SSSB

Survey Results MARSAME Survey Package SSSB-006 Wing Tank 9 Starboard

Revision 0

February 8, 2022

Prepared by:

Michael A. Carr, CHP Project Radiation Safety Officer

Approved by:

Rick Greene, CHP Project Certified Health Physicist

Record of Revisions

Revision No.	Description of Revision	Date
0	Survey Results – MARSAME Survey Package SSSB-006	February 8, 2022

1.0 Objective

The objective of this survey data package is to justify the unrestricted release of the Surface Ship Support Barge (SSSB) Wing Tank 9 Starboard (9S) with no additional controls.

2.0 Background

Wing Tank 9S is part of the SSSB ballast system, located between Frames 47 and 50 of the vessel. Water for filling the ballast tanks was normally taken from a dockside supply of fresh water via the port or starboard saltwater circulating system shore connection. Tank 9S is accessed by a single 48-inch-diameter hatch located on the aft, starboard weather deck. The No. 9 tanks are separated from the Wet Pit by the No. 8 tanks and are physically isolated from the contaminated drain collecting systems. Diagrams showing the location of Wing Tank 9S and its access point are provided on Figure 2-1 through Figure 2-4.

Wing Tank 9S is a permit-required confined space. The tank is approximately 40.5 feet deep by 12.5 feet wide with a series of vertical ladders and small platforms for entry into the tank. There are several baffles of various sizes and height/depth throughout the tank to minimize the movement of ballast water within the tank. In order to provide full access throughout the sections of the tank, small areas of the larger baffling were cut and removed.

The tank has a cutout or isolation valve with a reach rod for operation of the valve from the upper deck. The handwheel for operating the cutout valve is located on the starboard weather deck, aft of Frame 50.

The access ladder, platforms, and the temporary ventilation trunk are shown in Photograph 2-1. The internal support structure within the tank is shown in Photograph 2-2.

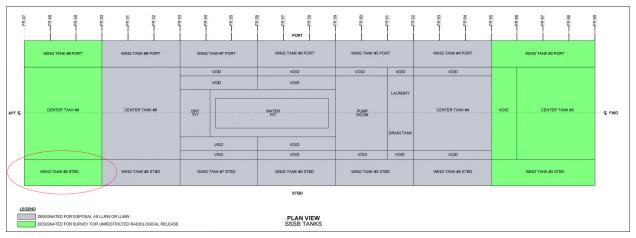
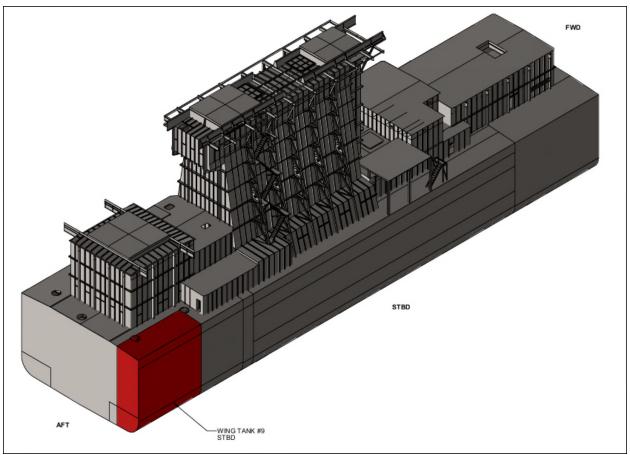
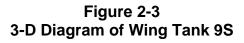
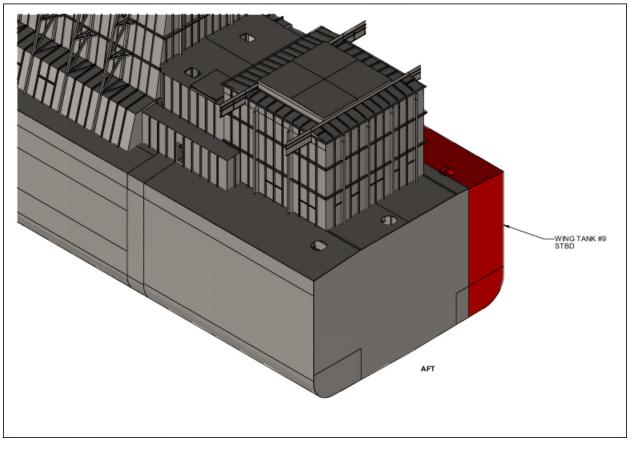





Figure 2-1 Location of Ballast Wing Tank 9S

Figure 2-2 3-D Diagram of Wing Tank 9S

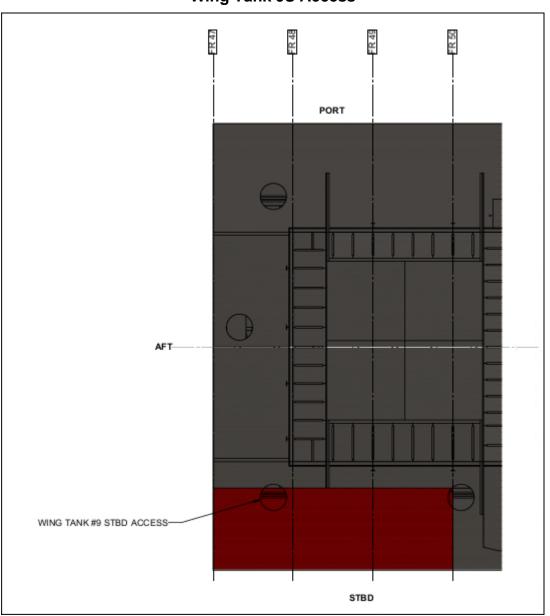
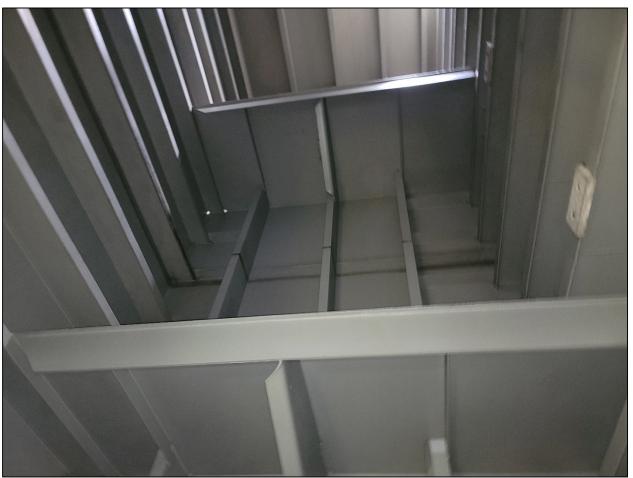



Figure 2-4 Wing Tank 9S Access

Photograph 2-1 Access Ladder, Platforms, and Ventilation Trunk

Photograph 2-2 Internal Support Structure

3.0 Initial Assessment

3.1 Categorization

Based on prior assessments and the historical records, Tank 9S is considered an impacted area. This tank was decontaminated during vessel refurbishment in 1983/1984 and released by the Naval Sea Systems Command (NAVSEA) for unrestricted use and has not been used to store radioactive liquids subsequent to refurbishment. According to the Facility System Status Report (FSSR) (NAVSEA, 2015), the status of Tank 9S was listed as "No radiological controls" and it stated that the tank was used to store ballast water. However, since this tank had previously come into direct contact with radioactive materials and had not been released to current regulatory standards, it is considered impacted.

3.2 Classification

Considering the tank was previously decontaminated and refurbished, the potential for residual radioactivity at detectable levels is low as defined in the SSSB project Materials Categorization, Survey, and Release Plan (MCSRP) (Aptim Federal Services, LLC [APTIM], 2021a). Tank 9S is classified as a Multi-Agency Radiation Survey and Assessment of Materials and Equipment (MARSAME) (U.S. Nuclear Regulatory Commission [NRC], 2009) Class 2 survey unit.

3.3 Disposition Options

The disposition option being considered for the Tank 9S materials and equipment (M&E) is release for unrestricted use.

4.0 Decision Inputs

The decision inputs for the surveys included the radiological contaminants of potential concern (RCOPC), the parameters of interest (total direct and removable activity and sample analyses), and the action or decision levels as specified within the following sections. This allowed the decision rules to be evaluated and the proper determinations made for the unrestricted release of the tank with no additional controls.

4.1 Null Hypothesis

The null hypothesis for the surveys was based on MARSAME Scenario A. Scenario "A" states that the contamination levels within the M&E survey unit are equal to or exceed the action levels (AL). If the activity levels on the M&E are determined to be equal to or exceed an AL, the null hypothesis is accepted and the M&E may not be free released. If all measurements are below the

ALs, then the null hypothesis is rejected and the M&E may be released with no radiological controls.

4.2 Radionuclides of Potential Concern

The RCOPCs were listed in Table 4-1 of the Decommissioning Work Plan (APTIM, 2021b) and have since been revised based on characterization surveys and sampling (APTIM, 2021c) as summarized in Table 4-1 below.

Radionuclide	Radiation Emitted	Field Detectability
Tritium (H-3)	Low-energy beta	HTD
Cobalt-60 (Co-60)	Beta-Gamma	Yes
Nickel-63 (Ni-63)	Low-energy beta	HTD

Table 4-1Radionuclides of Potential Concern

The primary detectable RCOPCs is Co-60 which is an activation/corrosion product. In addition, the hard-to-detect (HTD) radionuclides of concern were evaluated using the results of removable contamination smears as analyzed in a liquid scintillation counter.

4.3 Action Levels

For the SSSB project, the ALs are based on no detectable activity per NRC I&E Notice 81-07 (NRC, 1981) expressed as:

- No detectable total surface beta activity during scans or static measurements with a minimum detectable concentration (MDC) not greater than 5,000 dpm/100 cm² as measured by a thin-window (0.8 milligrams per square centimeter [mg/cm²]) gas flow proportional counter or detector of approximate equivalent sensitivity.
- Removable contamination less than 1,000 dpm/100 cm².
- No detectable Co-60 activity in paint samples with a minimum detectable activity (MDA) less than or equal to 3.0 picocuries per gram (pCi/g).

4.4 Decision Rules

The specific decision rules are as follows:

• If any surface beta activity is discernable above background during scans or static measurements with an MDC not greater than 5,000 dpm/100 cm² as measured by a thin-window (0.8 mg/cm²) gas flow proportional counter or detector of approximate

equivalent sensitivity, the null hypothesis cannot be rejected and the M&E may not be released for unrestricted use.

- If any removable contamination is detected above 1,000 dpm/100 cm², the null hypothesis cannot be rejected and the M&E may not be released for unrestricted use.
- If Co-60 activity is detected in paint samples with an MDA less than or equal to 3.0 pCi/g, then the null hypothesis cannot be rejected and the M&E may not be released for unrestricted use.

If the decision rules are all rejected (i.e., all measurements and surface scans are below the applicable ALs), the M&E may be released for unrestricted use. If any decision rule is not rejected, the M&E will not be released for unrestricted use.

5.0 Survey Design

5.1 Survey Unit

Wing Tank 9S is an individual open tank with an area of approximately 990 square meters. As a result, the tank was considered a single Class 2 survey unit.

5.2 Survey Boundaries

The survey unit was limited to the interior surfaces of the tank and its contents. The vessel exterior is considered non-impacted and was not included in the survey.

5.3 Design

The survey included the following requirements in accordance with the MCSRP and MARSAME Survey Package SSSB-006 (APTIM, 2021d):

- At least 25% cumulative beta scan of accessible structural surfaces (tank interior walls, deck, baffles, and overhead).
- Minimum of 15 direct static measurements for beta activity taken on a systematic grid with a random starting point on the deck, walls, overheads, and internal walls.
- Smears for gross beta analysis at each direct static measurement location.
- Smears for H-3 and Ni-63 at each direct static measurement location.
- Volumetric paint samples for isotopic analysis at each direct static location.
- Additional measurements as required by the Radiological Control Supervisor (RCS) and approved by the Project Radiation Safety Officer (PRSO).

All measurement locations were marked and documented.

5.4 Survey Map

The tank shell was gridded using a one-square-meter grid starting at an established reference point. There were an estimated 480 square meters for the tank shell (floor, walls, and ceiling) excluding the internal structure such as the forward/aft stiffeners, bulkhead stiffeners, baffles and platform. A systematic grid with a random starting location was generated using a triangular grid to locate the 16 direct measurement and sampling locations. The tank structures, including the stiffeners, baffles and platforms, were inventoried, numbered, and 25% randomly selected for survey.

A copy of the Tank 9S survey map showing the one-square-meter grid overlay, grids scanned, and the systematic measurement/sample locations as well as the internal structures surveyed is included as Attachment 1.

6.0 Survey Results

The following sections summarize the data from the surveys performed within Tank 9S. A data tracking/cover sheet was used to provide survey instructions and to ensure the required survey data were collected. A copy of the MARSAME survey data tracking/cover sheet is provided as Attachment 2.

6.1 Background Assessment

Background measurements were collected prior to and during the performance of the surveys throughout the tank using a background plate covering the detector to measure the ambient background. The average background as measured within the tank was applied during all activity calculations.

Based on the background measurements, the detection sensitivities were validated to ensure they met the data quality objectives and the measured detection sensitivities are provided as part of the survey documentation.

6.2 Beta Surface Scans

Beta surface scans were performed using a Ludlum Model 2360 with Model 43-93 scintillation detector while listening to the instrument's audible response to identify any elevated measurement areas using a scan speed not exceeding two detector widths per second. The scan data were recorded by documenting the maximum observed scan result for each square meter

surveyed. A total of 137 randomly selected grids out of 480 on the tank shell (i.e., floor, walls, and ceiling) were scanned for an approximately 28.5% scan coverage. Additionally, a minimum of 25% of the forward/aft stiffeners, bulkhead stiffeners, and the baffle and platform surfaces were randomly selected and scanned. A total of nine out of 35 forward/aft stiffeners (25.7%), three of six bulkhead stiffeners (50%), one of four baffle sides (25%), and one of four platform surfaces (25%) were surveyed. This was performed to ensure the 25% scan requirement was met.

Each beta scan measurement was converted to surface activity using the average tank background and instrument efficiencies using the following equation:

Surface Activity =
$$\frac{(R_S - R_B)}{\left(\varepsilon_i \ \varepsilon_S \ \frac{A}{100}\right)}$$

Where: $R_s = Maximum observed count rate (counts per minute [cpm]) per grid$ or component

 R_B = Average ambient background count rate (cpm) in the tank

 ε_i = Instrument efficiency (2 π)

 $\varepsilon_{\rm S}$ = Surface efficiency (25%)

A = Detector surface area (cm^2)

All scan measurements were less than the MDCs, which ranged from approximately 3,154 to $4,531 \text{ dpm}/100 \text{ cm}^2$, using a maximum scan speed of two detector widths per second which was less than the 5,000 dpm/100 cm² requirement.

The beta scan results are summarized in Attachment 3.

6.3 Direct Beta Measurements

Each measurement location consisted of a one-minute scalar count for total surface beta activity using the Ludlum Model 2360 with a Model 43-93 scintillation detector. A total of 16 systematic grid measurements for direct beta surface activity were performed. The approximate direct beta measurement locations were recorded as part of the survey documentation.

The direct measurements for total beta surface activity were recorded in cpm and converted to surface activity using the same equation provided in Section 6.2 above. All direct beta measurements were less than the critical value (see Section 7.4.1) based on the average measured

background. This indicated that all 16 measurements were indistinguishable from background with MDCs ranging from approximately 713 to 799 dpm/100 cm².

The direct beta measurements are summarized in Attachment 4.

6.4 *Removable Beta Surface Activity*

Smears for removable beta surface activity were collected at each of the 16 direct measurement locations and analyzed on-site. The removable beta surface activity results were recorded in cpm and converted to surface activity using the following equation:

Surface Activity =
$$\frac{(R_S - R_B)}{\left(\varepsilon_i \frac{A}{100}\right)}$$

Where:	Rs	=	Sample count rate (cpm)
	R_B	=	Ambient background count rate (cpm)
	εί	=	Instrument efficiency (4π)
	А	=	Size of area smeared ($\sim 100 \text{ cm}^2$)

All smear results for removable beta surface activity were less than the MDA of 93 $dpm/100 cm^2$.

The removable beta surface activity measurements are summarized in Attachment 5.

6.5 Removable Low-Energy Beta Surface Activity

Smears for removable low-energy beta (LEB) surface activity were collected at each of the 16 direct measurement locations for both H-3 and Ni-63 and shipped for off-site laboratory analysis. All measurements were less than the AL of $1,000 \text{ dpm}/100 \text{ cm}^2$.

The LEB smear results are summarized in Attachment 6 and a copy of the off-site laboratory analytical report(s) is provided in Attachment 7.

6.6 Paint Samples

A paint sample was collected from a 12-inch by 12-inch area at each of the 16 direct measurement locations and shipped for off-site laboratory analysis for the RCOPCs as defined in the updated RCOPC list. All sample results were reported as less than the MDAs, specifically for Co-60 with an MDA not exceeding 3.0 pCi/g. No detectable activity was identified in any of the 16 paint samples, including Co-60, Ni-63, H-3, and C-14.

The volumetric isotopic results are summarized in Attachment 8 and a copy of the off-site laboratory analytical reports is provided as Attachment 9.

6.7 Supplemental Data

No supplemental data were collected during the surveys because no elevated readings were identified during surface scans.

7.0 Quality Assurance

7.1 Daily Instrument Source Checks

Upon instrument receipt, each instrument was inspected and set up to establish baseline instrument response criteria and control charts in accordance with standard operating procedure. All instruments and detectors were subsequently inspected, verified to have current calibration, and source checked daily when in use to verify proper operation.

7.2 Decision Errors

- Type I: During scanning, the consequence of making a Type I decision error is clearing the M&E for re-use or recycle when the activity levels exceed the release criteria. A Type I decision error rate of 5% was selected for the scanning survey.
- Type II: The consequence of this decision error may include the need to perform an investigation to determine the reason for the elevated reading, or the added time and expense of decontamination and resurvey activities. For this reason, a Type II decision error rate of 5% was selected for the scanning.

7.3 Measurement Uncertainty

As specified in the MCSRP, all measurements include uncertainty and must be considered when the measurement results are used in the decision-making process. However, considering the ALs as established for the SSSB were no detectable activity for direct beta surface activity and no detectable activity greater than 1,000 dpm/100 cm² for removable beta, the measurement uncertainty was not determined or evaluated with the exception of the values as reported by the off-site laboratory and as summarized in Attachments 6 through 9.

7.4 Detection Capability

The measurement detection capability was assessed by two measurement values: the critical value and the MDC. The critical value is the minimum measured value for a specified probability that a positive (non-zero) amount of activity is actually present (i.e., distinguishable from

background). The MDC, on the other hand, is the minimum detectable activity or concentration for a measurement that can be measured with confidence.

7.4.1 Fixed-Point Measurements

For static fixed-point measurements, the critical value is determined using Equation 1 in Table 7.5 of MARSAME:

$$S_{c} = Z_{1-\alpha} \sqrt{N_{B} \frac{t_{S}}{t_{B}} \left(1 + \frac{t_{S}}{t_{B}}\right)}$$

Where:	$\mathbf{S}_{\mathbf{C}}$	=	critical value, counts
	N_B	=	average background counts
	t _B	=	background count time (10 minutes)
	ts	=	sample count time (one minute)
	$Z_{1-\alpha}$	=	Type 1 decision error (set as 1.645)

A net count for a fixed-point measurement that exceeds the S_c value will indicate the presence of residual radioactivity. The MDC can then be determined as follows:

$$MDC = \frac{S_{c} + \frac{Z_{1-\beta}^{2}}{2} + Z_{1-\beta} \sqrt{\frac{Z_{1-\beta}^{2}}{4} + S_{c} + N_{B} \frac{t_{S}}{t_{B}} \left(1 + \frac{t_{S}}{t_{B}}\right)}{t_{S} \varepsilon_{i} \varepsilon_{S} \frac{A}{100 \ cm^{2}}}$$

Where:	$\mathbf{S}_{\mathbf{C}}$	=	critical value, counts
	N_B	=	average background counts
	t _B	=	background count time
	ts	=	sample count time
	$Z_{1-\beta}$	=	Type 2 decision error (set as 1.645)
	Ei	=	instrument 2π efficiency
	\mathcal{E}_{S}	=	surface efficiency
	Α	=	detector area

Based on the instrumentation utilized (Ludlum Model 2360 with Model 43-93 scintillation probe) and the counting parameters that were established for the surveys, the maximum MDC for the fixed beta measurements was 799 dpm/100 cm². This was based on the established sample

count time of one minute, ambient background count time of 10 minutes, average ambient background count rate of 72.2 cpm, instrument efficiency (2π) of 16.0%, surface efficiency of 25%, and a detector area of 100 cm².

7.4.2 Scan Sensitivity

The minimum detectable count rate (MDCR) was determined for the Ludlum Model 43-93 detector using Equation 6-9 in MARSSIM:

$$MDCR = d'\sqrt{b_i} \left(\frac{60}{i}\right)$$

Where:	MDCR	=	minimum detectable count rate in cpm
	b_i	=	average number of background counts in the observation interval
	i	=	observation interval (0.5 seconds for a maximum scan speed of
			two detector widths per second)
	d'	=	detectability index from Table 6.1 of NUREG-1507; a value of
			1.38 was selected, which represents a true-positive detection rate
			of 95% and a false-positive detection rate of 60%.

