

Post Office Box 2000, Decatur, Alabama 35609-2000

February 4, 2022

10 CFR 50.4

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001

	Browns Ferry Nuclear Plant, Units 1, 2, and 3 Renewed Facility Operating License Nos. DPR-33, DPR-52, and DPR-68 NRC Docket Nos. 50-259, 50-260, and 50-296
Subject:	Browns Ferry Nuclear Plant, Core Operating Limits Report for Unit 1 Cycle 14 Operation, Revision 1; Unit 2 Cycle 22 Operation, Revision 1; and Unit 3 Cycle 20 Operation, Revision 2.
References:	 Browns Ferry Nuclear Plant, Unit 1 Core Operating Limits Report for Cycle 14 Operation, Revision 0 Browns Ferry Nuclear Plant, Unit 2 Core Operating Limits Report for Cycle 22 Operation, Revision 0 Browns Ferry Nuclear Plant, Unit 3 Core Operating Limits Report for Cycle 20 Operation, Revision 0

4. Browns Ferry Nuclear Plant, Unit 3 Core Operating Limits Report for Cycle 20 Operation, Revision 1

In accordance with the requirements of Technical Specification (TS) 5.6.5.d, the Tennessee Valley Authority (TVA) is submitting an update to the Browns Ferry Nuclear Plant (BFN), Unit 1, Cycle 14 Core Operating Limits Report (COLR). Revision 0 (Reference 1) of the Unit 1 COLR included all Modes of operation (Modes 1 through 5). Revision 1 corrects the footnote in Table 4.9 to state that the limits are valid up to the Extended Power Uprate (EPU) Single Loop Operation (SLO) limit of 43.75% as stated in the footnote of COLR Section 4.2.5 and in the Reload Analyses (RAs) for all three units.

Additionally, TVA is submitting an update to the BFN, Unit 2, Cycle 22 COLR. Revision 0 (Reference 2) of the Unit 2 COLR included all Modes of operation (Modes 1 through 5). Revision 1 corrects the footnote in Table 4.9 to state that the limits are valid up to the EPU SLO limit of 43.75% as stated in the footnote of COLR Section 4.2.5 and in the RAs for all three units.

U.S. Nuclear Regulatory Commission Page 2 February 4, 2022

Finally, TVA is submitting an update to the BFN, Unit 3, Cycle 20 COLR. Revision 0 (Reference 3) of the Unit 3 COLR included all Modes of operation (Modes 1 through 5). Revision 1 (Reference 4) corrected values given for the Nominal Scram Time Basis and corrected a typographical error. Revision 2 corrects the footnote in Table 4.9 to state that the limits are valid up to the EPU SLO limit of 43.75% as stated in the footnote of COLR Section 4.2.5 and in the RAs for all three units.

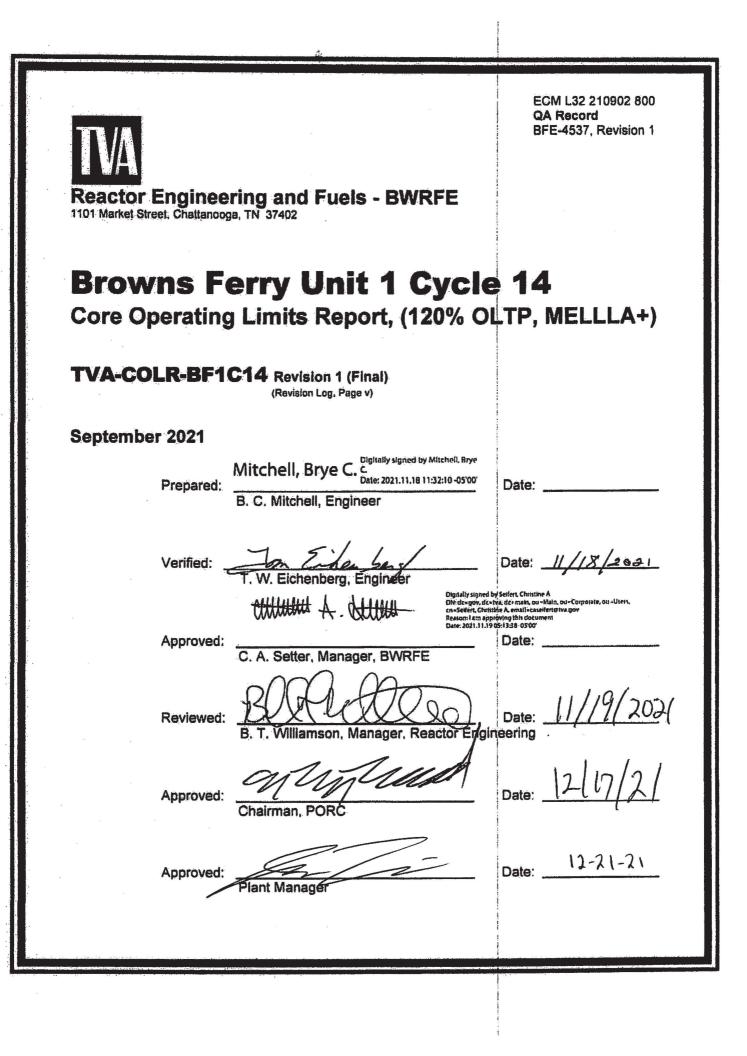
There are no new commitments contained in this letter. If you have any questions, please contact C. L. Vaughn at (256) 729-2636.

Respectfully,

Matthew Rasmussen Site Vice President

Enclosures:

- s: 1. Core Operating Limits Report, (120% OLTP, MELLLA+), for Unit 1 Cycle 14 Operation, TVA-COLR-BF1C14, Revision 1
 - 2. Core Operating Limits Report, (120% OLTP, MELLLA+), for Unit 2 Cycle 22 Operation, TVA-COLR-BF2C22, Revision 1
 - 3. Core Operating Limits Report, (120% OLTP, MELLLA+), for Unit 3 Cycle 20 Operation, TVA-COLR-BF3C20, Revision 2


cc: (w/ Enclosures)

NRC Regional Administrator - Region II NRC Senior Resident Inspector - Browns Ferry Nuclear Plant NRC Project Manager - Browns Ferry Nuclear Plant

Enclosure Tennessee Valley Authority Browns Ferry Nuclear Plant Unit 1

Core Operating Limits Report, (120% OLTP, MELLLA+), for Unit 1 Cycle 14 Operation, TVA-COLR-BF1C14, Revision 1

(See Attached)

Table of Contents

Total Number of Pages = 44 (including review cover sheet)

List of Tables.		iii		
List of Figures		iv		
Revision Log.		v		
Nomenclature		vi		
References		viii		
1 Introduct	ion	1		
1.1 Purp	ose	1		
1.2 Sco	De	1		
1.3 Fuel	Loading	1		
1.4 Acce	eptability	2		
2 APLHGF	R Limits	3		
2.1 Rate	ed Power and Flow Limit: APLHGR _{RATED}	3		
2.2 Off-I	Rated Power Dependent Limit: APLHGR _P	3		
2.2.1	Startup without Feedwater Heaters			
	Rated Flow Dependent Limit: APLHGR _F			
2.4 Sing	le Loop Operation Limit: APLHGR _{SLO}	3		
2.5 Equi	pment Out-Of-Service Corrections	5		
3 LHGR Li	mits	6		
3.1 Rate	ed Power and Flow Limit: LHGR _{RATED}	6		
3.2 Off-I	Rated Power Dependent Limit: LHGR _P	6		
3.2.1	Startup without Feedwater Heaters			
	Rated Flow Dependent Limit: LHGR _F			
	pment Out-Of-Service Corrections			
	R Limits			
	Dependent MCPR Limit: MCPR _F			
4.2 Pow	er Dependent MCPR Limit: MCPR _P	13		
4.2.1	Startup without Feedwater Heaters	13		
4.2.2	Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS)	14		
4.2.3	Exposure Dependent Limits			
4.2.4	Equipment Out-Of-Service (EOOS) Options	15		
4.2.5	Single-Loop-Operation (SLO) Limits	15		
4.2.6	Below Pbypass Limits			
	Hydraulic Stability Protection			
	low Biased Rod Block Trip Settings			
8 Shutdow	n Margin Limit			
Appendix A:	MBSP Maps	A-1		

List of Tables

Nuclear Fuel Types	2
Startup Feedwater Temperature Basis	6
Nominal Scram Time Basis	14
MCPR _P Limits for All Fuel Types: Optimum Scram Time Basis	17
MCPR _P Limits for All Fuel Types: Nominal Scram Time Basis	18
MCPRP Limits for All Fuel Types: Technical Specification Scram Time Basis	20
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Nominal Scram Time Basis	22
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Nominal Scram Time Basis	23
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Technical Specification Scram Time Basis	24
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Technical Specification Scram Time Basis	25
MCPR _P Limits for All Fuel Types: Single Loop Operation for All Scram Times	26
ABSP Setpoints for the Scram Region	27
Analyzed MBSP Endpoints: Nominal Feedwater Temperature	28
Analyzed MBSP Endpoints: Reduced Feedwater Temperature	28
Analytical RBM Trip Setpoints	30
RBM Setpoint Applicability	30
Control Rod Withdrawal Error Results	31

List of Figures

APLHGR _{RATED} for ATRIUM-10XM Fuel	4
LHGR _{RATED} for ATRIUM-10XM Fuel	8
Base Operation LHGRFAC _P for ATRIUM-10XM Fuel	9
LHGRFAC _F for ATRIUM-10XM Fuel	10
Startup Operation LHGRFAC _P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 1	11
Startup Operation LHGRFAC _P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 2	12
MCPR _F for All Fuel Types	16
MBSP Boundaries For Nominal Feedwater Temperature	A-2
MBSP Boundaries For Reduced Feedwater Temperature	A-3

Revision Log

Number	Page	Description
1-R1	26	Updated Table 4.9 footnote per CR 1718921
0-R0	All	New document.

Nomenclature

ABSP	Automatic Backup Stability Protection
APLHGR	Average Planar LHGR
APRM	Average Power Range Monitor
AREVA NP	Vendor (Framatome, Siemens)
BOC	Beginning of Cycle
BSP	Backup Stability Protection
BWR	Boiling Water Reactor
CAVEX	Core Average Exposure
CD	Coast Down
CMSS	Core Monitoring System Software
COLR	Core Operating Limits Report
CPR	Critical Power Ratio
CRWE	Control Rod Withdrawal Error
CSDM	Cold SDM
DIVOM	Delta CPR over Initial CPR vs. Oscillation Magnitude
DSS-CD	Detect and Suppress Solution – Confirmation Density
EOC	End of Cycle
EOCLB	End-of-Cycle Licensing Basis
EOOS	Equipment OOS
EPU	Extended Power Uprate (120% OLTP)
FFTR	Final Feedwater Temperature Reduction
FFWTR	Final Feedwater Temperature Reduction
FHOOS	Feedwater Heaters OOS
ft	Foot: English unit of measure for length
GNF	Vendor (General Electric, Global Nuclear Fuels)
GWd	Giga Watt Day
HTSP	High TSP
ICA	Interim Corrective Action
ICF	Increased Core Flow (beyond rated)
IS	In-Service
kW	kilo watt: SI unit of measure for power.
LCO	License Condition of Operation
LFWH	Loss of Feedwater Heating
LHGRFAC	LHGR Multiplier (Power or Flow dependent)
LPRM	Low Power Range Monitor
LRNB	Generator Load Reject, No Bypass
MAPFAC	MAPLHGR multiplier (Power or Flow dependent)

Date: September 8, 2021

MBSP	Manual Backup Stability Protection
MCPR	Minimum CPR
MELLLA	Maximum Extended Load Line Limit Analysis
MELLLA+	Maximum Extended Load Line Limit Analysis Plus
MSRV	Moisture Separator Reheater Valve
MSRVOOS	MSRV OOS
MTU	Metric Ton Uranium
MWd/MTU	Mega Watt Day per Metric Ton Uranium
NEOC	Near EOC
NRC	United States Nuclear Regulatory Commission
NSS	Nominal Scram Speed
NTSP	Nominal TSP
OLMCPR	MCPR Operating Limit
OLTP	Original Licensed Thermal Power
OOS	Out-Of-Service
OPRM	Oscillation Power Range Monitor
OSS	Optimum Scram Speed
PBDA	Period Based Detection Algorithm
Pbypass	Power, below which TSV Position and TCV Fast Closure Scrams are Bypassed
PLU	Power Load Unbalance
PLUOOS	PLU OOS
PRNM	Power Range Neutron Monitor
RBM	Rod Block Monitor
RCPOOS	Recirculation Pump OOS (<i>SLO</i>)
RDF	Rated Drive Flow
RPS	Reactor Protection System
RPT	Recirculation Pump Trip
RPTOOS	RPT OOS
RTP	Rated Thermal Power
SDM	Shutdown Margin
SLMCPR	MCPR Safety Limit
SLO	Single Loop Operation
TBV	Turbine Bypass Valve
TBVIS	TBV IS
TBVOOS	Turbine Bypass Valves OOS
TIP	Transversing In-core Probe
TIPOOS	TIP OOS
TLO	Two Loop Operation
TSP	Trip Setpoint
TSSS	Technical Specification Scram Speed
TVA	Tennessee Valley Authority

References

- 1. ANP-3856, Revision 0, **Browns Ferry Unit 1 Cycle 14 Reload Analysis**, Framatome Inc., July 2020. [L94 200810 802]
- 2. Not Used.
- 3. ANP-3150P, Revision 4, Mechanical Design Report for Browns Ferry ATRIUM 10XM Fuel Assemblies, AREVA Inc., November 2017. [L86 171205 001]
- 4. ANP-3830P Revision 0, Browns Ferry Unit 1 Cycle 14 Plant Parameters Document, Framatome Inc., February 2020. [L94 200706 801]
- 5. BFE-4534, Revision 0, Browns Ferry Unit 1 Cycle 14 In-Core Shuffle, Tennessee Valley Authority, September 2020 [L32 200723 800].

Methodology References

- XN-NF-81-58(P)(A) Revision 2 and Supplements 1 and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, Exxon Nuclear Company, March 1984.
- 7. XN-NF-85-67(P)(A) Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, September 1986.
- EMF-85-74(P) Revision 0 Supplement 1(P)(A) and Supplement 2(P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, Siemens Power Corporation, February 1998.
- 9. ANF-89-98(P)(A) Revision 1 and Supplement 1, **Generic Mechanical Design Criteria for BWR Fuel Designs**, Advanced Nuclear Fuels Corporation, May 1995.
- 10. XN-NF-80-19(P)(A) Volume 1 and Supplements 1 and 2, Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.
- 11. XN-NF-80-19(P)(A) Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, June 1986.
- 12. EMF-2158(P)(A) Revision 0, **Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2**, Siemens Power Corporation, October 1999.
- 13. XN-NF-80-19(P)(A) Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, January 1987.
- 14. XN-NF-84-105(P)(A) Volume 1 and Volume 1 Supplements 1 and 2, **XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis**, Exxon Nuclear Company, February 1987.
- 15. ANP-10307PA, Revision 0, **AREVA MCPR Safety Limit Methodology for Boiling Water Reactors**, AREVA NP Inc., June 2011.

- ANF-913(P)(A) Volume 1 Revision 1 and Volume 1 Supplements 2, 3 and 4,
 COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
- 17. ANF-1358(P)(A) Revision 3, **The Loss of Feedwater Heating Transient in Boiling Water Reactors**, Advanced Nuclear Fuels Corporation, September 2005.
- 18. EMF-2209(P)(A) Revision 3, **SPCB Critical Power Correlation**, AREVA NP Inc., September 2009.
- 19. EMF-2361(P)(A) Revision 0, **EXEM BWR-2000 ECCS Evaluation Model**, Framatome ANP Inc., May 2001, as supplemented by the site specific approval in NRC safety evaluation dated April 27, 2012.
- 20. EMF-2292(P)(A) Revision 0, ATRIUM[™]-10: Appendix K Spray Heat Transfer Coefficients, Siemens Power Corporation, September 2000.
- 21. EMF-CC-074(P)(A), Volume 4, Revision 0, **BWR Stability Analysis: Assessment** of STAIF with Input from MICROBURN-B2, Siemens Power Corporation, August 2000.
- 22. BAW-10255(P)(A), Revision 2, Cycle-Specific DIVOM Methodology Using the RAMONA5-FA Code, AREVA NP Inc., May 2008.
- 23. BAW-10247PA, Revision 0, **Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors**, AREVA NP Inc., April 2008.
- 24. ANP-10298PA, Revision 0, **ACE/ATRIUM 10XM Critical Power Correlation**, AREVA NP Inc., March 2010.
- 25. ANP-3140(P), Revision 0, Browns Ferry Units 1, 2, and 3 Improved K-factor Model for ACE/ATRIUM 10XM Critical Power Correlation, AREVA NP Inc., August 2012.
- 26. NEDC-33075P-A, Revision 8, **GE Hitachi Boiling Water Reactor Detect and Suppress Solution – Confirmation Density**, GE Hitachi, November 2013.

Setpoint References

- 27. EDQ2092900118, R36, Setpoint and Scaling Calculation for Neutron Monitoring & *Recirculation Flow Loops*, Calculation File, Tennessee Valley Authority, August 9, 2019.
- 28. Task T0500, Revision 0, **Neutron Monitoring System w/RBM**, Project Task Report, GE Hitachi Nuclear Energy, June 2017.
- 29. Task T0506, Revision 0, **TS Instrument Setpoints**, Project Task Report, Tennessee Valley Authority, August, 2017.
- 30. NEDC-33006P-A, Revision 3, General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus, GE Energy Nuclear, June 2009.

1 Introduction

In anticipation of cycle startup, it is necessary to describe the expected limits of operation.

1.1 Purpose

The primary purpose of this document is to satisfy requirements identified by unit technical specification section 5.6.5. This document may be provided, upon final approval, to the NRC.

1.2 Scope

This document will discuss the following areas:

- Average Planar Linear Heat Generation Rate (APLHGR) Limit (Technical Specifications 3.2.1 and 3.7.5) Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- Linear Heat Generation Rate (LHGR) Limit (Technical Specification 3.2.3, 3.3.4.1, and 3.7.5)
 Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- Minimum Critical Power Ratio Operating Limit (OLMCPR) (Technical Specifications 3.2.2, 3.3.4.1, 3.7.5 and Table 3.3.2.1-1)
 Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- ➤ Thermal-Hydraulic Stability Protection (Technical Specification Table 3.3.1.1)
 Applicability: Mode 1, ≥ (as specified in Technical Specifications Table 3.3.1.1-1)
- Average Power Range Monitor (APRM) Flow Biased Rod Block Trip Setting (Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1) Applicability: Mode 1, ≥ (as specified in Technical Requirements Manuals Table 3.3.4-1)
- Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)
 Applicability: Mode 1, ≥ % RTP as specified in Table 3.3.2.1-1 (TS definition of RTP)
- Shutdown Margin (SDM) Limit (Technical Specification 3.1.1)
 Applicability: All Modes

1.3 Fuel Loading

The core will contain fresh, and previously exposed ATRIUM-10XM. Nuclear fuel types used in the core loading are shown in Table 1.1. The core shuffle and final loading were explicitly evaluated for BOC cold shutdown margin performance as documented per Reference 5.

Fuel Description	Original Cycle	Number of Assemblies	Nuclear Fuel Type (NFT)	Fuel Names (Range)
ATRIUM 10XM XMLC-4102B-11GV70-FAC-B	12	35	26	FAC701-FAC740
ATRIUM 10XM XMLC-3969B-13GV80-FAC-C	12	33	27	FAC754-FAC868
ATRIUM 10XM XMLC-3948B-13GV70-FAC-B	12	48	28	FAC869-FAC980
ATRIUM 10XM XMLC-3967B-15GV80-FAD-B	13	164	29	FAD001-FAD164
ATRIUM 10XM XMLC-3945B-14GV80-FAD-C	13	72	30	FAD165-FAD236
ATRIUM 10XM XMLC-3951B-14GV80-FAD-C	13	40	31	FAD237-FAD276
ATRIUM 10XM XMLC-4091B-13GV80-FAD-B	13	56	32	FAD277-FAD332
ATRIUM 10XM XMLC-3943B-15GV80-FAE	14	96	33	FAE333-FAE428
ATRIUM 10XM XMLC-3944B-14GV80-FAE	14	140	34	FAE429-FAE568
ATRIUM 10XM XMLC-4001B-12GV80-FAE	14	80	35	FAE569-FAE648

Table 1.1 Nuclear Fuel Types*

1.4 Acceptability

Limits discussed in this document were generated based on NRC approved methodologies per References 6 through 26.

The table identifies the expected fuel type breakdown in anticipation of final core loading. The final composition of the core depends upon uncertainties during the outage such as discovering a failed fuel bundle, or other bundle damage. Minor core loading changes, due to unforeseen events, will conform to the safety and monitoring requirements identified in this document.

2 APLHGR Limits

(Technical Specifications 3.2.1 & 3.7.5)

The APLHGR limit is determined by adjusting the rated power APLHGR limit for off-rated power, off-rated flow, and SLO conditions. The most limiting of these is then used as follows:

APLHGR limit = MIN ($APLHGR_P$, $APLHGR_F$, $APLHGR_{SLO}$)

where:

APLHGR _P	off-rated power APLHGR limit	[APLHGR _{RATED} * MAPFAC _P]
APLHGR _F	off-rated flow APLHGR limit	[APLHGR _{RATED} * MAPFAC _F]
APLHGR _{SLO}	SLO APLHGR limit	[APLHGR _{RATED} * SLO Multiplier]

2.1 Rated Power and Flow Limit: APLHGRRATED

The rated conditions APLHGR for all fuel are identified per Reference 1. The rated conditions APLHGR for ATRIUM-10XM are shown in Figure 2.1.

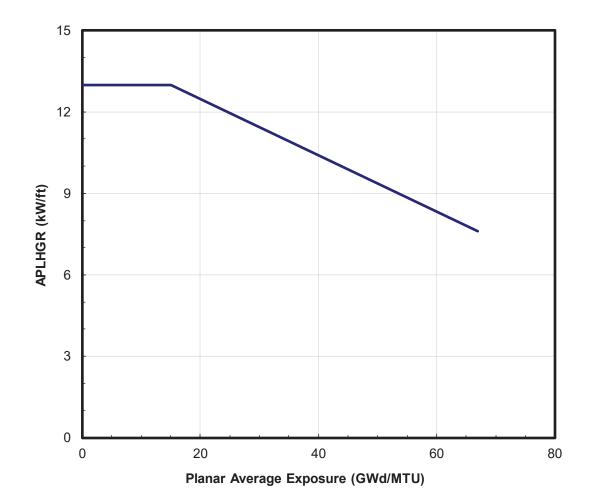
2.2 Off-Rated Power Dependent Limit: APLHGRP

Reference 1 does not specify a power dependent APLHGR. Therefore, MAPFAC_P is set to a value of 1.0.

2.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. No additional power dependent limitation is required.

2.3 Off-Rated Flow Dependent Limit: APLHGRF


Reference 1 does not specify a flow dependent APLHGR. Therefore, $MAPFAC_F$ is set to a value of **1.0**.

2.4 Single Loop Operation Limit: APLHGRsLO

The single loop operation multiplier for ATRIUM-10XM fuel is **0.85**, per Reference 1.

Date: September 8, 2021

Planar Avg. Exposure	APLHGR Limit
(GWd/MTU)	(kW/ft)
0.0	13.0
15.0	13.0
67.0	7.6

2.5 Equipment Out-Of-Service Corrections

The limits shown in Figure 2.1 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.

In-Service	All equipment In-Service*
RPTOOS	EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS	Turbine Bypass Valve(s) Out-Of-Service
PLUOOS	Power Load Unbalance Out-Of-Service
FHOOS (or FFWTR)	Feedwater Heaters Out-Of-Service or Final Feedwater Temperature Reduction
RCPOOS	One Recirculation Pump Out-Of-Service

^{*} All equipment service conditions assume 1 SRVOOS.

3 LHGR Limits

(Technical Specification 3.2.3, 3.3.4.1, & 3.7.5)

The LHGR limit is determined by adjusting the rated power LHGR limit for off-rated power and off-rated flow conditions. The most limiting of these is then used as follows:

LHGR limit = MIN (LHGR_P, LHGR_F)

where:

LHGR₽	off-rated power LHGR limit	[LHGR _{RATED} * LHGRFAC _P]
LHGR _F	off-rated flow LHGR limit	[LHGR _{RATED} * LHGRFAC _F]

3.1 Rated Power and Flow Limit: LHGRRATED

The rated conditions LHGR for all fuel are identified per Reference 1. The rated conditions LHGR for ATRIUM-10XM fuel is shown in Figure 3.1. The LHGR limit is consistent with Reference 3.

3.2 Off-Rated Power Dependent Limit: LHGRP

LHGR limits are adjusted for off-rated power conditions using the LHGRFAC_P multiplier provided in Reference 1. The multiplier is split into two sub cases: turbine bypass valves in and out-of-service. The base case multipliers are shown in Figure 3.2.

3.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional limits are shown in Figure 3.4 and Figure 3.5, based on temperature conditions identified in Table 3.1.

	Temperature		
Power	Range 1	Range 2	
(% Rated)	(°F)	(°F)	
23	155.0	150.0	
30	162.0	157.0	
40	172.0	167.0	
50	182.0	177.0	

Table 3.1 Startup Feedwater Temperature Basis

3.3 Off-Rated Flow Dependent Limit: LHGRF

LHGR limits are adjusted for off-rated flow conditions using the LHGRFAC_F multiplier provided in Reference 1. Multipliers are shown in Figure 3.3.

3.4 Equipment Out-Of-Service Corrections

The limits shown in Figure 3.1 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.*

In-Service	All equipment In-Service
RPTOOS	EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS	Turbine Bypass Valve(s) Out-Of-Service
PLUOOS	Power Load Unbalance Out-Of-Service
FHOOS (or FFWTR)	Feedwater Heaters Out-Of-Service or Final Feedwater Temperature Reduction
RCPOOS	One Recirculation Pump Out-Of-Service

Off-rated power corrections shown in Figure 3.2 are dependent on operation of the Turbine Bypass Valve system. For this reason, separate limits are to be applied for TBVIS or TBVOOS operation. The limits have no dependency on RPTOOS, PLUOOS, FHOOS/FFWTR, or SLO.

Off-rated flow corrections shown in Figure 3.3 are bounding for all EOOS conditions.

Off-rated power corrections shown in Figure 3.4 and Figure 3.5 are also dependent on operation of the Turbine Bypass Valve system. In this case, limits support FHOOS operation during startup. These limits have no dependency on RPTOOS, PLUOOS, or SLO.

All equipment service conditions assume 1 SRVOOS.

