linear constitutive response of soil and rock including the approach for calibrating the FIA model based on data obtained from field instrumentation (LTR Sections 3.4, 4.2.1 and 4.2.2)
- Guidelines for modeling interfaces, including contacts between structures and the subgrade, as well as interfaces between bedding units and other discontinuities in the geological formation (LTR Section 4.3.1)
- FIA structural modeling requirements, including recommendations for modeling SMR structures and soil stabilizations elements, such as rock anchors, soldier piles, and stabilization walls and liners (LTR Section 4.3.2)
- ...and beyond the current regulatory guidance of SRP 3.8.5
 - FIA modeling approach for fluid soil interaction and FIA model calibration using measurements of groundwater elevations and hydrogeological investigations (LTR Sections 3.0 and 4.3.3)
 - FIA approaches for the different BWRX-300 life stages, including guidelines for using the measurements from field instrumentation for FIA model calibration and benchmarking FIA results (LTR Sections 3.4 and 4.3.4).

HITACHI

Design Analysis

- Innovative static and seismic SSI analysis approaches for designing the deeply embedded RB structure (LTR Sections 5.1 and 5.3)
- Requirements, methodologies, and recommendations for developing site specific geotechnical and seismic design parameters are based on the results of site investigations and laboratory testing programs (LTR Sections 3.1 and 5.2)
- Requirements and recommendations ensure the seismic SSI analyses use input motion that is adequate throughout the depth of the RB embedment (LTR Sections 5.2.2 and 5.3.4)
- A comprehensive recommended approach for evaluating the effects of non-vertically propagating seismic waves on the design ground motion and seismic response of the deeply embedded RB structure (LTR Section 5.3.3)
- Recommends approaches for developing in-structure seismic response demands for equipment design and qualification, considering ESI (LTR Section 5.3.6)
- Introduces additional requirements for generating multiple acceleration time histories with refined time steps which ensures the mitigation of uncertainty in the computed structural responses (LTR Section 5.2.3)

Design Approach for II/I Interaction

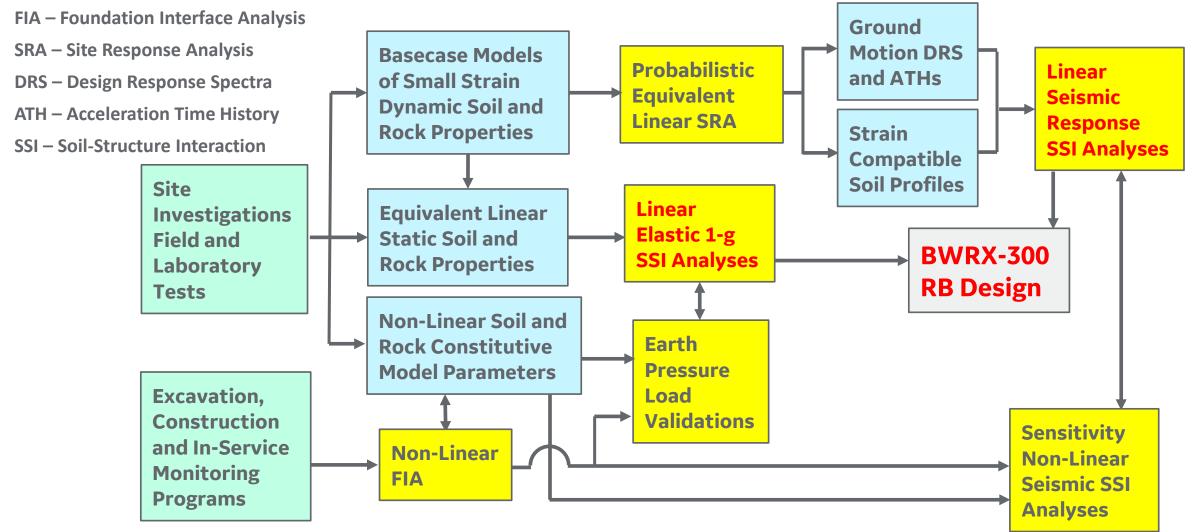
- Graded approach for the design and II/I interaction evaluations of the structures adjacent to the deeply embedded SC I RB structure.
- Applies to the Control Building (CB), Turbine Building (TB) and Radwaste Building (RwB)
- CB, TB and RwB structures near the SC I RB are designed in accordance with their seismic classification (LTR Section 6.1)
 - CB and TB: Non-seismic (LTR Section 6.1.1) includes determination of seismic and wind design loads
 - RwB: RW-IIa (LTR Section 6.1.2) includes the determination of seismic, wind, tornado wind and missile design loads
- Approach for seismic II/I interaction evaluations of CB, TB and RwB structures, including criteria and recommendations for calculations of seismic stress demands and displacements (LTR Section 6.2)
- Approach for II/I interaction evaluations CB, TB and RwB structures for extreme wind loads, including criteria and recommendations for consideration of wind loads displacements (LTR Section 6.3)

