

Post Office Box 2000, Decatur, Alabama 35609-2000

March 11, 2022

10 CFR 50.4

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001

> Browns Ferry Nuclear Plant, Unit 3 Facility Operating License No. DPR-68 NRC Docket No. 50-296

Subject: Browns Ferry Nuclear Plant, Unit 3 Core Operating Limits Report for

Cycle 21 Operation, Revision 0

In accordance with the requirements of Technical Specification (TS) 5.6.5.d, the Tennessee Valley Authority is submitting the Browns Ferry Nuclear Plant (BFN), Unit 3, Cycle 21, Core Operating Limits Report (COLR). Revision 0 of the Unit 3 COLR includes all Modes of operation (Modes 1 through 5).

There are no new regulatory commitments in this letter. If you have any questions, please contact C. L. Vaughn, Nuclear Site Licensing Manager, at (256) 729-2636.

Respectfully,

Matthew Rasmussen Site Vice President

Enclosure: Core Operating Limits Report, (120% OLTP, MELLLA+), for Cycle 21 Operation,

TVA-COLR-BF3C21, Revision 0

cc: (w/ Enclosure)

NRC Regional Administrator - Region II

NRC Senior Resident Inspector - Browns Ferry Nuclear Plant

NRC Project Manager - Browns Ferry Nuclear Plant

Enclosure

Tennessee Valley Authority Browns Ferry Nuclear Plant Unit 3

Core Operating Limits Report, (120% OLTP, MELLLA+), for Unit 3 Cycle 21 Operation, TVA-COLR-BF3C21, Revision 0

(See Attached)

ECM L32 211222 800 QA Record BFE-4675, Revision 0

Browns Ferry Unit 3 Cycle 21

Core Operating Limits Report, (120% OLTP, MELLLA+)

TVA-COLR-BF3C21 Revision 0 (Final)

(Revision Log, Page v)

January 2022			Weidman, Adam John-Earl 0:03:50 -05'00'
Prepared	A. J. Weidman, Engineer T. W. Eichenberg, Sr. Specialist, Mentor	Date:	Jan 15, 2000
Verified:	Mitchell, Brye C. c. Date: 2022.01.18 14:54:26-05'00'	Date:	
	B. C. Mitchell, Engineer		
Approved:	Digitally signed by Selfert, Christine A DN dc-gov dc-tva, dc-main, ou-Main ou-Corporate, ou-Upers, cn-Selfert Christine A, email-caselfert dt va gov (Passon: Lam approving this document Date 2022 01 18 14 58-29 05 00	Date:	
Reviewed:	B. T. Williamson II, Manager, Reactor Eng	Date:	Jan 19, 2022
Approved:	Chairman, PORC	Date:	2 15/22
Approved:	Plant Manager Daniel Komm	Date:	2/15/2022

Date: January 17, 2022

Table of Contents

Total Number of Pages = 44 (including review cover sheet)

List of Tables		III
List of Figures		iv
Revision Log		V
Nomenclature		vi
References		viii
1 Introduc	tion	1
1.1 Pur _l	ose	1
1.2 Sco	pe	1
1.3 Fue	Loading	1
1.4 Acc	eptability	2
2 APLHGI	R Limits	3
2.1 Rate	ed Power and Flow Limit: APLHGR _{RATED}	3
2.2 Off-	Rated Power Dependent Limit: APLHGR _P	3
2.2.1	Startup without Feedwater Heaters	
	Rated Flow Dependent Limit: APLHGR _F	
-	lle Loop Operation Limit: APLHGR _{SLO}	
•	ipment Out-Of-Service Corrections	
	mits	
	ed Power and Flow Limit: LHGR _{RATED}	
	Rated Power Dependent Limit: LHGR _P	
3.2.1 3.3 Off-	Startup without Feedwater Heaters Rated Flow Dependent Limit: LHGR _F	
	ipment Out-Of-Service Corrections	
•	R Limits	
	V Dependent MCPR Limit: MCPR _F	
	ver Dependent MCPR Limit: MCPR _P	
4.2.1	Startup without Feedwater Heaters	
4.2.2	Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS)	
4.2.3	Exposure Dependent Limits	
4.2.4	Equipment Out-Of-Service (EOOS) Options	
4.2.5	Single-Loop-Operation (SLO) Limits	
4.2.6	Below P _{Bypass} Limits	
	-Hydraulic Stability Protection	
6 APRM F	low Biased Rod Block Trip Settings	29
7 Rod Blo	ck Monitor (RBM) Trip Setpoints and Operability	30
8 Shutdow	n Margin Limit	32
Appendix A:	MBSP Maps	A-1

Date: January 17, 2022

List of Tables

Nuclear Fuel Types	2
Startup Feedwater Temperature Basis	6
Nominal Scram Time Basis	14
MCPR _P Limits for All Fuel Types: Optimum Scram Time Basis	17
MCPR _P Limits for All Fuel Types: Nominal Scram Time Basis	18
MCPR _P Limits for All Fuel Types: Technical Specification Scram Time Basis	20
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Nominal Scram Time Basis	22
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Nominal Scram Time Basis	23
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Technical Specification Scram Time Basis	24
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Technical Specification Scram Time Basis	25
MCPR _P Limits for All Fuel Types: Single Loop Operation for All Scram Times	26
ABSP Setpoints for the Scram Region	27
Analyzed MBSP Endpoints: Nominal Feedwater Temperature	28
Analyzed MBSP Endpoints: Reduced Feedwater Temperature	28
Analytical RBM Trip Setpoints	30
RBM Setpoint Applicability	30
Control Rod Withdrawal Error Results	31

Date: January 17, 2022

List of Figures

APLHGR _{RATED} for ATRIUM-10XM Fuel	4
LHGR _{RATED} for ATRIUM-10XM Fuel	8
Base Operation LHGRFAC _P for ATRIUM-10XM Fuel	9
LHGRFAC _F for ATRIUM-10XM Fuel	10
Startup Operation LHGRFAC _P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 1	11
Startup Operation LHGRFAC _P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 2	12
MCPR _F for All Fuel Types	16
MBSP Boundaries For Nominal Feedwater Temperature	A-2
MBSP Boundaries For Reduced Feedwater Temperature	A-3

Date: January 17, 2022

Revision Log

Number	Page	Description
0-R0	All	New document.

ECM: L32 211222 800

Date: January 17, 2022

Nomenclature

ABSP Automatic Backup Stability Protection

APLHGR Average Planar LHGR

APRM Average Power Range Monitor AREVA NP Vendor (Framatome, Siemens)

BOC Beginning of Cycle

BSP Backup Stability Protection BWR Boiling Water Reactor

CAVEX Core Average Exposure

CD Coast Down

CMSS Core Monitoring System Software COLR Core Operating Limits Report

CPR Critical Power Ratio

CRWE Control Rod Withdrawal Error

CSDM Cold SDM

DIVOM Delta CPR over Initial CPR vs. Oscillation Magnitude DSS-CD Detect and Suppress Solution – Confirmation Density

EOC End of Cycle

EOCLB End-of-Cycle Licensing Basis

EOOS Equipment OOS

EPU Extended Power Uprate (120% OLTP)

FFTR Final Feedwater Temperature Reduction FFWTR Final Feedwater Temperature Reduction

FHOOS Feedwater Heaters OOS

ft Foot: English unit of measure for length

GNF Vendor (General Electric, Global Nuclear Fuels)

GWd Giga Watt Day

HTSP High TSP

ICA Interim Corrective Action

ICF Increased Core Flow (beyond rated)

IS In-Service

kW kilo watt: SI unit of measure for power.