Date: September 8, 2021

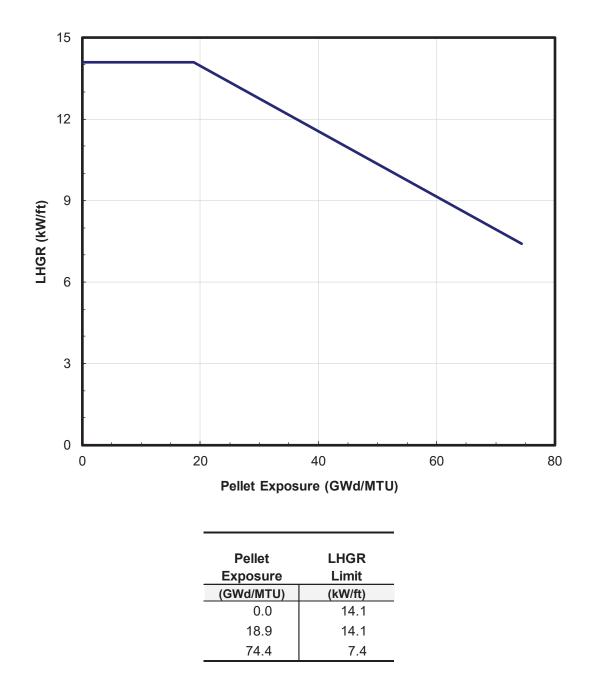
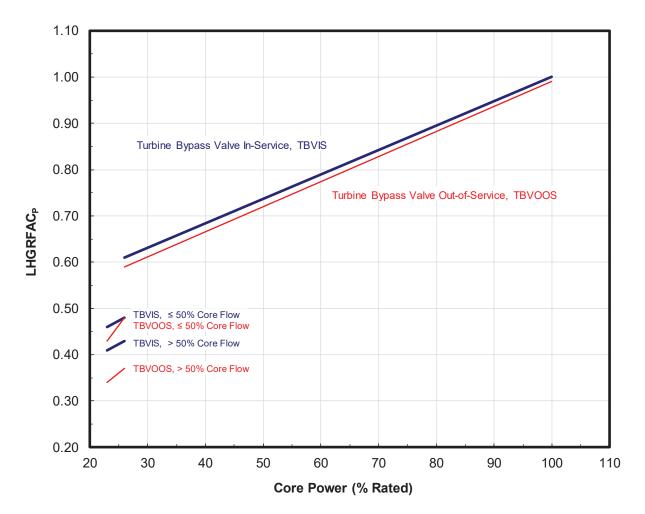
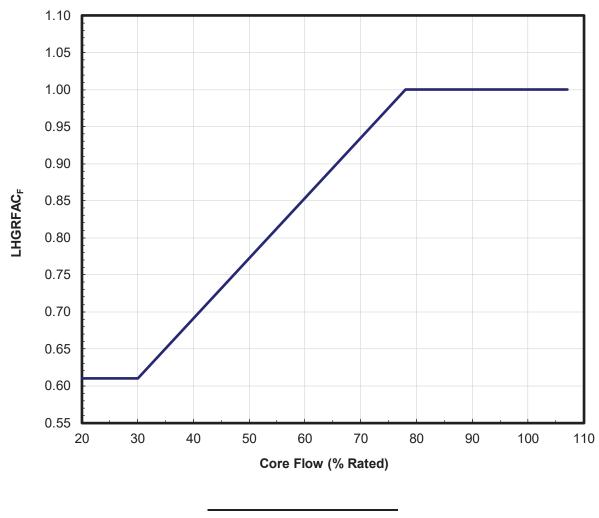



Figure 3.1 LHGR_{RATED} for ATRIUM-10XM Fuel

Date: September 8, 2021



Turbine Bypa	Turbine Bypass In-Service		Turbine Bypass Out-of-Service	
Core		Core		
Power		Power		
(% Rated)		(% Rated)		
100.0	1.00	100.0	0.99	
26.0	0.61	26.0	0.59	
Core Flow >	50% Rated	Core Flo	w > 50% Rated	
26.0	0.43	26.0	0.37	
23.0	0.41	23.0	0.34	
Core Flow ≤ 50% Rated		Core Flo	Core Flow ≤ 50% Rated	
26.0	0.48	26.0	0.48	
23.0	0.46	23.0	0.43	

Figure 3.2 Base Operation LHGRFAC_P for ATRIUM-10XM Fuel (Independent of other EOOS conditions)

Date: September 8, 2021

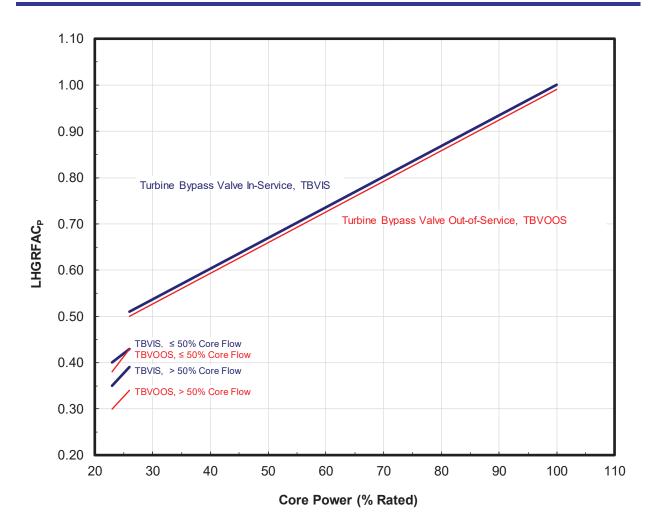

Core Flow	LHGRFAC _F
(% Rated)	
0.0	0.61
30.0	0.61
78.1	1.00
107.0	1.00

Figure 3.3 LHGRFAC_F for ATRIUM-10XM Fuel (*Values bound all EOOS conditions*)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

Date: September 8, 2021

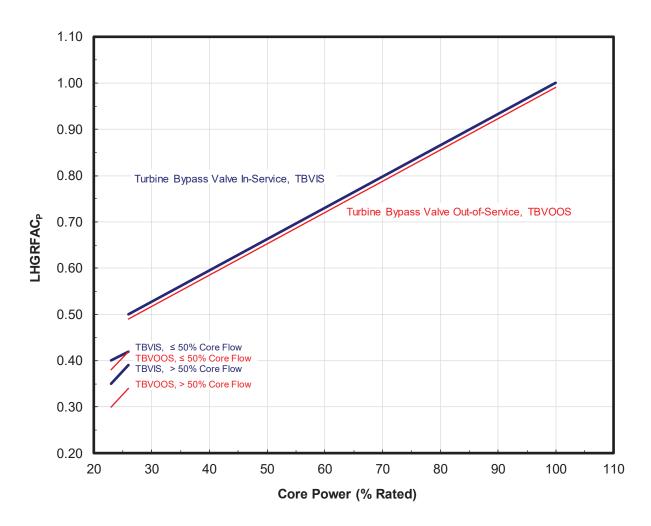

		_		
Turbine Bypa	Turbine Bypass In-Service		Turbine Bypass Out-of-Service	
Core			Core	
Power	LHGRFAC _P		Power LHGRFAC	
(% Rated)			(% Rated)	
100.0	1.00		100.0 0.99	
26.0	0.51		26.0 0.50	
Core Flow >	50% Rated		Core Flow > 50% Rated	
26.0	0.39		26.0 0.34	
23.0	0.35		23.0	0.30
Core Flow S	50% Rated		Core Flow ≤ 50% Rated	
26.0	0.43		26.0	0.43
23.0	0.40		23.0	0.38

Figure 3.4 Startup Operation LHGRFAC_P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 1 (no Feedwater heating during startup)

(Limits valid at and below 50% power)

Date: September 8, 2021

26.0 0.50 26.0 0 Core Flow > 50% Rated Core Flow > 50% R 26.0 0 26.0 0.39 26.0 0 23.0 0.35 23.0 0	
Power LHGRFAC _P Power LHGR (% Rated) (% Rated) (% Rated) (% Rated) 100.0 1.00 100.0 0 26.0 0.50 26.0 0 26.0 0.39 26.0 0 23.0 0.35 23.0 0	FAC _P
(% Rated) (% Rated) 100.0 1.00 100.0 0.00 26.0 0.50 26.0 0.00 Core Flow > 50% Rated Core Flow > 50% R Core Flow > 50% R 26.0 0.39 26.0 0.00 23.0 0.35 23.0 0.00	FAC _P
100.0 1.00 100.0 0 26.0 0.50 26.0 0 Core Flow > 50% Rated Core Flow > 50% R 26.0 0 26.0 0.39 26.0 0 23.0 0.35 23.0 0	
26.0 0.50 26.0 0 Core Flow > 50% Rated Core Flow > 50% R 26.0 0 26.0 0.39 26.0 0 23.0 0.35 23.0 0	
Core Flow > 50% Rated Core Flow > 50% R 26.0 0.39 26.0 0 23.0 0.35 23.0 0	.99
26.0 0.39 26.0 0 23.0 0.35 23.0 0	.49
23.0 0.35 23.0 0	ated
	.34
	.30
Core Flow \leq 50% RatedCore Flow \leq 50% R	ated
26.0 0.42 26.0 0	
23.0 0.40 23.0 0	.42

Figure 3.5 Startup Operation LHGRFAC_P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 2 (no Feedwater heating during startup)

(Limits valid at and below 50% power)

4 OLMCPR Limits

(Technical Specification 3.2.2, 3.3.4.1, & 3.7.5)

OLMCPR is calculated to be the most limiting of the flow or power dependent values

OLMCPR limit = MAX ($MCPR_F$, $MCPR_P$)

where:

MCPR _F	core flow-dependent MCPR limit
MCPR _P	power-dependent MCPR limit

4.1 Flow Dependent MCPR Limit: MCPRF

MCPR_F limits are dependent upon core flow (% of Rated), and the max core flow limit, (Rated or Increased Core Flow, ICF). MCPR_F limits are shown in Figure 4.1, per Reference 1. Limits are valid for all EOOS combinations. No adjustment is required for SLO conditions.

4.2 Power Dependent MCPR Limit: MCPRP

MCPR_P limits are dependent upon:

- Core Power Level (% of Rated)
- Technical Specification Scram Speed (TSSS), Nominal Scram Speed (NSS), or Optimum Scram Speed (OSS)
- Cycle Operating Exposure (NEOC, EOC, and CD as defined in this section)
- Equipment Out-Of-Service Options
- Two or Single recirculation Loop Operation (TLO vs. SLO)

The MCPR_P limits are provided in Table 4.2 through Table 4.9, where each table contains the limits for all fuel types and EOOS options (for a specified scram speed and exposure range). The CMSS determines MCPR_P limits, from these tables, based on linear interpolation between the specified powers.

4.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional power dependent limits are shown in Table 4.5 through Table 4.8 based on temperature conditions identified in Table 3.1.

4.2.2 <u>Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS)</u>

MCPR_P limits are provided for three different sets of assumed scram speeds. The Technical Specification Scram Speed (TSSS) MCPR_P limits are applicable at all times, as long as the scram time surveillance demonstrates the times in Technical Specification Table 3.1.4-1 are met. Both Nominal Scram Speeds (NSS) and/or Optimum Scram Speeds (OSS) may be used, as long as the scram time surveillance demonstrates Table 4.1 times are applicable.^{*†}

Notch Position	Nominal Scram Timing	Optimum Scram Timing
(index)	(seconds)	(seconds)
46	0.420	0.380
36	0.980	0.875
26	1.600	1.465
6	2.900	2.900

Table 4.1 Nominal Scram Time Basis

In demonstrating compliance with the NSS and/or OSS scram time basis, surveillance requirements from Technical Specification 3.1.4 apply; accepting the definition of SLOW rods should conform to scram speeds shown in Table 4.1. If conformance is not demonstrated, TSSS based MCPR_P limits are applied.

On initial cycle startup, TSSS limits are used until the successful completion of scram timing confirms NSS and/or OSS based limits are applicable.

4.2.3 Exposure Dependent Limits

Exposures are tracked on a Core Average Exposure basis (CAVEX, not Cycle Exposure). Higher exposure MCPR_P limits are always more limiting and may be used for any Core Average Exposure up to the ending exposure. Per Reference 1, MCPR_P limits are provided for the following exposure ranges:

BOC to NEOC	NEOC corresponds to	30,758.8 MWd / MTU
BOC to EOCLB	EOCLB corresponds to	34,078.5 MWd / MTU
BOC to End of Coast	End of Coast	35,767.8 MWd / MTU

NEOC refers to a Near EOC exposure point.

^{*} Reference 1 analysis results are based on information identified in Reference 4.

[†] Drop out times consistent with method used to perform actual timing measurements (i.e., including pickup/dropout effects).

The EOCLB exposure point is not the true End-Of-Cycle exposure. Instead it corresponds to a licensing exposure window exceeding expected end-of-full-power-life.

The End of Coast exposure point represents a licensing exposure point exceeding the expected end-of-cycle exposure including cycle extension options.

4.2.4 Equipment Out-Of-Service (EOOS) Options

EOOS options^{*} covered by MCPR_P limits are given by the following:

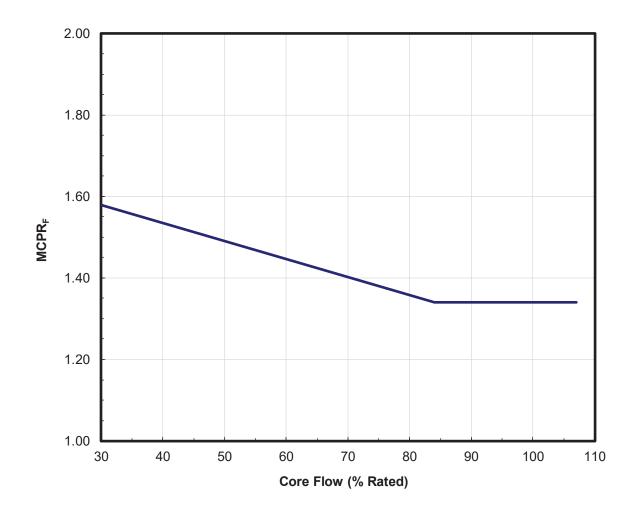
In-Service	All equipment In-Service
RPTOOS	EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS	Turbine Bypass Valve(s) Out-Of-Service
RPTOOS+TBVOOS	Combined RPTOOS and TBVOOS
PLUOOS	Power Load Unbalance Out-Of-Service
PLUOOS+RPTOOS	Combined PLUOOS and RPTOOS
PLUOOS+TBVOOS	Combined PLUOOS and TBVOOS
PLUOOS+TBVOOS+RPTOOS	Combined PLUOOS, RPTOOS, and TBVOOS
FHOOS (or FFWTR)	Feedwater Heaters Out-Of-Service (or Final
	Feedwater Temperature Reduction)
RCPOOS	One Recirculation Pump Out-Of-Service

For exposure ranges up to NEOC and EOCLB, additional combinations of MCPR_P limits are also provided including FHOOS. The coast down exposure range assumes application of FFWTR. FHOOS based MCPR_P limits for the coast down exposure are redundant because the temperature setdown assumption is identical with FFWTR.

4.2.5 Single-Loop-Operation (SLO) Limits

When operating in RCPOOS conditions, MCPRp limits are constructed differently from the normal operating RCP conditions. The limiting event for RCPOOS is a pump seizure scenario, which sets the upper bound for allowed core power and flow[†]. This event is not impacted by scram time assumptions. Specific MCPR_P limits are shown in Table 4.9.

4.2.6 Below Pbypass Limits


Below Pbypass (26% rated power), MCPR_P limits depend upon core flow. One set of MCPR_P limits applies for core flow above 50% of rated; a second set applies if the core flow is less than or equal to 50% rated.

^{*} All equipment service conditions assume 1 SRVOOS.

[†] RCPOOS limits are only valid up to 43.75% rated core power, 50% rated core flow, and an active recirculation drive flow of 17.73 Mlb_m/hr.

Date: September 8, 2021

Core Flow	MCPR _F
(% Rated)	
30.0	1.58
84.0	1.34
107.0	1.34

Figure 4.1 MCPR_F for All Fuel Types (Values bound all EOOS conditions)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

		ATRIUM-10XM		
		BOC	BOC	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.40	1.41	1.42
	90	1.44	1.44	1.47
	77.6	1.49	1.50	1.52
	65	1.55	1.55	1.59
	>50	1.65	1.65	1.72
Base Case	≤50	1.81	1.81	1.81
Dase Gase	40	1.89	1.89	1.92
	26	2.36	2.36	2.49
	26 at > 50%F	2.66	2.66	2.78
	23 at > 50%F	2.84	2.84	2.97
	26 at ≤ 50%F	2.53	2.53	2.64
	23 at ≤ 50%F	2.70	2.70	2.83
	100	1.42	1.42	
	90	1.46	1.47	
	77.6	1.52	1.52	
	65	1.58	1.59	
	>50	1.72	1.72	
FHOOS	≤50	1.81	1.81	
FROUS	40	1.92	1.92	
	26	2.49	2.49	
	26 at > 50%F	2.78	2.78	
	23 at > 50%F	2.97	2.97	
	26 at ≤ 50%F	2.64	2.64	
	23 at ≤ 50%F	2.83	2.83	

Table 4.2 MCPR_P Limits for All Fuel Types: Optimum Scram Time Basis^{*}

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. FFWTR/FHOOS is supported for the BOC to End of Coast limits.

	1	ATRIUM-10XM		
		BOC	BOC	BOC
Operating	Power	to	to	to End of
Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.41	1.42	1.44
	90	1.45	1.45	1.48
	77.6 65	1.50 1.56	1.50 1.56	1.53 1.61
	>50	1.56	1.56	1.01
	≤50	1.81	1.81	1.81
Base Case	40	1.89	1.89	1.95
	26	2.39	2.39	2.52
	26 at > 50%F	2.66	2.66	2.78
	23 at > 50%F	2.84	2.84	2.97
	26 at ≤ 50%F	2.53	2.53	2.64
	23 at ≤ 50%F	2.70	2.70	2.83
	100	1.45	1.46	1.48
	90	1.48	1.49	1.52
	77.6	1.53	1.54	1.57
	65 >50	1.59 1.68	1.60 1.68	1.64 1.76
	≥50 ≤50	1.81	1.81	1.82
TBVOOS	40	1.89	1.89	1.96
	26	2.39	2.39	2.53
	26 at > 50%F	3.21	3.21	3.33
	23 at > 50%F	3.46	3.46	3.62
	26 at ≤ 50%F	2.88	2.88	3.04
	23 at ≤ 50%F	3.18	3.18	3.35
	100	1.43	1.44	
	90	1.47	1.48	
	77.6 65	1.52 1.61	1.53 1.61	
	>50	1.74	1.74	
	≤50	1.81	1.81	
FHOOS	40	1.95	1.95	
	26	2.52	2.52	
	26 at > 50%F	2.78	2.78	
	23 at > 50%F	2.97	2.97	
	26 at ≤ 50%F	2.64	2.64	
	23 at ≤ 50%F	2.83	2.83	
	100	1.41	1.42	1.44
	90 77 6	1.45	1.45	1.48
PLUOOS	77.6 65	1.50 1.74	1.50 1.74	1.53 1.74
	>50			
	≤50	1.82	1.82	1.82
	40	1.89	1.89	1.95
	26	2.39	2.39	2.52
	26 at > 50%F	2.66	2.66	2.78
	23 at > 50%F	2.84	2.84	2.97
	26 at ≤ 50%F	2.53	2.53	2.64
	23 at ≤ 50%F	2.70	2.70	2.83

Table 4.3 MCPR_P Limits for All Fuel Types: Nominal Scram Time Basis^{*}

^{*} All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.3 MCPR _P Limits for	All Fuel Types: Nominal S	cram Time Basis (<i>continue</i> d	d)*

			ATRIUM-10XM	1
		BOC	BOC	BOC
a "	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.47	1.48	
	90	1.51	1.52	
	77.6	1.57	1.57	
	65	1.64	1.64	
	>50	1.76	1.76	
TBVOOS	≤50	1.82	1.82	
FHOOS	40	1.96	1.96	
	26	2.53	2.53	
	26 at > 50%F	3.33	3.33	
	23 at > 50%F	3.62	3.62	
	26 at ≤ 50%F	3.04	3.04	
	23 at ≤ 50%F	3.35	3.35	
	100	1.45	1.46	1.48
	90	1.48	1.49	1.52
	77.6	1.53	1.54	1.57
	65 >50	1.74	1.74	1.75
TBVOOS		1.82	1.82	1.82
PLUOOS	≤50	-		
F 20003	40	1.89	1.89	1.96
	26 26 at > 50%F	2.39 3.21	2.39 3.21	2.53 3.33
	28 at > 50%F 23 at > 50%F	3.46	3.21 3.46	3.62
	25 at ≤ 50%F 26 at ≤ 50%F	2.88	2.88	3.02
	28 at ≤ 50%F 23 at ≤ 50%F	2.00 3.18	2.00 3.18	3.35
	100	1.43	1.44	
	90	1.47	1.48	
	77.6	1.52	1.53	
	65	1.74	1.74	
	>50			
FHOOS	≤50	1.82	1.82	
PLUOOS	40	1.95	1.95	
	26	2.52	2.52	
	26 at > 50%F	2.78	2.78	
	23 at > 50%F	2.97	2.97	
	26 at ≤ 50%F	2.64	2.64	
	23 at ≤ 50%F	2.83	2.83	
	100	1.47	1.48	
	90	1.51	1.52	
	77.6	1.57	1.57	
TBVOOS FHOOS	65	1.75	1.75	
	>50			
	≤50	1.82	1.82	
PLUOOS	40	1.96	1.96	
1 20000	26	2.53	2.53	
	26 at > 50%F	3.33	3.33	
	23 at > 50%F	3.62	3.62	
	26 at ≤ 50%F	3.04	3.04	
	23 at ≤ 50%F	3.35	3.35	

^{*} All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.4 MCPR_P Limits for All Fuel Types: Technical Specification Scram Time Basis^{*}

		ATRIUM-10XM		
		BOC	BOC	BOC
A 1	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.42	1.43	1.46
	90	1.46	1.47	1.50
	77.6	1.51	1.51	1.57
	65 >50	1.59 1.70	1.59 1.70	1.65 1.78
	>50 ≤50	1.70	1.70	1.70
Base Case	<u>≤</u> 30 40	1.90	1.90	1.98
	26	2.41	2.41	2.55
	26 at > 50%F	2.66	2.66	2.79
	23 at > 50%F	2.84	2.84	2.98
	26 at ≤ 50%F	2.53	2.53	2.65
	23 at ≤ 50%F	2.70	2.70	2.84
	100	1.46	1.47	1.50
	90	1.49	1.50	1.54
	77.6	1.54	1.55	1.60
	65	1.61	1.61	1.68
	>50	1.71	1.71	1.80
TBVOOS	≤50	1.82	1.82	1.84
101000	40	1.90	1.90	2.00
	26	2.41	2.41	2.56
	26 at > 50%F	3.21	3.21	3.34
	23 at > 50%F	3.46	3.46	3.63
	26 at ≤ 50%F	2.88	2.88	3.05
	23 at ≤ 50%F	3.18	3.18	3.36
	100 90	1.46 1.50	1.46 1.50	
	77.6	1.50	1.50	
	65	1.65	1.65	
	>50	1.78	1.78	
	≤50	1.83	1.83	
FHOOS	40	1.98	1.98	
	26	2.55	2.55	
	26 at > 50%F	2.79	2.79	
	23 at > 50%F	2.98	2.98	
	26 at ≤ 50%F	2.65	2.65	
	23 at ≤ 50%F	2.84	2.84	
	100	1.42	1.43	1.46
PLUOOS	90	1.46	1.47	1.50
	77.6	1.51	1.51	1.57
	65	1.74	1.74	1.75
	>50			
	≤50 40	1.83	1.83	1.83
	40	1.90 2.41	1.90	1.90
	26 26 at > 50%F	2.41	2.41 2.66	2.55 2.79
	26 at > 50%F 23 at > 50%F	2.00	2.00	2.79
	23 at > 50%F 26 at ≤ 50%F	2.84	2.84	2.98
	20 at ≤ 50%F 23 at ≤ 50%F	2.55	2.55	2.84

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

			ATRIUM-10XM		
		BOC	BOC	BOC	
	Power	to	to	to End of	
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	
	100	1.50	1.50		
	90	1.53	1.54		
	77.6	1.60	1.60		
	65	1.68	1.68		
	>50	1.80	1.80		
TBVOOS	≤50	1.84	1.84		
FHOOS	40	2.00	2.00		
	26	2.56	2.56		
	26 at > 50%F	3.34	3.34		
	23 at > 50%F	3.63	3.63		
	26 at ≤ 50%F	3.05	3.05		
	23 at ≤ 50%F	3.36	3.36		
	100	1.46	1.47	1.50	
	90	1.49	1.50	1.54	
	77.6	1.54	1.55	1.60	
	65 >50	1.74	1.74	1.76	
TBVOOS		1.83	1.83	 1.84	
PLUOOS	≤50 40	1.03	1.03	2.00	
FL0003	40 26	2.41	2.41	2.00	
	20 26 at > 50%F	3.21	3.21	3.34	
	23 at > 50%F	3.46	3.46	3.63	
	26 at ≤ 50%F	2.88	2.88	3.05	
	23 at ≤ 50%F	3.18	3.18	3.36	
	100	1.46	1.46		
	90	1.50	1.50		
	77.6	1.57	1.57		
	65	1.75	1.75		
	>50				
FHOOS	≤50	1.83	1.83		
PLUOOS	40	1.98	1.98		
	26	2.55	2.55		
	26 at > 50%F	2.79	2.79		
	23 at > 50%F	2.98	2.98		
	26 at ≤ 50%F	2.65	2.65		
	23 at ≤ 50%F	2.84	2.84		
	100	1.50	1.50		
	90	1.53	1.54		
	77.6	1.60	1.60		
	65	1.76	1.76		
TBVOOS FHOOS PLUOOS	>50				
	≤50	1.84	1.84		
	40	2.00	2.00		
	26	2.56	2.56		
	26 at > 50%F	3.34	3.34		
	23 at > 50%F	3.63	3.63		
	26 at ≤ 50%F	3.05	3.05		
	23 at ≤ 50%F	3.36	3.36		

^{*} All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

		ATRIUM-10XM		
		BOC	BOC	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.43	1.44	1.44
	90	1.47	1.48	1.48
	77.6	1.52	1.53	1.53
	65	1.74	1.74	1.74
	>50			
TBVIS	≤50	1.89	1.89	1.89
	40	2.14	2.14	2.14
	26	2.82	2.82	2.82
	26 at > 50%F	3.06	3.06	3.06
	23 at > 50%F	3.31	3.31	3.31
	26 at ≤ 50%F	2.91	2.91	2.91
	23 at ≤ 50%F	3.14	3.14	3.14
	100	1.47	1.48	1.48
	90	1.51	1.52	1.52
	77.6	1.57	1.57	1.57
	65	1.75	1.75	1.75
	>50			
TBVOOS	≤50	1.90	1.90	1.90
187003	40	2.15	2.15	2.15
	26	2.83	2.83	2.83
	26 at > 50%F	3.57	3.57	3.57
	23 at > 50%F	3.87	3.87	3.87
	26 at ≤ 50%F	3.27	3.27	3.27
	23 at ≤ 50%F	3.61	3.61	3.61

Table 4.5 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Nominal Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Limits are only valid up to 50% rated core power.

