TABLE 1.7-1

(Sheet 1)

COMPARISON OF NUCLEAR SYSTEM DESIGN CHARACTERISTICS (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

THERMAL AND HYDRAULIC DESIGN	BROWNS FERRY <u>UNITS 1/2/3</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER STATION	DUANE ARNOLD ENERGY CENTER
Rated Power, MWt	3293	2436	1593	2381	1593
Design Power, MWt	3440	2537	1665	2500	1670
Steam Flow Rate, lb/hr	13.37 x 10 ⁶	10.03 × 10 ⁶	6.43 x 10 ⁶	9.81 x 10 ⁶	6.847 x 10 ⁶
Core Coolant Flow Rate, Ib/hr	102.5 x 10 ⁶	75.5 x 10 ⁶	48.5 x 10 ⁶	74.5 x 10 ⁶	48.5 x 10 ⁶
Feedwater Flow Rate, lb/hr	13.315 x 10 ⁶	10.445 x 10 ⁶	6.43 x 10 ⁶	9.81 x 10 ⁶	6.77 x 10 ⁶
Feedwater Temperature, °F	378.4	387.4	372	367	420
System Pressure, Nominal in Steam Dome, psia	1020	1020	1020	1020	1020
Average Power Density, kW/liter	49.69/49.46/	51.2	50.8	51.2	50.9
	49.2				
Maximum Thermal Output, kW/ft	18.5 (7x7)/13.4	18.3	18.37	18.5	18.5
	(8x8)				
Average Thermal Output, kW/ft	7.050 (7x7)/	7.114	7.1	7.079	7.079
	5.59 (8x8)				
Average Heat Flux, Btu/hr-ft ²	148937/142007/	164,734	163,900	164,500	163,933
	143635				
Maximum UO ₂ Temperature, °F	4430	4430	4430	4430	4430
Average Volumetric Fuel Temperature, °F	1210	1210	1210	1210	1210
Average Fuel Rod Surface Temperature, °F	560	560	560	560	560
Minimum Critical Power Ratio (MCPR) ⁽¹⁾	>1.07	>1.9	>1.9	>1.9	>1.9
Coolant Enthalpy at Core Inlet, Btu/lb	521.3	526.2	522.9	520.1	525.6
Core Maximum Exit Voids Within Assemblies	79	79	79	79	79
Core Average Exit Quality, % Steam	13.2	13.9	13.6	13.2	14.3

TABLE 1.7-1

(Sheet 2)

<u>COMPARISON OF NUCLEAR SYSTEM DESIGN CHARACTERISTICS</u> (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

THERMAL AND HYDRAULIC DESIGN (Cont-d)	BROWNS FERRY <u>UNITS 1/2/3</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER STATION	DUANE ARNOLD ENERGY CENTER
Design Power Peaking Factors					
Transverse Peaking Factor Local Peaking Factor Axial Peaking Factor Total Peaking Factor	1.4 ≤ 1.24 1.5 ≤ 2.63	1.4 1.24 1.5 2.6	1.4 1.24 1.5 2.6	1.4 1.24 1.5 2.6	1.405 1.24 1.5 2.6
NUCLEAR DESIGN (First Core)					
Water/UO ₂ Volume Ratio (Cold)	2.43 Type I 2.53 Type II & III	2.41	2.41	2.41	2.41
Reactivity with Strongest Control Rod Out, ${\rm k}_{\rm eff}$	<0.99	<0.99	<0.99	<0.99	<0.99
Moderator Temperature Coefficient At 68°F, Δk/k - °F Water Hot, no voids, Δk/k - °F Water	-3.5 x 10⁻⁵ -11.6 x 10⁻⁵	-3.5 x 10 ⁻⁵ -11.6 x 10 ⁻⁵	-5.0 x 10 ⁻⁵ -17.0 x 10 ⁻⁵	-3.5 x 10⁻⁵ -11.6 x 10⁻⁵	-3.5 x 10 ⁻⁵ -11.6 x 10 ⁻⁵
Moderator Void Coefficient Hot, no voids, $\Delta k/k$ - % Void At Rated Output, $\Delta k/k$ - % Void	-8.7 x 10⁻⁴ -1.05 x 10⁻³	-8.7 x 10 ⁻⁴ -1.05 x 10 ⁻³	-1.0 x 10 ⁻³ -1.5 x 10 ⁻³	-8.7 x 10 ⁻⁴ -1.05 x 10 ⁻³	-8.7 x 10 ⁻⁴ -1.05 x 10 ⁻³
Fuel Temperature Doppler Coefficient At 68°F, $\Delta k/k$ - °F Fuel Hot, No Void, $\Delta k/k$ - °F Fuel At Rated Output, $\Delta k/k$ - °F Fuel	-0.9 x 10 ⁻⁵ -1.0 x 10 ⁻⁵ -0.9 x 10 ⁻⁵	-1.3 x 10 ⁻⁵ -1.2 x 10 ⁻⁵ -1.3 x 10 ⁻⁵	-1.3 x 10 ⁻⁵ -1.2 x 10 ⁻⁵ -1.3 x 10 ⁻⁵	-1.3 x 10 ⁻⁵ -1.2 x 10 ⁻⁵ -1.3 x 10 ⁻⁵	-1.3 x 10 ⁻⁵ -1.2 x 10 ⁻⁵ -1.3 x 10 ⁻⁵
Initial Average U-235 Enrichment, W/O	2.19%	2.30%	2.50%	2.15%	2.25%
Fuel Average Discharge Exposure, MWD/Ton	19,000	19,000	19,000	19,000	18,350
Nuclear Design (Reload Core)	See applicable Nuclear I	(6) Design Reports.			