LCO License Condition of Operation LFWH Loss of Feedwater Heating

LHGRFAC LHGR Multiplier (Power or Flow dependent)

LPRM Low Power Range Monitor

LRNB Generator Load Reject, No Bypass

MAPFAC MAPLHGR multiplier (Power or Flow dependent)

Reactor Engineering and Fuels - BWRFE

1101 Market Street, Chattanooga TN 37402 Date: January 17, 2022

ECM: L32 211222 800

MBSP Manual Backup Stability Protection

MCPR Minimum CPR

MELLLA Maximum Extended Load Line Limit Analysis
MELLLA+ Maximum Extended Load Line Limit Analysis Plus

MSRV Moisture Separator Reheater Valve

MSRVOOS MSRV OOS

MTU Metric Ton Uranium

MWd/MTU Mega Watt Day per Metric Ton Uranium

NEOC Near EOC

NRC United States Nuclear Regulatory Commission

NSS Nominal Scram Speed

NTSP Nominal TSP

OLMCPR MCPR Operating Limit

OLTP Original Licensed Thermal Power

OOS Out-Of-Service

OPRM Oscillation Power Range Monitor

OSS Optimum Scram Speed

PBDA Period Based Detection Algorithm

Pbypass Power, below which TSV Position and TCV Fast Closure Scrams are Bypassed

PLU Power Load Unbalance

PLUOOS PLU OOS

PRNM Power Range Neutron Monitor

RBM Rod Block Monitor

RCPOOS Recirculation Pump OOS (SLO)

RDF Rated Drive Flow

RPS Reactor Protection System
RPT Recirculation Pump Trip

RPTOOS RPT OOS

RTP Rated Thermal Power

SDM Shutdown Margin
SLMCPR MCPR Safety Limit
SLO Single Loop Operation

TBV Turbine Bypass Valve

TBVIS TBV IS

TBVOOS Turbine Bypass Valves OOS
TIP Transversing In-core Probe

TIPOOS TIP OOS

TLO Two Loop Operation

TSP Trip Setpoint

TSSS Technical Specification Scram Speed

TVA Tennessee Valley Authority

ECM: L32 211222 800

Date: January 17, 2022

References

- 1. ANP-3970, Revision 0, **Browns Ferry Unit 3 Cycle 21 Reload Analysis**, Framatome Inc., December 2021.
- 2. Not Used.
- 3. ANP-3150P, Revision 4, **Mechanical Design Report for Browns Ferry ATRIUM 10XM Fuel Assemblies**, AREVA Inc., November 2017.
- 4. ANP-3793P, Revision 0, **Browns Ferry Unit 3 Cycle 21 Plant Parameters Document**. Framatome Inc., June 2021.
- 5. BFE-4659, Revision 0, Browns Ferry Unit 3 Cycle 21 In-Core Shuffle, Tennessee Valley Authority, January 2022.

Methodology References

- 6. XN-NF-81-58(P)(A) Revision 2 and Supplements 1 and 2, **RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model**, Exxon Nuclear Company, March 1984.
- 7. XN-NF-85-67(P)(A) Revision 1, **Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel**, Exxon Nuclear Company, September 1986.
- 8. EMF-85-74(P) Revision 0 Supplement 1(P)(A) and Supplement 2(P)(A), **RODEX2A** (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, Siemens Power Corporation, February 1998.
- 9. ANF-89-98(P)(A) Revision 1 and Supplement 1, **Generic Mechanical Design Criteria for BWR Fuel Designs**, Advanced Nuclear Fuels Corporation, May 1995.
- XN-NF-80-19(P)(A) Volume 1 and Supplements 1 and 2, Exxon Nuclear
 Methodology for Boiling Water Reactors Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.
- 11. XN-NF-80-19(P)(A) Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, June 1986.
- 12. EMF-2158(P)(A) Revision 0, **Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2**, Siemens Power Corporation, October 1999.
- 13. XN-NF-80-19(P)(A) Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, January 1987.
- 14. XN-NF-84-105(P)(A) Volume 1 and Volume 1 Supplements 1 and 2, **XCOBRA-T: A**Computer Code for BWR Transient Thermal-Hydraulic Core Analysis, Exxon
 Nuclear Company, February 1987.
- 15. ANP-10307PA, Revision 0, **AREVA MCPR Safety Limit Methodology for Boiling Water Reactors**, AREVA NP Inc., June 2011.

Date: January 17, 2022

ECM: L32 211222 800

- 16. ANF-913(P)(A) Volume 1 Revision 1 and Volume 1 Supplements 2, 3 and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
- 17. ANF-1358(P)(A) Revision 3, **The Loss of Feedwater Heating Transient in Boiling Water Reactors**, Advanced Nuclear Fuels Corporation, September 2005.
- 18. EMF-2209(P)(A) Revision 3, **SPCB Critical Power Correlation**, AREVA NP Inc., September 2009.
- 19. EMF-2361(P)(A) Revision 0, **EXEM BWR-2000 ECCS Evaluation Model**, Framatome ANP Inc., May 2001, as supplemented by the site specific approval in NRC safety evaluations dated February 15, 2013 and July 31, 2014.
- 20. EMF-2292(P)(A) Revision 0, **ATRIUM™-10: Appendix K Spray Heat Transfer Coefficients**, Siemens Power Corporation, September 2000.
- 21. EMF-CC-074(P)(A), Volume 4, Revision 0, **BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2**, Siemens Power Corporation, August 2000.
- 22. BAW-10255(P)(A), Revision 2, Cycle-Specific DIVOM Methodology Using the RAMONA5-FA Code, AREVA NP Inc., May 2008.
- 23. BAW-10247PA, Revision 0, Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors, AREVA NP Inc., April 2008.
- 24. ANP-10298PA, Revision 0, **ACE/ATRIUM 10XM Critical Power Correlation**, AREVA NP Inc., March 2010.
- 25. ANP-3140(P), Revision 0, **Browns Ferry Units 1, 2, and 3 Improved K-factor Model for ACE/ATRIUM 10XM Critical Power Correlation**, AREVA NP Inc., August 2012.
- 26. NEDC-33075P-A, Revision 8, **GE Hitachi Boiling Water Reactor Detect and Suppress Solution Confirmation Density**, GE Hitachi, November 2013.

Setpoint References

- 27. EDQ2092900118, R37, Setpoint and Scaling Calculation for Neutron Monitoring & Recirculation Flow Loops, Calculation File, Tennessee Valley Authority, December 2020.
- 28. Task T0500, Revision 0, **Neutron Monitoring System w/RBM**, Project Task Report, GE Hitachi Nuclear Energy, June 2017.
- 29. Task T0506, Revision 0, **TS Instrument Setpoints**, Project Task Report, Tennessee Valley Authority, August, 2017.
- 30. NEDC-33006P-A, Revision 3, **General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus**, GE Energy Nuclear, June 2009.

ECM: L32 211222 800

Date: January 17, 2022

1 Introduction

In anticipation of cycle startup, it is necessary to describe the expected limits of operation.

1.1 Purpose

The primary purpose of this document is to satisfy requirements identified by unit technical specification section 5.6.5. This document may be provided, upon final approval, to the NRC.

1.2 Scope

This document will discuss the following areas:

- Average Planar Linear Heat Generation Rate (APLHGR) Limit (Technical Specifications 3.2.1 and 3.7.5)
 Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- Linear Heat Generation Rate (LHGR) Limit (Technical Specification 3.2.3, 3.3.4.1, and 3.7.5) Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- Minimum Critical Power Ratio Operating Limit (OLMCPR) (Technical Specifications 3.2.2, 3.3.4.1, 3.7.5 and Table 3.3.2.1-1) Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- ➤ Thermal-Hydraulic Stability Protection
 (Technical Specification Table 3.3.1.1)

 Applicability: Mode 1, ≥ (as specified in Technical Specifications Table 3.3.1.1-1)
- Average Power Range Monitor (APRM) Flow Biased Rod Block Trip Setting (Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1) Applicability: Mode 1, ≥ (as specified in Technical Requirements Manuals Table 3.3.4-1)
- ➤ Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)
 Applicability: Mode 1, ≥ % RTP as specified in Table 3.3.2.1-1 (TS definition of RTP)
- Shutdown Margin (SDM) Limit (Technical Specification 3.1.1)
 Applicability: All Modes

1.3 Fuel Loading

The core will contain fresh, and previously exposed ATRIUM-10XM. Nuclear fuel types used in the core loading are shown in Table 1.1. The core shuffle and final loading were explicitly evaluated for BOC cold shutdown margin performance as documented per Reference 5.