		ATRIUM-10XM		
		BOC	BOC	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.43	1.44	1.44
	90	1.47	1.48	1.48
	77.6	1.52	1.53	1.53
	65	1.74	1.74	1.74
	>50			
TBVIS	≤50	1.90	1.90	1.90
1010	40	2.16	2.16	2.16
	26	2.85	2.85	2.85
	26 at > 50%F	3.08	3.08	3.08
	23 at > 50%F	3.32	3.32	3.32
	26 at ≤ 50%F	2.92	2.92	2.92
	23 at ≤ 50%F	3.17	3.17	3.17
	100	1.47	1.48	1.48
	90	1.51	1.52	1.52
	77.6	1.57	1.57	1.57
	65	1.75	1.75	1.75
	>50			
TBVOOS	≤50	1.91	1.91	1.91
IBVOOS	40	2.17	2.17	2.17
	26	2.86	2.86	2.86
	26 at > 50%F	3.58	3.58	3.58
	23 at > 50%F	3.89	3.89	3.89
	26 at ≤ 50%F	3.28	3.28	3.28
	23 at ≤ 50%F	3.63	3.63	3.63

Table 4.6 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Nominal Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Limits are only valid up to 50% rated core power.

		ATRIUM-10XM		
		BOC	BOC	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.46	1.46	1.46
	90	1.50	1.50	1.50
	77.6	1.57	1.57	1.57
	65	1.75	1.75	1.75
	>50			
TBVIS	≤50	1.93	1.93	1.93
IDVIO	40	2.18	2.18	2.18
	26	2.86	2.86	2.86
	26 at > 50%F	3.07	3.07	3.07
	23 at > 50%F	3.32	3.32	3.32
	26 at ≤ 50%F	2.92	2.92	2.92
	23 at ≤ 50%F	3.15	3.15	3.15
	100	1.50	1.50	1.50
	90	1.53	1.54	1.54
	77.6	1.60	1.60	1.60
	65	1.76	1.76	1.76
	>50			
TBVOOS	≤50	1.94	1.94	1.94
	40	2.19	2.19	2.19
	26	2.87	2.87	2.87
	26 at > 50%F	3.58	3.58	3.58
	23 at > 50%F	3.88	3.88	3.88
	26 at ≤ 50%F	3.28	3.28	3.28
	23 at ≤ 50%F	3.62	3.62	3.62

Table 4.7 Startup Operation MCPR _P Limits for Table 3.1 Temperature
Range 1 for All Fuel Types: Technical Specification Scram Time Basis*

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Limits are only valid up to 50% rated core power.

			ATRIUM-10XN	Л
		BOC	BOC	BOC
	Power	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.46	1.46	1.46
	90	1.50	1.50	1.50
	77.6	1.57	1.57	1.57
	65	1.75	1.75	1.75
	>50			
TBVIS	≤50	1.94	1.94	1.94
1010	40	2.20	2.20	2.20
	26	2.89	2.89	2.89
	26 at > 50%F	3.09	3.09	3.09
	23 at > 50%F	3.33	3.33	3.33
	26 at ≤ 50%F	2.93	2.93	2.93
	23 at ≤ 50%F	3.18	3.18	3.18
	100	1.50	1.50	1.50
	90	1.53	1.54	1.54
	77.6	1.60	1.60	1.60
	65	1.76	1.76	1.76
	>50			
TBVOOS	≤50	1.95	1.95	1.95
IBV005	40	2.21	2.21	2.21
	26	2.90	2.90	2.90
	26 at > 50%F	3.59	3.59	3.59
	23 at > 50%F	3.90	3.90	3.90
	26 at ≤ 50%F	3.29	3.29	3.29
	23 at ≤ 50%F	3.64	3.64	3.64

Table 4.8 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Technical Specification Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Limits are only valid up to 50% rated core power.

Table 4.9 MCPR_P Limits for All Fuel Types: Single Loop Operation for All Scram Times^{*}

Operating	Power	BOC to End of COAST
Condition	(% of rated)	ATRIUM-10XM
	100	2.09
	43.75	2.09
	40	2.09
RCPOOS	26	2.57
FHOOS	26 at > 50%F	2.81
	23 at > 50%F	3.00
	26 at ≤ 50%F	2.67
	23 at ≤ 50%F	2.86
	100	2.09
	43.75	2.09
RCPOOS	40	2.09
TBVOOS	26	2.58
PLUOOS	26 at > 50%F	3.36
FHOOS	23 at > 50%F	3.65
	26 at ≤ 50%F	3.07
	23 at ≤ 50%F	3.38
	100	2.12
	43.75	2.12
RCPOOS	40	2.21
TBVOOS	26	2.89
FHOOS1	26 at > 50%F	3.60
	23 at > 50%F	3.90
	26 at ≤ 50%F	3.30
	23 at ≤ 50%F	3.64
	100	2.14
	43.75	2.14
RCPOOS	40	2.23
TBVOOS	26	2.92
FHOOS2	26 at > 50%F	3.61
	23 at > 50%F	3.92
	26 at ≤ 50%F	3.31
	23 at ≤ 50%F	3.66

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop.

RCPOOS limits are only valid up to 43.75% rated core power, 50% rated core flow, and an active recirculation drive flow of 17.73 Mlbm/hr.

5 Thermal-Hydraulic Stability Protection

(Technical Specification 3.3.1.1)

Technical Specification Table 3.3.1.1-1, Function 2f, identifies the function.

Instrument setpoints are established, such that the reactor will be tripped before an oscillation can grow to the point where the SLMCPR is exceeded. With application of Reference 30, the DSS-CD stability solution will be used per Reference 26. The DSS-CD S_{AD} setpoint is 1.10 for TLO and SLO.

New analyses have been developed based on Reference 26. With the implementation of the MELLLA+ operating domain expansion, an ABSP trip is required when the OPRM is out-of-service. The ABSP trip settings define a region of the power to flow map within which an automatic reactor scram occurs. The ABSP trip settings are provided in Table 5.1. If both the OPRM and ABSP are out-of-service, operation within the MELLLA+ domain is not allowed and the MBSP Regions provide stability protection. Table 5.2 and Table 5.3 provide the endpoints for the MBSP regions for nominal and reduced feedwater temperature conditions.

Parameter	Symbol	Setting Value (unit)	Comments	
Slope for Trip	m _{TRIP}	2.00 (% RTP/% RDF)	Slope of ABSP APRM low Flow Biase Trip Linear Segment	
Constant Power Line for Trip	P _{BSP-TRIP}	35.0 (% RTP)	ABSP APRM Flow Biased Trip Setpoint Power Intercept. Constant Power Line for Trip from Zero Drive Flow to Flow Breakpoint Value	
Constant Flow Line for Trip	W _{BSP-TRIP}	49 (% RDF)	ABSP APRM Flow Biased Trip Setpoint Drive Flow Intercept. Constant Flow Line for Trip (see Note 1 below)	
Flow Breakpoint	$W_{BSP\operatorname{-}BREAK}$	30.0 (% RDF)	Flow Breakpoint Value	

Table 5.1	ABSP	Setpoints	for the	Scram	Region
10010 0.1	7.001	Corponito		oorann	rtogion

Note 1: $W_{BSP-TRP}$ can be set to 49.0 % RDF or any higher value up to the intersection of the ABSP sloped line with the APRM Flow Biased STP scram line.

Endpoint	Power (% Rated)	Core Flow (% Rated)	Definition
A1	75.9	52.7	Scram Region (Region I) Boundary Intercept on MELLLA+ Line
B1	35.5	29.0	Scram Region (Region I) Boundary Intercept on Natural Circulation Line (NCL)
A2	66.1	52.0	Controlled Entry Region (Region II) Boundary Intercept on MELLLA Line
B2	25.5	29.0	Controlled Entry Region (Region II) Boundary Intercept on Natural Circulation Line (NCL)

 Table 5.2 Analyzed MBSP Endpoints: Nominal Feedwater Temperature

Table 5.3 Analyzed MBSP Endpoints: Reduced Feedwater Temperature

Endpoint	Power (% Rated)	Core Flow (% Rated)	Definition
A1	64.9	50.5	Scram Region (Region I) Boundary Intercept on MELLLA Line
B1	29.4	29.0	Scram Region (Region I) Boundary Intercept on Natural Circulation Line (NCL)
A2	68.3	54.9	Controlled Entry Region (Region II) Boundary Intercept on MELLLA Line
B2	24.5	29.0	Controlled Entry Region (Region II) Boundary Intercept on Natural Circulation Line (NCL)

6 APRM Flow Biased Rod Block Trip Settings

(Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1)

The APRM rod block trip setting is based upon References 27 & 29, and is defined by the following:

for two loop operation:

$SRB \ \leq$	(0.61W _d + 63.3)	Allowable Value
SRB \leq	(0.61W _d + 62.0)	Nominal Trip Setpoint (NTSP)

where:

SRB	=	Rod Block setting in percent of rated thermal power (3952 MW_t)
W_{d}	=	Recirculation drive flow rate in percent of rated
		(100% drive flow required to achieve 100% core power and flow)

and for single loop operation:

SRB \leq	(0.55(W _d -∆W) + 60.5)	Allowable Value
SRB \leq	(0.55(W _d -∆W) + 58.5)	Nominal Trip Setpoint (NTSP)

where:

SRB	=	Rod Block setting in percent of rated thermal power (3952 MW_t)
W _d	=	Recirculation drive flow rate in percent of rated (100% drive flow required to achieve 100% core power and flow)
ΔW	=	Difference between two-loop and single-loop effective recirculation flow at the same core flow (Δ W=0.0 for two-loop operation)

The APRM rod block trip setting is clamped at a maximum allowable value of 115% (corresponding to a NTSP of 113%).

7 Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)

The RBM trip setpoints and applicable power ranges, based on References 27 & 28, are shown in Table 7.1. Setpoints are based on an HTSP, unfiltered analytical limit of 114%. Unfiltered setpoints are consistent with a nominal RBM filter setting of 0.0 seconds; filtered setpoints are consistent with a nominal RBM filter setting less than 0.5 seconds. Cycle specific CRWE analyses of OLMCPR are documented in Reference 1, superseding values reported in References 27, 28, and 29.

RBM Trip Setpoint	Allowable Value (AV)	Nominal Trip Setpoint (NTSP)
LPSP	27%	25%
IPSP	62%	60%
HPSP	82%	80%
LTSP - unfiltered - filtered	121.7% 120.7%	120.0% 119.0%
ITSP - unfiltered - filtered	116.7% 115.7%	115.0% 114.0%
HTSP - unfiltered - filtered	111.7% 110.9%	110.0% 109.2%
DTSP	90%	92%

Table 7.1	Analytical	RBM	Trip	Setpoints*
	7 thaty tiour		- P	ootpointo

As a result of cycle specific CRWE analyses, RBM setpoints in Technical Specification Table 3.3.2.1-1 are applicable as shown in Table 7.2. Cycle specific setpoint analysis results are shown in Table 7.3, per Reference 1.

· · · · · · · · · · · · · · · · · · ·					
Thermal Power (% Rated)	Applicable MCPR [†]	Notes from Table 3.3.2.1-1	Comment		
N 070/ N 000/	< 1.65	(a), (b), (f), (h)	two loop operation		
≥ 27% and < 90%	< 1.68	(a), (b), (f), (h)	single loop operation		
≥ 90%	< 1.36	(g)	two loop operation [‡]		

Table 7.2	RBM Setpoint Applicability
-----------	----------------------------

^{*} Values are considered maximums. Using lower values, due to RBM system hardware/software limitations, is conservative, and acceptable.

[†] MCPR values shown correspond with, (support), SLMPCR values identified in Reference 1.

[‡] Greater than 90% rated power is not attainable in single loop operation.

RBM HTSP Analytical Limit	CRWE OLMCPR
Unfiltered	
107	1.26
111	1.30
114	1.31
117	1.33

Table 7.3 Control Rod Withdrawal Error Results

Results, compared against the base case OLMCPR results of Table 4.2, indicate SLMCPR remains protected for RBM inoperable conditions (i.e., 114% unblocked).

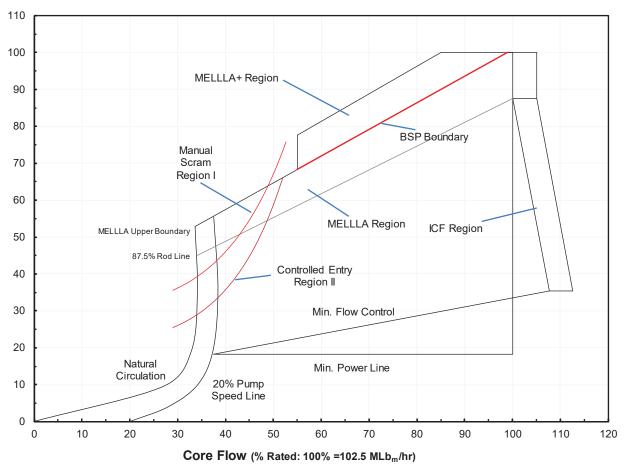
8 Shutdown Margin Limit

(Technical Specification 3.1.1)

Assuming the strongest OPERABLE control blade is fully withdrawn, and all other OPERABLE control blades are fully inserted, the core shall be sub-critical and meet the following minimum shutdown margin:

SDM ≥ 0.38% dk/k

Date: September 8, 2021

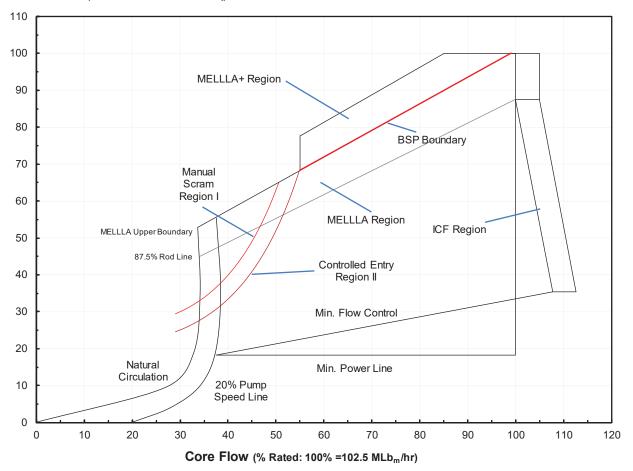

Appendix A: MBSP Maps

ECM: L32 210902 800

Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402

Date: September 8, 2021

Core Power (% Rated: 100% = 3952MW_t)


Figure A.1 MBSP Boundaries For Nominal Feedwater Temperature (Operation in the MELLLA+ Region Prohibited for Feedwater Temperature greater than 10 degrees F below the Nominal Feedwater Temperature)

ECM: L32 210902 800

Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402

Date: September 8, 2021

Core Power (% Rated: 100% = 3952MW_t)

(Operation in the MELLLA+ Region Prohibited for a Reduced Feedwater Temperature greater than 10 degrees F below the Nominal Feedwater Temperature)

Enclosure Tennessee Valley Authority Browns Ferry Nuclear Plant Unit 2

Core Operating Limits Report, (120% OLTP, MELLLA+), for Unit 2 Cycle 22 Operation, TVA-COLR-BF2C22, Revision 1

(See Attached)

Reactor Engineering and Fuels - BWRFE 101 Market Street, Chattanooga, TN 37402 Browns Ferry Unit 2 Cycle Core Operating Limits Report, (120% OL	
TVA-COLR-BF2C22 Revision 1 (Final) (Revision Log, Page v)	
September 2021	
Prepared: B. C. Mitchell, Engineer	Date:
T. W. Elchenberg, Engineer	Date: <u>11/18/2021</u>
ALALLELL A ALLELL Christ	tra, de=main, ou=Main, ou=Corporato, ou=Uters, line Å, email=caselleit#tva.gov xoving this document
Reviewed: B. T. Williamson, Manager, Reactor Engine	Date: <u>11/19/207-(</u> eering
Approved: <u>Chairman, PORC</u>	Date: 12/17/21
Approved: Plant Manager	Date: 12-21-21

Table of Contents

Total Number of Pages = 50 (including review cover sheet)

List of Tables		iii	
List of Figures	5	iv	
Revision Log		v	
Nomenclature)	vi	
References		viii	
1 Introduc	tion	1	
1.1 Pur	pose	1	
1.2 Sco	ре	1	
1.3 Fue	l Loading	1	
1.4 Acc	eptability	2	
2 APLHG	R Limits	3	
2.1 Rat	ed Power and Flow Limit: APLHGR _{RATED}	3	
2.2 Off-	Rated Power Dependent Limit: APLHGR _P	3	
2.2.1	Startup without Feedwater Heaters		
2.3 Off-	Rated Flow Dependent Limit: APLHGR _F	3	
2.4 Sing	gle Loop Operation Limit: APLHGR _{SLO}	3	
2.5 Equ	ipment Out-Of-Service Corrections	6	
3 LHGR L	imits	7	
3.1 Rat	ed Power and Flow Limit: LHGR _{RATED}	7	
3.2 Off-	Rated Power Dependent Limit: LHGR _P	7	
3.2.1	Startup without Feedwater Heaters		
	Rated Flow Dependent Limit: LHGR _F		
	ipment Out-Of-Service Corrections		
	R Limits		
	<i>w</i> Dependent MCPR Limit: MCPR _F		
4.2 Pov	ver Dependent MCPR Limit: MCPR _P		
4.2.1	Startup without Feedwater Heaters	19	
4.2.2	Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS)	20	
4.2.3	Exposure Dependent Limits		
4.2.4	Equipment Out-Of-Service (EOOS) Options	21	
4.2.5	Single-Loop-Operation (SLO) Limits	21	
4.2.6	Below Pbypass Limits		
	I-Hydraulic Stability Protection		
	Flow Biased Rod Block Trip Settings		
	ck Monitor (RBM) Trip Setpoints and Operability		
8 Shutdown Margin Limit			
Appendix A:	MBSP Maps	A-1	

List of Tables

Nuclear Fuel Types	2
Startup Feedwater Temperature Basis	7
Nominal Scram Time Basis	20
MCPRP Limits for All Fuel Types: Optimum Scram Time Basis	23
MCPRP Limits for All Fuel Types: Nominal Scram Time Basis	24
MCPRP Limits for All Fuel Types: Technical Specification Scram Time Basis	26
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Nominal Scram Time Basis	28
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Nominal Scram Time Basis	29
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Technical Specification Scram Time Basis	30
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Technical Specification Scram Time Basis	31
MCPRP Limits for All Fuel Types: Single Loop Operation for All Scram Times	32
ABSP Setpoints for the Scram Region	33
Analyzed MBSP Endpoints: Nominal Feedwater Temperature	34
Analyzed MBSP Endpoints: Reduced Feedwater Temperature	34
Analytical RBM Trip Setpoints	36
RBM Setpoint Applicability	36
Control Rod Withdrawal Error Results	37

List of Figures

APLHGR _{RATED} for ATRIUM-10XM Fuel4
APLHGR _{RATED} for ATRIUM-11 Fuel
LHGR _{RATED} for ATRIUM-10XM Fuel9
LHGR _{RATED} for ATRIUM-11 Fuel
Base Operation LHGRFAC _P for ATRIUM-10XM Fuel11
Base Operation LHGRFAC _P for ATRIUM-11 Fuel12
LHGRFAC _F for ATRIUM-10XM Fuel13
LHGRFAC _F for ATRIUM-11 Fuel14
Startup Operation LHGRFAC _P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 115
Startup Operation LHGRFAC _P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 2 16
Startup Operation LHGRFAC _P for ATRIUM-11 Fuel: Table 3.1 Temperature Range 117
Startup Operation LHGRFAC _P for ATRIUM-11 Fuel: Table 3.1 Temperature Range 218
MCPR _F for All Fuel Types
MBSP Boundaries For Nominal Feedwater Temperature A-2
MBSP Boundaries For Reduced Feedwater Temperature A-3

Revision Log

Number	Page	Description
1-R1	32	Updated Table 4.9 footnote per CR 1718921
0-R0	All	New document.

Nomenclature

ABSP	Automatic Backup Stability Protection
APLHGR	Average Planar LHGR
APRM	Average Power Range Monitor
AREVA NP	Vendor (Framatome, Siemens)
BOC	Beginning of Cycle
BSP	Backup Stability Protection
BWR	Boiling Water Reactor
CAVEX	Core Average Exposure
CD	Coast Down
CMSS	Core Monitoring System Software
COLR	Core Operating Limits Report
CPR	Critical Power Ratio
CRWE	Control Rod Withdrawal Error
CSDM	Cold SDM
DIVOM	Delta CPR over Initial CPR vs. Oscillation Magnitude
DSS-CD	Detect and Suppress Solution – Confirmation Density
EOC	End of Cycle
EOCLB	End-of-Cycle Licensing Basis
EOOS	Equipment OOS
EPU	Extended Power Uprate (120% OLTP)
FFTR	Final Feedwater Temperature Reduction
FFWTR	Final Feedwater Temperature Reduction
FHOOS	Feedwater Heaters OOS
ft	Foot: English unit of measure for length
GNF	Vendor (General Electric, Global Nuclear Fuels)
GWd	Giga Watt Day
HTSP	High TSP
ICA	Interim Corrective Action
ICF	Increased Core Flow (beyond rated)
IS	In-Service
kW	kilo watt: SI unit of measure for power.
LCO	License Condition of Operation
LFWH	Loss of Feedwater Heating
LHGRFAC	LHGR Multiplier (Power or Flow dependent)
LPRM	Low Power Range Monitor
LRNB	Generator Load Reject, No Bypass
MAPFAC	MAPLHGR multiplier (Power or Flow dependent)

Date: September 8, 2021

MBSP	Manual Backup Stability Protection
MCPR	Minimum CPR
MELLLA	Maximum Extended Load Line Limit Analysis
MELLLA+	Maximum Extended Load Line Limit Analysis Plus
MSRV	Moisture Separator Reheater Valve
MSRVOOS	MSRV OOS
MTU	Metric Ton Uranium
MWd/MTU	Mega Watt Day per Metric Ton Uranium
NEOC	Near EOC
NRC	United States Nuclear Regulatory Commission
NSS	Nominal Scram Speed
NTSP	Nominal TSP
OLMCPR	MCPR Operating Limit
OLTP	Original Licensed Thermal Power
OOS	Out-Of-Service
OPRM	Oscillation Power Range Monitor
OSS	Optimum Scram Speed
PBDA	Period Based Detection Algorithm
Pbypass	Power, below which TSV Position and TCV Fast Closure Scrams are Bypassed
PLU	Power Load Unbalance
PLUOOS	PLU OOS
PRNM	Power Range Neutron Monitor
RBM	Rod Block Monitor
RCPOOS	Recirculation Pump OOS (<i>SLO</i>)
RDF	Rated Drive Flow
RPS	Reactor Protection System
RPT	Recirculation Pump Trip
RPTOOS	RPT OOS
RTP	Rated Thermal Power
SDM	Shutdown Margin
SLMCPR	MCPR Safety Limit
SLO	Single Loop Operation
TBV	Turbine Bypass Valve
TBVIS	TBV IS
TBVOOS	Turbine Bypass Valves OOS
TIP	Transversing In-core Probe
TIPOOS	TIP OOS
TLO	Two Loop Operation
TSP	Trip Setpoint
TSSS	Technical Specification Scram Speed
TVA	Tennessee Valley Authority

References

- 1. ANP-3880, Revision 0, **Browns Ferry Unit 2 Cycle 22 Reload Analysis**, Framatome, Inc., November 2020.
- 2. Not Used.
- 3. ANP-3150P, Revision 4, **Mechanical Design Report for Browns Ferry ATRIUM 10XM Fuel Assemblies**, AREVA Inc., November 2017.
- 4. ANP-3855P, Revision 0, **Browns Ferry Unit 2 Cycle 22 Plant Parameters Document**, Framatome Inc., May 2020.
- 5. BFE-4587, Revision 0, **Browns Ferry Unit 2 Cycle 22 In Core Shuffle**, Calculation File, Tennessee Valley Authority, February 2021.

Methodology References

- XN-NF-81-58(P)(A) Revision 2 and Supplements 1 and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, Exxon Nuclear Company, March 1984.
- 7. XN-NF-85-67(P)(A) Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, September 1986.
- EMF-85-74(P) Revision 0 Supplement 1(P)(A) and Supplement 2(P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, Siemens Power Corporation, February 1998.
- 9. ANF-89-98(P)(A) Revision 1 and Supplement 1, **Generic Mechanical Design Criteria for BWR Fuel Designs**, Advanced Nuclear Fuels Corporation, May 1995.
- XN-NF-80-19(P)(A) Volume 1 and Supplements 1 and 2, Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.
- 11. XN-NF-80-19(P)(A) Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, June 1986.
- 12. EMF-2158(P)(A) Revision 0, **Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2**, Siemens Power Corporation, October 1999.
- 13. XN-NF-80-19(P)(A) Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, January 1987.
- 14. XN-NF-84-105(P)(A) Volume 1 and Volume 1 Supplements 1 and 2, **XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis**, Exxon Nuclear Company, February 1987.
- 15. ANP-10307PA, Revision 0, **AREVA MCPR Safety Limit Methodology for Boiling Water Reactors**, AREVA NP Inc., June 2011.

- ANF-913(P)(A) Volume 1 Revision 1 and Volume 1 Supplements 2, 3 and 4,
 COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
- 17. ANF-1358(P)(A) Revision 3, **The Loss of Feedwater Heating Transient in Boiling Water Reactors**, Advanced Nuclear Fuels Corporation, September 2005.
- 18. EMF-2209(P)(A) Revision 3, **SPCB Critical Power Correlation**, AREVA NP Inc., September 2009.
- 19. EMF-2361(P)(A) Revision 0, **EXEM BWR-2000 ECCS Evaluation Model**, Framatome ANP Inc., May 2001, as supplemented by the site specific approval in NRC safety evaluation dated February 15, 2013 and July 31, 2014.
- 20. EMF-2292(P)(A) Revision 0, ATRIUM[™]-10: Appendix K Spray Heat Transfer Coefficients, Siemens Power Corporation, September 2000.
- 21. EMF-CC-074(P)(A), Volume 4, Revision 0, **BWR Stability Analysis: Assessment** of STAIF with Input from MICROBURN-B2, Siemens Power Corporation, August 2000.
- 22. BAW-10255(P)(A), Revision 2, Cycle-Specific DIVOM Methodology Using the RAMONA5-FA Code, AREVA NP Inc., May 2008.
- 23. BAW-10247PA, Revision 0, **Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors**, AREVA NP Inc., April 2008.
- 24. ANP-10298PA, Revision 0, **ACE/ATRIUM 10XM Critical Power Correlation**, AREVA NP Inc., March 2010.
- 25. ANP-3140(P), Revision 0, Browns Ferry Units 1, 2, and 3 Improved K-factor Model for ACE/ATRIUM 10XM Critical Power Correlation, AREVA NP Inc., August 2012.
- 26. NEDC-33075P-A, Revision 8, **GE Hitachi Boiling Water Reactor Detect and Suppress Solution – Confirmation Density**, GE Hitachi, November 2013.

