Standard Technical Specifications

General Electric BWR/4 Plants

Revision 5.0

Volume 2, Bases
AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at the NRC’s Library at www.nrc.gov/reading-rm.html. Publicly released records include, to name a few, NUREG-series publications; Federal Register notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and Title 10, “Energy,” in the Code of Federal Regulations may also be purchased from one of these two sources:

1. The Superintendent of Documents
 U.S. Government Publishing Office
 Washington, DC 20402-0001
 Internet: www.bookstore.gpo.gov
 Telephone: (202) 512-1800
 Fax: (202) 512-2104

2. The National Technical Information Service
 5301 Shawnee Road
 Alexandria, VA 22312-0002
 Internet: www.ntis.gov
 1-800-553-6847 or, locally, (703) 605-6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: U.S. Nuclear Regulatory Commission
 Office of Administration
 Digital Communications and Administrative Services Branch
 Washington, DC 20555-0001
 E-mail: Reproduction.Resource@nrc.gov
 Facsimile: (301) 415-2289

Some publications in the NUREG series that are posted at the NRC’s Web site address www.nrc.gov/reading-rm/doc-collections/nuregs are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, transactions, Federal Register notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute
11 West 42nd Street
New York, NY 10036-8002
Internet: www.ansi.org
(212) 642-4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor prepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG–XXXX) or agency contractors (NUREG/CR–XXXX), (2) proceedings of conferences (NUREG/CP–XXXX), (3) reports resulting from international agreements (NUREG/IA–XXXX), (4) brochures (NUREG/BR–XXXX), and (5) compilations of legal decisions and orders of the Commission and the Atomic and Safety Licensing Boards and of Directors’ decisions under Section 2.206 of the NRC’s regulations (NUREG–0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.
ABSTRACT

This NUREG contains the improved Standard Technical Specifications (STS) for General Electric Boiling Water Reactor/4 (BWR/4) plants. The changes reflected in Revision 5 result from the experience gained from plant operation using the improved STS and extensive public technical meetings and discussions among the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees and the Nuclear Steam Supply System (NSSS) Owners Groups.

The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132), which was subsequently codified by changes to Section 36 of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR 50.36) (60 FR 36953). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the practical extent, to Revision 5 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

Users may access the STS NUREGs in the PDF format at https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/. Users may print or download copies from the NRC Web site.

PAPERWORK REDUCTION ACT STATEMENT

This NUREG contains voluntary guidance for implementing the mandatory information collections covered by 10 CFR Part 50 that are subject to the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et. seq.). These information collections were approved by the Office of Management and Budget (OMB), under control number 3150-0011. Send comments regarding this information collection to the FOIA, Library, and Information Collections Branch (T6-A10M), U.S. Nuclear Regulatory Commission, Washington, DC 20555 0001, or by e-mail to Infocollects.Resource@nrc.gov, and to the Desk Officer, Office of Information and Regulatory Affairs, NEOB-10202, (3150-0011) Office of Management and Budget, Washington, DC 20503.

PUBLIC PROTECTION NOTIFICATION

The NRC may not conduct or sponsor, and a person is not required to respond to, a collection of information unless the document requesting or requiring the collection displays a currently valid OMB control number.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>B 2.0 SAFETY LIMITS (SLs)</td>
<td>B 2.1.1-1</td>
</tr>
<tr>
<td>B 2.1.1 Reactor Core SLs</td>
<td>B 2.1.1-1</td>
</tr>
<tr>
<td>B 2.1.2 Reactor Coolant System (RCS) Pressure SL</td>
<td>B 2.1.2-1</td>
</tr>
<tr>
<td>B 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY</td>
<td>B 3.0-1</td>
</tr>
<tr>
<td>B 3.1 REACTIVITY CONTROL SYSTEMS</td>
<td>B 3.1.1-1</td>
</tr>
<tr>
<td>B 3.1.1 Shutdown Margin (SDM)</td>
<td>B 3.1.1-1</td>
</tr>
<tr>
<td>B 3.1.2 Reactivity Anomalies</td>
<td>B 3.1.2-1</td>
</tr>
<tr>
<td>B 3.1.3 Control Rod OPERABILITY</td>
<td>B 3.1.3-1</td>
</tr>
<tr>
<td>B 3.1.4 Control Rod Scram Times</td>
<td>B 3.1.4-1</td>
</tr>
<tr>
<td>B 3.1.5 Control Rod Scram Accumulators</td>
<td>B 3.1.5-1</td>
</tr>
<tr>
<td>B 3.1.6 Rod Pattern Control</td>
<td>B 3.1.6-1</td>
</tr>
<tr>
<td>B 3.1.7 Standby Liquid Control (SLC) System</td>
<td>B 3.1.7-1</td>
</tr>
<tr>
<td>B 3.1.8 Scram Discharge Volume (SDV) Vent and Drain Valves</td>
<td>B 3.1.8-1</td>
</tr>
<tr>
<td>B 3.2 POWER DISTRIBUTION LIMITS</td>
<td></td>
</tr>
<tr>
<td>B 3.2.1 Average Planar Linear Heat Generation Rate (APLHGR)</td>
<td>B 3.2.1-1</td>
</tr>
<tr>
<td>B 3.2.2 Minimum Critical Power Ratio (MCPR)</td>
<td>B 3.2.2-1</td>
</tr>
<tr>
<td>B 3.2.3 Linear Heat Generation Rate (LHGR) (Optional)</td>
<td>B 3.2.3-1</td>
</tr>
<tr>
<td>B 3.2.4 Average Power Range Monitor (APRM) Gain and Setpoints (Optional)</td>
<td>B 3.2.4-1</td>
</tr>
<tr>
<td>B 3.3 INSTRUMENTATION</td>
<td></td>
</tr>
<tr>
<td>B 3.3.1 Reactor Protection System (RPS) Instrumentation</td>
<td>B 3.3.1-1</td>
</tr>
<tr>
<td>B 3.3.1.1 Source Range Monitor (SRM) Instrumentation</td>
<td>B 3.3.1.1-1</td>
</tr>
<tr>
<td>B 3.3.2 Reactor Pressure Vessel (RPV) Water Inventory Control Instrumentation</td>
<td>B 3.3.2-1</td>
</tr>
<tr>
<td>B 3.3.2.2 Feedwater and Main Turbine High Water Level Trip Instrumentation</td>
<td>B 3.3.2.2-1</td>
</tr>
<tr>
<td>B 3.3.2.3 End of Cycle Recirculation Pump Trip (EOC-RPT) Instrumentation</td>
<td>B 3.3.4.1-1</td>
</tr>
<tr>
<td>B 3.3.3 Emergency Core Cooling System (ECCS) Instrumentation</td>
<td>B 3.3.5.2-1</td>
</tr>
<tr>
<td>B 3.3.4 Reactant Core Isolation Cooling (RCIC) System Instrumentation</td>
<td>B 3.3.5.3-1</td>
</tr>
<tr>
<td>B 3.3.5 Low-Low Set (LLS) Instrumentation</td>
<td>B 3.3.6-1</td>
</tr>
<tr>
<td>B 3.3.6 [Main Control Room Environmental Control (MCREC)]</td>
<td>B 3.3.7.1-1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>B 3.3 INSTRUMENTATION (continued)</td>
<td></td>
</tr>
<tr>
<td>B 3.3.1.8.1 Loss of Power (LOP) Instrumentation</td>
<td>B 3.3.8.1-1</td>
</tr>
<tr>
<td>B 3.3.8.2 Reactor Protection System (RPS) Electric Power Monitoring</td>
<td>B 3.3.8.2-1</td>
</tr>
<tr>
<td>B 3.4 REACTOR COOLANT SYSTEM (RCS)</td>
<td>B 3.4.1-1</td>
</tr>
<tr>
<td>B 3.4.1 Recirculation Loops Operating</td>
<td>B 3.4.1-1</td>
</tr>
<tr>
<td>B 3.4.2 Jet Pumps</td>
<td>B 3.4.2-1</td>
</tr>
<tr>
<td>B 3.4.3 Safety/Relief Valves (S/RVs)</td>
<td>B 3.4.3-1</td>
</tr>
<tr>
<td>B 3.4.4 RCS Operational LEAKAGE</td>
<td>B 3.4.4-1</td>
</tr>
<tr>
<td>B 3.4.5 RCS Pressure Isolation Valve (PIV) Leakage</td>
<td>B 3.4.5-1</td>
</tr>
<tr>
<td>B 3.4.6 RCS Leakage Detection Instrumentation</td>
<td>B 3.4.6-1</td>
</tr>
<tr>
<td>B 3.4.7 RCS Specific Activity</td>
<td>B 3.4.7-1</td>
</tr>
<tr>
<td>B 3.4.8 Residual Heat Removal (RHR) Shutdown Cooling System</td>
<td>B 3.4.8-1</td>
</tr>
<tr>
<td>– Hot Shutdown</td>
<td></td>
</tr>
<tr>
<td>B 3.4.9 Residual Heat Removal (RHR) Shutdown Cooling System</td>
<td>B 3.4.9-1</td>
</tr>
<tr>
<td>– Cold Shutdown</td>
<td></td>
</tr>
<tr>
<td>B 3.4.10 RCS Pressure and Temperature (P/T) Limits</td>
<td>B 3.4.10-1</td>
</tr>
<tr>
<td>B 3.4.11 Reactor Steam Dome Pressure</td>
<td>B 3.4.11-1</td>
</tr>
<tr>
<td>B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS), RPV WATER INVENTORY CONTROL, AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM</td>
<td>B 3.5.1-1</td>
</tr>
<tr>
<td>B 3.5.1 ECCS - Operating</td>
<td>B 3.5.1-1</td>
</tr>
<tr>
<td>B 3.5.2 RPV Water Inventory Control</td>
<td>B 3.5.2-1</td>
</tr>
<tr>
<td>B 3.5.3 RCIC System</td>
<td>B 3.5.3-1</td>
</tr>
<tr>
<td>B 3.6 CONTAINMENT SYSTEMS</td>
<td>B 3.6.1.1-1</td>
</tr>
<tr>
<td>B 3.6.1.1 Primary Containment</td>
<td>B 3.6.1.1-1</td>
</tr>
<tr>
<td>B 3.6.1.2 Primary Containment Air Lock</td>
<td>B 3.6.1.2-1</td>
</tr>
<tr>
<td>B 3.6.1.3 Primary Containment Isolation Valves (PCIVs)</td>
<td>B 3.6.1.3-1</td>
</tr>
<tr>
<td>B 3.6.1.4 Drywell Pressure</td>
<td>B 3.6.1.4-1</td>
</tr>
<tr>
<td>B 3.6.1.5 Drywell Air Temperature</td>
<td>B 3.6.1.5-1</td>
</tr>
<tr>
<td>B 3.6.1.6 Low-Low Set (LLS) Valves</td>
<td>B 3.6.1.6-1</td>
</tr>
<tr>
<td>B 3.6.1.7 Reactor Building-to-Suppression Chamber Vacuum Breakers</td>
<td>B 3.6.1.7-1</td>
</tr>
<tr>
<td>B 3.6.1.8 Suppression Chamber-to-Drywell Vacuum Breakers</td>
<td>B 3.6.1.8-1</td>
</tr>
<tr>
<td>B 3.6.1.9 Main Steam Isolation Valve (MSIV) Leakage Control System (LCS)</td>
<td>B 3.6.1.9-1</td>
</tr>
<tr>
<td>B 3.6.2.1 Suppression Pool Average Temperature</td>
<td>B 3.6.2.1-1</td>
</tr>
<tr>
<td>B 3.6.2.2 Suppression Pool Water Level</td>
<td>B 3.6.2.2-1</td>
</tr>
<tr>
<td>B 3.6.2.3 Residual Heat Removal (RHR) Suppression Pool Cooling</td>
<td>B 3.6.2.3-1</td>
</tr>
<tr>
<td>B 3.6.2.4 Residual Heat Removal (RHR) Suppression Pool Spray</td>
<td>B 3.6.2.4-1</td>
</tr>
<tr>
<td>B 3.6.2.5 Drywell-to-Suppression Chamber Differential Pressure</td>
<td>B 3.6.2.5-1</td>
</tr>
<tr>
<td>B 3.6.3.1 [Drywell Cooling System Fans]</td>
<td>B 3.6.3.1-1</td>
</tr>
<tr>
<td>B 3.6.3.2 Primary Containment Oxygen Concentration</td>
<td>B 3.6.3.2-1</td>
</tr>
<tr>
<td>B 3.6.4.1 [Secondary] Containment</td>
<td>B 3.6.4.1-1</td>
</tr>
<tr>
<td>B 3.6.4.2 Secondary Containment Isolation Valves (SCIIVs)</td>
<td>B 3.6.4.2-1</td>
</tr>
<tr>
<td>B 3.6.4.3 Standby Gas Treatment (SGT) System</td>
<td>B 3.6.4.3-1</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 3.7 PLANT SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>B 3.7.1 Residual Heat Removal Service Water (RHRSW) System</td>
<td>B 3.7.1-1</td>
</tr>
<tr>
<td>B 3.7.2 [Plant Service Water (PSW)] and [Ultimate Heat Sink (UHS)]</td>
<td></td>
</tr>
<tr>
<td>B 3.7.3 Diesel Generator (DG) [1B] Standby Service Water (SSW) System</td>
<td>B 3.7.3-1</td>
</tr>
<tr>
<td>B 3.7.4 [Main Control Room Environmental Control (MCREC)] System</td>
<td>B 3.7.4-1</td>
</tr>
<tr>
<td>B 3.7.5 [Control Room Air Conditioning (AC)] System</td>
<td>B 3.7.5-1</td>
</tr>
<tr>
<td>B 3.7.6 Main Condenser Offgas</td>
<td>B 3.7.6-1</td>
</tr>
<tr>
<td>B 3.7.7 Main Turbine Bypass System</td>
<td>B 3.7.7-1</td>
</tr>
<tr>
<td>B 3.7.8 Spent Fuel Storage Pool Water Level</td>
<td>B 3.7.8-1</td>
</tr>
<tr>
<td>B 3.8 ELECTRICAL POWER SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>B 3.8.1 AC Sources - Operating</td>
<td>B 3.8.1-1</td>
</tr>
<tr>
<td>B 3.8.2 AC Sources - Shutdown</td>
<td>B 3.8.2-1</td>
</tr>
<tr>
<td>B 3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air</td>
<td>B 3.8.3-1</td>
</tr>
<tr>
<td>B 3.8.4 DC Sources - Operating</td>
<td>B 3.8.4-1</td>
</tr>
<tr>
<td>B 3.8.5 DC Sources - Shutdown</td>
<td>B 3.8.5-1</td>
</tr>
<tr>
<td>B 3.8.6 Battery Parameters</td>
<td>B 3.8.6-1</td>
</tr>
<tr>
<td>B 3.8.7 Inverters - Operating</td>
<td>B 3.8.7-1</td>
</tr>
<tr>
<td>B 3.8.8 Inverters - Shutdown</td>
<td>B 3.8.8-1</td>
</tr>
<tr>
<td>B 3.8.9 Distribution Systems - Operating</td>
<td>B 3.8.9-1</td>
</tr>
<tr>
<td>B 3.8.10 Distribution Systems - Shutdown</td>
<td>B 3.8.10-1</td>
</tr>
<tr>
<td>B 3.9 REFUELLING OPERATIONS</td>
<td></td>
</tr>
<tr>
<td>B 3.9.1 Refueling Equipment Interlocks</td>
<td>B 3.9.1-1</td>
</tr>
<tr>
<td>B 3.9.2 Refuel Position One-Rod-Out Interlock</td>
<td>B 3.9.2-1</td>
</tr>
<tr>
<td>B 3.9.3 Control Rod Position</td>
<td>B 3.9.3-1</td>
</tr>
<tr>
<td>B 3.9.4 Control Rod Position Indication</td>
<td>B 3.9.4-1</td>
</tr>
<tr>
<td>B 3.9.5 Control Rod OPERABILITY - Refueling</td>
<td>B 3.9.5-1</td>
</tr>
<tr>
<td>B 3.9.6 [Reactor Pressure Vessel (RPV)] Water Level - [Irradiated Fuel]</td>
<td>B 3.9.6-1</td>
</tr>
<tr>
<td>B 3.9.7 [Reactor Pressure Vessel (RPV)] Water Level - [New Fuel or Control Rods]</td>
<td>B 3.9.7-1</td>
</tr>
<tr>
<td>B 3.9.8 Residual Heat Removal (RHR) - High Water Level</td>
<td>B 3.9.8-1</td>
</tr>
<tr>
<td>B 3.9.9 Residual Heat Removal (RHR) - Low Water Level</td>
<td>B 3.9.9-1</td>
</tr>
<tr>
<td>B 3.10 SPECIAL OPERATIONS</td>
<td></td>
</tr>
<tr>
<td>B 3.10.1 Inservice Leak and Hydrostatic Testing Operation</td>
<td>B 3.10.1-1</td>
</tr>
<tr>
<td>B 3.10.2 Reactor Mode Switch Interlock Testing</td>
<td>B 3.10.2-1</td>
</tr>
<tr>
<td>B 3.10.3 Single Control Rod Withdrawal - Hot Shutdown</td>
<td>B 3.10.3-1</td>
</tr>
<tr>
<td>B 3.10.4 Single Control Rod Withdrawal - Cold Shutdown</td>
<td>B 3.10.4-1</td>
</tr>
<tr>
<td>B 3.10.5 Single Control Rod Drive (CRD) Removal - Refueling</td>
<td>B 3.10.5-1</td>
</tr>
<tr>
<td>B 3.10.6 Multiple Control Rod Withdrawal - Refueling</td>
<td>B 3.10.6-1</td>
</tr>
<tr>
<td>B 3.10.7 Control Rod Testing - Operating</td>
<td>B 3.10.7-1</td>
</tr>
<tr>
<td>B 3.10.8 SHUTDOWN MARGIN (SDM) Test - Refueling</td>
<td>B 3.10.8-1</td>
</tr>
<tr>
<td>B 3.10.9 Recirculation Loops - Testing</td>
<td>B 3.10.9-1</td>
</tr>
<tr>
<td>B 3.10.10 Training Startups</td>
<td>B 3.10.10-1</td>
</tr>
</tbody>
</table>
B 2.0 SAFETY LIMITS (SLs)

B 2.1.1 Reactor Core SLs

BASES

BACKGROUND

GDC 10 (Ref. 1) requires, and SLs ensure, that specified acceptable fuel design limits are not exceeded during steady state operation, normal operational transients, and anticipated operational occurrences (AOOs).

The fuel cladding integrity SL is set such that no significant fuel damage is calculated to occur if the limit is not violated. Because fuel damage is not directly observable, a stepback approach is used to establish an SL, such that the MCPR is not less than the limit specified in Specification 2.1.1.2 for [both General Electric Company (GE) and Advanced Nuclear Fuel Corporation (ANF) fuel]. MCPR greater than the specified limit represents a conservative margin relative to the conditions required to maintain fuel cladding integrity.

The fuel cladding is one of the physical barriers that separate the radioactive materials from the environs. The integrity of this cladding barrier is related to its relative freedom from perforations or cracking. Although some corrosion or use related cracking may occur during the life of the cladding, fission product migration from this source is incrementally cumulative and continuously measurable. Fuel cladding perforations, however, can result from thermal stresses, which occur from reactor operation significantly above design conditions.

In the Background and Applicable Safety Analysis sections, select the SLMCPR\textsubscript{95/95} discussion or the 99.9% of the fuel rods discussion as the applicable SL 2.1.1.2 basis.

While fission product migration from cladding perforation is just as measurable as that from use related cracking, the thermally caused cladding perforations signal a threshold beyond which still greater thermal stresses may cause gross, rather than incremental, cladding deterioration. Therefore, the fuel cladding SL is defined with a margin to the conditions that would produce onset of transition boiling (i.e., MCPR = 1.00). These conditions represent a significant departure from the condition intended by design for planned operation. [This is accomplished by having a Safety Limit Minimum Critical Power Ratio (SLMCPR) design basis, referred to as SLMCPR\textsubscript{95/95}, which corresponds to a 95% probability at a 95% confidence level (the 95/95 MCPR criterion) that transition boiling will not occur.] [The MCPR fuel cladding integrity SL ensures that during normal operation and during AOOs, at least 99.9% of the fuel rods in the core are not susceptible to boiling transition.]
BASES

BACKGROUND (continued)

Operation above the boundary of the nucleate boiling regime could result in excessive cladding temperature because of the onset of transition boiling and the resultant sharp reduction in heat transfer coefficient. Inside the steam film, high cladding temperatures are reached, and a cladding water (zirconium water) reaction may take place. This chemical reaction results in oxidation of the fuel cladding to a structurally weaker form. This weaker form may lose its integrity, resulting in an uncontrolled release of activity to the reactor coolant.

APPLICABLE SAFETY ANALYSES

The fuel cladding must not sustain damage as a result of normal operation and AOOs. [The Tech Spec SL is set generically on a fuel product MCPR correlation basis as the MCPR which corresponds to a 95% probability at a 95% confidence level that transition boiling will not occur, referred to as SLMCPR95/95] [The reactor core SLs are established to preclude violation of the fuel design criterion that a MCPR limit is to be established, such that at least 99.9% of the fuel rods in the core would not be susceptible to boiling transiton.]

The Reactor Protection System setpoints (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation"), in combination with the other LCOs, are designed to prevent any anticipated combination of transient conditions for Reactor Coolant System water level, pressure, and THERMAL POWER level that would result in reaching the MCPR limit.

2.1.1.1a Fuel Cladding Integrity [General Electric Company (GE) Fuel]

GE critical power correlations are applicable for all critical power calculations at pressures ≥ 785 psig and core flows ≥ 10% of rated flow. For operation at low pressures or low flows, another basis is used, as follows:

Since the pressure drop in the bypass region is essentially all elevation head, the core pressure drop at low power and flows will always be > 4.5 psi. Analyses (Ref. 2) show that with a bundle flow of 28 x 10^3 lb/hr, bundle pressure drop is nearly independent of bundle power and has a value of 3.5 psi. Thus, the bundle flow with a 4.5 psi driving head will be > 28 x 10^3 lb/hr. Full scale ATLAS test data taken at pressures from 14.7 psia to 800 psia indicate that the fuel assembly critical power at this flow is approximately 3.35 MWt. With the design peaking factors, this corresponds to a THERMAL POWER > 50 % RTP. Thus, a THERMAL POWER limit of 25% RTP for reactor pressure < 785 psig is conservative.
Applicable Safety Analyses (continued)

2.1.1.1b Fuel Cladding Integrity [Advanced Nuclear Fuel Corporation (ANF) Fuel]

The use of the XN-3 correlation is valid for critical power calculations at pressures > 580 psig and bundle mass fluxes > 0.25 x 10^6 lb/hr-ft^2 (Ref. 3). For operation at low pressures or low flows, the fuel cladding integrity SL is established by a limiting condition on core THERMAL POWER, with the following basis:

Provided that the water level in the vessel downcomer is maintained above the top of the active fuel, natural circulation is sufficient to ensure a minimum bundle flow for all fuel assemblies that have a relatively high power and potentially can approach a critical heat flux condition. For the ANF 9x9 fuel design, the minimum bundle flow is > 30 x 10^3 lb/hr. For the ANF 8x8 fuel design, the minimum bundle flow is > 28 x 10^3 lb/hr. For all designs, the coolant minimum bundle flow and maximum flow area are such that the mass flux is always > 0.25 x 10^6 lb/hr-ft^2. Full scale critical power tests taken at pressures down to 14.7 psia indicate that the fuel assembly critical power at 0.25 x 10^6 lb/hr-ft^2 is approximately 3.35 MWt. At 25% RTP, a bundle power of approximately 3.35 MWt corresponds to a bundle radial peaking factor of > 3.0, which is significantly higher than the expected peaking factor. Thus, a THERMAL POWER limit of 25% RTP for reactor pressures < 785 psig is conservative.

2.1.1.2a MCPR [GE and Westinghouse Fuel]

The fuel cladding integrity SL is set such that no significant fuel damage is calculated to occur if the limit is not violated. Since the parameters that result in fuel damage are not directly observable during reactor operation, the thermal and hydraulic conditions that result in the onset of transition boiling have been used to mark the beginning of the region in which fuel damage could occur. Although it is recognized that the onset of transition boiling would not result in damage to BWR fuel rods, the critical power at which boiling transition is calculated to occur has been adopted as a convenient limit. [The Technical Specification SL value is dependent on the fuel product line and the corresponding MCPR correlation, which is cycle independent. The value is based on the Critical Power Ratio (CPR) data statistics and a 95% probability with 95% confidence that rods are not susceptible to boiling transition, referred to as MCPR_{95/95}.]
The MCPR\textsubscript{95/95} Values by Vendor and Fuel Product Type:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Fuel Type</th>
<th>MCPR\textsubscript{95/95}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Nuclear Fuel</td>
<td>GE14</td>
<td>1.06</td>
</tr>
<tr>
<td>Global Nuclear Fuel</td>
<td>GNF2</td>
<td>1.07</td>
</tr>
<tr>
<td>Global Nuclear Fuel</td>
<td>GNF3</td>
<td>1.07</td>
</tr>
<tr>
<td>Westinghouse</td>
<td>Optima2</td>
<td>1.06</td>
</tr>
</tbody>
</table>

[The SL is based on [Fuel Type] fuel. For cores with a single fuel product line, the SLMCPR\textsubscript{95/95} is the MCPR\textsubscript{95/95} for the fuel type. For cores loaded with a mix of applicable fuel types, the SLMCPR\textsubscript{95/95} is based on the largest (i.e., most limiting) of the MCPR values for the fuel product lines that are fresh or once-burnt at the start of the cycle.]

[However, the uncertainties in monitoring the core operating state and in the procedures used to calculate the critical power result in an uncertainty in the value of the critical power. Therefore, the fuel cladding integrity SL is defined as the critical power ratio in the limiting fuel assembly for which more than 99.9\% of the fuel rods in the core are expected to avoid boiling transition, considering the power distribution within the core and all uncertainties.

The MCPR SL is determined using a statistical model that combines all the uncertainties in operating parameters and the procedures used to calculate critical power. The probability of the occurrence of boiling transition is determined using the approved General Electric Critical Power correlations. Details of the fuel cladding integrity SL calculation are given in Reference 2. Reference 2 also includes a tabulation of the uncertainties used in the determination of the MCPR SL and of the nominal values of the parameters used in the MCPR SL statistical analysis.]

2.1.1.2b MCPR [ANF Fuel]

The MCPR SL ensures sufficient conservatism in the operating MCPR limit that, in the event of an AOO from the limiting condition of operation, at least 99.9\% of the fuel rods in the core would be expected to avoid boiling transition. The margin between calculated boiling transition (i.e., MCPR = 1.00) and the MCPR SL is based on a detailed statistical
procedure that considers the uncertainties in monitoring the core operating state. One specific uncertainty included in the SL is the uncertainty inherent in the XN-3 critical power correlation. Reference 3 describes the methodology used in determining the MCPR SL.

The XN-3 critical power correlation is based on a significant body of practical test data, providing a high degree of assurance that the critical power, as evaluated by the correlation, is within a small percentage of the actual critical power being estimated. As long as the core pressure and flow are within the range of validity of the XN-3 correlation, the assumed reactor conditions used in defining the SL introduce conservatism into the limit because bounding high radial power factors and bounding flat local peaking distributions are used to estimate the number of rods in boiling transition. Still further conservatism is induced by the tendency of the XN-3 correlation to overpredict the number of rods in boiling transition. These conservatisms and the inherent accuracy of the XN-3 correlation provide a reasonable degree of assurance that there would be no transition boiling in the core during sustained operation at the MCPR SL. If boiling transition were to occur, there is reason to believe that the integrity of the fuel would not be compromised. Significant test data accumulated by the NRC and private organizations indicate that the use of a boiling transition limitation to protect against cladding failure is a very conservative approach. Much of the data indicate that BWR fuel can survive for an extended period of time in an environment of boiling transition.

2.1.1.3 Reactor Vessel Water Level

During MODES 1 and 2 the reactor vessel water level is required to be above the top of the active fuel to provide core cooling capability. With fuel in the reactor vessel during periods when the reactor is shut down, consideration must be given to water level requirements due to the effect of decay heat. If the water level should drop below the top of the active irradiated fuel during this period, the ability to remove decay heat is reduced. This reduction in cooling capability could lead to elevated cladding temperatures and clad perforation in the event that the water level becomes < 2/3 of the core height. The reactor vessel water level SL has been established at the top of the active irradiated fuel to provide a point that can be monitored and to also provide adequate margin for effective action.
BASES

SAFETY LIMITS

The reactor core SLs are established to protect the integrity of the fuel clad barrier to the release of radioactive materials to the environs. SL 2.1.1.1 and SL 2.1.1.2 ensure that the core operates within the fuel design criteria. SL 2.1.1.3 ensures that the reactor vessel water level is greater than the top of the active irradiated fuel in order to prevent elevated clad temperatures and resultant clad perforations.

APPLICABILITY

SLs 2.1.1.1, 2.1.1.2, and 2.1.1.3 are applicable in all MODES.

SAFETY LIMIT VIOLATIONS

Exceeding an SL may cause fuel damage and create a potential for radioactive releases in excess of 10 CFR 100, "Reactor Site Criteria," limits (Ref. 4). Therefore, it is required to insert all insertable control rods and restore compliance with the SLs within 2 hours. The 2 hour Completion Time ensures that the operators take prompt remedial action and also ensures that the probability of an accident occurring during this period is minimal.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 10.
2. NEDE-24011-P-A (latest approved revision).
3. XN-NF524(A), Revision 1, November 1983.
4. 10 CFR 100.
B 2.0 SAFETY LIMITS (SLs)

B 2.1.2 Reactor Coolant System (RCS) Pressure SL

BASES

BACKGROUND

The SL on reactor steam dome pressure protects the RCS against overpressurization. In the event of fuel cladding failure, fission products are released into the reactor coolant. The RCS then serves as the primary barrier in preventing the release of fission products into the atmosphere. Establishing an upper limit on reactor steam dome pressure ensures continued RCS integrity. According to 10 CFR 50, Appendix A, GDC 14, "Reactor Coolant Pressure Boundary," and GDC 15, "Reactor Coolant System Design" (Ref. 1), the reactor coolant pressure boundary (RCPB) shall be designed with sufficient margin to ensure that the design conditions are not exceeded during normal operation and anticipated operational occurrences (AOOs).

During normal operation and AOOs, RCS pressure is limited from exceeding the design pressure by more than 10%, in accordance with Section III of the ASME Code (Ref. 2). To ensure system integrity, all RCS components are hydrostatically tested at 125% of design pressure, in accordance with ASME Code requirements, prior to initial operation when there is no fuel in the core. Any further hydrostatic testing with fuel in the core may be done under LCO 3.10.1, "Inservice Leak and Hydrostatic Testing Operation." Following inception of unit operation, RCS components shall be pressure tested in accordance with the requirements of ASME Code, Section XI (Ref. 3).

Overpressurization of the RCS could result in a breach of the RCPB, reducing the number of protective barriers designed to prevent radioactive releases from exceeding the limits specified in 10 CFR 100, "Reactor Site Criteria" (Ref. 4). If this occurred in conjunction with a fuel cladding failure, fission products could enter the containment atmosphere.

APPLICABLE SAFETY ANALYSES

The RCS safety/relief valves and the Reactor Protection System Reactor Vessel Steam Dome Pressure - High Function have settings established to ensure that the RCS pressure SL will not be exceeded.

The RCS pressure SL has been selected such that it is at a pressure below which it can be shown that the integrity of the system is not endangered. The reactor pressure vessel is designed to Section III of the ASME, Boiler and Pressure Vessel Code, [1971 Edition], including Addenda through the [winter of 1972] (Ref. 5), which permits a maximum pressure transient of 110%, 1375 psig, of design pressure 1250 psig. The SL of 1325 psig, as measured in the reactor steam dome, is
equivalent to 1375 psig at the lowest elevation of the RCS. The RCS is designed to the USAS Nuclear Power Piping Code, Section B31.1, [1969 Edition], including Addenda through [July 1, 1970] (Ref. 6), for the reactor recirculation piping, which permits a maximum pressure transient of 110% of design pressures of 1250 psig for suction piping and 1500 psig for discharge piping. The RCS pressure SL is selected to be the lowest transient overpressure allowed by the applicable codes.

The maximum transient pressure allowable in the RCS pressure vessel under the ASME Code, Section III, is 110% of design pressure. The maximum transient pressure allowable in the RCS piping, valves, and fittings is 110% of design pressures of 1250 psig for suction piping and 1500 psig for discharge piping. The most limiting of these allowances is the 110% of the suction piping design pressures; therefore, the SL on maximum allowable RCS pressure is established at 1325 psig as measured at the reactor steam dome.

Exceeding the RCS pressure SL may cause immediate RCS failure and create a potential for radioactive releases in excess of 10 CFR 100, "Reactor Site Criteria," limits (Ref. 4). Therefore, it is required to insert all insertable control rods and restore compliance with the SL within 2 hours. The 2 hour Completion Time ensures that the operators take prompt remedial action and also assures that the probability of an accident occurring during this period is minimal.

1. 10 CFR 50, Appendix A, GDC 14, GDC 15, and GDC 28.
2. ASME, Boiler and Pressure Vessel Code, Section III, Article NB-7000.
3. ASME, Boiler and Pressure Vessel Code, Section XI, Article IW-5000.
4. 10 CFR 100.
B 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY

BASES

<table>
<thead>
<tr>
<th>LCOs</th>
<th>LCO 3.0.1 through LCO 3.0.9 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCO 3.0.1</td>
<td>LCO 3.0.1 establishes the Applicability statement within each individual Specification as the requirement for when the LCO is required to be met (i.e., when the unit is in the MODES or other specified conditions of the Applicability statement of each Specification).</td>
</tr>
<tr>
<td>LCO 3.0.2</td>
<td>LCO 3.0.2 establishes that upon discovery of a failure to meet an LCO, the associated ACTIONS shall be met. The Completion Time of each Required Action for an ACTIONS Condition is applicable from the point in time that an ACTIONS Condition is entered, unless otherwise specified. The Required Actions establish those remedial measures that must be taken within specified Completion Times when the requirements of an LCO are not met. This Specification establishes that:</td>
</tr>
<tr>
<td></td>
<td>a. Completion of the Required Actions within the specified Completion Times constitutes compliance with a Specification and</td>
</tr>
<tr>
<td></td>
<td>b. Completion of the Required Actions is not required when an LCO is met within the specified Completion Time, unless otherwise specified.</td>
</tr>
</tbody>
</table>

There are two basic types of Required Actions. The first type of Required Action specifies a time limit in which the LCO must be met. This time limit is the Completion Time to restore an inoperable system or component to OPERABLE status or to restore variables to within specified limits. If this type of Required Action is not completed within the specified Completion Time, a shutdown may be required to place the unit in a MODE or condition in which the Specification is not applicable. (Whether stated as a Required Action or not, correction of the entered Condition is an action that may always be considered upon entering ACTIONS.) The second type of Required Action specifies the remedial measures that permit continued operation of the unit that is not further restricted by the Completion Time. In this case, compliance with the Required Actions provides an acceptable level of safety for continued operation.

Completing the Required Actions is not required when an LCO is met or is no longer applicable, unless otherwise stated in the individual Specifications.
The nature of some Required Actions of some Conditions necessitates that, once the Condition is entered, the Required Actions must be completed even though the associated Conditions no longer exist. The individual LCO's ACTIONS specify the Required Actions where this is the case. An example of this is in LCO 3.4.10, "RCS Pressure and Temperature (P/T) Limits."

The Completion Times of the Required Actions are also applicable when a system or component is removed from service intentionally. The ACTIONS for not meeting a single LCO adequately manage any increase in plant risk, provided any unusual external conditions (e.g., severe weather, offsite power instability) are considered. In addition, the increased risk associated with simultaneous removal of multiple structures, systems, trains or components from service is assessed and managed in accordance with 10 CFR 50.65(a)(4). Individual Specifications may specify a time limit for performing an SR when equipment is removed from service or bypassed for testing. In this case, the Completion Times of the Required Actions are applicable when this time limit expires, if the equipment remains removed from service or bypassed.

When a change in MODE or other specified condition is required to comply with Required Actions, the unit may enter a MODE or other specified condition in which another Specification becomes applicable. In this case, the Completion Times of the associated Required Actions would apply from the point in time that the new Specification becomes applicable, and the ACTIONS Condition(s) are entered.

LCO 3.0.3 establishes the actions that must be implemented when an LCO is not met and:

a. An associated Required Action and Completion Time is not met and no other Condition applies or

b. The condition of the unit is not specifically addressed by the associated ACTIONS. This means that no combination of Conditions stated in the ACTIONS can be made that exactly corresponds to the actual condition of the unit. Sometimes, possible combinations of Conditions are such that entering LCO 3.0.3 is warranted; in such cases, the ACTIONS specifically state a Condition corresponding to such combinations and also that LCO 3.0.3 be entered immediately.
This Specification delineates the time limits for placing the unit in a safe MODE or other specified condition when operation cannot be maintained within the limits for safe operation as defined by the LCO and its ACTIONS. Planned entry into LCO 3.0.3 should be avoided. If it is not practicable to avoid planned entry into LCO 3.0.3, plant risk should be assessed and managed in accordance with 10 CFR 50.65(a)(4), and the planned entry into LCO 3.0.3 should have less effect on plant safety than other practicable alternatives.

Upon entering LCO 3.0.3, 1 hour is allowed to prepare for an orderly shutdown before initiating a change in unit operation. This includes time to permit the operator to coordinate the reduction in electrical generation with the load dispatcher to ensure the stability and availability of the electrical grid. The time limits specified to enter lower MODES of operation permit the shutdown to proceed in a controlled and orderly manner that is well within the specified maximum cooldown rate and within the capabilities of the unit, assuming that only the minimum required equipment is OPERABLE. This reduces thermal stresses on components of the Reactor Coolant System and the potential for a plant upset that could challenge safety systems under conditions to which this Specification applies. The use and interpretation of specified times to complete the actions of LCO 3.0.3 are consistent with the discussion of Section 1.3, Completion Times.

A unit shutdown required in accordance with LCO 3.0.3 may be terminated and LCO 3.0.3 exited if any of the following occurs:

a. The LCO is now met,
b. The LCO is no longer applicable,
c. A Condition exists for which the Required Actions have now been performed, or
d. ACTIONS exist that do not have expired Completion Times. These Completion Times are applicable from the point in time that the Condition is initially entered and not from the time LCO 3.0.3 is exited.

The time limits of LCO 3.0.3 allow 37 hours for the unit to be in MODE 4 when a shutdown is required during MODE 1 operation. If the unit is in a lower MODE of operation when a shutdown is required, the time limit for entering the next lower MODE applies. If a lower MODE is entered in
less time than allowed, however, the total allowable time to enter MODE 4, or other applicable MODE, is not reduced. For example, if MODE 2 is entered in 2 hours, then the time allowed for entering MODE 3 is the next 11 hours, because the total time for entering MODE 3 is not reduced from the allowable limit of 13 hours. Therefore, if remedial measures are completed that would permit a return to MODE 1, a penalty is not incurred by having to enter a lower MODE of operation in less than the total time allowed.

In MODES 1, 2, and 3, LCO 3.0.3 provides actions for Conditions not covered in other Specifications. The requirements of LCO 3.0.3 do not apply in MODES 4 and 5 because the unit is already in the most restrictive Condition required by LCO 3.0.3. The requirements of LCO 3.0.3 do not apply in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken.

Exceptions to LCO 3.0.3 are provided in instances where requiring a unit shutdown, in accordance with LCO 3.0.3, would not provide appropriate remedial measures for the associated condition of the unit. An example of this is in LCO 3.7.8, "Spent Fuel Storage Pool Water Level." LCO 3.7.8 has an Applicability of "During movement of irradiated fuel assemblies in the spent fuel storage pool." Therefore, this LCO can be applicable in any or all MODES. If the LCO and the Required Actions of LCO 3.7.8 are not met while in MODE 1, 2, or 3, there is no safety benefit to be gained by placing the unit in a shutdown condition. The Required Action of LCO 3.7.8 of "Suspend movement of irradiated fuel assemblies in the spent fuel storage pool" is the appropriate Required Action to complete in lieu of the actions of LCO 3.0.3. These exceptions are addressed in the individual Specifications.