BWRX-300 Generic Design Approach

- Methodology for development of generic seismological and geotechnical site parameters for the conceptual design of the BWRX-300 (LTR Section 7.0)
- Overall approach ensures a cost-effective design applicable for a wide range of site conditions (LTR Section 7.1)
 - Use of Generic Design Response Spectra (GDRS) for the conceptual design seismic analyses of the RB (LTR Section 7.2)
 - Use of generic subgrade dynamic properties for the conceptual design seismic analyses of the RB (LTR Section 7.3)
 - Use of generic static properties for different subgrade materials considered for the conceptual design, which are correlated to the generic dynamic subgrade profiles to develop generic profiles of static subgrade properties for use as input for the conceptual design static SSI analyses (LTR Sections 7.4 and 7.5)
 - Use of friction coefficient values and groundwater table elevations for the generic conceptual design evaluations (LTR Sections 7.6 and 7.7)

Conclusion

In summary...


- The design and analyses described in the LTR comply with all applicable regulatory requirements and guidance as written.
- The innovative approaches meet the intent of current regulatory guidance for large light water reactors and address the specifics related to the seismic and structural design of deeply embedded SMRs.
- GEH is not requesting NRC approval for exemptions from any regulatory requirements or any exceptions to any regulatory guidance.
- The methodology in this LTR ensures safe operation of the BWRX-300 for the life of the plant.

Questions or Comments

Back-up Slides

BWRX-300 Monitoring, Analysis and Design Process

United States Nuclear Regulatory Commission

Protecting People and the Environment

Staff Presentation to the ACRS Sub-Committee

GEH Licensing Topical Report BWRX-300 Advanced Civil Construction and Design Approach (NEDO–33914, Revision 1)

MARCH 18, 2022

Topical Report Review Chronology

- GEH submitted licensing topical report (LTR) NEDO–33914, Revision 0, "BWRX-300 Advanced Civil Construction and Design Approach," on January 20, 2021
- NRC issued requests for additional information (RAIs) 9849 and 9859 on July 19 and July 30, 2021, respectively
- GEH provided responses to RAI 9849 on August 19, 2021, and RAI 9859 on September 13 and November 4, 2021. The NRC staff found the responses acceptable.
- GEH issued LTR Revision 1 on November 18, 2021, that incorporated the RAI responses
- NRC issued the advanced safety evaluation on February 15, 2022

NRC Staff

Reviewers:

- Amitava Ghosh, Ph.D., Geotechnical Engineer, Presenter, NRR/DEX/ESEB
- David Heeszel, Ph.D., Geophysicist, NRR/DEX/EXHB
- Edward Stutzcage, Health Physicist, NRR/DRA/ARCB
- Angelo Stubbs, Sr. Safety and Plant Systems Engineer, NRR/DSS/SCPB
- Sujit Samaddar, Sr. Structural Engineer, NMSS/DFM/MSB

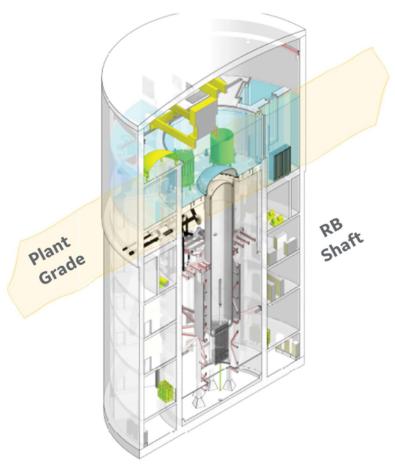
Project Managers:

- Alina Schiller, TR Project Manager, NRR/DNRL/NRLB
- James Shea, Sr. Project Manager, NRR/DNRL/NRLB