Setpoint References

- 27. EDQ2092900118, R37, Setpoint and Scaling Calculation for Neutron Monitoring & *Recirculation Flow Loops*, Calculation File, Tennessee Valley Authority, December 4, 2020.
- 28. Task T0500, Revision 0, **Neutron Monitoring System w/RBM**, Project Task Report, GE Hitachi Nuclear Energy, June 2017.
- 29. Task T0506, Revision 0, **TS Instrument Setpoints**, Project Task Report, Tennessee Valley Authority, August, 2017.
- 30. NEDC-33006P-A, Revision 3, General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus, GE Energy Nuclear, June 2009.

1 Introduction

In anticipation of cycle startup, it is necessary to describe the expected limits of operation.

1.1 Purpose

The primary purpose of this document is to satisfy requirements identified by unit technical specification section 5.6.5. This document may be provided, upon final approval, to the NRC.

1.2 Scope

This document will discuss the following areas:

- Average Planar Linear Heat Generation Rate (APLHGR) Limit (Technical Specifications 3.2.1 and 3.7.5) Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- Linear Heat Generation Rate (LHGR) Limit (Technical Specification 3.2.3, 3.3.4.1, and 3.7.5)
 Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- Minimum Critical Power Ratio Operating Limit (OLMCPR) (Technical Specifications 3.2.2, 3.3.4.1, 3.7.5 and Table 3.3.2.1-1)
 Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- ➤ Thermal-Hydraulic Stability Protection (Technical Specification Table 3.3.1.1)
 Applicability: Mode 1, ≥ (as specified in Technical Specifications Table 3.3.1.1-1)
- Average Power Range Monitor (APRM) Flow Biased Rod Block Trip Setting (Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1) Applicability: Mode 1, ≥ (as specified in Technical Requirements Manuals Table 3.3.4-1)
- Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)
 Applicability: Mode 1, ≥ % RTP as specified in Table 3.3.2.1-1 (TS definition of RTP)
- Shutdown Margin (SDM) Limit (Technical Specification 3.1.1)
 Applicability: All Modes

1.3 Fuel Loading

The core will contain fresh and exposed ATRIUM-10XM, as well as a limited number of ATRIUM-11 lead fuel assemblies. Nuclear fuel types used in the core loading are shown in Table 1.1. The core shuffle and final loading were explicitly evaluated for BOC cold shutdown margin performance as documented per Reference 5.

Fuel Description	Original Cycle	Number of Assemblies	Nuclear Fuel Type (NFT)	Fuel Names (Range)
ATRIUM 11 A11-3693B-13GV80-FBF	19	4	17	FBF653-FBF660
ATRIUM 10XM XMLC-4102B-11GV70-FBG-B	20	47	18	FBG701-FBG748
ATRIUM 10XM XMLC-4062B-13GV80-FBG-C	20	77	19	FBG749-FBG900
ATRIUM 10XM XMLC-3948B-13GV70-FBG-B	20	8	20	FBG901-FBG988
ATRIUM-10XM XMLC-4087B-15GV80-FBH	21	176	21	FBH001-FBH176
ATRIUM-10XM XMLC-4036B-15GV80-FBH	21	88	22	FBH177-FBH264
ATRIUM-10XM XMLC-4093B-10GV80-FBH	21	56	23	FBH265-FBH320
ATRIUM-10XM XMLC-4058B-15GV80-FBJ	22	216	24	FBJ331-FBJ546
ATRIUM-10XM XMLC-4015B-15GV80-FBJ	22	92	25	FBJ547-FBJ638

Table 1.1	Nuclear Fuel	Types*
-----------	--------------	--------

1.4 Acceptability

Limits discussed in this document were generated based on NRC approved methodologies per References 6 through 26.

The table identifies the expected fuel type breakdown in anticipation of final core loading. The final composition of the core depends upon uncertainties during the outage such as discovering a failed fuel bundle, or other bundle damage. Minor core loading changes, due to unforeseen events, will conform to the safety and monitoring requirements identified in this document.

2 APLHGR Limits

(Technical Specifications 3.2.1 & 3.7.5)

The APLHGR limit is determined by adjusting the rated power APLHGR limit for off-rated power, off-rated flow, and SLO conditions. The most limiting of these is then used as follows:

APLHGR limit = MIN ($APLHGR_P$, $APLHGR_F$, $APLHGR_{SLO}$)

where:

APLHGR _P	off-rated power APLHGR limit	[APLHGR _{RATED} * MAPFAC _P]
APLHGR _F	off-rated flow APLHGR limit	[APLHGR _{RATED} * MAPFAC _F]
APLHGR _{SLO}	SLO APLHGR limit	[APLHGR _{RATED} * SLO Multiplier]

2.1 Rated Power and Flow Limit: APLHGRRATED

The rated conditions APLHGR for all fuel are identified per Reference 1. The rated conditions APLHGR for ATRIUM-10XM fuel are shown in Figure 2.1. The rated conditions APLHGR for ATRIUM-11 are shown in Figure 2.2.

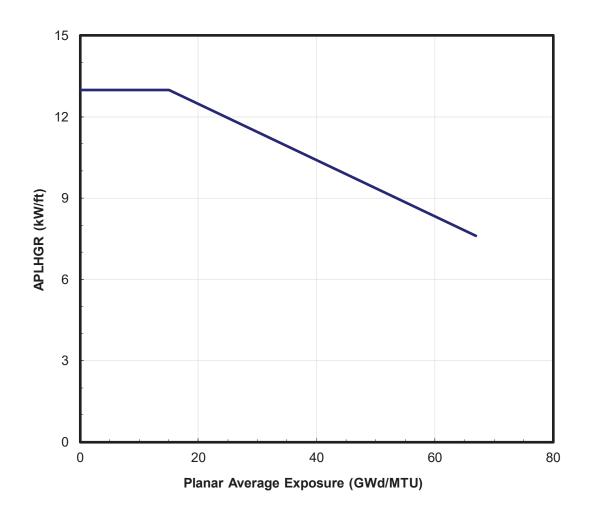
2.2 Off-Rated Power Dependent Limit: APLHGRP

Reference 1 does not specify a power dependent APLHGR. Therefore, MAPFAC_P is set to a value of **1.0**.

2.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. No additional power dependent limitation is required.

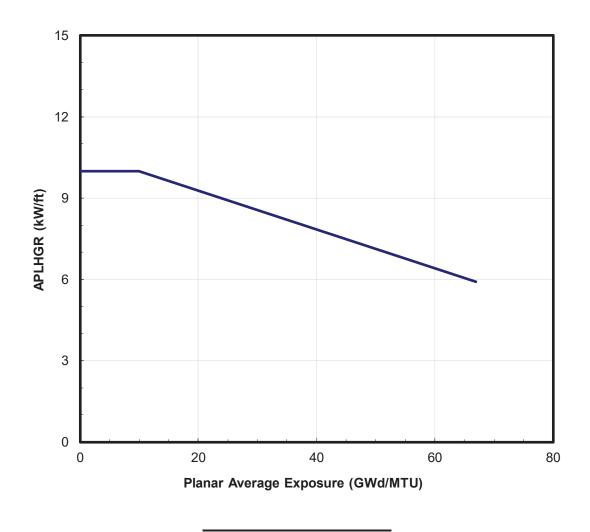
2.3 Off-Rated Flow Dependent Limit: APLHGRF


Reference 1 does not specify a flow dependent APLHGR. Therefore, $MAPFAC_F$ is set to a value of **1.0**.

2.4 Single Loop Operation Limit: APLHGRsLo

The single loop operation multiplier for ATRIUM-10XM and ATRIUM-11 fuel is **0.85**, per Reference 1.

Date: September 8, 2021



Planar Avg. Exposure	APLHGR Limit
(GWd/MTU)	(kW/ft)
0.0	13.0
15.0	13.0
67.0	7.6

Figure 2.1 APLHGR_{RATED} for ATRIUM-10XM Fuel

Date: September 8, 2021

Planar Avg.	APLHGR
Exposure	Limit
(GWd/MTU)	(kW/ft)
0.0	10
10.0	10
67.0	5.9

Figure 2.2 APLHGR_{RATED} for ATRIUM-11 Fuel

2.5 Equipment Out-Of-Service Corrections

The limits shown in Figure 2.1 and Figure 2.2 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.

In-Service	All equipment In-Service*
RPTOOS	EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS	Turbine Bypass Valve(s) Out-Of-Service
PLUOOS	Power Load Unbalance Out-Of-Service
FHOOS (or FFWTR)	Feedwater Heaters Out-Of-Service or Final Feedwater
	Temperature Reduction
RCPOOS	One Recirculation Pump Out-Of-Service

^{*} All equipment service conditions assume 1 SRVOOS.

3 LHGR Limits

(Technical Specification 3.2.3, 3.3.4.1, & 3.7.5)

The LHGR limit is determined by adjusting the rated power LHGR limit for off-rated power and off-rated flow conditions. The most limiting of these is then used as follows:

LHGR limit = MIN (LHGR_P, LHGR_F)

where:

LHGR₽	off-rated power LHGR limit	[LHGR _{RATED} * LHGRFAC _P]
LHGR _F	off-rated flow LHGR limit	[LHGR _{RATED} * LHGRFAC _F]

3.1 Rated Power and Flow Limit: LHGRRATED

The rated conditions LHGR for all fuel are identified per Reference 1. The rated conditions LHGR for ATRIUM-10XM are shown in Figure 3.1. The rated conditions LHGR for ATRIUM-11 fuel is shown in Figure 3.2. The LHGR limit is consistent with Reference 3.

3.2 Off-Rated Power Dependent Limit: LHGRP

LHGR limits are adjusted for off-rated power conditions using the LHGRFAC_P multiplier provided in Reference 1. The multiplier is split into two sub cases: turbine bypass valves in and out-of-service. The base case multipliers are shown in Figure 3.3 and Figure 3.4.

3.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional limits are shown in Figure 3.7 through Figure 3.10, based on temperature conditions identified in Table 3.1.

	Temperature		
Power	Range 1	Range 2	
(% Rated)	(°F)	(°F)	
23	155.0	150.0	
30	162.0	157.0	
40	172.0	167.0	
50	182.0	177.0	

Table 3.1 Startup Feedwater Temperature Basis

3.3 Off-Rated Flow Dependent Limit: LHGRF

LHGR limits are adjusted for off-rated flow conditions using the LHGRFAC_F multiplier provided in Reference 1. Multipliers are shown in Figure 3.5 through Figure 3.6.

3.4 Equipment Out-Of-Service Corrections

The limits shown in Figure 3.1 and Figure 3.2 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.*

In-Service	All equipment In-Service
RPTOOS	EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS	Turbine Bypass Valve(s) Out-Of-Service
PLUOOS	Power Load Unbalance Out-Of-Service
FHOOS (or FFWTR)	Feedwater Heaters Out-Of-Service or Final Feedwater Temperature Reduction
RCPOOS	One Recirculation Pump Out-Of-Service

Off-rated power corrections shown in Figure 3.3 and Figure 3.4 are dependent on operation of the Turbine Bypass Valve system. For this reason, separate limits are to be applied for TBVIS or TBVOOS operation. The limits have no dependency on RPTOOS, PLUOOS, FHOOS/FFWTR, or SLO.

Off-rated flow corrections shown in Figure 3.5 and Figure 3.6 are bounding for all EOOS conditions.

Off-rated power corrections shown in Figure 3.7 through Figure 3.10 are also dependent on operation of the Turbine Bypass Valve system. In this case, limits support FHOOS operation during startup. These limits have no dependency on RPTOOS, PLUOOS, or SLO.

All equipment service conditions assume 1 SRVOOS.

Date: September 8, 2021

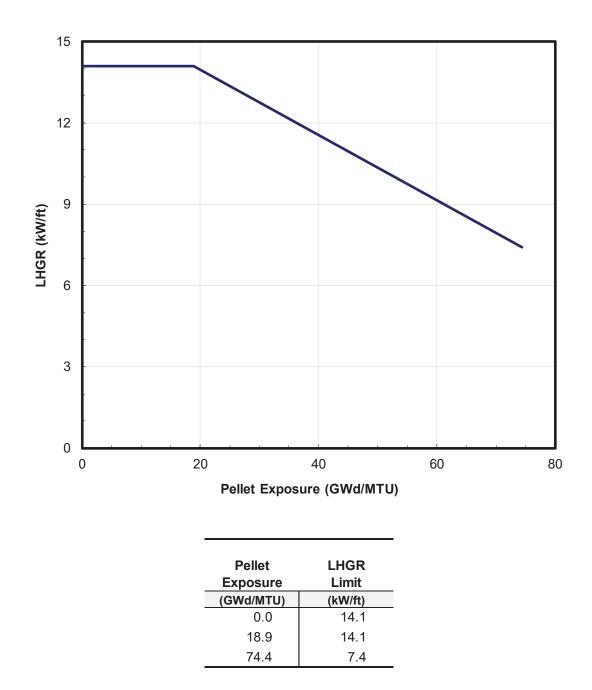
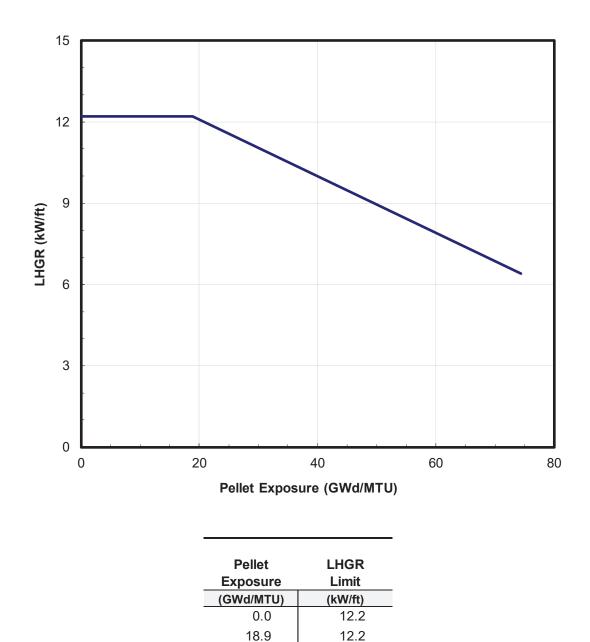
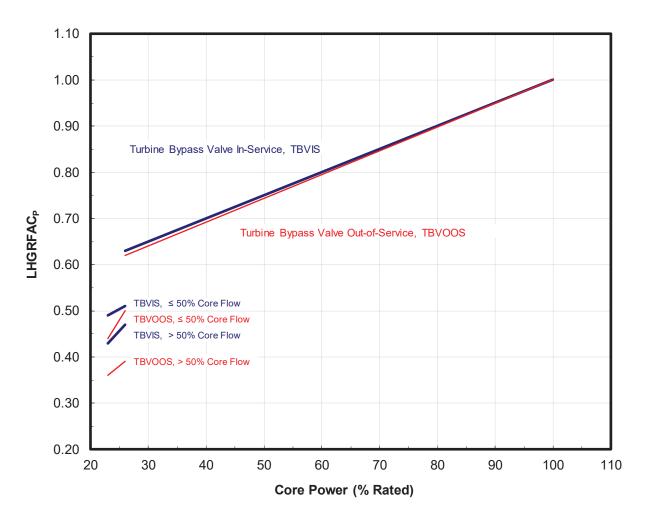


Figure 3.1 LHGR_{RATED} for ATRIUM-10XM Fuel

Date: September 8, 2021

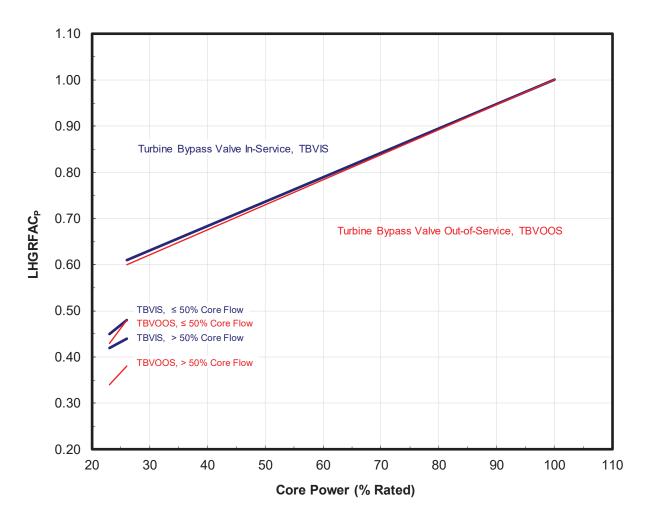



Figure 3.2 LHGR_{RATED} for ATRIUM-11 Fuel

6.4

74.4

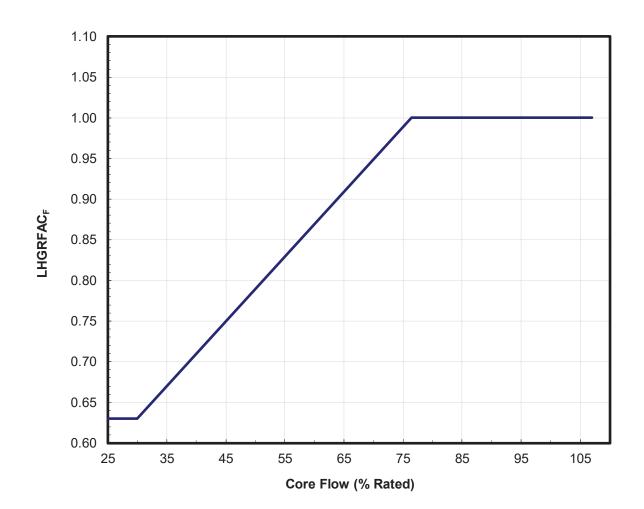
Date: September 8, 2021



Turbine Bypass In-Service		Turbine	Bypas	s Out-of-Service
Core		Co	re	
Power		Pow	/er	
(% Rated)		(% Ra	ted)	
100.0	1.00	100	0.0	1.00
26.0	0.63	26	5.0	0.62
Core Flow > 50% Rated		Core	Flow :	> 50% Rated
26.0	0.47	26	5.0	0.39
23.0	0.43	23	3.0	0.36
Core Flow ≤ 50% Rated		Core	Flow:	≤ 50% Rated
26.0	0.51	26	5.0	0.50
23.0	0.49	23	3.0	0.44

Figure 3.3 Base Operation LHGRFAC_P for ATRIUM-10XM Fuel (Independent of other EOOS conditions)

Date: September 8, 2021



Turbine Bypass In-Service Core		Turbine Bypas Core	s Out-of-Service
Power		Power	LHGRFAC _P
(% Rated)		(% Rated)	
100.0	1.00	100.0	1.00
26.0	0.61	26.0	0.60
Core Flow > 50% Rated		Core Flow	> 50% Rated
26.0	0.44	26.0	0.38
23.0	0.42	23.0	0.34
Core Flow ≤ 50% Rated		Core Flow	≤ 50% Rated
26.0	0.48	26.0	0.48
23.0	0.45	23.0	0.43

Figure 3.4 Base Operation LHGRFAC_P for ATRIUM-11 Fuel (Independent of other EOOS conditions)

Date: September 8, 2021

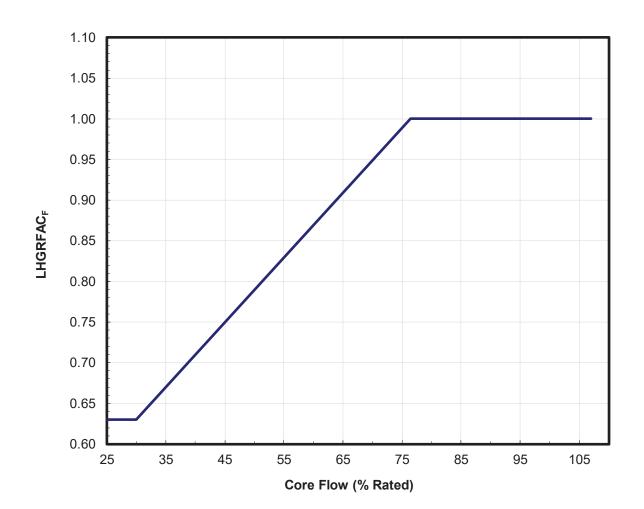

Core Flow	LHGRFAC _F
(% Rated)	
0.0	0.63
30.0	0.63
76.4	1.00
107.0	1.00

Figure 3.5 LHGRFAC_F for ATRIUM-10XM Fuel (*Values bound all EOOS conditions*)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

Date: September 8, 2021

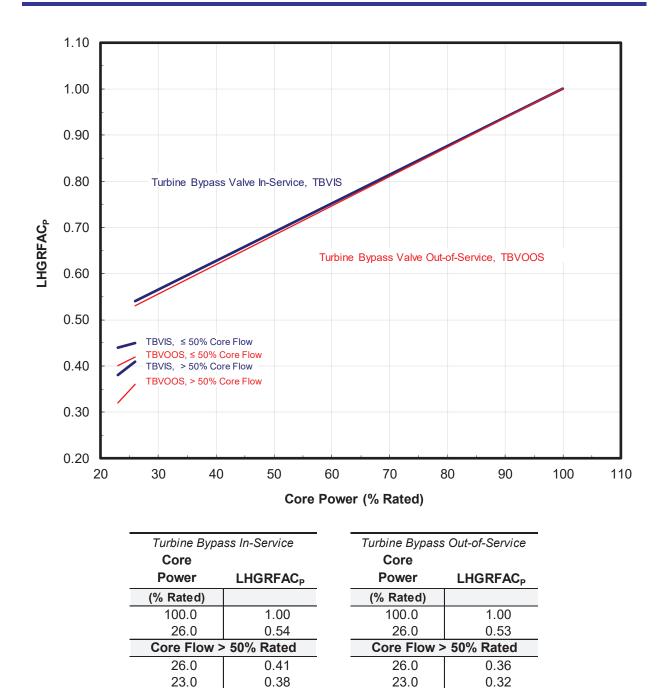

Core Flow	LHGRFAC _F
(% Rated)	
0.0	0.63
30.0	0.63
76.4	1.00
107.0	1.00

Figure 3.6 LHGRFAC_F for ATRIUM-11 Fuel (Values bound all EOOS conditions)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

Date: September 8, 2021

Browns Ferry Unit 2 Cycle 22 Core Operating Limits Report, (120% OLTP, MELLLA+)

Core Flow ≤ 50% Rated

0.45

0.44

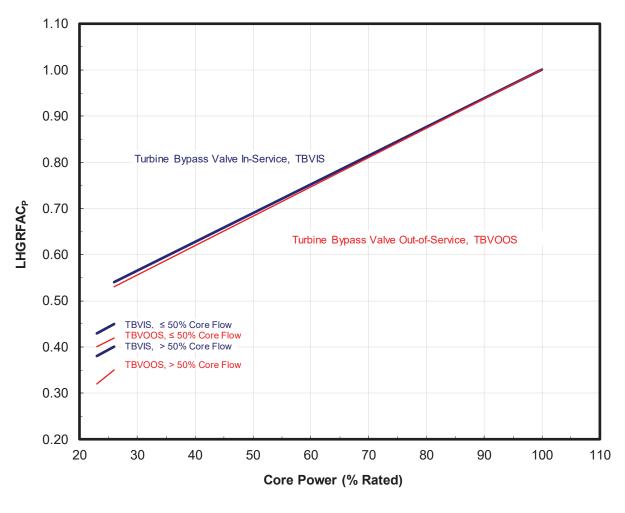
Figure 3.7 Startup Operation LHGRFAC_P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 1 (*no Feedwater heating during startup*) (Limits valid at and below 50% power)

26.0

23.0

Core Flow ≤ 50% Rated

0.42


0.40

26.0

23.0

Date: September 8, 2021

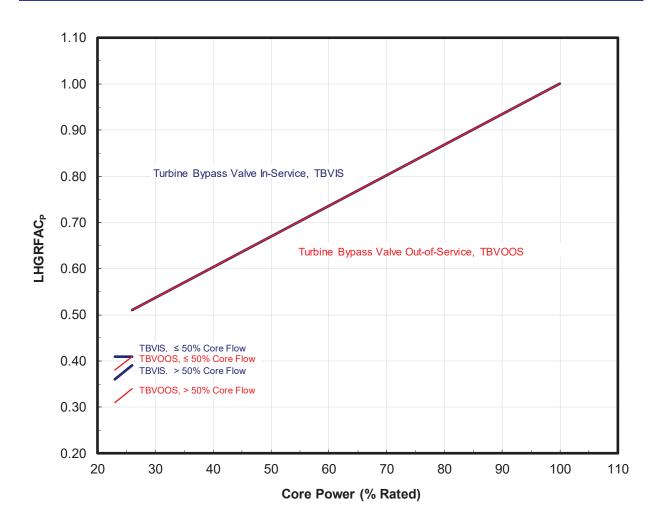

Turbine Bypa	ss In-Service	Turbine Bypass Out-of-Service
Core		Core
Power	LHGRFAC _P	Power LHGRFAC _P
(% Rated)		(% Rated)
100.0	1.00	100.0 1.00
26.0	0.54	26.0 0.53
Core Flow >	> 50% Rated	Core Flow > 50% Rated
26.0	0.40	26.0 0.35
23.0	0.38	23.0 0.32
Core Flow S	≤ 50% Rated	Core Flow ≤ 50% Rated
26.0	0.45	26.0 0.42
23.0	0.43	23.0 0.40

Figure 3.8 Startup Operation LHGRFAC_P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 2 (no Feedwater heating during startup)

(Limits valid at and below 50% power)

Date: September 8, 2021

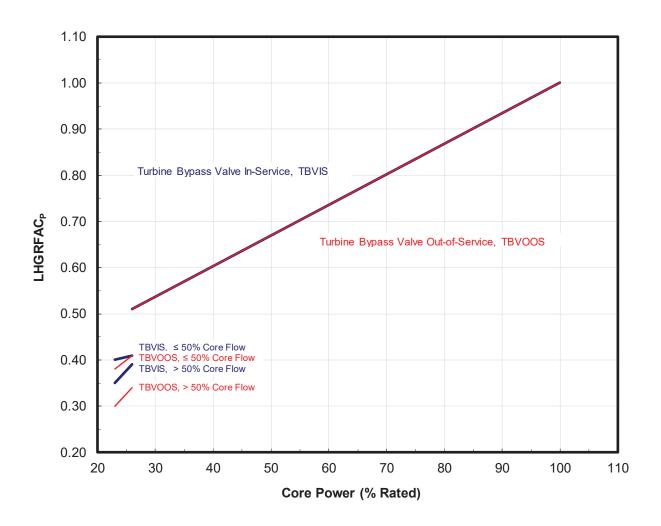

Turbine Bypa	ss In-Service	Turbine Bypass Core	s Out-of-Service
Power		Power	
(% Rated)		(% Rated)	
100.0	1.00	100.0	1.00
26.0	0.51	26.0	0.51
Core Flow >	> 50% Rated	Core Flow 2	> 50% Rated
26.0	0.39	26.0	0.34
23.0	0.36	23.0	0.31
Core Flow 5	50% Rated	Core Flow:	≤ 50% Rated
26.0	0.41	26.0	0.41
23.0	0.41	23.0	0.38

Figure 3.9 Startup Operation LHGRFAC_P for ATRIUM-11 Fuel: Table 3.1 Temperature Range 1 (no Feedwater heating during startup)

(Limits valid at and below 50% power)

Date: September 8, 2021

Turbine Bypa	 Turbine Bypass Out-of-Service			
Power		Power		
(% Rated)		 (% Rated)		
100.0	1.00	 100.0	1.00	
26.0	0.51	 26.0	0.51	
Core Flow >	> 50% Rated	Core Flow >	50% Rated	
26.0	0.39	 26.0	0.34	
23.0	0.35	23.0	0.30	
Core Flow S	≤ 50% Rated	Core Flow ≤ 50% Rated		
26.0	0.41	 26.0	0.41	
23.0	0.40	 23.0	0.38	

Figure 3.10 Startup Operation LHGRFAC_P for ATRIUM-11 Fuel: Table 3.1 Temperature Range 2 (*no Feedwater heating during startup*) (Limits valid at and below 50% power)

Browns Ferry Unit 2 Cycle 22 Core Operating Limits Report, (120% OLTP, MELLLA+)

4 OLMCPR Limits

(Technical Specification 3.2.2, 3.3.4.1, & 3.7.5)

OLMCPR is calculated to be the most limiting of the flow or power dependent values

OLMCPR limit = MAX ($MCPR_F$, $MCPR_P$)

where:

MCPR _F	core flow-dependent MCPR limit
MCPR _P	power-dependent MCPR limit

4.1 Flow Dependent MCPR Limit: MCPRF

MCPR_F limits are dependent upon core flow (% of Rated), and the max core flow limit, (Rated or Increased Core Flow, ICF). MCPR_F limits are shown in Figure 4.1, per Reference 1. Limits are valid for all EOOS combinations. No adjustment is required for SLO conditions.