TABLE 1.7-1

(Sheet 3)

COMPARISON OF NUCLEAR SYSTEM DESIGN CHARACTERISTICS (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

(Parameters are related to Rated Power Output for a single plant unless otherwise noted)

CORE MECHANICAL DESIGN	BROWNS FERRY <u>UNITS 1/2/3</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER <u>STATION</u>	DUANE ARNOLD ENERGY CENTER
Fuel Assembly					
Number of Fuel Assemblies Fuel Rod Array Overall Dimensions, inches	764 7 x 7 or 8 x 8 175.98	560 7 x 7 175.98	368 7 x 7 175.98	548 7 x 7 175.98	368 7 x 7 175.98
Weight of UO2 per Assembly, pounds	See applicable	Undished -	Undished -	487.4	Undished -
	Nuclear Design (6) Reports	490.35 Dished - 483.42	487.4		490.35 Dished - 483.42
Weight of Fuel Assembly, pounds	681	Undished - 681.48 Dished - 674.55	Undished - 682	682	Undished - 681.48 Dished - 674.55
Fuel Rods					
Number per Fuel Assembly	49 or 64* (mixed cores) 1 483	49	49	49	49
Outside Diameter, inch Clad Thickness, inch Gap - Pellet to Clad, inch Length of Gas Plenum, inches Clad Material Cladding Process	0.563 0.032 0.006/0.009 16/9.48 Zircaloy-2 Free standing loaded tubes	0.563 0.032 0.006 16 Zircaloy-2 Free standing loaded tubes	0.563 0.032 0.006 16 Zircaloy-2 Free Standing loaded tubes	0.563 0.032 0.006 16 Zircaloy-2 Free Standing loaded tubes	0.563 0.032 0.006 16 Zircaloy-2 Free Standing loaded tubes

*Two different 8 x 8 fuel bundle arrangements are used. One uses 63 fuel rods and 1 water rod; the other uses 62 fuel rods and 2 water rods.

TABLE 1.7-1

(Sheet 4)

