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FFR Program Overview

• Program Concept and Context
• Program Objectives
• Process Considerations
• Activities

– Artificial Intelligence and Data Science

• Future Directions
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Future-Focused Research (FFR) Program Concept
• Support NRC’s need for longer-term (≥ 3 years) R&D activities
• Broad scope: all good ideas considered*
• Funding

– Dedicated
– Fully loaded at beginning of project
– Exploring opportunities to leverage with University R&D Grant Program

• Program management and administration
– Streamlined submission and review process
– Low-burden, low-resource implementation

• Start small, grow with success
– Initiated current program in FY-20

• Mixed project portfolio
– Time horizons
– Project risk:  emphasizing riskier, less-applied ideas for FY-22 and beyond

• Inspired by national lab 
“Laboratory-Directed 
Research and 
Development” (LDRD) 
programs
 Concept
 Scale

• Includes “blue sky,” 
“risky” projects

*All ideas (including those outside FFR scope) are communicated to NRC management

Program Concept and Context



Decision Making

Computational MethodsHuman/Org
Factors

Natural Hazards

Blue
Sky

Simulation-based PRA*

Dynamic PRA*

Automatic model construction

AI-based data mining

AI-assisted RIDM**

Advanced techniques for 
risk communication

“NRC’s 
research
Needs”

Advanced metrics for RIDM**

Autonomous Reactors

Org Factors in PRA*

Errors of Commission

Correlated Hazards

Simulation-Based
Extreme Hazards

Climate Change

NRC’s Blue Sky

“Now” “Blue Sky”

Degree of Blueness (DoB) =    
f{technological readiness, clarity 
of application, user skepticism}

Program Concept and Context

* PRA = Probabilistic Risk Assessment
** RIDM = Risk Informed Decision Making
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NRC’s Horizon:  Opportunities and Challenges
“It’s tough to make predictions, especially about the future.”

- Yogi Berra

• Changing reactor technologies, concepts of operation
• Increasing knowledge base (and means to use)
• Increasing computational capabilities (hardware, 

software, modeling approaches, …)
• Changing staff and other stakeholders
• Increasing and more challenging regulatory 

applications

RES goal: help ensure that NRC is prepared

U.S. Nuclear Regulatory Commission, “The Dynamic 
Futures for NRC Mission Areas,” 2019. 
(ML19022A178)

0

Program Concept and Context
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FFR Objectives

• Provide kickstart (basis, direction, and support) for extended projects (outside the 
FFR program) on likely important topics

• Promote more robust R&D program to sustain agency
• Energize staff
• Improve (and perhaps even radically change) foundational knowledge on key 

topics
• Develop useful products and appropriate staff cognizance of same

– Actionable insights (including dismissal of potential issues)
– Tools and data for analyses
– Current status, directions, and likely schedules for potentially important technologies, 

programs, etc.
• Create synergy with related programs (e.g., University R&D Grants)

Program Objectives



7

Research: providing a basis for decisions

Typical products (regulatory research)
• Ways to look at and/or approach problems (e.g., 

frameworks, methodologies)
• Points of comparison (e.g., reference 

calculations, experimental results)
• Job aids (e.g., computational tools, databases, 

standards, guidance: best practices, procedures)
• Problem-specific information (e.g., results, 

insights, uncertainties)
Side benefits
• Education/training of workforce
• Networking with technical communityRegulatory Decision Support

Specific
Analyses

Methods, Models, 
Tools, Databases, 

Standards,
Guidance, …

Foundational Knowledge

Decision

R&D

re•search, n. diligent and systematic inquiry or investigation in 
order to discover or revise facts, theories, applications, etc.

Program Objectives
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FFR Process

Idea Generation Idea Refinement and 
Selection

Portfolio Monitoring 
and Reporting

Follow-On Projects 
(User Needs)

FFR Program

Process Considerations

• Gather ideas – could 
be individual or 
crowdsourced

• Open to ideas from 
across agency

• As needed, work with 
submitters to refine 
initial concept

• Advisors recommend 
and senior RES 
managers choose 
projects

• Communicate and 
monitor progress 
through program 
reviews and seminars

• May identify research 
for potential future 
development through 
user needs
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Project Rating Considerations*

• Agency impact
– Improves NRC’s future capabilities
– Improves foundational knowledge important to future 

decision making
– Addresses recognized gaps

• Resource leveraging
– Enables NRC’s influencing of important external activities
– Potentially benefits multiple NRC programs
– Leverages available resources for research

• Staff enrichment
– Is attractive to individual researchers
– Is attractive to university research programs

*Notes:
1) Considerations used as guidance.
2) Selection committee also considers 

the overall portfolio of FFR activities
a) Risk
b) Resources

Process Considerations
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FFR Portfolio

• Appropriate balance among efforts 
– 50% developing foundational knowledge 
– 50% developing more specific technical tools or 

addressing regulatory framework gaps

• Current portfolio is balanced across risk horizon 
spectrum.

• Trending toward “bluer sky” activities as FFR 
program has matured.

Activities

Foundational

Technical

Regulatory
Low

Moderate

Strong

Gap Objectives Degree of Blueness

0
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1.5

2

2.5

3

FY-20 FY-21 FY-22

Submitted
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AI and Data Science in FFR

Related FFR Activities
• FY-20

– Digital Twins - Regulatory Viability 
• FY-21

– RESbot - A web-based bot to aid RES 
Researchers

• FY-22
– Use Machine Learning to Prioritize Inspections 
– Characterizing Cyber Security Using AI/ML 
– Application of Natural Language Processing to 

NRC Regulatory Documents 

• Explosion of AI-DS topics both submitted and 
selected in latest data call

• General bias in selecting AI-DS topics as FFR 
activities
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AI and Data Science
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Existing AI-DS FFR Activities
• Digital Twins - Regulatory Viability 

– Objective: Understand the potential industry applications of reactor digital twins and the regulatory viability of 
use of digital twins

– Approach:  Assess existing technical information, knowledge, tools, and codes and standards to determine 
state-of-the-art and current gaps; identify regulatory gaps and fundamental infrastructure elements  

– Status:
• Held December 2020 and September 2021 workshops:  published December proceedings (ML21083A132)
• Completed report: The State of Technology of Application of Digital Twins (ML21160A074)
• Transitioned out of FFR and is continuing as a follow-on research project

• RESbot - A web-based bot to aid RES Researchers
– Objective:  Develop one or more web-based bots, to aid NRC researchers in mining, for example, experimental 

data, analyses, compilation of field experience, and risk assessments to support decision-making
– Approach:  Create NRC use cases and develop RESbot implementation plan to address use cases; executing 

implementation plan would be a follow-on effort
– Status: Defined use cases on technical document querying, modeling and simulation, and report preparation; 

currently evaluating use cases using IBM Watson Discovery and Microsoft Azure platforms

AI and Data Science



13

FY-22 AI-DS FFR Activities
• Use Machine Learning (ML) to Prioritize Inspections

– Objective:  Explore use of commercially available ML applications to prioritize inspections and their 
associated periodicity during abnormal situations (i.e., pandemics)

– Approach:  Define licensees as “customers”; define and build “safety behavior” using data similar to 
“customer preferences; perform test case using several off-the-shelf ML tools

• Characterizing Cyber Security Using AI/ML 
– Objective:  Evaluate issues associated with future AI/ML applications used to characterize cyber security 

system performance and configurations, and detect abnormal system states associated with a cyber attack
– Approach: Identify viable AI/ML technologies; evaluate technologies relative to defined nuclear cyber use 

case; apply most promising approach to benchmark test case  

• Application of Natural Language Processing (NLP) to NRC Regulatory Documents 
– Objective:  Assess use of existing NLP tools for NRC use to assist review of licensing actions
– Approach:  Create licensing benchmark case and collect associated data; apply named entity recognition to 

data set and subsequently create term-frequency inverse document frequency model; evaluate Google’s 
BERT model to retain semantic meaning for neural network training and implementation

AI and Data Science
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Thoughts for Future:  AI/DS
• Nuclear is typically a later adopter of technological innovations

– Slower pace of innovation
– Opportunities to build off advancements and investments in other industries
– Which AI/DS advancements hold biggest promise and challenges for nuclear application?