The scan MDC was determined using Equation 6-10 in MARSSIM:

$$Scan MDC = \frac{MDCR}{\sqrt{p} \, \varepsilon_i \, \varepsilon_s \, \frac{probe \, area}{100 \, cm^2}}$$

Where:	MDCR	=	minimum detectable count rate (cpm)
	р	=	efficiency of a less-than-ideal surveyor, range of 0.5 to 0.75 from
			NUREG-1507; a value of 0.5 was chosen as a conservative value
	А	=	detector area (100 cm ² for 43-93 detector)
	Ei	=	instrument 2π efficiency
	\mathcal{E}_{S}	=	surface efficiency

Based on the instrumentation utilized (Ludlum Model 2360 with a Model 43-93 scintillation detector) and the counting parameters that were established for the survey(s), the maximum calculated beta scan sensitivity was approximately 4,531 dpm/100 cm². This was based on an established scan speed not to exceed two detector widths per second (~5.4 inches/second),

average ambient background count rate of 72.2 cpm, instrument efficiency (2π) of 16%, and a surface efficiency of 25%.

7.5 Duplicate / Replicate Measurements

Duplicate measurements and smear samples were collected at a minimum rate of 5% (i.e., one for every 20 measurements or samples). This included surface scans and measurements for total direct beta surface activity, removable LEB activity, and removable beta activity.

7.5.1 Beta Surface Scans

A total of 16 additional one-square-meter grids were scanned as presented in Attachment 3. Considering the total surface area of the tank is approximately 990 square meters (see Section 5.1) and an estimated scan coverage was 25% (~247 square meters), this constituted an approximate 6.5% survey for quality control (QC) for beta surface scans. The QC scan measurement results are provided as part of Attachment 3 and were all less than the MDA, consistent with the initial beta surface scan results.

7.5.2 Direct Beta Measurements

One additional direct beta measurement was collected for QC purposes, as presented in Attachment 4. This resulted in an approximate 6.3% QC for direct beta measurements (i.e., one for 16 total measurements). The QC measurement was less than the MDA and consistent with the systematic measurement results. Although the direct beta result for the QC measurement was greater than the critical value, it was still less than the MDA. Additionally, the original direct measurement was less than the critical value and all other indicators (smears and paint samples) were less than MDAs/MDCs. Based on this evaluation, it was determined that the QC measurement was a statistical outlier and there is no activity above background present.

7.5.3 Removable Beta Surface Activity

One additional smear for removable beta surface activity was collected for QC purposes, as presented in Attachment 5. This resulted in an approximate 6.3% QC for removable beta activity (i.e., one for 16 total smears). The QC measurement was less than the MDA and consistent with the systematic smear results.

7.5.4 Removable Low-Energy Beta Surface Activity

One additional smear each for removable LEB surface activity (H-3 and Ni-63) was collected for QC purposes, as presented in Attachment 6. This resulted in an approximate 6.3% QC for LEB

surface activity (i.e., one for 16 smears each for H-3 and Ni-63). The QC measurement results were less than the MDAs and consistent with the systematic smear results.

In addition to the QC smears collected during the survey, the off-site laboratory performed a laboratory duplicate analysis on one of the smears. The laboratory duplicate results were all less than MDAs and consistent with the systematic smear results.

7.5.5 Paint Samples

No duplicate paint samples were collected during the survey; however, the off-site laboratory performed a laboratory duplicate analysis on one of the samples. This constituted an approximate 6.3% QC (i.e., one for 16 total samples). The laboratory duplicate analysis results are presented in Attachment 8 and were all less than the MDAs.

8.0 Data Evaluation

The survey and sampling data were determined to meet the minimum survey design requirements as stipulated in MARSAME Survey Package SSSB-006, Wing Tank 9S. All survey data were then evaluated against the applicable ALs and decision rules as specified in Section 4.4. These results are summarized as follows based on the survey results presented in Section 6.0:

- All beta surface scan results were less than the scan MDC with the MDC not to exceed $5,000 \text{ cpm}/100 \text{ cm}^2$.
- All direct beta measurements were below the MDC and the Critical Value (Lc) with the MDC not to exceed 5,000 cpm/100 cm².
- All gross beta and LEB smear results were less than 1,000 dpm/100 cm².
- All paint sample results were less than the MDA with a Co-60 MDA less than 3.0 pCi/g.

9.0 Decision/Conclusion

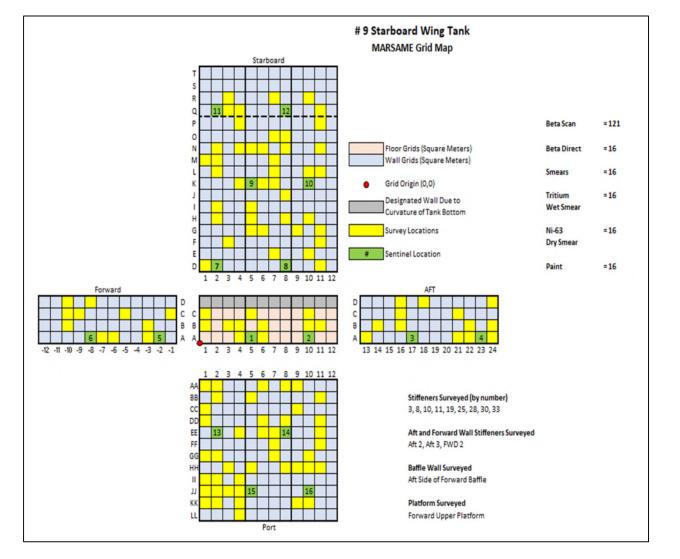
Based upon the survey results and the data evaluation (i.e., all measurements were less than the specified ALs), the Null Hypothesis has been rejected and Tank 9S may be released for unrestricted release with no additional radiological controls.

10.0 References

Aptim Federal Services LLC (APTIM), 2021a, *Materials Categorization, Survey, and Release Plan, Surface Ship Support Barge Dismantlement and Disposal*, Rev. 0, March (or most recent revision).

Aptim Federal Services LLC (APTIM), 2021b, *Decommissioning Work Plan, Surface Ship Support Barge Dismantlement and Disposal*, Rev. 1, April (or most recent revision).

Aptim Federal Services LLC (APTIM), 2021c, Surface Ship Support Barge Contract Number N00024-20-C-4139; Revised Radiological Constituents of Potential Concern (RCOPCs); Notification of Initiating Waste Shipment, APTIM-501513-0018, September 22, 2021.


Aptim Federal Services LLC (APTIM), 2021d, *MARSAME Survey Package SSSB-006, Wing Tank 9S, Surface Ship Support Barge Dismantlement and Disposal*, Rev. 1, November (or most recent revision).

Naval Sea Systems Command (NAVSEA), 2015, *Facility System Status Report (FSSR), Surface Ship Support Barge*, Rev. A-12, April 29.

U.S. Nuclear Regulatory Commission (NRC), 2009, *Multi-Agency Radiation Survey and Assessment of Materials and Equipment Manual (MARSAME)*, NUREG-1575, Supp. 1; EPA-402-R-09-001; DOE/HS-0004; January.

U.S. Nuclear Regulatory Commission (NRC), 1981, *Control of Radioactively Contaminated Material*, I&E Circular No. 81-07, May.

SURVEY AND SAMPLE LOCATION MAP

The total number of beta scans was 137, which included the 121 randomly selected grids and the 16 grids where direct measurements were collected.

MARSAME DATA TRACKING SHEET

MARSAME SURVEY PACKAGE	SSSB-006
	Wing Tank 95
Survey Requirement	Completion (Signature and Date)
Wing Tank 9S	
25% cumulative beta scan of tank deck, walls, baffles, and overhead. Identify grids that were scan surveyed as applicable (minimum of 250 square meters of coverage).	12/1/2021 E.
At least 15 direct beta static measurements (see attached map) taken on a systematic grid with a random starting point on the deck, walls, overheads, and internal walls/baffles.	12/9/2021
Gross beta smear per direct measurement location.	12/9/2021 5 5
H-3 and Ni-63 smears per direct measurement location.	12/9/2021 5.
Volumetric paint samples for isotopic analysis at each direct static location	12/14/2021 E.
One QC measurement for each 20 measurements performed.	Bille
Reviewed By: Bryon Recens Soft	-

BETA SCAN SURVEY RESULTS SUMMARY

		Count Ti	mes (min)		Det	ector		Item	Qty	Surveyed	% Coverage		
		Sample	1		Width (cm)	6.9		Grids	480	137	28.5%		
		Bkgd	10		Area (cm2)	100		F/A Stiffiners	35	9	25.7%		
		Speed (w/sec)	2					Bulk Stiffiners	6	3	50.0%		
								Baffle Sides	4	1	25.0%		
								P latform s	4	1	25.0%		
		Sample	Background	Effic	iency	Activity	MDCR	MDA	Results				
		epm	cpm	2Pi	Surface	dpm/100 cm2		dpm/100 cm2			Survey	Surface	137
Loc	Grid												
	A-4	70	80.1	18.60%	25%	-216.5	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Floor	1
1	A-5	90	77.8	18.60%	25%	262.4	133.3	4,055.3	< MDA		ASY-20211209-SSSB-0549	Floor	1
	A-6	70	81.3	21.50%	25%	-209.6	136.3	3,585.6	< MDA		ASY-20211202-SSSB-0511	Floor	1
2	A-10	70	77.8	18.60%	25%	-167.7	133.3	4,055.3	< MDA		ASY-20211209-SSSB-0549	Floor	1
	B-1	70	80.1	18.60%	25%	-216.5	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Floor	1
	B-3	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Floor	1
	B-4	70	80.1	18.60%	25%	-216.5	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Floor	1
	B-6	60	81.3	21.50%	25%	-395.7	136.3	3,585.6	< MDA		ASY-20211202-SSSB-0511	Floor	1
	B-10	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Floor	1
	B-11	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Floor	1
	C-1	70	80.1	18.60%	25%	-216.5	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Floor	1
	C-5	70	81.3	21.50%	25%	-209.6	136.3	3,585.6	< MDA		ASY-20211202-SSSB-0511	Floor	1
	C-10	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Floor	1
5	A-(-2)	80	77.8	18.60%	25%	47.3	133.3	4,055.3	< MDA		ASY-20211209-SSSB-0549	Forward Wall	1
	A-(-3)	60	82.3	22.80%	25%	-390.6	137.1	3,401.9	< MDA		ASY-20211202-SSSB-0511	Forward Wall	1
	A-(-6)	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Forward Wall	1
	A-(-7)	80	83.7	21.50%	25%	-68.8	138.3	3,638.9	< MDA		ASY-20211203-SSSB-0519	Forward Wall	1
6	A-(-8)	70	77.8	18.60%	25%	-167.7	133.3	4,055.3	< MDA		ASY-20211209-SSSB-0549	Forward Wall	1
	B-(-3)	60	82.3	22.80%	25%	-390.6	137.1	3,401.9	< MDA		ASY-20211202-SSSB-0511	Forward Wall	1
	B-(-10)	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA		ASY-20211207-SSSB-0527	Forward Wall	1
	C-(-1)	60	80.1	18.60%	25%	-431.5	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Forward Wall	1
	C-(-5)	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA		ASY-20211202-SSSB-0511	Forward Wall	1
	C-(-9)	90	67.5	18.60%	25%	483.9	124.2	3,777.3	< MDA		ASY-20211207-SSSB-0527	Forward Wall	1
	C-(-10)	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA		ASY-20211207-SSSB-0527	Forward Wall	- 1
	D-(-8)	70	83.7	21.50%	25%	-254.9	138.3	3,638.9	< MDA		ASY-20211203-SSSB-0519	Forward Wall	1
	D-(-0)	90	67.5	18.60%	25%	483.9	124.2	3,777.3	< MDA		ASY-20211207-SSSB-0527	Forward Wall	1
	A-13	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA		ASY-20211202-SSSB-0511	Aft Wall	1
3	A-17	70	77.8	18.60%	25%	-167.7	133.3	4,055.3	< MDA		ASY-20211202-555B-0511	Aft Wall	1
2	A-17 A-21	90	67.5	18.60%	25%	483.9	133.3	3,777.3	< MDA		ASY-20211209-353B-0549	Aft Wall	1
	A-21 A-22	90 80	67.5	18.60%	25%	485.9 268.8	124.2	3,777.3	< MDA < MDA		ASY-20211207-SSSB-0527	Aft Wall	1
4	A-22 A-23	70	07.3 77.8	18.60%	25%	-167.7	124.2	4,055.3					1
4	A-25 A-24	70 80	67.5	18.60%	25% 25%	-167.7	133.3	4,055.3	< MDA		ASY-20211209-SSSB-0549	Aft Wall	1

		Sample	Background		iency	Activity	MDCR	MDA	Results			
		epm	epm	2Pi	Surface	dpm/100 cm2		dpm/100 cm2		Survey	Surface	137
Loc	Grid											
	B-14	60	81.3	21.50%	25%	-395.7	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Aft Wall	1
	B-16	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Aft Wall	1
	B-22	90	67.5	18.60%	25%	483.9	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527	Aft Wall	1
	B-24	90	67.5	18.60%	25%	483.9	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527	Aft Wall	1
	C-16	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Aft Wall	1
	C-21	70	67.5	18.60%	25%	53.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527	Aft Wall	1
	D-16	60	81.3	21.50%	25%	-395.7	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Aft Wall	1
	D-18	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Aft Wall	1
	D-24	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527	Aft Wall	1
	D-1	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
7	D-2	80	77.8	18.60%	25%	47.3	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Starboard Wall	1
8	D-8	70	77.8	18.60%	25%	-167.7	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Starboard Wall	1
	D-11	70	80.1	18.60%	25%	-216.5	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	E-7	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	E-10	70	80.1	18.60%	25%	-216.5	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	F-3	70	81.3	21.50%	25%	-209.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	F-11	90	82.3	22.80%	25%	135.7	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	G-5	70	81.3	21.50%	25%	-209.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	G-6	70	81.3	21.50%	25%	-209.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	G-9	70	80.1	18.60%	25%	-216.5	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	G-11	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	H-2	70	80.1	18.60%	25%	-216.5	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	H-5	70	82.3	22.80%	25%	-215.2	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	H-8	60	82.3	22.80%	25%	-390.6	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	H-10	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527	Starboard Wall	1
	I-2	70	80.1	18.60%	25%	-216.5	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	I-5	70	82.3	22.80%	25%	-215.2	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Starboard Wall	1
	J-8	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	K-4	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
9	K-5	80	77.8	18.60%	25%	47.3	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Starboard Wall	1
	K-6	80	69.1	18.60%	25%	234.4	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	K -7	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
10	K-10	80	77.8	18.60%	25%	47.3	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Starboard Wall	1
	L-2	100	69.1	18.60%	25%	664.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	L-7	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	L-10	80	69.1	18.60%	25%	234.4	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	L-11	80	83.7	21.50%	25%	-68.8	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	M-1	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	M-2	80	83.7	21.50%	25%	-68.8	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	M -7	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1

		Sample	Background	Efficiency		Activity	MDCR	MDA	Results			
		epm	epm	2Pi	Surface	dpm/100 cm2		dpm/100 cm2		Survey	Surface	137
.0 c	Grid											
	N-2	100	69.1	18.60%	25%	664.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	N-4	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	N-5	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	N-6	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	N-8	100	83.7	21.50%	25%	303.3	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	N-11	80	83.7	21.50%	25%	-68.8	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	O-7	80	83.7	21.50%	25%	-68.8	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	O-8	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	P-4	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
	P-11	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Starboard Wall	1
11	Q-2	90	77.8	18.60%	25%	262.4	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Ceiling	1
	Q-3	80	69.1	18.60%	25%	234.4	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Ceiling	1
	Q-4	100	69.1	18.60%	25%	664.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Ceiling	1
12	Q-8	90	77.8	18.60%	25%	262.4	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Ceiling	1
	Q-11	100	69.1	18.60%	25%	664.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Ceiling	1
	R-3	80	69.1	18.60%	25%	234.4	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Ceiling	1
	R -7	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Ceiling	1
	R-10	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Ceiling	1
	AA-1	70	82.3	22.80%	25%	-215.2	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	AA-2	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	AA-6	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	AA-8	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	AA-9	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	BB-2	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	BB-5	70	81.3	21.50%	25%	-209.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	BB-11	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	CC-1	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	CC-9	70	82.3	22.80%	25%	-215.2	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	DD-1	70	81.3	21.50%	25%	-209.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	DD-6	70	82.3	22.80%	25%	-215.2	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	- 1
	DD-8	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	DD-11	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
3	EE-2	90	77.8	18.60%	25%	262.4	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Port Wall	1
	EE-4	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	EE-6	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	EE-7	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
4	EE-8	70	77.8	18.60%	25%	-167.7	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Port Wall	1
	EE-11	60	82.3	22.80%	25%	-390.6	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	FF-7	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	FF-11	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527	Port Wall	1

		Sample	Background	Efficiency		Activity	MDCR	MDA	Results			
		epm	cpm	2Pi	Surface	dpm/100 cm2		dpm/100 cm2		Survey	Surface	137
Loc	Grid											
	GG-1	80	80.1	18.60%	25%	-1.4	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	GG-2	90	80.1	18.60%	25%	213.6	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	GG-7	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	GG-10	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	HH-3	90	80.1	18.60%	25%	213.6	135.3	4,113.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	HH-5	80	82.3	22.80%	25%	-39.8	137.1	3,401.9	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	HH-8	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	HH-9	80	81.3	21.50%	25%	-23.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	HH-10	70	81.3	21.50%	25%	-209.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	HH-11	70	81.3	21.50%	25%	-209.6	136.3	3,585.6	< MDA	ASY-20211202-SSSB-0511	Port Wall	1
	II-1	100	83.7	21.50%	25%	303.3	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	II-2	100	83.7	21.50%	25%	303.3	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	II-4	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	JJ-1	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	JJ-2	100	83.7	21.50%	25%	303.3	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	JJ-3	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	JJ-4	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
15	JJ-5	80	77.8	18.60%	25%	47.3	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Port Wall	1
16	JJ-10	90	77.8	18.60%	25%	262.4	133.3	4,055.3	< MDA	ASY-20211209-SSSB-0549	Port Wall	1
	KK-1	100	83.7	21.50%	25%	303.3	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	KK-2	80	69.1	18.60%	25%	234.4	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	KK-4	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	KK-9	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	KK-10	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
	LL-4	90	69.1	18.60%	25%	449.5	125.7	3,821.8	< MDA	ASY-20211203-SSSB-0519	Port Wall	1
F Stiff	3	90	67.5	18.60%	25%	483.9	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
	8	70	67.5	18.60%	25%	53.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
	10	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
	11	100	67.5	18.60%	25%	698.9	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
	19	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
	25	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
	28	80	72.5	23.08%	25%	130.0	128.7	3,154.3	< MDA	ASY-20211213-SSSB-0569		1
	30	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
	33	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
lk Stiff	Aft 2	90	67.5	18.60%	25%	483.9	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
	Aft 3	100	67.5	18.60%	25%	698.9	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1
	Fwd 2	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527		1

		Sample	Background	Effic 2Pi	iency Surface	Activity dpm/100 cm2	MDCR	MDA dpm/100 cm2	Results	Survey Surface	137
Loc	Grid	epm	epm	211	Surface	april/100 etil2		apin/100 ein2		Survey Surface	15/
Loc	Griu										
Baffle	Aft of Fwd	80	67.5	18.60%	25%	268.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527	1
Platform	Fwd Upper	70	67.5	18.60%	25%	53.8	124.2	3,777.3	< MDA	ASY-20211207-SSSB-0527	1
			02.7	0.1 6.00/	0.594	(0.0	120.2	2 (20.0			
QC	I-2	80	83.7	21.50%	25%	-68.8	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	
	K-4	90	83.7	21.50%	25%	117.2	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	
	HH-3	80	83.7	21.50%	25%	-68.8	138.3	3,638.9	< MDA	ASY-20211203-SSSB-0519	
	B-1	90	72.2	16.04%	25%	444.0	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	C-1	100	72.2	16.04%	25%	693.4	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	A-4	90	72.2	16.04%	25%	444.0	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	B-4	100	72.2	16.04%	25%	693.4	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	B-3	110	72.2	16.04%	25%	942.8	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	A-6	80	72.2	16.04%	25%	194.5	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	B-6	100	72.2	16.04%	25%	693.4	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	B-10	90	72.2	16.04%	25%	444.0	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	B-11	100	72.2	16.04%	25%	693.4	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	C-10	100	72.2	16.04%	25%	693.4	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	AA-1	100	72.2	16.04%	25%	693.4	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	AA-2	90	72.2	16.04%	25%	444.0	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	
	BB-2	100	72.2	16.04%	25%	693.4	128.5	4,530.9	< MDA	ASY-20211212-SSSB-0688	

DIRECT BETA MEASUREMENT RESULTS SUMMARY

		Count T	imes (min)		Det	tector					
		Sample	1		Width (cm)	6.9					
		Bkgd	10		Area (cm2)	100					
		Sample	Background	Effic	iency	Activity	Le	Results	MDA	Results	
		срш	срш	2Pi	Surface	dpm/100 cm2	Counts		dpm/100 cm2		Survey
Loc	Grid										
1	A-5	87	77.8	18.60%	25%	197.8	93.0	<le< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-054</td></le<>	712.8	< MDA	ASY-20211209-SSSB-054
2	A-10	81	77.8	18.60%	25%	68.8	93.0	<lc< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-054</td></lc<>	712.8	< MDA	ASY-20211209-SSSB-054
3	A-17	62	77.8	18.60%	25%	-339.8	93.0	< Lc	712.8	< MDA	ASY-20211209-SSSB-05
4	A-23	74	77.8	18.60%	25%	-81.7	93.0	<lc< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></lc<>	712.8	< MDA	ASY-20211209-SSSB-05
5	A-(-2)	61	77.8	18.60%	25%	-361.3	93.0	<l¢< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></l¢<>	712.8	< MDA	ASY-20211209-SSSB-05
6	A-(-8)	7 9	77.8	18.60%	25%	25.8	93.0	<l¢< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></l¢<>	712.8	< MDA	ASY-20211209-SSSB-05
7	D -2	92	77.8	18.60%	25%	305.4	93.0	<le< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></le<>	712.8	< MDA	ASY-20211209-SSSB-05
8	D-8	71	77.8	18.60%	25%	-146.2	93.0	<lc< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></lc<>	712.8	< MDA	ASY-20211209-SSSB-05
9	K-5	64	77.8	18.60%	25%	-296.8	93.0	<le< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></le<>	712.8	< MDA	ASY-20211209-SSSB-05
10	K-9/10	64	77.8	18.60%	25%	-296.8	93.0	<lc< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></lc<>	712.8	< MDA	ASY-20211209-SSSB-05
11	Q-2	79	77.8	18.60%	25%	25.8	93.0	< Lc	712.8	< MDA	ASY-20211209-SSSB-05
12	Q-8	89	77.8	18.60%	25%	240.9	93.0	<l¢< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></l¢<>	712.8	< MDA	ASY-20211209-SSSB-05
13	EE-2	77	77.8	18.60%	25%	-17.2	93.0	<lc< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></lc<>	712.8	< MDA	ASY-20211209-SSSB-05
14	EE-8/9	77	77.8	18.60%	25%	-17.2	93.0	<lc< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></lc<>	712.8	< MDA	ASY-20211209-SSSB-05
15	JJ-5	62	77.8	18.60%	25%	-339.8	93.0	<lc< td=""><td>712.8</td><td>< MDA</td><td>ASY-20211209-SSSB-05</td></lc<>	712.8	< MDA	ASY-20211209-SSSB-05
16	JJ-10	75	77.8	18.60%	25%	-60.2	93.0	< L¢	712.8	< MDA	ASY-20211209-SSSB-05
<u>2C</u>											
1	A-5	90	72.2	16.04%	25%	444.0	86.9	> Bkgd	798.9	< MDA	ASY-20211212-SSSB-06

Although the QC measurement was greater than the Lc, the measurement was less than MDA. Considering all other indicators (smears and paint samples) were less than MDA and the original measurement at the same location was less than Lc, it was determined that the QC measurement was a statistical outlier relative to background and that no activity above background is present.