LCO 3.0.4 establishes limitations on changes in MODES or other specified conditions in the Applicability when an LCO is not met. It allows placing the unit in a MODE or other specified condition stated in that Applicability (e.g., the Applicability desired to be entered) when unit conditions are such that the requirements of the LCO would not be met, in accordance with either LCO 3.0.4.a, LCO 3.0.4.b, or LCO 3.0.4.c.

LCO 3.0.4.a allows entry into a MODE or other specified condition in the Applicability with the LCO not met when the associated ACTIONS to be entered following entry into the MODE or other specified condition in the Applicability will permit continued operation within the MODE or other specified condition for an unlimited period of time. Compliance with ACTIONS that permit continued operation of the unit for an unlimited period of time in a MODE or other specified condition provides an
acceptable level of safety for continued operation. This is without regard to the status of the unit before or after the MODE change. Therefore, in such cases, entry into a MODE or other specified condition in the Applicability may be made and the Required Actions followed after entry into the Applicability.

For example, LCO 3.0.4.a may be used when the Required Action to be entered states that an inoperable instrument channel must be placed in the trip condition within the Completion Time. Transition into a MODE or other specified condition in the Applicability may be made in accordance with LCO 3.0.4 and the channel is subsequently placed in the tripped condition within the Completion Time, which begins when the Applicability is entered. If the instrument channel cannot be placed in the tripped condition and the subsequent default ACTION ("Required Action and associated Completion Time not met") allows the OPERABLE train to be placed in operation, use of LCO 3.0.4.a is acceptable because the subsequent ACTIONS to be entered following entry into the MODE include ACTIONS (place the OPERABLE train in operation) that permit safe plant operation for an unlimited period of time in the MODE or other specified condition to be entered.

LCO 3.0.4.b allows entry into a MODE or other specified condition in the Applicability with the LCO not met after performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering the MODE or other specified condition in the Applicability, and establishment of risk management actions, if appropriate.

The risk assessment may use quantitative, qualitative, or blended approaches, and the risk assessment will be conducted using the plant program, procedures, and criteria in place to implement 10 CFR 50.65(a)(4), which requires that risk impacts of maintenance activities to be assessed and managed. The risk assessment, for the purposes of LCO 3.0.4.b, must take into account all inoperable Technical Specification equipment regardless of whether the equipment is included in the normal 10 CFR 50.65(a)(4) risk assessment scope. The risk assessments will be conducted using the procedures and guidance endorsed by Regulatory Guide 1.160, "Monitoring the Effectiveness of Maintenance at Nuclear Power Plants." Regulatory Guide 1.160 endorses the guidance in Section 11 of NUMARC 93-01, "Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants." These documents address general guidance for conduct of the risk assessment, quantitative and qualitative guidelines for establishing risk management actions, and example risk management
actions. These include actions to plan and conduct other activities in a manner that controls overall risk, increased risk awareness by shift and management personnel, actions to reduce the duration of the condition, actions to minimize the magnitude of risk increases (establishment of backup success paths or compensatory measures), and determination that the proposed MODE change is acceptable. Consideration should also be given to the probability of completing restoration such that the requirements of the LCO would be met prior to the expiration of ACTIONS Completion Times that would require exiting the Applicability.

LCO 3.0.4.b may be used with single, or multiple systems and components unavailable. NUMARC 93-01 provides guidance relative to consideration of simultaneous unavailability of multiple systems and components.

The results of the risk assessment shall be considered in determining the acceptability of entering the MODE or other specified condition in the Applicability, and any corresponding risk management actions. The LCO 3.0.4.b risk assessments do not have to be documented.

The Technical Specifications allow continued operation with equipment unavailable in MODE 1 for the duration of the Completion Time. Since this is allowable, and since in general the risk impact in that particular MODE bounds the risk of transitioning into and through the applicable MODES or other specified conditions in the Applicability of the LCO, the use of the LCO 3.0.4.b allowance should be generally acceptable, as long as the risk is assessed and managed as stated above. However, there is a small subset of systems and components that have been determined to be more important to risk and use of the LCO 3.0.4.b allowance is prohibited. The LCOs governing these systems and components contain Notes prohibiting the use of LCO 3.0.4.b by stating that LCO 3.0.4.b is not applicable.

LCO 3.0.4.c allows entry into a MODE or other specified condition in the Applicability with the LCO not met based on a Note in the Specification which states LCO 3.0.4.c is applicable. These specific allowances permit entry into MODES or other specified conditions in the Applicability when the associated ACTIONS to be entered do not provide for continued operation for an unlimited period of time and a risk assessment has not been performed. This allowance may apply to all the ACTIONS or to a specific Required Action of a Specification. The risk assessments performed to justify the use of LCO 3.0.4.b usually only consider systems and components. For this reason, LCO 3.0.4.c is typically applied to Specifications which describe values and parameters (e.g., RCS Specific Activity), and may be applied to other Specifications based on NRC plant specific approval.
The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.

The provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown. In this context, a unit shutdown is defined as a change in MODE or other specified condition in the Applicability associated with transitioning from MODE 1 to MODE 2, MODE 2 to MODE 3, and MODE 3 to MODE 4.

Upon entry into a MODE or other specified condition in the Applicability with the LCO not met, LCO 3.0.1 AND LCO 3.0.2 require entry into the applicable Conditions and Required Actions until the Condition is resolved, until the LCO is met, or until the unit is not within the Applicability of the Technical Specifications.

Surveillances do not have to be performed on the associated inoperable equipment (or on variables outside the specified limits), as permitted by SR 3.0.1. Therefore, utilizing LCO 3.0.4 is not a violation of SR 3.0.1 or SR 3.0.4 for Surveillances that have not been performed on inoperable equipment. However, SRs must be met to ensure OPERABILITY prior to declaring the associated equipment OPERABLE (or variable within limits) and restoring compliance with the affected LCO.

LCO 3.0.5 establishes the allowance for restoring equipment to service under administrative controls when it has been removed from service or declared inoperable to comply with ACTIONS. The sole purpose of this Specification is to provide an exception to LCO 3.0.2 (e.g., to not comply with the applicable Required Action(s)) to allow the performance of required testing to demonstrate:

a. The OPERABILITY of the equipment being returned to service or

b. The OPERABILITY of other equipment.

The administrative controls ensure the time the equipment is returned to service in conflict with the requirements of the ACTIONS is limited to the time absolutely necessary to perform the required testing to demonstrate OPERABILITY. This Specification does not provide time to perform any
other preventive or corrective maintenance. LCO 3.0.5 should not be used in lieu of other practicable alternatives that comply with Required Actions and that do not require changing the MODE or other specified conditions in the Applicability in order to demonstrate equipment is OPERABLE. LCO 3.0.5 is not intended to be used repeatedly.

An example of demonstrating equipment is OPERABLE with the Required Actions not met is opening a manual valve that was closed to comply with Required Actions to isolate a flowpath with excessive Reactor Coolant System (RCS) Pressure Isolation Valve (PIV) leakage in order to perform testing to demonstrate that RCS PIV leakage is now within limit.

Examples of demonstrating equipment OPERABILITY include instances in which it is necessary to take an inoperable channel or trip system out of a tripped condition that was directed by a Required Action, if there is no Required Action Note for this purpose. An example of verifying OPERABILITY of equipment removed from service is taking a tripped channel out of the tripped condition to permit the logic to function and indicate the appropriate response during performance of required testing on the inoperable channel. Examples of demonstrating the OPERABILITY of other equipment are taking an inoperable channel or trip system out of the tripped condition 1) to prevent the trip function from occurring during the performance of required testing on another channel in the other trip system, or 2) to permit the logic to function and indicate the appropriate response during the performance of required testing on another channel in the same trip system.

The administrative controls in LCO 3.0.5 apply in all cases to systems or components in Chapter 3 of the Technical Specifications, as long as the testing could not be conducted while complying with the Required Actions. This includes the realignment or repositioning of redundant or alternate equipment or trains previously manipulated to comply with ACTIONS, as well as equipment removed from service or declared inoperable to comply with ACTIONS.
LCO 3.0.6 establishes an exception to LCO 3.0.2 for supported systems that have a support system LCO specified in the Technical Specifications (TS). This exception is provided because LCO 3.0.2 would require that the Conditions and Required Actions of the associated inoperable supported system LCO be entered solely due to the inoperability of the support system. This exception is justified because the actions that are required to ensure the plant is maintained in a safe condition are specified in the support system LCO's Required Actions. These Required Actions may include entering the supported system's Conditions and Required Actions or may specify other Required Actions.

When a support system is inoperable and there is an LCO specified for it in the TS, the supported system(s) are required to be declared inoperable if determined to be inoperable as a result of the support system inoperability. However, it is not necessary to enter into the supported systems' Conditions and Required Actions unless directed to do so by the support system's Required Actions. The potential confusion and inconsistency of requirements related to the entry into multiple support and supported systems' LCOs' Conditions and Required Actions are eliminated by providing all the actions that are necessary to ensure the plant is maintained in a safe condition in the support system's Required Actions.

However, there are instances where a support system's Required Action may either direct a supported system to be declared inoperable or direct entry into Conditions and Required Actions for the supported system. This may occur immediately or after some specified delay to perform some other Required Action. Regardless of whether it is immediate or after some delay, when a support system's Required Action directs a supported system to be declared inoperable or directs entry into Conditions and Required Actions for a supported system, the applicable Conditions and Required Actions shall be entered in accordance with LCO 3.0.2.

Specification 5.5.11, "Safety Function Determination Program (SFDP)," ensures loss of safety function is detected and appropriate actions are taken. Upon entry into LCO 3.0.6, an evaluation shall be made to determine if loss of safety function exists. Additionally, other limitations, remedial actions, or compensatory actions may be identified as a result of the support system inoperability and corresponding exception to entering supported system Conditions and Required Actions. The SFDP implements the requirements of LCO 3.0.6.
The following examples use Figure B 3.0-1 to illustrate loss of safety function conditions that may result when a TS support system is inoperable. In this figure, the fifteen systems that comprise Train A are independent and redundant to the fifteen systems that comprise Train B. To correctly use the figure to illustrate the SFDP provisions for a cross train check, the figure establishes a relationship between support and supported systems as follows: the figure shows System 1 as a support system for System 2 and System 3; System 2 as a support system for System 4 and System 5; and System 4 as a support system for System 8 and System 9. Specifically, a loss of safety function may exist when a support system is inoperable and:

a. A system redundant to system(s) supported by the inoperable support system is also inoperable (EXAMPLE B 3.0.6-1),

b. A system redundant to system(s) in turn supported by the inoperable supported system is also inoperable (EXAMPLE B 3.0.6-2), or

c. A system redundant to support system(s) for the supported systems (a) and (b) above is also inoperable (EXAMPLE B 3.0.6-3).

For the following examples, refer to Figure B 3.0-1.

EXAMPLE B 3.0.6-1

If System 2 of Train A is inoperable and System 5 of Train B is inoperable, a loss of safety function exists in Systems 5, 10, and 11.

EXAMPLE B 3.0.6-2

If System 2 of Train A is inoperable, and System 11 of Train B is inoperable, a loss of safety function exists in System 11.

EXAMPLE B 3.0.6-3

If System 2 of Train A is inoperable, and System 1 of Train B is inoperable, a loss of safety function exists in Systems 2, 4, 5, 8, 9, 10 and 11.

If an evaluation determines that a loss of safety function exists, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered.
Figure B 3.0-1
Configuration of Trains and Systems

This loss of safety function does not require the assumption of additional single failures or loss of offsite power. Since operations are being restricted in accordance with the ACTIONS of the support system, any resulting temporary loss of redundancy or single failure protection is taken into account. Similarly, the ACTIONS for inoperable offsite circuit(s) and inoperable diesel generator(s) provide the necessary restriction for cross train inoperabilities. This explicit cross train verification for inoperable AC electrical power sources also acknowledges that supported system(s) are not declared inoperable solely as a result of inoperability of a normal or emergency electrical power source (refer to the definition of OPERABILITY).

When loss of safety function is determined to exist, and the SFDL requires entry into the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists, consideration must be given to the specific type of function affected. Where a loss of function is solely due to a single Technical Specification support system (e.g., loss of automatic start due to inoperable instrumentation, or loss of pump suction source due to low tank level) the appropriate LCO is the LCO for the support system. The ACTIONS for a support system LCO adequately
address the inoperabilities of that system without reliance on entering its supported system LCO. When the loss of function is the result of multiple support systems, the appropriate LCO is the LCO for the supported system.

LCO 3.0.7 There are certain special tests and operations required to be performed at various times over the life of the unit. These special tests and operations are necessary to demonstrate select unit performance characteristics, to perform special maintenance activities, and to perform special evolutions. Special Operations LCOs in Section 3.10 allow specified TS requirements to be changed to permit performances of these special tests and operations, which otherwise could not be performed if required to comply with the requirements of these TS. Unless otherwise specified, all the other TS requirements remain unchanged. This will ensure all appropriate requirements of the MODE or other specified condition not directly associated with or required to be changed to perform the special test or operation will remain in effect.

The Applicability of a Special Operations LCO represents a condition not necessarily in compliance with the normal requirements of the TS. Compliance with Special Operations LCOs is optional. A special operation may be performed either under the provisions of the appropriate Special Operations LCO or under the other applicable TS requirements. If it is desired to perform the special operation under the provisions of the Special Operations LCO, the requirements of the Special Operations LCO shall be followed. When a Special Operations LCO requires another LCO to be met, only the requirements of the LCO statement are required to be met regardless of that LCO’s Applicability (i.e., should the requirements of this other LCO not be met, the ACTIONS of the Special Operations LCO apply, not the ACTIONS of the other LCO). However, there are instances where the Special Operations LCO ACTIONS may direct the other LCOs’ ACTIONS be met. The Surveillances of the other LCO are not required to be met, unless specified in the Special Operations LCO. If conditions exist such that the Applicability of any other LCO is met, all the other LCO’s requirements (ACTIONS and SRs) are required to be met concurrent with the requirements of the Special Operations LCO.

LCO 3.0.8 LCO 3.0.8 establishes conditions under which systems are considered to remain capable of performing their intended safety function when associated snubbers are not capable of providing their associated support function(s). This LCO states that the supported system is not considered to be inoperable solely due to one or more snubbers not capable of performing their associated support function(s). This is appropriate because a limited length of time is allowed for maintenance, testing, or
repair of one or more snubbers not capable of performing their associated support function(s) and appropriate compensatory measures are specified in the snubber requirements, which are located outside of the Technical Specifications (TS) under licensee control. The snubber requirements do not meet the criteria in 10 CFR 50.36(c)(2)(ii), and, as such, are appropriate for control by the licensee.

If the allowed time expires and the snubber(s) are unable to perform their associated support function(s), the affected supported system’s LCO(s) must be declared not met and the Conditions and Required Actions entered in accordance with LCO 3.0.2.

LCO 3.0.8.a applies when one or more snubbers are not capable of providing their associated support function(s) to a single train or subsystem of a multiple train or subsystem supported system or to a single train or subsystem supported system. LCO 3.0.8.a allows 72 hours to restore the snubber(s) before declaring the supported system inoperable. The 72 hour Completion Time is reasonable based on the low probability of a seismic event concurrent with an event that would require operation of the supported system occurring while the snubber(s) are not capable of performing their associated support function and due to the availability of the redundant train of the supported system.

LCO 3.0.8.b applies when one or more snubbers are not capable of providing their associated support function(s) to more than one train or subsystem of a multiple train or subsystem supported system. LCO 3.0.8.b allows 12 hours to restore the snubber(s) before declaring the supported system inoperable. The 12 hour Completion Time is reasonable based on the low probability of a seismic event concurrent with an event that would require operation of the supported system occurring while the snubber(s) are not capable of performing their associated support function.

LCO 3.0.8 requires that risk be assessed and managed. Industry and NRC guidance on the implementation of 10 CFR 50.65(a)(4) (the Maintenance Rule) does not address seismic risk. However, use of LCO 3.0.8 should be considered with respect to other plant maintenance activities, and integrated into the existing Maintenance Rule process to the extent possible so that maintenance on any unaffected train or subsystem is properly controlled, and emergent issues are properly addressed. The risk assessment need not be quantified, but may be a qualitative awareness of the vulnerability of systems and components when one or more snubbers are not able to perform their associated support function.
Adoption of LCO 3.0.9 requires the licensee to make the following commitments:

1. [LICENSEE] commits to the guidance of NUMARC 93–01, Revision [4F], Section 11, which provides guidance and details on the assessment and management of risk during maintenance.

LCO 3.0.9 establishes conditions under which systems described in the Technical Specifications are considered to remain OPERABLE when required barriers are not capable of providing their related support function(s).

Barriers are doors, walls, floor plugs, curbs, hatches, installed structures or components, or other devices, not explicitly described in Technical Specifications, that support the performance of the safety function of systems described in the Technical Specifications. This LCO states that the supported system is not considered to be inoperable solely due to required barriers not capable of performing their related support function(s) under the described conditions. LCO 3.0.9 allows 30 days before declaring the supported system(s) inoperable and the LCO(s) associated with the supported system(s) not met. A maximum time is placed on each use of this allowance to ensure that as required barriers are found or are otherwise made unavailable, they are restored. However, the allowable duration may be less than the specified maximum time based on the risk assessment.

If the allowed time expires and the barriers are unable to perform their related support function(s), the supported system’s LCO(s) must be declared not met and the Conditions and Required Actions entered in accordance with LCO 3.0.2.

This provision does not apply to barriers which support ventilation systems or to fire barriers. The Technical Specifications for ventilation systems provide specific Conditions for inoperable barriers. Fire barriers are addressed by other regulatory requirements and associated plant programs. This provision does not apply to barriers which are not required to support system OPERABILITY (see NRC Regulatory Issue Summary 2001-09, "Control of Hazard Barriers," dated April 2, 2001).
The provisions of LCO 3.0.9 are justified because of the low risk associated with required barriers not being capable of performing their related support function. This provision is based on consideration of the following initiating event categories:

REVIEWER'S NOTE

LCO 3.0.9 may be expanded to other initiating event categories provided plant-specific analysis demonstrates that the frequency of the additional initiating events is bounded by the generic analysis or if plant-specific approval is obtained from the NRC.

- Loss of coolant accidents;
- High energy line breaks;
- Feedwater line breaks;
- Internal flooding;
- External flooding;
- Turbine missile ejection; and
- Tornado or high wind.

The risk impact of the barriers which cannot perform their related support function(s) must be addressed pursuant to the risk assessment and management provision of the Maintenance Rule, 10 CFR 50.65 (a)(4), and the associated implementation guidance, Regulatory Guide 1.160, "Monitoring the Effectiveness of Maintenance at Nuclear Power Plants." Regulatory Guide 1.160 endorses the guidance in Section 11 of NUMARC 93-01, "Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants." This guidance provides for the consideration of dynamic plant configuration issues, emergent conditions, and other aspects pertinent to plant operation with the barriers unable to perform their related support function(s). These considerations may result in risk management and other compensatory actions being required during the period that barriers are unable to perform their related support function(s).

LCO 3.0.9 may be applied to one or more trains or subsystems of a system supported by barriers that cannot provide their related support function(s), provided that risk is assessed and managed (including consideration of the effects on Large Early Release and from external events). If applied concurrently to more than one train or subsystem of a multiple train or subsystem supported system, the barriers supporting each of these trains or subsystems must provide their related support function(s) for different categories of initiating events. For example, LCO 3.0.9 may be applied for up to 30 days for more than one train of a multiple train supported system if the affected barrier for one train
LCO Applicability
B 3.0

BASES

LCO 3.0.9 (continued)

protects against internal flooding and the affected barrier for the other train protects against tornado missiles. In this example, the affected barrier may be the same physical barrier but serve different protection functions for each train.

[The [HPCI (High Pressure Coolant Injection) / HPCS (High Pressure Core Spray)] and RCIC (Reactor Core Isolation Cooling) systems are single train systems for injecting makeup water into the reactor during an accident or transient event. The RCIC System is not a safety system, nor required to operate during a transient, therefore, it does not have to meet the single failure criterion. The [HPCI / HPCS] System provides backup in case of a RCIC System failure. The ADS (Automatic Depressurization System) and low pressure ECCS coolant injection provide the core cooling function in the event of failure of the [HPCI / HPCS] System during an accident. Thus, for the purposes of LCO 3.0.9, the [HPCI / HPCS] System, the RCIC System, and the ADS are considered independent subsystems of a single system and LCO 3.0.9 can be used on these single train systems in a manner similar to multiple train or subsystem systems.]

If during the time that LCO 3.0.9 is being used, the required OPERABLE train or subsystem becomes inoperable, it must be restored to OPERABLE status within 24 hours. Otherwise, the train(s) or subsystem(s) supported by barriers that cannot perform their related support function(s) must be declared inoperable and the associated LCOs declared not met. This 24 hour period provides time to respond to emergent conditions that would otherwise likely lead to entry into LCO 3.0.3 and a rapid plant shutdown, which is not justified given the low probability of an initiating event which would require the barrier(s) not capable of performing their related support function(s). During this 24 hour period, the plant risk associated with the existing conditions is assessed and managed in accordance with 10 CFR 50.65(a)(4).
B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

BASES

SRs

SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated. SR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when invoked by a Chapter 5 Specification.

SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO. Surveillances may be performed by means of any series of sequential, overlapping, or total steps provided the entire Surveillance is performed within the specified Frequency. Additionally, the definitions related to instrument testing (e.g., CHANNEL CALIBRATION) specify that these tests are performed by means of any series of sequential, overlapping, or total steps.

Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when:

a. The systems or components are known to be inoperable, although still meeting the SRs or

b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances.

Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special Operations LCO is used as an allowable exception to the requirements of a Specification.

Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR. This allowance includes those SRs whose performance is normally precluded in a given MODE or other specified condition.
SR 3.0.1 (continued)

Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status.

Upon completion of maintenance, appropriate post maintenance testing is required to declare equipment OPERABLE. This includes ensuring applicable Surveillances are not failed and their most recent performance is in accordance with SR 3.0.2. Post maintenance testing may not be possible in the current MODE or other specified conditions in the Applicability due to the necessary unit parameters not having been established. In these situations, the equipment may be considered OPERABLE provided testing has been satisfactorily completed to the extent possible and the equipment is not otherwise believed to be incapable of performing its function. This will allow operation to proceed to a MODE or other specified condition where other necessary post maintenance tests can be completed.

Some examples of this process are:

a. Control Rod Drive maintenance during refueling that requires scram testing at > [800 psi]. However, if other appropriate testing is satisfactorily completed and the scram time testing of SR 3.1.4.3 is satisfied, the control rod can be considered OPERABLE. This allows startup to proceed to reach [800 psi] to perform other necessary testing.

b. High pressure coolant injection (HPCI) maintenance during shutdown that requires system functional tests at a specified pressure. Provided other appropriate testing is satisfactorily completed, startup can proceed with HPCI considered OPERABLE. This allows operation to reach the specified pressure to complete the necessary post maintenance testing.

SR 3.0.2

SR 3.0.2 establishes the requirements for meeting the specified Frequency for Surveillances and any Required Action with a Completion Time that requires the periodic performance of the Required Action on a "once per..." interval.

SR 3.0.2 permits a 25% extension of the interval specified in the Frequency. This extension facilitates Surveillance scheduling and considers plant operating conditions that may not be suitable for conducting the Surveillance (e.g., transient conditions or other ongoing Surveillance or maintenance activities).
When a Section 5.5, "Programs and Manuals," specification states that the provisions of SR 3.0.2 are applicable, a 25% extension of the testing interval, whether stated in the specification or incorporated by reference, is permitted.

The 25% extension does not significantly degrade the reliability that results from performing the Surveillance at its specified Frequency. This is based on the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the SRs.

The exceptions to SR 3.0.2 are those Surveillances for which the 25% extension of the interval specified in the Frequency does not apply. These exceptions are stated in the individual Specifications. The requirements of regulations take precedence over the TS. Examples of where SR 3.0.2 does not apply are the Primary Containment Leakage Rate Testing Program required by 10 CFR 50, Appendix J, and the inservice testing of pumps and valves in accordance with applicable American Society of Mechanical Engineers Operation and Maintenance Code, as required by 10 CFR 50.55a. These programs establish testing requirements and Frequencies in accordance with the requirements of regulations. The TS cannot in and of themselves extend a test interval specified in the regulations directly or by reference.

As stated in SR 3.0.2, the 25% extension also does not apply to the initial portion of a periodic Completion Time that requires performance on a "once per ..." basis. The 25% extension applies to each performance after the initial performance. The initial performance of the Required Action, whether it is a particular Surveillance or some other remedial action, is considered a single action with a single Completion Time. One reason for not allowing the 25% extension to this Completion Time is that such an action usually verifies that no loss of function has occurred by checking the status of redundant or diverse components or accomplishes the function of the inoperable equipment in an alternative manner.

The provisions of SR 3.0.2 are not intended to be used repeatedly to extend Surveillance intervals (other than those consistent with refueling intervals) or periodic Completion Time intervals beyond those specified.
discovered that the Surveillance has not been performed in accordance with SR 3.0.2, and not at the time that the specified Frequency was not met.

When a Section 5.5, "Programs and Manuals," specification states that the provisions of SR 3.0.3 are applicable, it permits the flexibility to defer declaring the testing requirement not met in accordance with SR 3.0.3 when the testing has not been completed within the testing interval (including the allowance of SR 3.0.2 if invoked by the Section 5.5 specification).

This delay period provides adequate time to perform Surveillances that have been missed. This delay period permits the performance of a Surveillance before complying with Required Actions or other remedial measures that might preclude performance of the Surveillance.

The basis for this delay period includes consideration of unit conditions, adequate planning, availability of personnel, the time required to perform the Surveillance, the safety significance of the delay in completing the required Surveillance, and the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the requirements.

When a Surveillance with a Frequency based not on time intervals, but upon specified unit conditions, operating situations, or requirements of regulations (e.g., prior to entering MODE 1 after each fuel loading, or in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions, etc.) is discovered to not have been performed when specified, SR 3.0.3 allows for the full delay period of up to the specified Frequency to perform the Surveillance. However, since there is not a time interval specified, the missed Surveillance should be performed at the first reasonable opportunity.

SR 3.0.3 provides a time limit for, and allowances for the performance of, Surveillances that become applicable as a consequence of MODE changes imposed by Required Actions.

SR 3.0.3 is only applicable if there is a reasonable expectation the associated equipment is OPERABLE or that variables are within limits, and it is expected that the Surveillance will be met when performed. Many factors should be considered, such as the period of time since the Surveillance was last performed, or whether the Surveillance, or a portion thereof, has ever been performed, and any other indications, tests, or activities that might support the expectation that the Surveillance will be
met when performed. An example of the use of SR 3.0.3 would be a relay contact that was not tested as required in accordance with a particular SR, but previous successful performances of the SR included the relay contact; the adjacent, physically connected relay contacts were tested during the SR performance; the subject relay contact has been tested by another SR; or historical operation of the subject relay contact has been successful. It is not sufficient to infer the behavior of the associated equipment from the performance of similar equipment. The rigor of determining whether there is a reasonable expectation a Surveillance will be met when performed should increase based on the length of time since the last performance of the Surveillance. If the Surveillance has been performed recently, a review of the Surveillance history and equipment performance may be sufficient to support a reasonable expectation that the Surveillance will be met when performed. For Surveillances that have not been performed for a long period or that have never been performed, a rigorous evaluation based on objective evidence should provide a high degree of confidence that the equipment is OPERABLE. The evaluation should be documented in sufficient detail to allow a knowledgeable individual to understand the basis for the determination.

Failure to comply with specified Frequencies for SRs is expected to be an infrequent occurrence. Use of the delay period established by SR 3.0.3 is a flexibility which is not intended to be used repeatedly to extend Surveillance intervals. While up to 24 hours or the limit of the specified Frequency is provided to perform the missed Surveillance, it is expected that the missed Surveillance will be performed at the first reasonable opportunity. The determination of the first reasonable opportunity should include consideration of the impact on plant risk (from delaying the Surveillance as well as any plant configuration changes required or shutting the plant down to perform the Surveillance) and impact on any analysis assumptions, in addition to unit conditions, planning, availability of personnel, and the time required to perform the Surveillance. This risk impact should be managed through the program in place to implement 10 CFR 50.65(a)(4) and its implementation guidance, NRC Regulatory Guide 1.160, "Monitoring the Effectiveness of Maintenance at Nuclear Power Plants." This Regulatory Guide addresses consideration of temporary and aggregate risk impacts, determination of risk management action thresholds, and risk management action up to and including plant shutdown. The missed Surveillance should be treated as an emergent condition as discussed in the Regulatory Guide. The risk evaluation may use quantitative, qualitative, or blended methods. The degree of depth and rigor of the evaluation should be commensurate with
the importance of the component. Missed Surveillances for important components should be analyzed quantitatively. If the results of the risk evaluation determine the risk increase is significant, this evaluation should be used to determine the safest course of action. All missed Surveillances will be placed in the licensee’s Corrective Action Program.

If a Surveillance is not completed within the allowed delay period, then the equipment is considered inoperable or the variable is considered outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon expiration of the delay period. If a Surveillance is failed within the delay period, then the equipment is inoperable, or the variable is outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon the failure of the Surveillance.

Completion of the Surveillance within the delay period allowed by this Specification, or within the Completion Time of the ACTIONS, restores compliance with SR 3.0.1.

SR 3.0.4 establishes the requirement that all applicable SRs must be met before entry into a MODE or other specified condition in the Applicability. This Specification ensures that system and component OPERABILITY requirements and variable limits are met before entry into MODES or other specified conditions in the Applicability for which these systems and components ensure safe operation of the unit. The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.

A provision is included to allow entry into a MODE or other specified condition in the Applicability when an LCO is not met due to a Surveillance not being met in accordance with LCO 3.0.4.

However, in certain circumstances, failing to meet an SR will not result in SR 3.0.4 restricting a MODE change or other specified condition change. When a system, subsystem, division, component, device, or variable is inoperable or outside its specified limits, the associated SR(s) are not required to be performed, per SR 3.0.1, which states that surveillances do not have to be performed on inoperable equipment. When equipment is
SR 3.0.4 (continued)

inoperable, SR 3.0.4 does not apply to the associated SR(s) since the requirement for the SR(s) to be performed is removed. Therefore, failing to perform the Surveillance(s) within the specified Frequency does not result in an SR 3.0.4 restriction to changing MODES or other specified conditions of the Applicability. However, since the LCO is not met in this instance, LCO 3.0.4 will govern any restrictions that may (or may not) apply to MODE or other specified condition changes. SR 3.0.4 does not restrict changing MODES or other specified conditions of the Applicability when a Surveillance has not been performed within the specified Frequency, provided the requirement to declare the LCO not met has been delayed in accordance with SR 3.0.3.

The provisions of SR 3.0.4 shall not prevent entry into MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of SR 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown. In this context, a unit shutdown is defined as a change in MODE or other specified condition in the Applicability associated with transitioning from MODE 1 to MODE 2, MODE 2 to MODE 3, and MODE 3 to MODE 4.

The precise requirements for performance of SRs are specified such that exceptions to SR 3.0.4 are not necessary. The specific time frames and conditions necessary for meeting the SRs are specified in the Frequency, in the Surveillance, or both. This allows performance of Surveys when the prerequisite condition(s) specified in a Surveillance procedure require entry into the MODE or other specified condition in the Applicability of the associated LCO prior to the performance or completion of a Surveillance. A Surveillance that could not be performed until after entering the LCO’s Applicability, would have its Frequency specified such that it is not “due” until the specific conditions needed are met. Alternately, the Surveillance may be stated in the form of a Note, as not required (to be met or performed) until a particular event, condition, or time has been reached. Further discussion of the specific formats of SRs' annotation is found in Section 1.4, Frequency.
B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.1 SHUTDOWN MARGIN (SDM)

BASES

BACKGROUND

SDM requirements are specified to ensure:

a. The reactor can be made subcritical from all operating conditions and transients and Design Basis Events,

b. The reactivity transients associated with postulated accident conditions are controllable within acceptable limits, and

c. The reactor will be maintained sufficiently subcritical to preclude inadvertent criticality in the shutdown condition.

These requirements are satisfied by the control rods, as described in GDC 26 (Ref. 1), which can compensate for the reactivity effects of the fuel and water temperature changes experienced during all operating conditions.

APPLICABLE SAFETY ANALYSES

The control rod drop accident (CRDA) analysis (Refs. 2 and 3) assumes the core is subcritical with the highest worth control rod withdrawn. Typically, the first control rod withdrawn has a very high reactivity worth and, should the core be critical during the withdrawal of the first control rod, the consequences of a CRDA could exceed the fuel damage limits for a CRDA (see Bases for LCO 3.1.6, "Rod Pattern Control"). Also, SDM is assumed as an initial condition for the control rod removal error during refueling (Ref. 4) and fuel assembly insertion error during refueling (Ref. 5) accidents. The analysis of these reactivity insertion events assumes the refueling interlocks are OPERABLE when the reactor is in the refueling mode of operation. These interlocks prevent the withdrawal of more than one control rod from the core during refueling. (Special consideration and requirements for multiple control rod withdrawal during refueling are covered in Special Operations LCO 3.10.6, "Multiple Control Rod Withdrawal - Refueling.") The analysis assumes this condition is acceptable since the core will be shut down with the highest worth control rod withdrawn, if adequate SDM has been demonstrated.

Prevention or mitigation of reactivity insertion events is necessary to limit energy deposition in the fuel to prevent significant fuel damage, which could result in undue release of radioactivity. Adequate SDM ensures inadvertent criticalities and potential CRDAs involving high worth control rods (namely the first control rod withdrawn) will not cause significant fuel damage.

SDM satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
Bases

LCO

The specified SDM limit accounts for the uncertainty in the demonstration of SDM by testing. Separate SDM limits are provided for testing where the highest worth control rod is determined analytically or by measurement. This is due to the reduced uncertainty in the SDM test when the highest worth control rod is determined by measurement. When SDM is demonstrated by calculations not associated with a test (e.g., to confirm SDM during the fuel loading sequence), additional margin is included to account for uncertainties in the calculation. To ensure adequate SDM during the design process, a design margin is included to account for uncertainties in the design calculations (Ref. 6).

Applicability

In MODES 1 and 2, SDM must be provided because subcriticality with the highest worth control rod withdrawn is assumed in the CRDA analysis (Ref. 2). In MODES 3 and 4, SDM is required to ensure the reactor will be held subcritical with margin for a single withdrawn control rod. SDM is required in MODE 5 to prevent an open vessel, inadvertent criticality during the withdrawal of a single control rod from a core cell containing one or more fuel assemblies [or a fuel assembly insertion error (Ref. 5)].

Actions

A.1

With SDM not within the limits of the LCO in MODE 1 or 2, SDM must be restored within 6 hours. Failure to meet the specified SDM may be caused by a control rod that cannot be inserted. The allowed Completion Time of 6 hours is acceptable, considering that the reactor can still be shut down, assuming no failures of additional control rods to insert, and the low probability of an event occurring during this interval.

B.1

If the SDM cannot be restored, the plant must be brought to MODE 3 in 12 hours, to prevent the potential for further reductions in available SDM (e.g., additional stuck control rods). The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

C.1

With SDM not within limits in MODE 3, the operator must immediately initiate action to fully insert all insertable control rods. Action must continue until all insertable control rods are fully inserted. This action results in the least reactive condition for the core.
D.1, D.2, D.3, and D.4

With SDM not within limits in MODE 4, the operator must immediately initiate action to fully insert all insertable control rods. Action must continue until all insertable control rods are fully inserted. This action results in the least reactive condition for the core. Action must also be initiated within 1 hour to provide means for control of potential radioactive releases. This includes ensuring secondary containment is OPERABLE; at least one Standby Gas Treatment (SGT) subsystem is OPERABLE; and [secondary containment] isolation capability (i.e., at least one secondary containment isolation valve and associated instrumentation are OPERABLE, or other acceptable administrative controls to assure isolation capability) in each associated penetration flow path not isolated that is assumed to be isolated to mitigate radioactivity releases. This may be performed as an administrative check, by examining logs or other information, to determine if the components are out of service for maintenance or other reasons. It is not necessary to perform the surveillances needed to demonstrate the OPERABILITY of the components. If, however, any required component is inoperable, then it must be restored to OPERABLE status. In this case, SRs may need to be performed to restore the component to OPERABLE status. Actions must continue until all required components are OPERABLE.

E.1, E.2, E.3, E.4, and E.5

With SDM not within limits in MODE 5, the operator must immediately suspend CORE ALTERATIONS that could reduce SDM (e.g., insertion of fuel in the core or the withdrawal of control rods). Suspension of these activities shall not preclude completion of movement of a component to a safe condition. Inserting control rods or removing fuel from the core will reduce the total reactivity and are therefore excluded from the suspended actions.

Action must also be immediately initiated to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Action must continue until all insertable control rods in core cells containing one or more fuel assemblies have been fully inserted. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and therefore do not have to be inserted.
Bases

Actions (continued)

Action must also be initiated within 1 hour to provide means for control of potential radioactive releases. This includes ensuring secondary containment is OPERABLE; at least one SGT subsystem is OPERABLE; and [secondary containment] isolation capability (i.e., at least one secondary containment isolation valve and associated instrumentation are OPERABLE, or other acceptable administrative controls to assure isolation capability) in each associated penetration flow path not isolated that is assumed to be isolated to mitigate radioactivity releases. This may be performed as an administrative check, by examining logs or other information, to determine if the components are out of service for maintenance or other reasons. It is not necessary to perform the Surveillances as needed to demonstrate the OPERABILITY of the components. If, however, any required component is inoperative, then it must be restored to OPERABLE status. In this case, SRs may need to be performed to restore the component to OPERABLE status. Action must continue until all required components are OPERABLE.

Surveillance Requirements

SR 3.1.1.1

Adequate SDM must be demonstrated to ensure that the reactor can be made subcritical from any initial operating condition. Adequate SDM is demonstrated by testing before or during the first startup after fuel movement, control rod replacement, or shuffling within the reactor pressure vessel. Control rod replacement refers to the decoupling and removal of a control rod from a core location, and subsequent replacement with a new control rod or a control rod from another core location. Since core reactivity will vary during the cycle as a function of fuel depletion and poison burnup, the beginning of cycle (BOC) test must also account for changes in core reactivity during the cycle. Therefore, to obtain the SDM, the initial measured value must be increased by an adder, "R", which is the difference between the calculated value of maximum core reactivity during the operating cycle and the calculated BOC core reactivity. If the value of R is negative (that is, BOC is the most reactive point in the cycle), no correction to the BOC measured value is required (Ref. 7). For the SDM demonstrations that rely solely on calculation of the highest worth control rod, additional margin (0.10% Δk/k) must be added to the SDM limit as specified in the COLR to account for uncertainties in the calculation.

The SDM may be demonstrated during an in sequence control rod withdrawal, in which the highest worth control rod is analytically determined, or during local criticals, where the highest worth control rod is determined by testing.
Local critical tests require the withdrawal of out of sequence control rods. This testing would therefore require bypassing of the rod worth minimizer to allow the out of sequence withdrawal, and therefore additional requirements must be met (see LCO 3.10.7, "Control Rod Testing - Operating").

The Frequency of 4 hours after reaching criticality is allowed to provide a reasonable amount of time to perform the required calculations and have appropriate verification.

During MODE 5, adequate SDM is required to ensure that the reactor does not reach criticality during control rod withdrawals. An evaluation of each in-vessel fuel movement during fuel loading (including shuffling fuel within the core) is required to ensure adequate SDM is maintained during refueling. This evaluation ensures that the intermediate loading patterns are bounded by the safety analyses for the final core loading pattern. For example, bounding analyses that demonstrate adequate SDM for the most reactive configurations during the refueling may be performed to demonstrate acceptability of the entire fuel movement sequence. These bounding analyses include additional margins to the associated uncertainties. Spiral offload/reload sequences inherently satisfy the SR, provided the fuel assemblies are reloaded in the same configuration analyzed for the new cycle. Removing fuel from the core will always result in an increase in SDM.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 26.