Table 1.1 Nuclear Fuel Types*

Fuel Description	Original Cycle	Number of Assemblies	Nuclear Fuel Type (NFT)	Fuel Names (Range)
ATRIUM 10XM XMLC-3911B-13GV80-FCH	19	45	22	FCH001-FCH240
ATRIUM 10XM XMLC-4053B-12GV80-FCH	19	75	23	FCH241-FCH344
ATRIUM 10XM XMLC-3920B-14GV80-FCJ	20	224	24	FCJ345-FCJ568
ATRIUM 10XM XMLC-3957B-12GV80-FCJ	20	88	25	FCJ569-FCJ656
ATRIUM 10XM XMLC-4000B-15GV80-FCK	21	144	26	FCK667-FCK810
ATRIUM 10XM XMLC-4001B-14GV80-FCK	21	100	27	FCK811-FCK910
ATRIUM 10XM XMLC-3986B-14GV80-FCK	21	24	28	FCK911-FCK934
ATRIUM 10XM XMLC-3992B-12GV80-FCK	21	64	29	FCK935-FCK998

1.4 Acceptability

Limits discussed in this document were generated based on NRC approved methodologies per References 6 through 26.

Browns Ferry Unit 3 Cycle 21 Core Operating Limits Report, (120% OLTP, MELLLA+)

The table identifies the expected fuel type breakdown in anticipation of final core loading. The final composition of the core depends upon uncertainties during the outage such as discovering a failed fuel bundle, or other bundle damage. Minor core loading changes, due to unforeseen events, will conform to the safety and monitoring requirements identified in this document.

ECM: L32 211222 800

Date: January 17, 2022

2 APLHGR Limits

(Technical Specifications 3.2.1 & 3.7.5)

The APLHGR limit is determined by adjusting the rated power APLHGR limit for off-rated power, off-rated flow, and SLO conditions. The most limiting of these is then used as follows:

APLHGR limit = MIN ($APLHGR_P$, $APLHGR_F$, $APLHGR_{SLO}$)

where:

APLHGR _P	off-rated power APLHGR limit	$[APLHGR_{RATED} * MAPFAC_{P}]$
APLHGR _F	off-rated flow APLHGR limit	[APLHGR _{RATED} * MAPFAC _F]
APLHGR _{SLO}	SLO APLHGR limit	[APLHGR _{RATED} * SLO Multiplier]

2.1 Rated Power and Flow Limit: APLHGRRATED

The rated conditions APLHGR for all fuel are identified per Reference 1. The rated conditions APLHGR for ATRIUM-10XM are shown in Figure 2.1.

2.2 Off-Rated Power Dependent Limit: APLHGRP

Reference 1 does not specify a power dependent APLHGR. Therefore, MAPFAC_P is set to a value of **1.0**.

2.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. No additional power dependent limitation is required.

2.3 Off-Rated Flow Dependent Limit: APLHGRF

Reference 1 does not specify a flow dependent APLHGR. Therefore, MAPFAC_F is set to a value of **1.0**.

2.4 Single Loop Operation Limit: APLHGR_{SLO}

The single loop operation multiplier for ATRIUM-10XM fuel is **0.85**, per Reference 1.

Planar Avg. Exposure	APLHGR Limit
(GWd/MTU)	(kW/ft)
0.0	13.0
15.0	13.0
67.0	7.6

Figure 2.1 APLHGR_{RATED} for ATRIUM-10XM Fuel

ECM: L32 211222 800

2.5 Equipment Out-Of-Service Corrections

The limits shown in Figure 2.1 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.

In-Service All equipment In-Service*

RPTOOS EOC-Recirculation Pump Trip Out-Of-Service **TBVOOS** Turbine Bypass Valve(s) Out-Of-Service **PLUOOS** Power Load Unbalance Out-Of-Service

Feedwater Heaters Out-Of-Service or Final Feedwater FHOOS (or FFWTR)

Temperature Reduction

RCPOOS One Recirculation Pump Out-Of-Service

^{*} All equipment service conditions assume 1 SRVOOS.

Date: January 17, 2022

ECM: L32 211222 800

3 LHGR Limits

(Technical Specification 3.2.3, 3.3.4.1, & 3.7.5)

The LHGR limit is determined by adjusting the rated power LHGR limit for off-rated power and off-rated flow conditions. The most limiting of these is then used as follows:

LHGR limit = MIN (LHGR_P, LHGR_F)

where:

3.1 Rated Power and Flow Limit: LHGR_{RATED}

The rated conditions LHGR for all fuel are identified per Reference 1. The rated conditions LHGR for ATRIUM-10XM fuel is shown in Figure 3.1. The LHGR limit is consistent with Reference 3.

3.2 Off-Rated Power Dependent Limit: LHGRP

LHGR limits are adjusted for off-rated power conditions using the LHGRFAC_P multiplier provided in Reference 1. The multiplier is split into two sub cases: turbine bypass valves in and out-of-service. The base case multipliers are shown in Figure 3.2.

3.2.1 Startup without Feedwater Heaters

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional limits are shown in Figure 3.4 and Figure 3.5, based on temperature conditions identified in Table 3.1.

Table 3.1 Startup Feedwater Temperature Basis

	Temperature		
Power	Range 1	Range 2	
(% Rated)	(°F)	(°F)	
23	160.0	155.0	
30	167.0	162.0	
40	177.0	172.0	
50	187.0	182.0	

ECM: L32 211222 800

Date: January 17, 2022

3.3 Off-Rated Flow Dependent Limit: LHGRF

LHGR limits are adjusted for off-rated flow conditions using the LHGRFAC_F multiplier provided in Reference 1. Multipliers are shown in Figure 3.3.

Equipment Out-Of-Service Corrections

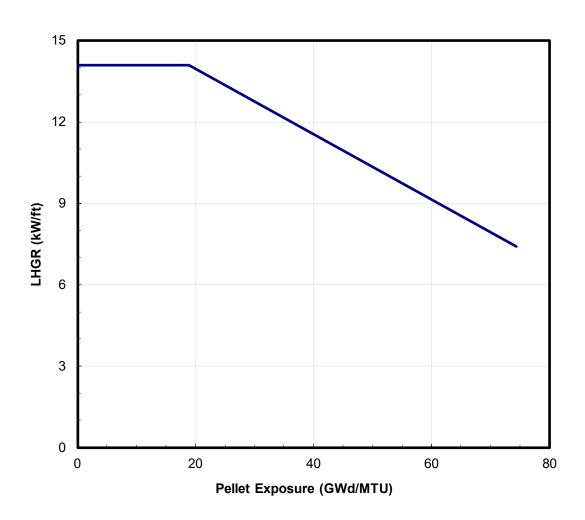
The limits shown in Figure 3.1 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.*

In-Service All equipment In-Service

RPTOOS EOC-Recirculation Pump Trip Out-Of-Service **TBVOOS** Turbine Bypass Valve(s) Out-Of-Service **PLUOOS** Power Load Unbalance Out-Of-Service

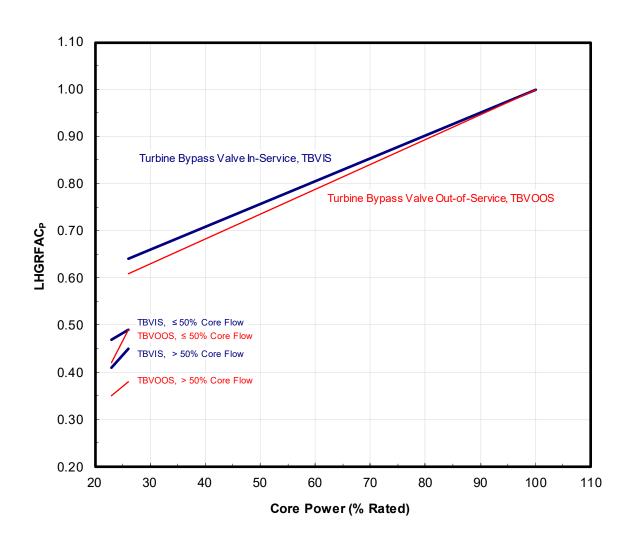
Feedwater Heaters Out-Of-Service or Final Feedwater FHOOS (or FFWTR)

Temperature Reduction


RCPOOS One Recirculation Pump Out-Of-Service

Off-rated power corrections shown in Figure 3.2 are dependent on operation of the Turbine Bypass Valve system. For this reason, separate limits are to be applied for TBVIS or TBVOOS operation. The limits have no dependency on RPTOOS, PLUOOS, FHOOS/FFWTR, or SLO.

Off-rated flow corrections shown in Figure 3.3 are bounding for all EOOS conditions.