4.2 Power Dependent MCPR Limit: MCPRP

MCPR_P limits are dependent upon:

- Core Power Level (% of Rated)
- Technical Specification Scram Speed (TSSS), Nominal Scram Speed (NSS), or Optimum Scram Speed (OSS)
- Cycle Operating Exposure (NEOC, EOC, and CD as defined in this section)
- Equipment Out-Of-Service Options
- Two or Single recirculation Loop Operation (TLO vs. SLO)

The MCPR_P limits are provided in Table 4.2 through Table 4.9, where each table contains the limits for all fuel types and EOOS options (for a specified scram speed and exposure range). The CMSS determines MCPR_P limits, from these tables, based on linear interpolation between the specified powers.

4.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional power dependent limits are shown in Table 4.5 through Table 4.8 based on temperature conditions identified in Table 3.1.

4.2.2 <u>Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS)</u>

MCPR_P limits are provided for three different sets of assumed scram speeds. The Technical Specification Scram Speed (TSSS) MCPR_P limits are applicable at all times, as long as the scram time surveillance demonstrates the times in Technical Specification Table 3.1.4-1 are met. Both Nominal Scram Speeds (NSS) and/or Optimum Scram Speeds (OSS) may be used, as long as the scram time surveillance demonstrates Table 4.1 times are applicable.^{*†}

Notch Position	Nominal Scram Timing	Optimum Scram Timing
(index)	(seconds)	(seconds)
46	0.420	0.380
36	0.980	0.875
26	1.600	1.465
6	2.900	2.900

Table 4.1 Nominal Scram Time Basis

In demonstrating compliance with the NSS and/or OSS scram time basis, surveillance requirements from Technical Specification 3.1.4 apply; accepting the definition of SLOW rods should conform to scram speeds shown in Table 4.1. If conformance is not demonstrated, TSSS based MCPR_P limits are applied.

On initial cycle startup, TSSS limits are used until the successful completion of scram timing confirms NSS and/or OSS based limits are applicable.

4.2.3 Exposure Dependent Limits

Exposures are tracked on a Core Average Exposure basis (CAVEX, not Cycle Exposure). Higher exposure MCPR_P limits are always more limiting and may be used for any Core Average Exposure up to the ending exposure. Per Reference 1, MCPR_P limits are provided for the following exposure ranges:

BOC to NEOC	NEOC corresponds to	31,055.6 MWd / MTU
BOC to EOCLB	EOCLB corresponds to	34,233.1 MWd / MTU
BOC to End of Coast	End of Coast	35,926.7 MWd / MTU

NEOC refers to a Near EOC exposure point.

^{*} Reference 1 analysis results are based on information identified in Reference 4.

[†] Drop out times consistent with method used to perform actual timing measurements (i.e., including pickup/dropout effects).

The EOCLB exposure point is not the true End-Of-Cycle exposure. Instead it corresponds to a licensing exposure window exceeding expected end-of-full-power-life.

The End of Coast exposure point represents a licensing exposure point exceeding the expected end-of-cycle exposure including cycle extension options.

4.2.4 Equipment Out-Of-Service (EOOS) Options

EOOS options^{*} covered by $MCPR_P$ limits are given by the following:

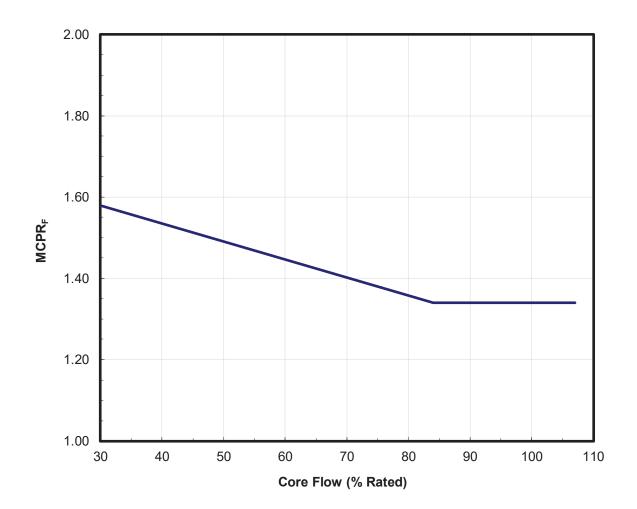
In-Service	All equipment In-Service
RPTOOS	EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS	Turbine Bypass Valve(s) Out-Of-Service
RPTOOS+TBVOOS	Combined RPTOOS and TBVOOS
PLUOOS	Power Load Unbalance Out-Of-Service
PLUOOS+RPTOOS	Combined PLUOOS and RPTOOS
PLUOOS+TBVOOS	Combined PLUOOS and TBVOOS
PLUOOS+TBVOOS+RPTOOS	Combined PLUOOS, RPTOOS, and TBVOOS
FHOOS (or FFWTR)	Feedwater Heaters Out-Of-Service (or Final
	Feedwater Temperature Reduction)
RCPOOS	One Recirculation Pump Out-Of-Service

For exposure ranges up to NEOC and EOCLB, additional combinations of MCPR_P limits are also provided including FHOOS. The coast down exposure range assumes application of FFWTR. FHOOS based MCPR_P limits for the coast down exposure are redundant because the temperature setdown assumption is identical with FFWTR.

4.2.5 Single-Loop-Operation (SLO) Limits

When operating in RCPOOS conditions, MCPRp limits are constructed differently from the normal operating RCP conditions. The limiting event for RCPOOS is a pump seizure scenario, which sets the upper bound for allowed core power and flow[†]. This event is not impacted by scram time assumptions. Specific MCPR_P limits are shown in Table 4.9.

4.2.6 Below Pbypass Limits


Below Pbypass (26% rated power), MCPR_P limits depend upon core flow. One set of MCPR_P limits applies for core flow above 50% of rated; a second set applies if the core flow is less than or equal to 50% rated.

^{*} All equipment service conditions assume 1 SRVOOS.

[†] RCPOOS limits are only valid up to 43.75% rated core power, 50% rated core flow, and an active recirculation drive flow of 17.73 Mlb_m/hr.

Date: September 8, 2021

Core Flow	
(% Rated)	
30.0	1.58
84.0	1.34
107.0	1.34

Figure 4.1 MCPR_F for All Fuel Types (Values bound all EOOS conditions)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

Table 4.2 MCPR _P Limits	for All Fuel Types	Ontimum Scram	Time Basis*
	s ioi All Fuel Types.	Optimum Scram	

			ATRIUM-10XN	1		ATRIUM-11	
		BOC	BOC	BOC	BOC	BOC	BOC
	Power	to	to	to End of	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	NEOC	EOCLB	Coast
	100	1.38	1.42	1.46	1.38	1.43	1.46
	90	1.44	1.45	1.51	1.44	1.46	1.51
	77.6	1.52	1.53	1.58	1.52	1.53	1.59
	65	1.58	1.60	1.66	1.59	1.60	1.66
	> 50	1.67	1.68	1.76	1.73	1.73	1.81
Base Case	≤ 50	1.82	1.82	1.84	1.91	1.91	1.91
Dase Gase	40	1.92	1.92	1.94	1.99	1.99	2.03
	26	2.26	2.26	2.39	2.51	2.51	2.66
	26 at > 50%F	2.47	2.47	2.59	2.68	2.68	2.81
	23 at > 50%F	2.62	2.62	2.76	2.93	2.93	3.05
	26 at ≤ 50%F	2.38	2.38	2.49	2.63	2.63	2.72
	23 at ≤ 50%F	2.52	2.52	2.65	2.93	2.93	3.05
	100	1.43	1.46		1.43	1.46	
	90	1.49	1.51		1.49	1.51	
	77.6	1.55	1.58		1.57	1.59	
	65	1.64	1.66		1.64	1.66	
	> 50	1.74	1.76		1.81	1.81	
FHOOS	≤ 50	1.83	1.84		1.91	1.91	
FILUDS	40	1.93	1.94		2.03	2.03	
	26	2.38	2.39		2.66	2.66	
	26 at > 50%F	2.58	2.59		2.81	2.81	
	23 at > 50%F	2.75	2.76		3.05	3.05	
	26 at ≤ 50%F	2.48	2.49		2.72	2.72	
	23 at ≤ 50%F	2.64	2.65		3.05	3.05	

^{*} All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. FFWTR/FHOOS is supported for the BOC to End of Coast limits.

			ATRIUM-10XN	1		ATRIUM-11	
		BOC	BOC	BOC	BOC	BOC	BOC
	Power	to	to	to End of	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	NEOC	EOCLB	Coast
	100	1.43	1.45	1.51	1.43	1.45	1.51
	90	1.48	1.49	1.56	1.48	1.49	1.56
	77.6	1.56	1.56	1.62	1.56	1.56	1.64
	65	1.62	1.63	1.69	1.62	1.63	1.72
	> 50	1.70 1.83	1.71 1.83	1.79 1.86	1.76 1.92	1.76 1.92	1.84 1.92
Base Case	≤ 50 40	1.03		1.00	2.00	2.00	2.06
	40 26	2.29	1.93 2.29	2.43	2.00	2.00	2.06
	20 26 at > 50%F	2.29	2.29	2.43	2.55	2.55	2.89
	20 at > 50 %F	2.40	2.48	2.01	2.08	2.08	3.05
	26 at ≤ 50%F	2.03	2.03	2.51	2.63	2.63	2.72
	23 at ≤ 50%F	2.53	2.53	2.67	2.93	2.93	3.05
	100	1.48	1.52	1.56	1.48	1.52	1.56
	90	1.53	1.52	1.61	1.53	1.52	1.61
	77.6	1.60	1.62	1.68	1.60	1.62	1.68
	65	1.67	1.69	1.75	1.67	1.69	1.75
	> 50	1.75	1.77	1.85	1.78	1.78	1.87
	≤ 50	1.85	1.86	1.89	1.92	1.92	1.92
TBVOOS	40	1.95	1.96	1.99	2.00	2.00	2.06
	26	2.32	2.33	2.47	2.55	2.55	2.69
	26 at > 50%F	3.04	3.05	3.19	3.28	3.28	3.38
	23 at > 50%F	3.28	3.29	3.42	3.57	3.57	3.69
	26 at ≤ 50%F	2.79	2.80	2.94	3.04	3.04	3.16
	23 at ≤ 50%F	3.04	3.05	3.22	3.32	3.32	3.56
	100	1.48	1.51		1.50	1.51	
	90	1.54	1.56		1.55	1.56	
	77.6	1.60	1.62		1.64	1.64	
	65	1.68	1.69		1.72	1.72	
	> 50	1.78	1.79		1.84	1.84	
FHOOS	≤ 50	1.85	1.86		1.92	1.92	
11000	40	1.95	1.96		2.06	2.06	
	26	2.42	2.43		2.69	2.69	
	26 at > 50%F	2.60	2.61		2.81	2.81	
	23 at > 50%F	2.77	2.78		3.05	3.05	
	26 at ≤ 50%F	2.50	2.51		2.72	2.72	
	23 at ≤ 50%F	2.66	2.67		3.05	3.05	
	100	1.43	1.45	1.51	1.43	1.45	1.51
	90 77.6	1.48	1.49	1.56	1.48	1.49	1.56
	65	1.56	1.56	1.62	1.66	1.66	1.70
	65 > 50	1.75	1.75	1.78	1.83	1.83	1.83
	≥ 50 ≤ 50	1.83	1.83	 1.86	1.92	1.92	1.92
PLUOOS	≤ 50 40	1.03	1.03	1.00	2.00	2.00	2.06
	40 26	2.29	2.29	2.43	2.00	2.00	2.00
	20 26 at > 50%F	2.29	2.29	2.43	2.55	2.55	2.89
	23 at > 50%F	2.40	2.40	2.01	2.00	2.00	3.05
	25 at ≤ 50%F 26 at ≤ 50%F	2.03	2.03	2.70	2.93	2.93	2.72
	20 at ≤ 50 %F 23 at ≤ 50%F	2.59	2.59	2.67	2.03	2.03	3.05

Table 4.3 MCPR_P Limits for All Fuel Types: Nominal Scram Time Basis*

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

ATRIUM-10XM ATRIUM-11 BOC BOC BOC BOC BOC BOC to End of Power to to to to to End of Operating NEOC EOCLB NEOC EOCLB (% of rated) Coast Coast Condition 100 1.54 1.56 1.54 1.56 ----1.59 90 1.61 1.59 1.61 ----77.6 1.66 1.68 1.67 1.68 ----____ 1.75 65 1.74 1.75 1.75 ----> 50 1.83 1.85 ----1.87 1.87 ----TBVOOS 1.88 1.89 1.92 ____ ≤ 50 1.92 FHOOS 40 1.98 1.99 ----2.06 2.06 ----26 2.47 2.46 2.69 2.69 --------26 at > 50%F 3.18 3.19 ____ 3.38 3.38 ____ 23 at > 50%F --------3.41 3.42 3.69 3.69 26 at ≤ 50%F 2.93 2.94 ----3.16 3.16 ----23 at ≤ 50%F 3.21 3.22 3.56 3.56 100 1.48 1.52 1.56 1.48 1.52 1.56 90 1.53 1.55 1.61 1.53 1.55 1.61 77.6 1.60 1.62 1.68 1.68 1.69 1.72 65 1.77 1.78 1.81 1.83 1.83 1.83 > 50 TBVOOS ≤ 50 1.85 1.86 1.89 1.92 1.92 1.92 PLUOOS 40 1.95 1.96 1.99 2.00 2.00 2.06 26 2.32 2.33 2.47 2.55 2.55 2.69 26 at > 50%F 3.04 3.05 3.19 3.28 3.28 3.38 23 at > 50%F 3.28 3.29 3.42 3.57 3.57 3.69 26 at ≤ 50%F 2.79 2.80 2.94 3.04 3.04 3.16 23 at ≤ 50%F 3.04 3.05 3.22 3.32 3.32 3.56 100 1.48 1.51 1.50 1.51 ----90 1.54 1.56 1.55 1.56 --------77.6 1.60 1.62 1.69 1.70 --------65 1.77 1.78 1.83 1.83 --------> 50 --------FHOOS ≤ 50 1.85 1.86 1.92 1.92 --------PLUOOS 40 1.95 1.96 ----2.06 2.06 ____ 26 2.42 2.43 2.69 2.69 ----____ 26 at > 50%F 2.60 2.61 2.81 2.81 ----23 at > 50%F 2.77 2.78 3.05 3.05 ____ ----26 at ≤ 50%F 2.50 2.51 ----2.72 2.72 ----23 at ≤ 50%F 2.66 2.67 3.05 3.05 100 1.54 1.56 1.54 1.56 ----90 1 59 161 1 59 1 61 ----77.6 1.66 1.68 ----1.71 1.72 ----65 1.80 1.81 1.83 1.83 --------> 50 ----____ ____ TBVOOS ≤ 50 1.88 1.89 1.92 1.92 ----FHOOS 40 1.98 1.99 ----2.06 2.06 ----PLUOOS 26 2.46 247 2 69 2 69 ____ 26 at > 50%F 3.18 3.19 ----3.38 3.38 ----23 at > 50%F 3.41 3.69 3.69 3.42 --------26 at ≤ 50%F 2.93 2.94 ----3.16 3.16 ----23 at ≤ 50%F 3.21 3.22 3.56 3.56

Table 4.3 MCPR_P Limits for All Fuel Types: Nominal Scram Time Basis (*continued*)*

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.4 MCPR_P Limits for All Fuel Types: Technical Specification Scram Time Basis^{*}

			ATRIUM-10XN	1		ATRIUM-11	
		BOC	BOC	BOC	BOC	BOC	BOC
	Power	to	to	to End of	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	NEOC	EOCLB	Coast
	100	1.48	1.50	1.55	1.48	1.50	1.56
	90	1.53	1.53	1.60	1.53	1.53	1.61
	77.6	1.60	1.60	1.66	1.60	1.60	1.70 1.78
	65	1.66	1.66	1.73	1.67	1.67	
	> 50 ≤ 50	1.74 1.86	1.74 1.86	1.83 1.89	1.79 1.93	1.79 1.93	1.90 1.93
Base Case	≤ 30 40	1.96	1.96	1.09	2.01	2.01	2.08
	26	2.33	2.33	2.48	2.01	2.57	2.00
	26 at > 50%F	2.50	2.50	2.63	2.68	2.68	2.81
	23 at > 50%F	2.65	2.65	2.80	2.93	2.93	3.05
	26 at ≤ 50%F	2.41	2.41	2.53	2.63	2.63	2.72
	23 at ≤ 50%F	2.55	2.55	2.69	2.93	2.93	3.05
	100	1.54	1.57	1.61	1.54	1.57	1.61
	90	1.59	1.60	1.65	1.59	1.60	1.65
	77.6	1.66	1.66	1.72	1.67	1.67	1.74
	65	1.72	1.72	1.79	1.74	1.74	1.82
	> 50	1.79	1.80	1.88	1.83	1.83	
TBVOOS	≤ 50	1.89	1.89	1.92	1.93	1.93	1.93
втосо	40	1.99	1.99	2.03	2.01	2.01	2.09
	26	2.38	2.38	2.51	2.57	2.57	2.72
	26 at > 50%F	3.07	3.07	3.21	3.28	3.28	3.38
	23 at > 50%F	3.31	3.31	3.44	3.57	3.57	3.69
	26 at ≤ 50%F	2.82	2.82	2.96	3.04	3.04	3.16
	23 at ≤ 50%F	3.07	3.07	3.24	3.32	3.32	3.56
	100 90	1.53 1.59	1.55 1.60		1.56 1.61	1.56 1.61	
	77.6	1.64	1.66		1.70	1.70	
	65	1.72	1.73		1.78	1.78	
	> 50	1.82	1.83		1.90	1.90	
	≤ 50	1.88	1.89		1.93	1.93	
FHOOS	40	1.98	1.99		2.08	2.08	
	26	2.47	2.48		2.72	2.72	
	26 at > 50%F	2.62	2.63		2.81	2.81	
	23 at > 50%F	2.79	2.80		3.05	3.05	
	26 at ≤ 50%F	2.52	2.53		2.72	2.72	
	23 at ≤ 50%F	2.68	2.69		3.05	3.05	
	100	1.48	1.50	1.55	1.48	1.50	1.56
	90	1.53	1.53	1.60	1.53	1.53	1.61
	77.6	1.60	1.60	1.66	1.69	1.69	1.73
	65	1.78	1.78	1.81	1.84	1.84	1.84
	> 50						
PLUOOS	≤ 50	1.86	1.86	1.89	1.93	1.93	1.93
	40	1.96	1.96	1.99	2.01	2.01	2.08
	26	2.33	2.33	2.48	2.57	2.57	2.72
	26 at > 50%F 23 at > 50%F	2.50	2.50	2.63	2.68	2.68	2.81
	23 at > 50%F 26 at ≤ 50%F	2.65 2.41	2.65 2.41	2.80 2.53	2.93 2.63	2.93 2.63	3.05 2.72
	26 at ≤ 50%F 23 at ≤ 50%F	2.41	2.41	2.53	2.63	2.63	3.05
	25 at ≥ 50%F	2.00	2.30	2.09	2.90	2.90	3.05

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.4 MCPR_P Limits for All Fuel Types: Technical Specification Scram Time Basis (continued)*

			ATRIUM-10XM	1		ATRIUM-11	
		BOC	BOC	BOC	BOC	BOC	BOC
	Power	to	to	to End of	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	NEOC	EOCLB	Coast
	100	1.59	1.61		1.60	1.61	
	90	1.64	1.65		1.65	1.65	
	77.6	1.70	1.72		1.74	1.74	
	65 > 50	1.78	1.79		1.82	1.82	
TBVOOS	≥ 50 ≤ 50	1.87 1.91	1.88 1.92		1.93	1.93	
FHOOS	<u>≤</u> 30 40	2.02	2.03		2.09	2.09	
111000	26	2.50	2.51		2.72	2.03	
	26 at > 50%F	3.20	3.21		3.38	3.38	
	23 at > 50%F	3.43	3.44		3.69	3.69	
	26 at ≤ 50%F	2.95	2.96		3.16	3.16	
	23 at ≤ 50%F	3.23	3.24		3.56	3.56	
	100	1.54	1.57	1.61	1.54	1.57	1.61
	90	1.59	1.60	1.65	1.59	1.60	1.65
	77.6	1.66	1.66	1.72	1.72	1.72	1.75
	65	1.81	1.81	1.84	1.84	1.84	1.84
TBVOOS	> 50						
PLUOOS	≤ 50 40	1.89 1.99	1.89 1.99	1.92 2.03	1.93 2.01	1.93 2.01	1.93 2.09
FL0003	40 26	2.38	2.38	2.03	2.01	2.01	2.09
	20 26 at > 50%F	3.07	3.07	3.21	3.28	3.28	3.38
	23 at > 50%F	3.31	3.31	3.44	3.57	3.57	3.69
	26 at ≤ 50%F	2.82	2.82	2.96	3.04	3.04	3.16
	23 at ≤ 50%F	3.07	3.07	3.24	3.32	3.32	3.56
	100	1.53	1.55		1.56	1.56	
	90	1.59	1.60		1.61	1.61	
	77.6	1.64	1.66		1.73	1.73	
	65	1.80	1.81		1.84	1.84	
	> 50						
FHOOS	≤ 50	1.88	1.89		1.93	1.93	
PLUOOS	40	1.98	1.99		2.08	2.08	
	26	2.47	2.48		2.72	2.72	
	26 at > 50%F 23 at > 50%F	2.62 2.79	2.63 2.80		2.81 3.05	2.81 3.05	
	25 at ≤ 50%F 26 at ≤ 50%F	2.79	2.60		2.72	2.72	
	20 at ≤ 50%F	2.68	2.69		3.05	3.05	
TBVOOS FHOOS PLUOOS	100	1.59	1.61		1.60	1.61	
	90	1.64	1.65		1.65	1.65	
	77.6	1.70	1.72		1.75	1.75	
	65	1.83	1.84		1.84	1.84	
	> 50						
	≤ 50	1.91	1.92		1.93	1.93	
	40	2.02	2.03		2.09	2.09	
	26	2.50	2.51		2.72	2.72	
	26 at > 50%F	3.20	3.21		3.38	3.38	
	23 at > 50%F	3.43	3.44		3.69	3.69	
	26 at ≤ 50%F	2.95	2.96		3.16	3.16	
	23 at ≤ 50%F	3.23	3.24		3.56	3.56	

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

			ATRIUM-10XI	N	ATRIUM-11		
		BOC	BOC	BOC	BOC	BOC	BOC
	Power	to	to	to End of	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	NEOC	EOCLB	Coast
	100	1.48	1.51	1.51	1.50	1.51	1.51
	90	1.54	1.56	1.56	1.55	1.56	1.56
	77.6	1.60	1.62	1.62	1.69	1.70	1.70
	65	1.77	1.78	1.78	1.83	1.83	1.83
	> 50						
TBVIS	≤ 50	1.94	1.95	1.95	2.02	2.02	2.02
	40	2.11	2.12	2.12	2.29	2.29	2.29
	26	2.68	2.69	2.69	3.07	3.07	3.07
	26 at > 50%F	2.85	2.86	2.86	3.12	3.12	3.12
	23 at > 50%F	3.06	3.07	3.07	3.42	3.42	3.42
	26 at ≤ 50%F	2.74	2.75	2.75	3.07	3.07	3.07
	23 at ≤ 50%F	2.93	2.94	2.94	3.37	3.37	3.37
	100	1.54	1.56	1.56	1.54	1.56	1.56
	90	1.59	1.61	1.61	1.59	1.61	1.61
	77.6	1.66	1.68	1.68	1.71	1.72	1.72
	65	1.80	1.81	1.81	1.83	1.83	1.83
	> 50						
TBVOOS	≤ 50	1.97	1.98	1.98	2.02	2.02	2.02
IBVOUS	40	2.14	2.15	2.15	2.29	2.29	2.29
	26	2.71	2.72	2.72	3.07	3.07	3.07
	26 at > 50%F	3.36	3.37	3.37	3.60	3.60	3.60
	23 at > 50%F	3.62	3.63	3.63	4.00	4.00	4.00
	26 at ≤ 50%F	3.12	3.13	3.13	3.39	3.39	3.39
	23 at ≤ 50%F	3.42	3.43	3.43	3.89	3.89	3.89