• Nuclear energy landscape is continually changing 
– Future reactors will likely be smaller; may be more widely distributed
– Bulk of aging LWR fleet may require operation beyond 60 to 80 years to meet nation’s energy goals
– How can AI/DS be used to both optimize the new design, certification, and approval process?
– How can AI/DS optimize efficiencies of existing plants to retain safety and economic viability?
– How can NRC use AI/DS to evaluate this landscape to better position itself for future regulatory 

challenges?  
• Continuous pressure to decrease human operations to maximize efficiencies

– What are the actions/operations where decreasing human involvement is most beneficial?
– Are there actions/operations that should always retain human involvement/oversight and, if so, how can 

these be best identified?

Future Directions
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Questions?



Digital Innovation Center of Excellence
Lab Directed Research and Development 
(LDRD) Digital Twin Overview



What is a Digital Twin? INL definition: Digital Twins represent the merging 
of integrated and connected data, sensors and 
instrumentation, artificial intelligence, and online 
monitoring into a single cohesive unit.
It is a living virtual model that mirrors a physical 
asset to predict future behavior. 
Digital Twins use real-time bi-directional 
communication to track and trend both simulated 
and measured asset information.

What is different than a traditional simulation?
• Integration of real-time data
• Dynamic model update (AI/ML integration)
• Real-time operator feedback (visualization)
• Accurate predictions with fused (integrated) data
• Ability to enable autonomous control
• Distributed across computing platforms

Digital Twin

Asset 
Management

Proliferation 
Detection

Operations 
Management

Autonomous 
Control …etc.



• Operational Cost
− 14 - 23% reduced operations cost (BCG)
− $1.05 billion in cost avoidance (GE)

• Asset Performance
− 40% improvement in first-time quality (Boeing)
− 10% improvement in effectives (Gartner)

• Growing Market and Technology
− Market is ~$3.1 billion (2020)
− Market predicted to be $48.2 billion by 2026

Digital Twin Proven Opportunity 
from Industry Applications

General Electric Aviation 
has digital replicas of every 
engine to monitor 
performance and predict 
maintenance issues. This 
approach reduces engine 
operational costs and 
increases safety.  



Adv. Manufacturing Digital Twin (AM&M Initiative)
PI: Brennan Harris

• Manufacturing Processes:
− Spark plasma sintering
− Digital light processing

• Opportunity: Predict manufactured 
sample performance from varied 
manufacturing input parameters



Results
• Digital architecture that allows 

both simulated and physical 
material properties to be 
predicted from manufacturing 
parameters

− An open database and 
interface for INL manufacturing 
researchers to utilize

− Manufacturing optima for SPS 
samples from statistical 
prediction

• Potential for follow-on research
− Applying the method to 

processes outside SPS and 
DLP.



Solvent Extraction Equipment Testing 
Laboratory Digital Twin
PI: Ashley Shields

• Facility:
− 30-stage annular centrifugal 

contactor system
− Binary Metal separations

• Opportunity:
− First solvent extraction twin
− Provide open-source adaptable 

digital twin components

Centrifugal Contactor 
Cascade at the Bonneville 
County Technology Center

Leveraging Deep Lynx data 
warehouse and DIAMOND ontology



Anticipated Results
• Goals: Framework twin for the 

solvent extraction process
− Integrated via the Deep Lynx data 

warehouse and newly developed 
warehouse adapters

− Research advancements in
• Digital twin infrastructure
• Sensor integration
• Chemical modeling
• Artificial Intelligence
• Data visualization
• International Nuclear Safeguards
• Nuclear Proliferation Detection

• Potential for follow-on research
− Beartooth Testbed Digital Twin



IES Digital Twin Framework
PI: Paul Talbot

Digital Twin Framework

DeepLynx

Syste
m

State

Optimal 
Dispatc

h

Faster-than-realtime
dispatch optimization

Digital Twin Training, Validation
Synthetic History Generation

Economic Modeling

• HERON
• Dispatch Optimization
• Uses TEAL for economic analysis
• Uses system state to optimize 

operation

• RAVEN
• MLAI Digital Twins
• Coupling to Codes, Experiment
• Validation and Verification
• Synthetic Histories for Unc. Quant.
• Enhances trusted libraries



Flexible Operation Optimization

Dispatch
Governer

Reactor Core

Steam 
Turbines

Thermal 
Energy 
Storage

H2 Production

Steam

El
ec

tri
ci

ty

H2

Electric Grid

H2 Customer

H2 Storage

Physical Systems
(e.g., DETAIL Lab at INL)Digital Twin Framework

DeepLynx

Syste
m

State

Optimal 
Dispatc

h

Faster-than-realtime
dispatch optimization

Digital Twin Training, Validation
Synthetic History Generation

Economic Modeling
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Anticipatory 
controller 

development

Anticipatory 
controller 

demonstration

Knowledge 
Base

Simplified and high-fidelity 
microreactor simulator

CSV

Reactor power 
maneuver

Artificial Neural 
Network

Database and data 
warehouse

Dynamic mode 
decomposition

Discrete state-space 
representation

Issue space and 
use cases

OR OR

AND AND

Power conversion 
and heat rejection

Battery charging 
and discharging

Load Demands 
from Microgrid

Cyber Attacks

Disturbances

Human in 
the loop

Scalable Framework of Hybrid
Modeling with Anticipatory Control
Strategy for Autonomous Operation
of Modular and Microreactors
PI: Linyu Lin and Vivek Agarwal



Automated BOP

Power maneuver

Current Progress

• Model predictive controllers for the anticipatory 
control of a single heat pipe

− Assumption
• Simplified modeling
• Distributed controllers

− Initial condition: normal operation at a steady 
power input to the evaporator

− Load following through
• Power maneuver by controller #1
• Power conversion
• Battery

− Automated balance of plant (BOP) responding to 
the disturbances due to power maneuver: 

• Controller #2 alters heat removal rates from 
condenser

• Controller #2 maintains magnitudes and changing 
rates of heat-pipe internal temperatures

11

Anticipatory 
controller #2

𝑢𝑢2

Anticipatory 
controller #1

𝑢𝑢1

Power conversion

Battery discharge

𝑇𝑇𝐻𝐻𝐻𝐻

Microgrid load 
following strategy

Condenser

Adiabatic

Heat inputs
𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡)

Heat outputs
𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)

Heating 
blocks

Cooling 
jackets

Evaporator



Nuclear-Renewable-Storage Digital Twin
PI: Binghui Li

• Goal: Improve system economy, security, and reliability of 
Nuclear-Renewable-Storage Integrated Energy Systems (N-R-S 
IES)

• Innovation
− Integrated high-fidelity physics model to inform the 

operation of IES
− Deep reinforced learning based (DRL-based) methods to 

enable faster-than-real-time simulation
• Impact

− A collection of DRL-based tools: Reliability Enhancement 
and System Operation Tool (RESORT)

− Can be extended for future research grants

Why N-R-S IES?
• Electricity and heat  Multi-carrier

energy system 
• Nuclear  Carbon-free baseload
• Renewable + short-term storage  

flexible peaking capability
• Long-term storage  resilience

against disruptive events

12



Project Tasks 
• Tasks

− I: Learning-enhanced modeling of complex electric-thermal coupled systems using 
high-fidelity physics-based models

− II: Learning-based steady-state IES economic operations
− III: Risk mitigation through intentional islanding and optimal IES control

TASK III

TASK II

TASK I

Surrogate
(RAVEN)