- Introduction
- Difference Between Traditional Light Water Reactor and GEH BWRX-300
- Regulatory Bases
- NRC Staff Major Reviewed Topics
- Other Reviewed Topics
- NRC Staff Review Strategy
- Rock Fracture Network/FIA Model/Limitation & Condition (L&C) #1
- Stability of Reactor Shaft/L&C #2
- Soil-Structure Interaction Modeling/L&C #3
- Strain-Compatible Subgrade Dynamic Properties/L&C #4
- Nonlinear Soil-Structure Interaction Analysis/L&C #5
- Staff Conclusions

Difference Between Traditional Light Water Reactor and GEH BWRX-300

- GEH BWRX-300 will be deeply embedded in a vertical shaft
- Posses some unique issues
 - Reactor may be in only soil layers, only rock layers, or rock overlain by soil
 - Rock mass has fractures; joints, bedding planes, faults, cavities (karst features): fracture network
 - o In-situ stress field
 - Water table
 - Response to Safe Shutdown earthquake (SSE)



From: Cao, et al. 2016. An Experimental and Numerical Study on Mechanical Behavior of Ubiquitous-Joint Brittle Rock-Like Specimens Under Uniaxial Compression. Rock Mechanics and Rock Engineering.

GEH BWRX-300 Reactor

 RB is placed in a vertical right-cylinder shaft and located below-grade to mitigate effects of possible external events, including aircraft crashes, adverse weather, flooding, fires, and earthquakes

LTR Figure 1-3

Regulatory Bases

• Defining Subsurface Conditions

- 10 CFR 100.20(c)(1): the Commission consider physical characteristics of the site
- 10 CFR 100.23: sets forth the principal geologic and seismic considerations that guide the Commission in its evaluation of the suitability of a proposed site and adequacy of the design bases established in consideration of the geologic and seismic characteristics of the proposed site, such that, there is a reasonable assurance that a nuclear power plant can be constructed and operated at the proposed site without undue risk to the health and safety of the public
- Development of Site Design Parameters
 - 10 CFR Part 50, Appendix A, General Design Criteria 2: Design bases for protection against natural phenomena

NRC Staff Review

- LTR proposes approaches at conceptual level to deal with technical issues
 - Rock fracture network (LTR Section 3.1.3 and others)
 - Stability of reactor shaft (LTR Section 5.1.2 and others)
 - Foundation Interface Analysis (FIA) model (including parameter estimation) (LTR Section 4)
 - Soil-Structure Interaction (SSI) modeling (including parameter estimation of equivalent linear elastic materials) (LTR Section 5.1.2)
 - Strain-compatible dynamic properties (LTR Section 5.2.4)
 - Nonlinear SSI analysis (sensitivity) (LTR Section 5.3.11)

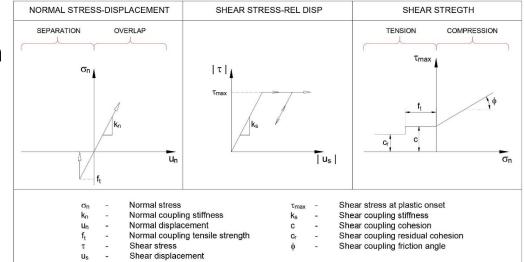
Other Reviewed Topics in LTR

- Design Earth Pressure Load Validation (LTR Section 5.1.3) including Probabilistic Earth Pressure Analyses (LTR Section 5.1.4)
- Development of Ground Motion Acceleration Time Histories (LTR Section 5.2.3)
- Effects of Non-Vertically Propagating Seismic Waves (LTR Section 5.3.3)
- Approaches for Meeting DC/COL ISG-017 Guidance (LTR Section 5.3.4)
- Modeling of Structure-Soil-Structure Interaction Effects (LTR Section 5.3.7)
- Soil Separation Effects (LTR Section 5.3.9)
- Groundwater Variation Effects (LTR Section 5.3.10)
- II/I interaction effects (LTR Section 6)

NRC Staff Review Strategy

- Staff review emphasized on
 - Whether the proposed approach is appropriate?
 - Has the proposed approach been used before in similar circumstances elsewhere, especially in nuclear applications?
 - Has proposed approach any limitations?
 - Have all parameter values necessary to use the approach be determined using appropriate test method(s)?
 - Does the proposed approach have any inherent assumption that needs to be verified?