COMPARISON OF NUCLEAR SYSTEM DESIGN CHARACTERISTICS (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

CORE MECHANICAL DESIGN (Cont'd)	BROWNS FERRY <u>UNITS 1/2/3</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER <u>STATION</u>	DUANE ARNOLD ENERGY CENTER
Fuel Pellets					
Material Density, % of theoretical Diameter, inch Length, inch	Uranium Dioxide 94% 0.410 0.410	Uranium Dioxide 93% 0.487 0.75	Uranium Dioxide 93% 0.487 0.75	Uranium Dioxide 93% 0.487 0.75	Uranium Dioxide 93% 0.487 0.75
Fuel Channel					
Overall Dimension, inches (length) Thickness, inch Cross-Section Dimensions, inches Material	166.906 0.080 5.438 x 5.438 Zircaloy-4	166.906 0.080 5.438 x 5.438 Zircaloy-4	166.906 0.080 5.438 x 5.438 Zircaloy-4	166.096 0.080 5.438 x 5.438 Zircaloy-4	166.906 0.080 5.438 x 5.438 Zircaloy-4
Core Assembly					
Fuel Weight as UO ₂ , pounds Zirconium Weight, pounds (Zr.2 + Zr.4 Spacers) Core Diameter (equivalent), inches	361,837 140,397 187.1	272,849 96,370 160.2	179,370 63,300 129.9	267,095 94,305 158.5	179,298 63,300 129.9
Core Height (Active Fuel), inches	144 - 150	144	144	144	144
Reactor Control System					
Method of Variation of Reactor Power	Movable Control Rods and Variable Coolant Pumping				
Number of Movable Control Rods	185	137	89	137	89
Shape of Movable Control Rods	Cruciform	Cruciform	Cruciform	Cruciform	Cruciform
Pitch of Movable Control Rods	12.0	12.0	12.0	12.0	12.0

TABLE 1.7-1

(Sheet 5)

<u>COMPARISON OF NUCLEAR SYSTEM DESIGN CHARACTERISTICS</u> (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

CORE MECHANICAL DESIGN (Cont'd)	BROWNS FERRY <u>UNITS 1/2/3</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER <u>STATION</u>	DUANE ARNOLD ENERGY CENTER
Reactor Control System (Cont'd)					
Control Material in Movable Rods	B ₄ C granules	B ₄ C granules	B ₄ C granules	B ₄ C granules	B ₄ C granules
	Compacted in SS Tubes	Compacted in SS Tubes	Compacted in SS Tubes	Compacted in SS Tubes	Compacted in SS Tubes
Type of Control Rod Drives	Bottom Entry, Locking Piston	Bottom Entry, Locking Piston	Bottom Entry, Locking Piston	Bottom Entry, Locking Piston	Bottom Entry, Locking Piston
Supplementary Reactivity Control	Grandolinia Burnable Poison		156 Flat, boron- stainless steel control curtains		
In-Core Neutron Instrumentation					
Number of In-Core Neutron Detectors (Fixed) Number of In-Core Detector Assemblies Number of Detectors Per Assembly Number of Flux Mapping Neutron Detectors	172 43 4 5	124 31 4 4	80 20 4 3	124 31 4 4	80 20 4 3
Source Range Monitor	Source to 0.001% power (4)	Source to 0.001% power (4)	Source to 0.001% power (4)	Source to 0.001% power (4)	Source to 0.001% power (4)
Intermediate Range Monitor	0.0001% to 10% power (8)	0.0001% to 10% power (8)	0.0001% to 10% power (8)	0.0001% to 10% power (8)	0.0001% to 10% power (8)
Local Power Range Monitor	5% to 125% power (172)	5% to 125% power (124)	5% to 125% power (80)	5% to 125% power (124)	5% to 125% power (80)
Average Power Range Monitor	2.5% to 125% power (U1-6; U2-4; U3-6)	2.5% to 125% power (6)	2.5% to 125% power (6)	2.5% to 125% power (6)	2.5% to 125% power (6)

TABLE 1.7-1

(Sheet 6)

