

Regulatory Framework Applicability Assessment and Licensing Pathway Diagram for the Licensing of ATF-Concept, Higher Burnup, and Increased Enrichment Fuels

MAY, 2022

Regulatory Framework Applicability Assessment and Licensing Pathway Diagram for the Licensing of ATF-Concept, Higher Burnup, and Increased Enrichment Fuels

ADAMS Accession No.: ML22014A112

i i i i i i i i i i i i i i i i i i i				
OFFICE	NRR/DORL/LP2-2/PM	NRR/DORL/LP2-2/LA	NRR/DORL/LP2-	OGC – NLO
NAME	MWentzel	RButler	DWrona	NMertz
DATE	2/1/2022	1/24/2022	2/9/2022	4/27/2022
OFFICE	NMSS/DFM/D	NMSS/REFS/D	NRR/DRA/D	RES/DSA/D
NAME	Shelton	JTappert	MFranovich	KWebber
DATE	2/9/2022	2/16/2022	2/4/2022	2/4/2022
OFFICE	NRR/DSS/D	NRR/DORL/D		
NAME	JDonoghue	BPham		
DATE	5/2/2022	5/4/2022		

OFFICIAL RECORD COPY

1. Background

In preparation for forthcoming submittals of topical reports (TRs) and license amendment requests (LARs) from vendors and licensees requesting the approval of near-term ATF concept, higher burnup, and increased enrichment fuels, the staff performed an assessment of the applicability of existing regulations and guidance for the licensing of these fuel types. Near-term ATF concepts are those for which the agency can largely rely on existing data, models, and methods for its safety evaluations. Coated cladding and doped UO₂ pellets are the current near-term ATF concepts. This document contains the results of this assessment, referred to as the Regulatory Framework Applicability Assessment (RFAA), as shown in Table 2-1, below. The U.S. Nuclear Regulatory Commission (NRC) staff does not consider the RFAA table to be exhaustive and will update it, as necessary, as more information is developed.

In conjunction with the RFAA table, the NRC staff has developed a licensing pathway diagram that provides a potential approach to licensing these fuel types.

2. Regulatory Framework Applicability Assessment

As stated in Section 1, the NRC staff determined the applicability of existing regulations and guidance for near-term ATF concept, higher burnup, and increased enrichment fuels. The NRC staff assessed each regulation and guidance document listed in the table for whether it was fully applicable to ATF, higher burnup, and increased enrichment fuels. If the NRC staff determined that a regulation or guidance did not account for a particular phenomenon, the RFAA table identifies this fact and provides an explanation for the determination. In the RFAA table, a regulation or guidance document that is listed as not being not fully applicable means that the staff foresees potential hurdles if the regulation or guidance is applied to a particular concept in the table. For example, some guidance may not address phenomena unique to high burnup, increased enrichment, or near-term ATF concept fuels and some regulations or guidance have stated limits of applicability that would be challenged if the regulation or guidance were used for these concepts. In some instances, the applicability of the regulation or guidance document is irrelevant because other regulations or guidance replace or supersede it. In other instances, other regulations and guidance documents do not supersede the relevant regulation or guidance document but the efficiency of the NRC's review does not depend on the evaluated regulation or guidance document being fully applicable. For some cases where the regulation or guidance document is not fully applicable, but full applicability will increase NRC review efficiency, the NRC staff has already discussed the matter in public meetings and has determined a path towards achieving full applicability. In those cases, the RFAA table will state the relevant closure path. In other cases, a closure path has not yet been determined upon and the table will indicate as such. The RFAA table also makes note of some information an applicant could consider to ensure they correctly apply the regulation or guidance while developing a submittal. Finally, the NRC staff notes that the RFAA table is provided for informational purposes only. The RFAA table is intended to inform discussions at meetings between the NRC, industry, and the public. The results of the staff's assessment do not supersede any regulations or guidance and the information presented in the table should not be interpreted as new regulatory requirements or guidance.

Table 2-1 Key

Green: actions for NRC

Fully applicable: the document can be applied to the concept

Not fully applicable: the staff foresees potential hurdles if the document or parts of the document in its current form are applied to the concept, reasons for which are detailed. Staff may recommend changes to the document or supplemental information to justify the use of the document with a particular concept the concept.

Priority: items listed as "high priority; near-term" are items the NRC staff is currently working on and are estimated to be completed within a 1.5-2-year timeframe. The NRC staff estimates that actions listed as "medium priority; medium-term" will be completed within a 5-year timeframe and that actions listed as "low priority; long-term" will take longer than 5 years to complete.

AST: alternate source term

B&W: Babcock and Wilcox

BU: burnup

CATEX: categorical exclusion

CE: Combustion Engineering

GE: General Electric

EA: environmental assessment

FFRD: fuel fragmentation, relocation, and dispersal

FGR: fission gas release

GWd/MTU: gigawatt day per metric ton of uranium

HBU: higher burnup (i.e., burnup that exceeds current licensing limits of 62 GWd/MTU. In this document two proposed burnup limits above 62 GWd/MTU are examined, 68 and 75 GWd/MTU)

LAR: license amendment request

LOCA: loss of coolant accident

MHA: maximum hypothetical accident

RES: the NRC's Office of Research

RG: regulatory guide

RIA: reactivity-initiated accident

RIL: research information letter

RXA: recrystallized annealed

SRP: NRC standard review plan

STS: standard technical specifications

TS: technical specifications

Wt%: weight-percent

Table 2-1: Regulatory Framework Applicability Assessment

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO₂ Fuel Pellets
1	RG 1.183ASTs for Evaluating Design Basis Accidents at Nuclear Power Reactors Draft Revision 1 (ML21204A065) Analytical guidance for predicting dose	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable No data gaps
2	RG 1.183ASTs for Evaluating Design Basis Accidents at Nuclear Power Reactors Draft Revision 1 (ML21204A065) MHA/LOCA source terms	 Not fully applicable <u>Reason</u>: Fragmentation- induced FGR of high burnup fuel pellets may change MHA/LOCA source term and timing of releases <u>Closure</u>: Informal assistance request to RES addresses this (available in ADAMS at accession number ML21197A062); insights from this informal assistance request to be 	 Not fully applicable <u>Reason</u>: SAND- 2011-0128 is not validated to 75 GWd/MTU <u>Closure</u>: Re-analysis of SAND-2011-0128 to higher BU is being conducted by RES and Sandia National Laboratory through 75 GWd/MTU <u>Priority</u>: High; near- term <u>Reason</u>: Fragmentation- induced FGR of high burnup fuel pellets may change MHA/LOCA source 	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable No data gaps