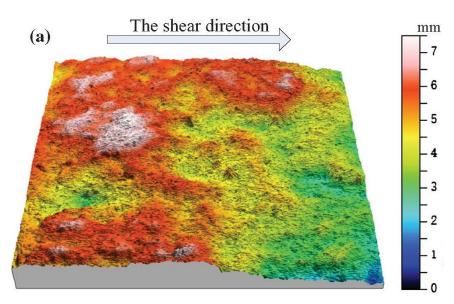
- Fractures control the response of a rock mass
- Fracture network:
 - Dip angle
 - Dip direction
 - Fracture spacing
 - Number of fracture sets
- Staff will review rock fracture network characterization (LTR Section 3) in a sitespecific license application



From: Cao, et al. 2016. An Experimental and Numerical Study on Mechanical Behavior of Ubiquitous-Joint Brittle Rock-Like Specimens Under Uniaxial Compression. Rock mechanics and Rock Engineering.

Foundation Interface Analysis (FIA) Model (LTR Section 4)

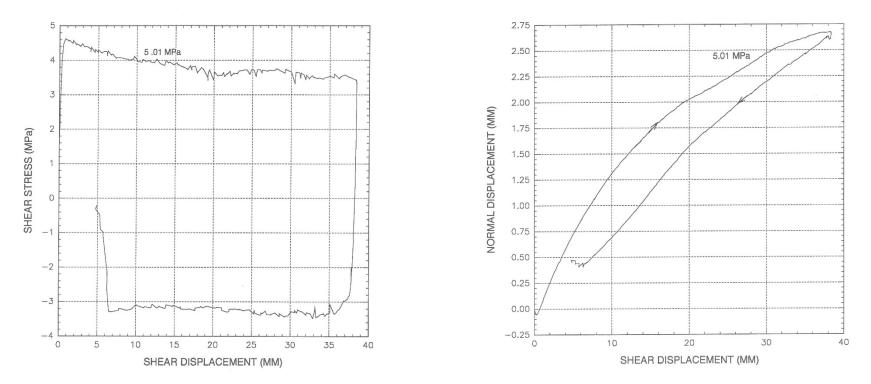
- Response of the interface in normal (perpendicular) direction
- Response of the interface in shear (along) direction
- Shear strength of the interface
- Normal strength = 0
- Model will have rock/soilstructure, rock-rock (joints, bedding planes, etc.), rocksoil interfaces
- Simulation at different stages: pre-excavation through start-up and operation


LTR Figure 4-2

FIA Model Parameter Estimation

- Direct Shear Test in Laboratory
 - Natural rock joint samples collected in site investigation
 - Large sample size

• Sample rock joint surface

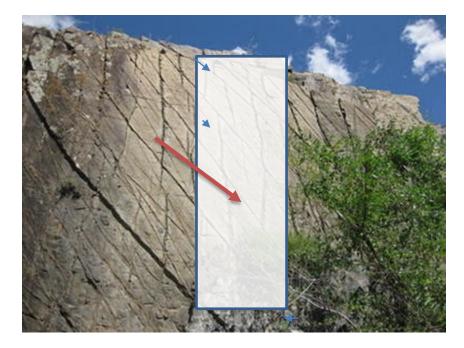


From: Fan, et al. 2019. Geotechnical and Geological Engineering. Experimental and Numerical Study on the Damage Evolution of Random Rock Joint Surface During Direct Shear Under CNL Condition.

Direct Shear Test of Rock Joint

 Shear Test vs. Shear Displacement • Normal Displacement vs. Shear Displacement

From: NUREG/CR-6178


Limitation & Condition (L&C) #1: Interface Characteristics Testing

- Large size samples collected at a site should be tested in the laboratory to have an acceptable estimate of the measured fracture (e.g., rock-rock, rock-soil) and interface (e.g., rock/soil-structure) strength and deformation parameters for a nuclear power plant (Response to RAI 02.05.04-2)
- Staff will review the sizes of the samples and their testing at the laboratory to estimate the properties of the discontinuities and interfaces in a site-specific license application with a BWRX-300 SMR

Stability of Reactor Shaft

- Stability of Embedded Reactor: Unstable rock mass without any permanent support systems is not acceptable
- Unstable blocks in surrounding region
 - Key block theory (Goodman and Shi, 1985)
 - Numerical simulation e.g.,
 FIA model (LTR Section 4.0)
 - Results verified by instrumentation installed (LTR Section 3.3)

From: Cao, et al. 2016. An Experimental and Numerical Study on Mechanical Behavior of Ubiquitous-Joint Brittle Rock-Like Specimens Under Uniaxial Compression. Rock Mechanics and Rock Engineering.