2. FSAR, Section [15.1.38].

4. FSAR, Section [15.1.13].

5. FSAR, Section [15.1.14].

6. FSAR, Section [4.3.2.4.1].

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.2 Reactivity Anomalies

BASES

BACKGROUND

In accordance with GDC 26, GDC 28, and GDC 29 (Ref. 1), reactivity shall be controllable such that subcriticality is maintained under cold conditions and acceptable fuel design limits are not exceeded during normal operation and anticipated operational occurrences. Therefore, reactivity anomaly is used as a measure of the predicted versus measured core reactivity during power operation. The continual confirmation of core reactivity is necessary to ensure that the Design Basis Accident (DBA) and transient safety analyses remain valid. A large reactivity anomaly could be the result of unanticipated changes in fuel reactivity or control rod worth or operation at conditions not consistent with those assumed in the predictions of core reactivity, and could potentially result in a loss of SDM or violation of acceptable fuel design limits. Comparing predicted versus measured core reactivity validates the nuclear methods used in the safety analysis and supports the SDM demonstrations (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") in assuring the reactor can be brought safely to cold, subcritical conditions.

When the reactor core is critical or in normal power operation, a reactivity balance exists and the net reactivity is zero. A comparison of predicted and measured reactivity is convenient under such a balance, since parameters are being maintained relatively stable under steady state power conditions. The positive reactivity inherent in the core design is balanced by the negative reactivity of the control components, thermal feedback, neutron leakage, and materials in the core that absorb neutrons, such as burnable absorbers, producing zero net reactivity.

In order to achieve the required fuel cycle energy output, the uranium enrichment in the new fuel loading and the fuel loaded in the previous cycles provide excess positive reactivity beyond that required to sustain steady state operation at the beginning of cycle (BOC). When the reactor is critical at RTP and operating moderator temperature, the excess positive reactivity is compensated by burnable absorbers (if any), control rods, and whatever neutron poisons (mainly xenon and samarium) are present in the fuel. The predicted core reactivity, as represented by control rod density, is calculated by a 3D core simulator code as a function of cycle exposure. This calculation is performed for projected operating states and conditions throughout the cycle. The core reactivity is determined from control rod densities for actual plant conditions and is then compared to the predicted value for the cycle exposure.
Accurate prediction of core reactivity is either an explicit or implicit assumption in the accident analysis evaluations (Ref. 2). In particular, SDM and reactivity transients, such as control rod withdrawal accidents or rod drop accidents, are very sensitive to accurate prediction of core reactivity. These accident analysis evaluations rely on computer codes that have been qualified against available test data, operating plant data, and analytical benchmarks. Monitoring reactivity anomaly provides additional assurance that the nuclear methods provide an accurate representation of the core reactivity.

The comparison between measured and predicted initial core reactivity provides a normalization for the calculational models used to predict core reactivity. If the measured and predicted rod density for identical core conditions at BOC do not reasonably agree, then the assumptions used in the reload cycle design analysis or the calculation models used to predict rod density may not be accurate. If reasonable agreement between measured and predicted core reactivity exists at BOC, then the prediction may be normalized to the measured value. Thereafter, any significant deviations in the measured rod density from the predicted rod density that develop during fuel depletion may be an indication that the assumptions of the DBA and transient analyses are no longer valid, or that an unexpected change in core conditions has occurred.

Reactivity anomalies satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

The reactivity anomaly limit is established to ensure plant operation is maintained within the assumptions of the safety analyses. Large differences between monitored and predicted core reactivity may indicate that the assumptions of the DBA and transient analyses are no longer valid, or that the uncertainties in the "Nuclear Design Methodology" are larger than expected. A limit on the difference between the monitored and the predicted rod density of ±1% Δk/k has been established based on engineering judgment. A > 1% deviation in reactivity from that predicted is larger than expected for normal operation and should therefore be evaluated.

In MODE 1, most of the control rods are withdrawn and steady state operation is typically achieved. Under these conditions, the comparison between predicted and monitored core reactivity provides an effective measure of the reactivity anomaly. In MODE 2, control rods are typically being withdrawn during a startup. In MODES 3 and 4, all control rods are fully inserted and therefore the reactor is in the least reactive state, where monitoring core reactivity is not necessary. In MODE 5, fuel loading
Reactivity Anomalies

B 3.1.2

BASES

APPLICABILITY (continued)

results in a continually changing core reactivity. SDM requirements (LCO 3.1.1) ensure that fuel movements are performed within the bounds of the safety analysis, and an SDM demonstration is required during the first startup following operations that could have altered core reactivity (e.g., fuel movement, control rod replacement, shuffling). The SDM test, required by LCO 3.1.1, provides a direct comparison of the predicted and monitored core reactivity at cold conditions; therefore, reactivity anomaly is not required during these conditions.

ACTIONS

A.1

Should an anomaly develop between measured and predicted core reactivity, the core reactivity difference must be restored to within the limit to ensure continued operation is within the core design assumptions. Restoration to within the limit could be performed by an evaluation of the core design and safety analysis to determine the reason for the anomaly. This evaluation normally reviews the core conditions to determine their consistency with input to design calculations. Measured core and process parameters are also normally evaluated to determine that they are within the bounds of the safety analysis, and safety analysis calculational models may be reviewed to verify that they are adequate for representation of the core conditions. The required Completion Time of 72 hours is based on the low probability of a DBA occurring during this period, and allows sufficient time to assess the physical condition of the reactor and complete the evaluation of the core design and safety analysis.

B.1

If the core reactivity cannot be restored to within the 1% \(\Delta k/k \) limit, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.1.2.1

Verifying the reactivity difference between the monitored and predicted rod density is within the limits of the LCO provides added assurance that plant operation is maintained within the assumptions of the DBA and transient analyses. The Core Monitoring System calculates the rod density for the reactor conditions obtained from plant instrumentation. A comparison of the monitored rod density to the predicted rod density at
the same cycle exposure is used to calculate the reactivity difference. The comparison is required when the core reactivity has potentially changed by a significant amount. This may occur following a refueling in which new fuel assemblies are loaded, fuel assemblies are shuffled within the core, or control rods are replaced or shuffled. Control rod replacement refers to the decoupling and removal of a control rod from a core location, and subsequent replacement with a new control rod or a control rod from another core location. Also, core reactivity changes during the cycle. The 24 hour interval after reaching equilibrium conditions following a startup is based on the need for equilibrium xenon concentrations in the core, such that an accurate comparison between the monitored and predicted rod density can be made. For the purposes of this SR, the reactor is assumed to be at equilibrium conditions when steady state operations (no control rod movement or core flow changes) at ≥ 75% RTP have been obtained. The 1000 MWD/T Frequency was developed, considering the relatively slow change in core reactivity with exposure and operating experience related to variations in core reactivity. This comparison requires the core to be operating at power levels which minimize the uncertainties and measurement errors, in order to obtain meaningful results. Therefore, the comparison is only done when in MODE 1.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 26.

2. FSAR, Chapter [15].
B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.3 Control Rod OPERABILITY

BASES

BACKGROUND

Control rods are components of the Control Rod Drive (CRD) System, which is the primary reactivity control system for the reactor. In conjunction with the Reactor Protection System, the CRD System provides the means for the reliable control of reactivity changes to ensure under conditions of normal operation, including anticipated operational occurrences, that specified acceptable fuel design limits are not exceeded. In addition, the control rods provide the capability to hold the reactor core subcritical under all conditions and to limit the potential amount and rate of reactivity increase caused by a malfunction in the CRD System. The CRD System is designed to satisfy the requirements of GDC 26, GDC 27, GDC 28, and 29 (Ref. 1).

The CRD System consists of 137 locking piston control rod drive mechanisms (CRDMs) and a hydraulic control unit for each drive mechanism. The locking piston type CRDM is a double acting hydraulic piston, which uses condensate water as the operating fluid. Accumulators provide additional energy for scram. An index tube and piston, coupled to the control rod, are locked at fixed increments by a collet mechanism. The collet fingers engage notches in the index tube to prevent unintentional withdrawal of the control rod, but without restricting insertion.

This Specification, along with LCO 3.1.4, "Control Rod Scram Times," and LCO 3.1.5, "Control Rod Scram Accumulators," ensure that the performance of the control rods in the event of a Design Basis Accident (DBA) or transient meets the assumptions used in the safety analyses of References 2, 3, and 4.

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in the evaluations involving control rods are presented in References 2, 3, and 4. The control rods provide the primary means for rapid reactivity control (reactor scram), for maintaining the reactor subcritical and for limiting the potential effects of reactivity insertion events caused by malfunctions in the CRD System.

The capability to insert the control rods provides assurance that the assumptions for scram reactivity in the DBA and transient analyses are not violated. Since the SDM ensures the reactor will be subcritical with the highest worth control rod withdrawn (assumed single failure), the additional failure of a second control rod to insert, if required, could invalidate the demonstrated SDM and potentially limit the ability of the CRD System to hold the reactor subcritical. If the control rod is stuck at
an inserted position and becomes decoupled from the CRD, a control rod drop accident (CRDA) can possibly occur. Therefore, the requirement that all control rods be OPERABLE ensures the CRD System can perform its intended function.

The control rods also protect the fuel from damage which could result in release of radioactivity. The limits protected are the MCPR Safety Limit (SL) (see Bases for SL 2.1.1, "Reactor Core SLs," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)"), the 1% cladding plastic strain fuel design limit (see Bases for LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," and LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR)"), and the fuel damage limit (see Bases for LCO 3.1.6, "Rod Pattern Control") during reactivity insertion events.

The negative reactivity insertion (scram) provided by the CRD System provides the analytical basis for determination of plant thermal limits and provides protection against fuel damage limits during a CRDA. The Bases for LCO 3.1.4, LCO 3.1.5, and LCO 3.1.6 discuss in more detail how the SLs are protected by the CRD System.

Control rod OPERABILITY satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO
The OPERABILITY of an individual control rod is based on a combination of factors, primarily, the scram insertion times, the control rod coupling integrity, and the ability to determine the control rod position. Accumulator OPERABILITY is addressed by LCO 3.1.5. The associated scram accumulator status for a control rod only affects the scram insertion times; therefore, an inoperable accumulator does not immediately require declaring a control rod inoperable. Although not all control rods are required to be OPERABLE to satisfy the intended reactivity control requirements, strict control over the number and distribution of inoperable control rods is required to satisfy the assumptions of the DBA and transient analyses.

APPLICABILITY
In MODES 1 and 2, the control rods are assumed to function during a DBA or transient and are therefore required to be OPERABLE in these MODES. In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate requirements for control rod OPERABILITY during these conditions. Control rod requirements in MODE 5 are located in LCO 3.9.5, "Control Rod OPERABILITY - Refueling."
BASES

ACTIONS

The ACTIONS Table is modified by a Note indicating that a separate Condition entry is allowed for each control rod. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable control rod. Complying with the Required Actions may allow for continued operation, and subsequent inoperable control rods are governed by subsequent Condition entry and application of associated Required Actions.

A.1, A.2, A.3, and A.4

A control rod is considered stuck if it will not insert by either CRD drive water or scram pressure. With a fully inserted control rod stuck, no actions are required as long as the control rod remains fully inserted. The Required Actions are modified by a Note, which allows the rod worth minimizer (RWM) to be bypassed if required to allow continued operation. LCO 3.3.2.1, "Control Rod Block Instrumentation," provides additional requirements when the RWM is bypassed to ensure compliance with the CRDA analysis. With one withdrawn control rod stuck, the local scram reactivity rate assumptions may not be met if the stuck control rod separation criteria are not met. Therefore, a verification that the separation criteria are met must be performed immediately. The separation criteria are not met if: a) the stuck control rod occupies a location adjacent to two "slow" control rods, b) the stuck control rod occupies a location adjacent to one "slow" control rod, and the one "slow" control rod is also adjacent to another "slow" control rod, or c) if the stuck control rod occupies a location adjacent to one "slow" control rod when there is another pair of "slow" control rods adjacent to one another. The description of "slow" control rods is provided in LCO 3.1.4, "Control Rod Scram Times." In addition, the associated control rod drive must be disarmed in 2 hours. The allowed Completion Time of 2 hours is acceptable, considering the reactor can still be shut down, assuming no additional control rods fail to insert, and provides a reasonable time to perform the Required Action in an orderly manner. Isolating the control rod from scram prevents damage to the CRDM. The control rod can be isolated from scram and normal insert and withdraw pressure, yet still maintain cooling water to the CRD.

Monitoring of the insertion capability of each withdrawn control rod must also be performed within 24 hours from discovery of Condition A concurrent with THERMAL POWER greater than the low power setpoint (LPSP) of the RWM. SR 3.1.3.2 performs periodic tests of the control rod insertion capability of withdrawn control rods. Testing each withdrawn control rod ensures that a generic problem does not exist. This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." The Required Action A.2 Completion Time only begins upon discovery of Condition A concurrent
with THERMAL POWER greater than the actual LPSP of the RWM since the notch insertions may not be compatible with the requirements of rod pattern control (LCO 3.1.6) and the RWM (LCO 3.3.2.1). The allowed Completion Time of 24 hours from discovery of Condition A, concurrent with THERMAL POWER greater than the LPSP of the RWM, provides a reasonable time to test the control rods, considering the potential for a need to reduce power to perform the tests.

To allow continued operation with a withdrawn control rod stuck, an evaluation of adequate SDM is also required within 72 hours. Should a DBA or transient require a shutdown, to preserve the single failure criterion, an additional control rod would have to be assumed to fail to insert when required. Therefore, the original SDM demonstration may not be valid. The SDM must therefore be evaluated (by measurement or analysis) with the stuck control rod at its stuck position and the highest worth OPERABLE control rod assumed to be fully withdrawn.

The allowed Completion Time of 72 hours to verify SDM is adequate, considering that with a single control rod stuck in a withdrawn position, the remaining OPERABLE control rods are capable of providing the required scram and shutdown reactivity. Failure to reach MODE 4 is only likely if an additional control rod adjacent to the stuck control rod also fails to insert during a required scram. Even with the postulated additional single failure of an adjacent control rod to insert, sufficient reactivity control remains to reach and maintain MODE 3 conditions (Ref. 5).

B.1

With two or more withdrawn control rods stuck, the plant must be brought to MODE 3 within 12 hours. The occurrence of more than one control rod stuck at a withdrawn position increases the probability that the reactor cannot be shut down if required. Insertion of all insertable control rods eliminates the possibility of an additional failure of a control rod to insert. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

C.1 and C.2

With one or more control rods inoperable for reasons other than being stuck in the withdrawn position, operation may continue, provided the control rods are fully inserted within 3 hours and disarmed (electrically or hydraulically) within 4 hours. Inserting a control rod ensures the shutdown and scram capabilities are not adversely affected. The control
rod is disarmed to prevent inadvertent withdrawal during subsequent operations. The control rods can be hydraulically disarmed by closing the drive water and exhaust water isolation valves. The control rods can be electrically disarmed by disconnecting power from all four directional control valve solenoids. Required Action C.1 is modified by a Note, which allows the RWM to be bypassed if required to allow insertion of the inoperable control rods and continued operation. LCO 3.3.2.1 provides additional requirements when the RWM is bypassed to ensure compliance with the CRDA analysis.

The allowed Completion Times are reasonable, considering the small number of allowed inoperable control rods, and provide time to insert and disarm the control rods in an orderly manner and without challenging plant systems.

D.1 and D.2

Out of sequence control rods may increase the potential reactivity worth of a dropped control rod during a CRDA. At ≤ 10% RTP, the generic banked position withdrawal sequence (BPWS) analysis (Ref. 5) requires inserted control rods not in compliance with BPWS to be separated by at least two OPERABLE control rods in all directions, including the diagonal. Therefore, if two or more inoperable control rods are not in compliance with BPWS and not separated by at least two OPERABLE control rods, action must be taken to restore compliance with BPWS or restore the control rods to OPERABLE status. Condition D is modified by a Note indicating that the Condition is not applicable when > 10% RTP, since the BPWS is not required to be followed under these conditions, as described in the Bases for LCO 3.1.6. The allowed Completion Time of 4 hours is acceptable, considering the low probability of a CRDA occurring.

E.1

In addition to the separation requirements for inoperable control rods, an assumption in the CRDA analysis for ANF fuel is that no more than three inoperable control rods are allowed in any one BPWS group. Therefore, with one or more BPWS groups having four or more inoperable control rods, the control rods must be restored to OPERABLE status. Required Action E.1 is modified by a Note indicating that the Condition is not applicable when THERMAL POWER is > 10% RTP since the BPWS is not required to be followed under these conditions, as described in the Bases for LCO 3.1.6. The allowed Completion Time of 4 hours is acceptable, considering the low probability of a CRDA occurring.
BASES

ACTIONS (continued)

F.1

If any Required Action and associated Completion Time of Condition A, C, D, or E are not met, or there are nine or more inoperable control rods, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. This ensures all insertable control rods are inserted and places the reactor in a condition that does not require the active function (i.e., scram) of the control rods. The number of control rods permitted to be inoperable when operating above 10% RTP (e.g., no CRDA considerations) could be more than the value specified, but the occurrence of a large number of inoperable control rods could be indicative of a generic problem, and investigation and resolution of the potential problem should be undertaken. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.1.3.1

The position of each control rod must be determined to ensure adequate information on control rod position is available to the operator for determining CRD OPERABILITY and controlling rod patterns. Control rod position may be determined by the use of OPERABLE position indicators, by moving control rods to a position with an OPERABLE indicator, or by the use of other appropriate methods. [The 24 hour Frequency of this SR is based on operating experience related to expected changes in control rod position and the availability of control rod position indications in the control room.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
SR 3.1.3.2

Control rod insertion capability is demonstrated by inserting each partially or fully withdrawn control rod at least one notch and observing that the control rod moves. The control rod may then be returned to its original position. This ensures the control rod is not stuck and is free to insert on a scram signal. These Surveillances are not required when THERMAL POWER is less than or equal to the actual LPSP of the RWM, since the notch insertions may not be compatible with the requirements of the Banked Position Withdrawal Sequence (BPWS) (LCO 3.1.6) and the RWM (LCO 3.3.2.1). [Withdrawn control rods are tested at a 31 day Frequency, based on the potential power reduction required to allow the control rod movement. Furthermore, the 31 day Frequency takes into account operating experience related to changes in CRD performance. At any time, if a control rod is immovable, a determination of that control rod's trippability (OPERABILITY) must be made and appropriate action taken.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--REVIEWER'S NOTE--
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.1.3.3

Verifying that the scram time for each control rod to notch position 06 is \(\leq 7 \) seconds provides reasonable assurance that the control rod will insert when required during a DBA or transient, thereby completing its shutdown function. This SR is performed in conjunction with the control rod scram time testing of SR 3.1.4.1, SR 3.1.4.2, SR 3.1.4.3, and SR 3.1.4.4. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," and the functional testing of SDV vent and drain valves in LCO 3.1.8, "Scram Discharge Volume (SDV) Vent and Drain Valves," overlap this Surveillance to provide complete testing of the assumed safety function. The associated
BASES

SURVEILLANCE REQUIREMENTS (continued)

Frequencies are acceptable, considering the more frequent testing performed to demonstrate other aspects of control rod OPERABILITY and operating experience, which shows scram times do not significantly change over an operating cycle.

SR 3.1.3.4

Coupling verification is performed to ensure the control rod is connected to the CRDM and will perform its intended function when necessary. The Surveillance requires verifying a control rod does not go to the withdrawn overtravel position. The overtravel position feature provides a positive check on the coupling integrity since only an uncoupled CRD can reach the overtravel position. The verification is required to be performed any time a control rod is withdrawn to the "full out" position (notch position 48) or prior to declaring the control rod OPERABLE after work on the control rod or CRD System that could affect coupling. This includes control rods inserted one notch and then returned to the "full out" position during the performance of SR 3.1.3.2. This Frequency is acceptable, considering the low probability that a control rod will become uncoupled when it is not being moved and operating experience related to uncoupling events.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 26, GDC 27, GDC 28, and GDC 29.

2. FSAR, Section [4.2.3.2.2.4].

3. FSAR, Section [5A.4.3].

4. FSAR, Section [15.1].

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.4 Control Rod Scram Times

BASES

| BACKGROUND | The scram function of the Control Rod Drive (CRD) System controls reactivity changes during abnormal operational transients to ensure that specified acceptable fuel design limits are not exceeded (Ref. 1). The control rods are scrammed by positive means using hydraulic pressure exerted on the CRD piston. When a scram signal is initiated, control air is vented from the scram valves, allowing them to open by spring action. Opening the exhaust valve reduces the pressure above the main drive piston to atmospheric pressure, and opening the inlet valve applies the accumulator or reactor pressure to the bottom of the piston. Since the notches in the index tube are tapered on the lower edge, the collet fingers are forced open by cam action, allowing the index tube to move upward without restriction because of the high differential pressure across the piston. As the drive moves upward and the accumulator pressure reduces below the reactor pressure, a ball check valve opens, letting the reactor pressure complete the scram action. If the reactor pressure is low, such as during startup, the accumulator will fully insert the control rod in the required time without assistance from reactor pressure. |
| APPLICABLE SAFETY ANALYSES | The analytical methods and assumptions used in evaluating the control rod scram function are presented in References 2, 3, and 4. The Design Basis Accident (DBA) and transient analyses assume that all of the control rods scram at a specified insertion rate. The resulting negative scram reactivity forms the basis for the determination of plant thermal limits (e.g., the MCPR). Other distributions of scram times (e.g., several control rods scrambling slower than the average time with several control rods scrambling faster than the average time) can also provide sufficient scram reactivity. Surveillance of each individual control rod's scram time ensures the scram reactivity assumed in the DBA and transient analyses can be met. The scram function of the CRD System protects the MCPR Safety Limit (SL) (see Bases for SL 2.1.1, "Reactor Core SLs," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)") and the 1% cladding plastic strain fuel design limit (see Bases for LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)"), which ensure that no fuel damage will occur if these limits are not exceeded. Above 800 psig, the scram function is designed to insert negative reactivity at a rate fast enough to prevent the actual MCPR from becoming less than the MCPR SL, during the analyzed limiting power transient. Below 800 psig, the scram function is assumed to perform |
Control Rod Scram Times
B 3.1.4

BASES

APPLICABLE SAFETY ANALYSES (continued)

during the control rod drop accident (Ref. 5) and, therefore, also provides protection against violating fuel damage limits during reactivity insertion accidents (see Bases for LCO 3.1.6, "Rod Pattern Control"). For the reactor vessel overpressure protection analysis, the scram function, along with the safety/relief valves, ensure that the peak vessel pressure is maintained within the applicable ASME Code limits.

Control rod scram times satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The scram times specified in Table 3.1.4-1 (in the accompanying LCO) are required to ensure that the scram reactivity assumed in the DBA and transient analysis is met (Ref. 6). To account for single failures and "slow" scramming control rods, the scram times specified in Table 3.1.4-1 are faster than those assumed in the design basis analysis. The scram times have a margin that allows up to approximately 7% of the control rods (e.g., $137 \times 7\% = 10$) to have scram times exceeding the specified limits (i.e., "slow" control rods) assuming a single stuck control rod (as allowed by LCO 3.1.3, "Control Rod OPERABILITY") and an additional control rod failing to scram per the single failure criterion. The scram times are specified as a function of reactor steam dome pressure to account for the pressure dependence of the scram times. The scram times are specified relative to measurements based on reed switch positions, which provide the control rod position indication. The reed switch closes ("pickup") when the index tube passes a specific location and then opens ("dropout") as the index tube travels upward. Verification of the specified scram times in Table 3.1.4-1 is accomplished through measurement of the "dropout" times. To ensure that local scram reactivity rates are maintained within acceptable limits, no more than two of the allowed "slow" control rods may occupy adjacent locations.

Table 3.1.4-1 is modified by two Notes which state that control rods with scram times not within the limits of the Table are considered "slow" and that control rods with scram times > 7 seconds are considered inoperable as required by SR 3.1.3.3.

This LCO applies only to OPERABLE control rods since inoperable control rods will be inserted and disarmed (LCO 3.1.3). Slow scramming control rods may be conservatively declared inoperable and not accounted for as "slow" control rods.

APPLICABILITY

In MODES 1 and 2, a scram is assumed to function during transients and accidents analyzed for these plant conditions. These events are assumed to occur during startup and power operation; therefore, the scram function of the control rods is required during these MODES. In MODES 3 and 4, the control rods are not able to be withdrawn since the
Control Rod Scram Times

B 3.1.4

BASES

APPLICABILITY (continued)

reactor mode switch is in shutdown and a control rod block is applied. This provides adequate requirements for control rod scram capability during these conditions. Scram requirements in MODE 5 are contained in LCO 3.9.5, "Control Rod OPERABILITY - Refueling."

ACTIONS

A.1

When the requirements of this LCO are not met, the rate of negative reactivity insertion during a scram may not be within the assumptions of the safety analyses. Therefore, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

The four SRs of this LCO are modified by a Note stating that during a single control rod scram time surveillance, the CRD pumps shall be isolated from the associated scram accumulator. With the CRD pump isolated, (i.e., charging valve closed) the influence of the CRD pump head does not affect the single control rod scram times. During a full core scram, the CRD pump head would be seen by all control rods and would have a negligible effect on the scram insertion times.

SR 3.1.4.1

The scram reactivity used in DBA and transient analyses is based on an assumed control rod scram time. Measurement of the scram times with reactor steam dome pressure ≥ 800 psig demonstrates acceptable scram times for the transients analyzed in References 3 and 4.

Maximum scram insertion times occur at a reactor steam dome pressure of approximately 800 psig because of the competing effects of reactor steam dome pressure and stored accumulator energy. Therefore, demonstration of adequate scram times at reactor steam dome pressure ≥ 800 psig ensures that the measured scram times will be within the specified limits at higher pressures. Limits are specified as a function of reactor pressure to account for the sensitivity of the scram insertion times with pressure and to allow a range of pressures over which scram time testing can be performed. To ensure that scram time testing is performed within a reasonable time following a shutdown ≥ 120 days or longer, control rods are required to be tested before exceeding 40% RTP following the shutdown. This Frequency is acceptable considering the additional surveillances performed for control rod OPERABILITY, the
frequent verification of adequate accumulator pressure, and the required testing of control rods affected by fuel movement within the associated core cell and by work on control rods or the CRD System.

SR 3.1.4.2

Additional testing of a sample of control rods is required to verify the continued performance of the scram function during the cycle. A representative sample contains at least 10% of the control rods. The sample remains representative if no more than 7.5% of the control rods in the sample tested are determined to be "slow." With more than 7.5% of the sample declared to be "slow" per the criteria in Table 3.1.4-1, additional control rods are tested until this 7.5% criterion (e.g., 7.5% of the entire sample size) is satisfied, or until the total number of "slow" control rods (throughout the core, from all surveillances) exceeds the LCO limit. For planned testing, the control rods selected for the sample should be different for each test. Data from inadvertent scrams should be used whenever possible to avoid unnecessary testing at power, even if the control rods with data may have been previously tested in a sample. [The [200] day Frequency is based on operating experience that has shown control rod scram times do not significantly change over an operating cycle. This Frequency is also reasonable based on the additional Surveillances done on the CRDs at more frequent intervals in accordance with LCO 3.1.3 and LCO 3.1.5, "Control Rod Scram Accumulators."

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--
<table>
<thead>
<tr>
<th>REVIEWER’S NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.</td>
</tr>
</tbody>
</table>
--
SR 3.1.4.3

When work that could affect the scram insertion time is performed on a control rod or the CRD System, testing must be done to demonstrate that each affected control rod retains adequate scram performance over the range of applicable reactor pressures from zero to the maximum permissible pressure. The scram testing must be performed once before declaring the control rod OPERABLE. The required scram time testing must demonstrate the affected control rod is still within acceptable limits. The limits for reactor pressures < 800 psig are established based on a high probability of meeting the acceptance criteria at reactor pressures ≥ 800 psig. Limits for ≥ 800 psig are found in Table 3.1.4-1. If testing demonstrates the affected control rod does not meet these limits, but is within the 7-second limit of Table 3.1.4-1, Note 2, the control rod can be declared OPERABLE and "slow."

Specific examples of work that could affect the scram times are (but are not limited to) the following: removal of any CRD for maintenance or modification; replacement of a control rod; and maintenance or modification of a scram solenoid pilot valve, scram valve, accumulator, isolation valve or check valve in the piping required for scram.

The Frequency of once prior to declaring the affected control rod OPERABLE is acceptable because of the capability to test the control rod over a range of operating conditions and the more frequent surveillances on other aspects of control rod OPERABILITY.

SR 3.1.4.4

When work that could affect the scram insertion time is performed on a control rod or CRD System, or when fuel movement within the reactor pressure vessel occurs, testing must be done to demonstrate each affected control rod is still within the limits of Table 3.1.4-1 with the reactor steam dome pressure ≥ 800 psig. Where work has been performed at high reactor pressure, the requirements of SR 3.1.4.3 and SR 3.1.4.4 can be satisfied with one test. For a control rod affected by work performed while shut down, however, a zero pressure and high pressure test may be required. This testing ensures that, prior to withdrawing the control rod for continued operation, the control rod scram performance is acceptable for operating reactor pressure conditions. Alternatively, a control rod scram test during hydrostatic pressure testing
SURVEILLANCE REQUIREMENTS (continued)

could also satisfy both criteria. When fuel movement within the reactor pressure vessel occurs, only those control rods associated with the core cells affected by the fuel movement are required to be scram time tested. During a routine refueling outage, it is expected that all control rods will be affected.

The Frequency of once prior to exceeding 40% RTP is acceptable because of the capability to test the control rod over a range of operating conditions and the more frequent surveillances on other aspects of control rod OPERABILITY.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 10.

2. FSAR, Section [4.2.3.2.2.4].

3. FSAR, Section [5A.4.3].

4. FSAR, Section [15.1].

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.5 Control Rod Scram Accumulators

BASES

BACKGROUND
The control rod scram accumulators are part of the Control Rod Drive (CRD) System and are provided to ensure that the control rods scram under varying reactor conditions. The control rod scram accumulators store sufficient energy to fully insert a control rod at any reactor vessel pressure. The accumulator is a hydraulic cylinder with a free floating piston. The piston separates the water used to scram the control rods from the nitrogen, which provides the required energy. The scram accumulators are necessary to scram the control rods within the required insertion times of LCO 3.1.4, "Control Rod Scram Times."

APPLICABLE SAFETY ANALYSES
The analytical methods and assumptions used in evaluating the control rod scram function are presented in References 1, 2, and 3. The Design Basis Accident (DBA) and transient analyses assume that all of the control rods scram at a specified insertion rate. OPERABILITY of each individual control rod scram accumulator, along with LCO 3.1.3, "Control Rod OPERABILITY," and LCO 3.1.4, ensures that the scram reactivity assumed in the DBA and transient analyses can be met. The existence of an inoperable accumulator may invalidate prior scram time measurements for the associated control rod.

The scram function of the CRD System, and therefore the OPERABILITY of the accumulators, protects the MCPR Safety Limit (see Bases for SL 2.1.1, "Reactor Core SLs," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)") and 1% cladding plastic strain fuel design limit (see Bases for LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," and LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR)"), which ensure that no fuel damage will occur if these limits are not exceeded (see Bases for LCO 3.1.4). In addition, the scram function at low reactor vessel pressure (i.e., startup conditions) provides protection against violating fuel design limits during reactivity insertion accidents (see Bases for LCO 3.1.6, "Rod Pattern Control").

Control rod scram accumulators satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO
The OPERABILITY of the control rod scram accumulators is required to ensure that adequate scram insertion capability exists when needed over the entire range of reactor pressures. The OPERABILITY of the scram accumulators is based on maintaining adequate accumulator pressure.
BASES

APPLICABILITY
In MODES 1 and 2, the scram function is required for mitigation of DBAs and transients, and therefore the scram accumulators must be OPERABLE to support the scram function. In MODES 3 and 4, control rods are not allowed to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate requirements for control rod scram accumulator OPERABILITY during these conditions. Requirements for scram accumulators in MODE 5 are contained in LCO 3.9.5, "Control Rod OPERABILITY - Refueling."

ACTIONS
The ACTIONS table is modified by a Note indicating that a separate Condition entry is allowed for each control rod scram accumulator. This is acceptable since the Required Actions for each Condition provide appropriate compensatory actions for each affected accumulator. Complying with the Required Actions may allow for continued operation and subsequent affected accumulators governed by subsequent Condition entry and application of associated Required Actions.

A.1 and A.2
With one control rod scram accumulator inoperable and the reactor steam dome pressure ≥ 900 psig, the control rod may be declared "slow," since the control rod will still scram at the reactor operating pressure but may not satisfy the required scram times in Table 3.1.4-1. Required Action A.1 is modified by a Note indicating that declaring the control rod "slow" only applies if the associated control scram time was within the limits of Table 3.1.4-1 during the last scram time test. Otherwise, the control rod would already be considered "slow" and the further degradation of scram performance with an inoperable accumulator could result in excessive scram times. In this event, the associated control rod is declared inoperable (Required Action A.2) and LCO 3.1.3 is entered. This would result in requiring the affected control rod to be fully inserted and disarmed, thereby satisfying its intended function, in accordance with ACTIONS of LCO 3.1.3.

The allowed Completion Time of 8 hours is reasonable, based on the large number of control rods available to provide the scram function and the ability of the affected control rod to scram only with reactor pressure at high reactor pressures.

B.1, B.2.1, and B.2.2
With two or more control rod scram accumulators inoperable and reactor steam dome pressure ≥ 900 psig, adequate pressure must be supplied to the charging water header. With inadequate charging water pressure, all of the accumulators could become inoperable, resulting in a potentially
severe degradation of the scram performance. Therefore, within 20 minutes from discovery of charging water header pressure < 940 psig concurrent with Condition B, adequate charging water header pressure must be restored. The allowed Completion Time of 20 minutes is reasonable, to place a CRD pump into service to restore the charging header pressure, if required. This Completion Time is based on the ability of the reactor pressure alone to fully insert all control rods.

The control rod may be declared "slow," since the control rod will still scram using only reactor pressure, but may not satisfy the times in Table 3.1.4-1. Required Action B.2.1 is modified by a Note indicating that declaring the control rod "slow" only applies if the associated control scram time is within the limits of Table 3.1.4-1 during the last scram time test. Otherwise, the control rod would already be considered "slow" and the further degradation of scram performance with an inoperable accumulator could result in excessive scram times. In this event, the associated control rod is declared inoperable (Required Action B.2.2) and LCO 3.1.3 entered. This would result in requiring the affected control rod to be fully inserted and disarmed, thereby satisfying its intended function in accordance with ACTIONS of LCO 3.1.3.

The allowed Completion Time of 1 hour is reasonable, based on the ability of only the reactor pressure to scram the control rods and the low probability of a DBA or transient occurring while the affected accumulators are inoperable.

C.1 and C.2

With one or more control rod scram accumulators inoperable and the reactor steam dome pressure < 900 psig, the pressure supplied to the charging water header must be adequate to ensure that accumulators remain charged. With the reactor steam dome pressure < 900 psig, the function of the accumulators in providing the scram force becomes much more important since the scram function could become severely degraded during a depressurization event or at low reactor pressures. Therefore, immediately upon discovery of charging water header pressure < 940 psig, concurrent with Condition C, all control rods associated with inoperable accumulators must be verified to be fully inserted. Withheld control rods with inoperable accumulators may fail to scram under these low pressure conditions. The associated control rods must also be declared inoperable within 1 hour. The allowed Completion Time of 1 hour is reasonable for Required Action C.2, considering the low probability of a DBA or transient occurring during the time that the accumulator is inoperable.
Bases

Actions (continued)

D.1

The reactor mode switch must be immediately placed in the shutdown position if either Required Action and associated Completion Time associated with loss of the CRD charging pump (Required Actions B.1 and C.1) cannot be met. This ensures that all insertable control rods are inserted and that the reactor is in a condition that does not require the active function (i.e., scram) of the control rods. This Required Action is modified by a Note stating that the action is not applicable if all control rods associated with the inoperable scram accumulators are fully inserted, since the function of the control rods has been performed.

Surveillance Requirements

SR 3.1.5.1

SR 3.1.5.1 requires that the accumulator pressure be checked periodically to ensure adequate accumulator pressure exists to provide sufficient scram force. The primary indicator of accumulator operability is the accumulator pressure. A minimum accumulator pressure is specified, below which the capability of the accumulator to perform its intended function becomes degraded and the accumulator is considered inoperable. The minimum accumulator pressure of 940 psig is well below the expected pressure of 1100 psig (Ref. 1). Declaring the accumulator inoperable when the minimum pressure is not maintained ensures that significant degradation in scram times does not occur. [The 7 day Frequency has been shown to be acceptable through operating experience and takes into account indications available in the control room.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER'S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

----------------------------------- }
BASES

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FSAR, Section [4.2.3.2.2.4].</td>
</tr>
<tr>
<td>2.</td>
<td>FSAR, Section [5A.4.3].</td>
</tr>
<tr>
<td>3.</td>
<td>FSAR, Section [15.1].</td>
</tr>
</tbody>
</table>
B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.6 Rod Pattern Control

BASES

BACKGROUND
Control rod patterns during startup conditions are controlled by the operator and the rod worth minimizer (RWM) (LCO 3.3.2.1, "Control Rod Block Instrumentation"), so that only specified control rod sequences and relative positions are allowed over the operating range of all control rods inserted to \([10]\%\) RTP. The sequences limit the potential amount of reactivity addition that could occur in the event of a Control Rod Drop Accident (CRDA).

This Specification assures that the control rod patterns are consistent with the assumptions of the CRDA analyses of References 1 and 2.

APPLICABLE SAFETY ANALYSES
The analytical methods and assumptions used in evaluating the CRDA are summarized in References 1 and 2. CRDA analyses assume that the reactor operator follows prescribed withdrawal sequences. These sequences define the potential initial conditions for the CRDA analysis. The RWM (LCO 3.3.2.1) provides backup to operator control of the withdrawal sequences to ensure that the initial conditions of the CRDA analysis are not violated.

Prevention or mitigation of positive reactivity insertion events is necessary to limit the energy deposition in the fuel, thereby preventing significant fuel damage which could result in the undue release of radioactivity. Since the failure consequences for UO\(_2\) have been shown to be insignificant below fuel energy depositions of 300 cal/gm (Ref. 3), the fuel damage limit of 280 cal/gm provides a margin of safety from significant core damage which would result in release of radioactivity (Refs. 4 and 5). Generic evaluations (Refs. 1 and 6) of a design basis CRDA (i.e., a CRDA resulting in a peak fuel energy deposition of 280 cal/gm) have shown that if the peak fuel enthalpy remains below 280 cal/gm, then the maximum reactor pressure will be less than the required ASME Code limits (Ref. 7) and the calculated offsite doses will be well within the required limits (Ref. 5).

Control rod patterns analyzed in Reference 1 follow the banked position withdrawal sequence (BPWS). The BPWS is applicable from the condition of all control rods fully inserted to \([10]\%\) RTP (Ref. 2). For the BPWS, the control rods are required to be moved in groups, with all control rods assigned to a specific group required to be within specified banked positions (e.g., between notches 08 and 12). The banked positions are established to minimize the maximum incremental control rod worth without being overly restrictive during normal plant operation.
Generic analysis of the BPWS (Ref. 1) has demonstrated that the 280 cal/gm fuel damage limit will not be violated during a CRDA while following the BPWS mode of operation. The generic BPWS analysis (Ref. 8) also evaluates the effect of fully inserted, inoperable control rods not in compliance with the sequence, to allow a limited number (i.e., eight) and distribution of fully inserted, inoperable control rods.

REVIEWER'S NOTE

Adoption of the use of Reference 9 requires implementation of the following commitments:

1. Before reducing power to the low power setpoint (LPSP), operators shall confirm control rod coupling integrity for all rods that are fully withdrawn. Control rods that have not been confirmed coupled and are in intermediate positions must be fully inserted prior to power reduction to the LPSP. No action is required for fully-inserted control rods. If a shutdown is required and all rods, which are not confirmed coupled, cannot be fully inserted prior to the power dropping below the LPSP, then the original/standard BPWS must be used. The original/standard BPWS can be found in Licensing Topical Report NEDO-21231, "Banked Position Withdrawal Sequence," January 1977, and is referred to in NUREG-1433 and NUREG-1434.

2. After reactor power drops below the LPSP, rods may be inserted from notch position 48 to notch position 00 without stopping at the intermediate positions. However, GE Nuclear Energy recommends that operators insert rods in the same order as specified for the original/standard BPWS as much as is reasonably possible. If a plant is in the process of shutting down following improved BPWS with the power below the LPSP, no control rod shall be withdrawn unless the control rod pattern is in compliance with standard BPWS requirements.