#	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
"	Regulation	68 GWd/MTU	75 GWd/MTU	beyond 5.0 wt/s		i eneta
		incorporated in RG 1.183 Rev. 1 <u>Priority</u> : High; near- term	term and timing of releases <u>Closure</u> : Informal assistance request to RES addresses this (available in ADAMS at accession number ML21197A062); insights from this informal assistance request to be incorporated in RG 1.183 Rev. 1 <u>Priority</u> : High; near- term			
3	RG 1.183 ASTs for Evaluating Design Basis Accidents at Nuclear Power Reactors Draft Revision 1 (ML21204A065) Non-LOCA steady- state and transient releases	 Not fully applicable <u>Reason</u>: Fragmentation- induced FGR of high burnup fuel pellets may change non-LOCA steady state and transient source term <u>Closure</u>: Revision 1 of RG 1.183 will address this. <u>Priority</u>: High; near- term 	 Not fully applicable Analytical procedure remains applicable Tables 3 and 4 not applicable <u>Note</u>: The FAST (Fuel Analysis under Steady-state and Transients) code is not validated up to 75 GWd/MTU. RES is working on the validation of FAST models to higher burnup. A data needs report has been issued from RES to examine what specifically is 	 Analytical procedure remains applicable Table 3 remains applicable Tote: With respect to Table 4, extent of ²³⁵U enrichment in RIA empirical database unknown. Analytical procedure can be used in lieu of Table 4. 	 Fully applicable No data gaps 	 Not fully applicable Analytical procedure remains applicable Tables 3 and 4 not applicable <u>Note</u>: FAST is not validated for doped fuel. RES is working on validation of FAST models to doped fuel. A data needs report has been issued from RES to examine what specifically is

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO₂ Fuel Pellets
			the FAST capabilities to 75 GWd/MTU • <u>Reason</u> : Fragmentation- induced FGR of high burnup fuel pellets may change source term <u>Closure</u> : Revision 1 of RG 1.183 will address this. <u>Priority</u> : High; near- term • <u>Reason</u> : RIA transient FGR is not currently well quantified up to 75 GWd/MTU • <u>Closure</u> : RIA transient FGR data may be helpful for quantifying HBU FGR			the FAST capabilities to doped pellets • <u>Reason</u> : RIA transient FGR for doped fuel has not been well quantified <u>Closure</u> : RIA transient FGR data for doped fuel are likely necessary

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO₂ Fuel Pellets
4	RG 1.195 Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light- Water Power Reactors (ML03490640) Release fractions from TID-14844	 Not fully applicable <u>Reason</u>: Validated only up to 62 GWd/MTU for non-LOCA accidents <u>Closure</u>: No closure necessary. HBU release fractions and source term to be addressed by RG 1.183 Rev. 1. 	 Not fully applicable <u>Reason</u>: Validated only up to 62 GWd/MTU for non- LOCA accidents <u>Closure</u>: No closure necessary. HBU release fractions and source term to be addressed by RG 1.183 Rev. 1. 	 Fully applicable No data gaps 	 Not fully applicable <u>Reason</u>: Non- LOCA accident release fractions are not validated for rods with coated cladding <u>Closure</u>: No closure necessary. Analytical procedure outlined in RG 1.183 Rev. 1 can be applied to coated cladding. 	 Not fully applicable <u>Reason</u>: Non- LOCA accident release fractions are not validated for doped fuel pellets <u>Closure</u>: No closure necessary. Analytical procedure outlined in RG 1.183 Rev. 1 can be applied to doped fuel.
5	RG 1.236 PWR Control Rod Ejection and BWR Control Rod Drop Accidents (ADAMS Accession No. ML20055F490)	 Fully applicable No data gaps 	 Not fully applicable <u>Note</u>: Empirical database limited beyond 68 GWd/MTU. <u>Reason</u>: FFRD as a result of HBU and possible loss of coolable geometry during RIA has not been well quantified or understood <u>Closure</u>: RIA data on HBU fuel rod segments with deposited energy beyond predicted cladding damage 	 Not fully applicable <u>Reason:</u> Stated applicability limited to 5.0 wt%. Increased enrichment could potentially lead to higher rod worth and peaking factors <u>Closure</u>: RIA experimental data for fuel with increased enrichment may be helpful to demonstrate the 	 Not fully applicable <u>Reason</u>: Stated applicability is limited to current LWR fuel rod designs <u>Closure</u>: Thin coating not expected to significantly alter fuel rod response. Cladding failure thresholds and damaged core coolability limits remain applicable. No data gaps 	 Not fully applicable <u>Reason</u>: Stated applicability is limited to current LWR fuel rod designs and doped fuel RIA performance has not been well quantified. <u>Closure</u>: Data for irradiated, doped UO₂ fuel pellets and integral fuel burnable absorber fuel pellets may be helpful to better

#	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
π	Regulation	68 GWd/MTU	75 GWd/MTU		2. Contain Olduding	T eners
			 may be helpful to investigate FFRD and loss of coolable geometry. Ideally, these data would also include transient FGR. <u>Reason</u>: HBU effects on RIA not well quantified. HBU cladding failure thresholds should be defined. <u>Closure</u>: RIA data on HBU fuel rod segments, especially RXA cladding, with low corrosion may be helpful to better understand burnup- effects and define cladding failure thresholds. 	RG 1.236 limits remain applicable • <u>Note</u> : Extent of ²³⁵ U enrichment in RIA empirical database unknown.	• <u>Note:</u> Guidance states that coated claddings will be addressed on a case-by-case basis	understand impact of additive agents (e.g., larger grain size, retained fission gas, grain boundary hold-up, thermal conductivity) on cladding failure thresholds, FFRD, transient FGR, and coolable geometry. • <u>Note:</u> Guidance states that doped pellets will be addressed on a case-by-case basis.

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
6	10 CFR 50.46 LOCA Prescriptive Analytical Requirements	 Fully applicable <u>Note</u>: 50.46 does not address recent HBU LOCA findings documented in NUREG/CR-7219. 50.46c rulemaking is being conducted to address HBU phenomena in the regulations. Ideally, industry submittals should discuss the recent LOCA findings in NUREG/CR-7219. 	 Fully applicable <u>Note</u>: 50.46 does not address recent HBU LOCA findings documented in NUREG/CR-7219. 50.46c rulemaking is being conducted to address HBU phenomena in the regulations. Ideally, industry submittals should discuss the recent LOCA findings per NUREG/CR-7219. 	 Fully applicable No data gaps 	 Not fully applicable <u>Reason</u>: 50.46(a)(1)(i) only speaks to zircaloy and ZIRLO cladded fuel. <u>Closure</u>: An applicant will need to meet the analytical requirements. Exemption requests may have to be submitted. Refer to coated cladding interim staff guidance (ML19343A121). 	 Fully applicable No data gaps

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
7	LOCA Embrittlement Research Findings - Draft RG 1.222 Measuring Breakaway Oxidation Behavior (ML15281A170) - Draft RG 1.223 Determining Post Quench Ductility (ML15281A188) - Draft RG 1.224 Establishing Analytical Limits for Zirconium-Alloy Cladding Material (ML15281A192)	 Fully applicable Large population of fuel rods beyond threshold for cladding inner diameter oxygen embrittlement. 	 Fully applicable Large population of fuel rods beyond threshold for cladding inner diameter oxygen embrittlement. 	 Fully applicable No data gaps 	 Fully applicable Rate for oxidation and embrittlement different from bare zirconium <u>Note</u>: Single sided steam oxidation data and subsequent mechanical data as well as double sided integral steam oxidation data and subsequent mechanical data are necessary to establish post quench ductility limits. 	 Fully applicable Large population of fuel rods beyond threshold for cladding inner diameter oxygen embrittlement <u>Note</u>: Hot cell post irradiation examination data may be helpful to define threshold for fuel-clad bond layer.