Off-rated power corrections shown in Figure 3.4 and Figure 3.5 are also dependent on operation of the Turbine Bypass Valve system. In this case, limits support FHOOS operation during startup. These limits have no dependency on RPTOOS, PLUOOS, or SLO.

All equipment service conditions assume 1 SRVOOS.

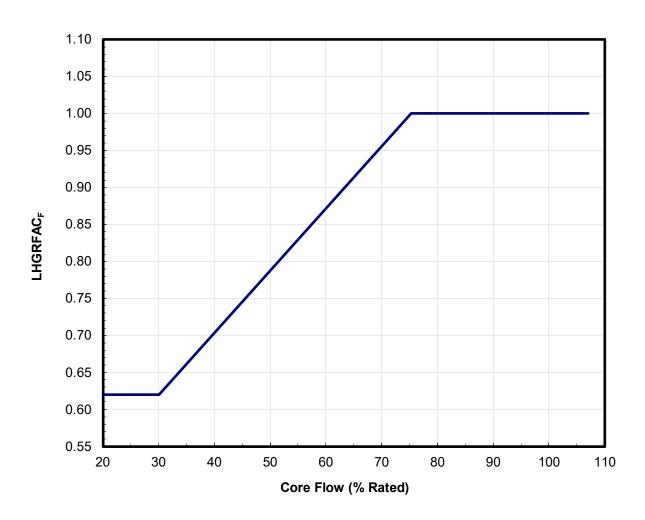
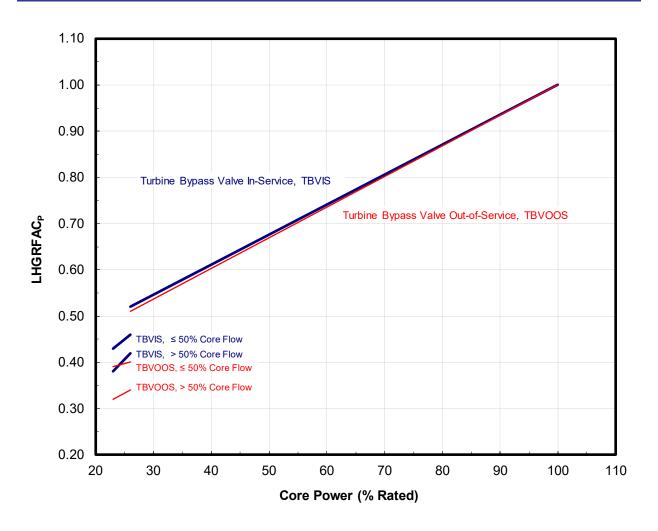

Pellet Exposure	LHGR Limit
(GWd/MTU)	(kW/ft)
0.0	14.1
18.9	14.1
74.4	7.4

Figure 3.1 LHGR_{RATED} for ATRIUM-10XM Fuel

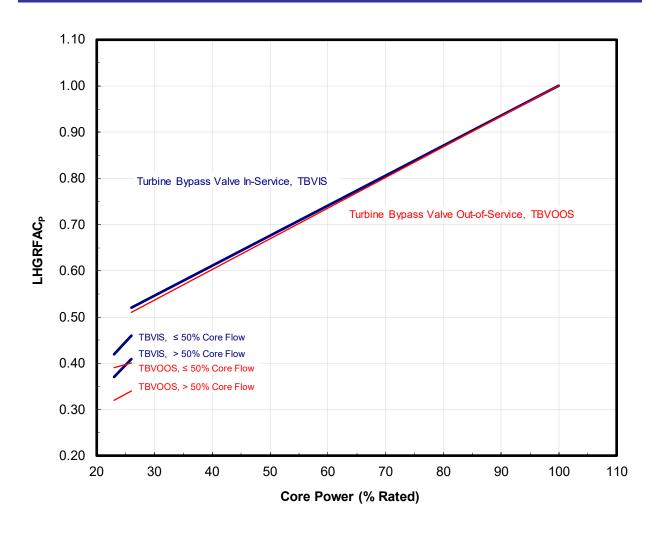
Turbine Bypass In-Service		Turbine Bypass Out-of-Service	Turbine Bypass Out-of-Service	
Core		Core		
Power	LHGRFAC _P	Power LHGRFAC	Р	
(% Rated)		(% Rated)		
100.0	1.00	100.0 1.00		
26.0	0.64	26.0 0.61		
Core Flow > 50% Rated		Core Flow > 50% Rated	Core Flow > 50% Rated	
26.0	0.45	26.0 0.38		
23.0	0.41	23.0 0.35		
Core Flow ≤ 50% Rated		Core Flow ≤ 50% Rated		
26.0	0.49	26.0 0.49		
23.0	0.47	23.0 0.42		


Figure 3.2 Base Operation LHGRFAC_P for ATRIUM-10XM Fuel (Independent of other EOOS conditions)

Core Flow	LHGRFAC _F
(% Rated)	
0.0	0.62
30.0	0.62
75.3	1.00
107.0	1.00

Figure 3.3 LHGRFAC_F for ATRIUM-10XM Fuel (*Values bound all EOOS conditions*)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)


Turbine Bypa	ss In-Service	
Core		
Power	LHGRFAC _P	
(% Rated)		
100.0	1.00	. <u>–</u>
26.0	0.52	
Core Flow >	50% Rated	
26.0	0.42	_
23.0	0.38	
Core Flow ≤	50% Rated	
26.0	0.46	
23.0	0.43	

Turbine Bypass Out-of-Service		
Core		
Power	LHGRFAC _P	
(% Rated)		
100.0	1.00	
26.0	0.51	
Core Flow > 50% Rated		
26.0	0.34	
23.0	0.32	
Core Flow ≤ 50% Rated		
26.0	0.40	
23.0	0.39	

Figure 3.4 Startup Operation LHGRFAC_P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 1

(no Feedwater heating during startup)

(Limits valid at and below 50% power)

Turbine Bypa	ss In-Service	
Core		
Power	LHGRFAC _P	
(% Rated)		
100.0	1.00	. <u>–</u>
26.0	0.52	
Core Flow >	50% Rated	
26.0	0.41	
23.0	0.37	_
Core Flow ≤	50% Rated	_
26.0	0.46	
23.0	0.42	_

Turbine Bypass Out-of-Service		
LHGRFAC _P		
1.00		
0.51		
50% Rated		
0.34		
0.32		
Core Flow ≤ 50% Rated		
0.40		
0.39		

Figure 3.5 Startup Operation LHGRFAC_P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 2

(no Feedwater heating during startup)

(Limits valid at and below 50% power)

ECM: L32 211222 800

Date: January 17, 2022

4 OLMCPR Limits

(Technical Specification 3.2.2, 3.3.4.1, & 3.7.5)

OLMCPR is calculated to be the most limiting of the flow or power dependent values

OLMCPR limit = $MAX (MCPR_F, MCPR_P)$

where:

MCPR_F core flow-dependent MCPR limit MCPR_P power-dependent MCPR limit

4.1 Flow Dependent MCPR Limit: MCPRF

MCPR_F limits are dependent upon core flow (% of Rated), and the max core flow limit, (Rated or Increased Core Flow, ICF). MCPR_F limits are shown in Figure 4.1, per Reference 1. Limits are valid for all EOOS combinations. No adjustment is required for SLO conditions.

4.2 Power Dependent MCPR Limit: MCPRP

MCPR_P limits are dependent upon:

- Core Power Level (% of Rated)
- Technical Specification Scram Speed (TSSS), Nominal Scram Speed (NSS), or Optimum Scram Speed (OSS)
- Cycle Operating Exposure (NEOC, EOC, and CD as defined in this section)
- Equipment Out-Of-Service Options
- Two or Single recirculation Loop Operation (TLO vs. SLO)

The MCPR_P limits are provided in Table 4.2 through Table 4.9, where each table contains the limits for all fuel types and EOOS options (for a specified scram speed and exposure range). The CMSS determines MCPR_P limits, from these tables, based on linear interpolation between the specified powers.

4.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional power dependent limits are shown in Table 4.5 through Table 4.8 based on temperature conditions identified in Table 3.1.