When performing a shutdown of the plant, an optional BPWS control rod sequence (Ref. 9) may be used provided that all withdrawn control rods have been confirmed to be coupled. The rods may be inserted without the need to stop at intermediate positions since the possibility of a CRDA is eliminated by the confirmation that withdrawn control rods are coupled. When using the Reference 9 control rod sequence for shutdown, the rod worth minimizer may be reprogrammed to enforce the requirements of the improved BPWS control rod insertion process, [or bypassed in accordance with the allowance provided in the Applicability Note for the Rod Worth Minimizer in Table 3.3.2.1-1.]
In order to use the Reference 9 BPWS shutdown process, an extra check is required in order to consider a control rod to be "confirmed" to be coupled. This extra check ensures that no Single Operator Error can result in an incorrect coupling check. For purposes of this shutdown process, the method for confirming that control rods are coupled varies depending on the position of the control rod in the core. Details on this coupling confirmation requirement are provided in Reference 9. If the requirements for use of the BPWS control rod insertion process contained in Reference 9 are followed, the plant is considered to be in compliance with BPWS requirements, as required by LCO 3.1.6.

Rod pattern control satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO Compliance with the prescribed control rod sequences minimizes the potential consequences of a CRDA by limiting the initial conditions to those consistent with the BPWS. This LCO only applies to OPERABLE control rods. For inoperable control rods required to be inserted, separate requirements are specified in LCO 3.1.3, "Control Rod OPERABILITY," consistent with the allowances for inoperable control rods in the BPWS.

APPLICABILITY In MODES 1 and 2, when THERMAL POWER is \(\leq [10]\% \) RTP, the CRDA is a Design Basis Accident and, therefore, compliance with the assumptions of the safety analysis is required. When THERMAL POWER is \(> [10]\% \) RTP, there is no credible control rod configuration that results in a control rod worth that could exceed the 280 cal/gm fuel damage limit during a CRDA (Ref. 2). In MODES 3, 4, and 5, since the reactor is shut down and only a single control rod can be withdrawn from a core cell containing fuel assemblies, adequate SDM ensures that the consequences of a CRDA are acceptable, since the reactor will remain subcritical with a single control rod withdrawn.
Bases

Actions

A.1 and A.2

With one or more OPERABLE control rods not in compliance with the prescribed control rod sequence, actions may be taken to either correct the control rod pattern or declare the associated control rods inoperable within 8 hours. Noncompliance with the prescribed sequence may be the result of "double notching," drifting from a control rod drive cooling water transient, leaking scram valves, or a power reduction to ≤ [10]% RTP before establishing the correct control rod pattern. The number of OPERABLE control rods not in compliance with the prescribed sequence is limited to eight, to prevent the operator from attempting to correct a control rod pattern that significantly deviates from the prescribed sequence. When the control rod pattern is not in compliance with the prescribed sequence, all control rod movement should be stopped except for moves needed to correct the rod pattern, or scram if warranted.

Required Action A.1 is modified by a Note which allows the RWM to be bypassed to allow the affected control rods to be returned to their correct position. LCO 3.3.2.1 requires verification of control rod movement by a qualified member of the technical staff. This ensures that the control rods will be moved to the correct position. A control rod not in compliance with the prescribed sequence is not considered inoperable except as required by Required Action A.2. OPERABILITY of control rods is determined by compliance with LCO 3.1.3, "Control Rod OPERABILITY," LCO 3.1.4, "Control Rod Scram Times," and LCO 3.1.5, "Control Rod Scram Accumulators." The allowed Completion Time of 8 hours is reasonable, considering the restrictions on the number of allowed out of sequence control rods and the low probability of a CRDA occurring during the time the control rods are out of sequence.

B.1 and B.2

If nine or more OPERABLE control rods are out of sequence, the control rod pattern significantly deviates from the prescribed sequence. Control rod withdrawal should be suspended immediately to prevent the potential for further deviation from the prescribed sequence. Control rod insertion to correct control rods withdrawn beyond their allowed position is allowed since, in general, insertion of control rods has less impact on control rod worth than withdrawals have. Required Action B.1 is modified by a Note
which allows the RWM to be bypassed to allow the affected control rods to be returned to their correct position. LCO 3.3.2.1 requires verification of control rod movement by a qualified member of the technical staff.

When nine or more OPERABLE control rods are not in compliance with BPWS, the reactor mode switch must be placed in the shutdown position within 1 hour. With the mode switch in shutdown, the reactor is shut down, and as such, does not meet the applicability requirements of this LCO. The allowed Completion Time of 1 hour is reasonable to allow insertion of control rods to restore compliance, and is appropriate relative to the low probability of a CRDA occurring with the control rods out of sequence.

SURVEILLANCE REQUIREMENTS

SR 3.1.6.1

The control rod pattern is periodically verified to be in compliance with the BPWS to ensure the assumptions of the CRDA analyses are met. [The 24 hour Frequency was developed considering that the primary check on compliance with the BPWS is performed by the RWM (LCO 3.3.2.1).]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE --------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------END OF REVIEWER’S NOTE-----------------------------

The RWM provides control rod blocks to enforce the required sequence and is required to be OPERABLE when operating at ≤ [10]% RTP.

REFERENCES

3. NUREG-0979, Section 4.2.1.3.2, April 1983.

4. NUREG-0800, Section 15.4.9, Revision 2, July 1981.
REFERENCES (continued)

5. 10 CFR 100.11.

7. ASME, Boiler and Pressure Vessel Code.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.7 Standby Liquid Control (SLC) System

BASES

BACKGROUND
The SLC System is designed to provide the capability of bringing the reactor, at any time in a fuel cycle, from full power and minimum control rod inventory (which is at the peak of the xenon transient) to a subcritical condition with the reactor in the most reactive, xenon free state without taking credit for control rod movement. The SLC System satisfies the requirements of 10 CFR 50.62 (Ref. 1) on anticipated transient without scram.

The SLC System consists of a boron solution storage tank, two positive displacement pumps, two explosive valves that are provided in parallel for redundancy, and associated piping and valves used to transfer borated water from the storage tank to the reactor pressure vessel (RPV). The borated solution is discharged near the bottom of the core shroud, where it then mixes with the cooling water rising through the core. A smaller tank containing demineralized water is provided for testing purposes.

APPLICABLE SAFETY ANALYSES
The SLC System is manually initiated from the main control room, as directed by the emergency operating procedures, if the operator believes the reactor cannot be shut down, or kept shut down, with the control rods. The SLC System is used in the event that enough control rods cannot be inserted to accomplish shutdown and cooldown in the normal manner. The SLC System injects borated water into the reactor core to add negative reactivity to compensate for all of the various reactivity effects that could occur during plant operations. To meet this objective, it is necessary to inject a quantity of boron, which produces a concentration of 660 ppm of natural boron, in the reactor coolant at 68°F. To allow for potential leakage and imperfect mixing in the reactor system, an amount of boron equal to 25% of the amount cited above is added (Ref. 2). The volume versus concentration limits in Figure 3.1.7-1 and the temperature versus concentration limits in Figure 3.1.7-2 are calculated such that the required concentration is achieved accounting for dilution in the RPV with normal water level and including the water volume in the residual heat removal shutdown cooling piping and in the recirculation loop piping. This quantity of borated solution is the amount that is above the pump suction shutoff level in the boron solution storage tank. No credit is taken for the portion of the tank volume that cannot be injected.

The SLC System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).
The OPERABILITY of the SLC System provides backup capability for reactivity control independent of normal reactivity control provisions provided by the control rods. The OPERABILITY of the SLC System is based on the conditions of the borated solution in the storage tank and the availability of a flow path to the RPV, including the OPERABILITY of the pumps and valves. Two SLC subsystems are required to be OPERABLE; each contains an OPERABLE pump, an explosive valve, and associated piping, valves, and instruments and controls to ensure an OPERABLE flow path.

In MODES 1 and 2, shutdown capability is required. In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate controls to ensure that the reactor remains subcritical. In MODE 5, only a single control rod can be withdrawn from a core cell containing fuel assemblies. Demonstration of adequate SDM (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") ensures that the reactor will not become critical. Therefore, the SLC System is not required to be OPERABLE when only a single control rod can be withdrawn.

If the boron solution concentration is less than the required limits for mitigation but greater than the concentration required for cold shutdown (original licensing basis), the concentration must be restored to within limits in 72 hours. It is not necessary under these conditions to enter Condition C for both SLC subsystems inoperable since they are capable of performing their original design basis function. Because of the low probability of an event and the fact that the SLC System capability still exists for vessel injection under these conditions, the allowed Completion Time of 72 hours is acceptable and provides adequate time to restore concentration to within limits.

If one SLC subsystem is inoperable for reasons other than Condition A, the inoperable subsystem must be restored to OPERABLE status within 7 days [or in accordance with the Risk Informed Completion Time Program]. In this condition, the remaining OPERABLE subsystem is adequate to perform the shutdown function. However, the overall reliability is reduced because a single failure in the remaining OPERABLE subsystem could result in reduced SLC System shutdown capability. The 7 day Completion Time is based on the availability of an OPERABLE subsystem capable of performing the intended SLC System function and the low probability of a Design Basis Accident (DBA) or severe transient occurring concurrent with the failure of the Control Rod Drive (CRD) System to shut down the plant.
BASES

ACTIONS (continued)

C.1

If both SLC subsystems are inoperable for reasons other than Condition A, at least one subsystem must be restored to OPERABLE status within 8 hours. The allowed Completion Time of 8 hours is considered acceptable given the low probability of a DBA or transient occurring concurrent with the failure of the control rods to shut down the reactor.

D.1

If any Required Action and associated Completion Time is not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.1.7.1, SR 3.1.7.2, and SR 3.1.7.3

SR 3.1.7.1 through SR 3.1.7.3 verify certain characteristics of the SLC System (e.g., the volume and temperature of the borated solution in the storage tank), thereby ensuring SLC System OPERABILITY without disturbing normal plant operation. These Surveillances ensure that the proper borated solution volume and temperature, including the temperature of the pump suction piping, are maintained. Maintaining a minimum specified borated solution temperature is important in ensuring that the boron remains in solution and does not precipitate out in the storage tank or in the pump suction piping. The temperature versus concentration curve of Figure 3.1.7-2 ensures that a 10°F margin will be maintained above the saturation temperature. [The 24 hour Frequency is based on operating experience and has shown there are relatively slow variations in the measured parameters of volume and temperature.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.1.7.4 and SR 3.1.7.6

SR 3.1.7.4 verifies the continuity of the explosive charges in the injection valves to ensure that proper operation will occur if required. Other administrative controls, such as those that limit the shelf life of the explosive charges, must be followed. [The 31 day Frequency is based on operating experience and has demonstrated the reliability of the explosive charge continuity.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.1.7.6 verifies that each valve in the system is in its correct position, but does not apply to the squib (i.e., explosive) valves. Verifying the correct alignment for manual, power operated, and automatic valves in the SLC System flow path provides assurance that the proper flow paths will exist for system operation. A valve is also allowed to be in the nonaccident position provided it can be aligned to the accident position from the control room, or locally by a dedicated operator at the valve control. This is acceptable since the SLC System is a manually initiated system. This Surveillance also does not apply to valves that are locked, sealed, or otherwise secured in position since they are verified to be in the correct position prior to locking, sealing, or securing. This verification of valve alignment does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to
valves that cannot be inadvertently misaligned, such as check valves. [The 31 day Frequency is based on engineering judgment and is consistent with the procedural controls governing valve operation that ensures correct valve positions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.1.7.5

This Surveillance requires an examination of the sodium pentaborate solution by using chemical analysis to ensure that the proper concentration of boron exists in the storage tank. SR 3.1.7.5 must be performed anytime boron or water is added to the storage tank solution to determine that the boron solution concentration is within the specified limits. SR 3.1.7.5 must also be performed anytime the temperature is restored to within the limits of Figure 3.1.7-2, to ensure that no significant boron precipitation occurred. [The 31 day Frequency of this Surveillance is appropriate because of the relatively slow variation of boron concentration between surveillances.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--
SURVEILLANCE REQUIREMENTS (continued)

SR 3.1.7.7

Demonstrating that each SLC System pump develops a flow rate \(\geq 41.2 \text{ gpm} \) at a discharge pressure \(\geq 1190 \text{ psig} \) ensures that pump performance has not degraded during the fuel cycle. This minimum pump flow rate requirement ensures that, when combined with the sodium pentaborate solution concentration requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance.

-----------------------------------REVIEWER'S NOTE-----------------------------------

If the testing is within the scope of the licensee's INSERVICE TESTING PROGRAM, the Frequency "In accordance with the INSERVICE TESTING PROGRAM" should be used. Otherwise, the periodic Frequency of 92 days or the reference to the Surveillance Frequency Control Program should be used.

[The Frequency of this Surveillance is [in accordance with the INSERVICE TESTING PROGRAM] [92 days.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER'S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.1.7.8 and SR 3.1.7.9

These Surveillances ensure that there is a functioning flow path from the boron solution storage tank to the RPV, including the firing of an explosive valve. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of that batch successfully fired. The
SURVEILLANCE REQUIREMENTS (continued)

Surveillance may be performed in separate steps to prevent injecting boron into the RPV. An acceptable method for verifying flow from the pump to the RPV is to pump demineralized water from a test tank through one SLC subsystem and into the RPV. The pump and explosive valve tested should be alternated such that both complete flow paths are tested every 36 months at alternating 18-month intervals. The 18-month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18-month Frequency; therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

Demonstrating that all heat traced piping between the boron solution storage tank and the suction inlet to the injection pumps is unblocked ensures that there is a functioning flow path for injecting the sodium pentaborate solution. An acceptable method for verifying that the suction piping is unblocked is to pump from the storage tank to the test tank.

[The 18-month Frequency is acceptable since there is a low probability that the subject piping will be blocked due to precipitation of the boron from solution in the heat traced piping.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This is especially true in light of the temperature verification of this piping required by SR 3.1.7.3. However, if, in performing SR 3.1.7.3, it is determined that the temperature of this piping has fallen below the specified minimum, SR 3.1.7.9 must be performed once within 24 hours after the piping temperature is restored to within the limits of Figure 3.1.7-2.

SR 3.1.7.10

Enriched sodium pentaborate solution is made by mixing granular, enriched sodium pentaborate with water. Isotopic tests on the granular sodium pentaborate to verify the actual B-10 enrichment must be performed prior to addition to the SLC tank in order to ensure that the proper B-10 atom percentage is being used.

REFERENCES

1. 10 CFR 50.62.
2. FSAR, Section [4.2.3.4.3].
B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.8 Scram Discharge Volume (SDV) Vent and Drain Valves

Bases

Background

The SDV vent and drain valves are normally open and discharge any accumulated water in the SDV to ensure that sufficient volume is available at all times to allow a complete scram. During a scram, the SDV vent and drain valves close to contain reactor water. The SDV is a volume of header piping that connects to each hydraulic control unit (HCU) and drains into an instrument volume. There are two SDVs (headers) and two instrument volumes, each receiving approximately one half of the control rod drive (CRD) discharges. The two instrument volumes are connected to a common drain line with two valves in series. Each header is connected to a common vent line with two valves in series for a total of four vent valves. The header piping is sized to receive and contain all the water discharged by the CRDs during a scram. The design and functions of the SDV are described in Reference 1.

Applicable Safety Analyses

The Design Basis Accident and transient analyses assume all of the control rods are capable of scramming. The acceptance criteria for the SDV vent and drain valves are that they operate automatically to:

a. Close during scram to limit the amount of reactor coolant discharged so that adequate core cooling is maintained and offsite doses remain within the limits of 10 CFR 100 (Ref. 2) and

b. Open on scram reset to maintain the SDV vent and drain path open so that there is sufficient volume to accept the reactor coolant discharged during a scram.

Isolation of the SDV can also be accomplished by manual closure of the SDV valves. Additionally, the discharge of reactor coolant to the SDV can be terminated by scram reset or closure of the HCU manual isolation valves. For a bounding leakage case, the offsite doses are well within the limits of 10 CFR 100 (Ref. 2), and adequate core cooling is maintained (Ref. 3). The SDV vent and drain valves allow continuous drainage of the SDV during normal plant operation to ensure that the SDV has sufficient capacity to contain the reactor coolant discharge during a full core scram. To automatically ensure this capacity, a reactor scram (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation") is initiated if the SDV water level in the instrument volume exceeds a specified setpoint. The setpoint is chosen so that all control rods are inserted before the SDV has insufficient volume to accept a full scram.

SDV vent and drain valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO

The OPERABILITY of all SDV vent and drain valves ensures that the SDV vent and drain valves will close during a scram to contain reactor water discharged to the SDV piping. Since the vent and drain lines are provided with two valves in series, the single failure of one valve in the open position will not impair the isolation function of the system. Additionally, the valves are required to open on scram reset to ensure that a path is available for the SDV piping to drain freely at other times.

APPLICABILITY

In MODES 1 and 2, scram may be required; therefore, the SDV vent and drain valves must be OPERABLE. In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate controls to ensure that only a single control rod can be withdrawn. Also, during MODE 5, only a single control rod can be withdrawn from a core cell containing fuel assemblies. Therefore, the SDV vent and drain valves are not required to be OPERABLE in these MODES since the reactor is subcritical and only one rod may be withdrawn and subject to scram.

ACTIONS

The ACTIONS table is modified by Note 1 indicating that a separate Condition entry is allowed for each SDV vent and drain line. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable SDV line. Complying with the Required Actions may allow for continued operation, and subsequent inoperable SDV lines are governed by subsequent Condition entry and application of associated Required Actions.

When a line is isolated, the potential for an inadvertent scram due to high SDV level is increased. During these periods, the line may be unisolated under administrative control. This allows any accumulated water in the line to be drained, to preclude a reactor scram on SDV high level. This is acceptable since the administrative controls ensure the valve can be closed quickly, by a dedicated operator, if a scram occurs with the valve open.

A.1

When one SDV vent or drain valve is inoperable in one or more lines, the associated line must be isolated to contain the reactor coolant during a scram. The 7 day Completion Time is reasonable, given the level of redundancy in the lines and the low probability of a scram occurring while the valve(s) are inoperable and the line is not isolated. The SDV is still isolable since the redundant valve in the affected line is OPERABLE. During these periods, the single failure criterion may not be preserved, and a higher risk exists to allow reactor water out of the primary system during a scram.
Bases

Actions (continued)

B.1

If both valves in a line are inoperable, the line must be isolated to contain the reactor coolant during a scram.

The 8 hour Completion Time to isolate the line is based on the low probability of a scram occurring while the line is not isolated and unlikelihood of significant CRD seal leakage.

C.1

If any Required Action and associated Completion Time is not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

Surveillance Requirements

SR 3.1.8.1

During normal operation, the SDV vent and drain valves should be in the open position (except when performing SR 3.1.8.2) to allow for drainage of the SDV piping. Verifying that each valve is in the open position ensures that the SDV vent and drain valves will perform their intended functions during normal operation. This SR does not require any testing or valve manipulation; rather, it involves verification that the valves are in the correct position.

[The 31 day Frequency is based on engineering judgment and is consistent with the procedural controls governing valve operation, which ensure correct valve positions.]

Or

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--
During a scram, the SDV vent and drain valves should close to contain the reactor water discharged to the SDV piping. Cycling each valve through its complete range of motion (closed and open) ensures that the valve will function properly during a scram. The 92 day Frequency is based on operating experience and takes into account the level of redundancy in the system design.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.1.8.3

SR 3.1.8.3 is an integrated test of the SDV vent and drain valves to verify total system performance. After receipt of a simulated or actual scram signal, the closure of the SDV vent and drain valves is verified. The closure time of 60 seconds after receipt of a scram signal is based on the bounding leakage case evaluated in the accident analysis (Ref. 2). Similarly, after receipt of a simulated or actual scram reset signal, the opening of the SDV vent and drain valves is verified. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.1.1 and the scram time testing of control rods in LCO 3.1.3 overlap this Surveillance to provide complete testing of the assumed safety function. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency; therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR
Bases

Surveillance Requirements (continued)

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

References

1. FSAR, Section [4.2.3.2.2.3].

2. 10 CFR 100.

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.1 AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)

BASIS:

BACKGROUND: The APLHGR is a measure of the average LHGR of all the fuel rods in a fuel assembly at any axial location. Limits on the APLHGR are specified to ensure that the fuel design limits identified in Reference 1 are not exceeded during anticipated operational occurrences (AOOs) and that the peak cladding temperature (PCT) during the postulated design basis loss of coolant accident (LOCA) does not exceed the limits specified in 10 CFR 50.46.

APPLICABLE SAFETY ANALYSES: The analytical methods and assumptions used in evaluating the fuel design limits are presented in References 1 and 2. The analytical methods and assumptions used in evaluating Design Basis Accidents (DBAs), anticipated operational transients, and normal operation that determine the APLHGR limits are presented in References 1, 2, 3, 4, 5, 6, and 7.

Fuel design evaluations are performed to demonstrate that the 1% limit on the fuel cladding plastic strain and other fuel design limits described in Reference 1 are not exceeded during AOOs for operation with LHGRs up to the operating limit LHGR. APLHGR limits are equivalent to the LHGR limit for each fuel rod divided by the local peaking factor of the fuel assembly. APLHGR limits are developed as a function of exposure and the various operating core flow and power states to ensure adherence to fuel design limits during the limiting AOOs (Refs. 5, 6, and 7). Flow dependent APLHGR limits are determined using the three dimensional BWR simulator code (Ref. 8) to analyze slow flow runout transients. The flow dependent multiplier, MAPFAC$_f$, is dependent on the maximum core flow runout capability. The maximum flow runout is dependent on the existing setting of the core flow limiter in the Recirculation Flow Control System.

Based on analyses of limiting plant transients (other than core flow increases) over a range of power and flow conditions, power dependent multipliers, MAPFAC$_p$, are also generated. Due to the sensitivity of the transient response to initial core flow levels at power levels below those at which turbine stop valve closure and turbine control valve fast closure scram trips are bypassed, both high and low core flow MAPFAC$_p$ limits are provided for operation at power levels between 25% RTP and the previously mentioned bypass power level. The exposure dependent APLHGR limits are reduced by MAPFAC$_p$ and MAPFAC$_f$ at various operating conditions to ensure that all fuel design criteria are met for normal operation and AOOs. A complete discussion of the analysis code is provided in Reference 9.
LOCA analyses are then performed to ensure that the above determined APLHGR limits are adequate to meet the PCT and maximum oxidation limits of 10 CFR 50.46. The analysis is performed using calculational models that are consistent with the requirements of 10 CFR 50, Appendix K. A complete discussion of the analysis code is provided in Reference 10. The PCT following a postulated LOCA is a function of the average heat generation rate of all the rods of a fuel assembly at any axial location and is not strongly influenced by the rod to rod power distribution within an assembly. The APLHGR limits specified are equivalent to the LHGR of the highest powered fuel rod assumed in the LOCA analysis divided by its local peaking factor. A conservative multiplier is applied to the LHGR assumed in the LOCA analysis to account for the uncertainty associated with the measurement of the APLHGR.

For single recirculation loop operation, the MAPFAC multiplier is limited to a maximum of 0.75 (Ref. 5). This maximum limit is due to the conservative analysis assumption of an earlier departure from nucleate boiling with one recirculation loop available, resulting in a more severe cladding heatup during a LOCA.

The APLHGR satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

The APLHGR limits specified in the COLR are the result of the fuel design, DBA, and transient analyses. For two recirculation loops operating, the limit is determined by multiplying the smaller of the MAPFAC_p and MAPFAC_r factors times the exposure dependent APLHGR limits. With only one recirculation loop in operation, in conformance with the requirements of LCO 3.4.1, "Recirculation Loops Operating," the limit is determined by multiplying the exposure dependent APLHGR limit by the smaller of either MAPFAC_p, MAPFAC_r, and 0.75, where 0.75 has been determined by a specific single recirculation loop analysis (Ref. 5).

APPLICABILITY

The APLHGR limits are primarily derived from fuel design evaluations and LOCA and transient analyses that are assumed to occur at high power levels. Design calculations (Ref. 7) and operating experience have shown that as power is reduced, the margin to the required APLHGR limits increases. This trend continues down to the power range of 5% to 15% RTP when entry into MODE 2 occurs. When in MODE 2, the intermediate range monitor scram function provides prompt scram initiation during any significant transient, thereby effectively removing any APLHGR limit compliance concern in MODE 2. Therefore, at THERMAL POWER levels ≤ 25% RTP, the reactor is operating with substantial margin to the APLHGR limits; thus, this LCO is not required.
BASES

ACTIONS

A.1

If any APLHGR exceeds the required limits, an assumption regarding an initial condition of the DBA and transient analyses may not be met. Therefore, prompt action should be taken to restore the APLHGR(s) to within the required limits such that the plant operates within analyzed conditions and within design limits of the fuel rods. The 2 hour Completion Time is sufficient to restore the APLHGR(s) to within its limits and is acceptable based on the low probability of a transient or DBA occurring simultaneously with the APLHGR out of specification.

B.1

If the APLHGR cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to in a MODE or other specified condition in which the LCO does not apply. To achieve this status, THERMAL POWER must be reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER to < 25% RTP in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.2.1.1

APLHGRs are required to be initially calculated within 12 hours after THERMAL POWER is ≥ 25% RTP and periodically thereafter. They are compared to the specified limits in the COLR to ensure that the reactor is operating within the assumptions of the safety analysis. The 12 hour allowance after THERMAL POWER ≥ 25% RTP is achieved is acceptable given the large inherent margin to operating limits at low power levels. [The 24 hour Frequency is based on both engineering judgment and recognition of the slowness of changes in power distribution during normal operation.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

[]
BASES

REFERENCES

1. NEDO-24011-P-A "General Electric Standard Application for Reactor Fuel" (latest approved version).

2. FSAR, Chapter [4].

3. FSAR, Chapter [6].

4. FSAR, Chapter [15].

5. [Plant specific single loop operation].

6. [Plant specific load line limit analysis].

7. [Plant Specific Average Power Range Monitor, Rod Block Monitor and Technical Specification Improvements (ARTS) Program].

10. [Plant specific loss of coolant accident analysis].
B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.2 MINIMUM CRITICAL POWER RATIO (MCPR)

BASES

BACKGROUND

MCPR is a ratio of the fuel assembly power that would result in the onset of boiling transition to the actual fuel assembly power. The operating limit MCPR is established to ensure that no fuel damage results during anticipated operational occurrences (AOOs), and that 99.9% of the fuel rods are not susceptible to boiling transition if the limit is not violated. Although fuel damage does not necessarily occur if a fuel rod actually experienced boiling transition (Ref. 1), the critical power at which boiling transition is calculated to occur has been adopted as a fuel design criterion.

The onset of transition boiling is a phenomenon that is readily detected during the testing of various fuel bundle designs. Based on these experimental data, correlations have been developed to predict critical bundle power (i.e., the bundle power level at the onset of transition boiling) for a given set of plant parameters (e.g., reactor vessel pressure, flow, and subcooling). Because plant operating conditions and bundle power levels are monitored and determined relatively easily, monitoring the MCPR is a convenient way of ensuring that fuel failures due to inadequate cooling do not occur.

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in evaluating the AOOs to establish the operating limit MCPR are presented in References 2, 3, 4, 5, 6, 7, and 8. To ensure that the MCPR Safety Limit (SL) is not exceeded during any transient event that occurs with moderate frequency, limiting transients have been analyzed to determine the largest reduction in critical power ratio (CPR). The types of transients evaluated are loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease. The limiting transient yields the largest change in CPR (ΔCPR). When the largest ΔCPR is combined with the [SL] MCPR[99.9%], the required operating limit MCPR is obtained.

[MCPR99.9%] is determined to ensure more than 99.9% of the fuel rods in the core are not susceptible to boiling transition using a statistical model that combines all the uncertainties in operating parameters and the procedures used to calculate critical power. The probability of the occurrence of boiling transition is determined using the approved Critical
APPLICABLE SAFETY ANALYSES (continued)

Power correlations. Details of the MCPR_{99.9\%} calculation are given in Reference 2. Reference 2 also includes a tabulation of the uncertainties and the nominal values of the parameters used in the MCPR_{99.9\%} statistical analysis.

The MCPR operating limits are derived from [the MCPR_{99.9\%} value and] the transient analysis, and are dependent on the operating core flow and power state (MCPR_f and MCPR_p, respectively) to ensure adherence to fuel design limits during the worst transient that occurs with moderate frequency (Refs. 6, 7, and 8). Flow dependent MCPR limits are determined by steady state thermal hydraulic methods with key physics response inputs benchmarked using the three dimensional BWR simulator code (Ref. 9) to analyze slow flow runout transients. The operating limit is dependent on the maximum core flow limiter setting in the Recirculation Flow Control System.

Power dependent MCPR limits (MCPR_p) are determined by approved transient analysis models (Ref. 10). Due to the sensitivity of the transient response to initial core flow levels at power levels below those at which the turbine stop valve closure and turbine control valve fast closure scrams are bypassed, high and low flow MCPR_p operating limits are provided for operating between 25\% RTP and the previously mentioned bypass power level.

The MCPR satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO The MCPR operating limits specified in the COLR [(MCPR_{99.9\%} value, MCPR_f values, and MCPR_p values)] are the result of the Design Basis Accident (DBA) and transient analysis. The operating limit MCPR is determined by the larger of the MCPR_f and MCPR_p limits[, which are based on the MCPR_{99.9\%} limit specified in the COLR.]

APPLICABILITY The MCPR operating limits are primarily derived from transient analyses that are assumed to occur at high power levels. Below 25\% RTP, the reactor is operating at a minimum recirculation pump speed and the moderator void ratio is small. Surveillance of thermal limits below 25\% RTP is unnecessary due to the large inherent margin that ensures that the MCPR SL is not exceeded even if a limiting transient occurs. Statistical analyses indicate that the nominal value of the initial MCPR expected at 25\% RTP is > 3.5. Studies of the variation of limiting transient behavior have been performed over the range of power and flow conditions. These studies encompass the range of key actual plant conditions.
parameter values important to typically limiting transients. The results of these studies demonstrate that a margin is expected between performance and the MCPR requirements, and that margins increase as power is reduced to 25% RTP. This trend is expected to continue to the 5% to 15% power range when entry into MODE 2 occurs. When in MODE 2, the intermediate range monitor provides rapid scram initiation for any significant power increase transient, which effectively eliminates any MCPR compliance concern. Therefore, at THERMAL POWER levels < 25% RTP, the reactor is operating with substantial margin to the MCPR limits and this LCO is not required.

ACTIONS

A.1

If any MCPR is outside the required limits, an assumption regarding an initial condition of the design basis transient analyses may not be met. Therefore, prompt action should be taken to restore the MCPR(s) to within the required limits such that the plant remains operating within analyzed conditions. The 2 hour Completion Time is normally sufficient to restore the MCPR(s) to within its limits and is acceptable based on the low probability of a transient or DBA occurring simultaneously with the MCPR out of specification.

B.1

If the MCPR cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, THERMAL POWER must be reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER to < 25% RTP in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.2.2.1

The MCPR is required to be initially calculated within 12 hours after THERMAL POWER is ≥ 25% RTP and periodically thereafter. It is compared to the specified limits in the COLR to ensure that the reactor is operating within the assumptions of the safety analysis. The 12 hour allowance after THERMAL POWER ≥ 25% RTP is achieved is acceptable given the large inherent margin to operating limits at low power levels. [The 24 hour Frequency is based on both engineering judgment and recognition of the slowness of changes in power distribution during normal operation.
SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER'S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.2.2.2

Because the transient analysis takes credit for conservatism in the scram speed performance, it must be demonstrated that the specific scram speed distribution is consistent with that used in the transient analysis. SR 3.2.2.2 determines the value of \(\tau \), which is a measure of the actual scram speed distribution compared with the assumed distribution. The MCPR operating limit is then determined based on an interpolation between the applicable limits for Option A (scram times of LCO 3.1.4, "Control Rod Scram Times") and Option B (realistic scram times) analyses. The parameter \(\tau \) must be determined once within 72 hours after each set of scram time tests required by SR 3.1.4.1, SR 3.1.4.2, and SR 3.1.4.4 because the effective scram speed distribution may change during the cycle or after maintenance that could affect scram times. The 72 hour Completion Time is acceptable due to the relatively minor changes in \(\tau \) expected during the fuel cycle.

REFERENCES

3. FSAR, Chapter [4].
4. FSAR, Chapter [6].
REFERENCES (continued)

5. FSAR, Chapter [15].

6. [Plant specific single loop operation].

7. [Plant specific load line limit analysis].

8. [Plant specific Average Power Range Monitor, Rod Block Monitor and Technical Specification Improvements (ARTS) Program].

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.3 LINEAR HEAT GENERATION RATE (LHGR) (Optional)

BASES

BACKGROUND
The LHGR is a measure of the heat generation rate of a fuel rod in a fuel assembly at any axial location. Limits on LHGR are specified to ensure that fuel design limits are not exceeded anywhere in the core during normal operation, including anticipated operational occurrences (AOOs). Exceeding the LHGR limit could potentially result in fuel damage and subsequent release of radioactive materials. Fuel design limits are specified to ensure that fuel system damage, fuel rod failure, or inability to cool the fuel does not occur during the anticipated operating conditions identified in Reference 1.

APPLICABLE SAFETY ANALYSES
The analytical methods and assumptions used in evaluating the fuel system design are presented in References 1 and 2. The fuel assembly is designed to ensure (in conjunction with the core nuclear and thermal hydraulic design, plant equipment, instrumentation, and protection system) that fuel damage will not result in the release of radioactive materials in excess of the guidelines of 10 CFR, Parts 20, 50, and 100. The mechanisms that could cause fuel damage during operational transients and that are considered in fuel evaluations are:

a. Rupture of the fuel rod cladding caused by strain from the relative expansion of the UO$_2$ pellet and

b. Severe overheating of the fuel rod cladding caused by inadequate cooling.

A value of [1%] plastic strain of the fuel cladding has been defined as the limit below which fuel damage caused by overstraining of the fuel cladding is not expected to occur (Ref. 3).

Fuel design evaluations have been performed and demonstrate that the [1%] fuel cladding plastic strain design limit is not exceeded during continuous operation with LHGRs up to the operating limit specified in the COLR. The analysis also includes allowances for short term transient operation above the operating limit to account for AOOs, plus an allowance for densification power spiking.

The LHGR satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
BASES

| LCO | The LHGR is a basic assumption in the fuel design analysis. The fuel has been designed to operate at rated core power with sufficient design margin to the LHGR calculated to cause a 1% fuel cladding plastic strain. The operating limit to accomplish this objective is specified in the COLR. |

APPLICABILITY

The LHGR limits are derived from fuel design analysis that is limiting at high power level conditions. At core thermal power levels < 25% RTP, the reactor is operating with a substantial margin to the LHGR limits and, therefore, the Specification is only required when the reactor is operating at ≥ 25% RTP.

ACTIONS

A.1

If any LHGR exceeds its required limit, an assumption regarding an initial condition of the fuel design analysis is not met. Therefore, prompt action should be taken to restore the LHGR(s) to within its required limits such that the plant is operating within analyzed conditions. The 2 hour Completion Time is normally sufficient to restore the LHGR(s) to within its limits and is acceptable based on the low probability of a transient or Design Basis Accident occurring simultaneously with the LHGR out of specification.

B.1

If the LHGR cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, THERMAL POWER is reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER TO < 25% RTP in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.2.3.1

The LHGR is required to be initially calculated within 12 hours after THERMAL POWER is ≥ 25% RTP and periodically thereafter. It is compared to the specified limits in the COLR to ensure that the reactor is operating within the assumptions of the safety analysis. The 12 hour allowance after THERMAL POWER ≥ 25% RTP is achieved is acceptable given the large inherent margin to operating limits at lower power levels. The 24 hour Frequency is based on both engineering judgment and recognition of the slow changes in power distribution during normal operation.
SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [].

2. FSAR, Section [].

3. NUREG-0800, Section II.A.2(g), Revision 2, July 1981.
B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.4 Average Power Range Monitor (APRM) Gain and Setpoints (Optional)

BASES

BACKGROUND

The OPERABILITY of the APRMs and their setpoints is an initial condition of all safety analyses that assume rod insertion upon reactor scram. Applicable GDCs are GDC 10, "Reactor Design," GDC 13, "Instrumentation and Control," GDC 20, "Protection System Functions," and GDC 23, "Protection against Anticipated Operation Occurrences" (Ref. 1). This LCO is provided to require the APRM gain or APRM flow biased scram setpoints to be adjusted when operating under conditions of excessive power peaking to maintain acceptable margin to the fuel cladding integrity Safety Limit (SL) and the fuel cladding 1% plastic strain limit.

The condition of excessive power peaking is determined by the ratio of the actual power peaking to the limiting power peaking at RTP. This ratio is equal to the ratio of the core limiting MFLPD to the Fraction of RTP (FRTP), where FRTP is the measured THERMAL POWER divided by the RTP. Excessive power peaking exists when:

\[
\frac{MFLPD}{FRTP} > 1,
\]

indicating that MFLPD is not decreasing proportionately to the overall power reduction, or conversely, that power peaking is increasing. To maintain margins similar to those at RTP conditions, the excessive power peaking is compensated by a gain adjustment on the APRMs or adjustment of the APRM setpoints. Either of these adjustments has effectively the same result as maintaining MFLPD less than or equal to FRTP and thus maintains RTP margins for APLHGR and MCPR.

The normally selected APRM setpoints position the scram above the upper bound of the normal power/flow operating region that has been considered in the design of the fuel rods. The setpoints are flow biased with a slope that approximates the upper flow control line, such that an approximately constant margin is maintained between the flow biased trip level and the upper operating boundary for core flows in excess of about 45% of rated core flow. In the range of infrequent operations below 45% of rated core flow, the margin to scram is reduced because of the nonlinear core flow versus drive flow relationship. The normally selected APRM setpoints are supported by the analyses presented in References 1 and 2 that concentrate on events initiated from rated conditions. Design experience has shown that minimum deviations occur within expected margins to operating limits (APLHGR and MCPR), at
Bases

Background (continued)

Rated conditions for normal power distributions. However, at other than rated conditions, control rod patterns can be established that significantly reduce the margin to thermal limits. Therefore, the flow biased APRM scram setpoints may be reduced during operation when the combination of THERMAL POWER and MFLPD indicates an excessive power peaking distribution.

The APRM neutron flux signal is also adjusted to more closely follow the fuel cladding heat flux during power transients. The APRM neutron flux signal is a measure of the core thermal power during steady state operation. During power transients, the APRM signal leads the actual core thermal power response because of the fuel thermal time constant. Therefore, on power increase transients, the APRM signal provides a conservatively high measure of core thermal power. By passing the APRM signal through an electronic filter with a time constant less than, but approximately equal to, that of the fuel thermal time constant, an APRM transient response that more closely follows actual fuel cladding heat flux is obtained, while a conservative margin is maintained. The delayed response of the filtered APRM signal allows the flow biased APRM scram levels to be positioned closer to the upper bound of the normal power and flow range, without unnecessarily causing reactor scrams during short duration neutron flux spikes. These spikes can be caused by insignificant transients such as performance of main steam line valve surveillances or momentary flow increases of only several percent.

Applicable Safety Analyses

The acceptance criteria for the APRM gain or setpoint adjustments are that acceptable margins (to APLHGR and MCPR) be maintained to the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit.

FSAR safety analyses (Refs. 2 and 3) concentrate on the rated power condition for which the minimum expected margin to the operating limits (APLHGR and MCPR) occurs. LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)," limit the initial margins to these operating limits at rated conditions so that specified acceptable fuel design limits are met during transients initiated from rated conditions. At initial power levels less than rated levels, the margin degradation of either the APLHGR or the MCPR during a transient can be greater than at the rated condition event. This greater margin degradation during the transient is primarily offset by the larger initial margin to limits at the lower than rated power levels. However, power distributions can be hypothesized that would result in reduced margins to the pre-transient operating limit. When combined with the increased severity of certain transients at other than rated conditions, the SLs could be approached. At substantially reduced power levels, highly peaked power distributions
APRM Gain and Setpoints (Optional)

B 3.2.4

BASES

APPLICABLE SAFETY ANALYSES (continued)

could be obtained that could reduce thermal margins to the minimum levels required for transient events. To prevent or mitigate such situations, either the APRM gain is adjusted upward by the ratio of the core limiting MFLPD to the FRTP, or the flow biased APRM scram level is required to be reduced by the ratio of FRTP to the core limiting MFLPD. Either of these adjustments effectively counters the increased severity of some events at other than rated conditions by proportionally increasing the APRM gain or proportionally lowering the flow biased APRM scram setpoints, dependent on the increased peaking that may be encountered.