High-fidelity 
physics model 

(HYBRID)

Intentional 
islanding

Disruptive events

Multi-carrier 
energy system 
optimization

(HERON)
Normal condition

DRL-based economic 
operation:

RESORT (Normal)

DRL-based IES 
control:

RESORT (Contingency)

13



MAGNET Digital Twin (Fission Battery Initiative)
PI: Jeren Browning

• Test Beds:
− SPHERE (single heat pipe)
− MAGNET (37 heat pipes)

• Opportunity: Remote and 
autonomous control of a heat pipe

SPHERE MAGNET



Results
• Proven Digital Twin capability 

and repeatable roadmap
− Integrated via the Deep Lynx 

data warehouse
− Open-source, reusable 

components
− Research advancements in 

economic benefit, cyber 
security, and Artificial 
Intelligence

• Potential for follow-on research
− MARVEL Microreactor Test Bed
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Questions

• Christopher Ritter
• Director, Digital Innovation Center 

of Excellence
• Email: Christopher.Ritter@inl.gov
• Phone: 208-526-2657 (office) / 

301-910-1818 (cell)

Any Questions?

mailto:Christopher.Ritter@inl.gov


Sandia National Laboratories is a multimission laboratory 

managed and operated by National Technology and 

Engineering Solutions of Sandia LLC, a wholly owned 

subsidiary of Honeywell International Inc. for the U.S. 

Department of Energy’s National Nuclear Security 

Administration under contract DE-NA0003525.

Exceptional service in the national interest

John Feddema, Sr. Manager, Enhanced Decision Making Group

Center for Computing Research

Sandia’s Trusted Artificial Intelligence 
Strategic Initiative

NRC Data Science and AI Workshop

Tuesday, November 9, 2021

SAND2021-7619 PE



Sandia’s Trusted AI Strategic Initiative is coordinating a series of fundamental R&D projects 
to lay the foundation necessary for Sandia’s scientific and national security applications

Desire to deploy AI/ML technologies are increasing rapidly
• FY20 – 80 LDRD projects (roughly 20%) had a significant AI focus
• FY21 – 126 projects (28%) had a significant focus in AI or were 

significantly utilizing AI technologies
• FY21 – 9 DOE SC Advanced Scientific Computing Research projects 
• FY21 – 7 NNSA Advance Simulation & Computing (ASC) Advanced 

Machine Learning (AML) projects

Sandia’s unique mission needs set us apart from industry
• High-consequence applications require high-confidence decisions
• Solutions require extrapolation beyond the space of available data
• Many national security applications have low volume, incomplete data 
• Deployed AI solutions are often in environments under extreme size, 

weight, and power constraints
• Decisions may need to be made in very short timeframes 
• Need to account for potential adversarial issues 

Sandia’s history of excellence in core capabilities such as UQ, V&V, 
optimization, graphs, tensors, and discrete math will enable AI/ML

2



Sandia Mission Needs for Machine Learning and Artificial Intelligence
3

Program Mission Problem Characteristics 

Global Security Proliferation Detection 
and Characterization

• Multi-modal sensors, distributed sensors, and real-time behavior

• How to extrapolate to cases where we do not have ground truth

• Physical models may not exist

• Real time monitoring with streaming data

Global Security Automatic Target 

Recognition for 
Military Applications

• Limited data that is likely modified or disguised - extrapolation of models is necessary

• Desire to reduce or remove human in the loop

• Data available at multiple levels of sensitivity

• Adversary withholds differentiating capabilities and tactics exclusively for war

Nuclear 
Deterrence

Counterfeit and Aging 
Detection

• Many sources of variation - limits to what can be learned from data are unknown

• Lack of a mathematical foundation and physical models

• Volume of data is very low

DOE Office of 
Science

Large Scale Physics 
Experiments

• Rich but sparse data - can be expensive to obtain 

• Multi-instrument, multi-experiment, multi-measurement experimental observations 

• Uncertainty present in experiments and physics models

National Security 
Programs

Analyst Support for 

Cyber and Intelligence 
Operations

• Need to introduce AI into a mature system without disrupting current operations

• Very high consequence, very rapid transactions (many per minute) 

• Streaming data with very dynamic environment 

Energy & 

Homeland 
Security

Bioscience and 
Biosecurity

• Multiple types of data requires data fusion

• Data collection is often destructive and multiple measurements depend on replication 

• Theoretical models often don’t exist

Advanced Science 
& Technology

HPC System 

Management and 
Operations

• Operations staff don’t know much about performance/failure mechanisms 

• Thousands of instrumentation points but unknown if data provide useful insights 

• Experiments are typically one-offs due to how resources are allocated and used 



Sandia’s Trusted AI LDRD Research Campaign Thrusts

Mathematical Foundations of AI 
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Efficient and Secure AI System

AI Usability and Trust

Mathematical analysis 

and Directed 

Improvement of AI 

Methods 

Acceleration of 

Training and 

Hyperparameter 

Tuning

Randomized Methods 

with Rigorous 

Probabilistic 

Guarantees

Statistical Inference, 

Especially with 

Limited Data

Robustness & 

Extrapolation
Novel AI 

Solutions

Novel AI 

Architectures 

and Hardware
Scalability of 

AI Methods

Adversarial/Counter-

Adversarial Security
AI Software

Domain/Architecture 

Aware AI Methods 

and Algorithms

Generalizability of AI 

Research to High-

Consequence National 

Security Environments

Domain-

Informed AI

Trustworthiness 

Characteristics of 

Analytics

Adversarial Impact 

on User Trust

Determining Whether 

to Automate 

Functionality and to 

What Level



Successes in Trusted AI will enable Sandia and its mission partners to think differently 
about current and future mission problems5

FY20 FY22FY21 FY23 FY24 FY25

Formal Understanding of AI

Scalability Focused Methods

Novel AI Solutions

Ef
fi

ci
en

t 
an

d
 

Se
cu

re
 

Sy
st

em
s

M
at

h
em

at
ic

al
 

Fo
u

n
d

at
io

n
s

Robustness and Extrapolation

Domain Informed AI
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st AI Human Interaction 

Novel Architectures/Hardware

Adversarial Security

How do we move beyond “throw more data and compute” at the problem?Inference w/ Limited Data

Do we have guarantees that the solutions be deployed in high-consequence decision making?

What is the best possible performance we can expect for a class of problems?

How do we determine which methods are best for our problems and what their limitations are?

How do we account for adversary tactics that change over time, sometimes abruptly?

How do we develop techniques that address scalability?

How do you deploy AI in a hierarchy of learning hardware from edge devices to large HPC systems?

How do you address continuous, one-shot learning in high consequence environments?

How can we combine data-driven models and domain knowledge to improve performance?

How can we incorporate AI in human-in-the-loop missions and assess performance gains?

How do you mitigate challenges stemming from the frequent lack of ground truth in decision-making performance?

How to develop metrics for trustworthiness that can be used to predict user trust?
Trustworthiness Metrics

Research Needs



FY21 Trusted AI LDRD Highlights
6

o Challenge: The ML prediction problem is often confounded with the decision problem

o Goal: Incorporate decision science into ML-based decision making 

• Develop rigorous methods for incorporating prediction uncertainty, error costs, and opportunities to 
gather additional information to minimize decision errors and costs.

o Proposed Solution: Draw on decision science, uncertainty quantification, and information 
theory to account for possible outcomes and their associated probabilities.
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Monitoring Online Adversarial Tampering (PI: Gary Saavedra)
o Challenge: Defend against adversarial attacks

• Little work on detection and less for streaming models 

o Proposed Solution:  Distinguishing factors of  our work:

• Detection rather than model alteration

• Stream information provides more insight than lone examples

• Unifies several different attacks into one mathematical framework

Optimizing Machine Learning Decisions with Prediction Uncertainty (PI: David Stracuzzi)
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n
s o Challenge: Many Sandia mission domains are defined by a lack of  reliable data, effectively precluding 

the use of  many modern deep learning/machine learning techniques for predictive modeling 

o Goal: Enhance the trust in machine learning (ML) model predictions within sparse & noisy data settings

o Proposed Solution: Novel probabilistic transfer learning (TL) framework:

• Determine when to apply TL, which model to use, and how much (uncertain) knowledge to transfer using new 
techniques inspired by Bayesian hierarchical modeling, sequential data assimilation, and uncertainty quantification

Trust-Enhancing Probabilistic Transfer Learning for Sparse and Noisy Data (PI: Mohammad Khalil)  



Thank you for your attention!