4.2.2 Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS)

MCPR_P limits are provided for three different sets of assumed scram speeds. The Technical Specification Scram Speed (TSSS) MCPR_P limits are applicable at all times, as long as the scram time surveillance demonstrates the times in Technical Specification Table 3.1.4-1 are met. Both Nominal Scram Speeds (NSS) and/or Optimum Scram Speeds (OSS) may be used, as long as the scram time surveillance demonstrates Table 4.1 times are applicable.*†

Table 4.1 Nominal Scram Time Basis

Notch Position	Nominal Scram Timing	Optimum Scram Timing
(index)	(seconds)	(seconds)
46	0.420	0.380
36	0.980	0.875
26	1.600	1.465
6	2.900	2.900

In demonstrating compliance with the NSS and/or OSS scram time basis, surveillance requirements from Technical Specification 3.1.4 apply; accepting the definition of SLOW rods should conform to scram speeds shown in Table 4.1. If conformance is not demonstrated, TSSS based MCPR_P limits are applied.

On initial cycle startup, TSSS limits are used until the successful completion of scram timing confirms NSS and/or OSS based limits are applicable.

4.2.3 Exposure Dependent Limits

Exposures are tracked on a Core Average Exposure basis (CAVEX, not Cycle Exposure). Higher exposure MCPR_P limits are always more limiting and may be used for any Core Average Exposure up to the ending exposure. Per Reference 1, MCPR_P limits are provided for the following exposure ranges:

BOC to NEOC	NEOC corresponds to	30,487.9 MWd / MTU
BOC to EOCLB	EOCLB corresponds to	33,437.4 MWd / MTU
BOC to End of Coast	End of Coast	35,132.2 MWd / MTU

NEOC refers to a Near EOC exposure point.

^{*} Reference 1 analysis results are based on information identified in Reference 4.

[†] Drop out times consistent with method used to perform actual timing measurements (i.e., including pickup/dropout effects).

ECM: L32 211222 800

Date: January 17, 2022

The EOCLB exposure point is not the true End-Of-Cycle exposure. Instead, it corresponds to a licensing exposure window exceeding expected end-of-full-power-life.

The End of Coast exposure point represents a licensing exposure point exceeding the expected end-of-cycle exposure including cycle extension options.

4.2.4 Equipment Out-Of-Service (EOOS) Options

EOOS options* covered by MCPR_P limits are given by the following:

In-Service
RPTOOS
RPTOOS
EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS
Turbine Bypass Valve(s) Out-Of-Service
RPTOOS+TBVOOS
Combined RPTOOS and TBVOOS
PLUOOS+RPTOOS
PLUOOS+RPTOOS
Combined PLUOOS and RPTOOS
Combined PLUOOS and TBVOOS

PLUOOS+TBVOOS+RPTOOS Combined PLUOOS, RPTOOS, and TBVOOS FHOOS (or FFWTR) Feedwater Heaters Out-Of-Service (or Final

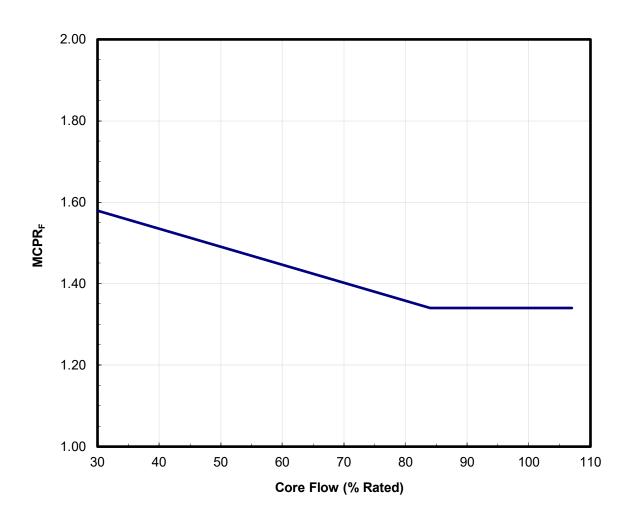
Feedwater Temperature Reduction)
One Recirculation Pump Out-Of-Service

For exposure ranges up to NEOC and EOCLB, additional combinations of MCPR_P limits are also provided including FHOOS. The coast down exposure range assumes application of FFWTR. FHOOS based MCPR_P limits for the coast down exposure are redundant because the temperature setdown assumption is identical with FFWTR.

4.2.5 <u>Single-Loop-Operation (SLO) Limits</u>

When operating in RCPOOS conditions, MCPR_P limits are constructed differently from the normal operating RCP conditions. The limiting event for RCPOOS is a pump seizure scenario, which sets the upper bound for allowed core power and flow †. This event is not impacted by scram time assumptions. Specific MCPR_P limits are shown in Table 4.9.

4.2.6 Below P_{Bypass} Limits


RCPOOS

Below P_{Bypass} (26% rated power), MCPR_P limits depend upon core flow. One set of MCPR_P limits applies for core flow above 50% of rated; a second set applies if the core flow is less than or equal to 50% rated.

TVA-COLR-BF3C21, Revision 0 (Final)

All equipment service conditions assume 1 SRVOOS.

[†] RCPOOS limits are only valid up to 43.75% rated core power, 50% rated core flow, and an active recirculation drive flow of 17.73 Mlb_m/hr.

Core Flow	MCPR _F
(% Rated)	
30.0	1.58
84.0	1.34
107.0	1.34

Figure 4.1 MCPR_F for All Fuel Types (*Values bound all EOOS conditions*)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

Table 4.2 MCPR_P Limits for All Fuel Types: Optimum Scram Time Basis*

				_
		ATRIUM-10XM		
		BOC	BOC	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.41	1.42	1.45
	90	1.45	1.46	1.49
	77.6	1.52	1.52	1.56
	65	1.58	1.58	1.64
	>50	1.68	1.68	1.75
Base Case	≤50	1.81	1.81	1.82
Bacc Cacc	40	1.88	1.88	1.91
	26	2.30	2.30	2.43
	26 at > 50%F	2.59	2.59	2.71
	23 at > 50%F	2.76	2.76	2.90
	26 at ≤ 50%F	2.51	2.51	2.62
	23 at ≤ 50%F	2.67	2.67	2.80
	100	1.45	1.45	
	90	1.49	1.49	
	77.6	1.56	1.56	
	65	1.64	1.64	
	>50	1.75	1.75	
FHOOS	≤50	1.82	1.82	
111000	40	1.91	1.91	
	26	2.43	2.43	
	26 at > 50%F	2.71	2.71	
	23 at > 50%F	2.90	2.90	
	26 at ≤ 50%F	2.62	2.62	
	23 at ≤ 50%F	2.80	2.80	

All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR/FHOOS is supported for the BOC to End of Coast limits.

Table 4.3 MCPR_P Limits for All Fuel Types: Nominal Scram Time Basis*

			ATRIUM-10XM		
		вос	ВОС	вос	
	Power	to	to	to End of	
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	
	100	1.42	1.43	1.49	
	90	1.48	1.48	1.54	
	77.6	1.54	1.54	1.61	
	65	1.61	1.61	1.69	
	>50	1.70	1.70	1.79	
Base Case	≤50	1.82	1.82	1.85	
Dase Case	40	1.89	1.89	1.95	
	26 26 at > 50%F	2.33	2.33	2.48	
	23 at > 50%F	2.59	2.59	2.73 2.92	
		2.76	2.76		
	26 at ≤ 50%F	2.51	2.51	2.64	
	23 at ≤ 50%F	2.67	2.67	2.82	
	100	1.48	1.49	1.54	
	90	1.53	1.53	1.59	
	77.6	1.59	1.59	1.65	
	65 >50	1.66 1.74	1.66 1.74	1.73 1.83	
	≤50	1.74	1.74	1.87	
TBVOOS	40	1.91	1.91	1.98	
	26	2.35	2.35	2.50	
	26 at > 50%F	3.11	3.11	3.27	
	23 at > 50%F	3.38	3.38	3.54	
	26 at ≤ 50%F	2.85	2.85	3.03	
	23 at ≤ 50%F	3.14	3.14	3.33	
	100	1.49	1.49		
	90	1.54	1.54		
	77.6	1.61	1.61		
	65	1.69	1.69		
	>50	1.79	1.79		
FHOOS	≤50	1.85	1.85		
111000	40 26	1.95	1.95		
	26 at > 50%F	2.48 2.73	2.48 2.73		
	23 at > 50%F	2.92	2.92		
	26 at ≤ 50%F	2.64	2.64		
	23 at ≤ 50%F	2.82	2.82		
-	100	1.42	1.43	1.49	
	90	1.42	1.43 1.48	1.49	
	77.6	1.54	1.54	1.61	
	65	1.75	1.75	1.78	
	>50				
	≤50	1.83	1.83	1.85	
PLUOOS	40	1.89	1.89	1.95	
	26	2.33	2.33	2.48	
	26 at > 50%F	2.59	2.59	2.73	
	23 at > 50%F	2.76	2.76	2.92	
	26 at ≤ 50%F	2.51	2.51	2.64	
	23 at ≤ 50%F	2.67	2.67	2.82	