The APRM gain and setpoints satisfy Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Meeting any one of the following conditions ensures acceptable operating margins for events described above:

a. Limiting excess power peaking,

b. Reducing the APRM flow biased neutron flux upscale scram setpoints by multiplying the APRM setpoints by the ratio of FRTP and the core limiting value of MFLPD, or

c. Increasing APRM gains to cause the APRM to read greater than 100 times MFLPD (in %). This condition is to account for the reduction in margin to the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit.

MFLPD is the ratio of the limiting LHGR to the LHGR limit for the specific bundle type. As power is reduced, if the design power distribution is maintained, MFLPD is reduced in proportion to the reduction in power. However, if power peaking increases above the design value, the MFLPD is not reduced in proportion to the reduction in power. Under these conditions, the APRM gain is adjusted upward or the APRM flow biased scram setpoints are reduced accordingly. When the reactor is operating with peaking less than the design value, it is not necessary to modify the APRM flow biased scram setpoints. Adjusting APRM gain or setpoints is equivalent to MFLPD less than or equal to FRTP, as stated in the LCO.

For compliance with LCO Item b (APRM setpoint adjustment) or Item c (APRM gain adjustment), only APRMs required to be OPERABLE per LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," are required to be adjusted. In addition, each APRM may be allowed to have its gain or setpoints adjusted independently of other APRMs that are having their gain or setpoints adjusted.
BASES

APPLICABILITY
The MFLPD limit, APRM gain adjustment, and APRM flow biased scram and associated setdowns are provided to ensure that the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit are not violated during design basis transients. As discussed in the Bases for LCO 3.2.1 and LCO 3.2.2, sufficient margin to these limits exists below 25% RTP and, therefore, these requirements are only necessary when the reactor is operating at ≥ 25% RTP.

ACTIONS

A.1

If the APRM gain or setpoints are not within limits while the MFLPD has exceeded FRTP, the margin to the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit may be reduced. Therefore, prompt action should be taken to restore the MFLPD to within its required limit or make acceptable APRM adjustments such that the plant is operating within the assumed margin of the safety analyses.

The 6 hour Completion Time is normally sufficient to restore either the MFLPD to within limits or the APRM gain or setpoints to within limits and is acceptable based on the low probability of a transient or Design Basis Accident occurring simultaneously with the LCO not met.

B.1

If MFLPD cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, THERMAL POWER is reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER to < 25% RTP in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.2.4.1 and SR 3.2.4.2

The MFLPD is required to be calculated and compared to FRTP or APRM gain or setpoints to ensure that the reactor is operating within the assumptions of the safety analysis. These SRs are only required to determine the MFLPD and, assuming MFLPD is greater than FRTP, the appropriate gain or setpoint, and is not intended to be a CHANNEL FUNCTIONAL TEST for the APRM gain or flow biased neutron flux scram circuitry. The 12 hour allowance after THERMAL POWER ≥ 25% RTP is achieved is acceptable given the large inherent margin to operating limits at low power levels.
The 24 hour Frequency of SR 3.2.4.1 is chosen to coincide with the determination of other thermal limits, specifically those for the APLHGR (LCO 3.2.1). The 24 hour Frequency is based on both engineering judgment and recognition of the slowness of changes in power distribution during normal operation. The 12 hour Frequency of SR 3.2.4.2 requires a more frequent verification than if MFLPD is less than or equal to fraction of rated power (FRP). When MFLPD is greater than FRP, more rapid changes in power distribution are typically expected.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

REFERENCES

1. 10 CFR 50, Appendix A, GDC 10, GDC 13, GDC 20, and GDC 23.

2. FSAR, Section [].

3. FSAR, Section [].
B 3.3 INSTRUMENTATION

B 3.3.1.1 Reactor Protection System (RPS) Instrumentation

BASES

BACKGROUND The RPS initiates a reactor scram when one or more monitored parameters exceed their specified limits, to preserve the integrity of the fuel cladding and the Reactor Coolant System (RCS) and minimize the energy that must be absorbed following a loss of coolant accident (LOCA). This can be accomplished either automatically or manually.

The protection and monitoring functions of the RPS have been designed to ensure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RPS, as well as LCOs on other reactor system parameters and equipment performance.

Technical Specifications are required by 10 CFR 50.36 to include LSSS for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytic Limit is the limit of the process variable at which a protective action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytic Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytic Limit to account for instrument loop uncertainties related to the setting at which the automatic protective action would actually occur.

---------------------------------REVIEWER'S NOTE---------------------------------

The term "Limiting Trip Setpoint [LTSP]" is generic terminology for the calculated trip setting (setpoint) value calculated by means of the plant specific setpoint methodology documented in a document controlled under 10 CFR 50.59. The term [LTSP] indicates that no additional margin has been added between the Analytical Limit and the calculated trip setting.

"Nominal Trip Setpoint [NTSP]" is the suggested terminology for the actual setpoint implemented in the plant surveillance procedures where margin has been added to the calculated [LTSP]. The as-found and as-left tolerances will apply to the [NTSP] implemented in the Surveillance procedures to confirm channel performance.

---------------------------------REVIEWER'S NOTE---------------------------------
LICENSEES are to insert the name of the document(s) controlled under 10 CFR 50.59 that contain the methodology for calculating the as-left and as-found tolerances in Note b of Table 3.3.1.1-1, for the phrase "[insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]" throughout the Bases.

If the [LTSP] is not included in Table 3.3.1.1-1, the plant specific location for the [LTSP] or [NTSP] must be cited in Note b of Table 3.3.1.1-1. The brackets indicate plant specific terms may apply, as reviewed and approved by the NRC.

The [Limiting Trip Setpoint (LTSP)] specified in Table 3.3.1.1-1 is a predetermined setting for a protection channel chosen to ensure automatic actuation prior to the process variable reaching the Analytical Limit and thus ensuring that the SL would not be exceeded. As such, the [LTSP] accounts for uncertainties in setting the channel (e.g., calibration), uncertainties in how the channel might actually perform (e.g., repeatability), changes in the point of action of the channel over time (e.g., drift during surveillance intervals), and any other factors which may influence its actual performance (e.g., harsh accident environments). In this manner, the [LTSP] ensures that SLs are not exceeded. Therefore, the [LTSP] meets the definition of an LSSS (Ref. 1).

Technical Specifications contain values related to the OPERABILITY of equipment required for safe operation of the facility. Operable is defined in Technical Specifications as "...being capable of performing its safety function(s)." Relying solely on the [LTSP] to define OPERABILITY in Technical Specifications would be an overly restrictive requirement if it were applied as an OPERABILITY limit for the "as-found" value of a protection channel setting during a Surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure safety. For example, an automatic protection channel with a setting that has been found to be different from the [LTSP] due to some drift of the setting may still be OPERABLE because drift is to be expected. This expected drift would have been specifically accounted for in the setpoint methodology for calculating the [LTSP] and thus the automatic protective action would still have ensured that the SL would not be exceeded with the "as-found" setting of the protection channel. Therefore, the channel would still be OPERABLE because it would have performed its safety function and the only corrective action required would be to reset the channel within the established as-left tolerance around the [LTSP] to account for further drift during the next surveillance interval. Note that,
although the channel is OPERABLE under these circumstances, the trip setpoint must be left adjusted to a value within the as-left tolerance, in accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-left criteria), and confirmed to be operating within the statistical allowances of the uncertainty terms assigned (as-found criteria).

However, there is also some point beyond which the channel may not be able to perform its function due to, for example, greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the channels and is designated as the Allowable Value.

If the actual setting (as-found setpoint) of the channel is found to be conservative with respect to the Allowable Value but is beyond the as-found tolerance band, the channel is OPERABLE but degraded. The degraded condition will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the [LTSP] (within the allowed tolerance), and evaluating the channel response. If the channel is functioning as required and expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation.

The RPS, as shown in the FSAR, Figure [] (Ref. 2), includes sensors, relays, bypass circuits, and switches that are necessary to cause initiation of a reactor scram. Functional diversity is provided by monitoring a wide range of dependent and independent parameters. The input parameters to the scram logic are from instrumentation that monitors reactor vessel water level, reactor vessel pressure, neutron flux, main steam line isolation valve position, turbine control valve (TCV) fast closure, trip oil pressure, turbine stop valve (TSV) position, drywell pressure, and scram discharge volume (SDV) water level, as well as reactor mode switch in shutdown position and manual scram signals. There are at least four redundant sensor input signals from each of these parameters (with the exception of the reactor mode switch in shutdown scram signal). Most channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs an RPS trip signal to the trip logic. Table B 3.3.1.1-1 summarizes the diversity of sensors capable of initiating scrams during anticipated operating transients typically analyzed.
The RPS is comprised of two independent trip systems (A and B) with two logic channels in each trip system (logic channels A1 and A2, B1 and B2) as shown in Reference 2. The outputs of the logic channels in a trip system are combined in a one-out-of-two logic so that either channel can trip the associated trip system. The tripping of both trip systems will produce a reactor scram. This logic arrangement is referred to as a one-out-of-two taken twice logic. Each trip system can be reset by use of a reset switch. If a full scram occurs (both trip systems trip), a relay prevents reset of the trip systems for 10 seconds after the full scram signal is received. This 10 second delay on reset ensures that the scram function will be completed.

Two scram pilot valves are located in the hydraulic control unit for each control rod drive (CRD). Each scram pilot valve is solenoid operated, with the solenoids normally energized. The scram pilot valves control the air supply to the scram inlet and outlet valves for the associated CRD. When either scram pilot valve solenoid is energized, air pressure holds the scram valves closed and, therefore, both scram pilot valve solenoids must be de-energized to cause a control rod to scram. The scram valves control the supply and discharge paths for the CRD water during a scram. One of the scram pilot valve solenoids for each CRD is controlled by trip system A, and the other solenoid is controlled by trip system B. Any trip of trip system A in conjunction with any trip in trip system B results in de-energizing both solenoids, air bleeding off, scram valves opening, and control rod scram.

The backup scram valves, which energize on a scram signal to depressurize the scram air header, are also controlled by the RPS. Additionally, the RPS System controls the SDV vent and drain valves such that when both trip systems trip, the SDV vent and drain valves close to isolate the SDV.

The actions of the RPS are assumed in the safety analyses of References 2, 3, and 4. The RPS initiates a reactor scram when monitored parameter values are exceeded to preserve the integrity of the fuel cladding, the reactor coolant pressure boundary (RCPB), and the containment by minimizing the energy that must be absorbed following a LOCA.

RPS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). Functions not specifically credited in the accident analysis are retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.
Permissive and interlock setpoints allow the blocking of trips during plant startups, and restoration of trips when the permissive conditions are not satisfied, but they are not explicitly modeled in the Safety Analyses. These permissives and interlocks ensure that the starting conditions are consistent with the safety analysis, before preventive or mitigating actions occur. Because these permissives or interlocks are only one of multiple conservative starting assumptions for the accident analysis, they are generally considered as nominal values without regard to measurement accuracy.

The OPERABILITY of the RPS is dependent on the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.1.1-1. Each Function must have a required number of OPERABLE channels per RPS trip system, with their setpoints set within the setting tolerance of the [LTSPs], where appropriate. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Each channel must also respond within its assumed response time.

Allowable Values for RPS Instrumentation Functions are specified in Table 3.3.1.1-1. [LTSPs] and the methodologies for calculation of the as-left and as-found tolerances are described in [insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirement Manual or any document incorporated into the facility FSAR]. The [LTSPs] are selected to ensure that the actual setpoints remain conservative with respect to the as-found tolerance band between successive CHANNEL CALIBRATIONS. After each calibration the trip setpoint shall be left within the as-left band around the [LTSP].

[LTSPs] are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytical limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytical limits, corrected for calibration, process, and some of the instrument errors. The [LTSPs] are then determined accounting for the remaining instrument errors (e.g., drift). The [LTSPs] derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

The OPERABILITY of scram pilot valves and associated solenoids, backup scram valves, and SDV valves, described in the Background section, are not addressed by this LCO.
The individual Functions are required to be OPERABLE in the MODES specified in the table, which may require a RPS trip to mitigate the consequences of a design basis accident or transient. To ensure a reliable scram function, a combination of functions are required in each MODE to provide primary and diverse initiation signals.

The RPS is required to be OPERABLE in MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies. Control rods withdrawn from a core cell containing no fuel assemblies do not affect the reactivity of the core and, therefore, are not required to have the capability to scram. Provided all other control rods remain inserted, the RPS function is not required. In this condition, the required SDM (LCO 3.1.1) and refuel position one-rod-out interlock (LCO 3.9.2) ensure that no event requiring RPS will occur. During normal operation in MODES 3 and 4, all control rods are fully inserted and the Reactor Mode Switch Shutdown Position control rod withdrawal block (LCO 3.3.2.1) does not allow any control rod to be withdrawn. Under these conditions, the RPS function is not required to be OPERABLE.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

Intermediate Range Monitor (IRM)

1.a. Intermediate Range Monitor Neutron Flux - High

The IRMs monitor neutron flux levels from the upper range of the source range monitor (SRM) to the lower range of the average power range monitors (APRMs). The IRMs are capable of generating trip signals that can be used to prevent fuel damage resulting from abnormal operating transients in the intermediate power range. In this power range, the most significant source of reactivity change is due to control rod withdrawal. The IRM provides diverse protection for the rod worth minimizer (RWM), which monitors and controls the movement of control rods at low power. The RWM prevents the withdrawal of an out of sequence control rod during startup that could result in an unacceptable neutron flux excursion (Ref. 3). The IRM provides mitigation of the neutron flux excursion. To demonstrate the capability of the IRM System to mitigate control rod withdrawal events, generic analyses have been performed (Ref. 4) to evaluate the consequences of control rod withdrawal events during startup that are mitigated only by the IRM. This analysis, which assumes that one IRM channel in each trip system is bypassed, demonstrates that the IRMs provide protection against local control rod withdrawal errors and results in peak fuel energy depositions below the 170 cal/gm fuel failure threshold criterion.
The IRMs are also capable of limiting other reactivity excursions during startup, such as cold water injection events, although no credit is specifically assumed.

The IRM System is divided into two groups of IRM channels, with four IRM channels inputting to each trip system. The analysis of Reference 4 assumes that one channel in each trip system is bypassed. Therefore, six channels with three channels in each trip system are required for IRM OPERABILITY to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. This trip is active in each of the 10 ranges of the IRM, which must be selected by the operator to maintain the neutron flux within the monitored level of an IRM range.

The analysis of Reference 4 has adequate conservatism to permit an IRM Allowable Value of 120 divisions of a 125 division scale.

The Intermediate Range Monitor Neutron Flux - High Function must be OPERABLE during MODE 2 when control rods may be withdrawn and the potential for criticality exists. In MODE 5, when a cell with fuel has its control rod withdrawn, the IRMs provide monitoring for and protection against unexpected reactivity excursions. In MODE 1, the APRM System and the RWM provide protection against control rod withdrawal error events and the IRMs are not required.

1.b. Intermediate Range Monitor – Inop

This trip signal provides assurance that a minimum number of IRMs are OPERABLE. Anytime an IRM mode switch is moved to any position other than "Operate," the detector voltage drops below a preset level, or when a module is not plugged in, an inoperative trip signal will be received by the RPS unless the IRM is bypassed. Since only one IRM in each trip system may be bypassed, only one IRM in each RPS trip system may be inoperative without resulting in a RPS trip signal.

This Function was not specifically credited in the accident analysis but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

Six channels of Intermediate Range Monitor - Inop with three channels in each trip system are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal.

Since this Function is not assumed in the safety analysis, there is no Allowable Value for this Function.
This Function is required to be OPERABLE when the Intermediate Range Monitor Neutron Flux - High Function is required.

Average Power Range Monitor

2.a. Average Power Range Monitor Neutron Flux - High, Setdown

The APRM channels receive input signals from the local power range monitors (LPRMs) within the reactor core to provide an indication of the power distribution and local power changes. The APRM channels average these LPRM signals to provide a continuous indication of average reactor power from a few percent to greater than RTP. For operation at low power (i.e., MODE 2), the Average Power Range Monitor Neutron Flux - High, Setdown Function is capable of generating a trip signal that prevents fuel damage resulting from abnormal operating transients in this power range. For most operation at low power levels, the Average Power Range Monitor Neutron Flux - High, Setdown Function will provide a secondary scram to the Intermediate Range Monitor Neutron Flux - High Function because of the relative setpoints. With the IRMs at Range 9 or 10, it is possible that the Average Power Range Monitor Neutron Flux - High, Setdown Function will provide the primary trip signal for a core wide increase in power.

No specific safety analyses take direct credit for the Average Power Range Monitor Neutron Flux - High, Setdown Function. However, this Function indirectly ensures that before the reactor mode switch is placed in the run position, reactor power does not exceed 25% RTP (SL 2.1.1.1) when operating at low reactor pressure and low core flow. Therefore, it indirectly prevents fuel damage during significant reactivity increases with THERMAL POWER < 25% RTP.

The APRM System is divided into two groups of channels with three APRM channel inputs to each trip system. The system is designed to allow one channel in each trip system to be bypassed. Any one APRM channel in a trip system can cause the associated trip system to trip. Four channels of Average Power Range Monitor Neutron Flux - High, Setdown with two channels in each trip system are required to be OPERABLE to ensure that no single failure will preclude a scram from this Function on a valid signal. In addition, to provide adequate coverage of the entire core, at least 11 LPRM inputs are required for each APRM channel, with at least two LPRM inputs from each of the four axial levels at which the LPRMs are located.

The Allowable Value is based on preventing significant increases in power when THERMAL POWER is < 25% RTP.
The Average Power Range Monitor Neutron Flux - High, Setdown Function must be OPERABLE during MODE 2 when control rods may be withdrawn since the potential for criticality exists. In MODE 1, the Average Power Range Monitor Neutron Flux - High Function provides protection against reactivity transients and the RWM and rod block monitor protect against control rod withdrawal error events.

2.b. Average Power Range Monitor Flow Biased Simulated Thermal Power - High

The Average Power Range Monitor Flow Biased Simulated Thermal Power - High Function monitors neutron flux to approximate the THERMAL POWER being transferred to the reactor coolant. The APRM neutron flux is electronically filtered with a time constant representative of the fuel heat transfer dynamics to generate a signal proportional to the THERMAL POWER in the reactor. The trip level is varied as a function of recirculation drive flow (i.e., at lower core flows, the setpoint is reduced proportional to the reduction in power experienced as core flow is reduced with a fixed control rod pattern) but is clamped at an upper limit that is always lower than the Average Power Range Monitor Fixed Neutron Flux - High Function Allowable Value. The Average Power Range Monitor Flow Biased Simulated Thermal Power - High Function provides protection against transients where THERMAL POWER increases slowly (such as the loss of feedwater heating event) and protects the fuel cladding integrity by ensuring that the MCPR SL is not exceeded. During these events, the THERMAL POWER increase does not significantly lag the neutron flux response and, because of a lower trip setpoint, will initiate a scram before the high neutron flux scram. For rapid neutron flux increase events, the THERMAL POWER lags the neutron flux and the Average Power Range Monitor Flow Biased Simulated Thermal Power - High Function will provide a scram signal before the Average Power Range Monitor Flow Biased Simulated Thermal Power - High Function setpoint is exceeded.

The APRM System is divided into two groups of channels with four APRM inputs to each trip system. The system is designed to allow one channel in each trip system to be bypassed. Any one APRM channel in a trip system can cause the associated trip system to trip. Four channels of Average Power Range Monitor Flow Biased Simulated Thermal Power - High with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. In addition, to provide adequate coverage of the entire core, at least 11 LPRM inputs are required for each APRM channel, with at least two LPRM inputs from each of the four axial levels at which the LPRMs are...
BASES

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

located. Each APRM channel receives two total drive flow signals representative of total core flow. The total drive flow signals are generated by four flow units, two of which supply signals to the trip system A APRMs, while the other two supply signals to the trip system B APRMs. Each flow unit signal is provided by summing up the flow signals from the two recirculation loops. To obtain the most conservative reference signals, the total flow signals from the two flow units (associated with a trip system as described above) are routed to a low auction circuit associated with each APRM. Each APRM's auction circuit selects the lower of the two flow unit signals for use as the scram trip reference for that particular APRM. Each required Average Power Range Monitor Flow Biased Simulated Thermal Power - High channel only requires an input from one OPERABLE flow unit, since the individual APRM channel will perform the intended function with only one OPERABLE flow unit input. However, in order to maintain single failure criteria for the Function, at least one required Average Power Range Monitor Flow Biased Simulated Thermal Power - High channel in each trip system must be capable of maintaining an OPERABLE flow unit signal in the event of a failure of an auction circuit, or a flow unit, in the associated trip system (e.g., if a flow unit is inoperable, one of the two required Average Power Range Monitor Flow Biased Simulated Thermal Power - High channels in the associated trip system must be considered inoperable).

The clamped Allowable Value is based on analyses that take credit for the Average Power Range Monitor Flow Biased Simulated Thermal Power - High Function for the mitigation of the loss of feedwater heating event. The THERMAL POWER time constant of <7 seconds is based on the fuel heat transfer dynamics and provides a signal proportional to the THERMAL POWER.

The Average Power Range Monitor Flow Biased Simulated Thermal Power - High Function is required to be OPERABLE in MODE 1 when there is the possibility of generating excessive THERMAL POWER and potentially exceeding the SL applicable to high pressure and core flow conditions (MCPR SL). During MODES 2 and 5, other IRM and APRM Functions provide protection for fuel cladding integrity.

2.c. Average Power Range Monitor Fixed Neutron Flux - High

The APRM channels provide the primary indication of neutron flux within the core and respond almost instantaneously to neutron flux increases. The Average Power Range Monitor Fixed Neutron Flux - High Function is capable of generating a trip signal to prevent fuel damage or excessive
RCS pressure. For the overpressurization protection analysis of Reference 5, the Average Power Range Monitor Fixed Neutron Flux - High Function is assumed to terminate the main steam isolation valve (MSIV) closure event and, along with the safety/relief valves (S/RVs), limits the peak reactor pressure vessel (RPV) pressure to less than the ASME Code limits. The control rod drop accident (CRDA) analysis (Ref. 6) takes credit for the Average Power Range Monitor Fixed Neutron Flux - High Function to terminate the CRDA.

The APRM System is divided into two groups of channels with three APRM channels inputting to each trip system. The system is designed to allow one channel in each trip system to be bypassed. Any one APRM channel in a trip system can cause the associated trip system to trip. Four channels of Average Power Range Monitor Fixed Neutron Flux - High with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. In addition, to provide adequate coverage of the entire core, at least 11 LPRM inputs are required for each APRM channel, with at least two LPRM inputs from each of the four axial levels at which the LPRMs are located.

The Allowable Value is based on the Analytical Limit assumed in the CRDA analyses.

The Average Power Range Monitor Fixed Neutron Flux - High Function is required to be OPERABLE in MODE 1 where the potential consequences of the analyzed transients could result in the SLs (e.g., MCPR and RCS pressure) being exceeded. Although the Average Power Range Monitor Fixed Neutron Flux - High Function is assumed in the CRDA analysis, which is applicable in MODE 2, the Average Power Range Monitor Neutron Flux - High, Setdown Function conservatively bounds the assumed trip and, together with the assumed IRM trips, provides adequate protection. Therefore, the Average Power Range Monitor Fixed Neutron Flux - High Function is not required in MODE 2.

2.d. Average Power Range Monitor – Downscale

This signal ensures that there is adequate Neutron Monitoring System protection if the reactor mode switch is placed in the run position prior to the APRMs coming on scale. With the reactor mode switch in run, an APRM downscale signal coincident with an associated Intermediate Range Monitor Neutron Flux - High or Inop signal generates a trip signal. This Function was not specifically credited in the accident analysis but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.
Bases

Applicable Safety Analyses, LCO, and Applicability (continued)

The APRM System is divided into two groups of channels with three inputs into each trip system. The system is designed to allow one channel in each trip system to be bypassed. Four channels of Average Power Range Monitor - Downscale with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single failure will preclude a scram from this Function on a valid signal. The Intermediate Range Monitor Neutron Flux - High and Inop Functions are also part of the OPERABILITY of the Average Power Range Monitor - Downscale Function (i.e., if either of these IRM Functions cannot send a signal to the Average Power Range Monitor - Downscale Function, the associated Average Power Range Monitor - Downscale channel is considered inoperable).

The Allowable Value is based upon ensuring that the APRMs are in the linear scale range when transfers are made between APRMs and IRMs.

This Function is required to be OPERABLE in MODE 1 since this is when the APRMs are the primary indicators of reactor power.

2.e. Average Power Range Monitor – Inop

This signal provides assurance that a minimum number of APRMs are OPERABLE. Anytime an APRM mode switch is moved to any position other than "Operate," an APRM module is unplugged, the electronic operating voltage is low, or the APRM has too few LPRM inputs (< 11), an inoperative trip signal will be received by the RPS, unless the APRM is bypassed. Since only one APRM in each trip system may be bypassed, only one APRM in each trip system may be inoperable without resulting in a RPS trip signal. This Function was not specifically credited in the accident analysis, but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

Four channels of Average Power Range Monitor - Inop with two channels in each trip system are required to be OPERABLE to ensure that no single failure will preclude a scram from this Function on a valid signal.

There is no Allowable Value for this Function.

This Function is required to be OPERABLE in the MODES where the APRM Functions are required.
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

3. Reactor Vessel Steam Dome Pressure - High

An increase in the RPV pressure during reactor operation compresses the steam voids and results in a positive reactivity insertion. This causes the neutron flux and THERMAL POWER transferred to the reactor coolant to increase, which could challenge the integrity of the fuel cladding and the RCPB. No specific safety analysis takes direct credit for this Function. However, the Reactor Vessel Steam Dome Pressure - High Function initiates a scram for transients that results in a pressure increase, counteracting the pressure increase by rapidly reducing core power. For the overpressurization protection analysis of Reference 5, reactor scram (the analyses conservatively assume scram on the Average Power Range Monitor Fixed Neutron Flux - High signal, not the Reactor Vessel Steam Dome Pressure - High signal), along with the S/RVs, limits the peak RPV pressure to less than the ASME Section III Code limits.

High reactor pressure signals are initiated from four pressure transmitters that sense reactor pressure. The Reactor Vessel Steam Dome Pressure - High Allowable Value is chosen to provide a sufficient margin to the ASME Section III Code limits during the event.

Four channels of Reactor Vessel Steam Dome Pressure - High Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. The Function is required to be OPERABLE in MODES 1 and 2 when the RCS is pressurized and the potential for pressure increase exists.

4. Reactor Vessel Water Level - Low, Level 3

Low RPV water level indicates the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, a reactor scram is initiated at Level 3 to substantially reduce the heat generated in the fuel from fission. The Reactor Vessel Water Level - Low, Level 3 Function is assumed in the analysis of the recirculation line break (Ref. 7). The reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the Emergency Core Cooling Systems (ECCS), ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Reactor Vessel Water Level - Low, Level 3 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.
BASES

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Four channels of Reactor Vessel Water Level - Low, Level 3 Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal.

The Reactor Vessel Water Level - Low, Level 3 Allowable Value is selected to ensure that during normal operation the separator skirts are not uncovered (this protects available recirculation pump net positive suction head (NPSH) from significant carryunder) and, for transients involving loss of all normal feedwater flow, initiation of the low pressure ECCS subsystems at Reactor Vessel Water - Low Low Low, Level 1 will not be required.

The Function is required in MODES 1 and 2 where considerable energy exists in the RCS resulting in the limiting transients and accidents. ECCS initiations at Reactor Vessel Water Level - Low Low, Level 2 and Low Low Low, Level 1 provide sufficient protection for level transients in all other MODES.

5. Main Steam Isolation Valve - Closure

MSIV closure results in loss of the main turbine and the condenser as a heat sink for the nuclear steam supply system and indicates a need to shut down the reactor to reduce heat generation. Therefore, a reactor scram is initiated on a Main Steam Isolation Valve - Closure signal before the MSIVs are completely closed in anticipation of the complete loss of the normal heat sink and subsequent overpressurization transient. However, for the overpressurization protection analysis of Reference 5, the Average Power Range Monitor Fixed Neutron Flux - High Function, along with the S/RVs, limits the peak RPV pressure to less than the ASME Code limits. That is, the direct scram on position switches for MSIV closure events is not assumed in the overpressurization analysis. Additionally, MSIV closure is assumed in the transients analyzed in Reference 8 (e.g., low steam line pressure, manual closure of MSIVs, high steam line flow). The reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the ECCS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

MSIV closure signals are initiated from position switches located on each of the eight MSIVs. Each MSIV has two position switches; one inputs to RPS trip system A while the other inputs to RPS trip system B. Each inboard and outboard MSIV inputs to a main steam line channel in each trip system, and each of the two trip logics within each RPS trip system receive parallel inputs from two of the four main steam lines. Thus, each
RPS Instrumentation
B 3.3.1.1

BASES

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

RPS trip system receives an input from eight Main Steam Isolation Valve - Closure channels, each consisting of one position switch. The logic for the Main Steam Isolation Valve - Closure Function is arranged such that either the inboard or outboard valve on both of the main steam lines in one of the two trip logics in each RPS trip system must close in order for a scram to occur.

The Main Steam Isolation Valve - Closure Allowable Value is specified to ensure that a scram occurs prior to a significant reduction in steam flow, thereby reducing the severity of the subsequent pressure transient.

Sixteen channels of the Main Steam Isolation Valve - Closure Function, with eight channels in each trip system, are required to be OPERABLE to ensure that no single instrument failure will preclude the scram from this Function on a valid signal. This Function is only required in MODE 1 since, with the MSIVs open and the heat generation rate high, a pressurization transient can occur if the MSIVs close. In MODE 2, the heat generation rate is low enough so that the other diverse RPS functions provide sufficient protection.

6. Drywell Pressure - High

High pressure in the drywell could indicate a break in the RCPB. A reactor scram is initiated to minimize the possibility of fuel damage and to reduce the amount of energy being added to the coolant and the drywell. The Drywell Pressure - High Function is a secondary scram signal to Reactor Vessel Water Level - Low, Level 3 for LOCA events inside the drywell. However, no credit is taken for a scram initiated from this Function for any of the DBAs analyzed in the FSAR. This Function was not specifically credited in the accident analysis, but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

High drywell pressure signals are initiated from four pressure transmitters that sense drywell pressure. The Allowable Value was selected to be as low as possible and indicative of a LOCA inside primary containment.

Four channels of Drywell Pressure - High Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. The Function is required in MODES 1 and 2 where considerable energy exists in the RCS, resulting in the limiting transients and accidents.
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

7a, 7b. Scram Discharge Volume Water Level – High

The SDV receives the water displaced by the motion of the CRD pistons during a reactor scram. Should this volume fill to a point where there is insufficient volume to accept the displaced water, control rod insertion would be hindered. Therefore, a reactor scram is initiated while the remaining free volume is still sufficient to accommodate the water from a full core scram. The two types of Scram Discharge Volume Water Level - High Functions are an input to the RPS logic. No credit is taken for a scram initiated from these Functions for any of the design basis accidents or transients analyzed in the FSAR. However, they are retained to ensure the RPS remains OPERABLE.

SDV water level is measured by two diverse methods. The level in each of the two SDVs is measured by two float type level switches and two thermal probes for a total of eight level signals. The outputs of these devices are arranged so that there is a signal from a level switch and a thermal probe to each RPS logic channel. The level measurement instrumentation satisfies the recommendations of Reference 9.

The Allowable Value is chosen low enough to ensure that there is sufficient volume in the SDV to accommodate the water from a full scram.

Four channels of each type of Scram Discharge Volume Water Level - High Function, with two channels of each type in each trip system, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from these Functions on a valid signal. These Functions are required in MODES 1 and 2, and in MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are the MODES and other specified conditions when control rods are withdrawn. At all other times, this Function may be bypassed.

8. Turbine Stop Valve - Closure

Closure of the TSVs results in the loss of a heat sink that produces reactor pressure, neutron flux, and heat flux transients that must be limited. Therefore, a reactor scram is initiated at the start of TSV closure in anticipation of the transients that would result from the closure of these valves. The Turbine Stop Valve - Closure Function is the primary scram signal for the turbine trip event analyzed in Reference 8. For this event, the reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the End of Cycle Recirculation Pump Trip (EOC-RPT) System, ensures that the MCPR SL is not exceeded.
Turbine Stop Valve - Closure signals are initiated from position switches located on each of the four TSVs. Two independent position switches are associated with each stop valve. One of the two switches provides input to RPS trip system A; the other, to RPS trip system B. Each of the two trip logics within each RPS trip system receives parallel inputs from two of the four turbine stop valves. Thus, each RPS trip system receives an input from four Turbine Stop Valve - Closure channels, each consisting of one position switch. The logic for the Turbine Stop Valve - Closure Function is such that two TSVs in one of the two trip logics in each RPS trip system must close to produce a scram. This Function must be enabled at THERMAL POWER ≥ 30% RTP. This is normally accomplished automatically by pressure transmitters sensing turbine first stage pressure; therefore, to consider this Function OPERABLE, the turbine bypass valves must remain shut at THERMAL POWER ≥ 30% RTP.

The Turbine Stop Valve - Closure Allowable Value is selected to be high enough to detect imminent TSV closure, thereby reducing the severity of the subsequent pressure transient.

Eight channels of Turbine Stop Valve - Closure Function, with four channels in each trip system, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. This Function is required, consistent with analysis assumptions, whenever THERMAL POWER is ≥ 30% RTP. This Function is not required when THERMAL POWER is < 30% RTP since the Reactor Vessel Steam Dome Pressure - High and the Average Power Range Monitor Fixed Neutron Flux - High Functions are adequate to maintain the necessary safety margins.

9. Turbine Control Valve Fast Closure, Trip Oil Pressure - Low

Fast closure of the TCVs results in the loss of a heat sink that produces reactor pressure, neutron flux, and heat flux transients that must be limited. Therefore, a reactor scram is initiated on TCV fast closure in anticipation of the transients that would result from the closure of these valves. The Turbine Control Valve Fast Closure, Trip Oil Pressure - Low Function is the primary scram signal for the generator load rejection event analyzed in Reference 8. For this event, the reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the EOC-RPT System, ensures that the MCPR SL is not exceeded.

Turbine Control Valve Fast Closure, Trip Oil Pressure - Low signals are initiated by the electrohydraulic control (EHC) fluid pressure at each control valve. One pressure transmitter is associated with each control valve, and the signal from each transmitter is assigned to a separate RPS
logic channel. This Function must be enabled at THERMAL POWER \(\geq 30\% \) RTP. This is normally accomplished automatically by pressure transmitters sensing turbine first stage pressure; therefore, to consider this Function OPERABLE, the turbine bypass valves must remain shut at THERMAL POWER \(\geq 30\% \) RTP.

The Turbine Control Valve Fast Closure, Trip Oil Pressure - Low Allowable Value is selected high enough to detect imminent TCV fast closure.

Four channels of Turbine Control Valve Fast Closure, Trip Oil Pressure - Low Function with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. This Function is required, consistent with the analysis assumptions, whenever THERMAL POWER is \(\geq 30\% \) RTP. This Function is not required when THERMAL POWER is \(< 30\% \) RTP, since the Reactor Vessel Steam Dome Pressure - High and the Average Power Range Monitor Fixed Neutron Flux - High Functions are adequate to maintain the necessary safety margins.

10. Reactor Mode Switch - Shutdown Position

The Reactor Mode Switch - Shutdown Position Function provides signals, via the manual scram logic channels, to each of the four RPS logic channels, which are redundant to the automatic protective instrumentation channels and provide manual reactor trip capability. This Function was not specifically credited in the accident analysis, but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

The reactor mode switch is a single switch with four channels, each of which provides input into one of the RPS logic channels.

There is no Allowable Value for this Function, since the channels are mechanically actuated based solely on reactor mode switch position.

Four channels of Reactor Mode Switch - Shutdown Position Function, with two channels in each trip system, are available and required to be OPERABLE. The Reactor Mode Switch - Shutdown Position Function is required to be OPERABLE in MODES 1 and 2, and MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are the MODES and other specified conditions when control rods are withdrawn.
BASES

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

11. Manual Scram

The Manual Scram push button channels provide signals, via the manual scram logic channels, to each of the four RPS logic channels, which are redundant to the automatic protective instrumentation channels and provide manual reactor trip capability. This Function was not specifically credited in the accident analysis but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

There is one Manual Scram push button channel for each of the four RPS logic channels. In order to cause a scram it is necessary that at least one channel in each trip system be actuated.

There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the push buttons.

Four channels of Manual Scram with two channels in each trip system arranged in a one-out-of-two logic are available and required to be OPERABLE in MODES 1 and 2, and in MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are the MODES and other specified conditions when control rods are withdrawn.

ACTIONS

----------------------------------- REVIEWER’S NOTE -----------------------------------

Certain LCO Completion Times are based on approved topical reports. In order for a licensee to use the times, the licensee must justify the Completion Times as required by the staff Safety Evaluation Report (SER) for the topical report.

A Note has been provided to modify the ACTIONS related to RPS instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable RPS instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable RPS instrumentation channel.
A.1 and A.2

Because of the diversity of sensors available to provide trip signals and the redundancy of the RPS design, an allowable out of service time of 12 hours has been shown to be acceptable (Ref. 10) to permit restoration of any inoperable channel to OPERABLE status. However, this out of service time is only acceptable provided the associated Function's inoperable channel is in one trip system and the Function still maintains RPS trip capability (refer to Required Actions B.1, B.2, and C.1 Bases). [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel or the associated trip system must be placed in the tripped condition per Required Actions A.1 and A.2. Placing the inoperable channel in trip (or the associated trip system in trip) would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternatively, if it is not desired to place the channel (or trip system) in trip (e.g., as in the case where placing the inoperable channel in trip would result in a full scram), Condition D must be entered and its Required Action taken.

B.1 and B.2

Condition B exists when, for any one or more Functions, at least one required channel is inoperable in each trip system. In this condition, provided at least one channel per trip system is OPERABLE, the RPS still maintains trip capability for that Function, but cannot accommodate a single failure in either trip system.

Required Actions B.1 and B.2 limit the time the RPS scram logic, for any Function, would not accommodate single failure in both trip systems (e.g., one-out-of-one and one-out-of-one arrangement for a typical four channel Function). The reduced reliability of this logic arrangement was not evaluated in Reference 10 for the 12 hour Completion Time. Within the 6 hour allowance, the associated Function will have all required channels OPERABLE or in trip (or any combination) in one trip system.

Completing one of these Required Actions restores RPS to a reliability level equivalent to that evaluated in Reference 10, which justified a 12 hour allowable out of service time as presented in Condition A. The trip system in the more degraded state should be placed in trip or, alternatively, all the inoperable channels in that trip system should be placed in trip (e.g., a trip system with two inoperable channels could be in
a more degraded state than a trip system with four inoperable channels if the two inoperable channels are in the same Function while the four inoperable channels are all in different Functions. The decision of which trip system is in the more degraded state should be based on prudent judgment and take into account current plant conditions (i.e., what MODE the plant is in). If this action would result in a scram or RPT, it is permissible to place the other trip system or its inoperable channels in trip.

The 6 hour Completion Time is judged acceptable based on the remaining capability to trip, the diversity of the sensors available to provide the trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of a scram. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

Alternately, if it is not desired to place the inoperable channels (or one trip system) in trip (e.g., as in the case where placing the inoperable channel or associated trip system in trip would result in a scram [or RPT]), Condition D must be entered and its Required Action taken.

C.1

Required Action C.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same trip system for the same Function result in the Function not maintaining RPS trip capability. A Function is considered to be maintaining RPS trip capability when sufficient channels are OPERABLE or in trip (or the associated trip system is in trip), such that both trip systems will generate a trip signal from the given Function on a valid signal. For the typical Function with one-out-of-two taken twice logic and the IRM and APRM Functions, this would require both trip systems to have one channel OPERABLE or in trip (or the associated trip system in trip). For Function 5 (Main Steam Isolation Valve - Closure), maintaining RPS trip capability would require at least one trip system logic in both trip systems to have each channel associated with the MSIVs in two main steam lines (at least three different main steam lines total for both trip systems) OPERABLE or in trip (or the associated trip system in trip).