Table 4.5 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Nominal Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

			ATRIUM-10XI	N	ATRIUM-11		
		BOC	BOC	BOC	BOC	BOC	BOC
	Power	to	to	to End of	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	NEOC	EOCLB	Coast
	100	1.48	1.51	1.51	1.50	1.51	1.51
	90	1.54	1.56	1.56	1.55	1.56	1.56
	77.6	1.60	1.62	1.62	1.69	1.70	1.70
	65	1.77	1.78	1.78	1.83	1.83	1.83
	> 50						
TBVIS	≤ 50	1.95	1.96	1.96	2.02	2.02	2.02
	40	2.12	2.13	2.13	2.30	2.30	2.30
	26	2.70	2.71	2.71	3.09	3.09	3.09
	26 at > 50%F	2.86	2.87	2.87	3.14	3.14	3.14
	23 at > 50%F	3.08	3.09	3.09	3.44	3.44	3.44
	26 at ≤ 50%F	2.75	2.76	2.76	3.09	3.09	3.09
	23 at ≤ 50%F	2.95	2.96	2.96	3.39	3.39	3.39
	100	1.54	1.56	1.56	1.54	1.56	1.56
	90	1.59	1.61	1.61	1.59	1.61	1.61
	77.6	1.66	1.68	1.68	1.71	1.72	1.72
	65	1.80	1.81	1.81	1.83	1.83	1.83
	> 50						
TBVOOS	≤ 50	1.98	1.99	1.99	2.02	2.02	2.02
IBVOOS	40	2.15	2.16	2.16	2.30	2.30	2.30
	26	2.73	2.74	2.74	3.09	3.09	3.09
	26 at > 50%F	3.38	3.39	3.39	3.62	3.62	3.62
	23 at > 50%F	3.63	3.64	3.64	4.02	4.02	4.02
	26 at ≤ 50%F	3.13	3.14	3.14	3.40	3.40	3.40
	23 at ≤ 50%F	3.43	3.44	3.44	3.90	3.90	3.90

Table 4.6 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Nominal Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

			ATRIUM-10XI	N	ATRIUM-11		
		BOC	BOC	BOC	BOC	BOC	BOC
	Power	to	to	to End of	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	NEOC	EOCLB	Coast
	100	1.53	1.55	1.55	1.56	1.56	1.56
	90	1.59	1.60	1.60	1.61	1.61	1.61
	77.6	1.64	1.66	1.66	1.73	1.73	1.73
	65	1.80	1.81	1.81	1.84	1.84	1.84
	> 50						
TBVIS	≤ 50	1.98	1.99	1.99	2.04	2.04	2.04
	40	2.15	2.16	2.16	2.32	2.32	2.32
	26	2.73	2.74	2.74	3.10	3.10	3.10
	26 at > 50%F	2.87	2.88	2.88	3.12	3.12	3.12
	23 at > 50%F	3.08	3.09	3.09	3.42	3.42	3.42
	26 at ≤ 50%F	2.76	2.77	2.77	3.10	3.10	3.10
	23 at ≤ 50%F	2.95	2.96	2.96	3.40	3.40	3.40
	100	1.59	1.61	1.61	1.60	1.61	1.61
	90	1.64	1.65	1.65	1.65	1.65	1.65
	77.6	1.70	1.72	1.72	1.75	1.75	1.75
	65	1.83	1.84	1.84	1.84	1.84	1.84
	> 50						
TBVOOS	≤ 50	2.01	2.02	2.02	2.05	2.05	2.05
ТВУООЗ	40	2.19	2.20	2.20	2.32	2.32	2.32
	26	2.76	2.77	2.77	3.10	3.10	3.10
	26 at > 50%F	3.38	3.39	3.39	3.60	3.60	3.60
	23 at > 50%F	3.64	3.65	3.65	4.00	4.00	4.00
	26 at ≤ 50%F	3.14	3.15	3.15	3.39	3.39	3.39
	23 at ≤ 50%F	3.44	3.45	3.45	3.89	3.89	3.89

Table 4.7 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Technical Specification Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

				-			
			ATRIUM-10XI	N	ATRIUM-11		
		BOC	BOC	BOC	BOC	BOC	BOC
	Power	to	to	to End of	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast	NEOC	EOCLB	Coast
	100	1.53	1.55	1.55	1.56	1.56	1.56
	90	1.59	1.60	1.60	1.61	1.61	1.61
	77.6	1.64	1.66	1.66	1.73	1.73	1.73
	65	1.80	1.81	1.81	1.84	1.84	1.84
	> 50						
TBVIS	≤ 50	1.99	2.00	2.00	2.05	2.05	2.05
10110	40	2.16	2.17	2.17	2.33	2.33	2.33
	26	2.75	2.76	2.76	3.12	3.12	3.12
	26 at > 50%F	2.88	2.89	2.89	3.14	3.14	3.14
	23 at > 50%F	3.10	3.11	3.11	3.44	3.44	3.44
	26 at ≤ 50%F	2.77	2.78	2.78	3.12	3.12	3.12
	23 at ≤ 50%F	2.97	2.98	2.98	3.42	3.42	3.42
	100	1.59	1.61	1.61	1.60	1.61	1.61
	90	1.64	1.65	1.65	1.65	1.65	1.65
	77.6	1.70	1.72	1.72	1.75	1.75	1.75
	65	1.83	1.84	1.84	1.84	1.84	1.84
	> 50						
TBVOOS	≤ 50	2.02	2.03	2.03	2.06	2.06	2.06
100003	40	2.20	2.21	2.21	2.33	2.33	2.33
	26	2.78	2.79	2.79	3.12	3.12	3.12
	26 at > 50%F	3.40	3.41	3.41	3.62	3.62	3.62
	23 at > 50%F	3.65	3.66	3.66	4.02	4.02	4.02
	26 at ≤ 50%F	3.15	3.16	3.16	3.40	3.40	3.40
	23 at ≤ 50%F	3.45	3.46	3.46	3.90	3.90	3.90

Table 4.8 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Technical Specification Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Table 4.9 MCPR_P Limits for All Fuel Types: Single Loop Operation for All Scram Times*

Operating	Power	All Cycle E	Exposures
Condition	(% of rated)	ATRIUM-10XM	ATRIUM-11
	100	2.03	2.05
	43.75	2.03	2.05
	40	2.03	2.10
RCPOOS	26	2.50	2.74
FHOOS	26 at > 50%F	2.65	2.83
	23 at > 50%F	2.82	3.07
	26 at ≤ 50%F	2.55	2.74
	23 at ≤ 50%F	2.71	3.07
	100	2.03	2.05
	43.75	2.03	2.05
RCPOOS	40	2.05	2.11
TBVOOS	26	2.53	2.74
PLUOOS	26 at > 50%F	3.23	3.40
FHOOS	23 at > 50%F	3.46	3.71
	26 at ≤ 50%F	2.98	3.18
	23 at ≤ 50%F	3.26	3.58
	100	2.16	2.24
	43.75	2.16	2.24
RCPOOS	40	2.22	2.34
TBVOOS	26	2.79	3.12
FHOOS1	26 at > 50%F	3.41	3.62
1110001	23 at > 50%F	3.67	4.02
	26 at ≤ 50%F	3.17	3.41
	23 at ≤ 50%F	3.47	3.91
	100	2.17	2.25
	43.75	2.17	2.25
RCPOOS	40	2.23	2.35
TBVOOS	26	2.81	3.14
FHOOS2	26 at > 50%F	3.43	3.64
1110002	23 at > 50%F	3.68	4.04
	26 at ≤ 50%F	3.18	3.42
	23 at ≤ 50%F	3.48	3.92

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop.

RCPOOS limits are only valid up to 43.75% rated core power, 50% rated core flow, and an active recirculation drive flow of 17.73 Mlbm/hr.

5 Thermal-Hydraulic Stability Protection

(Technical Specification 3.3.1.1)

Technical Specification Table 3.3.1.1-1, Function 2f, identifies the function.

Instrument setpoints are established, such that the reactor will be tripped before an oscillation can grow to the point where the SLMCPR is exceeded. With application of Reference 30, the DSS-CD stability solution will be used per Reference 26. The DSS-CD S_{AD} setpoint is 1.10 for TLO and SLO.

New analyses have been developed based on Reference 26. With the implementation of the MELLLA+ operating domain expansion, an ABSP trip is required when the OPRM is out-ofservice. The ABSP trip settings define a region of the power to flow map within which an automatic reactor scram occurs. The ABSP trip settings are provided in Table 5.1. If both the OPRM and ABSP are out-of-service, operation within the MELLLA+ domain is not allowed and the MBSP Regions provide stability protection. Table 5.2 and Table 5.3 provide the endpoints for the MBSP regions for nominal and reduced feedwater temperature conditions.

Parameter	Symbol	Setting Value (unit)	Comments
Slope for Trip	m _{TRIP}	2.00 (% RTP/% RDF)	Slope of ABSP APRM low Flow Biased Trip Linear Segment
Constant Power Line for Trip	P _{BSP-TRIP}	35.0 (% RTP)	ABSP APRM Flow Biased Trip Setpoint Power Intercept. Constant Power Line for Trip from Zero Drive Flow to Flow Breakpoint Value
Constant Flow Line for Trip	W _{BSP-TRIP}	49 (% RDF)	ABSP APRM Flow Biased Trip Setpoint Drive Flow Intercept. Constant Flow Line for Trip (see Note 1 below)
Flow Breakpoint	W _{BSP-BREAK}	30.0 (% RDF)	Flow Breakpoint Value

Table 5.1 ABSP Setpoints for the Scram R	Region
--	--------

Note 1: WBSP-TRIP can be set to 49.0 % RDF or any higher value up to the intersection of the ABSP sloped line with the APRM Flow Biased STP scram line.

Endpoint	Power (% Rated)	Core Flow (% Rated)	Definition
A1	75.9	52.7	Scram Region (Region I) Boundary Intercept on MELLLA+ Line
B1	35.5	29.0	Scram Region (Region I) Boundary Intercept on Natural Circulation Line (NCL)
A2	66.1	52.0	Controlled Entry Region (Region II) Boundary Intercept on MELLLA Line
B2	25.5	29.0	Controlled Entry Region (Region II) Boundary Intercept on Natural Circulation Line (NCL)

Table 5.2 Analyzed MBSP Endpoints: Nominal Feedwater Temperature

Table 5.3 Analyzed MBSP Endpoints: Reduced Feedwater Temperature

Endpoint	Power (% Rated)	Core Flow (% Rated)	Definition
A1	64.9	50.5	Scram Region (Region I) Boundary Intercept on MELLLA Line
B1	29.4	29.0	Scram Region (Region I) Boundary Intercept on Natural Circulation Line (NCL)
A2	68.3	54.9	Controlled Entry Region (Region II) Boundary Intercept on MELLLA Line
B2	24.5	29.0	Controlled Entry Region (Region II) Boundary Intercept on Natural Circulation Line (NCL)

6 APRM Flow Biased Rod Block Trip Settings

(Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1)

The APRM rod block trip setting is based upon References 27 & 29, and is defined by the following:

for two loop operation:

$SRB \ \leq$	(0.61W _d + 63.3)	Allowable Value
SRB \leq	(0.61W _d + 62.0)	Nominal Trip Setpoint (NTSP)

where:

SRB	=	Rod Block setting in percent of rated thermal power (3952 MW_t)
W_{d}	=	Recirculation drive flow rate in percent of rated
		(100% drive flow required to achieve 100% core power and flow)

and for single loop operation:

$SRB \leq$	(0.55(W _d -∆W) + 60.5)	Allowable Value
SRB \leq	(0.55(W _d -∆W) + 58.5)	Nominal Trip Setpoint (NTSP)

where:

SRB	=	Rod Block setting in percent of rated thermal power (3952 MW_t)
W _d	=	Recirculation drive flow rate in percent of rated (100% drive flow required to achieve 100% core power and flow)
ΔW	=	Difference between two-loop and single-loop effective recirculation flow at the same core flow (Δ W=0.0 for two-loop operation)

The APRM rod block trip setting is clamped at a maximum allowable value of 115% (corresponding to a NTSP of 113%).

7 Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)

The RBM trip setpoints and applicable power ranges, based on References 27 & 28, are shown in Table 7.1. Setpoints are based on an HTSP, unfiltered analytical limit of 114%. Unfiltered setpoints are consistent with a nominal RBM filter setting of 0.0 seconds; filtered setpoints are consistent with a nominal RBM filter setting less than 0.5 seconds. Cycle specific CRWE analyses of OLMCPR are documented in Reference 1, superseding values reported in References 27, 28, and 29.

RBM Trip Setpoint	Allowable Value (AV)	Nominal Trip Setpoint (NTSP)
LPSP	27%	25%
IPSP	62%	60%
HPSP	82%	80%
LTSP - unfiltered - filtered	121.7% 120.7%	120.0% 119.0%
ITSP - unfiltered - filtered	116.7% 115.7%	115.0% 114.0%
HTSP - unfiltered - filtered	111.7% 110.9%	110.0% 109.2%
DTSP	90%	92%

Table 7.1	Analvtical	RBM Trip	Setpoints*
	7 and y a coar	i i i i i i i i i i i i i i i i i i i	ootpointo

As a result of cycle specific CRWE analyses, RBM setpoints in Technical Specification Table 3.3.2.1-1 are applicable as shown in Table 7.2. Cycle specific setpoint analysis results are shown in Table 7.3, per Reference 1.

Thermal Power (% Rated)	Applicable MCPR [†]	Notes from Table 3.3.2.1-1	Comment
≥ 27% and < 90%	< 1.72	(a), (b), (f), (h)	two loop operation
	< 1.76	(a), (b), (f), (h)	single loop operation
≥ 90%	< 1.41	(g)	two loop operation‡

^{*} Values are considered maximums. Using lower values, due to RBM system hardware/software limitations, is conservative, and acceptable.

[†] MCPR values shown correspond with, (support), SLMPCR values identified in Reference 1.

[‡] Greater than 90% rated power is not attainable in single loop operation.

RBM HTSP Analytical Limit	CRWE OLMCPR
Unfiltered	
107	1.28
111	1.34
114	1.37
117	1.39

Results, compared against the base case OLMCPR results of Table 4.2, indicate SLMCPR remains protected for RBM inoperable conditions (i.e., 114% unblocked).

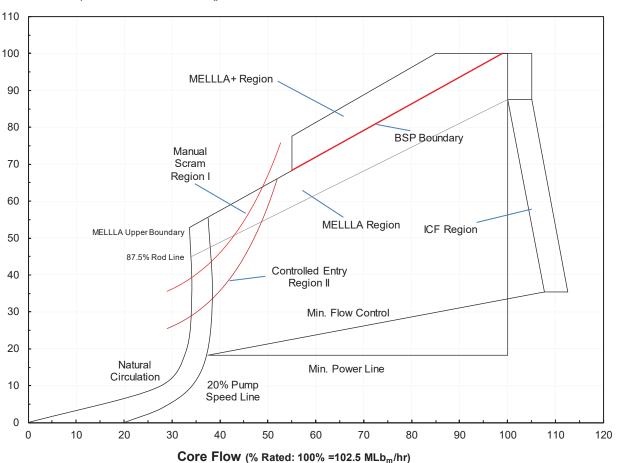
8 Shutdown Margin Limit

(Technical Specification 3.1.1)

Assuming the strongest OPERABLE control blade is fully withdrawn, and all other OPERABLE control blades are fully inserted, the core shall be sub-critical and meet the following minimum shutdown margin:

SDM ≥ 0.38% dk/k

Date: September 8, 2021

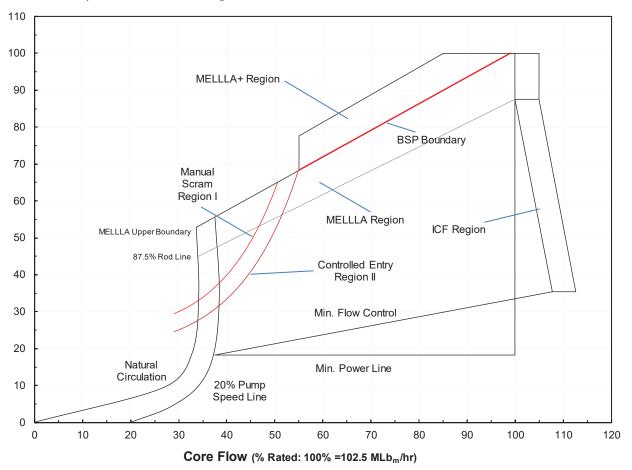

Appendix A: MBSP Maps

ECM: L32 210902 801

Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402

Date: September 8, 2021

Core Power (% Rated: 100% = 3952MW_t)


Figure A.1 MBSP Boundaries For Nominal Feedwater Temperature (Operation in the MELLLA+ Region Prohibited for Feedwater Temperature greater than 10 degrees F below the Nominal Feedwater Temperature)

ECM: L32 210902 801

Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402

Date: September 8, 2021

Core Power (% Rated: 100% = 3952MW_t)

(Operation in the MELLLA+ Region Prohibited for a Reduced Feedwater Temperature greater than 10 degrees F below the Nominal Feedwater Temperature)

Enclosure Tennessee Valley Authority Browns Ferry Nuclear Plant Unit 3

Core Operating Limits Report, (120% OLTP, MELLLA+), for Unit 3 Cycle 20 Operation, TVA-COLR-BF3C20, Revision 2

(See Attached)

ECM L32 210902 802 QA RECORD BFE-4485, Revision 2

Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga, TN 37402

Browns Ferry Unit 3 Cycle 20

Core Operating Limits Report, (120% OLTP, MELLLA+)

TVA-COLR-BF3C20 Revision 2 (Final)

(Revision Log, Page v)

September 2021

Prepared:	Mitchell, Brye C. C Digitally signed by Mitchell, Brye Date: 2021.11.18.11.30:25.05:00 B. C. Mitchell, Engineer	Date:
Verified:	T. W. Eichenberg, Engineer	Date: 11/18/2021
Approved:	DN: dc=gov, d ou=Users, cn= Reason: I am a	ed by Seifert, Christine A te=tva, dc=main, ou=Main, ou=Corporate, =Seifert, Christine A, email=caseifert@tva.gov approving this document .19政會代史, 05:00"
Reviewed:	B. T. Williamson, Manager, Reactor Engin	Date: <u>11/17/20</u> 2(
2 Approved:	Chairman, PORC	Date: 12/21/2/
Approved:	Plant Manager	Date: 12-21-21

Date: September 8, 2021

Table of Contents

Total Number of Pages = 44 (*including review cover sheet*)

List of Tables		iii	
List of Figures	5	iv	
Revision Log		v	
Nomenclature)	vi	
References	V	iii	
1 Introduc	tion	1	
1.1 Pur	pose	1	
1.2 Sco	ре	1	
1.3 Fue	l Loading	1	
1.4 Acc	eptability	2	
2 APLHG	R Limits	3	
2.1 Rat	ed Power and Flow Limit: APLHGR _{RATED}	3	
2.2 Off-	Rated Power Dependent Limit: APLHGR _P	3	
2.2.1	Startup without Feedwater Heaters		
	Rated Flow Dependent Limit: APLHGR _F		
	gle Loop Operation Limit: APLHGR _{sL0}		
•	ipment Out-Of-Service Corrections		
	imits		
3.1 Rat	ed Power and Flow Limit: LHGR _{RATED}	6	
3.2 Off-	Rated Power Dependent Limit: LHGR _P	6	
3.2.1	Startup without Feedwater Heaters		
	Rated Flow Dependent Limit: LHGR _F		
•	lipment Out-Of-Service Corrections		
	R Limits1		
	w Dependent MCPR Limit: MCPR _F 1		
	ver Dependent MCPR Limit: MCPR _P 1		
4.2.1	Startup without Feedwater Heaters		
4.2.2	Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS)1		
4.2.3	Exposure Dependent Limits		
4.2.4	Equipment Out-Of-Service (EOOS) Options		
4.2.5	Single-Loop-Operation (SLO) Limits1		
4.2.6	Below Pbypass Limits	5	
	I-Hydraulic Stability Protection		
	Flow Biased Rod Block Trip Settings		
	ck Monitor (RBM) Trip Setpoints and Operability		
	5		
Appendix A:	MBSP Maps A	-1	

Date: September 8, 2021

List of Tables

Nuclear Fuel Types	2
Startup Feedwater Temperature Basis	6
Nominal Scram Time Basis	14
MCPR _P Limits for All Fuel Types: Optimum Scram Time Basis	17
MCPR _P Limits for All Fuel Types: Nominal Scram Time Basis	18
MCPRP Limits for All Fuel Types: Technical Specification Scram Time Basis	20
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Nominal Scram Time Basis	22
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Nominal Scram Time Basis	23
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Technical Specification Scram Time Basis	24
Startup Operation MCPR _P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Technical Specification Scram Time Basis	25
MCPRP Limits for All Fuel Types: Single Loop Operation for All Scram Times	26
ABSP Setpoints for the Scram Region	27
Analyzed MBSP Endpoints: Nominal Feedwater Temperature	28
Analyzed MBSP Endpoints: Reduced Feedwater Temperature	28
Analytical RBM Trip Setpoints	30
RBM Setpoint Applicability	30
Control Rod Withdrawal Error Results	31

Date: September 8, 2021

List of Figures

APLHGR _{RATED} for ATRIUM-10XM Fuel	4
LHGR _{RATED} for ATRIUM-10XM Fuel	8
Base Operation LHGRFAC _P for ATRIUM-10XM Fuel	9
LHGRFAC _F for ATRIUM-10XM Fuel	10
Startup Operation LHGRFAC _P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 1	11
Startup Operation LHGRFAC _P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 2	12
MCPR _F for All Fuel Types	16
MBSP Boundaries For Nominal Feedwater Temperature	A-2
MBSP Boundaries For Reduced Feedwater Temperature	A-3

Date: September 8, 2021

Revision Log

Number	Page	Description
1-R2	26	Updated Table 4.9 footnote per CR 1718921
1-R1	14	Updated Table 4.1 Nominal Scram Time Basis per CR 1604385
2-R1	32	Updated ≥ symbol per CR 1596417
0-R0	All	New document.

Nomenclature

ABSP	Automatic Backup Stability Protection
APLHGR	Average Planar LHGR
APRM	Average Power Range Monitor
AREVA NP	Vendor (Framatome, Siemens)
BOC	Beginning of Cycle
BSP	Backup Stability Protection
BWR	Boiling Water Reactor
CAVEX	Core Average Exposure
CD	Coast Down
CMSS	Core Monitoring System Software
COLR	Core Operating Limits Report
CPR	Critical Power Ratio
CRWE	Control Rod Withdrawal Error
CSDM	Cold SDM
DIVOM	Delta CPR over Initial CPR vs. Oscillation Magnitude
DSS-CD	Detect and Suppress Solution – Confirmation Density
EOC	End of Cycle
EOCLB	End-of-Cycle Licensing Basis
EOOS	Equipment OOS
EPU	Extended Power Uprate (120% OLTP)
FFTR	Final Feedwater Temperature Reduction
FFWTR	Final Feedwater Temperature Reduction
FHOOS	Feedwater Heaters OOS
ft	Foot: English unit of measure for length
GNF	Vendor (General Electric, Global Nuclear Fuels)
GWd	Giga Watt Day
HTSP	High TSP
ICA	Interim Corrective Action
ICF	Increased Core Flow (beyond rated)
IS	In-Service
kW	kilo watt: SI unit of measure for power.
LCO	License Condition of Operation
LFWH	Loss of Feedwater Heating
LHGRFAC	LHGR Multiplier (Power or Flow dependent)
LPRM	Low Power Range Monitor
LRNB	Generator Load Reject, No Bypass

Date: September 8, 2021

MAPFAC	MAPLHGR multiplier (Power or Flow dependent)	
MBSP	Manual Backup Stability Protection	
MCPR	Minimum CPR	
MELLLA	Maximum Extended Load Line Limit Analysis	
MELLLA+	Maximum Extended Load Line Limit Analysis Plus	
MSRV	Moisture Separator Reheater Valve	
MSRVOOS	MSRV OOS	
MTU	Metric Ton Uranium	
MWd/MTU	Mega Watt Day per Metric Ton Uranium	
NEOC	Near EOC	
NRC	United States Nuclear Regulatory Commission	
NSS	Nominal Scram Speed	
NTSP	Nominal TSP	
OLMCPR	MCPR Operating Limit	
OLTP	Original Licensed Thermal Power	
OOS	Out-Of-Service	
OPRM	Oscillation Power Range Monitor	
OSS	Optimum Scram Speed	
PBDA	Period Based Detection Algorithm	
Pbypass	Power, below which TSV Position and TCV Fast Closure Scrams are Bypassed	
PLU	Power Load Unbalance	
PLUOOS	PLU OOS	
PRNM	Power Range Neutron Monitor	
RBM	Rod Block Monitor	
RCPOOS	Recirculation Pump OOS (<i>SLO</i>)	
RDF	Rated Drive Flow	
RPS	Reactor Protection System	
RPT	Recirculation Pump Trip	
RPTOOS	RPT OOS	
RTP	Rated Thermal Power	
SDM	Shutdown Margin	
SLMCPR	MCPR Safety Limit	
SLO	Single Loop Operation	
TBV	Turbine Bypass Valve	
TBVIS	TBV IS	
TBVOOS	Turbine Bypass Valves OOS	
TIP	Transversing In-core Probe	
TIPOOS	TIP OOS	
TLO	Two Loop Operation	
TSP	Trip Setpoint	
TSSS	Technical Specification Scram Speed	
TVA	Tennessee Valley Authority	

References

- 1. ANP-3813, Revision 0, **Browns Ferry Unit 3 Cycle 20 Reload Analysis**, Framatome Inc., January 2020.
- 2. Not Used.
- 3. ANP-3150P, Revision 4, **Mechanical Design Report for Browns Ferry ATRIUM 10XM Fuel Assemblies**, AREVA Inc., November 2017.
- 4. ANP-3793P Revision 0, **Browns Ferry Unit 3 Cycle 20 Plant Parameters Document**, Framatome Inc., June 2019.
- 5. BFE-4468, Revision 0, Browns Ferry Unit 3 Cycle 20 In-Core Shuffle, Tennessee Valley Authority, January 31, 2020.