REMOVABLE BETA SURVEY RESULTS SUMMARY

		Count T	'imes (min)						
		Sample	1						
		Bkgd	10						
		Sample	Background	Efficiency	Activity	1 σ Uncertainty	MDA	Results	
		cpm	cpm		dpm/100 cm2	dpm/100 cm2	dpm/100 cm2		Survey
Loc	Grid								
1	A-5	27	26.1	21.8%	4.1	25.0	93.3	< MDA	ASY-20211209-SSSB-0549
2	A-10	34	26.1	21.8%	36.2	27.8	93.3	< MDA	ASY-20211209-SSSB-0549
3	A-17	30	26.1	21.8%	17.9	26.2	93.3	< MDA	ASY-20211209-SSSB-0549
4	A-23	25	26.1	21.8%	-5.0	24.1	93.3	< MDA	ASY-20211209-SSSB-0549
5	A-(-2)	37	26.1	21.8%	50.0	28.9	93.3	< MDA	ASY-20211209-SSSB-0549
6	A-(-8)	46	26.1	21.8%	91.3	32.0	93.3	< MDA	ASY-20211209-SSSB-0549
7	D-2	31	26.1	21.8%	22.5	26.6	93.3	< MDA	ASY-20211209-SSSB-0549
8	D-8	34	26.1	21.8%	36.2	27.8	93.3	< MDA	ASY-20211209-SSSB-0549
9	K-5	30	26.1	21.8%	17.9	26.2	93.3	< MDA	ASY-20211209-SSSB-0549
10	K-9/10	32	26.1	21.8%	27.1	27.0	93.3	< MDA	ASY-20211209-SSSB-0549
11	Q-2	39	26.1	21.8%	59.2	29.6	93.3	< MDA	ASY-20211209-SSSB-0549
12	Q-8	26	26.1	21.8%	-0.5	24.5	93.3	< MDA	ASY-20211209-SSSB-0549
13	EE-2	34	26.1	21.8%	36.2	27.8	93.3	< MDA	ASY-20211209-SSSB-0549
14	EE-8/9	26	26.1	21.8%	-0.5	24.5	93.3	< MDA	ASY-20211209-SSSB-0549
15	JJ-5	21	26.1	21.8%	-23.4	22.3	93.3	< MDA	ASY-20211209-SSSB-0549
16	JJ-10	28	26.1	21.8%	8.7	25.4	93.3	< MDA	ASY-20211209-SSSB-0549
<u>QC</u>									
16D	JJ-10	29	26.1	21.8%	13.3	25.8	93.3	< MDA	ASY-20211209-SSSB-0549

REMOVABLE LOW-ENERGY BETA SURVEY RESULTS SUMMARY

					-3			Nickel-63 Ni-63							
Systematic	Loc	Result pCi/100cm2	2s Error pCi/100cm2	MD A pCi/100cm2	Result dpm/100 cm2	2s Error dpm/100 cm2	MDA dpm/100 cm2	Result pCi/100cm2	2s Error pCi/100cm2	MD A pCi/100cm 2	Result dpm/100 cm2	2s Error dpm/100 cm2	MD A dpm/100 cm2	Report	Limit dpm/100 cm2
501513-9S-SM-01	1	-2.06	8.81	15.43	-4.58	19.57	34.26	1.45	3.50	5.96	3.21	7.77	13.23	EB-21-12052	1,000
501513-9S-SM-02	2	3.85	5.25	8.86	8.55	11.65	19.68	0.00	1.74	3.00	0.00	3.86	6.65	EB-21-12052	1,000
501513-9S-SM-03	3	0.19	3.28	5.68	0.42	7.29	12.62	0.79	1.72	2.93	1.75	3.82	6.50	EB-21-12052	1,000
501513-9S-SM-04	4	-1.19	3.38	5.95	-2.65	7.51	13.20	0.56	1.73	2.96	1.24	3.85	6.57	BB-21-12052	1,000
501513-9S-SM-05	5	0.20	3.39	5.88	0.44	7.53	13.05	-0.16	1.68	2.91	-0.35	3.74	6.46	EB-21-12052	1,000
501513-9S-SM-06	6	-1.90	3.56	6.31	-4.21	7.91	14.00	0.39	1.70	2.92	0.87	3.78	6.47	EB-21-12052	1,000
501513-9S-SM-07	7	1.61	4.02	6.87	3.57	8.92	15.25	1.53	1.78	2.99	3.40	3.95	6.64	EB-21-12052	1,000
501513-9S-SM-08	8	1.32	3.85	6.60	2.94	8.55	1 4.65	0.00	1.79	3.08	0.00	3.97	6.84	EB-21-12052	1,000
501513-9S-SM-09	9	0.39	3.35	5.79	0.86	7.44	12.85	0.39	1.69	2.90	0.87	3.76	6.44	EB-21-12052	1,000
501513-9S-SM-10	10	-1.64	3.47	6.13	-3.64	7.70	13.60	1.26	1.73	2.91	2.79	3.83	6.46	EB-21-12052	1,000
501513-9S-SM-11	11	-0.77	3.28	5.74	-1.70	7.27	12.73	0.78	1.71	2.90	1.74	3.79	6.45	EB-21-12052	1,000
501513-9S-SM-12	12	-2.43	3.40	6.06	-5.40	7.55	13.45	0.70	1.69	2.88	1.55	3.75	6.39	EB-21-12052	1,000
501513-9S-SM-13	13	-1.09	3.73	6.55	-2.43	8.29	14.54	-0.63	1.68	2.92	-1.40	3.72	6.49	EB-21-12052	1,000
501513-9S-SM-14	14	-1.76	3.30	5.84	-3.90	7.32	12.96	-0.31	1.67	2.90	-0.69	3.71	6.44	EB-21-12052	1,000
501513-9S-SM-15	15	-2.25	3.14	5.60	-4.98	6.97	12.43	0.00	1.68	2.90	0.00	3.73	6.43	EB-21-12052	1,000
501513-9S-SM-16	16	-1.86	3.50	6.19	-4.13	7.76	13.74	-0.24	1.68	2.92	-0.52	3.74	6.47	EB-21-12052	1,000
A verage		-0.59		6.84	-1.30		15.19	0.41		3.12	0.90		6.84		
Std Dev		1.73			3.85			0.65			1.44				
Min		-2.43		5.60	-5.40		12.43	-0.63		2.88	-1.40		5.60		
Max		3.85		15.43	8.55		34.26	1.53		5.96	3.40		15.43		
QC Data															
501513-9S-SM-01	L-DU P	0.50	8.66	15.00	I.11	19.22	33.29	1.41	3.41	5.80	3.12	7.56	12.88	EB-21-12052	1,000
501513-9S-SM-16D	FD	0.75	3.27	5.63	1.67	7.26	12.49	0.30	1.62	2.79	0.67	3.61	6.18	EB-21-12052	1,000
Italics	:han MDA/J	MDC													
Bold	Greater than or Equal to MDA/MDC														

ATTACHMENT 7

LABORATORY ANALYTICAL REPORT – REMOVABLE LOW-ENERGY BETA SMEARS

APTIM FEDERAL SERVICES LLC

PO: 208345 Project: 501513 SSSB Decommissioning

LEVEL II REPORT OF ANALYSIS

WORK ORDER #21-12052-OR

January 12, 2022

EBERLINE ANALYTICAL/OAK RIDGE LABORATORY OAK RIDGE, TN

EBERLINE ANALYTICAL CORPORATION 601 SCARBORO ROAD OAK RIDGE, TENNESSEE 37830 PHONE (865) 481-0683 FAX (865) 483-4621

EBS-OR-49233

January 12, 2022

Guy Gallello, Jr. APTIM 16406 US Route 224 E, Annex Findlay, OH 45840

CASE NARRATIVE Work Order # 21-12052-OR

SAMPLE RECEIPT

This work order contains seventeen smear samples received 12/16/2021. Samples were analyzed for Tritium and Nickel-63.

<u>CLIENT ID</u>	LAB ID	<u>CLIENT ID</u>	LAB ID
501513-9S-SM-01	21-12052-04	501513-9S-SM-10	21-12052-13
501513-9S-SM-02	21-12052-05	501513-9S-SM-11	21-12052-14
501513-9S-SM-03	21-12052-06	501513-9S-SM-12	21-12052-15
501513-9S-SM-04	21-12052-07	501513-9S-SM-13	21-12052-16
501513-9S-SM-05	21-12052-08	501513-9S-SM-14	21-12052-17
501513-9S-SM-06	21-12052-09	501513-9S-SM-15	21-12052-18
501513-9S-SM-07	21-12052-10	501513-9S-SM-16	21-12052-19
501513-9S-SM-08	21-12052-11	501513-9S-SM-16D	21-12052-20
501513-9S-SM-09	21-12052-12		

ANALYTICAL METHODS

Tritium was performed using Method LANL ER-210 Modified. Nickel-63 was performed using Method ASTM 3500-Ni Modified.

ANALYTICAL RESULTS

Combined Standard Uncertainty is reported at 1-sigma value.

Minimum Detectable Activity (MDA) values for data represented in this report are sample-specific. MDA measurements are determined based on factors and conditions including instrument settings, aliquot size, and matrix type.

TRITIUM

Smears were received from client equilibrated in deionized water. Equilibrates were placed in liquid scintillation vials and smears were subsequently rinsed with Tritium free water which was added to scintillation vials. Scintillation cocktail was added. Samples were counted by beta liquid scintillation.

ANALYTICAL RESULTS CONTINUED

TRITIUM CONTINUED

Samples demonstrated acceptable results for all Tritium analyses. The Tritium method blank demonstrated an acceptable result. Results for the Tritium replicate demonstrated a high relative percent difference; however, normalized difference is within acceptable limits for the analytical technique. Results for the Tritium laboratory control sample demonstrated an acceptable percent recovery.

NICKEL-63

Smears were leached in 1.0 molar Nitric acid and placed into scintillation vials. Acid was neutralized with Sodium Hydroxide. Scintillation cocktail was added, and Nickel-63 activity was determined by energy window specific beta liquid scintillation.

Samples demonstrated acceptable results for all Nickel-63 analyses. The Nickel-63 method blank demonstrated an acceptable result. Results for the Nickel-63 replicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Nickel-63 laboratory control sample demonstrated an acceptable percent recovery.

CERTIFICATION OF ACCURACY

I certify that this data report complies with the terms and conditions of the Purchase Order, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the cognizant project manager or his/her designee to be accurate as verified by the following signature.


M.R. McDougall Laboratory Manager Date: 1/12/2022

Eberline Analytical wants and encourages your feedback regarding our performance providing radioanalytical services. Please visit <u>http://eberlineanalytical.com/</u> to provide us with feedback on our services.

				R	eport To:	a di			v. V	Vork Order Deta	ails:	2 ¹	
Fhe	rline	e Analytical	Guy Ga	llello, Jr		·		SDG:	21-1	2052			
		-	APTIM					Purchase Order:	20834	5			
Fina	l Rep	ort of Analysis	16406 l	JS Route	224 E, A	Annex		Analysis Category:	ENVI	RONMENT	AL		
	-	-	Findlay	, OH 458	40			Sample Matrix:	SM		******		
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	CSU	MDA	Report Units
21-12052-01	LCS	KNOWN	12/16/21 00:00	12/16/2021	12/28/2021	21-12052	Tritium	LANL ER-210 Modified	1.82E+02	6.54E+00			pCi/s
21-12052-01	LCS	SPIKE	12/16/21 00:00	12/16/2021	12/28/2021	21-12052	Tritium	LANL ER-210 Modified	1.79E+02	7.28E+00	1.24E+01	5.57E+00	pCi/s
21-12052-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/28/2021	21-12052	Tritium	LANL ER-210 Modified	-1.32E+00	3.20E+00	3.20E+00	5.64E+00	pCi/s
21-12052-03	DUP	501513-9S-SM-01	12/08/21 09:31	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	5.01E-01	8.66E+00	8.66E+00	1.50E+01	pCi/s
21-12052-04	DO	501513-9S-SM-01	12/08/21 09:31	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-2.06E+00	8.81E+00	8.82E+00	1.54E+01	pCi/s
21-12052-05	TRG	501513-9S-SM-02	12/08/21 09:39	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	3.85E+00	5.25E+00	5.25E+00	8,86E+00	pCi/s
21-12052-06	TRG	501513-9S-SM-03	12/08/21 10:17	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	1.90E-01	3.28E+00	3.28E+00	5.68E+00	pCi/s
21-12052-07	TRG	501513-9S-SM-04	12/09/21 09:43	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-1.19E+00	3.38E+00	3.38E+00	5.95E+00	pCi/s
21-12052-08	TRG	501513-9S-SM-05	12/08/21 09:47	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	1.96E-01	3.39E+00	3.39E+00	5.88E+00	pCi/s
21-12052-09	TRG	501513-9S-SM-06	12/09/21 09:50	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-1.90E+00	3.56E+00	3.56E+00	6.31E+00	pCi/s
21-12052-10	TRG	501513-9S-SM-07	12/08/21 09:54	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	1.61E+00	4.02E+00	4.02E+00	6.87E+00	pCi/s
21-12052-11	TRG	501513-9S-SM-08	12/08/21 10:02	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	1.32E+00	3.85E+00	3.85E+00	6.60E+00	pCi/s
21-12052-12	TRG	501513-9S-SM-09	12/09/21 09:28	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	3.87E-01	3.35E+00	3.35E+00	5.79E+00	pCi/s
21-12052-13	TRG	501513-9S-SM-10	12/08/21 13:51	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-1.64E+00	3.47E+00	3.47E+00	6.13E+00	pCi/s
21-12052-14	TRG	501513-9S-SM-11	12/09/21 10:53	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-7.67E-01	3.28E+00	3.28E+00	5.74E+00	pCi/s
21-12052-15	TRG	501513-9S-SM-12	12/09/21 11:01	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-2.43E+00	3.40E+00	3.40E+00	6.06E+00	pCi/s
21-12052-16	TRG	501513-9S-SM-13	12/08/21 10:31	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-1.09E+00	3.73E+00	3.73E+00	6.55E+00	pCi/s
21-12052-17	TRG	501513-9S-SM-14	12/08/21 10:25	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-1.76E+00	3.30E+00	3.30E+00	5.84E+00	pCi/s
21-12052-18	TRG	501513-9S-SM-15	12/08/21 13:37	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-2.25E+00	3.14E+00	3.14E+00	5.60E+00	pCi/s
21-12052-19	TRG	501513-9S-SM-16	12/09/21 09:36	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	-1.86E+00	3.50E+00	3.50E+00	6.19E+00	pCi/s
21-12052-20	TRG	501513-9S-SM-16D	12/09/21 09:37	12/16/2021	12/29/2021	21-12052	Tritium	LANL ER-210 Modified	7.52E-01	3.27E+00	3.27E+00	5.63E+00	pCi/s

				R	eport To:				. V	Vork Order Deta	ails:		
Fhe	rline	e Analytical	Guy Ga	llello, Jr				SDG:	21-1	2052			
			APTIM					Purchase Order:	20834	15			
Fina	l Rep	ort of Analysis	16406	JS Route	224 E, /	Annex		Analysis Category:	ENVI	RONMENT	AL		
	-	-	Findlay	, OH 458	40			Sample Matrix:	SM	*****			
Lab iD	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12052-01	LCS	KNOWN	12/16/21 00:00	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	1.45E+03	4.35E+01			pCi/s
21-12052-01	LCS	SPIKE	12/16/21 00:00	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	1.46E+03	1.23E+01	8.67E+01	2.93E+00	pCi/s
21-12052-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	7.78E-02	1.68E+00	1.68E+00	2.89E+00	pCi/s
21-12052-03	DUP	501513-9S-SM-01	12/08/21 09:31	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	1.41E+00	3.41E+00	3.41E+00	5.80E+00	pCi/s
21-12052-04	DO	501513-9S-SM-01	12/08/21 09:31	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	1.45E+00	3.50E+00	3.50E+00	5.96E+00	pCi/s
21-12052-05	TRG	501513-9S-SM-02	12/08/21 09:39	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	0.00E+00	1.74E+00	1.74E+00	3.00E+00	pCi/s
21-12052-06	TRG	501513-9S-SM-03	12/08/21 10:17	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	7.89E-01	1.72E+00	1.72E+00	2.93E+00	pCi/s
21-12052-07	TRG	501513-9S-SM-04	12/09/21 09:43	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	5.58E-01	1.73E+00	1.73E+00	2.96E+00	pCi/s
21-12052-08	TRG	501513-9S-SM-05	12/08/21 09:47	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	-1.57E-01	1.68E+00	1.68E+00	2.91E+00	pCi/s
21-12052-09	TRG	501513-9S-SM-06	12/09/21 09:50	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	3.93E-01	1.70E+00	1.70E+00	2.92E+00	pCi/s
21-12052-10	TRG	501513-9S-SM-07	12/08/21 09:54	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	1.53E+00	1.78E+00	1.78E+00	2.99E+00	pCi/s
21-12052-11	TRG	501513-9S-SM-08	12/08/21 10:02	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	0.00E+00	1.79E+00	1.79E+00	3.08E+00	pCi/s
21-12052-12	TRG	501513-9S-SM-09	12/09/21 09:28	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	3.91E-01	1.69E+00	1.69E+00	2.90E+00	pCi/s
21-12052-13	TRG	501513-9S-SM-10	12/08/21 13:51	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	1.26E+00	1.73E+00	1.73E+00	2.91E+00	pCi/s
21-12052-14	TRG	501513-9S-SM-11	12/09/21 10:53	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	7.82E-01	1.71E+00	1.71E+00	2.90E+00	pCi/s
21-12052-15	TRG	501513-9S-SM-12	12/09/21 11:01	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	6.98E-01	1.69E+00	1.69E+00	2.88E+00	pCi/s
21-12052-16	TRG	501513-9S-SM-13	12/08/21 10:31	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	-6.30E-01	1.68E+00	1.68E+00	2.92E+00	pCi/s
21-12052-17	TRG	501513-9S-SM-14	12/08/21 10:25	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	-3.13E-01	1.67E+00	1.67E+00	2.90E+00	pCi/s
21-12052-18	TRG	501513-9S-SM-15	12/08/21 13:37	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	0.00E+00	1.68E+00	1.68E+00	2.90E+00	pCi/s
21-12052-19	TRG	501513-9S-SM-16	12/09/21 09:36	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	-2.36E-01	1.68E+00	1.68E+00	2.92E+00	pCi/s
21-12052-20	TRG	501513-9S-SM-16D	12/09/21 09:37	12/16/2021	12/21/2021	21-12052	Nickel-63	ASTM 3500-Ni Modified	3.00E-01	1.62E+00	1.62E+00	2.79E+00	pCi/s