For Function 8 (Turbine Stop Valve - Closure), maintaining RPS trip capability would require at least one trip system logic in both trip systems to have two channels (at least three different turbine stop valves total for both trip systems) OPERABLE or in trip (or the associated trip system in trip).
The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

D.1

Required Action D.1 directs entry into the appropriate Condition referenced in Table 3.3.1.1-1. The applicable Condition specified in the Table is Function and MODE or other specified condition dependent and may change as the Required Action of a previous Condition is completed. Each time an inoperable channel has not met any Required Action of Condition A, B, or C and the associated Completion Time has expired, Condition D will be entered for that channel and provides for transfer to the appropriate subsequent Condition.

E.1, F.1, and G.1

If the channel(s) is not restored to OPERABLE status or placed in trip (or the associated trip system placed in trip) within the allowed Completion Time, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. The allowed Completion Times are reasonable, based on operating experience, to reach the specified condition from full power conditions in an orderly manner and without challenging plant systems. In addition, the Completion Time of Required Action E.1 is consistent with the Completion Time provided in LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)."

H.1

If the channel(s) is not restored to OPERABLE status or placed in trip (or the associated trip system placed in trip) within the allowed Completion Time, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. This is done by immediately initiating action to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and are, therefore, not required to be inserted. Action must continue until all insertable control rods in core cells containing one or more fuel assemblies are fully inserted.
Certain Frequencies are based on approved topical reports. In order for a licensee to use these Frequencies, the licensee must justify the Frequencies as required by the staff SER for the topical report.

Notes a and b are applied to the setpoint verification Surveillances for each RTS instrumentation Function in Table 3.3.1.1-1 unless one or more of the following exclusions apply:

1. Manual actuation circuits, automatic actuation logic circuits or instrument functions that derive input from contacts which have no associated sensor or adjustable device, e.g., limit switches, breaker position switches, manual actuation switches, float switches, proximity detectors, etc. are excluded. In addition, those permissives and interlocks that derive input from a sensor or adjustable device that is tested as part of another TS function are excluded.

2. Settings associated with safety relief valves are excluded. The performance of these components is already controlled (i.e., trended with as-left and as-found limits) under the ASME Code for Operation and Maintenance of Nuclear Power Plants testing program.

3. Functions and Surveillance Requirements which test only digital components are normally excluded. There is no expected change in result between SR performances for these components. Where separate as-left and as-found tolerance is established for digital component SRs, the requirements would apply.

As noted at the beginning of the SRs, the SRs for each RPS instrument Function are located in the SRs column of Table 3.3.1.1-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains RPS trip capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 4) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the RPS will trip when necessary.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.1.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift on one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

The agreement criteria includes an expectation of one decade of overlap when transitioning between neutron flux instrumentation. The overlap between SRMs and IRMs must be demonstrated prior to withdrawing SRMs from the fully inserted position since indication is being transitioned from the SRMs to the IRMs. This will ensure that reactor power will not be increased into a neutron flux region without adequate indication. The overlap between IRMs and APRMs is of concern when reducing power into the IRM range (entry into MODE 2 from MODE 1). On power increases, the system design will prevent further increases (by initiating a rod block) if adequate overlap is not maintained. Overlap between IRMs and APRMs exists when sufficient IRMs and APRMs concurrently have onscale readings such that the transition between MODE 1 and MODE 2 can be made without either APRM downsacle rod block or IRM upscale rod block. Overlap between SRMs and IRMs similarly exists when, prior to withdrawing the SRMs from the fully inserted position, IRMs are above mid-scale on Range 1 before SRMs have reached the upscale rod block.

If overlap for a group of channels is not demonstrated (e.g., IRM/APRM overlap), the reason for the failure of the Surveillance should be determined and the appropriate channels(s) declared inoperable. Only those appropriate channels that are required in the current MODE or condition should be declared inoperable.

[The Frequency of 12 hours is based upon operating experience that demonstrates channel failure is rare.]
SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.1.1.2

To ensure that the APRMs are accurately indicating the true core average power, the APRMs are adjusted to the reactor power calculated from a heat balance if the heat balance calculated reactor power exceeds the APRM channel output by more than 2% RTP. If the heat balance calculated reactor power exceeds the APRM channel output by more than 2% RTP, the APRM is not declared inoperable, but must be adjusted consistent with the heat balance calculated power. If the APRM channel output cannot be properly adjusted, the channel is declared inoperable.

This Surveillance does not preclude making APRM channel adjustments, if desired, when the heat balance calculated reactor power is less than the APRM channel output. To provide close agreement between the APRM indicated power and to preserve operating margin, the APRM channels are normally adjusted to within +/-2% of the heat balance calculated reactor power [plus any gain adjustment required by LCO 3.2.4, "Average Power Range Monitor (APRM Setpoints)"]. However, this agreement is not required for OPERABILITY when APRM output indicates a higher reactor power than the heat balance calculated reactor power.

[The Frequency of once per 7 days is based on minor changes in LPRM sensitivity, which could affect the APRM reading between performances of SR 3.3.1.1.6.

OR
SURVEILLANCE REQUIREMENTS (continued)

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

A restriction to satisfying this SR when < 25% RTP is provided that requires the SR to be met only at ≥ 25% RTP because it is difficult to accurately maintain APRM indication of core THERMAL POWER consistent with a heat balance when < 25% RTP. At low power levels, a high degree of accuracy is unnecessary because of the large, inherent margin to thermal limits (MCPR and APLHGR). At ≥ 25% RTP, the Surveillance is required to have been satisfactorily performed in accordance with SR 3.0.2. A Note is provided which allows an increase in THERMAL POWER above 25% if the Frequency is not met per SR 3.0.2. In this event, the SR must be performed within 12 hours after reaching or exceeding 25% RTP. Twelve hours is based on operating experience and in consideration of providing a reasonable time in which to complete the SR.

SR 3.3.1.1.3

The Average Power Range Monitor Flow Biased Simulated Thermal Power - High Function uses the recirculation loop drive flows to vary the trip setpoint. This SR ensures that the total loop drive flow signals from the flow unit used to vary the setpoint are appropriately compared to a calibrated flow signal and, therefore, the APRM Function accurately reflects the required setpoint as a function of flow. Each flow signal from the respective flow unit must be ≤ 105% of the calibrated flow signal. If the flow unit signal is not within the limit, the APRMs that receive an input from the inoperable flow unit must be declared inoperable.

[The Frequency of 7 days is based on engineering judgment, operating experience, and the reliability of this instrumentation.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.1.1.4

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

As noted, SR 3.3.1.1.4 is not required to be performed when entering MODE 2 from MODE 1, since testing of the MODE 2 required IRM and APRM Functions cannot be performed in MODE 1 without utilizing jumpers, lifted leads, or movable links. This allows entry into MODE 2 if the Frequency is not met per SR 3.0.2. In this event, the SR must be performed within 12 hours after entering MODE 2 from MODE 1. Twelve hours is based on operating experience and in consideration of providing a reasonable time in which to complete the SR.

[A Frequency of 7 days provides an acceptable level of system average unavailability over the Frequency interval and is based on reliability analysis (Ref. 10).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.1.1.5

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended Function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. In accordance with Reference 10, the scram contacts must be tested as part of the Manual Scram Function. [A Frequency of 7 days provides an acceptable level of system average availability over the Frequency and is based on the reliability analysis of Reference 10. (The Manual Scram Function’s CHANNEL FUNCTIONAL TEST Frequency was credited in the analysis to extend many automatic scram Functions’ Frequencies.)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.3.1.1.6

LPRM gain settings are determined from the local flux profiles measured by the Traversing Incore Probe (TIP) System. This establishes the relative local flux profile for appropriate representative input to the APRM System. [The 1000 MWD/T Frequency is based on operating experience with LPRM sensitivity changes.]
SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

------------------------------------REVIEWER'S NOTE------------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.1.1.7 and SR 3.3.1.1.10

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology. [The 92 day Frequency of SR 3.3.1.1.7 is based on the reliability analysis of Reference 10.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

------------------------------------REVIEWER'S NOTE------------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

[The 18 month Frequency of SR 3.3.1.1.10 is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency.
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------REVIEWER’S NOTE-----------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.3.1.1.7 for Function 3.3.1.1-1.2.d is modified by two Notes as identified in Table 3.3.1.1-1. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint more conservative than the [LTSP] is used in the plant surveillance procedures [Nominal Trip Setpoint (NTSP)], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also requires that [LTSP] and the methodologies for calculating the as-left and the as-found tolerances be in [insert the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference].

SR 3.3.1.1.8

The calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.1.1-1. If the trip setting is discovered to be less conservative
than accounted for in the appropriate setpoint methodology, but is conservative with respect to the Allowable Value, the channel performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to the [LTSP] within the as-left tolerance as accounted for in the appropriate setpoint methodology.

[The Frequency of 92 days is based on the reliability analysis of Reference 10.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--- []

Numerous SR 3.3.1.1.8 functions are modified by two Notes as identified in Table 3.3.1.1-1. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint more conservative than the [LTSP] is used in the plant surveillance procedures [NTSP], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also requires that [LTSP] and the
methodologies for calculating the as-left and the as-found tolerances be in [insert the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference].

SR 3.3.1.1.9 and SR 3.3.1.1.11

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies that the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to the [LTSP] within the as-left tolerance to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

Note 1 states that neutron detectors are excluded from CHANNEL CALIBRATION because they are passive devices, with minimal drift, and because of the difficulty of simulating a meaningful signal. Changes in neutron detector sensitivity are compensated for by performing the calorimetric calibration (SR 3.3.1.1.2) and the LPRM calibration against the TIPs (SR 3.3.1.1.6). A second Note is provided that requires the APRM and IRM SRs to be performed within 12 hours of entering MODE 2 from MODE 1. Testing of the MODE 2 APRM and IRM Functions cannot be performed in MODE 1 without utilizing jumpers, lifted leads, or movable links. This Note allows entry into MODE 2 from MODE 1 if the associated Frequency is not met per SR 3.0.2. Twelve hours is based on operating experience and in consideration of providing a reasonable time in which to complete the SR.

[The Frequency of SR 3.3.1.1.9 is based upon the assumption of a 184 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. The Frequency of SR 3.3.1.1.11 is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

Numerous SR 3.3.1.1.9 and 11 functions are modified by two Notes as identified in Table 3.3.1.1-1. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint more conservative than the [LTSP] is used in the plant surveillance procedures [NTSP], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also requires that [LTSP] and the methodologies for calculating the as-left and the as-found tolerances be in [insert the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference].

SR 3.3.1.1.12

The Average Power Range Monitor Flow Biased Simulated Thermal Power - High Function uses an electronic filter circuit to generate a signal proportional to the core THERMAL POWER from the APRM neutron flux signal. This filter circuit is representative of the fuel heat transfer dynamics that produce the relationship between the neutron flux and the core THERMAL POWER. The Surveillance filter time constant must be verified to be ≤7 seconds to ensure that the channel is accurately reflecting the desired parameter.

[The Frequency of 18 months is based on engineering judgment considering the reliability of the components.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.]
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.1.1.12 for Function 3.3.1.1-1.2.b is modified by two Notes as identified in Table 3.3.1.1-1. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint more conservative than the [LTSP] is used in the plant surveillance procedures [NTSP], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also requires that [LTSP] and the methodologies for calculating the as-left and the as-found tolerances be in [insert the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference].

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required trip logic for a specific channel. The functional testing of control rods (LCO 3.1.3), and SDV vent and drain valves (LCO 3.1.8), overlaps this Surveillance to provide complete testing of the assumed safety function.

[The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed]
with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------REVIEWER’S NOTE-----------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.3.1.1.14

This SR ensures that scrams initiated from the Turbine Stop Valve - Closure and Turbine Control Valve Fast Closure, Trip Oil Pressure - Low Functions will not be inadvertently bypassed when THERMAL POWER is ≥ 30% RTP. This involves calibration of the bypass channels. Adequate margins for the instrument setpoint methodologies are incorporated into the actual setpoint. Because main turbine bypass flow can affect this setpoint nonconservatively (THERMAL POWER is derived from turbine first stage pressure), the main turbine bypass valves must remain closed at THERMAL POWER ≥ 30% RTP to ensure that the calibration remains valid.

If any bypass channel's setpoint is nonconservative (i.e., the Functions are bypassed at ≥ 30% RTP, either due to open main turbine bypass valve(s) or other reasons), then the affected Turbine Stop Valve - Closure and Turbine Control Valve Fast Closure, Trip Oil Pressure - Low Functions are considered inoperable. Alternatively, the bypass channel can be placed in the conservative condition (nonbypass). If placed in the nonbypass condition, this SR is met and the channel is considered OPERABLE.

[The Frequency of 18 months is based on engineering judgment and reliability of the components.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.1.1.15

This SR ensures that the individual channel response times are less than or equal to the maximum values assumed in the accident analysis. RPS RESPONSE TIME may be verified by actual response time measurements in any series of sequential, overlapping, or total channel measurements.

The following Bases are applicable for plants adopting NEDO-32291-A and/or Supplement 1.

However, the sensors for Functions 3 and 4 are allowed to be excluded from specific RPS RESPONSE TIME measurement if the conditions of Reference 12 are satisfied. If these conditions are satisfied, sensor response time may be allocated based on either assumed design sensor response time or the manufacturer's stated design response time. When the requirements of Reference 12 are not satisfied, sensor response time must be measured. Furthermore, measurement of the instrument loops response times for Functions 3 and 4 is not required if the conditions of Reference 13 are satisfied. The RPS RESPONSE TIME acceptance criteria are included in Reference 11.

As noted, neutron detectors are excluded from RPS RESPONSE TIME testing because the principles of detector operation virtually ensure an instantaneous response time.

RPS RESPONSE TIME tests are conducted on an 18 month STAGGERED TEST BASIS. Note 2 requires STAGGERED TEST BASIS Frequency to be determined based on 4 channels per trip system, in lieu of the 8 channels specified in Table 3.3.1.1-1 for the MSIV Closure Function. This Frequency is based on the logic interrelationships of the various channels required to produce an RPS scram signal. The 18 month Frequency is consistent with the typical industry refueling cycle and is based upon plant operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.
OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER'S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

----------------------------------- []

REFERENCES

2. FSAR, Figure [].
3. FSAR, Section [15.1.2].
5. FSAR, Section [5.2.2].
6. FSAR, Section [15.1.38].
7. FSAR, Section [6.3.3].
8. FSAR, Chapter [15].
11. FSAR, Table [7.2-2].
Table B 3.3.1.1-1 (page 1 of 1)
RPS Instrumentation Sensor Diversity

<table>
<thead>
<tr>
<th>Initiation Events</th>
<th>Scram Sensors for Initiating Events</th>
<th>RPV Variables</th>
<th>Anticipatory</th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>MSIV Closure</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Turbine Trip (w/bypass)</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Generator Trip (w/bypass)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pressure Regulator Failure</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(primary pressure decrease)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MSIV closure trip)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Regulator Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(primary pressure decrease)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Level 8 trip)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Regulator Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(primary pressure increase)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedwater Controller Failure</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(high reactor water level)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedwater Controller Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(low reactor water level)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of Condenser Vacuum</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Loss of AC Power (loss of transformer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of AC Power (loss of grid connections)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Reactor Vessel Steam Dome Pressure - High
(b) Reactor Vessel Water Level - High, Level 8
(c) Reactor Vessel Water Level - Low, Level 3
(d) Turbine Control Valve Fast Closure
(e) Turbine Stop Valve - Closure
(f) Main Steam Isolation Valve - Closure
(g) Average Power Range Monitor Neutron Flux - High

REVIEWER’S NOTE

This Table for illustration purposes only.
B 3.3 INSTRUMENTATION

B 3.3.1.2 Source Range Monitor (SRM) Instrumentation

BASES

BACKGROUND

The SRMs provide the operator with information relative to the neutron flux level at very low flux levels in the core. As such, the SRM indication is used by the operator to monitor the approach to criticality and determine when criticality is achieved. The SRMs are maintained fully inserted until the count rate is greater than a minimum allowed count rate (a control rod block is set at this condition). After SRM to intermediate range monitor (IRM) overlap is demonstrated (as required by SR 3.3.1.1.1), the SRMs are normally fully withdrawn from the core.

The SRM subsystem of the Neutron Monitoring System (NMS) consists of four channels. Each of the SRM channels can be bypassed, but only one at any given time, by the operation of a bypass switch. Each channel includes one detector that can be physically positioned in the core. Each detector assembly consists of a miniature fission chamber with associated cabling, signal conditioning equipment, and electronics associated with the various SRM functions. The signal conditioning equipment converts the current pulses from the fission chamber to analog DC currents that correspond to the count rate. Each channel also includes indication, alarm, and control rod blocks. However, this LCO specifies OPERABILITY requirements only for the monitoring and indication functions of the SRMs.

During refueling, shutdown, and low power operations, the primary indication of neutron flux levels is provided by the SRMs or special movable detectors connected to the normal SRM circuits. The SRMs provide monitoring of reactivity changes during fuel or control rod movement and give the control room operator early indication of unexpected subcritical multiplication that could be indicative of an approach to criticality.

APPLICABLE SAFETY ANALYSES

Prevention and mitigation of prompt reactivity excursions during refueling and low power operation is provided by LCO 3.9.1, "Refueling Equipment Interlocks," LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," the IRM Neutron Flux - High and Average Power Range Monitor (APRM) Neutron Flux - High, Setdown Functions, and LCO 3.3.2.1, "Control Rod Block Instrumentation."

The SRMs have no safety function and are not assumed to function during any FSAR design basis accident or transient analysis. However, the SRMs provide the only on scale monitoring of neutron flux levels during startup and refueling. Therefore, they are being retained in Technical Specifications.
LCO

During startup in MODE 2, three of the four SRM channels are required to be OPERABLE to monitor the reactor flux level prior to and during control rod withdrawal, subcritical multiplication and reactor criticality, and neutron flux level and reactor period until the flux level is sufficient to maintain the IRM on Range 3 or above. All but one of the channels are required in order to provide a representation of the overall core response during those periods when reactivity changes are occurring throughout the core.

In MODES 3 and 4, with the reactor shut down, two SRM channels provide redundant monitoring of flux levels in the core.

In MODE 5, during a spiral offload or reload, a SRM outside the fueled region will no longer be required to be OPERABLE, since it is not capable of monitoring neutron flux in the fueled region of the core. Thus, CORE ALTERATIONS are allowed in a quadrant with no OPERABLE SRM in an adjacent quadrant as provided the Table 3.3.1.2-1, footnote (b), requirement that the bundles being spiral reloaded or spiral offloaded are all in a single fueled region containing at least one OPERABLE SRM is met. Spiral reloading and offloading encompass reloading or offloading a cell on the edge of a continuous fueled region (the cell can be reloaded or offloaded in any sequence).

In nonspiral routine operations, two SRMs are required to be OPERABLE to provide redundant monitoring of reactivity changes occurring in the reactor core. Because of the local nature of reactivity changes during refueling, adequate coverage is provided by requiring one SRM to be OPERABLE in the quadrant of the reactor core where CORE ALTERATIONS are being performed, and the other SRM to be OPERABLE in an adjacent quadrant containing fuel. These requirements ensure that the reactivity of the core will be continuously monitored during CORE ALTERATIONS.

Special movable detectors, according to footnote (c) of Table 3.3.1.2-1, may be used during CORE ALTERATIONS in place of the normal SRM nuclear detectors. These special detectors must be connected to the normal SRM circuits in the NMS, such that the applicable neutron flux indication can be generated. These special detectors provide more flexibility in monitoring reactivity changes during fuel loading, since they can be positioned anywhere within the core during refueling. They must still meet the location requirements of SR 3.3.1.2.2 and all other required SRs for SRMs.

For a SRM channel to be considered OPERABLE, it must be providing neutron flux monitoring indication.
BASES

APPLICABILITY
The SRMs are required to be OPERABLE in MODES 2, 3, 4, and 5 prior to the IRMs being on scale on Range 3 to provide for neutron monitoring. In MODE 1, the APRMs provide adequate monitoring of reactivity changes in the core; therefore, the SRMs are not required. In MODE 2, with IRMs on Range 3 or above, the IRMs provide adequate monitoring and the SRMs are not required.

ACTIONS
A.1 and B.1

In MODE 2, with the IRMs on Range 2 or below, SRMs provide the means of monitoring core reactivity and criticality. With any number of the required SRMs inoperable, the ability to monitor neutron flux is degraded. Therefore, a limited time is allowed to restore the inoperable channels to OPERABLE status.

Provided at least one SRM remains OPERABLE, Required Action A.1 allows 4 hours to restore the required SRMs to OPERABLE status. This time is reasonable because there is adequate capability remaining to monitor the core, there is limited risk of an event during this time, and there is sufficient time to take corrective actions to restore the required SRMs to OPERABLE status or to establish alternate IRM monitoring capability. During this time, control rod withdrawal and power increase is not precluded by this Required Action. Having the ability to monitor the core with at least one SRM, proceeding to IRM Range 3 or greater (with overlap verified by SR 3.3.1.1.1), and thereby exiting the Applicability of this LCO, is acceptable for ensuring adequate core monitoring and allowing continued operation. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

With three required SRMs inoperable, Required Action B.1 allows no positive changes in reactivity (control rod withdrawal must be immediately suspended) due to inability to monitor the changes. Required Action A.1 still applies and allows 4 hours to restore monitoring capability prior to requiring control rod insertion. This allowance is based on the limited risk of an event during this time, provided that no control rod withdrawals are allowed, and the desire to concentrate efforts on repair, rather than to immediately shut down, with no SRMs OPERABLE.

C.1

In MODE 2, if the required number of SRMs is not restored to OPERABLE status within the allowed Completion Time, the reactor shall be placed in MODE 3. With all control rods fully inserted, the core is in its least reactive state with the most margin to criticality. The allowed
BASER

ACTIONS (continued)

Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

D.1 and D.2

With one or more required SRMs inoperable in MODE 3 or 4, the neutron flux monitoring capability is degraded or nonexistent. The requirement to fully insert all insertable control rods ensures that the reactor will be at its minimum reactivity level while no neutron monitoring capability is available. Placing the reactor mode switch in the shutdown position prevents subsequent control rod withdrawal by maintaining a control rod block. The allowed Completion Time of 1 hour is sufficient to accomplish the Required Action, and takes into account the low probability of an event requiring the SRM occurring during this interval.

E.1 and E.2

With one or more required SRM channels inoperable in MODE 5, the ability to detect local reactivity changes in the core during refueling is degraded. CORE ALTERATIONS must be immediately suspended and action must be immediately initiated to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Suspending CORE ALTERATIONS prevents the two most probable causes of reactivity changes, fuel loading and control rod withdrawal, from occurring. Inserting all insertable control rods ensures that the reactor will be at its minimum reactivity given that fuel is present in the core. Suspension of CORE ALTERATIONS shall not preclude completion of the movement of a component to a safe, conservative position.

Action (once required to be initiated) to insert control rods must continue until all insertable rods in core cells containing one or more fuel assemblies are inserted.

<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>The SRs for each SRM Applicable MODE or other specified conditions are found in the SRs column of Table 3.3.1.2-1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.1.2.1 and SR 3.3.1.2.3</td>
<td>Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on another channel. It is based on the assumption that</td>
</tr>
</tbody>
</table>
instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

The Frequency of once every 12 hours for SR 3.3.1.2.1 is based on operating experience that demonstrates channel failure is rare. While in MODES 3 and 4, reactivity changes are not expected; therefore, the 12 hour Frequency is relaxed to 24 hours for SR 3.3.1.2.3.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.1.2.2

To provide adequate coverage of potential reactivity changes in the core, one SRM is required to be OPERABLE in the quadrant where CORE ALTERATIONS are being performed, and the other OPERABLE SRM must be in an adjacent quadrant containing fuel. Note 1 states that the SR is required to be met only during CORE ALTERATIONS. It is not required to be met at other times in MODE 5 since core reactivity changes are not occurring. This Surveillance consists of a review of plant logs to ensure that SRMs required to be OPERABLE for given CORE ALTERATIONS are, in fact, OPERABLE. In the event that only one SRM
BASES

SURVEILLANCE REQUIREMENTS (continued)

is required to be OPERABLE, per Table 3.3.1.2-1, footnote (b), only the a. portion of this SR is required. Note 2 clarifies that more than one of the three requirements can be met by the same OPERABLE SRM. [The 12 hour Frequency is based upon operating experience and supplements operational controls over refueling activities that include steps to ensure that the SRMs required by the LCO are in the proper quadrant.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.3.1.2.4

This Surveillance consists of a verification of the SRM instrument readout to ensure that the SRM reading is greater than a specified minimum count rate, which ensures that the detectors are indicating count rates indicative of neutron flux levels within the core. With few fuel assemblies loaded, the SRMs will not have a high enough count rate to satisfy the SR. Therefore, allowances are made for loading sufficient "source" material, in the form of irradiated fuel assemblies, to establish the minimum count rate.

To accomplish this, the SR is modified by a Note that states that the count rate is not required to be met on a SRM that has less than or equal to four fuel assemblies adjacent to the SRM and no other fuel assemblies are in the associated core quadrant. With four or less fuel assemblies loaded around each SRM and no other fuel assemblies in the associated core quadrant, even with a control rod withdrawn, the configuration will not be critical.

[The Frequency is based upon channel redundancy and other information available in the control room, and ensures that the required channels are frequently monitored while core reactivity changes are occurring. When no reactivity changes are in progress, the Frequency is relaxed from 12 hours to 24 hours.

OR
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER'S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.1.2.5 and SR 3.3.1.2.6

Performance of a CHANNEL FUNCTIONAL TEST demonstrates the associated channel will function properly. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. [SR 3.3.1.2.5 is required in MODE 5] and ensures that the channels are OPERABLE while core reactivity changes could be in progress. [This Frequency is reasonable, based on operating experience and on other Surveillances (such as a CHANNEL CHECK), that ensure proper functioning between CHANNEL FUNCTIONAL TESTS.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER'S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER'S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
SR 3.3.1.2.6 is required in MODE 2 with IRMs on Range 2 or below, and in MODES 3 and 4. [Since core reactivity changes do not normally take place, the Frequency has been extended from 7 days to 31 days. The 31 day Frequency is based on operating experience and on other Surveillances (such as CHANNEL CHECK) that ensure proper functioning between CHANNEL FUNCTIONAL TESTS.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
--

Verification of the signal to noise ratio also ensures that the detectors are inserted to an acceptable operating level. In a fully withdrawn condition, the detectors are sufficiently removed from the fueled region of the core to essentially eliminate neutrons from reaching the detector. Any count rate obtained while the detectors are fully withdrawn is assumed to be "noise" only.

The Note to the Surveillance allows the Surveillance to be delayed until entry into the specified condition of the Applicability (THERMAL POWER decreased to IRM Range 2 or below). The SR must be performed within 12 hours after IRMs are on Range 2 or below. The allowance to enter the Applicability with the Frequency not met is reasonable, based on the limited time of 12 hours allowed after entering the Applicability and the inability to perform the Surveillance while at higher power levels. Although the Surveillance could be performed while on IRM Range 3, the plant would not be expected to maintain steady state operation at this power level. In this event, the 12 hour Frequency is reasonable, based on the SRMs being otherwise verified to be OPERABLE (i.e., satisfactorily performing the CHANNEL CHECK) and the time required to perform the Surveillances.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.2.7

Performance of a CHANNEL CALIBRATION verifies the performance of the SRM detectors and associated circuitry. [The [18] month Frequency considers the plant conditions required to perform the test, the ease of performing the test, and the likelihood of a change in the system or component status.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

------------------------REVIEWER’S NOTE------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The neutron detectors are excluded from the CHANNEL CALIBRATION because they cannot readily be adjusted. The detectors are fission chambers that are designed to have a relatively constant sensitivity over the range and with an accuracy specified for a fixed useful life.

Note 2 to the Surveillance allows the Surveillance to be delayed until entry into the specified condition of the Applicability. The SR must be performed in MODE 2 within 12 hours of entering MODE 2 with IRMs on Range 2 or below. The allowance to enter the Applicability with the Frequency not met is reasonable, based on the limited time of 12 hours allowed after entering the Applicability and the inability to perform the Surveillance while at higher power levels. Although the Surveillance could be performed while on IRM Range 3, the plant would not be expected to maintain steady state operation at this power level. In this event, the 12 hour Frequency is reasonable, based on the SRMs being otherwise verified to be OPERABLE (i.e., satisfactorily performing the CHANNEL CHECK) and the time required to perform the Surveillances.

There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology.

REFERENCES
None.
B 3.3 INSTRUMENTATION

B 3.3.2.1 Control Rod Block Instrumentation

BASES

BACKGROUND

Control rods provide the primary means for control of reactivity changes. Control rod block instrumentation includes channel sensors, logic circuitry, switches, and relays that are designed to ensure that specified fuel design limits are not exceeded for postulated transients and accidents. During high power operation, the rod block monitor (RBM) provides protection for control rod withdrawal error events. During low power operations, control rod blocks from the rod worth minimizer (RWM) enforce specific control rod sequences designed to mitigate the consequences of the control rod drop accident (CRDA). During shutdown conditions, control rod blocks from the Reactor Mode Switch - Shutdown Position Function ensure that all control rods remain inserted to prevent inadvertent criticalities.

The protection and monitoring functions of the control rod block instrumentation has been designed to ensure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the Reactor Protection System (RPS), as well as LCOs on other reactor system parameters and equipment performance.

Technical Specifications are required by 10 CFR 50.36 to include LSSS for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytical Limit is the limit of the process variable at which a safety action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytical Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytical Limit to account for instrument loop uncertainties related to the setting at which the automatic protective action would actually occur.

REVIEWER'S NOTE

The term "Limiting Trip Setpoint" [LTSP] is generic terminology for the calculated trip setting (setpoint) value calculated by means of the plant specific setpoint methodology documented in a document controlled under 10 CFR 50.59. The term [LTSP] indicates that no additional margin has been added between the Analytical Limit and the calculated trip setting.
"Nominal Trip Setpoint [NTSP]" is the suggested terminology for the actual setpoint implemented in the plant surveillance procedures where margin has been added to the calculated [LTSP]. The as-found and as-left tolerances will apply to the [NTSP] implemented in the Surveillance procedures to confirm channel performance.

Licensees are to insert the name of the document(s) controlled under 10 CFR 50.59 that contain the methodology for calculating the as-left and as-found tolerances, in Note c of Table 3.3.2.1-1 for the phrase "[insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]" throughout the Bases.

If the [LTSP] is not included in Table 3.3.2.1-1, the plant specific location for the [LTSP] or [NTSP] must be cited in Note c of Table 3.3.2.1-1. The brackets indicate plant specific terms may apply, as reviewed and approved by the NRC.

The [Limiting Trip Setpoint (LTSP)] specified in Table 3.3.2.1-1, is a predetermined setting for a protection channel chosen to ensure automatic actuation prior to the process variable reaching the Analytical Limit and thus ensuring that the SL would not be exceeded. As such, the [LTSP] accounts for uncertainties in setting the channel (e.g., calibration), uncertainties in how the channel might actually perform (e.g., repeatability), changes in the point of action of the channel over time (e.g., drift during surveillance intervals), and any other factors which may influence its actual performance (e.g., harsh accident environments). In this manner, the [LTSP] ensures that SLs are not exceeded. Therefore, the [LTSP] meets the definition of an LSSS (Ref. 1).

The Allowable Values specified in Table 3.3.2.1-1 serves as the LSSS such that a channel is OPERABLE if the trip setpoint is found not to exceed the Allowable Value. As such, the Allowable Value differs from the trip setpoint by an amount primarily equal to the expected instrument loop uncertainties, such as drift, during the surveillance interval. In this manner, the actual setting of the device will still meet the LSSS definition and ensure that a SL is not exceeded at any given point of time as long as the device has not drifted beyond that expected during the surveillance interval.

Technical Specifications contain values related to the OPERABILITY of equipment required for safe operation of the facility. OPERABLE is defined in Technical Specifications as "...being capable of performing its safety function(s)." Relying solely on the [LTSP] to define OPERABILITY in Technical Specifications would be an overly restrictive requirement if it
were applied as an OPERABILITY limit for the "as found" value of a protection channel setting during a Surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure safety. For example, an automatic protection channel with a setting that has been found to be different from the [LTSP] due to some drift of the setting may still be OPERABLE because drift is to be expected. This expected drift would have been specifically accounted for in the setpoint methodology for calculating the [LTSP] and thus the automatic protective action would still have ensured that the SL would not be exceeded with the "as found" setting of the protection channel. Therefore, the channel would still be OPERABLE because it would have performed its safety function and the only corrective action required would be to reset the channel within the established as-left tolerance around [LTSP] to account for further drift during the next surveillance interval. Note that, although the channel is OPERABLE under these circumstances, the trip setpoint must be left adjusted to a value within the as-left tolerance, in accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-left criteria), and confirmed to be operating within the statistical allowances of the uncertainty terms assigned (as-found criteria).

However, there is also some point beyond which the channel would have not been able to perform its function due to, for example, greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the channels and is designated as the Allowable Value.

If the actual setting (as-found setpoint) of the channel is found to be conservative with respect to the Allowable Value but is beyond the as-found tolerance band, the channel is OPERABLE, but degraded. The degraded condition will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the [LTSP] (within the allowed tolerance), and evaluating the channel response. If the channel is functioning as required and expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation.

The purpose of the RBM is to limit control rod withdrawal if localized neutron flux exceeds a predetermined setpoint during control rod manipulations. It is assumed to function to block further control rod withdrawal to preclude a MCPR SL violation. The RBM supplies a trip signal to the Reactor Manual Control System (RMCS) to appropriately
inhibit control rod withdrawal during power operation above the low power range setpoint. The RBM has two channels, either of which can initiate a control rod block when the channel output exceeds the control rod block setpoint. One RBM channel inputs into one RMCS rod block circuit and the other RBM channel inputs into the second RMCS rod block circuit. The RBM channel signal is generated by averaging a set of local power range monitor (LPRM) signals at various core heights surrounding the control rod being withdrawn. A signal from one average power range monitor (APRM) channel assigned to each RPS trip system supplies a reference signal for the RBM channel in the same trip system. This reference signal is used to determine which RBM range setpoint (low, intermediate, or high) is enabled. If the APRM is indicating less than the low power range setpoint, the RBM is automatically bypassed. The RBM is also automatically bypassed if a peripheral control rod is selected (Ref. 2).

The purpose of the RWM is to control rod patterns during startup, such that only specified control rod sequences and relative positions are allowed over the operating range from all control rods inserted to 10% RTP. The sequences effectively limit the potential amount and rate of reactivity increase during a CRDA. Prescribed control rod sequences are stored in the RWM, which will initiate control rod withdrawal and insert blocks when the actual sequence deviates beyond allowances from the stored sequence. The RWM determines the actual sequence based position indication for each control rod. The RWM also uses feedwater flow and steam flow signals to determine when the reactor power is above the preset power level at which the RWM is automatically bypassed (Ref. 3). The RWM is a single channel system that provides input into both RMCS rod block circuits.

With the reactor mode switch in the shutdown position, a control rod withdrawal block is applied to all control rods to ensure that the shutdown condition is maintained. This Function prevents inadvertent criticality as the result of a control rod withdrawal during MODE 3 or 4, or during MODE 5 when the reactor mode switch is required to be in the shutdown position. The reactor mode switch has two channels, each inputting into a separate RMCS rod block circuit. A rod block in either RMCS circuit will provide a control rod block to all control rods.

Permissive and interlock setpoints allow the blocking of trips during plant startups, and restoration of trips when the permissive conditions are not satisfied, but they are not explicitly modeled in the Safety Analyses. These permissives and interlocks ensure that the starting conditions are consistent with the safety analysis, before preventive or mitigating actions occur. Because these permissives or interlocks are only one of multiple
conservative starting assumptions for the accident analysis, they are generally considered as nominal values without regard to measurement accuracy.

ALTERNATIVE SAFETY ANALYSES, LCO, and APPLICABILITY

Allowable Values are specified for each Rod Block Function specified in SR 3.3.2.1.7. [LTSP] and the methodologies for calculation of the as-left and as-found tolerances are described in [insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]. The [LTSPs] are selected to ensure that the actual setpoints remain conservative with respect to the as-found tolerance band between successive CHANNEL CALIBRATIONS. After each calibration the trip setpoint shall be left within the as-left band around the [LTSP].

[LTSPs] are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytical limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytical limits, corrected for calibration, process, and some of the instrument errors. The [LTSPs] are then determined accounting for the remaining instrument errors (e.g., drift). The [LTSPs] derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

1. Rod Block Monitor

The RBM is designed to prevent violation of the MCPR SL and the cladding 1% plastic strain fuel design limit that may result from a single control rod withdrawal error (RWE) event. The analytical methods and assumptions used in evaluating the RWE event are summarized in Reference 4. A statistical analysis of RWE events was performed to determine the RBM response for both channels for each event. From these responses, the fuel thermal performance as a function of RBM Allowable Value was determined. The Allowable Values are chosen as a function of power level. Based on the specified Allowable Values, operating limits are established.

The RBM Function satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
Two channels of the RBM are required to be OPERABLE, with their setpoints within the appropriate Allowable Value for the associated power range, to ensure that no single instrument failure can preclude a rod block from this Function. The actual setpoints are calibrated consistent with applicable setpoint methodology.

The RBM is assumed to mitigate the consequences of a RWE event when operating $\geq 29\%$ RTP. Below this power level, the consequences of a RWE event will not exceed the MCPR SL and, therefore, the RBM is not required to be OPERABLE (Ref. 4). When operating $< 90\%$ RTP, analyses (Ref. 4) have shown that with an initial MCPR ≥ 1.70, no RWE event will result in exceeding the MCPR SL. Also, the analyses demonstrate that when operating at $\geq 90\%$ RTP with MCPR ≥ 1.40, no RWE event will result in exceeding the MCPR SL (Ref. 4). Therefore, under these conditions, the RBM is also not required to be OPERABLE.

2. Rod Worth Minimizer

The RWM enforces the banked position withdrawal sequence (BPWS) to ensure that the initial conditions of the CRDA analysis are not violated. The analytical methods and assumptions used in evaluating the CRDA are summarized in References 5, 6, 7, 8, and 9. The standard BPWS requires that control rods be moved in groups, with all control rods assigned to a specific group required to be within specified banked positions. Requirements that the control rod sequence is in compliance with the BPWS are specified in LCO 3.1.6, "Rod Pattern Control."

Adoption of the use of Reference 8 requires implementation of the following commitments:

1. Before reducing power to the low power setpoint (LPSP), operators shall confirm control rod coupling integrity for all rods that are fully withdrawn. Control rods that have not been confirmed coupled and are in intermediate positions must be fully inserted prior to power reduction to the LPSP. No action is required for fully-inserted control rods. If a shutdown is required and all rods, which are not confirmed coupled, cannot be fully inserted prior to the power dropping below the LPSP, then the original/standard BPWS must be used. The original/standard BPWS can be found in Licensing Topical Report NEDO-21231, "Banked Position Withdrawal Sequence," January 1977, and is referred to in NUREG-1433 and NUREG-1434.
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

2. After reactor power drops below the LPSP, rods may be inserted from notch position 48 to notch position 00 without stopping at the intermediate positions. However, GE Nuclear Energy recommends that operators insert rods in the same order as specified for the original/standard BPWS as much as is reasonably possible. If a plant is in the process of shutting down following improved BPWS with the power below the LPSP, no control rod shall be withdrawn unless the control rod pattern is in compliance with standard BPWS requirements.

When performing a shutdown of the plant, an optional BPWS control rod sequence (Ref. 8) may be used if the coupling of each withdrawn control rod has been confirmed. The rods may be inserted without the need to stop at intermediate positions. When using the Reference 8 control rod insertion sequence for shutdown, the rod worth minimizer may be reprogrammed to enforce the requirements of the improved BPWS control rod insertion process, or it can be bypassed if it is not programmed to reflect the optional BPWS shutdown sequence, as permitted by the Applicability Note for the RWM in Table 3.3.2.1-1.

The RWM Function satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Since the RWM is a hardwired system designed to act as a backup to operator control of the rod sequences, only one channel of the RWM is available and required to be OPERABLE (Ref. 9). Special circumstances provided for in the Required Action of LCO 3.1.3, "Control Rod OPERABILITY," and LCO 3.1.6 may necessitate bypassing the RWM to allow continued operation with inoperable control rods, or to allow correction of a control rod pattern not in compliance with the BPWS. The RWM may be bypassed as required by these conditions, but then it must be considered inoperable and the Required Actions of this LCO followed.