^{*} All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.3 MCPR_P Limits for All Fuel Types: Nominal Scram Time Basis (continued)*

·		ATRIUM-10XM		
		вос	BOC	BOC
	Power	to	to	to End of
Operating	(% of rated)	NEOC	EOCLB	Coast
Condition	100	1.54	1.54	
	90	1.59	1.59	
	77.6	1.65	1.65	
	65	1.73	1.73	
	>50	1.83	1.83	
TBVOOS	≤50	1.87	1.87	
FHOOS	40	1.98	1.98	
	26	2.50	2.50	
	26 at > 50%F	3.27	3.27	
	23 at > 50%F	3.54	3.54	
	26 at ≤ 50%F	3.03	3.03	
	23 at ≤ 50%F	3.33	3.33	
	100	1.48	1.49	1.54
	90	1.53	1.53	1.59
	77.6	1.59	1.59	1.65
	65	1.77	1.77	1.80
	>50			
TBVOOS	≤50	1.84	1.84	1.87
PLUOOS	40	1.91	1.91	1.98
	26	2.35	2.35	2.50
	26 at > 50%F	3.11	3.11	3.27
	23 at > 50%F	3.38	3.38	3.54
	26 at ≤ 50%F	2.85	2.85	3.03
-	23 at ≤ 50%F 100	3.14 1.49	3.14 1.49	3.33
	90	1.49	1.49	
	77.6	1.61	1.61	
	65	1.78	1.78	
	>50			
FHOOS	≤50	1.85	1.85	
PLUOOS	40	1.95	1.95	
	26	2.48	2.48	
	26 at > 50%F	2.73	2.73	
	23 at > 50%F	2.92	2.92	
	26 at ≤ 50%F	2.64	2.64	
	23 at ≤ 50%F	2.82	2.82	
	100	1.54	1.54	
	90	1.59	1.59	
	77.6	1.65	1.65	
	65	1.80	1.80	
TBVOOS	>50			
FHOOS	≤50	1.87	1.87	
PLUOOS	40	1.98	1.98	
-	26	2.50	2.50	
	26 at > 50%F	3.27	3.27	
	23 at > 50%F	3.54	3.54	
	26 at ≤ 50%F	3.03	3.03	
	23 at ≤ 50%F	3.33	3.33	

^{*} All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.4 MCPR_P Limits for All Fuel Types: Technical Specification Scram Time Basis*

		ATRIUM-10XM		
		вос	BOC	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.46	1.46	1.54
	90	1.51	1.51	1.58
	77.6	1.57	1.57	1.65
	65	1.64	1.64	1.73
	>50	1.73	1.73	1.83
Base Case	≤50	1.84	1.85	1.89
	40	1.90	1.91	1.99
	26	2.36	2.36	2.52
	26 at > 50%F 23 at > 50%F	2.60 2.77	2.60 2.77	2.75 2.94
	23 at > 50%F 26 at ≤ 50%F	2.77	2.77	2.94 2.66
	23 at ≤ 50%F	2.52	2.52	2.84
	100	1.53	1.53	1.60
	90	1.58	1.58	1.64
	77.6	1.63	1.63	1.71
	65	1.70	1.70	1.78
	>50	1.78	1.78	1.88
	≤50	1.87	1.88	1.92
TBVOOS	40	1.93	1.94	2.03
	26	2.39	2.39	2.55
	26 at > 50%F	3.13	3.13	3.30
	23 at > 50%F	3.40	3.40	3.57
	26 at ≤ 50%F	2.87	2.87	3.06
	23 at ≤ 50%F	3.16	3.16	3.36
	100	1.54	1.54	
	90	1.58	1.58	
	77.6	1.65	1.65	
	65	1.73	1.73	
	>50	1.83	1.83	
FHOOS	≤50	1.88	1.89	
	40	1.99	1.99	
	26	2.52	2.52	
	26 at > 50%F	2.75	2.75	
	23 at > 50%F	2.94	2.94	
	26 at ≤ 50%F	2.66	2.66	
	23 at ≤ 50%F	2.84	2.84	1.54
	100 90	1.46 1.51	1.46 1.51	1.54 1.58
	77.6	1.51	1.51	1.65
	65	1.77	1.77	1.81
	>50	'.,,		
	≤50	1.84	1.85	1.89
PLUOOS	40	1.90	1.91	1.99
	26	2.36	2.36	2.52
	26 at > 50%F	2.60	2.60	2.75
	23 at > 50%F	2.77	2.77	2.94
	26 at ≤ 50%F	2.52	2.52	2.66
	23 at ≤ 50%F	2.68	2.68	2.84

^{*} All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.4 MCPR_P Limits for All Fuel Types: Technical Specification Scram Time Basis (continued)*

		ATRIUM-10XM		
		вос	BOC	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.60	1.60	
	90	1.64	1.64	
	77.6	1.71	1.71	
	65	1.78	1.78	
	>50	1.88	1.88	
TBVOOS	≤50	1.91	1.92	
FHOOS	40	2.03	2.03	
	26	2.55	2.55	
	26 at > 50%F	3.30	3.30	
	23 at > 50%F	3.57	3.57	
	26 at ≤ 50%F	3.06	3.06	
	23 at ≤ 50%F	3.36	3.36	
	100	1.53	1.53	1.60
	90	1.58	1.58	1.64
	77.6	1.63	1.63	1.71
	65	1.80	1.80	1.84
	>50			
TBVOOS	≤50	1.87	1.88	1.92
PLUOOS	40	1.93	1.94	2.03
	26	2.39	2.39	2.55
	26 at > 50%F	3.13	3.13	3.30
	23 at > 50%F	3.40	3.40	3.57
	26 at ≤ 50%F	2.87	2.87	3.06
	23 at ≤ 50%F	3.16	3.16	3.36
	100	1.54	1.54	
	90	1.58	1.58	
	77.6	1.65	1.65	
	65	1.81	1.81	
FUCCO	>50			
FHOOS	≤50	1.88	1.89	
PLUOOS	40	1.99	1.99	
	26	2.52	2.52	
	26 at > 50%F	2.75	2.75	
	23 at > 50%F	2.94	2.94	
	26 at ≤ 50%F	2.66	2.66	
	23 at ≤ 50%F 100	2.84 1.60	2.84 1.60	
	90	1.64	1.64	
	77.6	1.04	1.71	
	65	1.84	1.84	
	>50	1.04	1.04	
TBVOOS	≥50 ≤50	1.91	1.92	
FHOOS	≤50 40	2.03	2.03	
PLUOOS	26	2.03	2.03	
	26 at > 50%F	3.30	3.30	
	23 at > 50%F	3.57	3.50 3.57	
	26 at ≤ 50%F	3.06	3.06	
	20 at ≤ 50 %F 23 at ≤ 50 %F	3.36	3.36	

^{*} All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.5 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Nominal Scram Time Basis*

		ATRIUM-10XM		
		BOC	вос	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.49	1.49	1.49
	90	1.54	1.54	1.54
	77.6	1.61	1.61	1.61
	65	1.78	1.78	1.78
	>50			
TBVIS	≤50	1.90	1.90	1.90
IDVIO	40	2.13	2.13	2.13
	26	2.74	2.74	2.74
	26 at > 50%F	2.98	2.98	2.98
	23 at > 50%F	3.22	3.22	3.22
	26 at ≤ 50%F	2.87	2.87	2.87
	23 at ≤ 50%F	3.10	3.10	3.10
	100	1.54	1.54	1.54
	90	1.59	1.59	1.59
	77.6	1.65	1.65	1.65
	65	1.80	1.80	1.80
	>50			
TBVOOS	≤50	1.93	1.93	1.93
164002	40	2.15	2.15	2.15
	26	2.76	2.76	2.76
	26 at > 50%F	3.47	3.47	3.47
	23 at > 50%F	3.77	3.77	3.77
	26 at ≤ 50%F	3.23	3.23	3.23
	23 at ≤ 50%F	3.56	3.56	3.56

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Limits are only valid up to 50% rated core power. Values shown above the valid power range are included to support CMSS functionality and Reference 1 documentation consistency.