							- -									1	Page		1	_ of _	4
APTIM	REC'D DEC 1 6 2021	Project	t Name / Loca				nisionin	g								Ana	lyse	s Re	quest	ted	
2 X 1 1 1 1 - X		I	Purchase Or	der #:	20834	5													Γ		
Project Contact:		-																	6 -		
	(Name & phone #)		Shipment				14/2021								2	10 av	eres alla	L	0.2	12	
Send Report To:		- Wayb	oill/Airbill Nu				- 96d	<u>0-</u> 0	69	74											
	guy.gallello@aptim.com	- Lab Car	Lab Destin 1tact Name /					5 101	0962	ovt 1	20		e			copy					
Address: City:		-	naci Name /	pn. #.	wike i		gan ooc	-401-	-0803	ext 12	20		/ Beta		63)	tros	-14)				
		-				ø		<u> </u>	Pi	reserv	ativ	e	Alpha	H3)	Nickel-63 (Ni-63)	Spectroscopy	Carbon-14 (C-14)				
Sampler's Name(s):	EC, DH	Collectio	n Informatio	n	ž	# of containers	Container type		H	ő	4		sś A	Tritium (H3)	kel-6	Gamma	-uoq				
Sample ID Number	Sample Description	Date	Time	G/C	Matrix	# of cont	Con type	НСГ	NaOH	HNO3	H ₂ SO ₄) Ice	Grosś	Trit	Nic	Gar	Car		<u> </u>		
01513-9S-SM-01	MARSAME Wipe; Tank 9S #1	12-8-21	0931	G	۰WP	1	Vial							x							2
01513-9S-SM-01	MARSAME Wipe; Tank 9S #1	12-5-21	0931	G	WP	1	Vial								x						2
01513-9S-PA-01	MARSAME Paint Sample; Tank 9S #1	12-10-21	1105	с	CP	1	Bag							x	x	x	x				2
501513-9S-SM-02	MARSAME Wipe; Tank 9S #2	12-8-21	0939	G	WP	ĩ	Vial							x							2
501513-9S-SM-02	MARSAME Wipe; Tank 9P #2	12-8-21	0939	G	WP	1	Vial								x						2
501513-9S-PA-02	MARSAME Paint Sample; Tank 9S #2	12-10-21	1145	с	СР	1	Bag							x	x	x	x				2
501513-9S-SM-03	MARSAME Wipe; Tank 9S #3	12-8-21	1017	G	WP	1	Vial							x							2
501513-9S-SM-03	MARSAME Wipe; Tank 9S #3	12-8-21	1017	G	WP	1	Vial								x						2
501513-9S-PA-03	MARSAME Paint Sample; Tank 9S #3	12-9-21	1307	с	СР	1	Bag							x	x	x	x				2
Special Instructions:	Air Sample volumes provided in sample and return sample material so it can be								15 ar	nd 16 p	leas	e save		C Co	des		. <u>.</u>				
		QC/Data Packa	ge Level Requi	red:									C =	Com	nposit				G =	Grab	
Relinquished By:	Date	12/14/21	II Received By:		IV/PIC	Ject S	pecific:			Date:	121	14/21		/ = Dr			tor		80	=Soil	
S. CArter		:0905	Locke	ed "	Sto	ras	R			Time:				/ = Gi		-				= Slude	ae
Relinquished By:	Date	La Brally	Received By:	P	 つ		\mathcal{O}					4121		v = v						= Chip	
locked Sto	TASE Time	1200		m/a	lose	<u>rs</u>	Dł	5	and a	Time:	. *	1202	_sv	/ = SL	urface	e Wat	ter			' = Wip	
Relinquished By: BryonRoze	Date Date	12-14-21	Received By:		~	0				Date:	21	16/2	Chic	t = Ot	hor l	iquid			SO	L = Oth	ier So

	A	COC Contin	uation	Page			сос	Ref. Do	cum	ent #	5	0105	513-(200	-031			Ра	ge	2	of	4	
		. 501512					10	4.4.000										Ana	lyses	; Req	uested	 	
	Project Number Proje	ect Name / Location: SSSB Mobile, AL	-	Shipmei	nt Date:		12/	'14/202 [·]	1							670		ġ.	12	. 0	52		lested
	1. A.	417								-					8	6							Requ
	RE	CD DEC 16 2021					T			P	reser	vativ	'e		Alpha / Beta	(cu) minnin	s (m-us) Snectrosconv		carbon-14 (C-14)				Turn Around Time Requested
1			Collecti	on Informatio	on	ŗ	# of containers	Container type	<u> </u>	H	ĩ	\$			ss Al				1-1100				i Aro
	Sample ID Number	Sample Description	Date	Time	G/C	Matrix	# of cont	Cont type	HCL	NaOH	HNO ₃	H₂SO₄	lce		Gross		Gamma		Car				Turn
7	501513-9S-SM-04	MARSAME Wipe; Tank 9S #4	12-9-21	0943	G	WP	1	Vial								x							21-BD
7	501513-9S-SM-04	MARSAME Wipe; Tank 9S #4	12-9-21	0943	G	WP	1	Vial									ĸ						21-BD
	501513-9S-PA-04	MARSAME Paint Sample; Tank 9S #4	12-13-21	0910	С	СР	1	Bag								x :	x x	: :	x				21-BD
8	501513-9S-SM-05	MARSAME Wipe; Tank 9S #5	12-8-21	0447	G	WP	1	Vial								x			T				21-BD
8	501513-9S-SM-05	MARSAME Wipe; Tank 9S #5	12-8-21	0947	G	WP	1	Vial								2	<						21-BD
	501513-9S-PA-05	MARSAME Paint Sample; Tank 9S #5	12-10-21	1535	С	СР	1	Bag								x :	x x	:] :	x				21-BD
9	501513-9S-SM-06	MARSAME Wipe; Tank 9S #6	12-9-21	0950	G	WP	1	Vial								×							21-BD
9	501513-9S-SM-06	MARSAME Wipe; Tank 9S #6	12-9-21	0950	G	WP	1	Vial									ĸ						21-BD
	501513-9S-PA-06	MARSAME Paint Sample; Tank 9S #6	12-13-21	1435	С	СР	1	Bag								x :	x x	: ;	x				21-BD
0	501513-9S-SM-07	MARSAME Wipe; Tank 9S #7	12-8-21	09 54	G	WP	1	Vial								x							21-BD
0	501513-9S-SM-07	MARSAME Wipe; Tank 9S #7	12-8-21	0954	G	WP	1	Vial								2	<						21-BD
	501513-9S-PA-07	MARSAME Paint Sample; Tank 9S #7	12-9-21	1405	С	СР	1	Bag								x :	< x		x				21-BD
çi	501513-9S-SM-08	MARSAME Wipe; Tank 9S #8	12-8-24	BZ	G	WP	1	Vial								×							21-BD
0	501513-9S-SM-08	MARSAME Wipe; Tank 9S #8	12-8-21	1002	G	WP	1	Vial								2	<						21-BD
	501513-9S-PA-08	MARSAME Paint Sample; Tank 9S #8	12-10-21	1038	С	СР	1	Bag								x :	< x	: ;	x				21-BD
17	501513-9S-SM-09	MARSAME Wipe; Tank 9S #9	12-9-21	0928	G	WP	1	Vial								ĸ							21-BD
(2	-501513-9S-SM-09	MARSAME Wipe; Tank 9S #9	12-9-21	0928	G	WP	1	Vial								2	<						21-BD
	501513-9S-PA-09	MARSAME Paint Sample; Tank 9S #9	12-13-21	1045	с	СР	1	Bag								x ;	< x	: ;	x				21-BD

KEC \$\$ 12-16-2101400

COC Continuation Page

COC Ref. Document # 5010513-COC-031

Page 🕱 of 4

APTIM													F	 T			A	naly	ses F	leque	estec	1	
Project Number	r: 507573	-	Shipme	nt Date:		12/	14/2021									17		-582	12	0	5	2	lested
		REC	DEC	16	204	21			-					/ Beta		-63)	Spectroscopy	-14)					Turn Around Time Requested
	:					rs	۲.		P	reser	vativ	'e		Alpha	(H3)	Nickel-63 (Ni-63)		-14 (C					ound
	.		on Informati	T	Matrix	# of containers	Container type		NaOH	HNO3	H ₂ SO ₄			Gross /	Tritium	-kel-6	Gamma	Carbon-14					rn Ar
Sample ID Number	Sample Description	Date	Time	G/C	2 E	0 i t c c i	Cont type	НСГ	Na	Ξ	H ₂ :	lce	_	อ้	Τr	ž	Ga	Ca					
501513-9S-SM-10	MARSAME Wipe; Tank 9S #10	12-8-21	1351	G	WP	1	Vial								х								21-BD
501513-9S-SM-10	MARSAME Wipe; Tank 9S #10	12-8-21	1351	G	WP	1	Vial									х							21-BD
501513-9S-PA-10	MARSAME Paint Sample; Tank 9S #10	12-10-21	1602	с	СР	1	Bag								х	х	х	x					21-BD
501513-9S-SM-11	MARSAME Wipe; Tank 9S #11	12-9-21	1053	G	WP	1	Vial								х								21-BD
501513-9S-SM-11	MARSAME Wipe; Tank 9S #11	12-9-21	1053	G	WP	1	Vial									x							21-BD
501513-9S-PA-11	MARSAME Paint Sample; Tank 9S #11	12-14-21	0905	с	СР	1	Bag								x	х	х	x					21-BD
501513-9S-SM-12	MARSAME Wipe; Tank 9S #12	12-9-21	101	G	WP	1	Vial								х								21-BD
501513-9S-SM-12	MARSAME Wipe; Tank 9S #12	12-9-21	1101	G	WP	1	Vial									х							21-BC
501513-9S-PA-12	MARSAME Paint Sample; Tank 9S #12	12-13-21	1635	с	СР	1	Bag								x	х	х	x					21-BC
501513-9S-SM-13	MARSAME Wipe; Tank 9S #13	17-8-21	1031	G	WP	1	Vial								х								21-BC
501513-9S-SM-13	MARSAME Wipe; Tank 9S #13	12-8-21	1031	G	WP	1	Vial									х							21-BC
501513-9S-PA-13	MARSAME Paint Sample; Tank 9S #13	12-13-21	1548	с	СР	1	Bag								х	х	х	x					21-BC
501513-9S-SM-14	MARSAME Wipe; Tank 9S #14	12-8-21	1025	G	WP	1	Vial								х								21-BC
501513-9S-SM-14	MARSAME Wipe; Tank 9S #14	12-8-21	1025	G	WP	1	Vial									х							21-BC
501513-9S-PA-14	MARSAME Paint Sample; Tank 9S #14	12-10-21	1425	с	СР	1	Bag								х	х	х	x					21-BC
501513-9S-SM-15	MARSAME Wipe; Tank 9S #15	12-8-51		G	WP	1	Vial								x								21-BD
501513-9S-SM-15	MARSAME Wipe; Tank 9S #15	12-8-21	1337	G	WP	1	Vial									х							21-BC
501513-9S-PA-15	MARSAME Paint Sample; Tank 9S #15	12-13-21	1035	С	СР	1	Bag								х	х	х	x					21-BD

Rec \$\$\$ 12-16-21 () 1400

	2	COC Continu	uation	Page			coc	Ref. Do	cume	ent #	50	0105	513-0	200	2-03	1		F	Page	6	Ц	of _	4	_	
	APTIM Project Numbe	r: 501513		Shipme	nt Date:		12/	'14/202 ⁻	1										nalys		Reque		2		_
	Proje	ect Name / Location: SSSB Mobile, AL	-					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-							Annalda			Sec.	K Ø	5		uested	
		RECD DE	C 1 6 2(121											a / Beta		(i-63)	Gamma Spectroscopy	C-14)					Around Time Requested	
			r				ers	ler	<u> </u>	P	reser	vativ	'e		Alpha	ר (H3)	-63 (N	a Spe	n-14 (roun	
	Sample ID Number	Sample Description	Collect Date	ion Information	on G/C	Matrix	# of containers	Container type	HCL	NaOH	HNO ₃	H₂SO₄	lce		Gross	Tritium (H3)	Nickel-63 (Ni-63)	Bamm	Carbon-14 (C-14)					Turn A	
19	501513-9S-SM-16	MARSAME Wipe; Tank 9S #16	12-9-2)	0936	G	WP	1	Vial			<u> </u>				<u> </u>	x	~							21-E	
rg	501513-9S-SM-16	MARSAME Wipe; Tank 9S #16	12-9-21	0936	G	WP	1	Vial									x							21-E	3D
	501513-9S-PA-16	MARSAME Paint Sample; Tank 9S #16	(2-13-2)	1001	с	СР	1	Bag								х	x	x	x					21-E	3D
JD	501513-9S-SM-16D	MARSAME Wipe; Tank 9S #16 Dup	12-9-21	0937	G	WP	1	Vial								х								21-E	3D
	501513-9S-SM-16D	MARSAME Wipe; Tank 9S #16 Dup	12-9-21	0937	G	WP	1	Vial									x							21-E	3D
																									-
						ſ						10.10740.36079													
				C		M	A	Con Low Column Area (17)																	
							ľ																		
							\sim	KE	- (ff.	3	12	- Ň	, - j	21(C	51	40	9,						

	Client Name	Contract/F		Project Type					eceive		1			R	equire	d Tur 2		nd Da	iys							^{Work}		
APT	IM Federal Services LLC Project Name	20834 Client WC		Environmental Sample Disp				.ab De	eadlin	e						ernal	Dead		^					Clien	t Dead	dline		
	501513	SSSB DECOMMISS	IONING	Н))1/	04	12	02	2Z			U)1/	10	12	UZ	<u></u>				U'I		1/4	202		
Internal ID	Client ID	Sample Date	Matrix	Storage	H0003	Ni063																						Ē
01	LCS	12/16/21	SM	R1.3	х	x															ļ							2
02	BLANK	12/16/21	SM	R1.3	х	x																						2
03	DUP	12/16/21	SM	R1.3	х	х																						- 2
04	501513-9S-SM-01	12/08/21 09:31	SM	R1.3	X	х									<u> </u>													2
05	501513-9S-SM-02	12/08/21 09:39	SM	R1.3	x	х																						2
06	501513-9S-SM-03	12/08/21 10:17	SM	R1.3	x	X													ļ									2
07	501513-9S-SM-04	12/09/21 09:43	SM	R1.3	x	X															1							2
08	501513-9S-SM-05	12/08/21 09:47	SM	R1.3	X	x																						2
09	501513-9S-SM-06	12/09/21 09:50	SM	R1.3	x	X																						2
10	501513-9S-SM-07	12/08/21 09:54	SM	R1.3	x	x																						
11	501513-9S-SM-08	12/08/21 10:02	SM	R1.3	X	x																						1
12	501513-9S-SM-09	12/09/21 09:28	SM	R1.3	x	X																						
13	501513-9S-SM-10	12/08/21 13:51	SM	R1.3	X	x																						:
14	501513-9S-SM-11	12/09/21 10:53	SM	R1.3	X	X																						2
15	501513-9S-SM-12	12/09/21 11:01	SM	R1.3	X	X																						
16	501513-9S-SM-13	12/08/21 10:31	SM	R1.3	x	X																						:
17	501513-9S-SM-14	12/08/21 10:25	SM	R1.3	x	X		1																				:
18	501513-9S-SM-15	12/08/21 13:37	SM	R1.3	X	X																						:
19	501513-9S-SM-16	12/09/21 09:36	SM	R1.3	x	X																						:
20	501513-9S-SM-16D	12/09/21 09:37	SM	R1.3	x	X																						
		Totals Per Ana	lysis (n	on QA samples)	17	17	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET.)					1	nvoi	ce	1	unts Pa M Fede	-	e ervices	LLC		Repo	rt Dat	a	Guy (APTI	Gallello M	, Jr			<u> </u>						
E Constant	EBERLINE Services	Oak Ridg 601 Scar Oak Ridg	boro	Rd.					Essen n Roug								Findla	6 US R ay, OH	45840		Annex							
×.	Sample Log In Report	Voice: (8	365) 4	81-0683		Voic Fax										Voice Fax	419-3	348-582	28									
		Fax: (865) 4	183-4621	C	Conta Voic Fax	e		Gallello 348-58																			

•

STANDARD OPERATING PROCEDURE

MP-001, Rev. 22 Effective: 5/24/2021 Page 13 of 15

Sample Receiving

Eberline	Services	– Oak Ridge	Laboratory
----------	----------	-------------	------------

SAMPI WORK ORDER #	E RECEIPT CHECKLIST MP-001-2
SAMPLE MATRIX/MATRICES:	(CIRCLE ONE OR BOTH)
	AQUEOUS (NON-AQUEOUS)
WERE SAMPLES:	(CIRCLE EITHER YES, NO, OR N/A)
Received in good condition?	Y N
If aqueous, properly preserved	Y N (N/À)

WERE CHAIN OF CUSTODY SEALS:

EBERLINE

Present on outside of package?	$\overline{\mathbb{V}}$	N
Unbroken on outside of package?	\heartsuit	N
Present on samples?	\bigtriangledown	N
Unbroken on samples?	\bigcirc	N
Was chain of custody present upon sample receipt?	V	N

IF THE RESPONSE TO ANY OF THE ABOVE IS **NO**, A DISCREPANT SAMPLE RECEIPT REPORT (DSR) HAS BEEN ISSUED.

REMARKS: _____

SIGNATURE: KOMORAR Spencer DATE: 12-16-21

Eberline Services

Analysis Control Chart

WO	Analysis	Run	Activity Units	Aliquot Units	Client Name
21-12052	H0003	1	рСі	S	APTIM Federal Services LLC

. .

			Labo	ratory (Control	Sample					1	
Analyte	LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	CSU	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g)
H-3	98.72%	6.92%	100.00%	3.60%	1.82E+02	6.54E+00	1.79E+02	1.24E+01	H-5a	4.00E+03	3.60E+00	1.01E-01

Matrix Spike													
Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (g)
					-								

	Rep	licate S	ample					QC Summ	ary			
Analyte	Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R	MS % R	MS ND	Rep RPD	Rep ND
Н-3	0.41	328.35	-2.06E+00	8.82E+00	5.01E-01	8.66E+00	0.99	OK			NA	ок

alysis Control C	Analysis	Run	Activity Units	Aliquot Units	Client Name
21-1205		1	рСі	S	APTIM Federal Services LLC
	LCS % Recovery			Rep	licate Sample RPD
130.00				40.00 -	
120.00					
				35.00 -	
110.00 +	T			30.00 -	
100.00	•			25.00 -	
90.00				20.00 -	
90.00	-			15.00	
80.00				10.00 -	
70.00					
70.00	H-3 88.20			5.00	
Lower Error Upper Error	109.24			0.00	Н-3
%R	98.72		- La	ower Error	-1508.09
-LCL	75			oper Error	2164.80
- Mean	100		• R		328.35 35
- UCL	125		C	• · · · · · · · · · · · · · · · · · · ·	
	Normalized Difference				No Matrix Spika
3.50					No Matrix Spike
3.00					
2.50					
2.00					
2.00					
1.50					
(
1.00					
0.50					
0.50	CS ND REP ND	MS ND			
0.50 0.00	CS ND REP ND 0.00 0.41 3 3	MS ND 0.00 3			

Printed: 12/29/2021 10:39 AM

Page 2 of 2

Eberline Services

Eberline Services	
Analysis Control Cha	art

WO	Analysis	Run	Activity Units	Aliquot Units	Client Name
21-12052	Ni063	1	рСі	S	APTIM Federal Services LLC

			Labo	ratory (Control .	Sample						
Analyte	LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	CSU	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g)
NI-63	100.74%	5.94%	100.00%	3.00%	1.45E+03	4.35E+01	1.46E+03	8.67E+01	Ni-3		3.00E+00	1.53E-01
							:					

Matrix Spike													
Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (g)

	Repl	licate S	Sample				QC Summary							
Analyte	Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R	MS % R	MS ND	Rep RPD	Rep ND		
NI-63	0.02	2.67	1.45E+00	1		3.41E+00		ок			NA	ок		

WO	Analysis	Run	Activity Units	Aliquot Units	Client Name
1-12052	Ni063	1	рСі	S	APTIM Federal Services LLC
	LCS % Recovery			Rep	licate Sample RPD
130.00				40.00 🐺	
120.00 -				35.00	
110,00 -	,			30.00	
				25.00	
100.00	•				
90.00	<u>-</u>			20.00 -	
80.00 -				15,00 -	
				10.00 -	
70.00	NI-63			5.00 -	
Lower Error	£1,80 109.68			0.00	NI-63
Upper Error %R	109.68		- 10	ower Error	5.91
•LCL	75			pper Error	-0.56
- Mean	100		• R	PD	2.67
-UCL	125		C	L	35
N	ormalized Difference				
	ormanizou Britoronee				
					No Matrix Spike
3.50					No Matrix Spike
3.50					No Matrix Spike
3.50					No Matrix Spike
3.50					No Matrix Spike
3.50					No Matrix Spike
3.50 3.00 2.50 2.00 1.50					No Matrix Spike
3.50 3.00 2.50 2.00 1.50 1.00					No Matrix Spike
3.50 3.00 2.50 2.00 1.50					No Matrix Spike
3.50 3.00 2.50 2.00 1.50 1.00	REP ND	MS ND			No Matrix Spike
3.50 3.00 2.50 2.00 1.50 1.00 0.50					No Matrix Spike