<u>COMPARISON OF NUCLEAR SYSTEM DESIGN CHARACTERISTICS</u> (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

REACTOR VESSEL DESIGN	BROWNS FERRY <u>UNITS 1/2/3</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER STATION	DUANE ARNOLD ENERGY CENTER
Material		Carbon Steel/Clad Stair	nless Steel (ASME SA-336 a	& SA-302B)	
Design pressure, psia	1265	1265	1265	1265	1265
Design Temperature, °F	575	575	575	575	575
Inside Diameter ft-in.	20 - 11	18 - 2	17 - 2	18 - 2	15 - 3
Inside Height, ft-in.	73 - 11-1/2	69 - 4	63 - 1.5	69 - 4	66 - 4
Side Thickness (including clad)	6.313	5.531	5.187	5.531	5.625
Minimum Clad Thickness, Inches	1/8	1/8	1/8	1/8	1/8
REACTOR COOLANT RECIRCULATION DESIGN					
Number of Recirculation Loops	2	2	2	2	2
Design Pressure	4440	4440			
Inlet Leg. psig	1148	1148	11/5	1148	1148
Outlet Leg. psig	1326	1274	1274	1274	1208
CORE MECHANICAL DESIGN					
Design Temperature °F	562	562	562	562	562
Pipe Diameter Max. inches	28	28	28	28	22
Pipe Material	304/316	304/316	304/316	304/316	304/316
Recirculation Pump flow Rate, GPM	45,200	45,200	32,500	45,200	27,100
Number of Jet Pumps in Reactor	20	20	20	20	16
MAIN STEAM LINES					
Number of Steam Lines	4	4	4	4	4
Design Pressure, psig	1146	1146	1146	1146	1146
Design Temperature, °F	563	563	563	563	563
Pipe Diameter, inches	26	24	20	24	20
Pipe Material		Carbon Steel (ASTM	A155 KC70 or ASTM A106	6 Grade B)	

TABLE 1.7-1

(Sheet 7)

COMPARISON OF NUCLEAR SYSTEM DESIGN CHARACTERISTICS (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

CORE STANDBY COOLING SYSTEMS	BROWNS FERRY <u>UNITS 1/2/3</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER STATION	DUANE ARNOLD ENERGY CENTER
(These systems are sized on design power)					
Core Spray System					
Number of Loops Flow Rate (gpm)	2 6250 at 105 psid	2 4625 at 120 psid	2 3000 at 136 psid	2 4500 at 115 psid	2 3020 at 127 psid
High Pressure Coolant Injection system (No.)	1	1	1	1	1
Number of Loops Flow Rate (gpm) Automatic Depressurization system (No.)	1 5000 1	1 4250 1	1 4250 1	1 4220 1	1 2980 1
Low Pressure Coolant Injection (No.)	1	1	1	1	1
Number of Pumps Flow Rate (gpm/pump)	4 10,800 gpm (1 pump per loop) 20,000 gpm (2 pumps per loop)	4 7700 at 20 psid	4 4800 at 20 psid	4 7000 at 20 psid	4 4800 at 20 psid
AUXILIARY SYSTEMS					
Residual Heat Removal System					
Reactor Shutdown Cooling (number of pumps) Flow Rate (gpm/pump) ⁽²⁾ Capacity (Btu/hr/heat exchanger) ⁽³⁾	4 10,000 70 x 106	4 7,700 32 x 106	4 7,000 57.5 x 106	4 7,700 70 x 106	4 4,800 35 x 106
Number of heat exchangers	4	2	2	2	2
Primary Containment Cooling					
Flow rate (gpm) ⁽⁴⁾	32,000	30,800	28,000	30,800	19,200

TABLE 1.7-1

(Sheet 8)

<u>COMPARISON OF NUCLEAR SYSTEM DESIGN CHARACTERISTICS</u> (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

(Parameters are related to Rated Power Output for a single plant unless otherwise noted)

AUXILIARY SYSTEMS (Cont'd)	BROWNS FERRY <u>UNITS 1/2/3</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER STATION	DUANE ARNOLD ENERGY CENTER
RHR Service Water System					
Flow Rate (gpm/pump)	4,500	8,000	2,700	8,000	2,500
Number of pumps	12 ⁽⁵⁾	4	4	4	4
Reactor Core Isolation Cooling System					
Flow Rate (gpm)	616 at 1120 psid	400 at 1120 psid	400	416 at 1120 psid	416
Fuel Pool Cooling and Cleanup system					
Capacity (BTU/hr)	8.8 x 10 ⁶	3.3 x 10 ⁶	2.37 x 10 ⁶	3.4 x 10 ⁶	2.37 x 10 ⁶

(1) The operating MCPR limits are subject to change from one cycle to the next and also from one part of the current cycle to the next. The appropriate value for MCPR may be obtained by consulting the applicable current Reload Licensing Amendment.

(2) Capacity during reactor flooding mode with three of four pumps running.