Compliance with the BPWS, and therefore OPERABILITY of the RWM, is required in MODES 1 and 2 when THERMAL POWER is < 10% RTP. When THERMAL POWER is > 10% RTP, there is no possible control rod configuration that results in a control rod worth that could exceed the 280 cal/gm fuel damage limit during a CRDA (Refs. 6 and 9). In MODES 3 and 4, all control rods are required to be inserted into the core; therefore, a CRDA cannot occur. In MODE 5, since only a single control rod can be withdrawn from a core cell containing fuel assemblies, adequate SDM ensures that the consequences of a CRDA are acceptable, since the reactor will be subcritical.
3. Reactor Mode Switch - Shutdown Position

During MODES 3 and 4, and during MODE 5 when the reactor mode switch is required to be in the shutdown position, the core is assumed to be subcritical; therefore, no positive reactivity insertion events are analyzed. The Reactor Mode Switch - Shutdown Position control rod withdrawal block ensures that the reactor remains subcritical by blocking control rod withdrawal, thereby preserving the assumptions of the safety analysis.

The Reactor Mode Switch - Shutdown Position Function satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Two channels are required to be OPERABLE to ensure that no single channel failure will preclude a rod block when required. There is no Allowable Value for this Function since the channels are mechanically actuated based solely on reactor mode switch position.

During shutdown conditions (MODE 3, 4, or 5), no positive reactivity insertion events are analyzed because assumptions are that control rod withdrawal blocks are provided to prevent criticality. Therefore, when the reactor mode switch is in the shutdown position, the control rod withdrawal block is required to be OPERABLE. During MODE 5 with the reactor mode switch in the refueling position, the refuel position one-rod-out interlock (LCO 3.9.2) provides the required control rod withdrawal blocks.
BASES

ACTIONS

Certain LCO Completion Times are based on approved topical reports. In order for the licensee to use the times, the licensee must justify the Completion Times as required by the staff Safety Evaluation Report (SER) for the topical report.

A.1

With one RBM channel inoperable, the remaining OPERABLE channel is adequate to perform the control rod block function; however, overall reliability is reduced because a single failure in the remaining OPERABLE channel can result in no control rod block capability for the RBM. For this reason, Required Action A.1 requires restoration of the inoperable channel to OPERABLE status. The Completion Time of 24 hours is based on the low probability of an event occurring coincident with a failure in the remaining OPERABLE channel.

B.1

If Required Action A.1 is not met and the associated Completion Time has expired, the inoperable channel must be placed in trip within 1 hour. If both RBM channels are inoperable, the RBM is not capable of performing its intended function; thus, one channel must also be placed in trip. This initiates a control rod withdrawal block, thereby ensuring that the RBM function is met.

The 1 hour Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities and is acceptable because it minimizes risk while allowing time for restoration or tripping of inoperable channels.

C.1, C.2.1.1, C.2.1.2, and C.2.2

With the RWM inoperable during a reactor startup, the operator is still capable of enforcing the prescribed control rod sequence. However, the overall reliability is reduced because a single operator error can result in violating the control rod sequence. Therefore, control rod movement must be immediately suspended except by scram. Alternatively, startup may continue if at least 12 control rods have already been withdrawn, or a reactor startup with an inoperable RWM was not performed in the last 12 months. Required Actions C.2.1.1 and C.2.1.2 require verification of these conditions by review of plant logs and control room indications. Once Required Action C.2.1.1 or C.2.1.2 is satisfactorily completed,
control rod withdrawal may proceed in accordance with the restrictions imposed by Required Action C.2.2. Required Action C.2.2 allows for the RWM Function to be performed manually and requires a double check of compliance with the prescribed rod sequence by a second licensed operator (Reactor Operator or Senior Reactor Operator) or other qualified member of the technical staff.

The RWM may be bypassed under these conditions to allow continued operations. In addition, Required Actions of LCO 3.1.3 and LCO 3.1.6 may require bypassing the RWM, during which time the RWM must be considered inoperative with Condition C entered and its Required Actions taken.

D.1

With the RWM inoperative during a reactor shutdown, the operator is still capable of enforcing the prescribed control rod sequence. Required Action D.1 allows for the RWM Function to be performed manually and requires a double check of compliance with the prescribed rod sequence by a second licensed operator (Reactor Operator or Senior Reactor Operator) or other qualified member of the technical staff. The RWM may be bypassed under these conditions to allow the reactor shutdown to continue.

E.1 and E.2

With one Reactor Mode Switch - Shutdown Position control rod withdrawal block channel inoperative, the remaining OPERABLE channel is adequate to perform the control rod withdrawal block function. However, since the Required Actions are consistent with the normal action of an OPERABLE Reactor Mode Switch - Shutdown Position Function (i.e., maintaining all control rods inserted), there is no distinction between having one or two channels inoperative.

In both cases (one or both channels inoperative), suspending all control rod withdrawal and initiating action to fully insert all insertable control rods in core cells containing one or more fuel assemblies will ensure that the core is subcritical with adequate SDM ensured by LCO 3.1.1. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and are therefore not required to be inserted. Action must continue until all insertable control rods in core cells containing one or more fuel assemblies are fully inserted.
BASES

SURVEILLANCE REQUIREMENTS

Certain Frequencies are based on approved topical reports. In order for a licensee to use these Frequencies, the licensee must justify the Frequencies as required by the staff SER for the topical report.

--

REVIEWER’S NOTE

--

Notes b and c are applied to the setpoint verification Surveillances for the Control Rod Block Instrumentation Functions in Table 3.3.2.1-1 unless one or more of the following exclusions apply:

1. Manual actuation circuits, automatic actuation logic circuits or instrument functions that derive input from contacts which have no associated sensor or adjustable device, e.g., limit switches, breaker position switches, manual actuation switches, float switches, proximity detectors, etc. are excluded. In addition, those permissives and interlocks that derive input from a sensor or adjustable device that is tested as part of another TS function are excluded.

2. Settings associated with safety relief valves are excluded. The performance of these components is already controlled (i.e., trended with as-left and as-found limits) under the ASME Code for Operation and Maintenance of Nuclear Power Plants testing program.

3. Functions and Surveillance Requirements which test only digital components are normally excluded. There is no expected change in result between SR performances for these components. Where separate as-left and as-found tolerance is established for digital component SRs, the requirements would apply.

--

As noted at the beginning of the SRs, the SRs for each Control Rod Block instrumentation Function are found in the SRs column of Table 3.3.2.1-1.

The Surveillances are modified by a Note to indicate that when a RBM channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains control rod block capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 11) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that a control rod block will be initiated when necessary.
A CHANNEL FUNCTIONAL TEST is performed for each RBM channel to ensure that the entire channel will perform the intended function. It includes the Reactor Manual Control Multiplexing System input. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology. [The Frequency of 92 days is based on reliability analyses (Ref. 10).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER'S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------]

A CHANNEL FUNCTIONAL TEST is performed for the RWM to ensure that the entire system will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The CHANNEL FUNCTIONAL TEST for the RWM is performed by attempting to withdraw a control rod not in compliance with the prescribed sequence and verifying a control rod block occurs. As noted in the SRs, SR 3.3.2.1.2 is not required to be performed until 1 hour after any control rod is withdrawn in MODE 2. As noted, SR 3.3.2.1.3 is
not required to be performed until 1 hour after THERMAL POWER is ≤ 10% RTP in MODE 1. This allows entry into MODE 2 for SR 3.3.2.1.2, and entry into MODE 1 when THERMAL POWER is ≤ 10% RTP for SR 3.3.2.1.3, to perform the required Surveillance if the Frequency is not met per SR 3.0.2. The 1 hour allowance is based on operating experience and in consideration of providing a reasonable time in which to complete the SRs. [The Frequencies are based on reliability analysis (Ref. 10).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.2.1.4

The RBM setpoints are automatically varied as a function of power. Three Allowable Values are specified in Table 3.3.2.1-1, each within a specific power range. The power at which the control rod block Allowable Values automatically change are based on the APRM signal’s input to each RBM channel. Below the minimum power setpoint, the RBM is automatically bypassed. These power Allowable Values must be verified periodically to be less than or equal to the specified values. If any power range setpoint is nonconservative, then the affected RBM channel is considered inoperable. Alternatively, the power range channel can be placed in the conservative condition (i.e., enabling the proper RBM setpoint). If placed in this condition, the SR is met and the RBM channel is not considered inoperable. As noted, neutron detectors are excluded from the Surveillance because they are passive devices, with minimal drift, and because of the difficulty of simulating a meaningful signal. Neutron detectors are adequately tested in SR 3.3.1.1.2 and SR 3.3.1.1.6. [The 18 month Frequency is based on the actual trip setpoint methodology utilized for these channels.

OR
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.2.1.5

The RWM is automatically bypassed when power is above a specified value. The power level is determined from feedwater flow and steam flow signals. The automatic bypass setpoint must be verified periodically to be \(\leq [10] \% \) RTP. If the RWM low power setpoint is nonconservative, then the RWM is considered inoperative. Alternately, the low power setpoint channel can be placed in the conservative condition (nonbypass). If placed in the nonbypassed condition, the SR is met and the RWM is not considered inoperative. [The Frequency is based on the trip setpoint methodology utilized for the low power setpoint channel.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.2.1.6

A CHANNEL FUNCTIONAL TEST is performed for the Reactor Mode Switch - Shutdown Position Function to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other
SURVEILLANCE REQUIREMENTS (continued)

Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The CHANNEL FUNCTIONAL TEST for the Reactor Mode Switch - Shutdown Position Function is performed by attempting to withdraw any control rod with the reactor mode switch in the shutdown position and verifying a control rod block occurs.

As noted in the SR, the Surveillance is not required to be performed until 1 hour after the reactor mode switch is in the shutdown position, since testing of this interlock with the reactor mode switch in any other position cannot be performed without using jumpers, lifted leads, or movable links. This allows entry into MODES 3 and 4 if the Frequency is not met per SR 3.0.2. The 1 hour allowance is based on operating experience and in consideration of providing a reasonable time in which to complete the SRs.

[The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.2.1.7

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.
As noted, neutron detectors are excluded from the CHANNEL CALIBRATION because they are passive devices, with minimal drift, and because of the difficulty of simulating a meaningful signal. Neutron detectors are adequately tested in SR 3.3.1.1.2 and SR 3.3.1.1.6.

The Frequency is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.2.1.7 for Functions [3.3.2.1-1.1.a, 3.3.2.1-1.1.b, and 3.3.2.1-1.1.c] is modified by two Notes as identified in Table 3.3.2.1-1. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint more conservative than the [LTSP] is used in the plant surveillance procedures [Nominal Trip Setpoint (NTSP)], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also
BASES

SURVEILLANCE REQUIREMENTS (continued)

requires that [LTSP] and the methodologies for calculating the as-left and the as-found tolerances be in [insert the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference].

SR 3.3.2.1.8

The RWM will only enforce the proper control rod sequence if the rod sequence is properly input into the RWM computer. This SR ensures that the proper sequence is loaded into the RWM so that it can perform its intended function. The Surveillance is performed once prior to declaring RWM OPERABLE following loading of sequence into RWM, since this is when rod sequence input errors are possible.

REFERENCES

2. FSAR, Section [7.6.2.2.5].
3. FSAR, Section [7.6.8.2.6].
REFERENCES (continued)

B 3.3 INSTRUMENTATION

B 3.3.2.2 Feedwater and Main Turbine High Water Level Trip Instrumentation

BASES

BACKGROUND
The feedwater and main turbine high water level trip instrumentation is designed to detect a potential failure of the Feedwater Level Control System that causes excessive feedwater flow.

With excessive feedwater flow, the water level in the reactor vessel rises toward the high water level, Level 8 reference point, causing the trip of the two feedwater pump turbines and the main turbine.

Reactor Vessel Water Level - High, Level 8 signals are provided by level sensors that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level in the reactor vessel (variable leg). Three channels of Reactor Vessel Water Level - High, Level 8 instrumentation are provided as input to a two-out-of-three initiation logic that trips the two feedwater pump turbines and the main turbine. The channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a main feedwater and turbine trip signal to the trip logic.

A trip of the feedwater pump turbines limits further increase in reactor vessel water level by limiting further addition of feedwater to the reactor vessel. A trip of the main turbine and closure of the stop valves protects the turbine from damage due to water entering the turbine.

APPLICABLE SAFETY ANALYSES
The feedwater and main turbine high water level trip instrumentation is assumed to be capable of providing a turbine trip in the design basis transient analysis for a feedwater controller failure, maximum demand event (Ref. 1). The Level 8 trip indirectly initiates a reactor scram from the main turbine trip (above 30% RTP) and trips the feedwater pumps, thereby terminating the event. The reactor scram mitigates the reduction in MCPR.

Feedwater and main turbine high water level trip instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
Bases

LCO

The LCO requires three channels of the Reactor Vessel Water Level - High, Level 8 instrumentation to be OPERABLE to ensure that no single instrument failure will prevent the feedwater pump turbines and main turbine trip on a valid Level 8 signal. Two of the three channels are needed to provide trip signals in order for the feedwater and main turbine trips to occur. Each channel must have its setpoint set within the specified Allowable Value of SR 3.3.2.2.3. The Allowable Value is set to ensure that the thermal limits are not exceeded during the event. The actual setpoint is calibrated to be consistent with the applicable setpoint methodology assumptions. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between successive CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable.

Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytical limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytical limits, corrected for calibration, process, and some of the instrument errors. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

Applicability

The feedwater and main turbine high water level trip instrumentation is required to be OPERABLE at ≥ 25% RTP to ensure that the fuel cladding integrity Safety Limit and the cladding 1% plastic strain limit are not violated during the feedwater controller failure, maximum demand event. As discussed in the Bases for LCO 3.2.1, "Average Planar Linear Heat Generation Rate (APLHGR)," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)," sufficient margin to these limits exists below 25% RTP; therefore, these requirements are only necessary when operating at or above this power level.
A Note has been provided to modify the ACTIONS related to feedwater and main turbine high water level trip instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable feedwater and main turbine high water level trip instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable feedwater and main turbine high water level trip instrumentation channel.

A.1

With one channel inoperable, the remaining two OPERABLE channels can provide the required trip signal. However, overall instrumentation reliability is reduced because a single failure in one of the remaining channels concurrent with feedwater controller failure, maximum demand event, may result in the instrumentation not being able to perform its intended function. Therefore, continued operation is only allowed for a limited time with one channel inoperable. If the inoperable channel cannot be restored to OPERABLE status within the Completion Time, the channel must be placed in the tripped condition per Required Action A.1. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue with no further restrictions. Alternatively, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in a feedwater or main turbine trip), Condition C must be entered and its Required Action taken.

The Completion Time of 7 days is based on the low probability of the event occurring coincident with a single failure in a remaining OPERABLE channel. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

B.1

With two or more channels inoperable, the feedwater and main turbine high water level trip instrumentation cannot perform its design function (feedwater and main turbine high water level trip capability is not maintained). Therefore, continued operation is only permitted for a 2 hour
Feedwater and Main Turbine High Water Level Trip Instrumentation
B 3.3.2.2

Bases

Actions (continued)

Period [or in accordance with the Risk Informed Completion Time Program], during which feedwater and main turbine high water level trip capability must be restored. The trip capability is considered maintained when sufficient channels are OPERABLE or in trip such that the feedwater and main turbine high water level trip logic will generate a trip signal on a valid signal. This requires two channels to each be OPERABLE or in trip. If the required channels cannot be restored to OPERABLE status or placed in trip, Condition C must be entered and its Required Action taken.

The 2 hour Completion Time is sufficient for the operator to take corrective action, and takes into account the likelihood of an event requiring actuation of feedwater and main turbine high water level trip instrumentation occurring during this period. It is also consistent with the 2 hour Completion Time provided in LCO 3.2.2 for Required Action A.1, since this instrumentation’s purpose is to preclude a MCPR violation.

C.1 and C.2

With the required channels not restored to OPERABLE status or placed in trip, THERMAL POWER must be reduced to < 25% RTP within 4 hours. Alternatively, the affected feedwater pump(s) and affected main turbine valve(s) may be removed from service since this performs the intended function of the instrumentation. As discussed in the Applicability section of the Bases, operation below 25% RTP results in sufficient margin to the required limits, and the feedwater and main turbine high water level trip instrumentation is not required to protect fuel integrity during the feedwater controller failure, maximum demand event. The allowed Completion Time of 4 hours is based on operating experience to reduce THERMAL POWER to < 25% RTP from full power conditions in an orderly manner and without challenging plant systems.

Required Action C.1 is modified by a Note which states that the Required Action is only applicable if the inoperable channel is the result of an inoperable feedwater pump [valve] or main turbine stop valve. The Note clarifies the situations under which the associated Required Action would be the appropriate Required Action.

Surveillance Requirements

-----------------------------------REVIEWER’S NOTE-----------------------------------
Certain Frequencies are based on approved topical reports. In order for a licensee to use these Frequencies the licensee must justify the Frequencies as required by the staff Safety Evaluation Report (SER) for the topical report.

--
The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains feedwater and main turbine high water level trip capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 2) assumption that 6 hours is the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the feedwater pump turbines and main turbine will trip when necessary.

SR 3.3.2.2.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels, or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limits.

[The Frequency of 24 hours is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channel status during normal operational use of the displays associated with the channels required by the LCO.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Base

Surveillance Requirements (continued)

--- REVIEWER'S NOTE ---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--- REVIEWER'S NOTE ---

SR 3.3.2.2.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency of 92 days is based on reliability analysis (Ref. 2).]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--- REVIEWER'S NOTE ---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--- REVIEWER'S NOTE ---
SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.2.2.3

CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology.

[The Frequency is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.3.2.2.4

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required trip logic for a specific channel. The system functional test of the feedwater and main turbine valves is included as part of this Surveillance and overlaps the LOGIC SYSTEM FUNCTIONAL TEST to provide complete testing of the assumed safety function. Therefore, if a valve is incapable of operating, the associated instrumentation would also be inoperable. [The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency.

--
SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [15.1].

B 3.3 INSTRUMENTATION

B 3.3.3.1 Post Accident Monitoring (PAM) Instrumentation

BASES

BACKGROUND
The primary purpose of the PAM instrumentation is to display plant variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Events. The instruments that monitor these variables are designated as Type A, Category I, and non-Type A, Category I, in accordance with Regulatory Guide 1.97 (Ref. 1).

The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected plant parameters to monitor and assess plant status and behavior following an accident. This capability is consistent with the recommendations of Reference 1.

APPLICABLE SAFETY ANALYSES

The PAM instrumentation LCO ensures the OPERABILITY of Regulatory Guide 1.97, Type A variables so that the control room operating staff can:

- Perform the diagnosis specified in the Emergency Operating Procedures (EOPs). These variables are restricted to preplanned actions for the primary success path of Design Basis Accidents (DBAs), (e.g., loss of coolant accident (LOCA)) and
- Take the specified, preplanned, manually controlled actions for which no automatic control is provided, which are required for safety systems to accomplish their safety function.

The PAM instrumentation LCO also ensures OPERABILITY of Category I, non-Type A, variables so that the control room operating staff can:

- Determine whether systems important to safety are performing their intended functions,
- Determine the potential for causing a gross breach of the barriers to radioactivity release,
- Determine whether a gross breach of a barrier has occurred, and
- Initiate action necessary to protect the public and for an estimate of the magnitude of any impending threat.
The plant specific Regulatory Guide 1.97 Analysis (Ref. 2) documents the process that identified Type A and Category I, non-Type A, variables.

Accident monitoring instrumentation that satisfies the definition of Type A in Regulatory Guide 1.97 meets Criterion 3 of 10 CFR 50.36(c)(2)(ii). Category I, non-Type A, instrumentation is retained in Technical Specifications (TS) because they are intended to assist operators in minimizing the consequences of accidents. Therefore, these Category I variables are important for reducing public risk.

LCO

LCO 3.3.3.1 requires two OPERABLE channels for all but one Function to ensure that no single failure prevents the operators from being presented with the information necessary to determine the status of the plant and to bring the plant to, and maintain it in, a safe condition following that accident.

Furthermore, provision of two channels allows a CHANNEL CHECK during the post accident phase to confirm the validity of displayed information. [More than two channels may be required at some plants if the Regulatory Guide 1.97 analysis determined that failure of one accident monitoring channel results in information ambiguity (that is, the redundant displays disagree) that could lead operators to defeat or to fail to accomplish a required safety function.]

The exception to the two channel requirement is primary containment isolation valve (PCIV) position. In this case, the important information is the status of the primary containment penetrations. The LCO requires one position indicator for each active PCIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve and prior knowledge of passive valve or via system boundary status. If a normally active PCIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE.

The following list is a discussion of the specified instrument Functions listed in Table 3.3.3.1-1 in the accompanying LCO. These discussions are intended as examples of what should be provided for each Function when the plant specific list is prepared.
1. Reactor Steam Dome Pressure

Reactor steam dome pressure is a Category I variable provided to support monitoring of Reactor Coolant System (RCS) integrity and to verify operation of the Emergency Core Cooling Systems (ECCS). Two independent pressure transmitters with a range of 0 psig to 1500 psig monitor pressure. Wide range recorders are the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.

2. Reactor Vessel Water Level

Reactor vessel water level is a Category I variable provided to support monitoring of core cooling and to verify operation of the ECCS. The wide range water level channels provide the PAM Reactor Vessel Water Level Function. The wide range water level channels measure from 17 inches below the dryer skirt down to a point just below the bottom of the active fuel. Wide range water level is measured by two independent differential pressure transmitters. The output from these channels is recorded on two independent pen recorders, which is the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.

The wide range water level instruments are uncompensated for variation in reactor water density and are calibrated to be most accurate at operational pressure and temperature.

3. Suppression Pool Water Level

Suppression pool water level is a Category I variable provided to detect a breach in the reactor coolant pressure boundary (RCPB). This variable is also used to verify and provide long term surveillance of ECCS function. The wide range suppression pool water level measurement provides the operator with sufficient information to assess the status of both the RCPB and the water supply to the ECCS. The wide range water level indicators monitor the suppression pool water level from the center line of the ECCS suction lines to the top of the pool. Two wide range suppression pool water level signals are transmitted from separate differential pressure transmitters and are continuously recorded on two recorders in the control room. These recorders are the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.
4. Drywell Pressure

Drywell pressure is a Category I variable provided to detect breach of the RCPB and to verify ECCS functions that operate to maintain RCS integrity. Two wide range drywell pressure signals are transmitted from separate pressure transmitters and are continuously recorded and displayed on two control room recorders. These recorders are the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.

5. Primary Containment Area Radiation (High Range)

Primary containment area radiation (high range) is provided to monitor the potential of significant radiation releases and to provide release assessment for use by operators in determining the need to invoke site emergency plans. [For this plant, primary containment area radiation (high range) PAM instrumentation consists of the following:]

6. Drywell Sump Level

Drywell sump level is a Category I variable provided for verification of ECCS functions that operate to maintain RCS integrity. [For this plant, the drywell sump level PAM instrumentation consists of the following:]

7. Drywell Drain Sump Level

Drywell drain sump level is a Category I variable provided to detect breach of the RCPB and for verification and long term surveillance of ECCS functions that operate to maintain RCS integrity. [For this plant, the drywell drain sump level PAM instrumentation consists of the following:]

8. Primary Containment Isolation Valve (PCIV) Position

PCIV position is provided for verification of containment integrity. In the case of PCIV position, the important information is the isolation status of the containment penetration. The LCO requires one channel of valve position indication in the control room to be OPERABLE for each active PCIV in a containment penetration flow path, i.e., two total channels of PCIV position indication for a penetration flow path with two active valves. For containment penetrations with only one active PCIV having control room indication, Note (b) requires a single channel of valve position
indication to be OPERABLE. This is sufficient to redundantly verify the isolation status of each isolable penetration via indicated status of the active valve, as applicable, and prior knowledge of passive valve or system boundary status. If a penetration flow path is isolated, position indication for the PCIV(s) in the associated penetration flow path is not needed to determine status. Therefore, the position indication for valves in an isolated penetration flow path is not required to be OPERABLE. Each penetration is treated separately and each penetration flow path is considered a separate function. Therefore, separate Condition entry is allowed for each inoperable penetration flow path.

[For this plant, the PCIV position PAM instrumentation consists of the following:]

9. Wide Range Neutron Flux

Wide range neutron flux is a Category I variable provided to verify reactor shutdown. [For this plant, the wide range neutron flux PAM instrumentation consists of the following:]

10. Primary Containment Pressure

Primary containment pressure is a Category I variable provided to verify RCS and containment integrity and to verify the effectiveness of ECCS actions taken to prevent containment breach. Two wide range primary containment pressure signals are transmitted from separate pressure transmitters and are continuously recorded and displayed on two control room recorders. These recorders are the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.

11. Suppression Pool Water Temperature

Suppression pool water temperature is a Category I variable provided to detect a condition that could potentially lead to containment breach and to verify the effectiveness of ECCS actions taken to prevent containment breach. The suppression pool water temperature instrumentation allows operators to detect trends in suppression pool water temperature in sufficient time to take action to prevent steam quenching vibrations in the suppression pool. Twenty-four temperature sensors are arranged in six groups of four independent and redundant channels, located such that there is a group of sensors within a 30 ft line of sight of each relief valve discharge location.
Thus, six groups of sensors are sufficient to monitor each relief valve discharge location. Each group of four sensors includes two sensors for normal suppression pool temperature monitoring and two sensors for PAM. The outputs for the PAM sensors are recorded on four independent recorders in the control room (channels A and C are redundant to channels B and D, respectively). All four of these recorders must be OPERABLE to furnish two channels of PAM indication for each of the relief valve discharge locations. These recorders are the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channels. Each suppression pool water temperature [relief valve discharge location] is treated separately and each [relief valve discharge location] is considered to be a separate function. Therefore, separate Condition entry is allowed for each inoperable [relief valve discharge location].

The PAM instrumentation LCO is applicable in MODES 1 and 2. These variables are related to the diagnosis and preplanned actions required to mitigate DBAs. The applicable DBAs are assumed to occur in MODES 1 and 2. In MODES 3, 4, and 5, plant conditions are such that the likelihood of an event that would require PAM instrumentation is extremely low; therefore, PAM instrumentation is not required to be OPERABLE in these MODES.

A Note has been provided to modify the ACTIONS related to PAM instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable PAM instrumentation channels provide appropriate compensatory measures for separate Functions. As such, a Note has been provided that allows separate Condition entry for each inoperable PAM Function. When the Required Channels in Table 3.3.3.1-1 are specified (e.g., on a per steam line, per loop, etc., basis) then the Condition may be entered separately for each steam line, loop, etc., as appropriate.

A.1

When one or more Functions have one required channel that is inoperable, the required inoperable channel must be restored to OPERABLE status within 30 days. The 30 day Completion Time is based
on operating experience and takes into account the remaining OPERABLE channels (or, in the case of a Function that has only one required channel, other non-Regulatory Guide 1.97 instrument channels to monitor the Function), the passive nature of the instrument (no critical automatic action is assumed to occur from these instruments), and the low probability of an event requiring PAM instrumentation during this interval.

B.1

If a channel has not been restored to OPERABLE status in 30 days, this Required Action specifies initiation of action in accordance with Specification 5.6.5, which requires a written report to be submitted to the NRC. This report discusses the cause of the inoperability and identifies proposed restorative actions. This action is appropriate in lieu of a shutdown requirement, since alternative actions are identified before loss of functional capability, and given the likelihood of plant conditions that would require information provided by this instrumentation.

C.1

When one or more Functions have two required channels that are inoperable (i.e., two channels inoperable in the same Function), one channel in the Function should be restored to OPERABLE status within 7 days. The Completion Time of 7 days is based on the relatively low probability of an event requiring PAM instrument operation and the availability of alternate means to obtain the required information. Continuous operation with two required channels inoperable in a Function is not acceptable because the alternate indications may not fully meet all performance qualification requirements applied to the PAM instrumentation. Therefore, requiring restoration of one inoperable channel of the Function limits the risk that the PAM Function will be in a degraded condition should an accident occur.

D.1

This Required Action directs entry into the appropriate Condition referenced in Table 3.3.3.1-1. The applicable Condition referenced in the Table is Function dependent. Each time an inoperable channel has not met the Required Action of Condition C and the associated Completion Time has expired, Condition D is entered for that channel and provides for transfer to the appropriate subsequent Condition.
BASES

ACTIONS (continued)

E.1

For the majority of Functions in Table 3.3.3.1-1, if the Required Action and associated Completion Time of Condition C is not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

F.1

Since alternate means of monitoring primary containment area radiation have been developed and tested, the Required Action is not to shut down the plant, but rather to follow the directions of Specification 5.6.5. These alternate means may be temporarily installed if the normal PAM channel cannot be restored to OPERABLE status within the allotted time. The report provided to the NRC should discuss the alternate means used, describe the degree to which the alternate means are equivalent to the installed PAM channels, justify the areas in which they are not equivalent, and provide a schedule for restoring the normal PAM channels.

SURVEILLANCE REQUIREMENTS

The following SRs apply to each PAM instrumentation Function in Table 3.3.3.1-1.

SR 3.3.3.1.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel against a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. The high radiation instrumentation should be compared to similar plant instruments located throughout the plant.
SURVEILLANCE REQUIREMENTS (continued)

Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including isolation, indication, and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

[The Frequency of 31 days is based upon plant operating experience, with regard to channel OPERABILITY and drift, which demonstrates that failure of more than one channel of a given Function in any 31 day interval is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of those displays associated with the required channels of this LCO.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

----------------------------------- READER’S NOTE -----------------------------------

SR 3.3.3.1.2

CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies the channel responds to measured parameter with the necessary range and accuracy.

[The Frequency is based on operating experience and consistency with the typical industry refueling cycles.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
SURVEILLANCE REQUIREMENTS (continued)

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. Regulatory Guide 1.97, "Instrumentation for Light Water Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," [date].

2. [Plant specific documents (e.g., NRC Regulatory Guide 1.97, SER letter).]
B 3.3 INSTRUMENTATION

B 3.3.3.2 Remote Shutdown System

BASES

BACKGROUND
The Remote Shutdown System provides the control room operator with sufficient instrumentation and controls to place and maintain the plant in a safe shutdown condition from a location other than the control room. This capability is necessary to protect against the possibility of the control room becoming inaccessible. A safe shutdown condition is defined as MODE 3. With the plant in MODE 3, the Reactor Core Isolation Cooling (RCIC) System, the safety/relief valves, and the Residual Heat Removal Shutdown Cooling System can be used to remove core decay heat and meet all safety requirements. The long term supply of water for the RCIC and the ability to operate shutdown cooling from outside the control room allow extended operation in MODE 3.

In the event that the control room becomes inaccessible, the operators can establish control at the remote shutdown panel and place and maintain the plant in MODE 3. Not all controls and necessary transfer switches are located at the remote shutdown panel. Some controls and transfer switches will have to be operated locally at the switchgear, motor control panels, or other local stations. The plant automatically reaches MODE 3 following a plant shutdown and can be maintained safely in MODE 3 for an extended period of time.

The OPERABILITY of the Remote Shutdown System control and instrumentation Functions ensures that there is sufficient information available on selected plant parameters to place and maintain the plant in MODE 3 should the control room become inaccessible.

APPLICABLE SAFETY ANALYSES
The Remote Shutdown System is required to provide equipment at appropriate locations outside the control room with a design capability to promptly shut down the reactor to MODE 3, including the necessary instrumentation and controls, to maintain the plant in a safe condition in MODE 3.

The criteria governing the design and the specific system requirements of the Remote Shutdown System are located in 10 CFR 50, Appendix A, GDC 19 (Ref. 1).

The Remote Shutdown System LCO provides the requirements for the OPERABILITY of the instrumentation and controls necessary to place and maintain the plant in MODE 3 from a location other than the control room. The instrumentation and controls required are listed in Table B 3.3.3.2-1.

The controls, instrumentation, and transfer switches are those required for:

- Reactor pressure vessel (RPV) pressure control,
- Decay heat removal,
- RPV inventory control, and
- Safety support systems for the above functions, including service water, component cooling water, and onsite power, including the diesel generators.

The Remote Shutdown System is OPERABLE if all instrument and control channels needed to support the remote shutdown function are OPERABLE. In some cases, Table B 3.3.3.2-1 may indicate that the required information or control capability is available from several alternate sources. In these cases, the Remote Shutdown System is OPERABLE as long as one channel of any of the alternate information or control sources for each Function is OPERABLE.

The Remote Shutdown System instruments and control circuits covered by this LCO do not need to be energized to be considered OPERABLE. This LCO is intended to ensure that the instruments and control circuits will be OPERABLE if plant conditions require that the Remote Shutdown System be placed in operation.

The Remote Shutdown System LCO is applicable in MODES 1 and 2. This is required so that the plant can be placed and maintained in MODE 3 for an extended period of time from a location other than the control room.

This LCO is not applicable in MODES 3, 4, and 5. In these MODES, the plant is already subcritical and in a condition of reduced Reactor Coolant System energy. Under these conditions, considerable time is available to restore necessary instrument control Functions if control room instruments or control becomes unavailable. Consequently, the TS do not require OPERABILITY in MODES 3, 4, and 5.
A Remote Shutdown System division is inoperable when each function is not accomplished by at least one designated Remote Shutdown System channel that satisfies the OPERABILITY criteria for the channel's Function. These criteria are outlined in the LCO section of the Bases.

A Note has been provided to modify the ACTIONS related to Remote Shutdown System Functions. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable Remote Shutdown System Functions provide appropriate compensatory measures for separate Functions. As such, a Note has been provided that allows separate Condition entry for each inoperable Remote Shutdown System Function.

A.1

Condition A addresses the situation where one or more required Functions of the Remote Shutdown System is inoperable. This includes the control and transfer switches for any required Function.

The Required Action is to restore the Function (both divisions, if applicable) to OPERABLE status within 30 days. The Completion Time is based on operating experience and the low probability of an event that would require evacuation of the control room.

B.1

If the Required Action and associated Completion Time of Condition A are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time is reasonable, based on operating experience, to reach the required MODE from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE REQUIREMENTS

SR 3.3.3.2.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. As specified in the Surveillance, a CHANNEL CHECK is only required for those channels that are normally energized.

[The Frequency of 31 days is based upon plant operating experience that demonstrates channel failure is rare.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--]

SR 3.3.3.2.2

SR 3.3.3.2.2 verifies each required Remote Shutdown System transfer switch and control circuit performs the intended function. This verification is performed from the remote shutdown panel and locally, as appropriate. Operation of the equipment from the remote shutdown panel is not necessary. The Surveillance can be satisfied by performance of a continuity check. This will ensure that if the control room becomes inaccessible, the plant can be placed and maintained in MODE 3 from the
remote shutdown panel and the local control stations. However, this Surveillance is not required to be performed only during a plant outage. [Operating experience demonstrates that Remote Shutdown System control channels usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.3.2.3

CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. The test verifies the channel responds to measured parameter values with the necessary range and accuracy.

[The 18 month Frequency is based upon operating experience and consistency with the typical industry refueling cycle.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES
1. 10 CFR 50, Appendix A, GDC 19.
Table B 3.3.3.2-1 (page 1 of 1)
Remote Shutdown System Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION (INSTRUMENT OR CONTROL PARAMETER)</th>
<th>REQUIRED NUMBER OF DIVISIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reactor Pressure Vessel Pressure</td>
<td></td>
</tr>
<tr>
<td>a. Reactor Pressure</td>
<td>[1]</td>
</tr>
<tr>
<td>2. Decay Heat Removal</td>
<td></td>
</tr>
<tr>
<td>a. RCIC Flow</td>
<td>[1]</td>
</tr>
<tr>
<td>b. RCIC Controls</td>
<td>[1]</td>
</tr>
<tr>
<td>c. RHR Flow</td>
<td>[1]</td>
</tr>
<tr>
<td>d. RHR Controls</td>
<td>[1]</td>
</tr>
<tr>
<td>3. Reactor Pressure Vessel Inventory Control</td>
<td></td>
</tr>
<tr>
<td>a. RCIC Flow</td>
<td>[1]</td>
</tr>
<tr>
<td>b. RCIC Controls</td>
<td>[1]</td>
</tr>
<tr>
<td>c. RHR Flow</td>
<td>[1]</td>
</tr>
<tr>
<td>d. RHR Controls</td>
<td>[1]</td>
</tr>
</tbody>
</table>

REVIEWER'S NOTE

For channels that fulfill GDC 19 requirements, the number of OPERABLE channels required depends upon the plant's licensing basis as described in the NRC plant specific Safety Evaluation Report (SER). Generally, two divisions are required to be OPERABLE. However, only one channel per given Function is required if the plant has justified such a design and the NRC SER has accepted the justification.

This Table is for illustration purposes only. It does not attempt to encompass every Function used at every unit, but does contain the types of Functions commonly found.
B 3.3 INSTRUMENTATION

B 3.3.4.1 End of Cycle Recirculation Pump Trip (EOC-RPT) Instrumentation

Bases

Background

The EOC-RPT instrumentation initiates a recirculation pump trip (RPT) to reduce the peak reactor pressure and power resulting from turbine trip or generator load rejection transients to provide additional margin to core thermal MCPR Safety Limits (SLs).

The need for the additional negative reactivity in excess of that normally inserted on a scram reflects end of cycle reactivity considerations. Flux shapes at the end of cycle are such that the control rods may not be able to ensure that thermal limits are maintained by inserting sufficient negative reactivity during the first few feet of rod travel upon a scram caused by Turbine Control Valve (TCV) Fast Closure, Trip Oil Pressure - Low or Turbine Stop Valve (TSV) - Closure. The physical phenomenon involved is that the void reactivity feedback due to a pressurization transient can add positive reactivity at a faster rate than the control rods can add negative reactivity.

The protection functions of the EOC-RPT have been designed to ensure safe operation of the reactor during load rejection transients. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the EOC-RPT, as well as LCOs on other system parameters and equipment performance.

Technical Specifications are required by 10 CFR 50.36 to include LSSSs for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytical Limit is the limit of the process variable at which a safety action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytical Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytical Limit to account for instrument loop uncertainties related to the setting at which the automatic protective action would actually occur.

------------REVIEWER'S NOTE-----------------------------

The term "Limiting Trip Setpoint" [LTSP] is generic terminology for the calculated trip setting (setpoint) value calculated by means of the plant specific setpoint methodology documented in a document controlled...
under 10 CFR 50.59. The term [LTSP] indicates that no additional margin has been added between the Analytical Limit and the calculated trip setting.

"Nominal Trip Setpoint [NTSP]" is the suggested terminology for the actual setpoint implemented in the plant surveillance procedures where margin has been added to the calculated [LTSP]. The as-found and as-left tolerances will apply to the [NTSP] implemented in the Surveillance procedures to confirm channel performance.

Licensees are to insert the name of the document(s) controlled under 10 CFR 50.59 that contain the methodology for calculating the as-left and as-found tolerances, in Note 2 of SR 3.3.4.1.2 or 3.3.4.1.3 for the phrase "[insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]" throughout the Bases.

If the [LTSP] is not included in SR 3.3.4.1.2 or 3.3.4.1.3 for the purpose of compliance with 10 CFR 50.36, the plant specific location for the [LTSP] or [NTSP] must be cited in Note 2 of the SRs in the SR table. The brackets indicate plant specific terms may apply, as reviewed and approved by the NRC.

The [Limiting Trip Setpoint (LTSP)] specified in SR 3.3.4.1.2 and SR 3.3.4.1.3 is a predetermined setting for a protection channel chosen to ensure automatic actuation prior to the process variable reaching the Analytical Limit and thus ensuring that the SL would not be exceeded. As such, the [LTSP] accounts for uncertainties in setting the channel (e.g., calibration), uncertainties in how the channel might actually perform (e.g., repeatability), changes in the point of action of the channel over time (e.g., drift during surveillance intervals), and any other factors which may influence its actual performance (e.g., harsh accident environments). In this manner, the [LTSP] ensures that SLs are not exceeded. Therefore, the [LTSP] meets the definition of an LSSS (Ref. 1).