Eberline Services Analysis Control Chart

ATTACHMENT 8

PAINT SAMPLE RESULTS SUMMARY

			Cobalt-60 Co-60			Nickel-63 Ni-63			Tritium H-3			Carbon-14 C-14		
		Result	2s Error	MDA	Result	2s Error	MDA	Result	2s Error	MDA	Result	2s Error	MDA	D (
Systematic	Loe	pCi/g	p Ci/g	pCi/g	p Ci/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	Report
01513-9S-PA-01	1	0.08	0.16	0.29	-3.44	1.89	3.44	22.89	30.15	50.88	-6.69	6.29	11.15	EB-21-120
01513-9S-PA-02	2	-0.08	0.16	0.24	-10.95	2.93	5.62	14.49	30.68	52.35	-4.73	5.66	9.97	EB-21-120
01513-9S-PA-03	3	0.02	0.09	0.16	-7.40	2.37	4.46	14.55	30.81	52.57	-2.72	6.25	10.88	EB-21-120
01513-9S-PA-04	4	0.07	0.07	0.11	-8.18	2.81	5.27	36.44	30.23	50.15	-2.84	6.52	11.36	EB-21-120
01513-9S-PA-05	5	-0.04	0.11	0.16	-3.78	2.21	4.00	10.39	29.20	50.06	-4.95	6.25	10.99	EB-21-120
01513-9S-PA-06	6	0.00	0.06	0.10	-5.05	2.27	4.17	21.12	30.08	50.87	-12.54	6.12	11.15	EB-21-120
01513-9S-PA-07	7	0.01	0.10	0.17	-7.59	2.66	4.97	-12.12	28.33	50.05	-2.51	6.42	11.17	EB-21-120
01513-9S-PA-08	8	0.05	0.17	0.31	-1.98	1.93	3.42	14.11	29.87	50.96	-4.32	6.15	10.79	EB-21-120
01513-9S-PA-09	9	-0.02	0.12	0.20	-1.68	1.71	3.03	7.25	30.44	52.42	-6.96	6.03	10.71	EB-21-120
01513-9S-PA-10	10	0.00	0.16	0.25	-1.13	1.74	3.06	15.40	29.04	49.45	-5.82	5.99	10.59	EB-21-120
01513-9S-PA-11	11	-0.01	0.20	0.34	-1.54	1.75	3.09	11.45	27.63	47.26	-4.81	6.08	10.69	EB-21-120
01513-9S-PA-12	12	0.04	0.12	0.21	-3.55	1.96	3.55	27.81	31.89	53.59	-5.50	5.93	10.47	EB-21-120
01513-9S-PA-13	13	0.17	0.15	0.32	-1.54	1.74	3.07	20.46	31.72	53.76	-7.23	6.26	11.12	EB-21-120
01513-9S-PA-14	14	-0.01	0.07	0.28	-5.73	2.36	4.36	15.10	31.96	54.54	-7.76	6.00	10.70	EB-21-120
01513-9S-PA-15	15	-0.03	0.15	0.21	-4.57	2.10	3.86	4.80	26.81	46.27	-6.05	5.94	10.52	EB-21-120
01513-9S-PA-16	16	0.06	0.16	0.31	-5.17	2.27	4.18	5.30	29.56	51.02	-5.56	6.30	11.11	EB-21-120
Average		0.02		0.23	-4.58		3.97	14.34		51.01	-5.69		10.83	
Std Dev		0.06			2.84			10.88			2.42			
Min		-0.08		0.10	-10.95		3.03	-12.12		46.27	-12.54		9.97	
Max		0.17		0.34	-1.13		5.62	36.44		54.54	-2.51		11.36	
QC Data														
01513-98-PA-01	L-DUP	0.00	0.20	0.33	-3.58	2.03	3.68	21.42	30.50	51.59	-4.56	5.77	10.14	EB-21-12
Italics	Lessthan Ml	DA/MDC												
Bold		or Equal to MD												

ATTACHMENT 9

LABORATORY ANALYTICAL REPORT – PAINT SAMPLES

APTIM FEDERAL SERVICES LLC

PO: 208345 Project: 501513 SSSB Decommissioning

LEVEL II REPORT OF ANALYSIS

WORK ORDER #21-12053-OR

January 12, 2022

EBERLINE ANALYTICAL/OAK RIDGE LABORATORY OAK RIDGE, TN

EBERLINE ANALYTICAL CORPORATION 601 SCARBORO ROAD OAK RIDGE, TENNESSEE 37830 PHONE (865) 481-0683 FAX (865) 483-4621

EBS-OR-49241

January 12, 2022

Guy Gallello, Jr. APTIM 16406 US Route 224 E, Annex Findlay, OH 45840

CASE NARRATIVE Work Order # 21-12053-OR

SAMPLE RECEIPT

This work order contains sixteen solid samples received 12/16/2021. Samples were analyzed for Tritium, Carbon-14, Nickel-63, and by Gamma Spectroscopy.

CLIENT ID	LAB ID	CLIENT ID	LAB ID
501513-9S-PA-01	21-12053-04	501513-9S-PA-09	21-12053-12
501513-9S-PA-02	21-12053-05	501513-9S-PA-10	21-12053-13
501513-9S-PA-03	21-12053-06	501513-9S-PA-11	21-12053-14
501513-9S-PA-04	21-12053-07	501513-9S-PA-12	21-12053-15
501513-9S-PA-05	21-12053-08	501513-9S-PA-13	21-12053-16
501513-9S-PA-06	21-12053-09	501513-9S-PA-14	21-12053-17
501513-9S-PA-07	21-12053-10	501513-9S-PA-15	21-12053-18
501513-9S-PA-08	21-12053-11	501513-9S-PA-16	21-12053-19

ANALYTICAL METHODS

Tritium was performed using Method LANL ER-210 Modified. Carbon-14 was performed using EPA Method 520.0 Modified. Nickel-63 was performed using Method ASTM 3500-Ni Modified. Gamma Spectroscopy was performed using EPA Method 901.1 Modified.

ANALYTICAL RESULTS

Combined Standard Uncertainty is reported at 1-sigma value.

Minimum Detectable Activity (MDA) values for data represented in this report are sample-specific. MDA measurements are determined based on factors and conditions including instrument settings, aliquot size, and matrix type.

<u>TRITIUM</u>

A representative aliquot of each sample was equilibrated with Tritium free water. Aliquots were taken from equilibrates and transferred to liquid scintillation vials. Cocktail was added. Samples were counted by beta liquid scintillation.

ANALYTICAL RESULTS CONTINUED

TRITIUM CONTINUED

Samples demonstrated acceptable results for all Tritium analyses. The Tritium method blank demonstrated an acceptable result. Results for the Tritium duplicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Tritium laboratory control sample demonstrated an acceptable percent recovery.

CARBON-14

A representative aliquot of each sample was placed into a 1-liter reaction vessel. A carbonate solution was added. Samples were oxidized using Potassium Permanganate. Carbon Dioxide was evolved, and Carbon-14 was captured into Harvey brand, Carb-Sorb cocktail. Carbon-14 beta emissions were determined by beta liquid scintillation using an energy selective region.

Samples demonstrated acceptable results for all Carbon-14 analyses. The Carbon-14 method blank demonstrated an acceptable result. Results for the Carbon-14 duplicate demonstrated a slightly high relative percent difference; however, normalized difference is within acceptable limits for the analytical technique. Results for the Carbon-14 laboratory control sample demonstrated an acceptable percent recovery.

NICKEL-63

A representative aliquot of each sample was leached in 1.0 molar Nitric acid. Samples were placed into scintillation vials, diluted, and acid was neutralized with Sodium Hydroxide. Scintillation cocktail was added, and Nickel-63 activity was determined by energy window specific beta liquid scintillation.

Samples demonstrated acceptable results for all Nickel-63 analyses. The Nickel-63 method blank demonstrated an acceptable result. Results for the Nickel-63 duplicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Nickel-63 laboratory control sample demonstrated an acceptable percent recovery.

GAMMA SPECTROSCOPY

Samples for Gamma Spectroscopy analysis were prepared by transferring a known mass/aliquot of each pulverized and homogenized sample to a standard geometry container. Samples were counted on a High Purity Germanium (HPGe) gamma ray detector.

Samples demonstrated acceptable results for all gamma-emitting radionuclides as reported. The method blank demonstrated acceptable results for all radionuclides as reported. Results for the Bismuth-214 and Lead-214 replicate demonstrated a high relative percent difference; however, normalized difference is within acceptable limits for the analytical technique. Results for the Potassium-40 replicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Cobalt-60 and Cesium-137 laboratory control sample demonstrated an acceptable percent recovery.

CERTIFICATION OF ACCURACY

I certify that this data report complies with the terms and conditions of the Purchase Order, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the cognizant project manager or his/her designee to be accurate as verified by the following signature.

M.R. MeDougall Laboratory Manager Date: 1/12/2022

Eberline Analytical wants and encourages your feedback regarding our performance providing radioanalytical services. Please visit <u>http://eberlineanalytical.com/</u> to provide us with feedback on our services.

					Report To:				l	Vork Order Det	ails:		
Eho	rlind	e Analytical	Guy Ga	allello, Jr				SDG:	21-1	2053			
		Anarytical	APTIM					Purchase Order:	20834	15			
Fina	I Rep	ort of Analysis	16406	JS Route	224 E, /	Annex		Analysis Category:	ENVI	RONMENT	FAL		
	-	3		, OH 458				Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-01	LCS	KNOWN	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	2.66E+02	1.04E+01			pCi/g
21-12053-01	LCS	KNOWN	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	1.62E+02	6.66E+00			pCi/g
21-12053-01	LCS	SPIKE	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	2.80E+02	1.59E+01	2.14E+01	2.44E+00	pCi/g
21-12053-01	LCS	SPIKE	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	1.81E+02	1.77E+01	1.99E+01	2.11E+00	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	7.86E-02	6.20E-02	6.21E-02	1.62E-01	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-2.79E-02	3.21E-02	3.21E-02	4.20E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	3.00E-03	4.41E-02	4.41E-02	5.91E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	1.88E-02	4.87E-02	4.88E-02	8.37E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-2.00E-03	2.14E-02	2.14E-02	3.48E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	2.75E-02	2.62E-02	2.63E-02	4.09E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	-2.43E-02	2.79E-02	2.79E-02	3.49E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	-3.28E-03	3.63E-02	3.63E-02	5.22E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-1.34E-02	9.75E-02	9.75E-02	9.43E-02	pCi/g
21-12053-02	MBL.	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	-1.50E-02	8.52E-02	8.52E-02	5.00E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	2.86E-02	5.29E-02	5.29E-02	7.46E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	1.44E-01	1.99E-01	1.99E-01	4.40E-01	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	-1.24E-03	2.21E-02	2.21E-02	3.54E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	8.90E-03	2.36E-02	2.36E-02	3.78E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	3.33E-01	4.79E-01	4.79E-01	7.10E-01	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	5.32E-03	4.79E-02	4.79E-02	6.41E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	3.05E-02	4.99E-02	5.00E-02	7.89E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	1.88E-02	4.87E-02	4.88E-02	8.37E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	7.86E-02	6.20E-02	6.21E-02	1.62E-01	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-4.41E-03	5.23E-02	5.23E-02	8.49E-02	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	2.03E-02	4.79E-01	4.79E-01	6.28E-01	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	5.41E-02	6.21E-02	6.22E-02	1.19E-01	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	1.11E-01	1.33E-01	1,33E-01	2.04E-01	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	4.92E-03	3.56E-02	3.56E-02	8.58E-02	pCi/g

EBERLINE ANALYTICAL CORPORATION 601 Scarbord Road Oak Ridge, TN 37830 865/481-0683 Fax 865/483-4621

					Report To:	4			V	Vork Order Det	ails:		
Ebo	rlind	e Analytical	Guy Ga	allello, Jr				SDG:	21-1	2053			
LDCI		Analytical	APTIM					Purchase Order:	20834	15			
Fina	I Rep	ort of Analysis	16406	US Route	224 E. /	Annex		Analysis Category:	ENVI	RONMEN	TAL		
		,		, OH 458				Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	2.42E-01	6.19E-01	6.19E-01	1.08E+00	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-9.03E-02	1.53E-01	1.53E-01	2.21E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	1.30E-01	2.21E-01	2.21E-01	3.26E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	3.12E-01	3.93E-01	3.93E-01	6.67E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	2.36E-02	1.06E-01	1.06E-01	2.42E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	-3.09E-03	2.04E-01	2.04E-01	3.29E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	6.96E-02	1.83E-01	1.83E-01	3.01E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	1.28E-01	1.45E-01	1.45E-01	2.73E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	2.42E-01	3,57E-01	3.57E-01	5.76E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	-1.36E-01	5.27E-01	5.27E-01	2.89E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-7.55E-02	2.75E-01	2.75E-01	3.87E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	3.97E+00	2.19E+00	2.20E+00	2.84E+00	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	-2.09E-02	6.63E-02	6.63E-02	2.57E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-1.23E-01	1.59E-01	1,60E-01	2.17E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	2.22E+00	2.75E+00	2.76E+00	4.07E+00	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	3.27E-01	2.52E-01	2.52E-01	4.04E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	6.77E-01	3.38E-01	3.40E-01	5.54E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	3.12E-01	3.93E-01	3.93E-01	6.67E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	2.42E-01	6.19E-01	6.19E-01	1.08E+00	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	1.05E-01	3.88E-01	3.88E-01	6.36E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	4.90E-01	2.07E+00	2.07E+00	2.98E+00	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	5.51E-01	4.89E-01	4.90E-01	8.89E-01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	7.45E-02	6.94E-01	6.94E-01	1.06E+00	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	-3.35E-02	2.17E-01	2.17E-01	6.77E-01	pCi/g

				· · · · · ·	Report To:				V	Vork Order Deta	ails:		
Fho	rlind	e Analytical	Guy Ga	illello, Jr		********		SDG:	21-1	2053			
		-	APTIM	*****				Purchase Order:	20834	5			
Fina	l Rep	ort of Analysis	16406	JS Route	224 E.	Annex		Analysis Category:	ENVI	RONMENT	FAL		
		,		, OH 458				Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	си	CSU	MDA	Report Units
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	-4.08E-02	3.02E-01	3.02E-01	1.02E+00	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	7.58E-02	1.51E-01	1.51E-01	2.63E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	4.04E-02	2.23E-01	2.23E-01	3.24E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	4.81E-01	3.34E-01	3.35E-01	6.25E-01	pCi/g
21-12053-04	DÔ	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	2.28E-02	1.67E-01	1.67E-01	2.80E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	8.05E-02	1.62E-01	1.62E-01	2.94E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	6.68E-02	1.77E-01	1.78E-01	2.92E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	-2.17E-02	1.69E-01	1.69E-01	2.65E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-1.53E-01	4.79E-01	4.79E-01	5.62E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	-1.52E-01	3.59E-01	3.59E-01	2.78E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-2.19E-01	2.74E-01	2.75E-01	3.71E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.99E+00	2.66E+00	2.67E+00	3.62E+00	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	2.41E-02	1.36E-01	1.36E-01	2.35E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	4.97E-02	1.38E-01	1.38E-01	2.48E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	1.61E+00	2.71E+00	2.71E+00	4.00E+00	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	6.32E-01	3.74E-01	3.75E-01	5.97E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	7.63E-02	1.07E-01	1.07E-01	5.43E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	4.81E-01	3.34E-01	3.35E-01	6.25E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	-4.08E-02	3.02E-01	3.02E-01	1.02E+00	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-3.57E-01	4.46E-01	4.46E-01	6.30E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	6.32E-01	2.02E+00	2.02E+00	2.95E+00	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	1.15E-01	4.99E-01	4.99E-01	8.19E-01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	2.33E-01	6.77E-01	6.78E-01	1.06E+00	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	-4.87E-02	4.52E-01	4.52E-01	7.05E-01	pCi/g

					Report To:				V	Vork Order Det	ails:		
Fho	rlind	e Analytical	Guy Ga	allello, Jr				SDG:	21-1	2053			
		-	APTIM					Purchase Order:	20834	15			
Fina	l Rep	ort of Analysis	16406	US Route	224 E. /	Annex		Analysis Category:	ENVI	RONMEN	ΓAL		
	1-	_		, OH 458				Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	CSU	MDA	Report Units
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	3.26E-01	5.43E-01	5.43E-01	1.03E+00	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	1.83E-01	1.34E-01	1.34E-01	2.78E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	-1.85E-01	2.16E-01	2.16E-01	2.72E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	3.34E-01	2.78E-01	2.78E-01	4.35E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-1.07E-01	1.68E-01	1.68E-01	2.30E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	-8.11E-02	1.63E-01	1.63E-01	2.44E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	-1.40E-02	7.76E-02	7.76E-02	2.20E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	3.26E-02	1.66E-01	1.66E-01	2.81E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-1.88E-01	3.70E-01	3.70E-01	4.26E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	2.56E-01	4.13E-01	4.13E-01	2.22E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-1.23E-01	2.03E-01	2.03E-01	3.00E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.18E+00	2.13E+00	2.14E+00	2.53E+00	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	4.93E-02	1.61E-01	1.61E-01	2.85E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-2.22E-02	1.67E-01	1.67E-01	2.40E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	2.32E+00	1.73E+00	1.73E+00	2.71E+00	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	3.87E-01	2.97E-01	2.97E-01	4.84E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	2.98E-01	3.64E-01	3.64E-01	6.09E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	3.34E-01	2.78E-01	2.78E-01	4.35E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	3.26E-01	5.43E-01	5.43E-01	1.03E+00	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	1.30E-01	3.39E-01	3.39E-01	5.93E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	1.80E+00	1.80E+00	1.81E+00	2.72E+00	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	3.12E-01	4.43E-01	4.43E-01	2.64E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	-1.25E-01	3.95E-01	3.96E-01	9.66E-01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	1.31E-01	3.15E-01	3.15E-01	5.84E-01	pCi/g

				1	Report To:				l	Nork Order Deta	ails:		
Eho	rline	e Analytical	Guy Ga	allello, Jr				SDG:	21-1	2053			
		-	APTIM					Purchase Order:	20834	15			
Fina	I Rep	ort of Analysis	16406	JS Route	224 E.	Annex		Analysis Category:	ENVI	RONMENT	ΓAL		
		, , , , , , , , , , , , , , , , , , ,		, OH 458		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	3.98E-02	3.75E-01	3.75E-01	6.42E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-5.75E-03	4.66E-02	4.66E-02	1.52E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	-2.18E-01	1.99E-01	2.00E-01	2.55E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	6.53E-02	2.34E-01	2.34E-01	3.51E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-8.38E-02	9.23E-02	9.24E-02	1.38E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	1.66E-02	9.10E-02	9.10E-02	1.63E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	-2.76E-02	1.23E-01	1.23E-01	1.68E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	-4.70E-02	1.03E-01	1.03E-01	1.42E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-1.03E-01	3.30E-01	3.30E-01	3.68E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	8.72E-02	2.89E-01	2.89E-01	1.86E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	3.16E-02	2.11E-01	2.11E-01	3.08E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.62E+00	1.54E+00	1.56E+00	1.45E+00	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	2.57E-02	5.52E-02	5.52E-02	1.36E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	8.19E-03	9.50E-02	9.50E-02	1.57E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	1.15E+00	1.39E+00	1.39E+00	2.23E+00	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	1.52E-01	1.87E-01	1.87E-01	3.13E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	2.52E-01	2.08E-01	2.08E-01	5.00E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	6.53E-02	2.34E-01	2.34E-01	3.51E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	3.98E-02	3.75E-01	3.75E-01	6.42E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-6.57E-02	3.22E-01	3.22E-01	4.29E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	3.71E+00	1.64E+00	1.65E+00	2.79E+00	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	1.68E-01	3.40E-01	3.40E-01	5.28E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	1.51E-01	5.40E-01	5.40E-01	8.31E-01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	9.06E-02	2.09E-01	2.09E-01	3.84E-01	pCi/g

					Report To:				V	Vork Order Det	ails:		
Ebo	rlinc	Analytical	Guy Ga	allello, Jr				SDG:	21-1	2053			
		-	APTIM					Purchase Order:	20834	15			
Fina	I Rep	ort of Analysis	16406	US Route	224 E. /	Annex		Analysis Category:	ENVI	RONMEN	TAL		
	• • • • •	···· , ····		, OH 458				Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	CSU	MDA	Report Units
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	2.28E-01	2.70E-01	2.70E-01	4.96E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-4.77E-02	9.41E-02	9.41E-02	1.08E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	2.18E-02	1.33E-01	1.33E-01	1.79E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	2.13E-01	1.67E-01	1.67E-01	3.05E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	8.46E-03	4.93E-02	4.93E-02	1.14E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	7.49E-02	7.41E-02	7.42E-02	1.07E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	2.99E-02	4.82E-02	4.82E-02	1.14E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	1.83E-02	7.91E-02	7.91E-02	1.30E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	5.08E-02	3.09E-01	3.09E-01	2.68E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	1.46E-01	1.81E-01	1.81E-01	1.38E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	1.16E-01	1.34E-01	1.34E-01	2.00E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.20E+00	1.30E+00	1.32E+00	1.18E+00	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	-3.22E-03	8.10E-02	8.10E-02	1.21E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	7.93E-03	6.31E-02	6.31E-02	1.06E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	1.33E+00	1.29E+00	1.29E+00	1.97E+00	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	1.84E-01	1.49E-01	1.50E-01	2.47E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	1.57E-01	1.67E-01	1.67E-01	2.77E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	2.13E-01	1.67E-01	1.67E-01	3.05E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	2.28E-01	2.70E-01	2.70E-01	4.96E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	6.40E-02	1.53E-01	1.53E-01	2.83E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	1.53E+00	1.36E+00	1.36E+00	2.00E+00	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	3.58E-01	2.37E-01	2.38E-01	4.50E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	3.62E-02	4.28E-01	4.28E-01	5.80E-01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	-1.56E-01	1.77E-01	1.77E-01	2.17E-01	pCi/g

				i	Report To:				V	Vork Order Det	ails:		
Eho	rlind	e Analytical	Guy Ga	llello, Jr				SDG:	21-1	2053			
		.	APTIM					Purchase Order:	20834	15			
Fina	l Rep	ort of Analysis	16406	JS Route	224 E. /	Annex		Analysis Category:	ENVI	RONMENT	ΓAL		
	· · · · •	,		, OH 458		*****		Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	-3.79E-02	3.89E-01	3.89E-01	6.41E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-1.83E-02	9.98E-02	9.98E-02	1.60E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	-1.70E-02	1.43E-01	1.43E-01	1.92E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	1.24E-01	2.06E-01	2.06E-01	3.69E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	1.47E-02	8.55E-02	8.55E-02	1.47E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	-4.14E-02	1.07E-01	1.07E-01	1.64E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	-9.35E-02	1.10E-01	1.10E-01	1.50E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	3.36E-02	1.03E-01	1.03E-01	1.79E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-3.31E-01	3.77E-01	3.77E-01	2.75E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	2.68E-01	3.57E-01	3,57E-01	1.38E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-4.76E-02	. 1.64E-01	1.64E-01	2.12E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.83E+00	1.69E+00	1.71E+00	1.52E+00	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	9.83E-02	1.16E-01	1.16E-01	1.93E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-3.25E-02	9.57E-02	9.57E-02	1.29E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	6.41E-01	1.21E+00	1.21E+00	1.75E+00	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	2.33E-01	1.89E-01	1.89E-01	3.09E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	2.54E-01	1.67E-01	1.68E-01	3.18E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	1.24E-01	2.06E-01	2.06E-01	3.69E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	-3.79E-02	3.89E-01	3.89E-01	6.41E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-2.03E-02	2.25E-01	2.25E-01	3.63E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	2.17E+00	1.21E+00	1.21E+00	1.91E+00	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	4.05E-01	3.12E-01	3.13E-01	4.88E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	-5.14E-01	4.11E-01	4.11E-01	5.72E-01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	3.24E-02	2.04E-01	2.04E-01	3.73E-01	pCi/g