#	Guidance Document	Burnup to	Burnup to	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated	Doped UO ₂ Fuel Pellets
	Regulation	68 GWd/MTU	75 GWd/MTU			i chicto
8	Standard Technical Specifications (STS) NUREG-1430, Rev. 5 STS – B&W Plants (ML21272A363): Figure 3.7.16-1 4.2.1 4.3.1 NUREG-1431, Rev. 4 STS – Westinghouse Plants (ML12100A222): Figure 3.7.17-1 4.2.1 4.3.1 NUREG-1432, Rev. 4 STS CE Plants (ML12102A165): Figure 3.7.18-1 4.2.1 4.3.1 NUREG-1433 and - NUREG-1434, Rev. 4 STS GE Plants (ML12104A192 and ML12104A195, respectively): 4.2.1 4.3.1	 TS 4.2.1 and 4.3.1 are fully applicable No data gaps Figure 3.7.16-1, 3.7.17-1, and 3.7.18-1 are fully applicable <u>Note</u>: Licensees should provide plant-specific figure for TS with LAR. 	 TS 4.2.1 and 4.3.1 are fully applicable No data gaps Figure 3.7.16-1, 3.7.17-1, and 3.7.18- 1 are fully applicable <u>Note</u>: Licensees should provide plant- specific figure for TS with LAR. 	 TS 4.2.1 is fully applicable NRC and TSTF to discuss whether or not the term "slightly" in TS 4.2.1 includes fuels enriched beyond 5% 	 TS 4.2.1 is fully applicable <u>Note</u>: Licensees should specify chromium coated cladding in TS 4.2.1 with LAR. 	 TS 4.2.1 is fully applicable <u>Note</u>: Licensees should specify doped pellets in TS 4.2.1 with LAR.
9	10 CFR 50.67 Accident Source Term	Potent	tial impacts to accident so	burce term described ab	ove for RG 1.183 Revisi	on 1.

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO₂ Fuel Pellets
10	10 CFR 50.68 Criticality Accident Requirements	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable <u>Note</u>: 5 wt% enrichment limit (without criticality monitoring system) explicitly stated, thus, licensees can submit exemption requests or, as stated in 50.68, adopt 70.24. See below for a discussion of 70.24's applicability. In December 2021, NRC staff issued SECY-21-0109, "Rulemaking plan on Use of Increased Enrichment of Conventional and Accident Tolerant Fuel Designs for Light Water Reactors" (ML21232A237). As a part of this rulemaking plan, the NRC stated plans to amend the 5 wt% enrichment limit in 50.68. <u>Note</u>: Criticality analyses may need to be updated. 	 Fully applicable No data gaps 	 Fully applicable No data gaps

PelletsFully applicableNo data gaps
Fully applicableNo data gaps
Fully applicableNo data gaps
 No data gaps

	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
#	Document Regulation	68 GWd/MTU	75 GWd/MTU	beyond 5.0 wt%	Zirconium Cladding	Pellets
		fragmentation should be analyzed as well. Additionally, examining the impact of fuel fragment/particle transport and deposition on coolability and criticality, including addressing potential sump blockage caused by fuel fragments/particles in the coolant may be helpful to better understand the effects of FFRD. • <u>Note</u> : The NRC's understanding of recent FFRD research is documented in RIL 2021-13 (ML21313A145). Applicants may potentially find this document useful when addressing FFRD in LOCA evaluation methodologies.	fragmentation should be analyzed as well. Additionally, examining the impact of fuel fragment/particle transport and deposition on coolability and criticality, including addressing potential sump blockage caused by fuel fragments/particles in the coolant may be helpful to better understand the effects of FFRD. • <u>Note: The NRC's</u> understanding of recent FFRD research is documented in RIL 2021-13 (ML21313A145). Applicants may potentially find this document useful when addressing FFRD in LOCA evaluation methodologies.		different, so consideration to this and other surface conditions is important when modeling coated cladding. Although thermal-hydraulic impact of coated cladding is expected to be minimal, this should be justified to confirm the continued applicability of thermal-hydraulic models.	

	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel	
#	Document Regulation	68 GWd/MTU	75 GWd/MTU	beyond 5.0 wt%	Zirconium Cladding	Pellets	
12	10 CFR 51.21 Environmental Assessment (EA) and 51.22 Categorical Exclusion (CATEX) - NMSS	 10 CFR 51.21 is fully 10 CFR 51.22 lists the individually or cumula It is premature to decite technologies and our to the source term to be determined. Given reviews of ATF licens <u>Note</u>: Due to plant chat transportation of fuel a is expected that the N 	fully applicable sts the NRC's CATEXs. CATEXs are for categories of actions that the Commission has found do not imulatively have a significant effect on the human environment. b decide now to apply a CATEX for nuclear power plant LARs due to the range of different ATF d our uncertainty about what the licensees will submit. For example, the staff is expecting changes m to be applied in various safety analyzes (e.g., RG 1.183 calculations) with results that cannot yet Given this situation, the NRC staff is currently considering a path forward on the environmental icensing actions. nt changes and unanalyzed environmental impacts (i.e., effluent releases, accidents, and fuel and waste) as a result of adopting fuels with increased enrichment and higher burnup levels, it the NRC staff will perform an EA in the first LAR application for this ATF type.				
13	10 CFR 51.51, Uranium fuel cycle environmental data – Table S-3 - NMSS	 Fully applicable Several aspects of the uranium fuel cycle are expected to remain unchanged from current processes (e.g., uranium recovery and conversion). <u>Note:</u> Fuel cycle facility changes necessary for use of ATF may require NRC approval. For example, fuel fabricators will have to determine whether they can manufacture the fuel assemblies under their existing licenses or whether they will require NRC authorization in the form of LARs. At the time of an ATF LAR from a nuclear power plant licensee, these associated fuel cycle impacts will be evaluated and, where appropriate, analysis from prior environmental reviews may be incorporated by reference into the LAR NEPA review. NEPA analyses may also "tier off" previous analyses. <u>Priority</u>: High; near-term 					