For more information, please contact:

John Feddema, 505-844-0827, jtfedde@sandia.gov
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P R E S E N T E D  B Y

Sandia National Laboratories is a multimission 
laboratory managed and operated by National 

Technology and Engineering Solutions of Sandia 
LLC, a wholly owned subsidiary of Honeywell 
International Inc. for the U.S. Department of 

Energy’s National Nuclear Security Administration 
under contract DE-NA0003525.

Sandia Information Sciences 
Initiative

Steve  K leban
Mana ger,  Complex  Sys tems  f o r  Nat iona l  Secur i ty
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COMPUTING CONVERGENCE2

LARGE-SCALE 
COMPUTING

Enormous increases in the volume of 
data generated require large-scale 

computing as essential tools for 
understanding complex systems and 
interactions in unprecedented detail 

and exploring systems of systems 
through ensembles of models and 

simulations

NEXT-GEN 
ARCHITECTURES

Future systems will be multicore and 
heterogeneous (processors, 
memories, and models) and 

increasingly involve new interconnect 
tech, special-purpose and energy-

efficient architectures, and non-von 
Neumann elements (e.g., 

neuromorphic and quantum). 

DATA 
SCIENCE

Growth in the scale, complexity 
and availability of data in all 

domains requires AI and advanced 
analytics applications and tools to 
extract knowledge and discovery 
of patterns and classification in 
data from large scientific and 

national security datasets.

The Nation is asking for a computing convergence to enable the ability to address increasingly complex questions at the “speed of mission.”

National-Level Strategies Emphasize 
Paradigm Shift in Information Sciences

Pioneering The Future 
Advanced Computing 

Ecosystem: A 
Strategic Plan

National Strategic 
Computing Initiative 
Update: Pioneering 

The Future Of 
Computing

Earth System 
Predictability Research 

And Development 
Strategic Framework 

And Roadmap

All Agencies Have a Need to Capitalize 
on Future Advanced Computing and AI

DOE, NASA, 
NIH, NNSA, 

DoD, IC, DHS

Strategic computing could address
Unprecedented scale, reducing cost & schedule, increased 
complexity, real-time data and decision making

DOE Strategies and Budget Justifications 
Reiterate this Shift

SEAB Report on AI and Machine Learning
“With the given existing and planned investment… 
Opportunities range from AI-designed workflow… 
to AI-enabled scientific ‘comprehension’…”

Office of Science… NNSA…
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SANDIA DEFINITION OF INFORMATION SCIENCE

The integration of:

• data science/analytics

• artificial intelligence

• machine learning

• associated math and statistics

• human systems/human factors

• next-generation computer architecture



INFORMATION SCIENCES INITIATIVE

Initial Objectives

• Bridging fundamental IS research to high consequence applications

• Creating new IS programmatic opportunities to develop and apply IS 

techniques, tools, workforce, and infrastructure

• Enhancing Sandia’s IS capabilities to:

• benefit of NNSA and other clients

• increasing Sandia’s IS leadership

• attracting and retaining critical skills in the workforce

5



APPLIED INFORMATION SCIENCES (AIS) CENTER 

• Develop a new Laboratory Directed Research and Development (LDRD) area

• National Security Information Science & Technology (NSIST)

• Facilitate bridging between fundamental R&D and application

• Focus on institutional technical road mapping, planning, and investments

• Identify critical skills and needed infostructure

• Assist existing mission areas in the development of new program opportunities



7 ALPHAGRID PROJECT OVERVIEW AND OBJECTIVE

Image from North American Electric Reliability Corporation (NERC),  Reliability 

Concepts document, pg 40.

• There are six Stability Margins which create a six 

dimensional space that is too computationally 

expensive to navigate in real-time using traditional 

methods

• Reinforcement Learning has shown itself to perform 

well on similar problems and through LDRD funds, 

Sandia demonstrated Reinforcement Learning is a 

strong candidate for this problem, which led to the 

DOE/OE funding

• Three year project funded by DOE Office of Electricity, 

Advanced Grid Modeling Program

When a power grid becomes unstable there are currently no methods to walk it back to a stable state. 

Can Machine Learning assist grid operators to restore the system to a safe condition in real-time?



8 ALPHAGRID: RESULTS TO DATE

• First year

• Developed mini-WECC grid model with 20 control dimension to 

navigate stability space

• Understand how to navigate stability space using static data 

from the mini-WECC model

• Sponsor funding result of LDRD investment

• Second year

• Implemented Reinforcement Learning (RL) approach to navigate 

stability space on a simple grid, random player safely navigates 

~8%, RL ~100%

• Third year (current year)

• Advanced RL to navigate stability space on a complex grid, 

random player safely navigates ~.01%, RL converging towards 

100%

• Apply RL to navigate space, not memorize, dynamic grid

• Publish results

• Follow-on funding anticipated

Transient Stability and Voltage Stability Level Curves

(Plot Sandia generated)

Reinforcement Learning plots

(All plot Sandia generated)



• Problem: 93% of US total energy supply is dependent on wellbores in 
some form. Current approaches to evaluating wellbore risk focus on 
manual grading and site specific physics-based models.   Need an 
automated approach.

• Sponsor: Geosciences LDRD

• Approach: Use Deep Neural Networks and Random Forests

• Outcome: Good results in automating wellbore failure detection, 
pursuing follow-on sponsors

Machine Learning for Early Wellbore Failure Detection9

https://www.usgs.gov/media/images/map-united-states-oil-and-gas-wells-2017

https://www.usgs.gov/media/images/map-united-states-oil-and-gas-wells-2017


• Problem: Large quantities of documents need to be 
categorized with rational, effectively and efficiently, with 
limited human resources.

• Sponsor: DOE Office of Classification (in collaboration with 
LLNL, ORNL, PNNL, Y-12)

• Approach: Ontologies, Machine Learning, Bayesian Networks

• Outcome: Developing a suite of NLP tools that aid derivative 
classifiers.

NLP for Document Classification10

https://www.dreamstime.com/photos-images/messy-file-storage.html



Problem: Develop a method of detecting outliers in the acoustic data 
from electromechanical devices that produce a sound

Sponsor: NNSA/ND Program

Approach: Statistical machine learning

Outcome: Deployed tool to Component Engineers for testing

Machine Learning for Outlier Detection11

(All plot Sandia generated)



• Problem: Identifying emergent technologies based on open source 
indicators (publications, new releases, patents, etc.)

• Sponsor: Airforce Research Lab

• Approach:  Artificial Neural Networks, Data Augmentation

• Outcome: Performs with 90.4% accuracy, can be scaled, can be 
automated

Machine Learning for Detecting Technological Maturity12



ANL R&D ACTIVITIES

A. DAVE, A. HEIFETZ, R. HUI, M. LI, T. NGUYEN, R. PONCIROLI, 
S. MOHANTY, R. VILIM, H. WANG, L. YACOUT
Nuclear Science and Engineering Division

Virtual presentation to NRC on AI/ML
November 9, 2021



ANL AI/ML CAPABILITIES ENABLING
FUTURE AUTONOMOUS OPERATION

DESIGN & 
MATERIALS

OPERATION

MAINTENANCE

ENERGY 
STORAGE

AUTONOMOUS 
OPERATION



DESIGN & MATERIALS



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

AI FOR DESIGN SPACE CHARACTERIZATION
Design and Materials

Method to develop ML-based closure 
models to capture complex spatial-
temporal reactor transients, with 
uncertainty quantifications. 