Methodology References

- XN-NF-81-58(P)(A) Revision 2 and Supplements 1 and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, Exxon Nuclear Company, March 1984.
- 7. XN-NF-85-67(P)(A) Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, September 1986.
- EMF-85-74(P) Revision 0 Supplement 1(P)(A) and Supplement 2(P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, Siemens Power Corporation, February 1998.
- 9. ANF-89-98(P)(A) Revision 1 and Supplement 1, **Generic Mechanical Design Criteria for BWR Fuel Designs**, Advanced Nuclear Fuels Corporation, May 1995.
- XN-NF-80-19(P)(A) Volume 1 and Supplements 1 and 2, Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.
- 11. XN-NF-80-19(P)(A) Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, June 1986.
- 12. EMF-2158(P)(A) Revision 0, **Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2**, Siemens Power Corporation, October 1999.
- 13. XN-NF-80-19(P)(A) Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, January 1987.
- 14. XN-NF-84-105(P)(A) Volume 1 and Volume 1 Supplements 1 and 2, **XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis**, Exxon Nuclear Company, February 1987.
- 15. ANP-10307PA, Revision 0, **AREVA MCPR Safety Limit Methodology for Boiling Water Reactors**, AREVA NP Inc., June 2011.

- ANF-913(P)(A) Volume 1 Revision 1 and Volume 1 Supplements 2, 3 and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
- 17. ANF-1358(P)(A) Revision 3, **The Loss of Feedwater Heating Transient in Boiling Water Reactors**, Advanced Nuclear Fuels Corporation, September 2005.
- 18. EMF-2209(P)(A) Revision 3, **SPCB Critical Power Correlation**, AREVA NP Inc., September 2009.
- 19. EMF-2361(P)(A) Revision 0, **EXEM BWR-2000 ECCS Evaluation Model**, Framatome ANP Inc., May 2001, as supplemented by the site specific approval in NRC safety evaluations dated February 15, 2013 and July 31, 2014.
- 20. EMF-2292(P)(A) Revision 0, ATRIUM[™]-10: Appendix K Spray Heat Transfer Coefficients, Siemens Power Corporation, September 2000.
- 21. EMF-CC-074(P)(A), Volume 4, Revision 0, **BWR Stability Analysis: Assessment** of STAIF with Input from MICROBURN-B2, Siemens Power Corporation, August 2000.
- 22. BAW-10255(P)(A), Revision 2, Cycle-Specific DIVOM Methodology Using the RAMONA5-FA Code, AREVA NP Inc., May 2008.
- 23. BAW-10247PA, Revision 0, **Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors**, AREVA NP Inc., April 2008.
- 24. ANP-10298PA, Revision 0, **ACE/ATRIUM 10XM Critical Power Correlation**, AREVA NP Inc., March 2010.
- 25. ANP-3140(P), Revision 0, Browns Ferry Units 1, 2, and 3 Improved K-factor Model for ACE/ATRIUM 10XM Critical Power Correlation, AREVA NP Inc., August 2012.
- 26. NEDC-33075P-A, Revision 8, **GE Hitachi Boiling Water Reactor Detect and Suppress Solution – Confirmation Density**, GE Hitachi, November 2013.

Setpoint References

- 27. EDQ2092900118, R35, Setpoint and Scaling Calculation for Neutron Monitoring & *Recirculation Flow Loops*, Calculation File, Tennessee Valley Authority, August 9, 2019.
- 28. Task T0500, Revision 0, **Neutron Monitoring System w/RBM**, Project Task Report, GE Hitachi Nuclear Energy, June 2017.
- 29. Task T0506, Revision 0, **TS Instrument Setpoints**, Project Task Report, Tennessee Valley Authority, August, 2017.
- 30. NEDC-33006P-A, Revision 3, General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus, GE Energy Nuclear, June 2009.

1 Introduction

In anticipation of cycle startup, it is necessary to describe the expected limits of operation.

1.1 Purpose

The primary purpose of this document is to satisfy requirements identified by unit technical specification section 5.6.5. This document may be provided, upon final approval, to the NRC.

1.2 Scope

This document will discuss the following areas:

- Average Planar Linear Heat Generation Rate (APLHGR) Limit (Technical Specifications 3.2.1 and 3.7.5)
 Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- Linear Heat Generation Rate (LHGR) Limit (Technical Specification 3.2.3, 3.3.4.1, and 3.7.5)
 Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- Minimum Critical Power Ratio Operating Limit (OLMCPR) (Technical Specifications 3.2.2, 3.3.4.1, 3.7.5 and Table 3.3.2.1-1) Applicability: Mode 1, ≥ 23% RTP (Technical Specifications definition of RTP)
- ➤ Thermal-Hydraulic Stability Protection (Technical Specification Table 3.3.1.1)
 Applicability: Mode 1, ≥ (as specified in Technical Specifications Table 3.3.1.1-1)
- Average Power Range Monitor (APRM) Flow Biased Rod Block Trip Setting (Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1)
 Applicability: Mode 1, ≥ (as specified in Technical Requirements Manuals Table 3.3.4-1)
- Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)
 Applicability: Mode 1, ≥ % RTP as specified in Table 3.3.2.1-1 (TS definition of RTP)
- Shutdown Margin (SDM) Limit (Technical Specification 3.1.1)
 Applicability: All Modes

1.3 Fuel Loading

The core will contain fresh, and previously exposed ATRIUM-10XM. Nuclear fuel types used in the core loading are shown in Table 1.1. The core shuffle and final loading were explicitly evaluated for BOC cold shutdown margin performance as documented per Reference 5.

Date: September 8, 2021

Fuel Description	Original Cycle	Number of Assemblies	Nuclear Fuel Type (NFT)	Fuel Names (Range)
ATRIUM-10XM XMLC-4105B-11GV70-FCG	18	72	19	FCG601-FCG672
ATRIUM-10XM XMLC-4096B-12GV80-FCG	18	22	20	FCG673-FCG808
ATRIUM-10XM XMLC-4055B-13GV70-FCG	18	17	21	FCG809-FCG904
ATRIUM-10XM XMLC-3911B-13GV80-FCH	19	238	22	FCH001-FCH240
ATRIUM-10XM XMLC-4053B-12GV80-FCH	19	103	23	FCH241-FCH344
ATRIUM-10XM XMLC-3920B-14GV80-FCJ	20	224	24	FCJ345-FCJ568
ATRIUM-10XM XMLC-3957B-12GV80-FCJ	20	88	25	FCJ569-FCJ656

Table 1.1 Nuclear Fuel Types*

1.4 Acceptability

Limits discussed in this document were generated based on NRC approved methodologies per References 6 through 25.

The table identifies the expected fuel type breakdown in anticipation of final core loading. The final composition of the core depends upon uncertainties during the outage such as discovering a failed fuel bundle, or other bundle damage. Minor core loading changes, due to unforeseen events, will conform to the safety and monitoring requirements identified in this document.

2 APLHGR Limits

(Technical Specifications 3.2.1 & 3.7.5)

The APLHGR limit is determined by adjusting the rated power APLHGR limit for off-rated power, off-rated flow, and SLO conditions. The most limiting of these is then used as follows:

APLHGR limit = MIN (APLHGR_P , APLHGR_F, APLHGR_{SLO})

where:

APLHGR _P	off-rated power APLHGR limit	[APLHGR _{RATED} * MAPFAC _P]
APLHGR _F	off-rated flow APLHGR limit	[APLHGR _{RATED} * MAPFAC _F]
APLHGR _{SLO}	SLO APLHGR limit	[APLHGR _{RATED} * SLO Multiplier]

2.1 Rated Power and Flow Limit: APLHGRRATED

The rated conditions APLHGR for all fuel are identified per Reference 1. The rated conditions APLHGR for ATRIUM-10XM are shown in Figure 2.1.

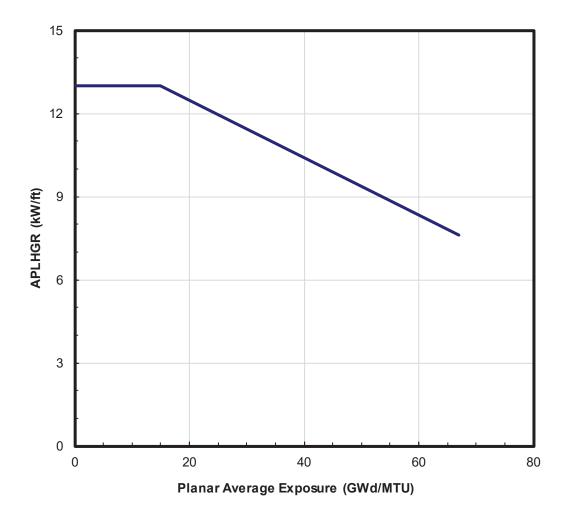
2.2 Off-Rated Power Dependent Limit: APLHGRP

Reference 1 does not specify a power dependent APLHGR. Therefore, MAPFAC_P is set to a value of 1.0.

2.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. No additional power dependent limitation is required.

2.3 Off-Rated Flow Dependent Limit: APLHGRF


Reference 1 does not specify a flow dependent APLHGR. Therefore, $MAPFAC_F$ is set to a value of **1.0**.

2.4 Single Loop Operation Limit: APLHGR_{SLO}

The single loop operation multiplier for ATRIUM-10XM fuel is **0.85**, per Reference 1.

Date: September 8, 2021

Planar Avg. Exposure	APLHGR Limit
(GWd/MTU)	(kW/ft)
0.0	13.0
15.0	13.0
67.0	7.6

2.5 Equipment Out-Of-Service Corrections

The limits shown in Figure 2.1 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.

In-Service	All equipment In-Service*
RPTOOS	EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS	Turbine Bypass Valve(s) Out-Of-Service
PLUOOS	Power Load Unbalance Out-Of-Service
FHOOS (or FFWTR)	Feedwater Heaters Out-Of-Service or Final Feedwater
	Temperature Reduction
RCPOOS	One Recirculation Pump Out-Of-Service

^{*} All equipment service conditions assume 1 SRVOOS.

Date: September 8, 2021

3 LHGR Limits

(Technical Specification 3.2.3, 3.3.4.1, & 3.7.5)

The LHGR limit is determined by adjusting the rated power LHGR limit for off-rated power and off-rated flow conditions. The most limiting of these is then used as follows:

LHGR limit = MIN (LHGR_P, LHGR_F)

where:

LHGR₽	off-rated power LHGR limit	[LHGR _{RATED} * LHGRFAC _P]
LHGR _F	off-rated flow LHGR limit	[LHGR _{RATED} * LHGRFAC _F]

3.1 Rated Power and Flow Limit: LHGRRATED

The rated conditions LHGR for all fuel are identified per Reference 1. The rated conditions LHGR for ATRIUM-10XM fuel is shown in Figure 3.1. The LHGR limit is consistent with Reference 3.

3.2 Off-Rated Power Dependent Limit: LHGRP

LHGR limits are adjusted for off-rated power conditions using the LHGRFAC_P multiplier provided in Reference 1. The multiplier is split into two sub cases: turbine bypass valves in and out-of-service. The base case multipliers are shown in Figure 3.2.

3.2.1 <u>Startup without Feedwater Heaters</u>

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional limits are shown in Figure 3.4 and Figure 3.5, based on temperature conditions identified in Table 3.1.

	Temperature				
Power	Range 1 Range 2				
(% Rated)	(°F)	(°F)			
23	160.0	155.0			
30	167.0	162.0			
40	177.0	172.0			
50	187.0	182.0			

Table 3.1	Startup	Feedwater	Temperature	Basis
-----------	---------	-----------	-------------	-------

3.3 Off-Rated Flow Dependent Limit: LHGRF

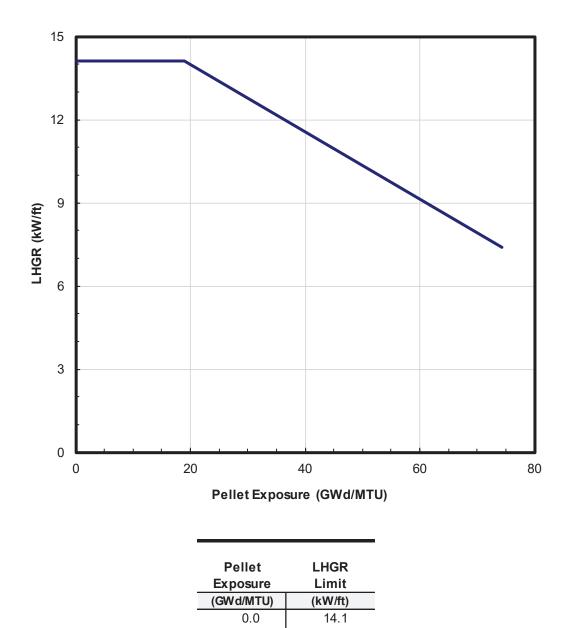
LHGR limits are adjusted for off-rated flow conditions using the LHGRFAC_F multiplier provided in Reference 1. Multipliers are shown in Figure 3.3.

3.4 Equipment Out-Of-Service Corrections

The limits shown in Figure 3.1 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.*

In-Service	All equipment In-Service
RPTOOS	EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS	Turbine Bypass Valve(s) Out-Of-Service
PLUOOS	Power Load Unbalance Out-Of-Service
FHOOS (or FFWTR)	Feedwater Heaters Out-Of-Service or Final Feedwater Temperature Reduction
RCPOOS	One Recirculation Pump Out-Of-Service

Off-rated power corrections shown in Figure 3.2 are dependent on operation of the Turbine Bypass Valve system. For this reason, separate limits are to be applied for TBVIS or TBVOOS operation. The limits have no dependency on RPTOOS, PLUOOS, FHOOS/FFWTR, or SLO.


Off-rated flow corrections shown in Figure 3.3 are bounding for all EOOS conditions.

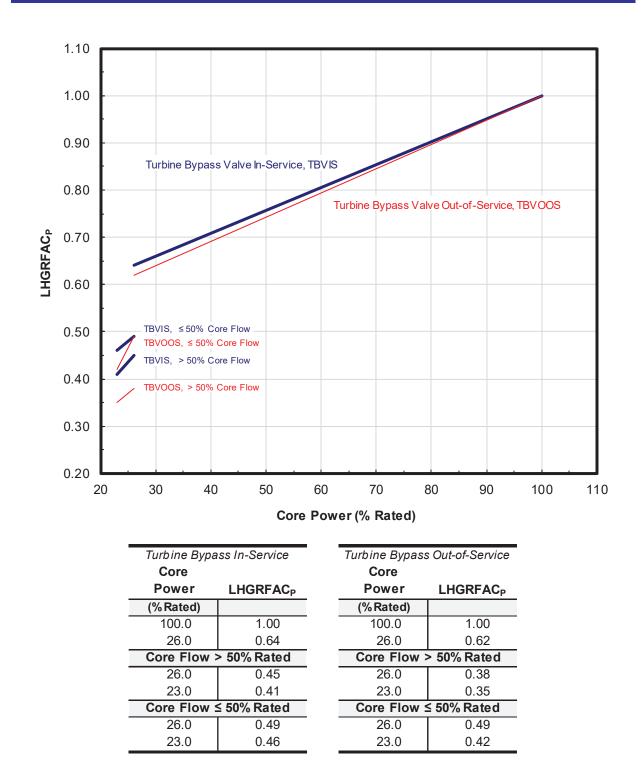
Off-rated power corrections shown in Figure 3.4 and Figure 3.5 are also dependent on operation of the Turbine Bypass Valve system. In this case, limits support FHOOS operation during startup. These limits have no dependency on RPTOOS, PLUOOS, or SLO.

All equipment service conditions assume 1 SRVOOS.

Date: September 8, 2021

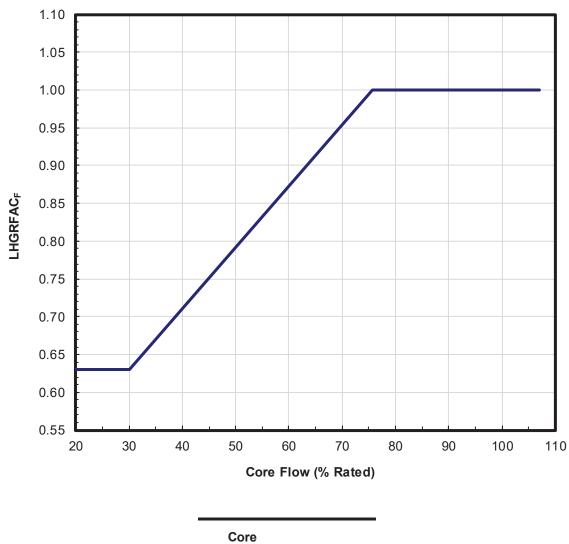
- :	0 4		£		11.1.4		E I
Figure	3.1	LHGRRATED	TOF	AIRIU	ו -ועוכ	UXIVI	Fuei

14.1


7.4

18.9

74.4



Date: September 8, 2021

Date: September 8, 2021

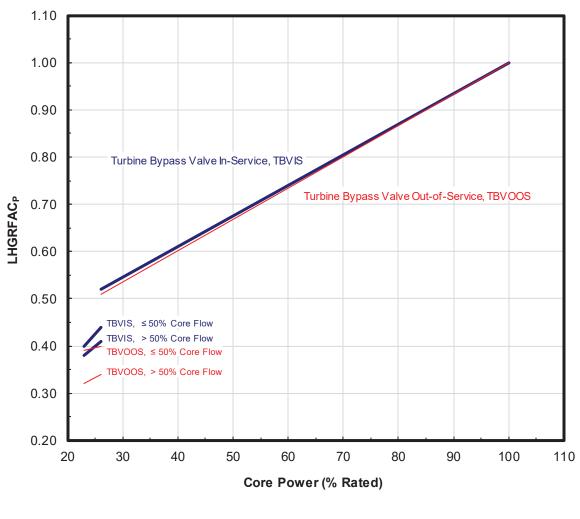

Core	
Flow	LHGRFAC _F
(% Rated)	
0.0	0.63
30.0	0.63
75.6	1.00
107.0	1.00

Figure 3.3 LHGRFAC_F for ATRIUM-10XM Fuel (*Values bound all EOOS conditions*)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

Date: September 8, 2021

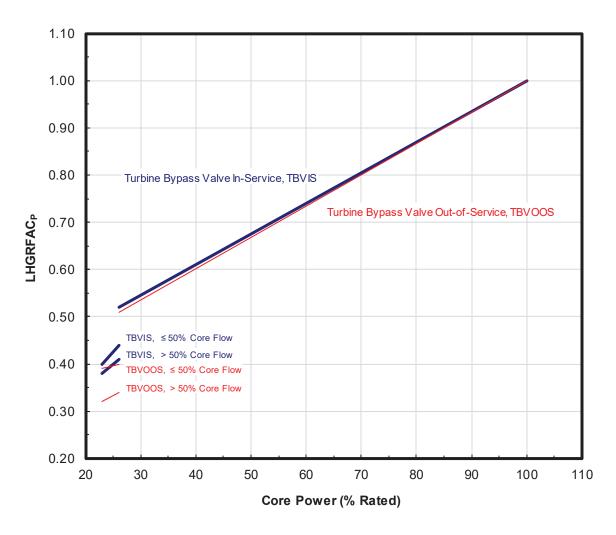

Turbine Bypa	ss In-Service	Turbin	ne Bypas	s Out-of-Service
Core		С	ore	
Power	LHGRFAC _P	Po	ower	
(% Rated)		(%F	Rated)	
100.0	1.00	1	00.0	1.00
26.0	0.52		26.0	0.51
Core Flow 2	> 50% Rated	Cor	e Flow	> 50% Rated
26.0	0.41		26.0	0.34
23.0	0.38		23.0	0.32
Core Flow :	≤ 50% Rated	Cor	Core Flow ≤ 50% Rated	
26.0	0.44		26.0	0.40
23.0	0.40		23.0	0.39

Figure 3.4 Startup Operation LHGRFAC_P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 1 (no Feedwater heating during startup)

(Limits valid at and below 50% power)

Date: September 8, 2021

Turbine Bypa	ss In-Service	7	Turbine Bypass Out-of-Service	
Core			Core	
Power	LHGRFAC _P		Power	
(% Rated)			(%Rated)	
100.0	1.00		100.0	1.00
26.0	0.52		26.0	0.51
Core Flow 3	> 50% Rated		Core Flow 3	> 50% Rated
26.0	0.41		26.0	0.34
23.0	0.38		23.0	0.32
Core Flow :	≤ 50% Rated		Core Flow :	≤ 50% Rated
26.0	0.44		26.0	0.40
23.0	0.40		23.0	0.39

Figure 3.5 Startup Operation LHGRFAC_P for ATRIUM-10XM Fuel: Table 3.1 Temperature Range 2 (no Feedwater heating during startup)

(Limits valid at and below 50% power)

Date: September 8, 2021

4 OLMCPR Limits

(Technical Specification 3.2.2, 3.3.4.1, & 3.7.5)

OLMCPR is calculated to be the most limiting of the flow or power dependent values

OLMCPR limit = MAX (MCPR_F, MCPR_P)

where:

MCPRFcore flow-dependent MCPR limitMCPRPpower-dependent MCPR limit

4.1 Flow Dependent MCPR Limit: MCPRF

 $MCPR_F$ limits are dependent upon core flow (% of Rated), and the max core flow limit, (Rated or Increased Core Flow, ICF). $MCPR_F$ limits are shown in Figure 4.1, per Reference 1. Limits are valid for all EOOS combinations. No adjustment is required for SLO conditions.

4.2 Power Dependent MCPR Limit: MCPRP

MCPR_P limits are dependent upon:

- Core Power Level (% of Rated)
- Technical Specification Scram Speed (TSSS), Nominal Scram Speed (NSS), or Optimum Scram Speed (OSS)
- Cycle Operating Exposure (NEOC, EOC, and CD as defined in this section)
- Equipment Out-Of-Service Options
- Two or Single recirculation Loop Operation (TLO vs. SLO)

The MCPR_P limits are provided in Table 4.2 through Table 4.9, where each table contains the limits for all fuel types and EOOS options (for a specified scram speed and exposure range). The CMSS determines MCPR_P limits, from these tables, based on linear interpolation between the specified powers.

4.2.1 Startup without Feedwater Heaters

There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional power dependent limits are shown in Table 4.5 through Table 4.8 based on temperature conditions identified in Table 3.1.

4.2.2 Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS)

MCPR_P limits are provided for three different sets of assumed scram speeds. The Technical Specification Scram Speed (TSSS) MCPR_P limits are applicable at all times, as long as the scram time surveillance demonstrates the times in Technical Specification Table 3.1.4-1 are met. Both Nominal Scram Speeds (NSS) and/or Optimum Scram Speeds (OSS) may be used, as long as the scram time surveillance demonstrates Table 4.1 times are applicable.^{*†}

Notch Position	Nominal Scram Timing	Optimum Scram Timing
(index)	(seconds)	(seconds)
46	0.420	0.380
36	0.980	0.875
26	1.600	1.465
6	2.900	2.900

In demonstrating compliance with the NSS and/or OSS scram time basis, surveillance requirements from Technical Specification 3.1.4 apply; accepting the definition of SLOW rods should conform to scram speeds shown in Table 4.1. If conformance is not demonstrated, TSSS based MCPR_P limits are applied.

On initial cycle startup, TSSS limits are used until the successful completion of scram timing confirms NSS and/or OSS based limits are applicable.

4.2.3 Exposure Dependent Limits

Exposures are tracked on a Core Average Exposure basis (CAVEX, not Cycle Exposure). Higher exposure MCPR_P limits are always more limiting and may be used for any Core Average Exposure up to the ending exposure. Per Reference 1, MCPR_P limits are provided for the following exposure ranges:

BOC to NEOC	NEOC corresponds to	27,972.7 MWd / MTU
BOC to EOCLB	EOCLB corresponds to	33,104.7 MWd / MTU
BOC to End of Coast	End of Coast	34,799.5 MWd / MTU

NEOC refers to a Near EOC exposure point.

^{*} Reference 1 analysis results are based on information identified in Reference 4.

[†] Drop out times consistent with method used to perform actual timing measurements (i.e., including pickup/dropout effects).

Date: September 8, 2021

The EOCLB exposure point is not the true End-Of-Cycle exposure. Instead it corresponds to a licensing exposure window exceeding expected end-of-full-power-life.

The End of Coast exposure point represents a licensing exposure point exceeding the expected end-of-cycle exposure including cycle extension options.

4.2.4 Equipment Out-Of-Service (EOOS) Options

EOOS options^{*} covered by $MCPR_P$ limits are given by the following:

In-Service	All equipment In-Service
RPTOOS	EOC-Recirculation Pump Trip Out-Of-Service
TBVOOS	Turbine Bypass Valve(s) Out-Of-Service
RPTOOS+TBVOOS	Combined RPTOOS and TBVOOS
PLUOOS	Power Load Unbalance Out-Of-Service
PLUOOS+RPTOOS	Combined PLUOOS and RPTOOS
PLUOOS+TBVOOS	Combined PLUOOS and TBVOOS
PLUOOS+TBVOOS+RPTOOS	Combined PLUOOS, RPTOOS, and TBVOOS
FHOOS (or FFWTR)	Feedwater Heaters Out-Of-Service (or Final
	Feedwater Temperature Reduction)
RCPOOS	One Recirculation Pump Out-Of-Service

For exposure ranges up to NEOC and EOCLB, additional combinations of MCPR_P limits are also provided including FHOOS. The coast down exposure range assumes application of FFWTR. FHOOS based MCPR_P limits for the coast down exposure are redundant because the temperature setdown assumption is identical with FFWTR.

4.2.5 Single-Loop-Operation (SLO) Limits

When operating in RCPOOS conditions, MCPRp limits are constructed differently from the normal operating RCP conditions. The limiting event for RCPOOS is a pump seizure scenario, which sets the upper bound for allowed core power and flow[†]. This event is not impacted by scram time assumptions. Specific MCPR_P limits are shown in Table 4.9.

4.2.6 Below Pbypass Limits

Below Pbypass (26% rated power), MCPR_P limits depend upon core flow. One set of MCPR_P limits applies for core flow above 50% of rated; a second set applies if the core flow is less than or equal to 50% rated.

^{*} All equipment service conditions assume 1 SRVOOS.

[†] RCPOOS limits are only valid up to 43.75% rated core power, 50% rated core flow, and an active recirculation drive flow of 17.73 Mlb_m/hr.