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO₂ Fuel Pellets
14	10 CFR 51.52, Environmental effects of transportation of fuel and waste - Table S-4 - NMSS	 Not fully applicable Note: The proposed enrichment and burnup levels are beyond the conditions specified in 10 CFR 51.52(a) and analyzed in the License Renewal GEIS (NUREG-1437 Revision 1). Further, chromium-coated cladding falls outside of the conditions described in 10 CFR 51.52(a)(2) because 10 CFR 51.52(a)(2) only speaks to zircaloy-clad fuel. The staff would need to assess the impacts with regard to enrichment, burnup, and cladding by conducting a full description and detailed analysis of the environmental effects of transportation of fuel and waste to and from the reactor, including values for the conditions of transport and for the environmental risks from accidents in transport (see 10 CFR 51.52(b)). Priority: High; near-term Note: NUREG/CR-6703 (ML010310298) did attempt to analyze BU levels greater than 62 GWd/MTU but found therwas too much uncertainty in changes in the gap-release fraction associated with increasing fuel BU. NUREG/CR-6703recommends that the staff re-evaluate this as the methods for assessing fission gas releases are validated with data for higher BUs (see page 52 of NUREG/CR-6703). The NRC staff are performing an analysis of transportation impacts based on the aspects of NUREG/CR-6703 and other transportation assessments for higher BU levels. Fully applicable 				FR 51.52(a) and cladding falls outside zircaloy-clad fuel. conducting a full e to and from the cidents in transport I/MTU but found there I BU. NUREG/CR- ses are validated with ysis of transportation igher BU levels.
15	10 CFR 70.24 Criticality Accident Requirements	Fully applicableNo data gaps	Fully applicableNo data gaps	Fully applicableNo data gaps	Fully applicableNo data gaps	Fully applicableNo data gaps
16	NUREG-0630 Cladding Swelling and Rupture Models for LOCA Analysis (ML053490337)	 Not fully applicable <u>Reason</u>: NUREG- 0630 models are hot-rod models and thus do not consider interactions between rods. Interactions between rods affect swelling and rupture behavior, which may impact the amount of fragmented fuel that may disperse, and should, thus, not be neglected. 	 Not fully applicable <u>Reason</u>: NUREG- 0630 models are hot-rod models and thus do not consider interactions between rods. Interactions between rods affect swelling and rupture behavior, which may impact the amount of fragmented fuel that may disperse, and, should, thus, not be neglected. 	 Fully applicable No data gaps 	 Not fully applicable <u>Reason</u>: Cladding swelling and burst data presented is from bare zircaloy cladding, so should not be used if the benefits of coated cladding are to be credited. <u>Closure</u>: As stated in coated cladding interim staff guidance (ML19343A121), if NUREG-0630 is used, it would be 	 Fully applicable No data gaps

#	Guidance Document	Burnup to	Burnup to	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO₂ Fuel Pellets
		 <u>Closure</u>: Interactions between rods should be considered for swelling and rupture modelling. <u>Reason</u>: HBU rod internal pressures may exceed the rod internal pressures of the data provided in NUREG-0630. <u>Closure</u>: If the NUREG-0630 data is desired to be used, licensees should show that HBU rod internal pressures are bounded by the data provided in NUREG-0630. 	 <u>Closure</u>: Interactions between rods should be considered for swelling and rupture modelling. <u>Reason</u>: HBU rod internal pressures may exceed the rod internal pressures of the data provided in NUREG-0630. <u>Closure</u>: If the NUREG-0630 data is desired to be used, licensees should show that HBU rod internal pressures are bounded by the data provided in NUREG-0630. 		 useful for licensees to show that data bounds the performance of the coated cladding, or if new burst stress and ballooning strain limits are proposed, a significant body of data would be useful to demonstrate that the degree of swelling will not be underestimated. Framework/approa ch described for modeling swelling and rupture remains fully applicable. 	

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
17	NUREG-0800 SRP Chapter 4.2 Fuel System Design (ML070740002)	 Not fully applicable <u>Reason</u>: Interim RIA guidance provided in Appendix B does not match the most recent guidance given in RG 1.236. <u>Closure</u>: Appendix B should be updated, and readers should be directed to RG 1.236. <u>Priority</u>: Low (this is administrative in nature as RG 1.236 has been published to address RIA guidance up to 68 GWd/MTU); long-term <u>Reason</u>: FFRD not thoroughly addressed. <u>Closure</u>: Potential addition of vendor requirements for submittals where rod burst is assumed to occur. <u>Priority</u>: TBD 	 Not fully applicable <u>Reason</u>: Interim RIA guidance provided in Appendix B does not match the most recent guidance given in RG 1.236. <u>Closure</u>: Appendix B should be updated, and readers should be directed to RG 1.236. Note that RG 1.236 is not fully applicable to 75 GWd/MTU. <u>Priority</u>: Low; long- term <u>Reason</u>: FFRD not thoroughly addressed. <u>Closure</u>: Potential addition of vendor requirements for submittals if rod burst is assumed to occur. <u>Priority</u>: TBD 	 Not fully applicable <u>Reason</u>: Interim RIA guidance in Appendix B does not match the current RIA guidance in RG 1.236. RG 1.236 is also not applicable to fuel enriched to greater than 5.0 wt%. <u>Closure</u>: See discussion on RG 1.236 Note: Increased enrichment could potentially lead to higher rod worth and peaking factors. Sections 2.1.4 and 2.2.1.3 of RG 1.236 state that the effect of rod worth and power peaking limits should be considered in RIA analyses. 	 Not fully applicable <u>Note</u>: Coated cladding interim staff guidance (ML19343A121) created to supplement SRP Section 4.2 in coated cladding reviews. <u>Reason</u>: Interim RIA guidance in Appendix B does not match the current RIA guidance in RG 1.236. Note that RG 1.236 is also not applicable to coated cladding. <u>Closure</u>: See discussion on RG 1.236 and coated cladding interim staff guidance (ML19343A121). 	 Not fully applicable <u>Reason</u>: Interim RIA guidance in Appendix B does not match the current RIA guidance in RG 1.236. RG 1.236 is also not applicable to doped fuel. <u>Closure</u>: See discussion on RG 1.236 <u>Reason</u>: Impact of additives on fuel performance has not been extensively quantified. <u>Closure</u>: Data on irradiated, doped UO₂ fuel pellets and integral fuel burnable absorber fuel pellets may be helpful to better understand impact of additive agents (e.g., larger grain size, retained fission gas, grain boundary hold-up, thermal conductivity) on cladding failure thresholds, FFRD, transient FGR, and coolable geometry.