					Report To:				V	Vork Order Deta	ails:		
Fhe	rline	e Analytical	Guy Ga	llello, Jr				SDG:	21-1	2053			
1		-	APTIM					Purchase Order:	20834	5			
Fina	l Rep	ort of Analysis	16406	JS Route	224 E, /	Annex		Analysis Category:	ENVIE	RONMENT	AL		
	•	2	Findlay	, OH 458	40			Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	2.22E-01	1.73E-01	1.74E-01	3.28E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-2.32E-02	7.90E-02	7.90E-02	1.07E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	-1.60E-01	1.27E-01	1.28E-01	1.60E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	1.97E-01	2.28E-01	2.28E-01	3.81E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-5.79E-02	6.18E-02	6.18E-02	8.06E-02	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	-6.04E-04	6.14E-02	6.14E-02	1.02E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	4.31E-03	2.20E-02	2.20E-02	1.10E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	-6.09E-03	8.56E-02	8.56E-02	1.20E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	1.84E-02	1.86E-01	1.86E-01	2.58E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	3.83E-02	1.51E-01	1.51E-01	1.31E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-1.89E-01	1.41E-01	1.42E-01	1.81E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.27E+00	1.25E+00	1.27E+00	1.30E+00	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	1.35E-02	6.65E-02	6.65E-02	1.14E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-9.12E-03	5.57E-02	5.57E-02	8.97E-02	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	7.46E-01	8.32E-01	8.33E-01	1.34E+00	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	2.33E-01	1.68E-01	1.68E-01	2.74E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	1.82E-01	1.92E-01	1.92E-01	3.19E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	1.97E-01	2.28E-01	2.28E-01	3.81E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	2.22E-01	1.73E-01	1.74E-01	3.28E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-8.84E-02	1.88E-01	1.88E-01	2.41E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	1.81E+00	1.07E+00	1.07E+00	1.75E+00	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	1.75E-01	1.96E-01	1.96E-01	3.28E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	7.13E-02	3.21E-01	3.21E-01	4.90E-01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	9.51E-03	7.41E-02	7.41E-02	2.38E-01	pCi/g

				1	Report To:					Work Order Det	ails:		
Ebo	line	e Analytical	Guy Ga	illello, Jr				SDG:	21-1	2053			
LDEI	11110	a Analytical	APTIM					Purchase Order:	2083	45	*************		
Fina	I Rep	ort of Analysis	16406	JS Route	224 E.	Annex		Analysis Category:	ENVI	RONMEN	TAL		
		j		, OH 458				Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	си	CSU	MDA	Report Units
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	-1.28E-01	3.01E-01	3.01E-01	5.50E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-1.76E-02	8.22E-02	8.22E-02	1.28E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	5.59E-02	1.20E-01	1.20E-01	1.77E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	1.24E-01	1.78E-01	1.78E-01	3.10E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-3.47E-02	1.01E-01	1.01E-01	1.49E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	1.15E-02	9.87E-02	9.87E-02	1.70E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	5.40E-02	8.30E-02	8.30E-02	1.44E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	4.27E-02	8.31E-02	8.32E-02	1.47E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	6.49E-02	1.59E-01	1.59E-01	2.99E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	-1.84E-02	2.42E-01	2.42E-01	1.52E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-2.41E-02	1.47E-01	1.47E-01	2.09E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.28E+00	1.51E+00	1.53E+00	1.53E+00	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	3.20E-02	8.77E-02	8.78E-02	1.52E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-5.08E-02	8.15E-02	8.16E-02	1.17E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	6.78E-01	1.51E+00	1.51E+00	2.21E+00	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	1.89E-01	2.11E-01	2.11E-01	3.50E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	3.43E-01	1.98E-01	1.98E-01	3.58E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	1.24E-01	1.78E-01	1.78E-01	3.10E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	-1.28E-01	3.01E-01	3.01E-01	5.50E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	9.17E-02	2.07E-01	2.07E-01	3.46E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	6.59E-01	1.11E+00	1.11E+00	1.63E+00	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	4.46E-02	2.53E-01	2.53E-01	4.15E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	1.65E-02	3.89E-01	3.89E-01	5.93E-01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	-3.21E-02	2.18E-01	2.18E-01	3.42E-01	pCi/g

					Report To:				V	Vork Order Deta	ails:		
Ebo	rlinc	Analytical	Guy Ga	allello, Jr				SDG:	21-1	2053			
EDEI	IIIIC	Allaryulai	APTIM					Purchase Order:	20834	5			
Fina	I Rep	ort of Analysis	16406	US Route	224 E. /	Annex		Analysis Category:	ENVI	RONMENT	AL		
		,,		, OH 458				Sample Matrix:	SO				
Lab	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	6.04E-02	5.57E-01	5.57E-01	9.39E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	4.74E-02	1.31E-01	1.31E-01	2.36E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	5.25E-02	1.89E-01	1.89E-01	2.65E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	2.50E-01	3.19E-01	3.19E-01	5.80E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-2.83E-02	1.47E-01	1.47E-01	2.42E-01	pCî/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	4.55E-02	1.70E-01	1.70E-01	3.14E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	2.05E-02	1.53E-01	1.53E-01	2.55E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	2.83E-02	8.93E-02	8.93E-02	2.55E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-1.33E-01	3.77E-01	3.77E-01	3.94E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	1.97E-01	4.20E-01	4.21E-01	1.95E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-9.51E-02	2.29E-01	2.29E-01	2.89E-01	pCi/g
21-12053-11	TRG		12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	6,28E+00	2.45E+00	2.47E+00	2.39E+00	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	-2.66E-02	1.40E-01	1.40E-01	2.27E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	3.97E-02	1.27E-01	1.27E-01	2.34E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	1.86E+00	1.70E+00	1.71E+00	2.57E+00	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	3.10E-01	2.50E-01	2.51E-01	4.08E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	1.09E-01	2.56E-01	2.56E-01	4.35E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	2.50E-01	3.19E-01	3.19E-01	5.80E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	6.04E-02	5.57E-01	5.57E-01	9.39E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-1.29E-01	3.54E-01	3.54E-01	5.26E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	1.91E+00	1.68E+00	1.68E+00	2.54E+00	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	2.50E-01	4.25E-01	4.25E-01	7.67E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	4.46E-01	5.46E-01	5.46E-01	9.24E-01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	-9.94E-02	3.12E-01	3.12E-01	4.35E-01	pCi/g

					Report To:		1		ν	Vork Order Deta	ails:		
Eho	rlind	e Analytical	Guy Ga	allello, Jr	•			SDG:	21-1	2053			
EDEI		Analytical	APTIM					Purchase Order:	20834	5			
Fina	l Rep	ort of Analysis		US Route	224 E.	Annex		Analysis Category:	ENVI	RONMENT	TAL		
1 1110				, OH 458				Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	1.07E-01	3.67E-01	3.67E-01	6.53E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	7.44E-02	1.16E-01	1.16E-01	1.87E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	-4.79E-01	2.22E-01	2.23E-01	2.49E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	5.35E-01	2.98E-01	2.99E-01	5.36E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-4.42E-02	9.67E-02	9.67E-02	1.49E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	-1.83E-02	1.21E-01	1.21E-01	1.96E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	1.59E-02	4.58E-02	4.58E-02	1.74E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	2.25E-02	1.34E-01	1.34E-01	1.90E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-4.97E-02	3.65E-01	3.65E-01	3.77E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	3.92E-02	1.46E-01	1.46E-01	1,99E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-7.32E-02	2.15E-01	2.15E-01	3.00E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	5.15E+00	1.69E+00	1.71E+00	1.62E+00	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	-3.87E-03	1.08E-01	1.08E-01	1.79E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-2.24E-03	9.71E-02	9.71E-02	1.58E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	1.35E+00	1.62E+00	1.62E+00	2.55E+00	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	1.96E-01	1.50E-01	1.50E-01	3.02E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	3.69E-01	1.96E-01	1.96E-01	3.66E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	5.35E-01	2.98E-01	2.99E-01	5.36E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	1.07E-01	3.67E-01	3.67E-01	6.53E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	1.46E-01	2.98E-01	2.98E-01	4.57E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	3.92E+00	1.71E+00	1.73E+00	2.92E+00	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	1.53E-01	3.02E-01	3.02E-01	4.85E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	2.15E-01	5.34E-01	5.34E-01	8.34E-01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	-1.17E-02	9.56E-02	9.56E-02	3.52E-01	pCi/g

					Report To:				l	Nork Order Deta	ails:		
Eho	rlind	e Analytical	Guy Ga	aliello, Jr				SDG:	21-1	2053			
LDC		Analytical	APTIM					Purchase Order:	20834	15			
Fina	l Rep	ort of Analysis	16406	US Route	224 E. /	Annex		Analysis Category:	ENVI	RONMENT	ΓAL		
	1	_		, OH 458				Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	си	CSU	MDA	Report Units
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	2.38E-01	5.57E-01	5.57E-01	1.04E+00	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	4.11E-02	1.52E-01	1.52E-01	2.65E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	-1.54E-01	2.31E-01	2.32E-01	2.86E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	9.43E-02	2.81E-01	2.81E-01	4.99E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-7.21E-02	1.66E-01	1.66E-01	2.55E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	2.10E-03	1.60E-01	1.60E-01	2.48E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	-9.62E-02	1.57E-01	1.57E-01	2.32E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	-2.24E-02	1.69E-01	1.69E-01	2.75E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-5.61E-01	5.72E-01	5.73E-01	4.29E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	-1.96E-01	4.53E-01	4.53E-01	2.24E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	8.56E-04	2.27E-01	2.27E-01	3.08E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.03E+00	1.85E+00	1.86E+00	1.49E+00	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	0.00E+00	1.33E-01	1.33E-01	2.31E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-2.00E-02	1.65E-01	1.65E-01	2.69E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	7.61E-01	1.86E+00	1.86E+00	2.66E+00	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	5.30E-01	3.78E-01	3.79E-01	6.16E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	2.38E-01	2.72E-01	2.72E-01	4.86E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	9.43E-02	2.81E-01	2.81E-01	4.99E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	2.38E-01	5.57E-01	5.57E-01	1.04E+00	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-9.27E-02	3.93E-01	3.93E-01	6.06E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	2.49E+00	1.89E+00	1.90E+00	2.91E+00	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	2.53E-01	4.48E-01	4.48E-01	8.01E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	-1.13E-01	5.82E-01	5.82E-01	9.01E-01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	-1.84E-01	3.94E-01	3.94E-01	6.06E-01	pCi/g

Eberline Analytical Final Report of Analysis			Report To:					Work Order Details:					
			Guy Gallello, Jr APTIM 16406 US Route 224 E, Annex Findlay, OH 45840					SDG:	21-1	2053			
								Purchase Order:	tegory: ENVIRONMENTAL				
								Analysis Category:					
								Sample Matrix:					
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	CSU	MDA	Report Units
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	-2.26E-01	7.20E-01	7.20E-01	1.14E+00	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	2.12E-02	2.03E-01	2.03E-01	3.31E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	5.81E-02	3.05E-01	3.05E-01	4.42E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	3.60E-01	4.26E-01	4.26E-01	7.09E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	7.68E-02	2.28E-01	2.28E-01	3.93E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	-7.99E-03	2.03E-01	2.03E-01	3.42E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	7.10E-02	8.90E-02	8.91E-02	3.59E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	1.19E-01	2.09E-01	2.09E-01	3.73E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-2.76E-01	6.97E-01	6.97E-01	7.93E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	-9.77E-02	6.71E-01	6.71E-01	3.91E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-1.45E-01	3.68E-01	3.68E-01	5.13E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	6.05E+00	2.82E+00	2.83E+00	3.01E+00	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	2.92E-01	1.93E-01	1.94E-01	4.06E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-8.83E-02	2.22E-01	2.23E-01	3.19E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	1.62E+00	3.62E+00	3.62E+00	5.31E+00	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	4.79E-01	2.77E-01	2.78E-01	6.66E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	4.47E-01	4.10E-01	4.11E-01	6.69E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	3.60E-01	4.26E-01	4.26E-01	7.09E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	-2.26E-01	7.20E-01	7.20E-01	1.14E+00	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-4.38E-01	5.93E-01	5.94E-01	8.28E-01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	3.17E+00	2.78E+00	2.79E+00	4.17E+00	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	5.66E-01	6.66E-01	6.67E-01	1.00E+00	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	1.78E-01	9.30E-01	9.30E-01	1.44E+00	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	-4.84E-02	3.63E-01	3.63E-01	8.02E-01	pCi/g

			I	Report To:				V	Vork Order Deta	ails:			
Eberline / Final Report	Applytical	Guy Ga	allello, Jr				SDG:	21-1	2053				
Final Report	Analytical	APTIM					Purchase Order:	20834	5				
Fina	Final Report of Analysis	ort of Analysis		US Route	224 E.	Annex		Analysis Category:	ENVIE	RONMENT	ΓAL		
	Lab Sample ID Type 21-12053-15 TRG 501	, ,		, OH 458				Sample Matrix:	SO		-		
	•		Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	CSU	MDA	Report Units
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	4.35E-01	5.02E-01	5.02E-01	9.75E-01	pCi/g
21-12053-15		501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-1.26E-02	1.48E-01	1.48E-01	2.13E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	2.03E-01	2.55E-01	2.55E-01	5.65E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	1.46E-01	4.00E-01	4.00E-01	5.95E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	4.51E-02	1.46E-01	1.46E-01	2.56E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	4.02E-02	1.24E-01	1.24E-01	2.09E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	-1.96E-01	2.15E-01	2.15E-01	2.59E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	-1.69E-02	1.74E-01	1.74E-01	2.32E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-4.43E-02	4.95E-01	4.95E-01	5.42E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	-3.46E-01	4.63E-01	4.63E-01	2.73E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12 ·	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-2.79E-01	3.12E-01	3.12E-01	4.14E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.09E+00	2.46E+00	2.46E+00	3.62E+00	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	2.10E-02	1.03E-01	1.03E-01	1.83E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-3.87E-02	1.35E-01	1.35E-01	2.12E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	8.36E-01	2.06E+00	2.06E+00	3.17E+00	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	2.74E-01	2.31E-01	2.31E-01	3.87E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	4.17E-01	2.64E-01	2.64E-01	4.85E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	1.46E-01	4.00E-01	4.00E-01	5.95E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	4.35E-01	5.02E-01	5.02E-01	9.75E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-1.84E-01	4.53E-01	4.53E-01	5.99E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	4.96E+00	2.43E+00	2.45E+00	4.08E+00	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	4.12E-01	4.67E-01	4.67E-01	7.77E-01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	3.24E-01	7.14E-01	7.14E-01	1.12E+00	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	2.01E-01	2.77E-01	2.78E-01	5.48E-01	pCi/g

					Report To:				ŀ	Vork Order Det	ails:		
••••••••••••••••••••••••••••••••••••••	Analytical	Guy Ga	aliello, Jr				SDG:	21-1	2053				
	Final Report of	-	APTIM					Purchase Order:	20834	15			
Final		ort of Analvsis	16406	US Route	224 E. /	Annex		Analysis Category:	ENVI	RONMEN	TAL		
	Lab Sample ID Type	···· ·		, OH 458				Sample Matrix:	SO		*****		
ID Type 21-12053-16 TRG 50 21-12053-16 TRG 50	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	CSU	MDA	Report Units	
21-12053-16	53-16 TRG 50 53-16 TRG 50	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	7.68E-01	7.05E-01	7.06E-01	1.35E+00	pCi/g
21-12053-16		501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-6.96E-02	1.57E-01	1.57E-01	2.36E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	8.80E-02	2.50E-01	2.50E-01	3.65E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	1.09E-01	3.72E-01	3.72E-01	6.12E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-2.39E-01	2.11E-01	2.11E-01	2.58E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	1.68E-01	1.51E-01	1.52E-01	3.22E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	8.93E-02	1.71E-01	1.71E-01	2.92E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	-5.96E-02	1.83E-01	1.83E-01	2.71E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-5.08E-01	7.48E-01	7.49E-01	6.16E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	-1.14E-01	5.70E-01	5.70E-01	3.05E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-1.09E-01	2.97E-01	2.97E-01	4.17E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	6.70E+00	2.74E+00	2.76E+00	2.99E+00	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	1.18E-02	1.43E-01	1.43E-01	2.36E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	1,24E-01	1.49E-01	1.49E-01	2.78E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	5.52E-01	3.08E+00	3.08E+00	4.45E+00	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	6.26E-01	4.17E-01	4.18E-01	6.67E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	1.21E-01	3.65E-01	3.65E-01	5.86E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	1.09E-01	3.72E-01	3.72E-01	6.12E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	7.68E-01	7.05E-01	7.06E-01	1.35E+00	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	3.34E-02	4.29E-01	4.29E-01	6.89E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	4.98E-02	2.31E+00	2.31E+00	3.32E+00	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	6.28E-01	4.57E-01	4.58E-01	7.06E-01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	-2.69E-02	7.25E-01	7.25E-01	1.11E+00	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	2.83E-01	3.31E-01	3.31E-01	6.71E-01	pCi/g

				Report To:				L	Vork Order Det	ails:			
Final Repor	Analytical	Guy Ga	allello, Jr				SDG:	21-1	2053				
	Eberline Analyti Final Report of Analy	-	APTIM					Purchase Order:	20834	15			
Fina		ort of Analysis	16406	US Route	224 E. /	Annex		Analysis Category:	ENVI	RONMEN	ΓAL		
	Lab Sample ID Type 21-12053-17 TRG 5	5		, OH 458				Sample Matrix:	SO				
		Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	3.48E-01	7.05E-01	7.05E-01	1.29E+00	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	-6.76E-04	1.36E-01	1.36E-01	2.31E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	9.84E-02	2.06E-01	2.06E-01	2.98E-01	pCi/g
21-12053-17	TRG 501513-9S-PA-14	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	2.62E-01	3.36E-01	3,36E-01	6.03E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	-6.69E-02	1.08E-01	1.08E-01	2.40E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	-1.17E-02	6.56E-02	6.56E-02	2.78E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	-1.54E-01	1.69E-01	1.69E-01	2.09E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	-6.49E-03	1.46E-01	1.46E-01	2.42E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-3.51E-01	6.47E-01	6.47E-01	4.57E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	8.63E-02	4.23E-01	4.23E-01	2.35E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-3.79E-01	2.81E-01	2.82E-01	3.25E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.17E+00	2.91E+00	2.92E+00	4.34E+00	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	-4.36E-02	1.71E-01	1.71E-01	2.66E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	0.00E+00	8.47E-02	8.47E-02	2.65E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	1.69E+00	2.18E+00	2.18E+00	3.18E+00	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	2.14E-01	2.37E-01	2.37E-01	3.96E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	1.39E-02	2.96E-01	2.96E-01	4.81E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	2.62E-01	3.36E-01	3.36E-01	6.03E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	3.48E-01	7.05E-01	7.05E-01	1.29E+00	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	1.14E-01	3.99E-01	3,99E-01	6.65E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	1.98E+00	1.96E+00	1.96E+00	2.94E+00	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	-5.29E-02	5.12E-01	5.12E-01	8.23E-01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	-1.08E-01	6.66E-01	6.66E-01	1.03E+00	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	1.93E-01	3.23E-01	3.23E-01	6.54E-01	pCi/g

