Use of IDHEAS to Generalize Human Performance Data for Estimation of Human Error Probabilities

> Jing Xing, Y. James Chang US Nuclear Regulatory Commission

Presentation to AHFE, July, 2018

Protecting People and the Environment

What's next in human reliability analysis – DATA, DATA, DATA

- Existing human error data from various fields, in different formats, varying context and levels of details
- Data generalization and use for human reliability analysis the Integrated Human Event Analysis System (IDHEAS) has an inherent structure for generalizing and integrating human error data

Human error data: The ideal world and reality

• Ideal world:

- The same task for a failure mode is repeated thousands of times with the same people under the identical context;
- Do this for all possible contexts

Ţ

Failure modes	# Occurrence	Context	Variety
✓ Well-defined failure modes	 ✓ Known, sufficient number of task occurrences 	 ✓ Context clearly defined and repeated 	✓ Sufficient data for all failure modes and contexts

Human error data: The ideal world and reality

HEP (failure mode under specific context) = # of errors (failure mode) # of Occurrence (under the context)

• Reality:

- X Failure modes unknown
- X Number of occurrences not reported
- X Context undocumented and/or unrepeated
- X Lack of variety limited failure mode / context tested
- X Not talking to each other

Type of human error data	Failure modes	# Occurrence	Context	Variety
Statistical	Х	Х	Х	\checkmark
Human error analysis	\checkmark	Х	Х	\checkmark
Operational database	\checkmark	\checkmark	Unrepeated	Limited
Experimental	\checkmark	\checkmark	\checkmark	Х

Examples of statistical data

 Statistical study in 2016 - Medical errors are the third leading cause of death in the U.S., after heart disease and cancers, causing at least 250,000 deaths every year (Ref. 1)

 France - Nuclear Power plant replacement of the Dungeness B Data Processing System - The installation team completed 22,000 plant connections to the new system with a less than 2% error rate. (Ref. 3)

- X Occurrence of the tasks not reported
- X Failure modes unspecified
- X Context undocumented and unrepeated

Examples of human error analysis / root causal analysis

• Percent of error types (failure modes) – Airplane maintenance errors (Ref. 6)

• Percent of Airplane maintenance error contributing factors (Ref. 7)

- Failure modes / contributing factors classified and ranked
- X Occurrence of the tasks not reported
- X Relation between failure modes / contributing factors unspecified

Examples of observed human error rates in operations (human performance databases)

- Error rates for nuclear power plant maintenance tasks (Ref. 4):
 - 1/7 for transporting fuel assemblies with the fuel handling machine
 - **1/48** for removing a ground connection from a switchgear cabinet
 - 1/888 for reassembly of component elements
- Reported error rates in medical pharmacies (Ref. 5):
- 5% for failure to select ambiguously labeled control/package
- 2% for failed task related to values/units/scales/indicators
- 0.6% for procedural omission

- ✓ Human error rates reported for the failure modes
- X ✓ Relation of failure mode / contributing factors (maybe) unspecified

Example: Human error rates in experimental studies

The effect of incomplete information on decision-making in simulated pilot de-icing (Ref.8)

Task: Make decision on de-icing in flight simulation under icing weather

Failure mode: Incorrectly select or use information for decision-making

Context: Incomplete or unreliable information (30%), time pressure

Results: Providing additional accurate information improves handling of icing encounters. Performance drops below the baseline when inaccurate information (high uncertainty) is provided in the decision-aid.

% error		Accurate and additional information	Accurate and incomplete information	Inaccurate additional information
	% Stall	18.1	30	89
	% recovery	26.7	63.8	75

- ✓ Failure modes, error rates, and specific context reported
- ✓ Quantitative impact of specific context factors reported
- X Not generalized for more complex context with multiple factors

What's next in human reliability analysis – DATA, DATA, DATA

- Existing human error data from various fields, in different formats, varying context and levels of details
- Data generalization and use for human reliability analysis the Integrated Human Event Analysis System (IDHEAS) has an inherent structure for generalizing and integrating human error data

Generalizing human error data to inform human error probability estimation

HEP = f(states of performance influencing factors)

Demonstration of IDHEAS-G cognitive failure modes

Failure of macrocognitive function

Failure of Detection

Failure of Understanding

Failure of Decisionmaking

Failure of Action Execution

Failure of Teamwork

Failures of cognitive process

D1- Fail to establish acceptance-criteria

D2 – Fail to attend to sources of information

D-3 – Fail to perceive the information

D4- Fail to verify and modify detection

D5- Fail to retain or communicate Information Behaviorally observable failure modes

D3-1 Primary information is not available

D3-2 Key alarm or alert not attended to

D3-3 Key information not perceived

D3-4 Information misperceived (e.g., failing to discriminate signals, reading errors)

D3-5 Parameters incorrectly monitored

Demonstration of IDHEAS-G PIF structure

Context	Systems and environment	Personnel / team / organization	Task / situation
PIF PIF PIF attributes	 Environmental factors System opacity Information Tools and parts HSI Alarm not salient Mode confusion Key Information masking Ambiguity of Indicators 	 Procedures Training Work process Organization factors Teamwork factors Teamwork factors Teamwork infrastructure Distributed teams Communication equipment 	 Unfamiliar scenario Multitasking, Interruption, and distraction Cognitive complexity Mental fatigue and stress Physical demands
	malcators	- Communication protocol	

Generalizing human error data to IDHEAS-G cognitive failure modes (CFMs) and PIFs

Evaluate data - PIF effects on human errors

Error factor (EF) = Error rate at a poor state of the PIF / error rate at the nominal state