	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
#	Document Regulation	68 GWd/MTU	75 GWd/MTU	beyond 5.0 wt%	Zirconium Cladding	Pellets
18	NUREG-1465 Accident Source Terms for Light Water Reactor Nuclear Power Plants (ML041040063)	Potent	ial impacts to accident so	ource term described ab	ove for RG 1.183 Revisio	on 1.
19	NUREG-2121 FFRD During the LOCA (ML12090A018)	 Not fully applicable <u>Reason</u>: Published in 2012, so does not include recent FFRD research findings <u>Closure:</u> Recent FFRD research findings are covered in RIL 2021-13 (ML21313A145) <u>Note</u>: Halden tests described in the NUREG include several tests at > 75 GWd/MTU <u>Note</u>: Studsvik tests described in the NUREG include several tests at > 70 GWd/MTU <u>Note</u>: More data may be helpful to properly address FFRD if the burst is predicted to occur. If burst and, thus, FFRD is expected to occur, technical justification for the threshold (e.g., BU) for which 	 Not fully applicable <u>Reason</u>: Published in 2012, so does not include recent FFRD research findings <u>Closure</u>: Recent FFRD research findings are covered in RIL 2021-13 (ML21313A145) <u>Note</u>: Halden tests described in the NUREG include several tests at > 75 GWd/MTU <u>Note</u>: Studsvik tests described in the NUREG include several tests at > 70 GWd/MTU <u>Note</u>: More data may be helpful to properly address FFRD if burst is predicted to occur. If burst and, thus, FFRD is expected to occur, technical justification for the threshold (e.g., BU) for which 	 Not fully applicable <u>Note</u>: The effect of enrichment on FFRD phenomena was not a part of NUREG-2121 <u>Note</u>: INL Power Burst Facility tests included fuel enriched to 9.6 wt%. 	 Not fully applicable <u>Reason</u>: Only uncoated cladding considered in tests described in the NUREG. Closure: Justification for the application of the NUREG-2121 data to coated cladding may be necessary 	 Not fully applicable <u>Reason</u>: Only traditional UO₂ fuel considered in the tests described in the NUREG. Impact of additives on fuel performance has not been extensively quantified. <u>Closure</u>: Data for irradiated, doped UO₂ fuel pellets and integral fuel burnable absorber fuel pellets may be helpful to better understand impact of additive agents (e.g., larger grain size, retained fission gas, grain boundary hold-up, thermal conductivity) on cladding failure thresholds, FFRD,

	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
#	Document	68 CWH/MTH		beyond 5.0 wt%	Zirconium Cladding	Pellets
	Regulation					
		FFRD is to be	FFRD is to be			transient FGR, and
		considered may be	considered may be			coolable geometry.
		helpful, as well as a	helpful, as well as a			
		technical justification	technical justification			
		for when the effect of	for when the effect of			
		fragmentation-	fragmentation-			
		induced FGR is to be	induced FGR is to be			
		considered.	considered.			
		Additionally,	Additionally,			
		examining the impact	examining the impact			
		of fuel	of fuel			
		fragment/particle	fragment/particle			
		transport and	transport and			
		deposition on	deposition on			
		coolability and	coolability and			
		criticality, including	criticality, including			
		addressing potential	addressing potential			
		sump blockage	sump blockage			
		caused by luel	caused by luel			
		the sector may be	the ecclent may be			
		the coolant may be	the coolant may be			
		helpiul to better	understand the			
		The NPC's				
		• The NKC S	• The NRC S			
		research is	research is			
		documented in	documented in			
		RII 2021-13	RII 2021-13			
		(MI 21313A145)	(MI 21313A145)			
		Applicants may	Applicants may			
		potentially find this	potentially find this			
		document useful	document useful			
		when addressing	when addressing			
		FFRD in LOCA	FFRD in LOCA			
		evaluation	evaluation			
		methodologies.	methodologies.			

#	Guidance Document	Burnup to	Burnup to	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
	Regulation	68 GWd/MTU	75 GWd/MTU			
20	NUREG/CR-7219 Cladding Behavior During Postulated LOCA (ML16211A004)	 Fully applicable No data gaps 	 Fully applicable <u>Note</u>: Section 3.3.2 details "current" post quench ductility results for only up to 70 GWd/MTU 	 Fully applicable No data gaps 	 Not fully applicable <u>Reason</u>: Data only included bare zirconium. Rate of oxidation and embrittlement expected to be different <u>Closure</u>: TBD Note: Zircaloy embrittlement mechanisms presented in NUREG/CR-7219 may remain applicable due to presence of base zircaloy cladding. <u>Note</u>: Single sided steam oxidation data and subsequent mechanical data as well as double sided integral steam oxidation data and subsequent mechanical data may be helpful to establish post quench ductility limits 	 Not fully Applicable <u>Reason</u>: BU threshold for the formation of fuel- clad bond layer has not been well quantified in most doped fuel. <u>Closure</u>: Hot cell post irradiation examination may be helpful to define threshold for fuel-clad bond layer

fully icable <u>son</u> : ion 3.2.1 on
fully icable <u>son</u> : ion 3.2.1 on
fully icable <u>son:</u> ion 3.2.1 on
icable <u>son</u> : ion 3.2.1 on
<u>son</u> : ion 3.2.1 on
ion 3.2.1 on
l stored
ay in the fuel
it of date. It
references an
ptable initial
ed energy
el. This
el was
loped for UO ₂
is not
ptable
ently for
ed fuel.
<u>ure</u> :
isees should
/ that the
d energy
not change
1 from a
or's current
models, or
models
osea.
计变体 计判实 医多乳的 判实 多 医下子 网络下午下午 医

	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
#	Document			beyond 5.0 wt%	Zirconium Cladding	Pellets
	Regulation	66 GWU/WITU				
#	Regulation	68 GWd/MTU evaluation methodologies. If burst and thus FFRD is expected to occur, technical justification for the threshold (e.g., BU) for which FFRD is to be considered may be helpful, as well as a technical justification for when the effect of fragmentation- induced FGR is to be considered. The limiting condition for	75 GWd/MTU evaluation methodologies. If burst and thus FFRD is expected to occur, technical justification for the threshold (e.g., BU) for which FFRD is to be considered may be helpful, as well as a technical justification for when the effect of fragmentation- induced FGR is to be considered. The limiting condition for	beyond 5.0 wt%	Cathcart-Pawel correlation is used, it should be demonstrated that it bounds the coated cladding oxidation kinetics. Note: this RG provides a means of meeting the 50.46 prescriptive analytical requirements; those requirements are not applicable for fuel rods with coated cladding	Pellets
		rupture with fragmentation should be analyzed as well. Additionally, examining the impact of fuel fragment/particle transport and deposition on coolability and criticality, including addressing potential sump blockage caused by fuel fragments/particles in the coolant may be helpful to better	rupture with fragmentation should be analyzed as well. Additionally, examining the impact of fuel fragment/particle transport and deposition on coolability and criticality, including addressing potential sump blockage caused by fuel fragments/particles in the coolant may be helpful to better		due to the wording of 50.46(a)(1)(i), so this RG is <i>fully</i> applicable pending an approved exemption to 50.46.	