	•				Report To:				l	Nork Order Det	ails:		
Fhe	rline	Analytical	Guy Ga	allello, Jr	,			SDG:	21-1	2053			
	Final Report of ArLabSampleCl		APTIM					Purchase Order:	20834	15			And an and and and a few second s
Fina	I Rep	ort of Analysis	16406	JS Route	224 E, /	Annex		Analysis Category:	ENVI	RONMEN	TAL		
	Lab Sample Clie ID Type IE 21-12053-18 TRG 501513-9S-PA-15			, OH 458				Sample Matrix:	SO			·······	
		Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	4.58E-01	5.24E-01	5.24E-01	1.01E+00	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	1.15E-01	1.44E-01	1.44E-01	2.45E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	-2.99E-01	2.73E-01	2.74E-01	3.52E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	4.31E-01	3.14E-01	3.15E-01	3.00E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	9.96E-03	1.41E-01	1.41E-01	2.39E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	-2.50E-02	1.49E-01	1.49E-01	2.09E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	9.94E-03	7.44E-02	7.44E-02	2.55E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	-3.52E-03	1.83E-01	1.83E-01	2.63E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	2.91E-02	3.93E-01	3.93E-01	5.09E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	1.51E-01	3.28E-01	3.28E-01	2.63E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	2.94E-02	2.88E-01	2.88E-01	4.22E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	5.07E+00	2.38E+00	2.40E+00	3.18E+00	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	6.60E-02	1.33E-01	1.34E-01	2.45E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	1.61E-02	1.01E-01	1.01E-01	1.95E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	2.17E+00	2.47E+00	2.47E+00	4.12E+00	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	2.84E-01	2.51E-01	2.52E-01	4.12E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	5.01E-01	2.52E-01	2.53E-01	7.97E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	4.31E-01	3.14E-01	3.15E-01	3.00E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	4.58E-01	5.24E-01	5.24E-01	1.01E+00	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-4.72E-02	4.21E-01	4.21E-01	5.81E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	4.78E+00	3.12E+00	3.13E+00	4.85E+00	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	3.57E-02	5.48E-01	5.48E-01	7.79E-01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	1.02E-01	6.71E-01	6.71E-01	1.03E+00	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	2.12E-01	2.74E-01	2.74E-01	5.23E-01	pCi/g

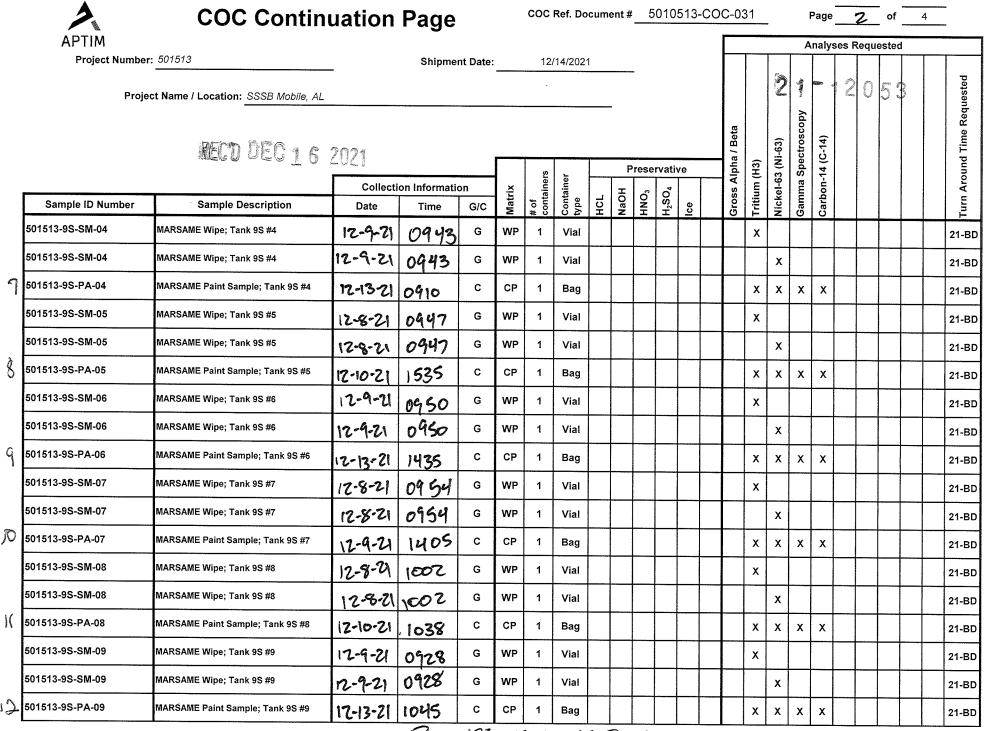
EBERLINE ANALYTICAL CORPORATION

601 SCARBORO ROAD OAK RIDGE, TN 37830 865/481-0683 FAX 865/483-4621

					Report To:	•			١	Nork Order Det	ails:		
	Analytical	Guy Ga	allello, Jr				SDG:	21-1	2053				
		APTIM					Purchase Order:	20834	15				
Fina	Lab Sample ID Type	ort of Analysis	16406	US Route	224 E. /	Annex		Analysis Category:	ENVI	RONMENT	TAL		
Lab Sample ID Type 21-12053-19 TRG 5015	· · · · ·		, OH 458				Sample Matrix:	SO					
	•	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	си	CSU	MDA	Report Units
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Actinium-228	EPA 901.1 Modified	3.08E-02	6.84E-01	6.84E-01	1.13E+00	pCi/g
21-12053-19		501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Silver-110m	EPA 901.1 Modified	1.24E-01	1.66E-01	1.66E-01	3.07E-01	pCi/g
21-12053-19		501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Americium-241	EPA 901.1 Modified	-6.32E-02	2.32E-01	2.32E-01	3.05E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Bismuth-214	EPA 901.1 Modified	1.60E-01	3.26E-01	3.26E-01	5.79E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Cobalt-58	EPA 901.1 Modified	2.05E-01	1.67E-01	1.67E-01	2.56E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Cobalt-60	EPA 901.1 Modified	6.28E-02	1.63E-01	1.63E-01	3.10E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Cesium-134	EPA 901.1 Modified	-2.77E-02	1.65E-01	1.65E-01	2.66E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Cesium-137	EPA 901.1 Modified	2.51E-02	1.88E-01	1.88E-01	2.97E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Europium-152	EPA 901.1 Modified	-3.79E-01	6.14E-01	6.14E-01	3.80E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Europium-154	EPA 901.1 Modified	-2.05E-01	6.02E-01	6.02E-01	2.24E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Europium-155	EPA 901.1 Modified	-1.17E-01	1.20E-01	1.20E-01	3.55E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Potassium-40	EPA 901.1 Modified	4.02E+00	2.36E+00	2.37E+00	3.10E+00	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Manganese-54	EPA 901.1 Modified	-1.29E-03	1.86E-01	1.86E-01	3.04E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Niobium-94	EPA 901.1 Modified	-4.45E-02	1.61E-01	1.61E-01	2.60E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Lead-210	EPA 901.1 Modified	2.33E+00	2.34E+00	2.34E+00	3.89E+00	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Lead-212	EPA 901.1 Modified	2.59E-01	1.82E-01	1.83E-01	2.87E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Lead-214	EPA 901.1 Modified	1.23E-01	2.92E-01	2.92E-01	4.88E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Radium-226	EPA 901.1 Modified	1.60E-01	3.26E-01	3.26E-01	5.79E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Radium-228	EPA 901.1 Modified	3.08E-02	6.84E-01	6.84E-01	1.13E+00	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Antimony-125	EPA 901.1 Modified	-2.21E-01	3.81E-01	3.81E-01	5.47E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Thorium-234	EPA 901.1 Modified	3.35E+00	2.01E+00	2.02E+00	3.17E+00	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Thallium-208	EPA 901.1 Modified	-2.62E-01	5.40E-01	5.40E-01	7.58E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Uranium-235	EPA 901.1 Modified	5.54E-02	6.10E-01	6.10E-01	9.73E-01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/17/2021	21-12053	Zinc-65	EPA 901.1 Modified	2.11E-02	2.50E-01	2.50E-01	7.39E-01	pCi/g

				Report To:				V	Vork Order Det	ails:			
Eberline Final Repor	Analytical	Guy Ga	allello, Jr				SDG:	21-1	2053				
		-	APTIM					Purchase Order:	20834	15			
Fina	l Rep	ort of Analysis	16406	US Route	224 E, /	Annex		Analysis Category:	ENVI	RONMEN	ΓAL		
Lab Sample ID Type 21-12053-01 LCS 21-12053-02 MBL	3	Findlay	, OH 458	40			Sample Matrix:	SO					
	•	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-01	LCS	KNOWN	12/16/21 00:00	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	1.42E+03	3.99E+01	1		pCi/g
21-12053-01	LCS	SPIKE	12/16/21 00:00	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	1.49E+03	2.89E+01	2.10E+02	1.58E+01	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	2.42E+00	9.44E+00	9.45E+00	1.61E+01	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-4.56E+00	5.77E+00	5.80E+00	1.01E+01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-6.69E+00	6.29E+00	6.36E+00	1.11E+01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-4.73E+00	5.66E+00	5.70E+00	9.97E+00	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-2.72E+00	6.25E+00	6.26E+00	1.09E+01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-2.84E+00	6.52E+00	6.54E+00	1.14E+01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-4.95E+00	6.25E+00	6.29E+00	1.10E+01	pCì/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-1.25E+01	6.12E+00	6.37E+00	1.11E+01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-2.51E+00	6.42E+00	6.43E+00	1.12E+01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-4.32E+00	6.15E+00	6.18E+00	1.08E+01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-6.96E+00	6.03E+00	6.10E+00	1.07E+01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-5.82E+00	5.99E+00	6.05E+00	1.06E+01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-4.81E+00	6.08E+00	6.11E+00	1.07E+01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/30/2021	21-12053	Carbon-14	EPA 520.0 Modified	-5.50E+00	5.93E+00	5.98E+00	1.05E+01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/31/2021	21-12053	Carbon-14	EPA 520.0 Modified	-7.23E+00	6.26E+00	6.34E+00	1.11E+01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/31/2021	21-12053	Carbon-14	EPA 520.0 Modified	-7.76E+00	6.00E+00	6.10E+00	1.07E+01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/31/2021	21-12053	Carbon-14	EPA 520.0 Modified	-6.05E+00	5.94E+00	6.00E+00	1.05E+01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/31/2021	21-12053	Carbon-14	EPA 520.0 Modified	-5.56E+00	6.30E+00	6.35E+00	1.11E+01	pCi/g

Lab Sample				Report To:				ł	Vork Order Det	ails:		• • • • • • •	
Fhe	rline		Guy Ga	allello, Jr				SDG:	21-1	2053			
			APTIM					Purchase Order:	20834	15			
Fina	l Rep	ort of Analysis	16406	US Route	224 E, /	Annex		Analysis Category:	ENVI	RONMEN	ΓAL		
	-	-	Findlay	, OH 458	340	******		Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-01	LCS	KNOWN	12/16/21 00:00	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	1.81E+02	6.51E+00			pCi/g
21-12053-01	LCS	SPIKE	12/16/21 00:00	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	1.85E+02	7.40E+00	1.27E+01	5.47E+00	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	9.45E-01	3.18E+00	3.18E+00	5.46E+00	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	2.14E+01	3.05E+01	3.05E+01	5.16E+01	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	2.29E+01	3.02E+01	3.02E+01	5.09E+01	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	1.45E+01	3.07E+01	3.07E+01	5.24E+01	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	1.46E+01	3.08E+01	3.08E+01	5.26E+01	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	3.64E+01	3.02E+01	3.03E+01	5.02E+01	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	1.04E+01	2.92E+01	2.92E+01	5.01E+01	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	2.11E+01	3.01E+01	3.01E+01	5.09E+01	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	-1.21E+01	2.83E+01	2.83E+01	5.00E+01	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	1.41E+01	2.99E+01	2.99E+01	5.10E+01	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	7.25E+00	3.04E+01	3.04E+01	5.24E+01	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	1.54E+01	2.90E+01	2.91E+01	4.94E+01	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	1.14E+01	2.76E+01	2.76E+01	4.73E+01	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	2.78E+01	3.19E+01	3.19E+01	5.36E+01	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	2.05E+01	3.17E+01	3.17E+01	5.38E+01	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	1.51E+01	3.20E+01	3.20E+01	5.45E+01	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	4.80E+00	2.68E+01	2.68E+01	4.63E+01	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/30/2021	21-12053	Tritium	LANL ER-210 Modified	5.30E+00	2.96E+01	2.96E+01	5.10E+01	pCi/g


 EBERLINE ANALYTICAL CORPORATION

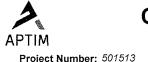
 601 Scarboro Road Oak Ridge, TN 37830
 865/481-0683
 Fax 865/483-4621

Lab Sample				Report To:				V	Vork Order Det	ails:			
Fhe	rline	• Analytical	Guy Ga	allello, Jr	•			SDG:	21-1	2053			
	Lab Sample ID Type		APTIM					Purchase Order:	20834	15			
Lab Sample ID Type 21-12053-01 LCS KN 21-12053-02 MBL BL	ort of Analysis	16406	US Route	∋ 224 E, /	Annex		Analysis Category:	ENVI	RONMEN	ΓAL			
	2		, OH 458				Sample Matrix:	SO					
	· ·	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
21-12053-01	LCS	KNOWN	12/16/21 00:00	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	1.48E+03	4.43E+01			pCi/g
21-12053-01	LCS	SPIKE	12/16/21 00:00	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	1.52E+03	1.24E+01	9.01E+01	2.93E+00	pCi/g
21-12053-02	MBL	BLANK	12/16/21 00:00	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-7.75E-01	1.69E+00	1.69E+00	2.95E+00	pCi/g
21-12053-03	DUP	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-3.58E+00	2.03E+00	2.04E+00	3.68E+00	pCi/g
21-12053-04	DO	501513-9S-PA-01	12/10/21 11:05	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-3.44E+00	1.89E+00	1.90E+00	3.44E+00	pCi/g
21-12053-05	TRG	501513-9S-PA-02	12/10/21 11:45	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-1.09E+01	2.93E+00	3.00E+00	5.62E+00	pCi/g
21-12053-06	TRG	501513-9S-PA-03	12/09/21 13:07	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-7.40E+00	2.37E+00	2.41E+00	4.46E+00	pCi/g
21-12053-07	TRG	501513-9S-PA-04	12/13/21 09:10	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-8.18E+00	2.81E+00	2.85E+00	5.27E+00	pCi/g
21-12053-08	TRG	501513-9S-PA-05	12/10/21 15:35	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-3.78E+00	2.21E+00	2.22E+00	4.00E+00	pCi/g
21-12053-09	TRG	501513-9S-PA-06	12/13/21 14:35	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-5.05E+00	2.27E+00	2.29E+00	4.17E+00	pCi/g
21-12053-10	TRG	501513-9S-PA-07	12/09/21 14:05	12/16/2021	12/29/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-7.59E+00	2.66E+00	2.69E+00	4.97E+00	pCi/g
21-12053-11	TRG	501513-9S-PA-08	12/10/21 10:38	12/16/2021	12/30/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-1.98E+00	1.93E+00	1.93E+00	3.42E+00	pCi/g
21-12053-12	TRG	501513-9S-PA-09	12/13/21 10:45	12/16/2021	12/30/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-1.68E+00	1.71E+00	1.71E+00	3.03E+00	pCi/g
21-12053-13	TRG	501513-9S-PA-10	12/10/21 16:02	12/16/2021	12/30/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-1.13E+00	1.74E+00	1.74E+00	3.06E+00	pCi/g
21-12053-14	TRG	501513-9S-PA-11	12/14/21 09:05	12/16/2021	12/30/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-1.54E+00	1.75E+00	1.75E+00	3.09E+00	pCi/g
21-12053-15	TRG	501513-9S-PA-12	12/13/21 16:35	12/16/2021	12/30/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-3.55E+00	1.96E+00	1.97E+00	3.55E+00	pCi/g
21-12053-16	TRG	501513-9S-PA-13	12/13/21 15:48	12/16/2021	12/30/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-1.54E+00	1.74E+00	1.74E+00	3.07E+00	pCi/g
21-12053-17	TRG	501513-9S-PA-14	12/10/21 14:25	12/16/2021	12/30/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-5.73E+00	2.36E+00	2.38E+00	4.36E+00	pCi/g
21-12053-18	TRG	501513-9S-PA-15	12/13/21 10:35	12/16/2021	12/30/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-4.57E+00	2.10E+00	2.12E+00	3.86E+00	pCi/g
21-12053-19	TRG	501513-9S-PA-16	12/13/21 10:01	12/16/2021	12/30/2021	21-12053	Nickel-63	ASTM 3500-Ni Modified	-5.17E+00	2.27E+00	2.29E+00	4.18E+00	pCi/g

	۵		CHA	AIN O	F	CU	IST		ΟY	7			Ref.	Docι	ımer	nt #_				3-C					
		RECTO DEC 1 6 20	21	Project Nu	mber:	50151	3											ł	age		1	_ of	4	•	
	APTIM	KEND DEP TO CO	Projec	t Name / Loc	ation:	SSSE	Decor	misionin	g									Ana	lyse	s Rec	ques	ted			
	·		ł	Purchase Or	der #:	20834	45																		
	Project Contact	: Michael Carr (Name & phone #)	_	Chinnent	Dete		101	44000									-constr	4830	16	0	5	3			
	Send Report To:	. Guv Gallello	Wavh	Shipment oill/Airbill Nu				-96		10	74								,		1 V			sted	ļ
		guy.gallello@aptim.com	,.	Lab Destin					\mathcal{D}^{-}	01	17							کر ا						Time Requested	
	Address:		Lab Cor	ntact Name /	ph. #:	Mike	McDou	gall 865	5-481	-0863	8 ext	128			/ Beta		(scop	Ŧ					ne R	
	City:	:	_			r			1					!	m 1		Ni-63	Spectroscopy	(C-14					d Tir	
	Sampler's Name(s):	EC.DH					iers	ler		P	reser	vativ	re		Alpha	и (H3	-63 (1		n-14					Around	
Γ	Sample ID Number	Sample Description	Date	n Informatio	G/C	Matrix	# of containers	Container type	ЧСГ	NaOH	HNO ₃	H ₂ SO ₄	, Ce		Gross	Tritium (H3)	Nickel-63 (Ni-63)	Gamma	Carbon-14 (C-14)					Turn A	
	501513-9S-SM-01	MARSAME Wipe; Tank 9S #1	12-8-21	0931	G	•WP	<u>≉ 0</u> 1	े के Vial		z	T	-	<u> </u>			×	Z	<u></u>	U					⊢ 21-BI	D
	501513-9S-SM-01	MARSAME Wipe; Tank 9S #1	12-8-21	0931	G	WP	1	Vial									х	_						21-BI	D
4	501513-9S-PA-01	MARSAME Paint Sample; Tank 9S #1	12-10-21	1105	с	СР	1	Bag								x	x	х	x					21-BI	D
	501513-9S-SM-02	MARSAME Wipe; Tank 9S #2	12-8-21	0939	G	WP	ľ	Vial								x								21-BI	D
	501513-9S-SM-02	MARSAME Wipe; Tank 9P #2	12-8-21	0939	G	WP	1	Vial									x							21-BI	D
5	501513-9S-PA-02	MARSAME Paint Sample; Tank 9S #2	12-10-21	1145	с	СР	1	Bag								x	X	x	x					21-BI	D
	501513-9S-SM-03	MARSAME Wipe; Tank 9S #3	12-8-21	1017	G	WP	1	Vial								x								21-BI	D
	501513-9S-SM-03	MARSAME Wipe; Tank 9S #3	12-8-21	1017	G	WP	1	Vial									x							21-BI	D
e	501513-9S-PA-03	MARSAME Paint Sample; Tank 9S #3	12-9-21	1307	c	СР	1	Bag								x	x	х	x					21-BI	D
	Special Instructions:	Air Sample volumes provided in samp and return sample material so it can b								15 an	id 16	pleas	se sav		G/C (Cod	les			L	1	<u> </u>	لسيبي		1
		·	QC/Data Packag	ge Level Requi	red:				,				·	_	: = C)			G =	Grab			
ŀ	Relinguished By:		17/1/10	II Received By:		IV/Pro	ject Sp	pecific:					1. 1.		latri										
	5. CARter		: 12/14/21 : 0905	Locke	2	Sto	as	2				09	'14/2 a <					Wat				=Soil			
ł	Relinquished By:	Date	ha ford -	Received By:	· · · ·	<u>, , , , , , , , , , , , , , , , , , , </u>	- 0	\sim					14/21					Wate Wate				= Slud		mplos	
	locked Sto	rase Time		Birgo	nja	ose	rs a	60	5	_		120						Wate						mples amples	5
ſ	Relinguished By:	Date	12-14-21	Received By:	0-	, 0		<u>9</u>		ſ	Date:	13-1	16-1		IQ =							_ = Otl			
Ĺ	Bryonkoze		1630	Tons	UP,	/ 🌙	Jens	er		٦	Fime:	14	100	A	S = /	Air S	Samp	le			SED) = Se	dime	ent	

REC 18 12-16-21 @ 1400

.