(3) Capacity during post-accident cooling mode with 165°F shell side inlet temperature, maximum service water temperature, and 1 RHR pump and 1 RHR service water pump in operation.

(4) The existing design requires 16,000 gpm (2 pumps, 1 loop) to ensure torus water temperature is maintained within acceptable limits for following all postulated events.

(5) For all three units.

(6) See Appendix N

TABLE 1.7-2

COMPARISON OF POWER CONVERSION SYSTEMS DESIGN CHARACTERISTICS (Data in this table has not been updated to reflect the power uprate at Browns Ferry)									
TURBINE GENERATOR	Browns Ferry <u>Each Unit</u>	Hatch Unit 1	Vermont Yankee	Cooper Station	Duane Arnold <u>Energy Center</u>				
Design Power, MWt	3440	2537	1665	2487	1670				
Design Power, MWe	1152	849	564	836	597				
Generator Speed, rpm	1800	1800	1800	1800	1800				
Design Steam Flow, lb/hr	14.035 x 10 ⁶	10.48 x 10 ⁶	6.423 x 10 ⁶	10.049 x 10 ⁶	6.696 x 10 ⁶				
Turbine Inlet Pressure, psia	965	970	950	970	950				
TURBINE BYPASS SYSTEM Capacity, percent of turbine									
design steam flow	25	25	100	25	25				
MAIN CONDENSER									
Heat removal capacity, Btu/hr	7,770 x 10 ⁶	5,800 x 10 ⁶	3,500 x 10 ⁶	5,367 x 10 ⁶	3,681 x 10 ⁶				
CIRCULATING WATER SYSTEM									
Number of Pumps	3	3	3	4	2 or more				
Flow Rate gpm/pump	220,000	185,000	117,000	162,500	130,000 or less				
CONDENSATE AND FEEDWATER SYSTEMS									
Design Flow Rate, lb/hr	13.845 x 10 ⁶	10.096 x 10 ⁶	6.4 x 10 ⁶	9.773 x 10 ⁶	7.146 x 10 ⁶				
Number Condensate Pumps	3	3	2	3	2				
Number Condensate Booster Pumps	3	-							
Number Feedwater Pumps	3	2	2	2	2				
Condensate Pump Drive	AC power	AC power	AC power	AC power	AC power				
Condensate Booster Pump Drive	AC power	-	-	-	-				
Feedwater Pump Drive	Turbine	Turbine	AC power	Turbine	AC power				

TABLE 1.7-3

COMPARISON OF ELECTRICAL POWER SYSTEM DESIGN CHARACTERISTICS (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

TRANSMISSION SYSTEM	BROWNS FERRY NUCLEAR PLANT	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER STATION	DUANE ARNOLD ENERGY CENTER
Outgoing lines (number-rating)	7-500kV	2-230kV	2-345kV	4-345kV	2-345kV
NORMAL AUXILIARY AC POWER					
Incoming lines (number-rating)	2-161kV	2-230kV	2-345kV	1-115kV	2-345kV
			1-230kV	1-69kV	3-161kV
			1-115kV		
			1-4160kV		
Auxiliary transformers	3	1	1	1	2
Startup transformers	2	2	1	2	1
STANDBY AC POWER SUPPLY					
Number diesel generators	8	3	2	4	2
Number of 4160V Shutdown buses	8	3	2	2	2
Number of 480V Shutdown buses	6	4-660V	3	3	3
DC POWER SUPPLY					
Number of 125V or 250V batteries*	6	2	2	2	2
Number of 125V or 250V buses*	6	4	4	4	2