Integration of ML-based closure model 
into reactor system transient simulation 
tool SAM. 

Development and application of data-
driven turbulence closure model for 
thermal mixing and stratification 
modeling.

Developed a system approach on the 
optimization and uncertainty 
quantification of the data-driven ML 
models

Incorporate more domain knowledge 
into machine learning-based closure 
for advanced reactor safety modeling;

Develop deep learning-based multi-
physics online simulator to support 
autonomous operations in advanced 
reactors

Facilitate the development and 
deployment of advanced reactors by 
improving economics (through accurate 
safety margin predictions) and reducing 
the licensing burden (through improved 
uncertainty quantification).

Reduction of high dimensional data using ML to yield fast running 
low-order surrogate models

1.1
2.2
3.3
4.4
5.5



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

ML FOR MATERIALS DEVELOPMENT
Design and Materials

Deep learning-based radiation defect 
analysis tools were developed for 
automated detection, tracking and 
analysis of voids and dislocation loops 
produced during in situ ion irradiation 
at Argonne’s IVEM-Tandem Facility.

Developed multi-object tracking model 
to measure the lifetime of individual 
dislocation loops.

Developed an automated void detection 
and analysis tool using computer vision 
and deep learning.

Developed machine-learned dynamical 
equations.

AI-enhanced radiation damage 
assessment to shorten material 
development and qualification cycle.

IVEM

Processed a video recorded during in situ ion 
irradiation to measure the size and number of 
voids as a function of irradiation dose
produced in pure Nickel irradiated with 1 MeV 
Kr ions at 600°C.



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

ML FOR MATERIALS  INSPECTION
Design and Materials

 Imaging hardware (FLIR X8501, flash 
lamp, optics) 

 Machine learning image processing 
algorithms

 Thermal tomography depth 
reconstruction and defect 
classification algorithms

 Detection of calibrated subsurface 
microscopic defects in SS316 (down 
to 100µm size) with unsupervised 
learning of thermography images

 Classification of defects aspect ratio 
and orientation in thermal 
tomography images with 
convolutional neural network 

 Further reducing threshold of 
detected defect size (target 50µm)

 Rapid data processing for in-situ 
monitoring applications

Imaging of internal microscopic material 
defects in additively manufactured 
metallic structures (SS316 and IN718) for 
nuclear applications U

W

Input layer
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Output layer
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sources TSI
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OPERATION



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

HEALTH MONITORING: PHYSICS-BASED 
Operation

Diagnoses both equipment 
and sensor faults within an engineered 
system

Requires no a priori values for equipment 
design parameters

Incorporates automated reasoning to 
facilitate ease of use by non-SMEs

Derives real-time equipment performance 
from physics-based models

Blind detection and diagnosis of 
Monticello NPP reactor feed pump fault, 
North Anna NPP feedwater heater fault

Subsume data-driven methods into the 
existing Bayesian setting for an 
integrated diagnostic tool utilities have 
deemed valuable

Advanced heath monitoring of 
equipment for O&M

Inclusion of domain knowledge to 
deliver diagnoses with greater 
specificity and reliability

PRO-AID Code Architecture

PRO-AID Feed Pump Diagnosis: Efficiency Loss Attributed to Bearing Degradation



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

HEALTH PREDICTION: MECHANISTIC
Operation

System level structural mechanics 
model of the physical twin

Real time AI/ML nonlinear material 
damage prediction from sensors 
and structural state prediction

Prediction of component interior 
system-level stress analysis from AI/ML-
digital-twin model during load following 
based on a few measurements

Real-time benchmarking and 
concept validation using ANL METL 
or similar facility

High temperature operation can lead 
to material damage

Need real-time prediction of component 
health to reduce inspection cost

Stress analysis 
results under 
system-level 
conditions

Stress experienced over a fuel cycle



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

PERFORMANCE OPTIMIZATION: OPEN-LOOP
Operation

Machine learning models that 
can identify through physics and 
engineering principles the key 
process variables inputs

Supervised machine learning 
algorithms for predicting performance 
measures from sensor and digital twin 
virtual sensor inputs

IN-USE – A physics-informed neural 
network model developed for optimizing 
BWR reactor fuel loading and operation 
mid-cycle

Identification and development of ML 
predictive models for estimation of 
important performance metrics for 
advanced reactors

A capability to learn complex 
relationships between sensed process 
variables and performance metrics, such 
as integrated thermal power and spatial 
peaking factors

Predictive model developed for a BWR from archived operating history –
In use at a US utility 



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

PERFORMANCE OPTIMIZATION: CLOSED-LOOP 
Operation

A reinforcement learning (RL) approach 
that is a data-driven having the potential 
to learn control policies whose 
performance surpasses that of humans.
RL agents that learn from a physics-
constrained environment via the SAM 
code – a best-estimate system level 
code for advanced reactors
A design development framework 
that generates RL environments that 
is reactor design agnostic 
(MSRs, SFRs, HTGRs).

Numerical demonstration of RL-agent 
providing supervisory control for a 
Fluoride-cooled High-temperature 
Pebble-bed Reactor in FY22

Optimal control policies that avoid 
the curse of dimensionality 

Ability to handle nonlinear phenomena 
(e.g., material degradation, dynamics 
during load-following)

3. PROPOSED FUTURE DEVELOPMENTS

Framework to train supervisory NPP agents using 
next-generation AR best-estimate system code SAM



MAINTENANCE



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

DECISION MAKING
Maintenance

Physics-based fault symptoms 
from model residuals

Automated backward 
chaining reasoning

Fault diagnoses can be explained 
in the forward causality direction

Conducted assessment tests with NPP 
operators on full scope simulator

Received confirmation of the utility and 
value of the approach

Improve reasoning engine efficiency

Explainable diagnoses for 
decision making

Confirmatory diagnostic traceback via 
the conservation equations to an 
accountable set of sensors

Physics-Based Model Residual Generation: A Basis for Explainable Diagnoses

  Model Residual 

Model 

Components Physical Sensors Virtual Sensors 

Balance Equations 
Model Predictions 

Physical Sensors Components 



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

SCHEDULING
Maintenance

Sensor network design algorithm 
to provide for monitoring/diagnosing 
faults and component degradation 
over plant lifetime

Maintenance and asset management 
approach that integrates online 
monitoring with plant risk profile

In-progress demonstration for the 
feedwater and condensate system 
of the MHTGR design

Application of Markov Decision 
Process method for asset-management 
decision-making

Cost optimization of O&M for increased 
economic competitiveness

Overview of Operational 
Decision-Making Process

P&ID of the feedwater system
used as test-case



ENERGY STORAGE AND THE 
GRID



1. NEED 2. CAPABILITY DEVELOPED 

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

ENFORCING STORAGE CAPACITY CONSTRAINTS 
Energy Storage and the Grid

Algorithm for translating process 
variables constraints into power 
set-points limits

Satisfies n-dimensional envelope 
as set by constraints on important 
process variables

Preliminary implementation 
completed for representative 
integrated energy system

Integrate with diagnostics and 
decision-making algorithms for 
semi-autonomous operation

Control strategies for improved 
regulation wrt to structure operating 
limits for margin recovery

Time Evolution of Acceptable Region of Operation during a Transient

Reactor with Thermal Storage



1. NEED 2. CAPABILITY DEVELOPED 

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

REDUCED ORDER ON-LINE LEARNING
Energy Storage and the Grid

Algorithm to update the state-space 
representation of power systems at 
various power level and mode using on-
line simulation data