COC Continuation Page

COC Ref. Document # 5010513-COC-031

Page <u>3</u> of 4

	APTIM Project Numbe	•• 501513		Chinana			40	14 4 1000	4					F				A	naly	ses F	₹equ	estec	<u>i</u>	<u> </u>
		ect Name / Location: SSSB Mobile, AL		Shipme	nt Date:		12	/14/202	! 								Ż	4	\$ ~	2	0	53		uested
				RE	CD [)E C	;1(5 20	121	-					/ Beta		-63)	Spectroscopy	:-14)					Turn Around Time Requested
							ers	L.		P	rese	rvativ	/e		Alpha	(H3)	33 (Ni	Spec	-14 (0					puno
	Sample ID Number	Sample Description	Collecti Date	ion Informatio	on G/C	Matrix	# of containers	Container type	HCL	NaOH	HNO3	H₂SO₄	lce		Gross /	Tritium (H3)	Nickel-63 (Ni-63)	Gamma	Carbon-14 (C-14)					urn Ar
	501513-9S-SM-10	MARSAME Wipe; Tank 9S #10	12-8-21	1351	G	WP	≇ 0 1	Vial		~			1¢		0	×	z	0	0			<u> </u>	┝━━╋	⊢ 21-E
	501513-9S-SM-10	MARSAME Wipe; Tank 9S #10	12-8-21	P	G	WP	1	Vial									x							21-E
3	501513-9S-PA-10	MARSAME Paint Sample; Tank 9S #10	12-10-21	1602	с	СР	1	Bag								x	x	x	x					21-E
	501513-9S-SM-11	MARSAME Wipe; Tank 9S #11	12-9-21	1	G	WP	1	Vial							_	x								21-6
	501513-9S-SM-11	MARSAME Wipe; Tank 9S #11	12-9-21	1053	G	WP	1	Vial						\neg			x					-		21-6
q	501513-9S-PA-11	MARSAME Paint Sample; Tank 9S #11	12-14-21	0905	с	СР	1	Bag								x	x	x	x					21-1
,	501513-9S-SM-12	MARSAME Wipe; Tank 9S #12	12-9-21	101	G	WP	1	Vial								x						<u> </u>		21-1
	501513-9S-SM-12	MARSAME Wipe; Tank 9S #12	12-9-21	1101	G	WP	1	Vial									x							21-1
Š	501513-9S-PA-12	MARSAME Paint Sample; Tank 9S #12	12-13-21	1635	с	СР	1	Bag			·					x	х	х	x				 -	21-1
	501513-9S-SM-13	MARSAME Wipe; Tank 9S #13	12-8-21	1031	G	WP	1	Vial								x								21-1
	501513-9S-SM-13	MARSAME Wipe; Tank 9S #13	12-8-21	1031	G	WP	1	Vial									x							21-6
Īq	501513-9S-PA-13	MARSAME Paint Sample; Tank 9S #13	12-13-21	1548	с	СР	1	Bag								x	x	x	х					21-6
	501513-9S-SM-14	MARSAME Wipe; Tank 9S #14	12-8-21		G	WP	1	Vial								x								21-6
	501513-9S-SM-14	MARSAME Wipe; Tank 9S #14	12-8-21		G	WP	1	Vial									x							21-6
	501513-9S-PA-14	MARSAME Paint Sample; Tank 9S #14	12-10-21	1425	с	СР	1	Bag								x	x	x	x					21-1
	501513-9S-SM-15	MARSAME Wipe; Tank 9S #15	12-8-21		G	WP	1	Vial								x								21-E
	501513-9S-SM-15	MARSAME Wipe; Tank 9S #15	12-8-21		G	WP	1	Vial									x							21-6
3	501513-9S-PA-15	MARSAME Paint Sample; Tank 9S #15	12-13-21		с	СР	1	Bag								x	x	x	х					21-6

Rec 113 12-16-21 @ 1400

COC Continuation Page

COC Ref. Document # 5010513-COC-031

Page 4 of 4

APTIM													[A	naly	ses R	leque	ested	1		
Project Numbe Proj	er: 501513 ject Name / Location: SSSB Mobile, AL	_	Shipme	nt Date:		12	(14/202	1		-							2	4	æ.,	12	0	53		uested
			MDEC	C 1 6	20	21			-					/ Beta		-63)	Spectroscopy	(C-14)						Around Time Requested
		I				ers	er		P	rese	rvati	/e		Alpha	i (H3)	63 (N	a Spe	1-14 ((round
Sample ID Number	Sample Description	Collect Date	ion Informati Time	on G/C	Matrix	# of containers	Container type	НСГ	NaOH	HNO3	H₂SO₄	lce		Gross	Tritium (H3)	Nickel-63 (Ni-63)	Gamma	Carbon-14						Turn A
501513-9S-SM-16	MARSAME Wipe; Tank 9S #16	12-9-21	0936	G	WP	1	Vial								x									21-BD
501513-9S-SM-16	MARSAME Wipe; Tank 9S #16	12-9-21	0936	G	WP	1	Vial									х								21-BD
∫९ 501513-9S-PA+16	MARSAME Paint Sample; Tank 9S #16	(2-13-2)	1001	с	СР	1	Bag								x	х	x	x						21-BD
501513-9S-SM-16D	MARSAME Wipe; Tank 9S #16 Dup	12-9-21	0937	G	WP	1	Vial								x									21-BD
501513-9S-SM-16D	MARSAME Wipe; Tank 9S #16 Dup	12-9-21	0937	G	WP	1	Vial									х								21-BD
																						\square	\neg	
					ſ																			
					P	A																		
					<u> </u>																			
															~	Re	て	B	8 1	2-	<i>S</i> 6.	-21	C	140

	Client Name	Contract/P	o.	Project Type			C	Date I	Receiv	red				R	equire	ed Tur	narou	nd Da	ys			[berli	ne Sei	rvices	Work	Order		
APT	IM Federal Services LLC	20834	5	Environmental		1	2/	16	6/2	02	21					2	1						2	1-'	12	05	3		
	Project Name	Client W0)	Sample Disp					Deadli						In	ternal	Dead	ine						Clier	nt Dead	dline			
	501513	SSSB Decommis	ssioning	Н		0)1/	′ 0 ∠	4/2	02	22)1/	10	/2	02	2				01	/1	1/2	202	22		
Internal ID	Client ID	Sample Date	Matrix	Storage	C0014	Gamma	Н0003	Ni063		Ī																			Tti
01	LCS	12/16/21	SO	D1.4	х	x	x	X	:				1		1														4
02	BLANK	12/16/21	SO	D1.4	х	x	x	X																					4
03	DUP	12/16/21	so	D1.4	х	x	x	X	:																				4
04	501513-9S-PA-01	12/10/21 11:05	so	D1.4	х	x	x	X	:																				4
05	501513-9S-PA-02	12/10/21 11:45	SO	D1.4	x	x	x	x																					4
06	501513-9S-PA-03	12/09/21 13:07	so	D1.4	x	X	x	x	:																				4
07	501513-9S-PA-04	12/13/21 09:10	so	D1.4	х	x	x	X	:																				4
08	501513-9S-PA-05	12/10/21 15:35	so	D1.4	x	x	x	X	:																				4
09	501513-9S-PA-06	12/13/21 14:35	so	D1.4	x	х	x	x	:				Ι																4
10	501513-9S-PA-07	12/09/21 14:05	so	D1.4	x	х	x	x	:		1																		4
11	501513-9S-PA-08	12/10/21 10:38	so	D1.4	x	x	x	x	:				1																4
12	501513-9S-PA-09	12/13/21 10:45	so	D1.4	x	x	x	X	:	1																			4
13	501513-9S-PA-10	12/10/21 16:02	SO	D1.4	x	x	x	X	:																				4
14	501513-9S-PA-11	12/14/21 09:05	SO	D1.4	x	x	x	X																					4
15	501513-9S-PA-12	12/13/21 16:35	so	D1.4	x	x	x	X																					4
16	501513-9S-PA-13	12/13/21 15:48	SO	D1.4	x	x	x	X	:																				4
17	501513-9S-PA-14	12/10/21 14:25	so	D1.4	x	x	x	X	:																				4
18	501513-9S-PA-15	12/13/21 10:35	so	D1.4	х	x	x	X	:																				4
19	501513-9S-PA-16	12/13/21 10:01	so	D1.4	х	X	x	x	:																				4
																													0
		Totals Per Ana	ılysis (n	on QA samples)	16	16	16	16	6 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	BEBERLINE				1	nvoic	e		counts P	-		LLC		Repo	rt Dat	a	Guy C	Sallello, A	Jr										
E Constant			boro					417	1 Esser	n Lane								SUS Ro		24 E, A	nnex								
	EBERLINE Services	Oak Ridg	je, TN	37830																									
	Sample Log In Report		365) 4	81-0683		Voice										Voice Fax	419-3	48-582	8										
	campio Log in Report	•	-	83-4621	C	Fax onta	ct	Guy	y Gallell	o, Jr			+			i-ax													
						Voice			9-348-58																				
					<u> </u>	Fax																							

STANDARD OPERATING PROCEDURE

MP-001, Rev. 22 Effective: 5/24/2021 Page 13 of 15

Sample Receiving

Eberline Services – Oak Ridge Laboratory

				SA	MF	۷LE	RECEIPT CHECKLIST MP-001-2	
WORK ORDER #	61		2	0	5	3	MF-001-2	

SAMPLE MATRIX/MATRICES:

(CIRCLE ONE OR BOTH)

AQUEOUS (NON-AQUEOUS)

(CIRCLE EITHER YES, NO, OR N/A)

WERE SAMPLES:

EBERLINE

(1)

Received in good condition?	(Y)	N	
If aqueous, properly preserved	Y	N	N/A

WERE CHAIN OF CUSTODY SEALS:

Present on outside of package?	\bigcirc	N
Unbroken on outside of package?	\bigcirc	N
Present on samples?	$\overline{\mathbb{O}}$	N
Unbroken on samples?	\bigcirc	N
Was chain of custody present upon sample receipt?	\bigcirc	N

IF THE RESPONSE TO ANY OF THE ABOVE IS **NO**, A DISCREPANT SAMPLE RECEIPT REPORT (DSR) HAS BEEN ISSUED.

REMARKS:

Ranstoph Sancer DATE: 12-16-21 SIGNATURE:

- 15

WO		Analysis		Run	Activit	y Units	Aliquo	t Units			Client Name			
21-12053		H0003	10003		p	рСі		g		APTIM Federal Services LLC				
				Labo	ratory (Control	Sample			1047 - ¹⁰⁴ 00 - 214 (1940)				
Analyte		LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	CSU	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g)	
H-3		102.23%	6.88%	100.00%	3.60%	1.81E+02	6.51E+00	1.85E+02	1.27E+01	H-5a	3.99E+03	3.60E+00	1.01E-01	
					Matri	ix Spike								
Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (gj	
									}					
								ar 414 11						
		licoto S								: Sumn	anv			

Repl	icate S	Sample						QC Summa	ary	1	1
Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R	MS % R	MS ND	Rep RPD	Rep ND
0.07	6.62	2.29E+01	3.02E+01	2.14E+01	3.05E+01	1.02	ок			NA	ок
	Normalized Difference 0.07	Normalized Difference RPD 0.07 6.62	Difference RPD Result 0.07 6.62 2.29E+01	Normalized DifferenceRPDOriginal ResultOriginal CSU0.076.622.29E+013.02E+01	Normalized DifferenceRPDOriginal ResultOriginal CSUReplicate Result0.076.622.29E+013.02E+012.14E+01	Normalized DifferenceRPDOriginal ResultOriginal CSUReplicate ResultReplicate CSU0.076.622.29E+013.02E+012.14E+013.05E+01	Normalized DifferenceRPDOriginal ResultOriginal ResultReplicate CSUReplicate CSUReplicate Bias0.076.622.29E+013.02E+012.14E+013.05E+011.02	Normalized Difference RPD Original Result Original CSU Replicate Result Replicate CSU LCS Relative Bias LCS % R 0.07 6.62 2.29E+01 3.02E+01 2.14E+01 3.05E+01 1.02 OK	Normalized Difference RPD Original Result Original CSU Replicate Result Replicate CSU LCS Relative Bias LCS % R MS % R 0.07 6.62 2.29E+01 3.02E+01 2.14E+01 3.05E+01 1.02 OK	Normalized Difference RPD Original Result Original CSU Replicate Result Replicate CSU LCS Relative Bias LCS % R MS % R MS % R 0.07 6.62 2.29E+01 3.02E+01 2.14E+01 3.05E+01 1.02 OK Image: Colored col	Normalized Difference RPD Original Result Original CSU Replicate Result Replicate CSU LCS % R MS % R MS ND Rep RPD 0.07 6.62 2.29E+01 3.02E+01 2.14E+01 3.05E+01 1.02 OK Image: Comparison of the co

WO	Analysis Run		Activity Units	Aliquot Units	Client Name
21-12053	H0003 1		рСі	g	APTIM Federal Services LLC
	LCS % Recovery			Rep	olicate Sample RPD
130.00 T					
120.00 -				40.00 35.00	
110.00	Ī			30.00	
100.00	Ţ			25.00 - 20.00 -	
90.00				15.00 -	
80.00				10.00	Ī
70.00	Н-3			5.00 -	Ī
Lower Error	91.75 112.72	····		0.00	H-3
Upper Error %R	102.23			ver Error	11.15 2.08
LCL	75 100		Up ●P	Der Error	6.62
	125		CL		35
	Normalized Difference	<u>, Inc </u>			
					No Matrix Spike
3.50					
3.00					
2.50					
2.00					
1.50					
1.00					
0.50					
0.50) REP ND	MS ND			
0.50) REP ND 0.07 3	MS ND 0.00 3			

Eberline Services
Analysis Control Chart

Analysis control chart													
WO		Analysis		Run	Activit	y Units	Aliquo	ot Units			Client Name		
21-12053		C0014	ı.	1	p	Ci		g	Α	PTIM Fe	deral Se	rvices Ll	LC
			······	<u></u> .									
	······			Labo	ratory (Control	Sample						
Analyte		LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	csu	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g)
C-14		104.70%	14.06%	100.00%	2.80%	1.42E+03	3.99E+01	1.49E+03	2.10E+02	C-3a	2.91E+03	2.80E+00	1.09E+00
												-	
					Matr	ix Spike	ļ						
Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (g)

Repl	icate S	Sample					QC Summ	ary		1	
Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R	MS % R	MS ND	Rep RPD	Rep ND
0.48	37.75	-6.69E+00	6.36E+00	-4.56E+00	5.80E+00	1.05	ок			NA	ок
-	Normalized Difference	Normalized RPD Difference	Difference Result	Normalized RPD Original Original Difference RPD Result CSU	Normalized RPD Original Original Replicate Difference RPD Result CSU Result	Normalized RPD Original Original Replicate Replicate CSU Result CSU	Normalized Difference RPD Original Original CSU Replicate Replicate Bias	Normalized Difference RPD Original Result Original CSU Replicate Result Replicate CSU LCS Relative Bias LCS % R	Normalized Difference RPD Original Result Original CSU Replicate Result Replicate CSU Replicate Bias LCS % R MS % R	Normalized Difference RPD Original Result Original CSU Replicate Result Replicate CSU LCS Relative Bias LCS % R MS % R MS ND	Normalized Difference RPD Original Result Original CSU Replicate Result Replicate CSU LCS Relative Bias LCS % R MS % R MS ND Rep RPD

21-12053	C0014	1	pCi	g	APTIM Federal Services LLC
	LCS % Recovery			Re	plicate Sample RPD
130.00				40.00 T	1
120.00	T			35.00	•
110.00	•			30.00	
100.00				25.00 -	
				20.00 -	
90.00	<u>_</u>			15.00	-
80.00 +				10,00	
70.00					
70.00	C-14 87.85			5.00 -	
Lower Error Upper Error	121.56			0.00	C-14
• %R	104.70			wer Error	17.35 58.14
	75 100		- UI ◆ RI	oper Error	37.75
	125		— - c		35
3.50	Normalized Difference				No Matrix Spike
3.00					
2.50					
2.00					
		M			
1.50					
1.00					
0.50					
0.00 LCS ND	REP ND	MS ND 0.00			
C-14 0.00	0.48	3			

Activity Units

Run

Aliquot Units

Eberline Services Analysis Control Chart WO

Analysis

Client Name

Version

WO	Analysis	Run	Activity Units	Aliquot Units	Client Name
21-12053	Ni063	1	рСі	g	APTIM Federal Services LLC

			Labo	ratory (Control	Sample				<u></u>		
Analyte	LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	csu	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g)
NI-63	102.70%	5.94%	100.00%	3.00%	1.48E+03	4.43E+01	1.52E+03	9.01E+01	Ni-3	2.11E+04	3.00E+00	1.56E-01
											u	

					Matri	x Spike							1
Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (g)
		L											

	Repl	icate S	Sample						QC Summ	ary		
Analyte	Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R	MS % R	MS ND	Rep RPD	Rep ND
NI-63	0.10	4.07	-3.44E+00	1.90E+00	-3.58E+00	2.04E+00	1.03	ок			NA	ок

		Analysis	Run	Activity Units	Aliquot Units	Client Name
21-12	2053	Ni063	1	рСі	g	APTIM Federal Services LLC
	LCS %	Recovery			Rep	licate Sample RPD
130.00						
120.00 -					40.00	
110.00 +		T			35.00	
		•			30.00 +	
100.00 -					25.00 -	
90.00		÷			20.00 -	
					15.00	
80.00 -					10.00 -	
70.00		NU 00				_
Lower Error		NI-63 93.76			5.00 -	Ē
Upper Error		111.63			0.00	NI-63
%R		102.70		-	Lower Error	2.92
- LCL		75			Upper Error	5.21
- Mean		100		•		4.07
-UCL		125			CL	35
	Normaliz	ed Difference				
3.50						No Matrix Spike
3.50						
3.00	na 1910 an 1911 an an 1980 an <mark>1970 an 1970 an 197</mark>					
2.50						
2.00						
2.00						
2.00						
2.00						
2.00	LCS ND	REP ND	MS ND			
2.00 1.50 1.00 0.50	LCS ND 0.00 3	REP ND 0.10	MS ND 0.00 3			

Version

PB-214>

NA

ок

WO	i	Analysis		Run	Activity	y Units	Aliquot	t Units	1		Client Name		
21-12053	G	Samma	a	1	p	Ci	ç	1	Α	PTIM Fee	deral Se	rvices Ll	_C
·····				l aba	rotoric	Control	Sampla						
			·	Lapo	ratory C		Sample				1	1	1
Analyte		LCS Measured	CSU Measured	LCS Expected	Uncert. Expected	Known	Known Error	Result	csu	Standard ID	Standard ACT (dpm)	Standard Error	Standard Added (g)
CO-60		105.13%	7.64%	100.00%	3.90%	2.66E+02	1.04E+01	2.80E+02	2.14E+01	GAS-2001	2.66E+02	1.04E+01	3.68E+02
CS-137		111.31%	11.03%	100.00%	4.10%	1.62E+02	6.66E+00	1.81E+02	1.99E+01	GAS-2001	1.62E+02	6.66E+00	3.68E+02
												-	
<u>,</u>					Matri	x Spike							
Analyte	Normalized Difference	MS Actual % Rec	Expected MS Result	Expected MS Uncert	Actual MS Result	Actual MS CSU	Sample Result	Sample CSU	Sample Aliquot	Standard ID	Standard ACT (dpm)	Standard Error %	Standard Added (g)
	Rep	licate S	Sample					-	QC	C Summ	ary		
Analyte	Normalized Difference	RPD	Original Result	Original CSU	Replicate Result	Replicate CSU	LCS Relative Bias	LCS % R		MS % R	M\$ ND	Rep RPD	Rep ND
BI-214	0.64	42.68	4.81E-01	3.35E-01	3.12E-01	3.93E-01	1.05	ок		<cs-137< td=""><td>BI-214></td><td>NA</td><td></td></cs-137<>	BI-214>	NA	
K-40	0.57	22.64	4.99E+00	2.67E+00	3.97E+00	2.20E+00	1.11	ок		<co-60< td=""><td>K-40></td><td>NA</td><td>ок</td></co-60<>	K-40>	NA	ок

1.07E-01

7.63E-02

6.77E-01

3.40E-01

PB-214

3.31

159.48

1-12053	3 G	Gamma	1	рСі	g	APTIM Federa	I Services LLC
	LCS % F	Recovery				Replicate Sample RPD	
130.00			_				
120.00					40.00 -		
120.00	-				35.00 -		
110.00			•				
	•				30.00 -	-	
100.00					25.00 -		and the second se
	-		+		-	•	
90.00 +					20.00 -		
					15.00 -	<u> </u>	
80.00 +							
					10.00 +		
70.00	CO-60		CS-137		5.00 -		
Lower Error	93.58		96.18				
Upper Error	116.67		126.44		0.00 BI-2		PB-214
%R	105.13		111.31		wer Error 62.2		206.76
-LCL	75		75 100		per Error 23.0		112.19
- Mean - UCL	<u> </u>		125	• RI			159.48 35
	Normalized	d Difference					
						No Matrix Spike	
3.50						NO MALIA OPIRC	
3.00	······) 				
3.00							
3.00 2.50 2.00							
3.00							
3.00 2.50 2.00							
3.00 2.50 2.00 1.50 1.00							
3.00 2.50 2.00 1.50 1.00 0.50							
3.00 2.50 2.00 1.50 1.00 0.50		REP ND	MS ND			No matrix opike	
3.00 2.50 2.00 1.50 1.00 0.50 0.00		REP ND 0.64	MS ND 0.00				
3.00 2.50 2.00 1.50 1.00 0.50 0.00	0.00	0.64 0.57	0.00 0.00				
3.00 2.50 2.00 1.50 1.00 0.50 0.00 L CO-60 CS-137	0.00 0.00 0.00	0.64 0.57 0.00	0.00 0.00 0.00				
3.00 2.50 2.00 1.50 1.00 0.50	0.00	0.64 0.57	0.00 0.00				
3.00 2.50 2.00 1.50 1.00 0.50 0.00 L CO-60 CS-137	0.00 0.00 0.00	0.64 0.57 0.00	0.00 0.00 0.00				

Activity Units

Run

Aliquot Units

Eberline Services Analysis Control Chart

Analysis

WO

Printed: 12/20/2021 8:23 AM Page 2 of 2

Client Name