	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
#	Document			beyond 5.0 wt%	Zirconium Cladding	Pellets
	Regulation	68 GVVQ/IVI I U	75 GVV0/IVI I U			
		understand the	understand the			
		effects of FFRD.	effects of FFRD.			
		Note: The NRC's	 Note: The NRC's 			
		understanding of	understanding of			
		recent FFRD	recent FFRD			
		research is	research is			
		documented in	documented in			
		RIL 2021-13	RIL 2021-13			
		(ML21313A145).	(ML21313A145).			
		Applicants may	Applicants may			
		potentially find this	potentially find this			
		document useful	document useful			
		when addressing	when addressing			
		FFRD in LOCA	FFRD in LOCA			
		evaluation	evaluation			
		methodologies.	methodologies.			
		 <u>Reason</u>: The limiting 	 <u>Reason</u>: The limiting 			
		rod may not be the	rod may not be the			
		hot rod when	hot rod when			
		considering swelling	considering swelling			
		and rupture (see	and rupture (see			
		NUREG-0630	NUREG-0630			
		discussion)	discussion)			
		Closure: Rod-to-rod	Closure: Rod-to-rod			
		interactions should	interactions should			
		be considered for	be considered for			
		swelling and rupture	swelling and rupture			
		In LOCA analyses.	In LOCA analyses.			

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO₂ Fuel Pellets
22	RG 1.203 Transient and Accident Analysis Methods (ML053500170)	 Fully applicable <u>Note</u>: Vendors may need to validate their evaluation models to higher BU. 	 Fully applicable <u>Note</u>: Vendors may need to validate their evaluation models to higher BU. 	 Fully applicable <u>Note</u>: Vendors may need to validate their evaluation models to higher enrichments 	 Fully applicable <u>Note</u>: RG 1.203 discusses 50.46 requirements, so this RG is only <i>fully</i> applicable pending an accepted exemption to 50.46. See discussion on 50.46 for more details. <u>Note</u>: Vendors will likely need to update and validate their evaluation models to consider coated cladding 	 Fully applicable <u>Note</u>: Vendors may need to update and validate their evaluation models to consider doped fuel

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
23	RG 1.240 Fresh and Spent Fuel Pool Criticality Analysis (ML20182A788) NEI 12-16, Rev. 4 (ML18269E069)	 Not fully Applicable <u>Reason</u>: Cites use of gap release fractions from RG 1.183 and PNNL-18212 Rev 1. RG 1.183 Rev 0 is only applicable up to 62 GWd/MTU and PNNL-18212 Rev 1 is only applicable up to 65 GWd/MTU. <u>Closure</u>: Will be fully applicable upon the publication of RG 1.183 Rev 1, which will provide tables for gap release fractions 	 Not fully applicable <u>Reason</u>: Cites use of gap release fractions from RG 1.183 and PNNL-18212 Rev 1. RG 1.183 Rev 0 is only applicable up to 62 GWd/MTU and PNNL-18212 Rev 1 is only applicable up to 65 GWd/MTU. <u>Closure</u>: Will be fully applicable upon the publication of RG 1.183 Rev 1, which will provide an analytical procedure for calculating gap release fractions that is applicable. 	 Not fully applicable <u>Reason</u>: Mentions gap release fractions from RG 1.183 Rev. 0, which is not fully applicable. RG 1.183, Rev. 1 will not be fully applicable, but the analytical procedure remains applicable. <u>Closure</u> RG 1.183 Rev 1 will provide an analytical procedure for calculating gap release fractions that is applicable. <u>Note</u>: Criticality code validation will ideally demonstrate that validation is applicable to the increased enrichment range (Section 7.1.4.1 of Version 1.2 of the ATF Project Plan (ML21243A298 discusses various ways of benchmarking criticality analyses that could be used to validate criticality codes)) 	 Fully applicable No data gaps 	 Not fully applicable <u>Reason:</u> Mentions gap release fractions from RG 1.183 Rev. 0, which is not fully applicable. RG 1.183, Rev. 1 will not be fully applicable, but the analytical procedure remains applicable. <u>Closure</u>: RG 1.183 Rev 1, will provide an analytical procedure for calculating gap release fractions that is applicable. <u>Note</u>: Section 9.3 of NEI 12-16, Rev. 4 describes how to approach new fuel designs. <u>Note</u>: If dopant increases density, higher density fuel may lead to more ²³⁵U in the spent fuel pool <u>Note</u>: Criticality codes may need to be validated for doped fuel. Per Section 7.1.4.1 of version 1.2 of the ATF Project Plan

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO₂ Fuel Pellets
				• <u>Note</u> : Criticality analyses may need to be updated to show adherence to the k-effective regulatory limits.		 (ML21243A298), discusses various ways of benchmarking criticality analyses. These methods may be used for validating codes. <u>Note:</u> RG 1.240 Section C paragraph o states that for new fuel designs, justification for continued use of the assumptions presented in NEI 12-16 Rev. 4 may be necessary.

ш	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
#	Regulation	68 GWd/MTU	75 GWd/MTU	beyond 5.0 wt%	Zirconium Cladding	Pellets
24	NUREG-0800 SRP Chapter 9.1.1 Criticality Safety of Fresh and Spent Fuel Storage and Handling (ML070570006)	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable <u>Note</u>: Compliance with 10 CFR 50.68 is a part of the stated review procedures. <u>Note</u>: Criticality code validation will ideally demonstrate that validation is applicable to the increased enrichment range (Section 7.1.4.1 of version 1.2 of the ATF Project Plan (ML21243A298) discusses various ways of benchmarking criticality analyses that could be used to validate criticality codes) <u>Note</u>: Criticality analyses may need to be updated to show adherence to the k-effective regulatory limits. 	 Fully applicable No data gaps 	 Fully applicable <u>Note</u>: Criticality codes may need to be validated for doped fuel. Section 7.1.4.1 of version 1.2 of the ATF Project Plan (ML21243A298), discusses various ways of benchmarking criticality analyses. These methods may be used for validating codes.