L&C #2: Stable Excavation

- A stable shaft excavation would have no unstable blocks in its surrounding that may slide into the excavation
- A self-supported (even with some temporary reinforcement) excavation would be needed to place the RB and to estimate the earth pressure loads to be considered in the generic design of the RB structure
- Staff will review method(s) used to identify the unstable rock blocks and to assess the earth pressure imparted on the RB shaft for determining whether the subgrade is acceptable for siting the reactor in a site-specific application
- Any temporary reinforcement or mitigation measures used to stabilize the surrounding materials would be reviewed by the staff

Soil-Structure Interaction (SSI) Modeling

- Interaction of embedded RB structure with surrounding media important for integrity of the RB structure
- Simplified assumptions to enable efficient calculation of stress demand on the RB using the System for Analysis of Soil-Structure Interaction (SASSI) computer code
 - Subgrade material continuous
 - Subgrade material isotropic and linear elastic
 - No nonlinearities at soil-structure interface
 - Static lateral pressure from weight of self-supported rock neglected (Stable Excavation)
- SSI Analysis: following ASCE/SEI 4-16

Isotropic, Linear Elastic, Continuous Subgrade Media

- Soil: Elastic modulus E_{st} from Cone Penetration Test (CPT), Standard Penetration Test (SPT), Pressuremeter
- Rock: *E_{st}* function of Intact Rock Modulus, Rock Fracture Network, other properties
 - Rock Mass Classification Schemes: Rock Mass Rating (RMR), Geological Strength Index (GSI), others
 - Each incorporates rock fracture information
 - Groups different rock masses into a few classes
 - Experience from past projects used to assign properties of each class
 - Empirical correlation with rock mass modulus (or, stiffness) E_{st}
 - Rock mass idealized as an isotropic medium

L&C #3: Isotropic and Homogeneous Rock Mass

- Rock mass classification systems inherently assume isotropic and homogeneous rock mass
- A jointed (or a fractured) rock mass is assumed to contain a sufficient number of fracture sets so that its deformational behavior may be assumed to be isotropic and homogeneous
- Staff will review whether the fracture sets at the selected site would make the rock mass behavior isotropic and homogeneous in any future site-specific licensing application

Strain-Compatible Subgrade Dynamic Properties

- Properties used as input for SSI analysis to be consistent with soil/rock properties used in generation of input motion
- RG 1.208 and NUREG/CR-6728
 - Control motions based on a generic rock site may not result in strain-compatible properties
- GEH has proposed an approach to develop Hazard Consistent Strain-Compatible Properties (HCSCP) consistent with observed strong ground motion parameters
- Assumed strain-compatible properties approximately lognormally distributed, consistent with observed strong ground motion parameters

L&C # 4: Site Specific Application of the HCSCP

- Approach is reasonable
- It will be the first ever application to a nuclear reactor project
- During review of future licensing applications, staff will audit the HCSCP approach

Nonlinear Soil-Structure Interaction (SSI) Analysis

- Nonlinear Seismic Soil-Structure Interaction Analysis (LTR Section 5.3.11)
 - May be important for sites with high seismicity and/or with highly nonlinear subgrade materials
 - Separation and/or sliding at soil-structure interface
 - Nonlinearity at rock fractures
 - Sensitivity Nonlinear SSI analysis following ASCE/SEI 4-16, Appendix B
- Nonlinear SSI analysis is complex

L&C # 5: Nonlinear SSI Analysis

 NRC staff plans to review the characterization and modeling of the nonlinear behavior of the materials surrounding the reactor in any future licensing application utilizing a nonlinear SSI analysis approach

Staff Conclusions

- Staff finds that the approaches proposed to characterize the surrounding media (soil and/or rock) reasonable
- Staff finds that the approaches proposed to develop site design parameters reasonable
- Staff placed five Limitations & Conditions to have a more indepth review the background information, relevant design/site information, characterization of the surrounding media, and development of site design parameters associated with them