Date: September 8, 2021

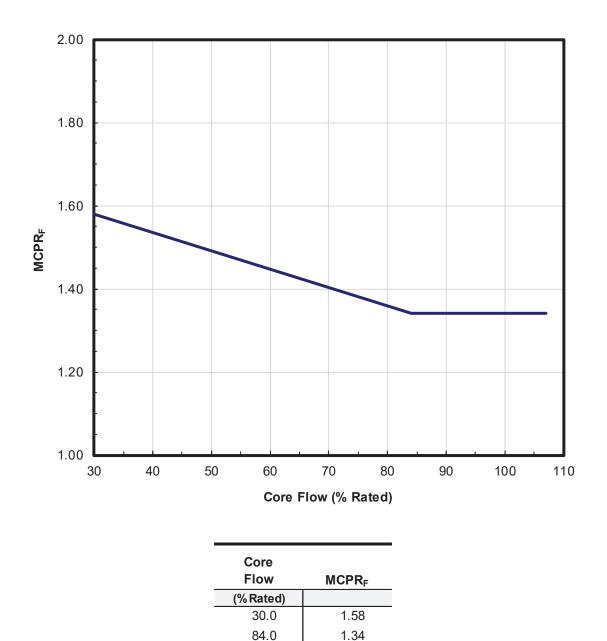


Figure 4.1 MCPR_F for All Fuel Types (Values bound all EOOS conditions)

1.34

107.0

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

Date: September 8, 2021

		ATRIUM-10XM		
		BOC	BOC	BOC
Operating	Pow er	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.39	1.41	1.44
	90	1.45	1.46	1.48
	77.6	1.50	1.51	1.54
	65	1.57	1.57	1.61
	>50	1.65	1.65	1.70
ase Case	<u>≤</u> 50	1.79	1.79	1.79
ase case	40	1.87	1.87	1.88
	26	2.27	2.27	2.38
	26 at > 50%F	2.60	2.60	2.70
	23 at > 50%F	2.76	2.76	2.88
	26 at ≤ 50%F	2.49	2.49	2.60
	23 at ≤ 50%F	2.64	2.64	2.77
	100	1.42	1.44	
	90	1.48	1.48	
	77.6	1.54	1.54	
	65	1.61	1.61	
	>50	1.70	1.70	
HOOS	<u>≤</u> 50	1.79	1.79	
1005	40	1.88	1.88	
	26	2.38	2.38	
	26 at > 50%F	2.70	2.70	
	23 at > 50%F	2.88	2.88	
	26 at ≤ 50%F	2.60	2.60	
	23 at ≤ 50%F	2.77	2.77	

Table 4.2 MCPR_P Limits for All Fuel Types: Optimum Scram Time Basis*

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. FFWTR/FHOOS is supported for the BOC to End of Coast limits.

			ATRIUM-10XI	M
		BOC	BOC	BOC
	Pow er	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
Contailion	100	1.42	1.44	1.46
	90	1.48	1.48	1.51
	77.6	1.53	1.53	1.56
	65	1.59	1.59	1.63
	>50	1.67	1.67	1.72
	≤50	1.80	1.80	1.80
Base Case	40	1.88	1.88	1.90
	26	2.30	2.30	2.41
	26 at > 50%F	2.60	2.60	2.70
	23 at > 50%F	2.76	2.76	2.88
	26 at ≤ 50%F	2.49	2.49	2.60
	23 at ≤ 50%F	2.64	2.64	2.77
	100	1.46	1.47	1.50
	90	1.51	1.51	1.54
	77.6	1.56	1.56	1.60
	65	1.62	1.62	1.66
	>50	1.70	1.70	1.75
	≤50	1.80	1.80	1.81
TBVOOS	40	1.88	1.88	1.91
	26	2.30	2.30	2.42
	26 at > 50%F	3.11	3.11	3.25
	23 at > 50%F	3.36	3.36	3.50
	26 at ≤ 50%F	2.83	2.83	2.99
	23 at ≤ 50%F	3.11	3.11	3.28
	100	1.46	1.46	
	90	1.51	1.51	
	77.6	1.56	1.56	
	65	1.63	1.63	
	>50	1.72	1.72	
FLICOD	<u>≤</u> 50	1.80	1.80	
FHOOS	40	1.90	1.90	
	26	2.41	2.41	
	26 at > 50%F	2.70	2.70	
	23 at > 50%F	2.88	2.88	
	26 at ≤ 50%F	2.60	2.60	
	23 at ≤ 50%F	2.77	2.77	
	100	1.42	1.44	1.46
	90	1.48	1.48	1.51
	77.6	1.53	1.53	1.56
	65	1.72	1.73	1.73
	>50			
PLUOOS	<u>≤</u> 50	1.80	1.80	1.80
1 20003	40	1.88	1.88	1.90
	26	2.30	2.30	2.41
	26 at > 50%F	2.60	2.60	2.70
	23 at > 50%F	2.76	2.76	2.88
	26 at ≤ 50%F	2.49	2.49	2.60
	23 at ≤ 50%F	2.64	2.64	2.77

Table 12	MCPR _P Limits	for All Eug	I Typos No	ominal Scram	Timo Rocic*
1 abie 4.3		I I I AII FUE		Jiiiiiai Sulaiii	

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.3 MCPR _P Limits for All Fuel Types: Nominal Scram Time Basis (contin	nued)*
---	--------

			ATRIUM-10XI	N
		BOC	BOC	BOC
	Pow er	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
Condition	100	1.49	1.50	
	90	1.43	1.54	
	77.6	1.60	1.60	
	65	1.66	1.66	
	>50	1.75	1.75	
TBVOOS	≤50	1.81	1.81	
FHOOS	40	1.91	1.91	
	26	2.42	2.42	
	26 at > 50%F	3.25	3.25	
	23 at > 50%F	3.50	3.50	
	26 at ≤ 50%F	2.99	2.99	
	23 at ≤ 50%F	3.28	3.28	
	100	1.46	1.47	1.50
	90	1.51	1.51	1.54
	77.6	1.56	1.56	1.60
	65	1.72	1.73	1.74
	>50			
TBVOOS	<u>≤</u> 50	1.80	1.80	1.81
PLUOOS	40	1.88	1.88	1.91
	26	2.30	2.30	2.42
	26 at > 50%F	3.11	3.11	3.25
	23 at > 50%F	3.36	3.36	3.50
	26 at ≤ 50%F	2.83	2.83	2.99
	23 at ≤ 50%F	3.11	3.11	3.28
	100	1.46	1.46	
	90	1.51	1.51	
	77.6	1.56	1.56	
	65	1.72	1.73	
	>50			
FHOOS	<u>≤</u> 50	1.80	1.80	
PLUOOS	40	1.90	1.90	
	26	2.41	2.41	
	26 at > 50%F	2.70	2.70	
	23 at > 50%F	2.88	2.88	
	26 at ≤ 50%F	2.60	2.60	
	23 at ≤ 50%F	2.77	2.77	
	100	1.49	1.50	
	90	1.54	1.54	
	77.6	1.60	1.60	
	65	1.73	1.74	
TBVOOS	>50			
FHOOS	≤50	1.81	1.81	
PLUOOS	40	1.91	1.91	
	26	2.42	2.42	
	26 at > 50%F	3.25	3.25	
	23 at > 50%F	3.50	3.50	
	26 at ≤ 50%F	2.99	2.99	
	23 at ≤ 50%F	3.28	3.28	

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.4 MCPR_P Limits for All Fuel Types: Technical Specification Scram Time Basis*

			ATRIUM-10XI	N
		BOC	BOC	BOC
o	Pow er	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.46	1.46	1.50
	90	1.50	1.50	1.55
	77.6	1.55	1.55	1.59
	65	1.61	1.61	1.66
	>50	1.68	1.68	1.75
Base Case	≤50	1.80	1.80	1.82
base Case	40	1.88	1.88	1.94
	26	2.32	2.32	2.44
	26 at > 50%F	2.60	2.60	2.71
	23 at > 50%F	2.76	2.76	2.89
	26 at ≤ 50%F	2.49	2.49	2.61
	23 at ≤ 50%F	2.64	2.64	2.78
	100	1.50	1.50	1.54
	90	1.55	1.55	1.59
	77.6	1.59	1.59	1.64
	65	1.65	1.65	1.70
	>50	1.73	1.73	1.79
TBVOOS	≤50	1.81	1.81	1.84
180003	40	1.89	1.89	1.96
	26	2.34	2.34	2.47
	26 at > 50%F	3.12	3.12	3.27
	23 at > 50%F	3.37	3.37	3.52
	26 at ≤ 50%F	2.84	2.84	3.01
	23 at ≤ 50%F	3.12	3.12	3.30
	100	1.50	1.50	
	90	1.55	1.55	
	77.6	1.59	1.59	
	65	1.66	1.66	
	>50	1.75	1.75	
FHOOS	<u>≤</u> 50	1.81	1.81	
	40	1.94	1.94	
	26	2.44	2.44	
	26 at > 50%F	2.71	2.71	
	23 at > 50%F	2.89	2.89	
	26 at ≤ 50%F	2.61	2.61	
	23 at ≤ 50%F	2.78	2.78	
	100	1.46	1.46	1.50
	90	1.50	1.50	1.55
	77.6	1.55	1.55	1.59
	65	1.73	1.74	1.75
	>50			
PLUOOS	<u>≤</u> 50	1.80	1.80	1.82
	40	1.88	1.88	1.94
	26	2.32	2.32	2.44
	26 at > 50%F	2.60	2.60	2.71
	23 at > 50%F	2.76	2.76	2.89
	26 at ≤ 50%F	2.49	2.49	2.61
	23 at ≤ 50%F	2.64	2.64	2.78

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Table 4.4 MCPR_P Limits for All Fuel Types: Technical Specification Scram Time Basis (continued)*

			ATRIUM-10XI	N
		BOC	BOC	BOC
o	Pow er	to	to	to End of
Operating Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.54	1.54	
	90	1.59	1.59	
	77.6	1.64	1.64	
	65	1.70	1.70	
	>50	1.79	1.79	
TBVOOS	≤50	1.83	1.83	
FHOOS	40	1.96	1.96	
	26	2.47	2.47	
	26 at > 50%F	3.27	3.27	
	23 at > 50%F	3.52	3.52	
	26 at ≤ 50%F	3.01	3.01	
	23 at ≤ 50%F	3.30	3.30	
	100	1.50	1.50	1.54
	90	1.55	1.55	1.59
	77.6	1.59	1.59	1.64
	65	1.74	1.75	1.77
	>50			
TBVOOS	≤50	1.81	1.81	1.84
PLUOOS	40	1.89	1.89	1.96
	26	2.34	2.34	2.47
	26 at > 50%F	3.12	3.12	3.27
	23 at > 50%F	3.37	3.37	3.52
	26 at ≤ 50%F	2.84	2.84	3.01
	23 at ≤ 50%F	3.12	3.12	3.30
	100	1.50	1.50	
	90	1.55	1.55	
	77.6	1.59	1.59	
	65	1.74	1.75	
510000	>50			
FHOOS	<u>≤</u> 50	1.81	1.81	
PLUOOS	40	1.94	1.94	
	26	2.44	2.44	
	26 at > 50%F	2.71	2.71	
	23 at > 50%F	2.89	2.89	
	26 at ≤ 50%F 23 at ≤ 50%F	2.61 2.78	2.61 2.78	
	100	1.54	1.54	
	90	1.59	1.59	
	77.6	1.64	1.64	
	65	1.76	1.77	
	>50			
TBVOOS	≤50	1.83	1.83	
FHOOS	40	1.96	1.96	
PLUOOS	26	2.47	2.47	
	26 at > 50%F	3.27	3.27	
	23 at > 50%F	3.52	3.52	
	26 at ≤ 50%F	3.01	3.01	
	23 at ≤ 50%F	3.30	3.30	

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

Date: September 8, 2021

		ATRIUM-10XM		
		BOC	BOC	BOC
Operating	Pow er	to	to	to End of
Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.46	1.46	1.46
	90	1.51	1.51	1.51
	77.6	1.56	1.56	1.56
	65	1.72	1.73	1.73
	>50			
TBVIS	<u>≤</u> 50	1.84	1.84	1.84
IDVIO	40	2.07	2.07	2.07
	26	2.66	2.66	2.66
	26 at > 50%F	2.92	2.92	2.92
	23 at > 50%F	3.14	3.14	3.14
	26 at ≤ 50%F	2.82	2.82	2.82
	23 at ≤ 50%F	3.04	3.04	3.04
	100	1.49	1.50	1.50
	90	1.54	1.54	1.54
	77.6	1.60	1.60	1.60
	65	1.73	1.74	1.74
	>50			
TBVOOS	<u>≤</u> 50	1.85	1.85	1.85
10/003	40	2.08	2.08	2.08
	26	2.67	2.67	2.67
	26 at > 50%F	3.44	3.44	3.44
	23 at > 50%F	3.69	3.69	3.69
	26 at ≤ 50%F	3.18	3.18	3.18
	23 at ≤ 50%F	3.51	3.51	3.51

Table 4.5 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Nominal Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Date: September 8, 2021

		ŀ	ATRIUM-10XI	N
		BOC	BOC	BOC
Operating	Pow er	to	to	to End of
Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.46	1.46	1.46
	90	1.51	1.51	1.51
	77.6	1.56	1.56	1.56
	65	1.72	1.73	1.73
	>50			
TBVIS	<u>≤</u> 50	1.85	1.85	1.85
1010	40	2.08	2.08	2.08
	26	2.68	2.68	2.68
	26 at > 50%F	2.94	2.94	2.94
	23 at > 50%F	3.15	3.15	3.15
	26 at ≤ 50%F	2.84	2.84	2.84
	23 at ≤ 50%F	3.06	3.06	3.06
	100	1.49	1.50	1.50
	90	1.54	1.54	1.54
	77.6	1.60	1.60	1.60
	65	1.73	1.74	1.74
	>50			
TBVOOS	<u>≤</u> 50	1.86	1.86	1.86
100000	40	2.09	2.09	2.09
	26	2.69	2.69	2.69
	26 at > 50%F	3.45	3.45	3.45
	23 at > 50%F	3.71	3.71	3.71
	26 at ≤ 50%F	3.20	3.20	3.20
	23 at ≤ 50%F	3.52	3.52	3.52

Table 4.6 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Nominal Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Date: September 8, 2021

		/	ATRIUM-10XI	M
		BOC	BOC	BOC
Operating	Pow er	to	to	to End of
Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.50	1.50	1.50
	90	1.55	1.55	1.55
	77.6	1.59	1.59	1.59
	65	1.74	1.75	1.75
	>50			
TBVIS	≤50	1.88	1.88	1.88
IDVIO	40	2.11	2.11	2.11
	26	2.70	2.70	2.70
	26 at > 50%F	2.93	2.93	2.93
	23 at > 50%F	3.15	3.15	3.15
	26 at ≤ 50%F	2.83	2.83	2.83
	23 at ≤ 50%F	3.05	3.05	3.05
	100	1.54	1.54	1.54
	90	1.59	1.59	1.59
	77.6	1.64	1.64	1.64
	65	1.76	1.77	1.77
	>50			
TBVOOS	≤50	1.90	1.90	1.90
10/003	40	2.13	2.13	2.13
	26	2.72	2.72	2.72
	26 at > 50%F	3.46	3.46	3.46
	23 at > 50%F	3.71	3.71	3.71
	26 at ≤ 50%F	3.20	3.20	3.20
	23 at ≤ 50%F	3.53	3.53	3.53

Table 4.7 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 1 for All Fuel Types: Technical Specification Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Date: September 8, 2021

		/	ATRIUM-10XI	M
		BOC	BOC	BOC
Operating	Pow er	to	to	to End of
Condition	(% of rated)	NEOC	EOCLB	Coast
	100	1.50	1.50	1.50
	90	1.55	1.55	1.55
	77.6	1.59	1.59	1.59
	65	1.74	1.75	1.75
	>50			
TBVIS	<u>≤</u> 50	1.89	1.89	1.89
IDVIO	40	2.12	2.12	2.12
	26	2.72	2.72	2.72
	26 at > 50%F	2.95	2.95	2.95
	23 at > 50%F	3.16	3.16	3.16
	26 at ≤ 50%F	2.85	2.85	2.85
	23 at ≤ 50%F	3.07	3.07	3.07
	100	1.54	1.54	1.54
	90	1.59	1.59	1.59
	77.6	1.64	1.64	1.64
	65	1.76	1.77	1.77
	>50			
TBVOOS	<u>≤</u> 50	1.91	1.91	1.91
10/003	40	2.14	2.14	2.14
	26	2.74	2.74	2.74
	26 at > 50%F	3.47	3.47	3.47
	23 at > 50%F	3.73	3.73	3.73
	26 at ≤ 50%F	3.22	3.22	3.22
	23 at ≤ 50%F	3.54	3.54	3.54

Table 4.8 Startup Operation MCPR_P Limits for Table 3.1 Temperature Range 2 for All Fuel Types: Technical Specification Scram Time Basis^{*}

Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Table 4.9 MCPR_P Limits for All Fuel Types: Single Loop Operation for All Scram Times*

Operating	Pow er	BOC to End of COAST
Condition	(% of rated)	ATRIUM-10XM
	100	2.10
	43.75	2.10
	40	2.10
RCPOOS	26	2.46
FHOOS	26 at > 50%F	2.73
	23 at > 50%F	2.91
	26 at ≤ 50%F	2.63
	23 at ≤ 50%F	2.80
	100	2.10
	43.75	2.10
RCPOOS	40	2.10
TBVOOS	26	2.49
PLUOOS	26 at > 50%F	3.29
FHOOS	23 at > 50%F	3.54
	26 at ≤ 50%F	3.03
	23 at ≤ 50%F	3.32
	100	2.15
	43.75	2.15
RCPOOS	40	2.15
TBVOOS	26	2.74
FHOOS1	26 at > 50%F	3.48
1110001	23 at > 50%F	3.73
	26 at ≤ 50%F	3.22
	23 at ≤ 50%F	3.55
	100	2.16
	43.75	2.16
RCPOOS	40	2.16
TBVOOS	26	2.76
FHOOS2	26 at > 50%F	3.49
	23 at > 50%F	3.75
	26 at ≤ 50%F	3.24
	23 at ≤ 50%F	3.56

* All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service.

FFWTR and FHOOS assume the same value of temperature drop.

RCPOOS limits are only valid up to 43.75% rated core power, 50% rated core flow, and an active recirculation drive flow of 17.73 Mlbm/hr.

5 Thermal-Hydraulic Stability Protection

(Technical Specification 3.3.1.1)

Technical Specification Table 3.3.1.1-1, Function 2f, identifies the function.

Instrument setpoints are established, such that the reactor will be tripped before an oscillation can grow to the point where the SLMCPR is exceeded. With application of Reference 30, the DSS-CD stability solution will be used per Reference 26. The DSS-CD S_{AD} setpoint is 1.10 for TLO and SLO.

New analyses have been developed based on Reference 26. With the implementation of the MELLLA+ operating domain expansion, an ABSP trip is required when the OPRM is out-of-service. The ABSP trip settings define a region of the power to flow map within which an automatic reactor scram occurs. The ABSP trip settings are provided in Table 5.1. If both the OPRM and ABSP are out-of-service, operation within the MELLLA+ domain is not allowed and the MBSP Regions provide stability protection. Table 5.2 and Table 5.3 provide the endpoints for the MBSP regions for nominal and reduced feedwater temperature conditions.

Parameter	Symbol	Setting Value (unit)	Comments
Slope for Trip	m _{TRIP}	2.00 (% RTP/% RDF)	Slope of ABSP APRM low Flow Biased Trip Linear Segment
Constant Power Line for Trip	P _{BSP-TRIP}	35.0 (% RTP)	ABSP APRM Flow Biased Trip Setpoint Power Intercept. Constant Power Line for Trip from Zero Drive Flow to Flow Breakpoint Value
Constant Flow Line for Trip	W _{BSP-TRIP}	49 (% RDF)	ABSP APRM Flow Biased Trip Setpoint Drive Flow Intercept. Constant Flow Line for Trip (see Note 1 below)
Flow Breakpoint	$W_{BSP-BREAK}$	30.0 (% RDF)	Flow Breakpoint Value

Table 5.1	ABSP	Setpoints f	for the	Scram	Region
-----------	------	-------------	---------	-------	--------

Note 1: $W_{BSP-TRIP}$ can be set to 49.0 % RDF or any higher value up to the intersection of the ABSP sloped line with the APRM Flow Biased STP scram line.

Endpoint	Power (% Rated)	Core Flow (% Rated)	Definition
A1	75.9	52.7	Scram Region (Region I) Boundary Intercept on MELLLA+ Line
B1	35.5	29.0	Scram Region (Region I) Boundary Intercept on Natural Circulation Line (NCL)
A2	66.1	52.0	Controlled Entry Region (Region II) Boundary Intercept on MELLLA Line
B2	25.5	29.0	Controlled Entry Region (Region II) Boundary Intercept on Natural Circulation Line (NCL)

Table 5.3 Analyzed MBSP Endpoints: Reduced Feedwater Temperature

Endpoint	Power (% Rated)	Core Flow (% Rated)	Definition
A1	64.9	50.5	Scram Region (Region I) Boundary Intercept on MELLLA Line
B1	29.4	29.0	Scram Region (Region I) Boundary Intercept on Natural Circulation Line (NCL)
A2	68.3	54.9	Controlled Entry Region (Region II) Boundary Intercept on MELLLA Line
B2	24.5	29.0	Controlled Entry Region (Region II) Boundary Intercept on Natural Circulation Line (NCL)

6 APRM Flow Biased Rod Block Trip Settings

(Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1)

The APRM rod block trip setting is based upon References 27 & 29, and is defined by the following:

for two loop operation:

$SRB \ \leq$	(0.61W _d + 63.3)	Allowable Value
$SRB \ \leq$	(0.61W _d + 62.0)	Nominal Trip Setpoint (NTSP)

where:

SRB	=	Rod Block setting in percent of rated thermal power (3952 MW_t)
W_{d}	=	Recirculation drive flow rate in percent of rated
		(100% drive flow required to achieve 100% core power and flow)

and for single loop operation:

$SRB \leq$	$(0.55(W_d-\Delta W) + 60.5)$	Allowable Value
SRB \leq	(0.55(W _d -∆W) + 58.5)	Nominal Trip Setpoint (NTSP)

where:

SRB	=	Rod Block setting in percent of rated thermal power (3952 MW_t)
W _d	=	Recirculation drive flow rate in percent of rated (100% drive flow required to achieve 100% core power and flow)
ΔW	=	Difference between two-loop and single-loop effective recirculation flow at the same core flow (Δ W=0.0 for two-loop operation)

The APRM rod block trip setting is clamped at a maximum allowable value of 115% (corresponding to a NTSP of 113%).

Date: September 8, 2021

7 Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)

The RBM trip setpoints and applicable power ranges, based on References 27 & 28, are shown in Table 7.1. Setpoints are based on an HTSP, unfiltered analytical limit of 114%. Unfiltered setpoints are consistent with a nominal RBM filter setting of 0.0 seconds; filtered setpoints are consistent with a nominal RBM filter setting less than 0.5 seconds. Cycle specific CRWE analyses of OLMCPR are documented in Reference 1, superseding values reported in References 27, 28, and 29.

RBM Trip Setpoint	Allowable Value (AV)	Nominal Trip Setpoint (NTSP)
LPSP	27%	25%
IPSP	62%	60%
HPSP	82%	80%
LTSP - unfiltered - filtered	121.7% 120.7%	120.0% 119.0%
ITSP - unfiltered - filtered	116.7% 115.7%	115.0% 114.0%
HTSP - unfiltered - filtered	111.7% 110.9%	110.0% 109.2%
DTSP	90%	92%

Table 7.1	Anal	/tical	RBM	Trip	Setr	oints	*
	Anan	licai		TIP	OCIP	Jointo	

As a result of cycle specific CRWE analyses, RBM setpoints in Technical Specification Table 3.3.2.1-1 are applicable as shown in Table 7.2. Cycle specific setpoint analysis results are shown in Table 7.3, per Reference 1.

· ······· · ··························				
Thermal Power (% Rated)	Applicable MCPR [†]	Notes from Table 3.3.2.1-1	Comment	
> 27% and $< 20%$	< 1.74	(a), (b), (f), (h)	two loop operation	
> 27% and < 90%	< 1.78	(a), (b), (f), (h)	single loop operation	
≥ 90%	< 1.38	(g)	two loop operation [‡]	

Table 7.2	RBM Setpoint	Applicability
-----------	--------------	---------------

^{*} Values are considered maximums. Using lower values, due to RBM system hardware/software limitations, is conservative, and acceptable.

[†] MCPR values shown correspond with, (support), SLMPCR values identified in Reference 1.

[‡] Greater than 90% rated power is not attainable in single loop operation.

RBM HTSP Analytical Limit	CRWE OLMCPR
Unfiltered	
107	1.26
111	1.28
114	1.30
117	1.36

	Table 7.3	Control Rod	Withdrawal	Error Results
--	-----------	-------------	------------	---------------

Results, compared against the base case OLMCPR results of Table 4.2, indicate SLMCPR remains protected for RBM inoperable conditions (i.e., 114% unblocked).

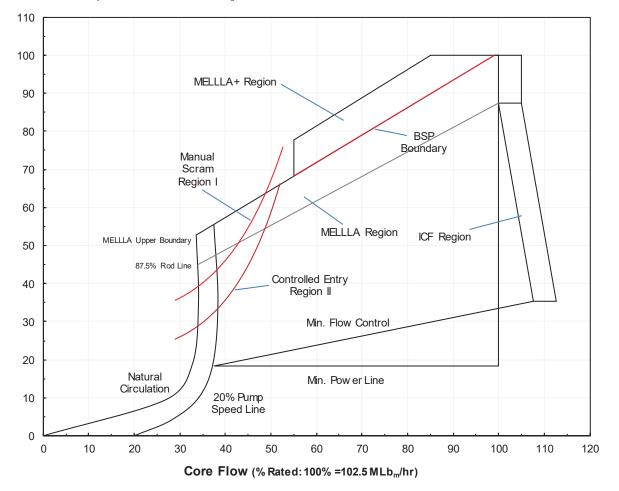
Date: September 8, 2021

8 Shutdown Margin Limit

(Technical Specification 3.1.1)

Assuming the strongest OPERABLE control blade is fully withdrawn, and all other OPERABLE control blades are fully inserted, the core shall be sub-critical and meet the following minimum shutdown margin:

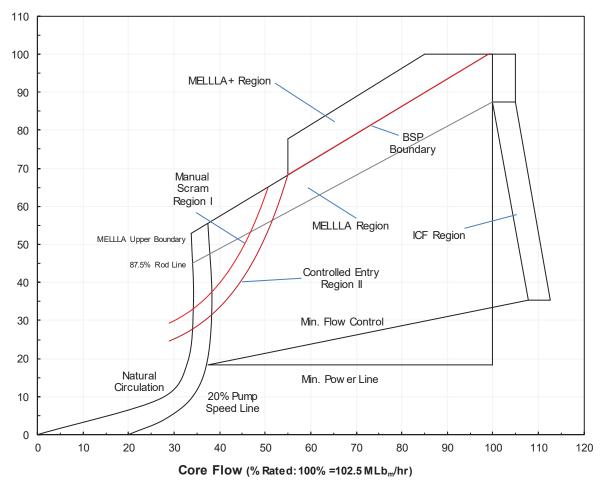
SDM ≥ 0.38% dk/k



Date: September 8, 2021

Appendix A: MBSP Maps

Date: September 8, 2021



Core Power (% Rated: 100% = 3952MW_t)

Figure A.1 MBSP Boundaries For Nominal Feedwater Temperature (Operation in the MELLLA+ Region Prohibited for Feedwater Temperature greater than 10 degrees F below the Nominal Feedwater Temperature)

Date: September 8, 2021

Core Power (% Rated: 100% = 3952MW_t)