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
25	NUREG-0800 SRP Chapter 9.1.2 New and Spent Fuel Storage (ML070550057)	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable <u>Note:</u> Compliance with 10 CFR 50.68 is a part of the stated review procedures. 	 Fully applicable No data gaps 	 Fully applicable No data gaps
26	NUREG-1520 SRP for Fuel Cycle Facilities License Applications (ML15176A258) – NMSS	 Not applicable <u>Reason:</u> HBU is not relevant to uranium conversion, enrichment, fuel fabrication, or greater-than-critical mass facilities. <u>Closure:</u> No closure necessary 	 Not applicable <u>Reason:</u> HBU is not relevant to uranium conversion, enrichment, fuel fabrication or greater-than-critical mass facilities. <u>Closure:</u> No closure necessary 	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable No data gaps
27	NUREG-1065 Acceptable Standard Format and Content for the Fundamental Nuclear Material Control (FNMC) Plan Required for Low-Enriched Uranium Facilities (ML031340288) - NMSS	 Not applicable <u>Reason:</u> HBU is not relevant to fuel fabrication. <u>Closure:</u> No closure necessary 	 Not applicable <u>Reason:</u> HBU is not relevant to fuel fabrication. <u>Closure:</u> No closure necessary. 	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable No data gaps

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
28	NUREG/CR-5734 Recommendations to the NRC on Acceptable Standard Format and Content for the Fundamental Nuclear Material Control (FNMC) Plan Required for Low-Enriched Uranium Enrichment Facilities (ML15120A354) - NMSS	 Not applicable <u>Reason:</u> HBU is not relevant to fuel enrichment. <u>Closure:</u> No closure necessary. 	 Not applicable <u>Reason:</u> HBU is not relevant to fuel fabrication. <u>Closure:</u> No closure necessary. 	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable No data gaps

#	Guidance Document	Burnup to	Burnup to	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO₂ Fuel Pellets
	Regulation	68 GWd/MTU	75 GWd/MTU			
29	NUREG-2214, Managing Aging Processes in Storage (MAPS) Report (ML19214A111) - NMSS	 Not fully applicable <u>Reason</u>: The evaluation mechanisms for spentic be extended to burnup 62 GWd/MTU. This how hich aging mechanise extended storage and recommended prevent drying criteria) and oth approaches. <u>Closure</u>: Fuel perform characterization of irracterization of irracted to assess created to asseses created to assess created to assess created to assess cre	ons of aging t fuel cladding need to os greater than igher BU may influence sms are credible during may warrant unique tive actions (e.g., fuel her aging management nance modeling and adiated cladding with anical testing, terization) may be dible aging	 Not fully applicable <u>Reason</u>: Increased use of burnable absorbers may affect cladding hoop stresses and the associated aging mechanisms. <u>Closure</u>: Fuel performance modeling and characterization of irradiated cladding with increased enrichment (e.g., mechanical testing) may be needed to assess credible aging mechanisms. 	 Not fully applicable <u>Reason</u>: The evaluations of aging mechanisms for spent fuel cladding do not consider the potential effects of Cr coating. <u>Closure</u>: Characterization of irradiated Cr- coated cladding (e.g., mechanical testing, microstructure analysis) may be needed to assess credible aging mechanisms, such as hydrogen effects, thermal creep, and corrosion. 	 Not fully applicable <u>Reason</u>: Doped fuel pellets may affect cladding hoop stresses (via pellet-clad interactions or fission gas release) and the associated aging mechanisms. <u>Closure</u>: Fuel performance modeling and characterization of irradiated cladding with doped pellets (e.g., mechanical testing) may be needed to assess credible aging mechanisms.
30	NUREG-2215, SRP for Spent Fuel Dry Storage Systems and Facilities (ML20321A086) - NMSS	 Not fully applicable <u>Reason</u>: Guidance proup to 60 GWd/MTU. <u>Closure</u>: TBD <u>Note</u>: Shielding discuss may need to consider composition to account term. Literature review provide information on <u>Note</u>: Criticality discuss may need to consider credit analyses, as we 	ovided is limited to BU asions in submissions HBUs and fuel at for increase source ws and research will this technical issue. asion in submissions higher BUs for BU Il as benchmark the	 Not fully applicable <u>Reason</u>: Guidance is limited to enrichments up to 5wt%. <u>Closure</u>: TBD <u>Note</u>: Shielding discussion in submissions may need to consider higher enrichments to account for 	 Under review <u>Note</u>: Guidance provides information on Zr alloy cladding. No discussion of unique considerations for Cr coating on cladding performance. Staff will assess this 	 Under review <u>Note</u>: Staff is evaluating the need to address potential validation variations and fuel dopant effect on fuel density. <u>Note</u>: Guidance does not address potential unique considerations of

#	Guidance Document	Burnup to	Burnup to	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
	Regulation	68 GWd/MTU	75 GWd/MTU	-		
		criticality analysis and profiles for HBU fuels. research will provide i technical issue. • <u>Note:</u> Materials evalua may need to consider cladding performance impact when lead test becomes available. A provide this information	address bounding Literature reviews and nformation on this ation in submissions higher BUs' effect on . Staff will assess this assembly data oplicants could also in.	 increase burnable absorber use and impact on source term. Literature reviews and research will provide information on this technical issue. <u>Note</u>: Criticality discussion in submissions may need to consider higher enrichment as well as benchmark the criticality analysis and address bounding profiles for higher enrichment fuels. Literature reviews and research will provide information on this technical issue. <u>Note</u>: Materials discussion in submissions may need to consider if an increase in burnable absorber use which may affect cladding 	impact when lead test assembly data becomes available. Applicants could also provide this information.	fuel dopants on cladding hoop stresses. Staff will assess this impact when lead test assembly data becomes available. Applicants could also provide this information.
				consequently, the		

	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
#	Document Regulation	68 GWd/MTU	75 GWd/MTU	beyond 5.0 wt%	Zirconium Cladding	Pellets
				recommended fuel drying criteria to support adequate cladding performance. Literature reviews and research will provide information on this technical issue.		
31	NUREG-2216, SRP for Transportation Packages for Spent Fuel and Radioactive Material (ML20234A651) - NMSS	 Not fully applicable <u>Reason</u>: Guidance proburnups up 60 GWd/M <u>Closure</u>: TBD <u>Note</u>: Shielding discuss may need to consider composition to accounterm. Literature review provide information on <u>Note</u>: Criticality discuss may need to consider analyses, as well as b analysis and address HBU fuels. Literature will provide information issue. <u>Note</u>: Materials evaluat may need to consider cladding performance. impact when lead test becomes available. A provide this information 	ovided is limited to ITU. ssion in submissions HBUs and fuel at for increase source ws and research will this technical issue. sion in submissions HBUs for BU credit enchmark the criticality bounding profiles for reviews and research n on this technical ation in submissions HBUs' effect on Staff will assess this assembly data pplicants could also n.	 Not fully applicable <u>Reason</u>: Guidance is limited to enrichments up to 5 wt%. <u>Closure</u>: TBD <u>Note</u>: Shielding discussion in submissions may need to consider higher enrichments to account for increase burnable absorber use and impact on source term. Literature reviews and research will provide information on this technical issue. <u>Note</u>: Criticality discussion in submissions may need to consider 	 Under review <u>Note</u>: Guidance provides information on Zr- alloy cladding. No discussion of unique considerations for Cr coated on cladding performance. Staff will assess this impact when lead test assembly data becomes available. Applicants could also provide this information. 	 Under review <u>Note</u>: Staff is evaluating the need to address potential validation variations and fuel dopant effect on fuel density. <u>Note</u>: Guidance does not address potential unique considerations of fuel dopants on cladding hoop stresses. Staff will assess this impact when lead test assembly data becomes available. Applicants could also provide this information.