PIF - Multitasking, Distraction and interruption

Ref	Context and task	Error rates and impact factor (EF)	
Ref .8	Experiment on dual task: Airplane pilots detecting de-icing cue and responding to air traffic control information	Error rate in detecting icing cue alone vs. dual-task:2.8% vs 21% missing cueEF= 7.25% vs 20% missing changesEF= 41% vs 37% wrong diagnosisEF= 37	
Ref. 9	Effect of interruption on target detection	Accuracy for no interruption vs interruption Simple Spatial .726 (.21) .803 (.11) Complex Spatial . 549 (.254) .441 (.273) EF(weak interruption on detection) =1.1 for simple t EF(weak interruption on detection) =0.9 for complex	ask x task
Ref. 10	Driving simulation with cell phone conversation	 Missing dangerous targets: 2.5% without cell phone distraction 7% with cell phone distraction EF(persistent distraction 	tion) = 2.8
Ref. 11	Experiment on performing sequences of action steps	error rate =0.15 for no interruption,0.3 for 2.8s interruption,0.45 for 4.4s interruption, ,EF(longer interruption,)	= 2 ption) = 3
Ref. 12	The effect of interruption on driving and fighting in military weapon system	4% for no interruption and8% with interruptionEF(interruption) =	=2

Interpret and represent human error data

PIF - Multitasking, Distraction and interruption			
	Low impact	Moderaté	High impact
PIF state	- Distraction	impact	- Intermingled
	- Interruption	- Secondary task	multitasking
Macrocognitive function		- Prolonged interruption	 Concurrently multitasking
Detection	EF(weak interruption) =	EF(persistent distraction)= 2.8	EF(dual-task) = [5 , 7.5]
	[0.9, 1.1]		
Understanding			EF(intermingled)=37
Decisionmaking	EF(interruption on simple decision) = 1.6		
	EF(interruption on complex decision) = 1.7		
Action Execution	EF(2.8s) = 2	HEP (interruption)	
	EF(4.4s)= 3	= 2	
	EF(interruption)=2		
Teamwork			
Undetermined	EF(interruption)=2		

Integrating the data to inform PIF quantification

Example PIF – Multitasking, interruption, and distraction

Performance influencing factor

Evaluate data - PIF effects on human errors

PIF – Teamwork factors

ID	Context and task	Error rate
	Nuclear waste handling facility	Check-off sheet, low dependence 1E-1
	maintenance and operation	Check-off sheet, medium dependence 3E-1
	Supervisor verification error	Check-off sheet, high dependence and stress 5E-1
		EF(independent checking) = 5 for high dependence
		EF(independent checking) = 3 for medium dependence
	Failure to restore from testing	Two persons, operator check 5E-3
		Single person, operator check 1E-2
		Single person, no check 3E-2
		EF(no team verification) = 2
	Failure to restore following	Two persons, operator check 3E-3
	maintenance	Single person, operator check 5E-3
		Single person, no check 5E-2
		EF(no team verification) = 1.7
	Experiment of vigilance dual task –	Paired team, low target presentation speed 19%
	detecting targets (responding to	Single person, low target presentation speed 29%
	visual alarms) and completing	Paired team, high target presentation speed 28%
	jigsaw puzzle.	Single person, high target presentation speed 38%
		EF(team detection) = 1.5 , 1.3 for low and high complexity

Evaluate Data - PIF effects on human errors

PIF – Information completeness and Correctness

ID	Context and task	Error rate
04	Expert judgment of HEPs for NPP	HEP (information obviously incorrect) = 3E-2
	internal at-power event	IHEP (information not obviously incorrect) =8E-2E-1
	Information misleading	HEP(No information misleading) = 1E-3
		EF = 30 for Information obviously incorrect
		EF=80 for Information not obviously incorrect
40	Experimental study on supporting	Error rate - Percentage of early buffet:
	decision making and action	Accurate information 7.87%
	selection under	Accurate information but not timely) 20.56%
	time pressure and information	30% inaccurate information 73.63.%
	uncertainty in pilots de-icing	
	simulation	Error rate - Percentage of stall:
		Accurate information 18%
		Accurate information not timey 30%
		(30%) inaccurate information 89%
		EF = 1.5, 2.5 for accurate but not-timely or not-
		organized information
		EF= 5 , 9 for 30% inaccurate information
		10

Conclusions

- Human error data are available, not perfect, but can be used to inform quantification of human error reliabilities
- IDHEAS provides a framework to generalize human error data for HRA
- We preliminarily generalized the data to inform the quantification of performance influencing factors on human error probabilities

References

- 1. Makary MA, Daniel M (2016). Medical error-the third leading cause of death in the US. BMJ. 353:i2139
- The National Motor Vehicle Crash Causation Survey (2015). Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey. DOT HS 812 115
- N. N. Chokshi; J. P. Bailey; A. Johnson; D. Quenot; J. F. Le Gall (2010). Integration testing of safety-related systems: Lessons learnt from Dungeness B DPS replacement project, 5th IET International Conference on System Safety 2010
- 4. Civil Aviation Authority (2015). Aircraft Maintenance Incident Analysis, CAP 1367.
- Hobbs A, Williamson A (2003). Associations between errors and contributing factors in aircraft maintenance. Hum Factors. 45(2):186-201.
- Preischl W, Hellmich M (2013). Human error probabilities from operational experience of German nuclear power plants Reliability Engineering and System Safety, 109:150–159
- Rovira E, McGarry K, Parasuraman R (2007). Effects of Imperfect Automation on Decision Making in a Simulated Command and Control Task. Hum Factors 49(1):76-87

U.S.NRC

United States Nuclear Regulatory Commission

Protecting People and the Environment

Thank you! Jing.xing@nrc.gov