On-line updated mathematical models 
helped avoiding constraint violations, 
actuation oscillation and over-shooting

Preliminary implementation 
completed for representative 
power systems

Improve the robustness of on-line 
learning algorithm to learn from noisy 
data

Accurate mathematical representation of 
power systems at various power level 
and operational mode for efficient 
control 

On-line ROM learning and solution improvement example

Block Diagram Schematic of Algorithms

Model Initialization

Learning from Failure
(Oscillation & over-shoot)

Optimal Solutions



AUTONOMOUS
OPERATION



1. NEED 2. CAPABILITY DEVELOPED

3. ACCOMPLISHMENTS 4. FUTURE DEVELOPMENT

AUTONOMOUS OPERATION 
AS AN INTEGRATED PROCESS
Autonomous Operation

Diagnostics – Discrimination of sensor 
and component faults via 
PRO-AID algorithm

Control – Automation of constraint 
enforcement via Reference Governor 
algorithm

Decision-Making – Optimal operating 
and maintenance procedures via 
Markov process

Developed a control-oriented 
simulator of KP-FHR coupled 
with thermal energy storage

Integration of diagnostics, control, 
and decision-making for seamless 
autonomous operation

O&M cost reduction in deregulated 
markets through more efficient 
human resource allocation

Advanced Reactor -
Layers of Protection





Except ional  ser v ice in the nat ional  interest
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New Approaches Utilizing 
Process Monitoring Data and 
Machine Learning
Nathan Shoman & Ben Cipiti 
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Data Science and Artificial Intelligence Regulatory 
Applications: Workshop #3: Future Focused Initiatives

November, 2021



Motivation

2

• Process monitoring data (such as bulk mass, flow, temperature, current, 
voltage, etc.) and additional measures (such as surveillance) are part of the 
overall safeguards systems—but how can we make more efficient use of 
this data?

• One motivation for the application of data analytics like machine learning is 
to reduce the cost and burden associated with safeguards:
• Reduction of sampling and DA could significantly reduce the burden of IAEA 

safeguards. More use of unattended monitoring systems instead of DA (on-site 
laboratory) would free up IAEA resources.

• Reduction of sampling and DA can also be useful for domestic safeguards to 
reduce cost for the operator.

• A second motivation is to improve plant monitoring for facilities or areas 
that have difficulties achieving materials accountancy goals:
• In pyroprocessing for example where there are materials accountancy 

challenges, can we make more use of plant monitoring data to verify 
operations?



Machine Learning: The Answer to All Our Problems

3

• Machine learning is broadly defined as approaches that can learn and 
adapt without explicit instructions.

• Potential Benefits:
• ML can automate tedious tasks and reduce chance for human error.
• ML can aggregate large amounts of data and disparate data sources to learn 

“normal” operation, potentially making it easier to detect abnormal operation.
• Can automate monitoring to help reduce costs.

• Potential Downsides:
• ML algorithms will only be as good as the data used to train it.
• Developing useful algorithms potentially require a large amount of training 

data which may not be available.
• A “black box” algorithm may not be suitable for safeguards where transparency 

is important (how much can we trust the results?)



Example 1: Video Surveillance (NNSA Funded) 

4

• Generates massive quantities of data with few segments of interest.
• Tedious for human review, however, image recognition is a well understood 

problem.

UCSD anomaly dataset: 
http://www.svcl.ucsd.edu/projects/anomaly/dataset.html

Anomalous behavior identification in 
video sequences. 

Spatio-Temporal Anomaly Detection in Video. Smith, 
Rutkowski, and Hamel. 



Deep Learning to Predict Operational Status (NNSA)

55

Signature Precision Operationalized 
Precision

Signature Recall Operationalized 
Precision

Plant not operating 0.89 0.66 0.91 0.87

Plant operating 0.96 0.95 0.95 0.84



Example 2: Anomaly Detection in Heterogeneous Safeguards Data 
Streams (NNSA funded)

6

• Neural approaches should be able to learn normal rhythm of facility 
operations.

• Deviations from normal might indicate anomalous behavior.

Feature Extraction Anomaly Detection



Example 3: Hey Inspecta! (NNSA Funded)

7

• Smart assistant to improve effectiveness of international nuclear 
safeguards inspectors.

− Information recall

− Measurement system integration

− Hands-free support
• Incorporates many ML domains from text analytics to image recognition.

How can I 
help?

This Photo by Unknown Author is 
licensed under CC BY-SA

Hey 
Inspecta!

https://www.flickr.com/photos/iaea_imagebank/4644621910
https://creativecommons.org/licenses/by-sa/3.0/


Example 4: Neural Networks for Insider Threat Detection

8

• Can commercial software improve insider threat detection?

− Changes in facility pattern-of-life

https://tutorials.com/primer-on-neural-network-
models-for-natural -language-processing/

• Many off-the-shelf computing 
packages exist, and these can be 
useful in some applications.

• However, some applications in 
safeguards may require 
customized solutions.



Lessons 
Learned



Current and Past Work Has Evaluated the Use of ML to Improve Materials Accountancy for 
Reprocessing and Enrichment.

10

• Process models were used to generate the necessary training data.
• Simulated measurements including both bulk processing monitoring data 

and nuclear measurements have been used to reduce reliance on DA.



Application of ML to Materials Accountancy

11

• Application of ML to a material balance (which includes measurement 
uncertainty) is rather unique in the ML field.

• Large data requirements combined with safeguards errors create a difficult 
challenge.



Results

12

• Initially, the ML results were much worse than a traditional materials accountancy 
approach, due to the variation in systematic errors.

• Reduction of systematic biases through cross-calibration of sensors led to significantly 
improved results.

Initial Results Results with Detector Cross-Calibration



Conclusions

13

• Machine Learning can work very well in specific domains. Image and text recognition are proven uses 
with many applications. Application to containment and surveillance could provide significant benefit to 
safeguards.

• ML is powerful but requires careful application and subject matter expert input—it needs to be 
trained, and training can require a lot of data and time to develop the algorithms.

• The application to materials accountancy appears to be less promising—training with data that has 
uncertainty is a unique application in the ML community. More R&D is needed to determine if there 
are viable approaches.

• There are concerns over the operational transparency of using ML approaches. 

• The high consequence nature of safeguards results in strict requirements not often seen in other 
industries which results in further R&D challenges. 



We develop and distribute 
Nuclear-Ready AI software

https://nuclearn.ai

http://nuclearn.ai


Roses are red 
violets are blue,

the remainder of this poem was generated with Nuclear AI, 
and it has been sent to the NRC for review.

Applicability of large language models in Nuclear
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What are Large 
Language Models?

Specialized neural networks for 
modeling general natural language 
trained on HUGE amounts of data

Broad (English), domain specific 
(Medical) or task specific (Q&A)

Single model can answer questions, 
generate novel passages, classify text, 
perform translations, summarize content

Approximate volumetric difference 
proportional to learning capacity 
difference from traditional 
machine learning techniques



Revolution in Natural Language Approaches

Old School

● Manually clean text to reduce number of 
extraneous words and identify “phrases” 
and “keywords” that matter

● Train Naive Bayes/Boosted Tree/Simple 
Neural Network on features

● Accuracy is lower than humans

Large Language Model Era

● Pre-trained models can perform many 
tasks without any additional training

● Models can be “fine-tuned” to specific 
problems to achieve superior performance

● Models “read” an entire passage, and use 
the entire context to “understand” the 
natural language

● 4.3x reduction in number of errors1

Move data pipeline complexity and feature engineering into the language model 

After performing WO 1234567, maintenance tech 
attempted to stroke the valve.  While manually 
operating the valve, the tech slipped on water 
left from a leaking overhead pipe.

1.https://gluebenchmark.com/leaderboard



What can we do with these models?