	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
#	Document Regulation	68 GWd/MTU	75 GWd/MTU	beyond 5.0 wt%	Zirconium Cladding	Pellets
				 higher enrichments as well as benchmark criticality analysis, address additional isotopic depletion, and address bounding profiles. Literature reviews and research will provide information on this technical issue. <u>Note</u>: Materials discussion in submissions may need to consider if an increase in burnable absorber use which may affect cladding hoop stress and, consequently, the recommended fuel drying criteria. Literature reviews and research will provide information on this technical issue. 		
1		1				

	Guidance	Burnup to	Burnup to	²³⁵ U Enrichment	Chromium-coated	Doped UO ₂ Fuel
#	Document Regulation	68 GWd/MTU	75 GWd/MTU	beyond 5.0 wt%	Zirconium Cladding	Pellets
32	NUREG-2224, Dry Storage and Transportation of High Burnup Spent Nuclear Fuel (ML20191A321) - NMSS	 Not fully applicable <u>Reason</u>: The evaluation performance and record approaches need to be BU (greater than 62 Geographication of the second storage) and the second storage. The increase revised recommended maximize cladding pectores and the second storage in the second storage is the second storage in the second storage is the second storage in the second storage is the second storage storage is the second storage s	ons of fuel cladding ommended licensing e extended to higher Wd/MTU). BU above uence cladding internal properties, and the nisms during extended ed BU may also warrant d fuel drying practices to rformance. nance modeling and adiated cladding with al testing, microstructure be needed to e cladding performance.	 Not fully applicable <u>Reason</u>: Increased use of burnable absorbers may affect cladding hoop stresses and the associated cladding behavior. <u>Closure</u>: Fuel performance modeling and characterization of irradiated cladding with increased enrichment (e.g., mechanical testing) may be needed to demonstrate adequate cladding performance. 	 Not fully applicable <u>Reason</u>: The evaluations of fuel cladding performance do not consider the potential effects of Cr coating (e.g., cladding oxidation, hydrogen pickup). Revised fuel drying criteria to consider effects of reduced hydrogen pickup in the reactor may be warranted. <u>Closure</u>: Characterization of irradiated Cr- coated cladding (e.g., mechanical testing, microstructure analysis) may be needed to demonstrate adequate cladding performance. 	 Not fully applicable <u>Reason</u>: Doped fuel pellets may affect cladding hoop stresses (via pellet-clad interactions or fission gas release) and the associated cladding performance <u>Closure</u>: Fuel performance modeling and characterization of irradiated cladding with doped pellets (e.g., mechanical testing) may be needed to demonstrate adequate cladding performance.

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
33	RG 3.48 Standard Format and Content for the Safety Analysis Report for an Independent Spent Fuel Storage Installation or Monitored Retrievable Storage Installation (Dry Storage) (ML19141A092) - NMSS	 Fully applicable No data gaps 				
34	RG 7.9 Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material (ML050530321) - NMSS	 Fully applicable No data gaps 				

#	Guidance Document	Burnup to	Burnup to	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
35	Regulation RG 3.71 Nuclear Criticality Safety Standards for Nuclear Materials Outside Reactor Cores (ML18169A258) - NMSS	 Not applicable <u>Reason</u>: HBU is not relevant to fuel enrichment or fabrication. RG 3.71 endorses ANS Standard 8.27 for use of burnup credit in storage and transportation criticality. The ANS standard does not limit enrichment or burnup. NRC action would be to review, and if appropriate, endorse a new standard. <u>Closure:</u> No closure necessary 	 Not applicable <u>Reason</u>: HBU is not relevant to fuel enrichment or fabrication. <u>Closure:</u> No closure necessary 	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable No data gaps
36	RG 3.67 Standard Format and Content for Emergency Plans for Fuel Cycle and Materials Facilities (ML103360487)	 Not applicable <u>Reason</u>: This RG is specific to format and content of emergency plans for fuel cycle and material facilities and does not reference specific burnup criteria. <u>Closure:</u> No closure necessary 	 Not applicable <u>Reason</u>: This RG is specific to format and content of emergency plans for fuel cycle and material facilities and does not reference specific burnup criteria. <u>Closure:</u> No closure necessary 	 Fully applicable No data gaps 	 Fully applicable No data gaps 	 Fully applicable No data gaps

#	Guidance Document Regulation	Burnup to 68 GWd/MTU	Burnup to 75 GWd/MTU	²³⁵ U Enrichment beyond 5.0 wt%	Chromium-coated Zirconium Cladding	Doped UO ₂ Fuel Pellets
37	NUREG-0800 SRP Chapter 4.3 Nuclear Design (ML070740003)	Fully ApplicableNo data gaps				

3. Licensing Pathway Diagram

As discussed in Section 1, the NRC staff has developed the below licensing pathway diagram to serve as a companion to the information presented in the RFAA table in Section 2. Based on its current understanding of vendor and licensee plans, the NRC staff has chosen to limit the scope of the diagram to the licensing of HBU and increased enrichment fuels. Should circumstances change such that additional diagrams may be beneficial, the NRC staff will evaluate the potential benefit and develop additional diagrams, as necessary.

The licensing pathway diagram is intended to show a potential plan or path forward, given the current state of technical and regulatory progress for the given fuel concept. This diagram does not identify all of the issues or requirements that may need to be addressed as a part of the review of a given TR or LAR for in-reactor use. The NRC staff encourages vendors and licensees to engage with the staff early in the process of developing a TR or LAR to help support the early identification and resolution of any technical and policy issues associated with a given approach.

Following the same color scheme from the RFAA table, green colored boxes in the diagrams are items to be addressed by NRC staff and blue colored boxes are items that may need to be addressed by a fuel vendor or a licensee. This is also illustrated by items above the horizontal line (NRC actions) and below the horizontal line (potential fuel vendor or licensee information needs).

The dashed border around the Advisory Committee on Reactor Safeguards (ACRS) Review box on the plant-specific LAR review pathway indicates the possibility of an ACRS review. Should the Commission refer a plant-specific LAR to the ACRS for review, the NRC staff will endeavor to minimize the impact on the LAR review schedule by engaging with the ACRS early in the review. 3.1: Higher Burnup and Increased Enrichment Licensing Pathways

Potential Pathway for Licensing Higher Burnup and Increased Enrichment Fuels for In-Reactor Use

Figure 3.1-1 Potential Pathway for Licensing Higher Burnup and Increased Enrichment Fuels for In-Reactor Use