Table 4.6 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Nominal Scram Time Basis*

	ATRIUM-10XM			Л
		вос	вос	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.49	1.49	1.49
	90	1.54	1.54	1.54
	77.6	1.61	1.61	1.61
	65	1.78	1.78	1.78
	>50			
TBVIS	≤50	1.91	1.91	1.91
IDVIO	40	2.13	2.13	2.13
	26	2.76	2.76	2.76
	26 at > 50%F	2.99	2.99	2.99
	23 at > 50%F	3.23	3.23	3.23
	26 at ≤ 50%F	2.89	2.89	2.89
	23 at ≤ 50%F	3.12	3.12	3.12
	100	1.54	1.54	1.54
	90	1.59	1.59	1.59
	77.6	1.65	1.65	1.65
	65	1.80	1.80	1.80
	>50			
TDVOOC	≤50	1.93	1.93	1.93
TBVOOS	40	2.15	2.15	2.15
	26	2.78	2.78	2.78
	26 at > 50%F	3.48	3.48	3.48
	23 at > 50%F	3.79	3.79	3.79
	26 at ≤ 50%F	3.25	3.25	3.25
	23 at ≤ 50%F	3.58	3.58	3.58

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Limits are only valid up to 50% rated core power. Values shown above the valid power range are included to support CMSS functionality and Reference 1 documentation consistency.

Table 4.7 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Technical Specification Scram Time Basis*

-		A TOURNA A OVAN			
		ATRIUM-10XM			
		BOC	BOC	BOC	
	Power	to	to	to End of	
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	
	100	1.54	1.54	1.54	
	90	1.58	1.58	1.58	
	77.6	1.65	1.65	1.65	
	65	1.81	1.81	1.81	
	>50				
TBVIS	≤50	1.94	1.94	1.94	
10410	40	2.17	2.17	2.17	
	26	2.79	2.79	2.79	
	26 at > 50%F	3.00	3.00	3.00	
	23 at > 50%F	3.24	3.24	3.24	
	26 at ≤ 50%F	2.89	2.89	2.89	
	23 at ≤ 50%F	3.12	3.12	3.12	
	100	1.60	1.60	1.60	
	90	1.64	1.64	1.64	
	77.6	1.71	1.71	1.71	
	65	1.84	1.84	1.84	
	>50				
TBVOOS	≤50	1.98	1.98	1.98	
160003	40	2.20	2.20	2.20	
	26	2.82	2.82	2.82	
	26 at > 50%F	3.50	3.50	3.50	
	23 at > 50%F	3.80	3.80	3.80	
	26 at ≤ 50%F	3.26	3.26	3.26	
	23 at ≤ 50%F	3.59	3.59	3.59	

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Limits are only valid up to 50% rated core power. Values shown above the valid power range are included to support CMSS functionality and Reference 1 documentation consistency.

Table 4.8 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Technical Specification Scram Time Basis*

		ATRIUM-10XM		
l l		BOC	BOC	BOC
	Danna			
Operating	Power	to	to	to End of
Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.54	1.54	1.54
	90	1.58	1.58	1.58
	77.6	1.65	1.65	1.65
	65	1.81	1.81	1.81
	>50			
TBVIS	≤50	1.94	1.94	1.94
IDVIO	40	2.18	2.18	2.18
	26	2.81	2.81	2.81
	26 at > 50%F	3.01	3.01	3.01
	23 at > 50%F	3.25	3.25	3.25
	26 at ≤ 50%F	2.91	2.91	2.91
	23 at ≤ 50%F	3.14	3.14	3.14
	100	1.60	1.60	1.60
	90	1.64	1.64	1.64
	77.6	1.71	1.71	1.71
	65	1.84	1.84	1.84
	>50			
TBVOOS	≤50	1.98	1.98	1.98
16003	40	2.21	2.21	2.21
	26	2.84	2.84	2.84
	26 at > 50%F	3.51	3.51	3.51
	23 at > 50%F	3.82	3.82	3.82
	26 at ≤ 50%F	3.28	3.28	3.28
	23 at ≤ 50%F	3.61	3.61	3.61

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

 $Limits \ are \ only \ valid \ up \ to \ 50\% \ rated \ core \ power. \ Values \ shown \ above \ the \ valid \ power \ range \ are \ included \ to \ support \ CMSS \ functionality \ and \ Reference \ 1 \ documentation \ consistency.$

Table 4.9 MCPR_P Limits for All Fuel Types: Single Loop Operation for All Scram Times*

	Power	BOC to End of COAST
Operating Condition	(% of rated)	ATRIUM-10XM
	100	2.03
	43.75	2.03
	40	2.03
RCPOOS	26	2.54
FHOOS	26 at > 50%F	2.77
	23 at > 50%F	2.96
	26 at ≤ 50%F	2.68
	23 at ≤ 50%F	2.86
	100	2.03
	43.75	2.03
RCPOOS	40	2.05
TBVOOS	26	2.57
PLUOOS	26 at > 50%F	3.32
FHOOS	23 at > 50%F	3.59
	26 at ≤ 50%F	3.08
-	23 at ≤ 50%F	3.38
	100	2.14
	43.75	2.14
RCPOOS	40	2.22
TBVOOS	26	2.84
FHOOS1	26 at > 50%F	3.52
	23 at > 50%F	3.82
	26 at ≤ 50%F	3.28
	23 at ≤ 50%F	3.61
	100	2.15
RCPOOS TBVOOS	43.75	2.15
	40	2.23
	26	2.86
FHOOS2	26 at > 50%F	3.53
	23 at > 50%F	3.84
	26 at ≤ 50%F	3.30
	23 at ≤ 50%F	3.63

All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop.

RCPOOS limits are only valid up to 43.75% rated core power (Values shown above the valid power range are included to support CMSS functionality and Reference 1 documentation consistency.), 50% rated core flow, and an active recirculation drive flow of 17.73 Mlbm/hr.

5 Thermal-Hydraulic Stability Protection

(Technical Specification 3.3.1.1)

Technical Specification Table 3.3.1.1-1, Function 2f, identifies the function.

Instrument setpoints are established, such that the reactor will be tripped before an oscillation can grow to the point where the SLMCPR is exceeded. With application of Reference 30, the DSS-CD stability solution will be used per Reference 26. The DSS-CD S_{AD} setpoint is 1.10 for TLO and SLO.

New analyses have been developed based on Reference 26. With the implementation of the MELLLA+ operating domain expansion, an ABSP trip is required when the OPRM is out-of-service. The ABSP trip settings define a region of the power to flow map within which an automatic reactor scram occurs. The ABSP trip settings are provided in Table 5.1. If both the OPRM and ABSP are out-of-service, operation within the MELLLA+ domain is not allowed and the MBSP Regions provide stability protection. Table 5.2 and Table 5.3 provide the endpoints for the MBSP regions for nominal and reduced feedwater temperature conditions.

Table 5.1 ABSP Setpoints for the Scram Region

Parameter	Symbol	Setting Value (unit)	Comments
Slope for Trip	m _{TRIP}	2.00 (% RTP/% RDF)	Slope of ABSP APRM low Flow Biased Trip Linear Segment
Constant Power Line for Trip	P _{BSP-TRIP}	35.0 (% RTP)	ABSP APRM Flow Biased Trip Setpoint Power Intercept. Constant Power Line for Trip from Zero Drive Flow to Flow Breakpoint Value
Constant Flow Line for Trip	W _{BSP-TRIP}	49 (% RDF)	ABSP APRM Flow Biased Trip Setpoint Drive Flow Intercept. Constant Flow Line for Trip (see Note 1 below)
Flow Breakpoint	$W_{BSP-BREAK}$	30.0 (% RDF)	Flow Breakpoint Value

Note 1: $W_{BSP-TRIP}$ can be set to 49.0 % RDF or any higher value up to the intersection of the ABSP sloped line with the APRM Flow Biased STP scram line.