● More accurately auto-screen a higher proportion of issues utilizing improved 
classification abilities

● Improve the quality of reports using intelligent autocomplete with Nuclear-specific 
terms and phrases

● Evaluate whether an issue report contains sufficient information as it is being 
written



https://www.youtube.com/watch?v=K3SdC909bnc

http://www.youtube.com/watch?v=K3SdC909bnc
https://www.youtube.com/watch?v=K3SdC909bnc


Large Language Models are still improving.

● Next generation predicted to be 200x size 
of current generation

● Models will achieve superhuman 
performance on a broad range of natural 
language and general AI tasks

● Services such as Github Copilot already 
leverage advanced auto-complete 
functionality for millions of users

● Gartner predicts that by 2025 generative 
AI will account for 10% of all data 
produced worldwide

For the first time in the history of Machine Learning, there is no 
evidence of decreasing returns from increasing model size.  The 
only limiting factor is compute resources. 



● Intelligent auto-completion of procedures and 
work instructions, including generation of entire 
work steps

● “Query” large Nuclear texts for answers (e.g. 
FSAR, design documents, etc.)

● Chatbots for creating Issue Reports, Work 
Orders, Scheduling

● Automatic summarization of site schedules and 
daily issues

● We plan to release a Nuclear-specific Large 
Language Model in the future

Future Use Cases and Research



https://nuclearn.ai

Large Language Models are used in Nuclearn platform and products
● CAP Screening Automation
● Automated Trend Coding
● CAP Trending Dashboard
● 10CFR50 Section Applicability 

http://nuclearn.ai


https://nuclearn.ai

Questions?

jerrold@nuclearn.ai
brad@nuclearn.ai

http://nuclearn.ai


Satyan Bhongale, Lead Data Scientist November 9, 2021

Hybrid Physics-Data Driven Model for Prescriptive Control
and Design



Industrial Data Science Challenges

Industries
• Automotive
• Power /Energy
• Mining 
• Semiconductor

Typical Applications
• Process Optimization
• Predictive Maintenance
• Composite metrology
• Anomaly Detection

Key Challenges
• Lack of Data
• Bad Data Quality
• Lack of Variability
• Multivariant prescriptive control

Amount of Data

Ph
ys

ic
s

Prescriptive /Predictive

Predictive

Where you are !!



Predictive vs Prescriptive

• One way function and 
non-invertible 

• Lack of physical insight 
(operational difficulties)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 1 = 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2, … 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁 )

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 1 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2, … 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁 )

• Most likely invertible (not always)
• Knowledge of gradients and higher derivatives 

at each point in space

Deriving Physical laws from data
• Data Robot originally Newtonian
• GPLearn (based on genetic algorithm)
• AIFeynman (able to derive over 100 

Physics laws from Feynman Lectures

Symbolic AI / RegressionNeural Nets / Deep Learning
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Use case : Condenser – Turbine 

𝑇𝑇 ≡ 𝑇𝑇 ℎ, 𝑝𝑝 ≡ 𝑇𝑇 = 𝑇𝑇0(1 + 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, . . 𝑥𝑥𝑛𝑛))

Smooth function of variables not captured
by the physics equations e.g.
• Vibrations
• Leaks
• Bearing temperature
• Ambient conditions
• Etc.

Symbolic AI

• Prescriptive  control
• Extrapolation allowing for 

design

𝑝𝑝2 = 𝑟𝑟𝑝𝑝1

𝑟𝑟
2
𝑚𝑚 − 𝑟𝑟1+

1
𝑚𝑚 =

𝑤𝑤2

𝐴𝐴2𝜌𝜌1𝑝𝑝1
×
𝑚𝑚 − 1
2𝜂𝜂𝜂𝜂

𝑝𝑝2 = 𝑁𝑁𝑁𝑁(𝑝𝑝1,𝜌𝜌1,𝑤𝑤1,𝑇𝑇1, . . , 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)



Summary

• Need to develop Hybrid Physics & Data driven Digital Twins
• Symbolic AI allows for prescriptive control
• Models are extrapolatable beyond their operational regimes
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Agenda

• Project Objectives
• Progress

- Screening and Automation
- Inspection Preparation 

• Keywords and Trends
- Topics relevant to P&IR 
- Diverse techniques/approaches

• Next Steps
• Closing Remarks 
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Project Objectives

• Explore artificial intelligence and machine learning 
techniques to improve use of plant information 

• Leverage data science technologies and methods
• Identify opportunities to improve utility processes

– Incident Report Processing
– Station Ownership Committee
– Work Week Planning 
– NRC inspection preparation

3 NRC AI/ML Workshop



Project Focus on CAP Data
• Cornerstone of Reactor Oversight Process (ROP)
• Streamlining and strengthening the CAP through use 

of  AI/ML is expected to:
– Improve consistency in processing, incoming IRs
– Automate collection of data for inspection preparation
– Find hidden trends and insights in existing CAP data

• Important Condition reports (CRs) requiring attention
• Software provides a textual comment explaining why

the decision was made (enhances explainability)
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Incident Report Screening Automation Process

5 NRC AI/ML Workshop

SOC Automation
Expanded Phase 1

IR Data 
Entered

Prediction 
Algorithm

Classifier:
In CAP

Classifier:
Severity and 

Priority

Classifier:
Work 

Request

Classifier:
Is Rework

Classifier:
Crit. Comp. 

Failure

Classifier:
Priority

Classifier:
Discipline

Classifier:
Job Type

Classifier:
Clock Reset

Classifier:
Foreign 
Material

SOC Automation
Initial Phase 1

Work Screening 
Automation Initial Phase 1

Work Screening 
Automation Expanded 

Phase 1

Classifier:
Unit 

Condition

Goal: ~80% Effort 
Reduction

Goal: ~95% Effort 
Reduction



• CAP and New Work Screening stakeholder input
• Areas of automation to reach effort reduction

– Critical component failures
– Nondiscretionary clock rests
– Rework

• Completed models for CR/NCAP items and if they 
represent a significant condition (SCAQ)

• Develop additional models and results page (i.e., user 
interface) built into NUCAP 2.0

6 NRC AI/ML Workshop
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The “significant” conditions that warrant increased attention, investigation and 
corrective actions comprise about 1% of all CR’s generated

CAP Statistics (2017 - 2021)

Severity 
1

Severity 
2

Severity 
3

Severity 
4

Severity 
5

Priority  A 3 66 25 1 0

Priority  B 0 123 372 45 0

Priority  D 2 50 3,569 403,231 1,359

Severity 
1

Severity 
2

Severity 
3

Severity 
4

Severity 
5

Priority  A 3 66 25 1 0

Priority  B 0 123 371 41 0

Priority D 0 49 3,528 300,364 476
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s 
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g 
N

C
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C
AP
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.e

., 
C

AQ
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• Leverage insights from CAP automation and apply these 
to the identification of relevant inspection trends

• Enhance internal assessments and inform inspections
– Streamline information sharing through an inspection data portal
– Develop data-driven metrics to support inspection outcomes
– Inform these processes though automation 

• Develop tools to automate/identify risk contributors 
– Identify and highlight risk-significant information using PRA insights
– Components and/or operator actions 
– Programmatic and predictive trends

8

Informed Inspection Preparation
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Topics Relevant to P&IR (from IP 71152)

• Negative trends in human/equipment performance 
• Cited or non-cited violations 
• Significant conditions (SCAQ)
• ROP cross-cutting themes 
• Risk significant issues and trends
• Long-standing degraded conditions 
• Reductions in design or operational margin
• Repetitive work orders and equipment failures
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Keyword/Topics

10

MIRACLE 
(Machine Intelligence for Review and 

Analysis of Condition Logs and Entries) 

NRC AI/ML Workshop

Hypothetical CR Text t1 w1 t2 w2 t3 w3 t4 w4 t5 w5

During performance of 'Site Evacuation Alarm 
Test', the evacuation siren in the EDG Bay did 
not sound.  The evacuation beacon was 
previously issued under different IRs.  
Equipment condition appears to be degrading.