*3 of the 6 250V systems are qualified

TABLE 1.7-4

Sheet 1

COMPARISON OF CONTAINMENT DESIGN CHARACTERISTICS (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

PRIMARY CONTAINMENT*	BROWNS FERRY <u>EACH UNIT</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER <u>STATION</u>	Duane Arnold <u>Energy Center</u>
Туре	Pressure Suppression	Pressure Suppression	Pressure Suppression	Pressure Suppression	Pressure Suppression
Construction Drywell	Light bulb shape; steel vessel				
Pressure Suppression Chamber	Torus; steel vessel				
Pressure Suppression Chamber Internal Design Pressure (psig)	56	56	56	56	56
Pressure Suppression chamber - External Design Pressure (psig)	2	2	2	2	2
Drywell-Internal Design Pressure (psig)	56	56	56	56	56
Drywell-External Design Pressure (psig)	2	2	2	2	2
Drywell Free Volume (ft ³)	159,000	146,400	134,000	145,430	130,930
Pressure Suppression chamber	119,000	101,410	99,000	109,810	94,630
Free Volume (ft ³), minimum					
Pressure Suppression Pool Water	128,700	86,660	78,000	87,660	61,500
Volume (ft ³), maximum					
Submergence of Vent Pipe Below Pressure Pool Surface (ft), nominal	4	4	4	4	4
Design Temperature of Drywell (°F)	281	281	281	281	281
Design Temperature of Pressure Suppression Chamber (°F)	281	281	281	281	281

* Where applicable, containment parameters are based on design power.

TABLE 1.7-4 (Cont'd)

Sheet 2

COMPARISON OF CONTAINMENT DESIGN CHARACTERISTICS (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

PRIMARY CONTAINMENT*	BROWNS FERRY EACH UNIT	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER STATION	DUANE ARNOLD ENERGY CENTER
Downcomer Vent Pressure Loss Factor	4.1	6.21	6.21	6.21	6.21
Break Area/total Vent Area	0.017	0.019	0.019	0.019	0.019
Calculated Maximum Pressure After Blow-	49.6	45	35	46	45
down Drywell (psig)					
Pressure Suppression chamber (psig)	27	28	22	28	29
Initial Pressure Suppression Pool	40	50	35	50	50
Temperature Rise (°F)					
Leakage Rate (% Free Volume/Day	0.5	0.5	0.5	0.5	0.5
at 56 psig and 281°F					

SECONDARY CONTAINMENT

Туре	Controlled Leakage,	Controlled Leakage,	Controlled Leakage,	Controlled Leakage,	Controlled Leakage,
	Elevated Release	Elevated Release	Elevated Release	Elevated Release	Elevated Release
Construction	Reinforced	Reinforced	Reinforced	Reinforced	Reinforced
	Concrete	Concrete	Concrete	Concrete	Concrete
Upper Levels	Steel Super-	Steel Super-	Steel Super-	Steel Super-	Steel Super-
	structure and	structure and	structure and	structure and	structure and
	Siding	Siding	Siding	Siding	Siding
Roof	Steel Decking with Builtup Composition Roof	Steel Sheeting	Steel Sheeting	Steel Sheeting	Steel Sheeting
Internal Design Pressure (psig)	+7 to -5 in. H ₂ O	0.25	0.25	0.25	0.25
Design Inleakage Rate (% Free Volume/Day at 0.25 inches H ₂ O)	100	100	100	100	100

* Where applicable, containment parameters are based on design power.

TABLE 1.7-4 (Cont'd)

Sheet 3

COMPARISON OF CONTAINMENT DESIGN CHARACTERISTICS (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

SECONDARY CONTAINMENT*	BROWNS FERRY <u>EACH UNIT</u>	HATCH UNIT 1	VERMONT <u>YANKEE</u>	COOPER STATION	Duane Arnold <u>Energy Center</u>
ELEVATED RELEASE POINT					
Туре	Stack	Stack	Stack	Stack	Stack
Construction	Reinforced Concrete	Steel	Steel	Steel	Steel
Height (above ground)	600 feet	150 meters	318 feet	100 meters	100 meters

*Where applicable, containment parameters are based on design power.

TABLE 1.7-5

<u>COMPARISON OF CONTAINMENT DESIGN CHARACTERISTICS</u> (Data in this table has not been updated to reflect the power uprate at Browns Ferry)

SEISMIC DESIGN	BROWNS FERRY NUCLEAR PLANT	HATCH UNIT 1	VERMONT YANKEE	COOPER <u>STATION</u>	DUANE ARNOLD ENERGY CENTER
Operating Basis Earthquake (horizontal g)	0.10	0.08	0.07	0.10	0.06
Design Basis Earthquake (horizontal g)	0.20	0.15	0.14	0.20	0.12
WIND DESIGN					
Maximum sustained (mph)	100	105	80	100	105
Tornadoes (mph)	300	300	300	300	300