Table 5.2 Analyzed MBSP Endpoints: Nominal Feedwater Temperature

Endpoint	Power	Core Flow	Definition
	(% Rated)	(% Rated)	
A1	75.9	52.7	Scram Region (Region I) Boundary Intercept on MELLLA+ Line
B1	35.5	29.0	Scram Region (Region I) Boundary Intercept on Natural Circulation Line (NCL)
A2	66.1	52.0	Controlled Entry Region (Region II) Boundary Intercept on MELLLA Line
B2	25.5	29.0	Controlled Entry Region (Region II) Boundary Intercept on Natural Circulation Line (NCL)

Table 5.3 Analyzed MBSP Endpoints: Reduced Feedwater Temperature

Endpoint	Power (% Rated)	Core Flow (% Rated)	Definition
A1	64.9	50.5	Scram Region (Region I) Boundary Intercept on MELLLA Line
B1	29.4	29.0	Scram Region (Region I) Boundary Intercept on Natural Circulation Line (NCL)
A2	68.3	54.9	Controlled Entry Region (Region II) Boundary Intercept on MELLLA Line
B2	24.5	29.0	Controlled Entry Region (Region II) Boundary Intercept on Natural Circulation Line (NCL)

ECM: L32 211222 800

Date: January 17, 2022

6 APRM Flow Biased Rod Block Trip Settings

(Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1)

The APRM rod block trip setting is based upon References 27 & 29, and is defined by the following:

for two loop operation:

 $SRB \leq (0.61W_d + 63.3)$ Allowable Value

 $SRB \leq (0.61W_d + 62.0)$ Nominal Trip Setpoint (NTSP)

where:

SRB = Rod Block setting in percent of rated thermal power (3952 MW_t)

W_d = Recirculation drive flow rate in percent of rated

(100% drive flow required to achieve 100% core power and flow)

and for single loop operation:

SRB \leq (0.55(W_d- Δ W) + 60.5) Allowable Value

 $SRB \leq (0.55(W_d-\Delta W) + 58.5)$ Nominal Trip Setpoint (NTSP)

where:

SRB = Rod Block setting in percent of rated thermal power (3952 MW_t)

W_d = Recirculation drive flow rate in percent of rated

(100% drive flow required to achieve 100% core power and flow)

 ΔW = Difference between two-loop and single-loop effective recirculation flow

at the same core flow (Δ W=0.0 for two-loop operation)

The APRM rod block trip setting is clamped at a maximum allowable value of 115% (corresponding to a NTSP of 113%).

Date: January 17, 2022

7 Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)

The RBM trip setpoints and applicable power ranges, based on References 27 & 28, are shown in Table 7.1. Setpoints are based on an HTSP, unfiltered analytical limit of 114%. Unfiltered setpoints are consistent with a nominal RBM filter setting of 0.0 seconds; filtered setpoints are consistent with a nominal RBM filter setting less than 0.5 seconds. Cycle specific CRWE analyses of OLMCPR are documented in Reference 1, superseding values reported in References 27, 28, and 29.

Allowable Nominal Trip RBM Value Setpoint Trip Setpoint (AV) (NTSP) **LPSP** 27% 25% **IPSP** 60% 62% **HPSP** 82% 80% LTSP - unfiltered 121.7% 120.0% - filtered 120.7% 119.0% **ITSP** - unfiltered 116.7% 115.0% - filtered 114.0% 115.7% HTSP - unfiltered 111.7% 110.0% - filtered 109.2% 110.9% **DTSP** 92% 90%

Table 7.1 Analytical RBM Trip Setpoints*

As a result of cycle specific CRWE analyses, RBM setpoints in Technical Specification Table 3.3.2.1-1 are applicable as shown in Table 7.2. Cycle specific setpoint analysis results are shown in Table 7.3, per Reference 1.

Table 7.2 RBM Setpoint Applicability

Thermal Power (% Rated)	Applicable MCPR [†]	Notes from Table 3.3.2.1-1	Comment
> 27% and < 90%	< 1.59	(a), (b), (f), (h)	two loop operation
	< 1.62	(a), (b), (f), (h)	single loop operation
≥ 90%	< 1.34	(g)	two loop operation‡

^{*} Values are considered maximums. Using lower values, due to RBM system hardware/software limitations, is conservative, and acceptable.

[†] MCPR values shown correspond with, (support), SLMPCR values identified in Reference 1.

[‡] Greater than 90% rated power is not attainable in single loop operation.

Date: January 17, 2022

Table 7.3 Control Rod Withdrawal Error Results

RBM HTSP Analytical Limit	CRWE OLMCPR
Unfiltered	
107	1.26
111	1.30
114	1.31
117	1.32

Results, compared against the base case OLMCPR results of Table 4.2, indicate SLMCPR remains protected for RBM inoperable conditions (i.e., 114% unblocked).

ECM: L32 211222 800

Date: January 17, 2022

8 Shutdown Margin Limit

(Technical Specification 3.1.1)

Assuming the strongest OPERABLE control blade is fully withdrawn, and all other OPERABLE control blades are fully inserted, the core shall be sub-critical and meet the following minimum shutdown margin:

SDM ≥ 0.38% dk/k

ECM: L32 211222 800

Date: January 17, 2022

Appendix A: MBSP Maps

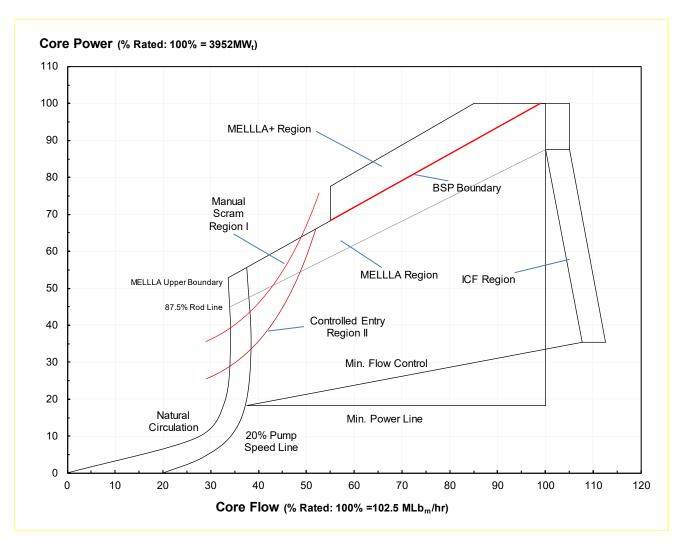


Figure A.1 MBSP Boundaries For Nominal Feedwater Temperature (Operation in the MELLLA+ Region Prohibited for Feedwater Temperature greater than 10 degrees F below the Nominal Feedwater Temperature)

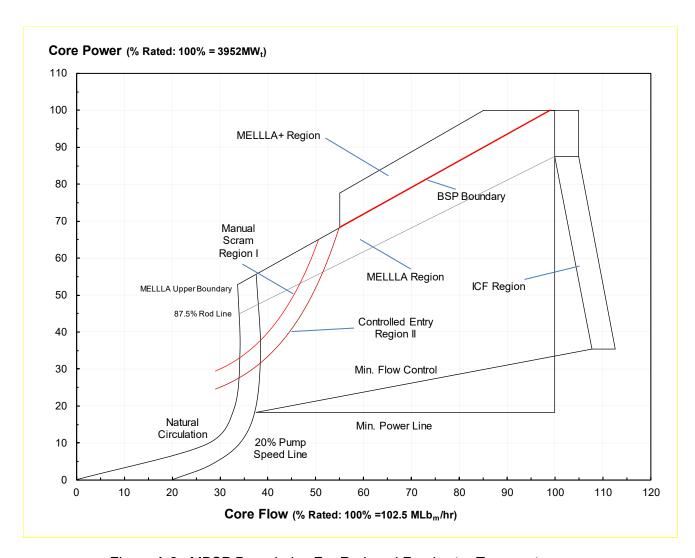


Figure A.2 MBSP Boundaries For Reduced Feedwater Temperature

(Operation in the MELLLA+ Region Prohibited for a Reduced Feedwater Temperature greater than 10 degrees F below the Nominal Feedwater Temperature)