Test was completed UNSAT due to EDG beacon 
not lighting.

Emergency planning 19.2 Communication 
equipment 11.7 Emergency drills 1.5 Diesel generator 1.4 Rad Con instrumentation 0.9
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Trending
Data-driven keywords with industry data to standardize trending
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Diverse AI/ML Techniques and Approaches 

• JH uses a “classifier” algorithm (CAP Analyzer) 
with supervised learning to predict rare events

• INL uses a combination of supervised (Cortex) 
and unsupervised learning (Latent Dirichlet 
allocation) to create trends

• Integrate and leverage both approaches 
• Allows independent validation 

NRC AI/ML Workshop12



Working ... Next steps
Ongoing
• Insights from plant subject matter experts
• Collaboration with Xcel Energy 
• Compare Exelon dataset with other utility results and optimize 

keywords (e.g., specificity)

Future
• Pilot CAP automation – 1st Q 2022
• Explore metrics pertinent to P&IR inspection (and expand to 

other inspection areas) – 2nd Q 2022
• Deploy open-source tools for broad industry use
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Concluding Remarks

• AI/ML techniques have the potential to strengthen 
the Corrective Action Program 

• Overarching goal is to improve Exelon internal 
governance and oversight

• Stakeholder engagement and input is critical 
“Designers must proactively address their innovation so individuals should 
decide on long-term use of their product”

• Integration with NRC and industry presents the 
opportunity for a powerful outcome
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Questions?

Tim Alvey
Manager
Exelon Nuclear Innovation Group
Tim.Alvey@exeloncorp.com

Andrew Miller
Lead Engineer, Risk Informed Engineering,
Jensen Hughes
AMiller@jensenhughes.com

Ahmad Al Rashdan
Senior R&D Scientist
Idaho National Laboratory
Ahmad.alrahdan@inl.gov
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DATA SCIENCE AND 
ARTIFICIAL INTELLIGENCE 
ACTIVITIES 
Mr. Luis Betancourt, P.E.
Chief, Accident Analysis Branch
Office of Nuclear Regulatory Research
Division of Safety Analysis



NRC AI Challenges

Future
Regulatory Guidance and Decisionmaking Development
Differentiating AI Usage for Reactor Design Versus Autonomous Control
Explainable and Trustworthy AI – Reliability and Assurance
Internal AI Budget Predicated on Emergent Industry Applications

Current
Workforce Training
Traceable and Auditable Evaluation Methodologies
Internal Challenges: Automating Internal Agency Business Processes
External Challenges: Understanding Licensee and Applicant AI Usage

3



FY 2022 Path Forward

• Enhance staff knowledge in applications 
and use of data science and AI

• Engage with internal and external 
stakeholders to seek alignment on the 
draft Data Science and AI Strategic Plan

• Issue Data Science and AI Strategic Plan 
by Fall 2022

4



Contact Us
• Dr. Theresa Lalain

Deputy Director, Division of Safety Analysis
Office of Nuclear Regulatory Research
theresa.lalain@nrc.gov

• Mr. Luis Betancourt, P.E.
Chief, Accident Analysis Branch
Office of Nuclear Regulatory Research
Division of Safety Analysis
luis.betancourt@nrc.gov

mailto:theresa.lalain@nrc.gov
mailto:luis.Betancourt@nrc.gov

	1 Teri Lalain - AI Workshop 3 Introduction
	Slide Number 1
	Slide Number 2
	Slide Number 3

	2 Robert Tregoning - FFR Overview for AI Workshop
	NRC’s Future-Focused Research �Program
	FFR Program Overview
	Future-Focused Research (FFR) Program Concept
	Slide Number 4
	NRC’s Horizon:  Opportunities and Challenges
	FFR Objectives
	Research: providing a basis for decisions
	FFR Process
	Project Rating Considerations*
	FFR Portfolio
	AI and Data Science in FFR
	Existing AI-DS FFR Activities
	FY-22 AI-DS FFR Activities
	Thoughts for Future:  AI/DS
	Questions?

	3 Christopher Ritter - DICE LDRD Digital Twin Overview
	Slide Number 1
	What is a Digital Twin?
	Digital Twin Proven Opportunity from Industry Applications
	Adv. Manufacturing Digital Twin (AM&M Initiative)�PI: Brennan Harris
	Results
	Solvent Extraction Equipment Testing Laboratory Digital Twin�PI: Ashley Shields
	Anticipated Results
	IES Digital Twin Framework�PI: Paul Talbot
	Flexible Operation Optimization
	Slide Number 10
	Current Progress
	Nuclear-Renewable-Storage Digital Twin�PI: Binghui Li
	Project Tasks 
	MAGNET Digital Twin (Fission Battery Initiative)�PI: Jeren Browning
	Results
	References
	dice.inl.gov
	Questions

	4 John Feddema - Sandia_Presentation_for_NRC11092021
	5 Stephen Kleban - NRC IS intro Final
	Sandia Information Sciences Initiative
	Computing Convergence
	Computing Convergence
	Sandia definition of Information Science
	Information Sciences Initiative
	Applied Information Sciences (AIS) center 
	AlphaGrid Project Overview and Objective
	AlphaGrid: Results to Date
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

	6 Rick Vilim - ANL - NRC 11-09-2021 rev2 - no video
	ANL R&D Activities
	ANL AI/ML Capabilities enabling�future autonomous operation
	Slide Number 3
	AI for Design space characterization
	ML for materials development
	ML for Materials  inspection
	Slide Number 7
	Health monitoring: Physics-based 
	Health prediction: Mechanistic
	Performance optimization: open-loop
	Performance optimization: closed-loop 
	Slide Number 12
	Decision making
	scheduling
	Slide Number 15
	enforcing storage capacity constraints 
	Reduced order on-line learning
	Slide Number 18
	Autonomous Operation �as an Integrated Process
	Slide Number 20

	7 Nathan Shoman - PM and ML WG2N Shoman
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

	8 Jerrold Vincent - Nuclearn Applicability of Large Language Models in Nuclear
	Slide Number 1
	Roses are red 
violets are blue,
the remainder of this poem was generated with Nuclear AI, 
and it has been sent to the NRC for review.
	Slide Number 3
	What are Large Language Models?

	Revolution in Natural Language Approaches
	What can we do with these models?
	Slide Number 7
	Large Language Models are still improving.
	Future Use Cases and Research

	Slide Number 10
	Questions?


	9 Satyan Bhongale - NRC_AI_Applications - 20211109
	Slide Number 1
	Industrial Data Science Challenges
	Predictive vs Prescriptive
	Symbolic AI / Regression
	Use case : Condenser – Turbine 
	Summary

	10 Tim Alvey - Exelon 3rd NRC AI Workshop - Final 
	CAP Automation and Informed Inspection Preparation Project - Update ���Tim Alvey, Manager, Exelon Nuclear Innovation Group��Drew Miller, Lead Engineer, Risk Informed Engineering,�Jensen Hughes��Ahmad Al Rashdan, Ph.D.  Senior Research and �Development Scientist, Idaho National Laboratory ���
	Agenda
	Project Objectives
	Project Focus on CAP Data
	Incident Report Screening Automation Process
	Slide Number 6
	CAP Statistics (2017 - 2021)
	Informed Inspection Preparation
	Topics Relevant to P&IR (from IP 71152)
	Keyword/Topics
	Trending
	�Diverse AI/ML Techniques and Approaches 
	Working ... Next steps
	Concluding Remarks
	Questions?

	11 Luis Betancourt - 3rd-Data-Science-AI-Workshop-slides
	Data Science and Artificial Intelligence Activities 
	NRC AI Challenges
	FY 2022 Path Forward
	Contact Us