The Allowable Value specified in SR 3.3.4.1.3 serves as the LSSS such that a channel is OPERABLE if the trip setpoint is found not to exceed the Allowable Value. As such, the Allowable Value differs from the trip setpoint by an amount primarily equal to the expected instrument loop uncertainties, such as drift, during the surveillance interval. In this manner, the actual setting of the device will still meet the LSSS definition and ensure that a SL is not exceeded at any given point of time as long as the device has not drifted beyond that expected during the surveillance interval.
Technical Specifications contain values related to the OPERABILITY of equipment required for safe operation of the facility. OPERABLE is defined in Technical Specifications as "...being capable of performing its safety function(s)." Relying solely on the [LTSP] to define OPERABILITY in Technical Specifications would be an overly restrictive requirement if it were applied as an OPERABILITY limit for the "as found" value of a protection channel setting during a Surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure safety. For example, an automatic protection channel with a setting that has been found to be different from the [LTSP] due to some drift of the setting may still be OPERABLE because drift is to be expected. This expected drift would have been specifically accounted for in the setpoint methodology for calculating the [LTSP] and thus the automatic protective action would still have ensured that the SL would not be exceeded with the "as found" setting of the protection channel. Therefore, the channel would still be OPERABLE because it would have performed its safety function and the only corrective action required would be to reset the channel within the established as-left tolerance around [LTSP] to account for further drift during the next surveillance interval. Note that, although the channel is OPERABLE under these circumstances, the trip setpoint must be left adjusted to a value within the as-found tolerance band, in accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-found criteria), and confirmed to be operating within the statistical allowances of the uncertainty terms assigned (as-found criteria).

However, there is also some point beyond which the channel may not be able to perform its function due to, for example, greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the channels and is designated as the Allowable Value.

If the actual setting (as-found setpoint) of the channel is found to be conservative with respect to the Allowable Value but is beyond the as-found tolerance band, the channel is OPERABLE, but degraded. The degraded condition will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the [LTSP] (within the allowed tolerance), and evaluating the channel response. If the channel is functioning as required and expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation.
The EOC-RPT instrumentation, as shown in Reference 2, is composed of sensors that detect initiation of closure of the TSVs or fast closure of the TCVs, combined with relays, logic circuits, and fast acting circuit breakers that interrupt power from the recirculation pump motor generator (MG) set generators to each of the recirculation pump motors. The channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs an EOC-RPT signal to the trip logic. When the RPT breakers trip open, the recirculation pumps coast down under their own inertia. The EOC-RPT has two identical trip systems, either of which can actuate an RPT.

Each EOC-RPT trip system is a two-out-of-two logic for each Function; thus, either two TSV - Closure or two TCV Fast Closure, Trip Oil Pressure - Low signals are required for a trip system to actuate. If either trip system actuates, both recirculation pumps will trip. There are two EOC-RPT breakers in series per recirculation pump. One trip system trips one of the two EOC-RPT breakers for each recirculation pump, and the second trip system trips the other EOC-RPT breaker for each recirculation pump.

The TSV - Closure and the TCV Fast Closure, Trip Oil Pressure - Low Functions are designed to trip the recirculation pumps in the event of a turbine trip or generator load rejection to mitigate the neutron flux, heat flux, and pressurize transients, and to increase the margin to the MCPR SL. The analytical methods and assumptions used in evaluating the turbine trip and generator load rejection, as well as other safety analyses that ensure EOC-RPT, are summarized in References 3, 4, and 5.

To mitigate pressurization transient effects, the EOC-RPT must trip the recirculation pumps after initiation of closure movement of either the TSVs or the TCVs. The combined effects of this trip and a scram reduce fuel bundle power more rapidly than a scram alone, resulting in an increased margin to the MCPR SL. Alternatively, MCPR limits for an inoperable EOC-RPT, as specified in the COLR, are sufficient to mitigate pressurization transient effects. The EOC-RPT function is automatically disabled when turbine first stage pressure is < [40%] RTP.

EOC-RPT instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Permissive and interlock setpoints allow the blocking of trips during plant startups, and restoration of trips when the permissive conditions are not satisfied, but they are not explicitly modeled in the Safety Analyses. These permissives and interlocks ensure that the starting conditions are consistent with the safety analysis, before preventive or mitigating actions.
occur. Because these permissives or interlocks are only one of multiple conservative starting assumptions for the accident analysis, they are generally considered as nominal values without regard to measurement accuracy.

The OPERABILITY of the EOC-RPT is dependent on the OPERABILITY of the individual instrumentation channel Functions. Each Function must have a required number of OPERABLE channels in each trip system, with their setpoints set within the setting tolerance of the [LTSP] where appropriate. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Channel OPERABILITY also includes the associated EOC-RPT breakers. Each channel (including the associated EOC-RPT breakers) must also respond within its assumed response time.

Allowable Values are specified for each EOC-RPT Function specified in the LCO. [LTSPs] and the methodologies for calculation of the as-left and as-found tolerances are described in [insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]. The [LTSPs] are selected to ensure that the setpoints remain conservative with respect to the as-found tolerance band between successive CHANNEL CALIBRATIONS. After each calibration the trip setpoint shall be left within the as-left band around the [LTSP].

[LTSPs] are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., TSV position), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytical limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytical limits, corrected for calibration, process, and some of the instrument errors. The [LTSPs] are then determined accounting for the remaining instrument errors (e.g., drift). The [LTSPs] derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

The specific Applicable Safety Analysis, LCO, and Applicability discussions are listed below on a Function by Function basis.
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Alternatively, since this instrumentation protects against a MCPR SL violation, with the instrumentation inoperable, modifications to the MCPR limits (LCO 3.2.2) may be applied to allow this LCO to be met. The MCPR penalty for the EOC-RPT inoperable condition is specified in the COLR.

Turbine Stop Valve – Closure

Closure of the TSVs and a main turbine trip result in the loss of a heat sink that produces reactor pressure, neutron flux, and heat flux transients that must be limited. Therefore, an RPT is initiated on TSV - Closure in anticipation of the transients that would result from closure of these valves. EOC-RPT decreases reactor power and aids the reactor scram in ensuring that the MCPR SL is not exceeded during the worst case transient.

Closure of the TSVs is determined by measuring the position of each valve. There are two separate position switches associated with each stop valve, the signal from each switch being assigned to a separate trip channel. The logic for the TSV - Closure Function is such that two or more TSVs must be closed to produce an EOC-RPT. This Function must be enabled at THERMAL POWER ≥ 30% RTP. This is normally accomplished automatically by pressure transmitters sensing turbine first stage pressure; therefore, to consider this Function OPERABLE, the turbine bypass valves must remain shut at THERMAL POWER ≥ 30% RTP. Four channels of TSV - Closure, with two channels in each trip system, are available and required to be OPERABLE to ensure that no single instrument failure will preclude an EOC-RPT from this Function on a valid signal. The TSV - Closure Allowable Value is selected to detect imminent TSV closure.

This protection is required, consistent with the safety analysis assumptions, whenever THERMAL POWER is ≥ 30% RTP. Below 30% RTP, the Reactor Vessel Steam Dome Pressure - High and the Average Power Range Monitor (APRM) Fixed Neutron Flux - High Functions of the Reactor Protection System (RPS) are adequate to maintain the necessary safety margins.

Turbine Control Valve Fast Closure, Trip Oil Pressure – Low

Fast closure of the TCVs during a generator load rejection results in the loss of a heat sink that produces reactor pressure, neutron flux, and heat flux transients that must be limited. Therefore, an RPT is initiated on TCV Fast Closure, Trip Oil Pressure - Low in anticipation of the transients that
would result from the closure of these valves. The EOC-RPT decreases reactor power and aids the reactor scram in ensuring that the MCPR SL is not exceeded during the worst case transient.

Fast closure of the TCVs is determined by measuring the electrohydraulic control fluid pressure at each control valve. There is one pressure transmitter associated with each control valve, and the signal from each transmitter is assigned to a separate trip channel. The logic for the TCV Fast Closure, Trip Oil Pressure - Low Function is such that two or more TCVs must be closed (pressure transmitter trips) to produce an EOC-RPT. This Function must be enabled at THERMAL POWER ≥ 30% RTP. This is normally accomplished automatically by pressure transmitters sensing turbine first stage pressure; therefore, to consider this Function OPERABLE, the turbine bypass valves must remain shut at THERMAL POWER ≥ 30% RTP. Four channels of TCV Fast Closure, Trip Oil Pressure - Low, with two channels in each trip system, are available and required to be OPERABLE to ensure that no single instrument failure will preclude an EOC-RPT from this Function on a valid signal. The TCV Fast Closure, Trip Oil Pressure - Low Allowable Value is selected high enough to detect imminent TCV fast closure.

This protection is required consistent with the safety analysis whenever THERMAL POWER is > 30% RTP. Below 30% RTP, the Reactor Vessel Steam Dome Pressure - High and the APRM Fixed Neutron Flux - High Functions of the RPS are adequate to maintain the necessary safety margins.

A Note has been provided to modify the ACTIONS related to EOC-RPT instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable EOC-RPT instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable EOC-RPT instrumentation channel.
A.1 and A.2

With one or more required channels inoperable, but with EOC-RPT trip capability maintained (refer to Required Actions B.1 and B.2 Bases), the EOC-RPT System is capable of performing the intended function. However, the reliability and redundancy of the EOC-RPT instrumentation is reduced such that a single failure in the remaining trip system could result in the inability of the EOC-RPT System to perform the intended function. Therefore, only a limited time is allowed to restore compliance with the LCO. Because of the diversity of sensors available to provide trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of an EOC-RPT, 72 hours is provided to restore the inoperable channels (Required Action A.1) [or apply the EOC-RPT inoperable MCPR limit]. Alternately, the inoperable channels may be placed in trip (Required Action A.2) since this would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. As noted in Required Action A.2, placing the channel in trip with no further restrictions is not allowed if the inoperable channel is the result of an inoperable breaker, since this may not adequately compensate for the inoperable breaker (e.g., the breaker may be inoperable such that it will not open). [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an RPT), or if the inoperable channel is the result of an inoperable breaker, Condition C must be entered and its Required Actions taken.

B.1 and B.2

Required Actions B.1 and B.2 are intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in the Function not maintaining EOC-RPT trip capability. A Function is considered to be maintaining EOC-RPT trip capability when sufficient channels are OPERABLE or in trip, such that the EOC-RPT System will generate a trip signal from the given Function on a valid signal and both recirculation pumps can be tripped. This requires two channels of the Function in the same trip system, to each be OPERABLE or in trip, and the associated EOC-RPT breakers to be OPERABLE or in trip. Alternately, Required Action B.2 requires the MCPR limit for inoperable EOC-RPT, as specified in the COLR, to be applied. This also restores the margin to MCPR assumed in the safety analysis.
The 2 hour Completion Time is sufficient time for the operator to take corrective action, and takes into account the likelihood of an event requiring actuation of the EOC-RPT instrumentation during this period. It is also consistent with the 2 hour Completion Time provided in LCO 3.2.2 for Required Action A.1, since this instrumentation’s purpose is to preclude a MCPR violation.

C.1 and C.2

With any Required Action and associated Completion Time not met, THERMAL POWER must be reduced to < 30% RTP within 4 hours. Alternately, the associated recirculation pump may be removed from service, since this performs the intended function of the instrumentation. The allowed Completion Time of 4 hours is reasonable, based on operating experience, to reduce THERMAL POWER to < 30% RTP from full power conditions in an orderly manner and without challenging plant systems.

Required Action C.1 is modified by a Note which states that the Required Action is only applicable if the inoperable channel is the result of an inoperable RPT breaker. The Note clarifies the situations under which the associated Required Action would be the appropriate Required Action.

Notes 1 and 2 are applied to the setpoint verification Surveillances for the TCV Fast Closure Function unless one or more of the following exclusions apply:

1. Manual actuation circuits, automatic actuation logic circuits or instrument functions that derive input from contacts which have no associated sensor or adjustable device, e.g., limit switches, breaker position switches, manual actuation switches, float switches, proximity detectors, etc. are excluded. In addition, those permissives and interlocks that derive input from a sensor or adjustable device that is tested as part of another TS function are excluded.
SURVEILLANCE REQUIREMENTS (continued)

2. Settings associated with safety relief valves are excluded. The performance of these components is already controlled (i.e., trended with as-left and as-found limits) under the ASME Code for Operation and Maintenance of Nuclear Power Plants testing program.

3. Functions and Surveillance Requirements which test only digital components are normally excluded. There is no expected change in result between SR performances for these components. Where separate as-left and as-found tolerance is established for digital component SRs, the requirements would apply.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains EOC-RPT trip capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 6) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the recirculation pumps will trip when necessary.

SR 3.3.4.1.1

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency of 92 days is based on reliability analysis of Reference 6. OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.]
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--- REVIEWER'S NOTE ---

SR 3.3.4.1.2

The calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in SR 3.3.4.1.3. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, the channel performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than accounted for in the appropriate setpoint methodology.

[The Frequency of 92 days is based on assumptions of the reliability analysis (Ref. 6) and on the methodology included in the determination of the trip setpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--- REVIEWER'S NOTE ---

SR 3.3.4.1.2 for the TCV Fast Closure Function is modified by two Notes in the SR table. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For
channels determined to be OPERABLE but degraded, after returning the
channel to service the performance of these channels will be evaluated
under the plant Corrective Action Program. Entry into the Corrective
Action Program will ensure required review and documentation of the
condition. The second Note requires that the as-left setting for the
channel be within the as-left tolerance of the [LTSP]. Where a setpoint
more conservative than the [LTSP] is used in the plant surveillance
procedures [Nominal Trip Setpoint (NTSP)], the as-left and as-found
tolerances, as applicable, will be applied to the surveillance procedure
setpoint. This will ensure that sufficient margin to the Safety Limit and/or
Analytical Limit is maintained. If the as-left channel setting cannot be
returned to a setting within the as-left tolerance of the [LTSP], then the
channel shall be declared inoperable. The second Note also requires that
[LTSP] and the methodologies for calculating the as-left and the as-found
tolerances be in [insert the facility FSAR reference or the name of any
document incorporated into the facility FSAR by reference].

SR 3.3.4.1.3

CHANNEL CALIBRATION is a complete check of the instrument loop and
the sensor. This test verifies the channel responds to the measured
parameter within the necessary range and accuracy. CHANNEL
CALIBRATION leaves the channel adjusted to account for instrument
drifts between successive calibrations consistent with the plant specific
setpoint methodology.

[The Frequency is based upon the assumption of an 18 month calibration
interval in the determination of the magnitude of equipment drift in the
setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance
Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance
Frequency Control Program should utilize the appropriate Frequency
description, given above, and the appropriate choice of Frequency in the
Surveillance Requirement.
SR 3.3.4.1.3 for the TCV Fast Closure Function is modified by two Notes in the SR table. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint more conservative than the [LTSP] is used in the plant surveillance procedures [NTSP], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also requires that [LTSP] and the methodologies for calculating the as-left and the as-found tolerances be in [insert the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference].

SR 3.3.4.1.4

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required trip logic for a specific channel. The system functional test of the pump breakers is included as a part of this test, overlapping the LOGIC SYSTEM FUNCTIONAL TEST, to provide complete testing of the associated safety function. Therefore, if a breaker is incapable of operating, the associated instrument channel(s) would also be inoperable.

[The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.

OR
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER'S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.3.4.1.5

This SR ensures that an EOC-RPT initiated from the TSV - Closure and TCV Fast Closure, Trip Oil Pressure - Low Functions will not be inadvertently bypassed when THERMAL POWER is ≥ 30% RTP. This involves calibration of the bypass channels. Adequate margins for the instrument setpoint methodologies are incorporated into the actual setpoint. Because main turbine bypass flow can affect this setpoint nonconservatively (THERMAL POWER is derived from first stage pressure) the main turbine bypass valves must remain closed at THERMAL POWER ≥ 30% RTP to ensure that the calibration remains valid. If any bypass channel's setpoint is nonconservative (i.e., the Functions are bypassed at ≥ 30% RTP, either due to open main turbine bypass valves or other reasons), the affected TSV - Closure and TCV Fast Closure, Trip Oil Pressure - Low Functions are considered inoperable. Alternatively, the bypass channel can be placed in the conservative condition (nonbypass). If placed in the nonbypass condition, this SR is met with the channel considered OPERABLE.

[The Frequency of 18 months has shown that channel bypass failures between successive tests are rare.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER'S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--
SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.4.1.6

This SR ensures that the individual channel response times are less than or equal to the maximum values assumed in the accident analysis. The EOC-RPT SYSTEM RESPONSE TIME acceptance criteria are included in Reference 7.

A Note to the Surveillance states that breaker interruption time may be assumed from the most recent performance of SR 3.3.4.1.7. This is allowed since the time to open the contacts after energization of the trip coil and the arc suppression time are short and do not appreciably change, due to the design of the breaker opening device and the fact that the breaker is not routinely cycled.

Response times cannot be determined at power because operation of final actuated devices is required. Therefore, the 18 month Frequency is consistent with the typical industry refueling cycle and is based upon plant operating experience, which shows that random failures of instrumentation components that cause serious response time degradation, but not channel failure, are infrequent occurrences.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------REVIEWER’S NOTE-------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.4.1.7

This SR ensures that the RPT breaker interruption time (arc suppression time plus time to open the contacts) is provided to the EOC-RPT SYSTEM RESPONSE TIME test. Therefore, the 60 month Frequency of the testing is based on the difficulty of performing the test and the reliability of the circuit breakers.

OR
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

2. FSAR, Figure [] (EOC-RPT logic diagram).

3. FSAR, Section [5.2.2].

4. FSAR, Sections [15.1.1, 15.1.2, and 15.1.3].

5. FSAR, Sections [5.5.16.1 and 7.6.10].

7. FSAR, Section [5.5.16.2].
B 3.3 INSTRUMENTATION

B 3.3.4.2 Anticipated Transient Without Scram Recirculation Pump Trip (ATWS-RPT) Instrumentation

BASES

BACKGROUND

The ATWS-RPT System initiates a RPT, adding negative reactivity, following events in which a scram does not (but should) occur, to lessen the effects of an ATWS event. Tripping the recirculation pumps adds negative reactivity from the increase in steam voiding in the core area as core flow decreases. When Reactor Vessel Water Level - Low Low, Level 2 or Reactor Steam Dome Pressure - High setpoint is reached, the recirculation pump drive motor breakers trip.

The ATWS-RPT System (Ref. 1) includes sensors, relays, bypass capability circuit breakers, and switches that are necessary to cause initiation of a RPT. The channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs an ATWS-RPT signal to the trip logic.

The ATWS-RPT consists of two independent trip systems, with two channels of Reactor Steam Dome Pressure - High and two channels of Reactor Vessel Water Level - Low Low, Level 2 in each trip system. Each ATWS-RPT trip system is a two-out-of-two logic for each Function. Thus, either two Reactor Water Level - Low Low, Level 2 or two Reactor Pressure - High signals are needed to trip a trip system. The outputs of the channels in a trip system are combined in a logic so that either trip system will trip both recirculation pumps (by tripping the respective drive motor breakers).

There is one drive motor breaker provided for each of the two recirculation pumps for a total of two breakers. The output of each trip system is provided to both recirculation pump breakers.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

The ATWS-RPT is [not] assumed in the safety analysis. The ATWS-RPT initiates a RPT to aid in preserving the integrity of the fuel cladding following events in which a scram does not, but should, occur. ATWS- RPT instrumentation satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

The OPERABILITY of the ATWS-RPT is dependent on the OPERABILITY of the individual instrumentation channel Functions. Each Function must have a required number of OPERABLE channels in each trip system, with their setpoints within the specified Allowable Value of SR 3.3.4.2.4. The actual setpoint is calibrated consistent with applicable
setpoint methodology assumptions. Channel OPERABILITY also includes the associated recirculation pump drive motor breakers. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value.

Allowable Values are specified for each ATWS-RPT Function specified in the LCO. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytical limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytical limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

The individual Functions are required to be OPERABLE in MODE 1 to protect against common mode failures of the Reactor Protection System by providing a diverse trip to mitigate the consequences of a postulated ATWS event. The Reactor Steam Dome Pressure - High and Reactor Vessel Water Level - Low Low, Level 2 Functions are required to be OPERABLE in MODE 1, since the reactor is producing significant power and the recirculation system could be at high flow. During this MODE, the potential exists for pressure increases or low water level, assuming an ATWS event. In MODE 2, the reactor is at low power and the recirculation system is at low flow; thus, the potential is low for a pressure increase or low water level, assuming an ATWS event. Therefore, the ATWS-RPT is not necessary. In MODES 3 and 4, the reactor is shut down with all control rods inserted; thus, an ATWS event is not significant and the possibility of a significant pressure increase or low water level is negligible. In MODE 5, the one rod out interlock ensures that the reactor remains subcritical; thus, an ATWS event is not significant. In addition, the reactor pressure vessel (RPV) head is not fully tensioned and no pressure transient threat to the reactor coolant pressure boundary (RCPB) exists.
The specific Applicable Safety Analyses and LCO discussions are listed below on a Function by Function basis.

a. **Reactor Vessel Water Level - Low Low, Level 2**

Low RPV water level indicates the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, the ATWS-RPT System is initiated at Level 2 to aid in maintaining level above the top of the active fuel. The reduction of core flow reduces the neutron flux and THERMAL POWER and, therefore, the rate of coolant boiloff.

Reactor vessel water level signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

Four channels of Reactor Vessel Water Level - Low Low, Level 2, with two channels in each trip system, are available and required to be OPERABLE to ensure that no single instrument failure can preclude an ATWS-RPT from this Function on a valid signal. The Reactor Vessel Water Level - Low Low, Level 2 Allowable Value is chosen so that the system will not be initiated after a Level 3 scram with feedwater still available, and for convenience with the reactor core isolation cooling initiation.

b. **Reactor Steam Dome Pressure - High**

Excessively high RPV pressure may rupture the RCPB. An increase in the RPV pressure during reactor operation compresses the steam voids and results in a positive reactivity insertion. This increases neutron flux and THERMAL POWER, which could potentially result in fuel failure and overpressurization. The Reactor Steam Dome Pressure - High Function initiates a RPT for transients that result in a pressure increase, counteracting the pressure increase by rapidly reducing core power generation. For the overpressurization event, the RPT aids in the termination of the ATWS event and, along with the safety/relief valves, limits the peak RPV pressure to less than the ASME Section III Code Service Level C limits (1500 psig).

The Reactor Steam Dome Pressure - High signals are initiated from four pressure transmitters that monitor reactor steam dome pressure. Four channels of Reactor Steam Dome Pressure - High, with two channels in each trip system, are available and are required to be OPERABLE to ensure that no single instrument failure can preclude
B1. BASES

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

an ATWS-RPT from this Function on a valid signal. The Reactor Steam Dome Pressure - High Allowable Value is chosen to provide an adequate margin to the ASME Section III Code Service Level C allowable Reactor Coolant System pressure.

ACTIONS

A Note has been provided to modify the ACTIONS related to ATWS-RPT instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable ATWS-RPT instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable ATWS-RPT instrumentation channel.

A.1 and A.2

With one or more channels inoperable, but with ATWS-RPT capability for each Function maintained (refer to Required Actions B.1 and C.1 Bases), the ATWS-RPT System is capable of performing the intended function. However, the reliability and redundancy of the ATWS-RPT instrumentation is reduced, such that a single failure in the remaining trip system could result in the inability of the ATWS-RPT System to perform the intended function. Therefore, only a limited time is allowed to restore the inoperable channels to OPERABLE status. Because of the diversity of sensors available to provide trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of ATWS-RPT, 14 days is provided to restore the inoperable channel (Required Action A.1). Alternately, the inoperable channel may be placed in trip (Required Action A.2), since this would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. As noted, placing the channel in trip with no further restrictions is not allowed if the inoperable channel is the result of an inoperable breaker, since this may not adequately compensate for the inoperable breaker (e.g., the breaker may be inoperable such that it will not open). [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in a RPT), or if the inoperable channel is the result of an inoperable breaker, Condition D must be entered and its Required Actions taken.
BASES

ACTIONS (continued)

B.1

Required Action B.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in the Function not maintaining ATWS-RPT trip capability. A Function is considered to be maintaining ATWS-RPT trip capability when sufficient channels are OPERABLE or in trip such that the ATWS-RPT System will generate a trip signal from the given Function on a valid signal, and both recirculation pumps can be tripped. This requires two channels of the Function in the same trip system to each be OPERABLE or in trip, and the recirculation pump drive motor breakers to be OPERABLE or in trip.

The 72 hour Completion Time is sufficient for the operator to take corrective action (e.g., restoration or tripping of channels) and takes into account the likelihood of an event requiring actuation of the ATWS-RPT instrumentation during this period and that one Function is still maintaining ATWS-RPT trip capability.

C.1

Required Action C.1 is intended to ensure that appropriate Actions are taken if multiple, inoperable, untripped channels within both Functions result in both Functions not maintaining ATWS-RPT trip capability. The description of a Function maintaining ATWS-RPT trip capability is discussed in the Bases for Required Action B.1 above.

The 1 hour Completion Time is sufficient for the operator to take corrective action and takes into account the likelihood of an event requiring actuation of the ATWS-RPT instrumentation during this period.

D.1 and D.2

With any Required Action and associated Completion Time not met, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 2 within 6 hours (Required Action D.2). Alternately, the associated recirculation pump may be removed from service since this performs the intended function of the instrumentation (Required Action D.1). The allowed Completion Time of 6 hours is reasonable, based on operating experience, both to reach MODE 2 from full power conditions and to remove a recirculation pump from service in an orderly manner and without challenging plant systems.
Required Action D.1 is modified by a Note which states that the Required Action is only applicable if the inoperable channel is the result of an inoperable RPT breaker. The Note clarifies the situations under which the associated Required Action would be the appropriate Required Action.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into the associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains ATWS-RPT trip capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 2) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the recirculation pumps will trip when necessary.

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.
B 3.3.4.2 - ATWS Instrumentation

BASES

SURVEILLANCE REQUIREMENTS (continued)

[The Frequency of 12 hours is based upon operating experience that demonstrates channel failure is rare.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

------------------------------REVIEWER'S NOTE-------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

------------------------------REVIEWER'S NOTE-------------------------------]

The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the required channels of this LCO.

SR 3.3.4.2.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency of 92 days is based on the reliability analysis of Reference 2.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.4.2.3

Calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperative if the trip setting is discovered to be less conservative than the Allowable Value specified in SR 3.3.4.2.4. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. If the trip setting is discovered to be less conservative than the setting accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, the channel performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than accounted for in the appropriate setpoint methodology.

[The Frequency of 92 days is based on the reliability analysis of Reference 2.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.3.4.2.4

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific
setpoint methodology. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology.

[The Frequency is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------

SR 3.3.4.2.5

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required trip logic for a specific channel. The system functional test of the pump breakers is included as part of this Surveillance and overlaps the LOGIC SYSTEM FUNCTIONAL TEST to provide complete testing of the assumed safety function. Therefore, if a breaker is incapable of operating, the associated instrument channel(s) would be inoperative.

[The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Figure [] ATWS-RPT Logic Diagram.
B 3.3 INSTRUMENTATION

B 3.3.5.1 Emergency Core Cooling System (ECCS) Instrumentation

BASES

BACKGROUND

The purpose of the ECCS instrumentation is to initiate appropriate responses from the systems to ensure that the fuel is adequately cooled in the event of a design basis accident or transient. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the ECCS, as well as LCOs on other reactor system parameters and equipment performance.

Technical Specifications are required by 10 CFR 50.36 to include LSSSs for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytical Limit is the limit of the process variable at which a safety action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytical Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytical Limit to account for instrument loop uncertainties related to the setting at which the automatic protective action would actually occur.

-------------------------------- REVIEWER'S NOTE --------------------------------

The term "Limiting Trip Setpoint" [LTSP] is generic terminology for the calculated trip setting (setpoint) value calculated by means of the plant specific setpoint methodology documented in a document controlled under 10 CFR 50.59. The term [LTSP] indicates that no additional margin has been added between the Analytical Limit and the calculated [LTSP].

"Nominal Trip Setpoint [NTSP]" is the suggested terminology for the actual setpoint implemented in the plant surveillance procedures where margin has been added to the calculated [LTSP]. The as-found and as-left tolerances will apply to the [NTSP] implemented in the Surveillance procedures to confirm channel performance.

Licensees are to insert the name of the document(s) controlled under 10 CFR 50.59 that contain the methodology for calculating the as-left and as-found tolerances in Note f of Table 3.3.5.1-1, for the phrase "[insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]" throughout these Bases.

General Electric BWR/4 STS B 3.3.5.1-1 Rev. 5.0
If the [LTSP] is not included in Table 3.3.5.1-1 for the purpose of compliance with 10 CFR 50.36, the plant specific location for the [LTSP] or [NTSP] must be cited in Note f of Table 3.3.5.1-1. The brackets indicate plant specific terms may apply, as reviewed and approved by the NRC.

The [Limiting Trip Setpoint (LTSP)] specified in Table 3.3.5.1-1 is a predetermined setting for a protection channel chosen to ensure automatic actuation prior to the process variable reaching the Analytical Limit and thus ensuring that the SL would not be exceeded. As such, the [LTSP] accounts for uncertainties in setting the channel (e.g., calibration), uncertainties in how the channel might actually perform (e.g., repeatability), changes in the point of action of the channel over time (e.g., drift during surveillance intervals), and any other factors which may influence its actual performance (e.g., harsh accident environments). In this manner, the [LTSP] ensures that SLs are not exceeded. Therefore the [LTSP] meets the definition of an LSSS (Ref. 1).

The Allowable Value specified in Table 3.3.5.1-1 serves as the LSSS such that a channel is OPERABLE if the trip setpoint is found not to exceed the Allowable Value. As such, the Allowable Value differs from the trip setpoint by an amount primarily equal to the expected instrument loop uncertainties, such as drift, during the surveillance interval. In this manner, the actual setting of the device will still meet the LSSS definition and ensure that a SL is not exceeded at any given point of time as long as the device has not drifted beyond that expected during the surveillance interval.

Technical Specifications contain values related to the OPERABILITY of equipment required for safe operation of the facility. OPERABLE is defined in Technical Specifications as "...being capable of performing its safety function(s)." Relying solely on the [LTSP] to define OPERABILITY in Technical Specifications would be an overly restrictive requirement if it were applied as an OPERABILITY limit for the "as found" value of a protection channel setting during a Surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure safety. For example, an automatic protection channel with a setting that has been found to be different from the [LTSP] due to some drift of the setting may still be OPERABLE because drift is to be expected. This expected drift would have been specifically accounted for in the setpoint methodology for calculating the [LTSP] and thus the automatic protective action would still have ensured that the SL would not be exceeded with the "as found" setting of the protection channel. Therefore, the channel would still be OPERABLE because it would have performed its safety.
function and the only corrective action required would be to reset the channel within the established as-left tolerance around [LTSP] to account for further drift during the next surveillance interval. Note that, although the channel is OPERABLE under these circumstances, the trip setpoint must be left adjusted to a value within the as-left tolerance, in accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-left criteria), and confirmed to be operating within the statistical allowances of the uncertainty terms assigned (as-found criteria).

However, there is also some point beyond which the channel would have not been able to perform its function due to, for example, greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the channels and is designated as the Allowable Value.

If the actual setting (as-found setpoint) of the channel is found to be conservative with respect to the Allowable Value but is beyond the as-found tolerance band, the channel is OPERABLE, but degraded. The degraded condition will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the [LTSP] (within the allowed tolerance), and evaluating the channel response. If the channel is functioning as required and expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation.

For most anticipated operational occurrences and Design Basis Accidents (DBAs), a wide range of dependent and independent parameters are monitored.

The ECCS instrumentation actuates core spray (CS), low pressure coolant injection (LPCI), high pressure coolant injection (HPCI), Automatic Depressurization System (ADS), and the diesel generators (DGs). The equipment involved with each of these systems is described in the Bases for LCO 3.5.1, "ECCS - Operating."

Core Spray System

The CS System may be initiated by either automatic or manual means. Automatic initiation occurs for conditions of Reactor Vessel Water Level - Low Low Low, Level 1 or Drywell Pressure - High. Each of these diverse variables is monitored by four redundant transmitters, which are, in turn,
connected to four trip units. The outputs of the eight trip units are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic (i.e., two trip systems) for each Function.

The high drywell pressure initiation signal is a sealed in signal and must be manually reset. The CS System can be reset if reactor water level has been restored, even if the high drywell pressure condition persists. The logic can also be initiated by use of a manual push button (one push button per subsystem). Upon receipt of an initiation signal, the CS pumps are started immediately after power is available.

The CS test line isolation valve, which is also a primary containment isolation valve (PCIV), is closed on a CS initiation signal to allow full system flow assumed in the accident analyses and maintain primary containment isolated in the event CS is not operating.

The CS pump discharge flow is monitored by a flow transmitter. When the pump is running and discharge flow is low enough so that pump overheating may occur, the minimum flow return line valve is opened. The valve is automatically closed if flow is above the minimum flow setpoint to allow the full system flow assumed in the accident analysis.

The CS System also monitors the pressure in the reactor to ensure that, before the injection valves open, the reactor pressure has fallen to a value below the CS System's maximum design pressure. The variable is monitored by four redundant transmitters, which are, in turn, connected to four trip units. The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic.

Low Pressure Coolant Injection System

The LPCI is an operating mode of the Residual Heat Removal (RHR) System, with two LPCI subsystems. The LPCI subsystems may be initiated by automatic or manual means. Automatic initiation occurs for conditions of Reactor Vessel Water Level - Low Low Low, Level 1, Drywell Pressure - High, or both. Each of these diverse variables is monitored by four redundant transmitters, which are, in turn, connected to four trip units. The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic (i.e., two trip systems) for each Function. Once an initiation signal is received by the LPCI control circuitry, the signal is sealed in until manually reset.

Upon receipt of an initiation signal, the LPCI C pump starts after a 0.5 second delay when power is available. The LPCI A, B, and D pumps are started after a 10 second delay to limit the loading of the standby power sources.
Each LPCI subsystem's discharge flow is monitored by a flow transmitter. When a pump is running and discharge flow is low enough so that pump overheating may occur, the respective minimum flow return line valve is opened. If flow is above the minimum flow setpoint, the valve is automatically closed to allow the full system flow assumed in the analyses.

The RHR test line suppression pool cooling isolation valve, suppression pool spray isolation valves, and containment spray isolation valves (which are also PCIVs) are also closed on a LPCI initiation signal to allow the full system flow assumed in the accident analyses and maintain primary containment isolated in the event LPCI is not operating.

The LPCI System monitors the pressure in the reactor to ensure that, before an injection valve opens, the reactor pressure has fallen to a value below the LPCI System's maximum design pressure. The variable is monitored by four redundant transmitters, which are, in turn, connected to four trip units. The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic. Additionally, instruments are provided to close the recirculation pump discharge valves to ensure that LPCI flow does not bypass the core when it injects into the recirculation lines. The variable is monitored by four redundant transmitters, which are, in turn, connected to four trip units. The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic.

Low reactor water level in the shroud is detected by two additional instruments to automatically isolate other modes of RHR (e.g., suppression pool cooling) when LPCI is required. Manual overrides for these isolations are provided.

High Pressure Coolant Injection System

The HPCI System may be initiated by either automatic or manual means. Automatic initiation occurs for conditions of Reactor Vessel Water Level - Low Low, Level 2 or Drywell Pressure - High. Each of these variables is monitored by four redundant transmitters, which are, in turn, connected to four trip units. The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic for each Function.

The HPCI pump discharge flow is monitored by a flow transmitter. When the pump is running and discharge flow is low enough so that pump overheating may occur, the minimum flow return line valve is opened. The valve is automatically closed if flow is above the minimum flow setpoint to allow the full system flow assumed in the accident analysis.
The HPCI test line isolation valve (which is also a PCIV) is closed upon receipt of a HPCI initiation signal to allow the full system flow assumed in the accident analysis and maintain primary containment isolated in the event HPCI is not operating.

The HPCI System also monitors the water levels in the condensate storage tank (CST) and the suppression pool because these are the two sources of water for HPCI operation. Reactor grade water in the CST is the normal source. Upon receipt of a HPCI initiation signal, the CST suction valve is automatically signaled to open (it is normally in the open position) unless both suppression pool suction valves are open. If the water level in the CST falls below a preselected level, first the suppression pool suction valves automatically open, and then the CST suction valve automatically closes. Two level switches are used to detect low water level in the CST. Either switch can cause the suppression pool suction valves to open and the CST suction valve to close. The suppression pool suction valves also automatically open and the CST suction valve closes if high water level is detected in the suppression pool. To prevent losing suction to the pump, the suction valves are interlocked so that one suction path must be open before the other automatically closes.

The HPCI provides makeup water to the reactor until the reactor vessel water level reaches the Reactor Vessel Water Level - High, Level 8 trip, at which time the HPCI turbine trips, which causes the turbine’s stop valve and the injection valves to close. The logic is two-out-of-two to provide high reliability of the HPCI System. The HPCI System automatically restarts if a Reactor Vessel Water Level - Low Low, Level 2 signal is subsequently received.

Automatic Depressurization System

The ADS may be initiated by either automatic or manual means. Automatic initiation occurs when signals indicating Reactor Vessel Water Level - Low Low Low, Level 1; Drywell Pressure - High or ADS Bypass Low Water Level Actuation Timer; confirmed Reactor Vessel Water Level - Low, Level 3; and CS or LPCI Pump Discharge Pressure - High are all present and the ADS Initiation Timer has timed out. There are two transmitters each for Reactor Vessel Water Level - Low Low Low, Level 1 and Drywell Pressure - High, and one transmitter for confirmed Reactor Vessel Water Level - Low, Level 3 in each of the two ADS trip systems. Each of these transmitters connects to a trip unit, which then drives a relay whose contacts form the initiation logic.
Each ADS trip system includes a time delay between satisfying the initiation logic and the actuation of the ADS valves. The ADS Initiation Timer time delay setpoint chosen is long enough that the HPCI has sufficient operating time to recover to a level above Level 1, yet not so long that the LPCI and CS Systems are unable to adequately cool the fuel if the HPCI fails to maintain that level. An alarm in the control room is annunciated when either of the timers is timing. Resetting the ADS initiation signals resets the ADS Initiation Timers.

The ADS also monitors the discharge pressures of the four LPCI pumps and the two CS pumps. Each ADS trip system includes two discharge pressure permissive transmitters from both CS and from two LPCI pumps in the associated Division (i.e., Division 1 LPCI subsystems A and D input to ADS trip system A, and Division 2 LPCI subsystems B and C input to ADS trip system B). The signals are used as a permissive for ADS actuation, indicating that there is a source of core coolant available once the ADS has depressurized the vessel. Any one of the six low pressure pumps is sufficient to permit automatic depressurization.

The ADS logic in each trip system is arranged in two strings. Each string has a contact from each of the following variables: Reactor Vessel Water Level - Low Low Low, Level 1; Drywell Pressure - High; or Low Water Level Actuation Timer. One of the two strings in each trip system must also have a confirmed Reactor Vessel Water Level - Low, Level 3. All contacts in both logic strings must close, the ADS initiation timer must time out, and a CS or LPCI pump discharge pressure signal must be present to initiate an ADS trip system. Either the A or B trip system will cause all the ADS relief valves to open. Once the Drywell Pressure - High signal, the ADS Low Water Level Actuation Timer, or the ADS initiation signal is present, it is individually sealed in until manually reset.

Manual inhibit switches are provided in the control room for the ADS; however, their function is not required for ADS OPERABILITY (provided ADS is not inhibited when required to be OPERABLE).

Diesel Generators

The DGs may be initiated by either automatic or manual means. Automatic initiation occurs for conditions of Reactor Vessel Water Level - Low Low Low, Level 1 or Drywell Pressure - High. The DGs are also initiated upon loss of voltage signals. (Refer to the Bases for LCO 3.3.8.1, "Loss of Power (LOP) Instrumentation," for a discussion of these signals.) Each of these diverse variables is monitored by four redundant transmitters, which are, in turn, connected to four trip units. The outputs of the four trip units are connected to relays whose contacts
are connected to a one-out-of-two taken twice logic to initiate all three DGs (2A, 1B, and 2C). The DGs receive their initiation signals from the CS System initiation logic. The DGs can also be started manually from the control room and locally from the associated DG room. The DG initiation signal is a sealed in signal and must be manually reset. The DG initiation logic is reset by resetting the associated ECCS initiation logic. Upon receipt of a loss of coolant accident (LOCA) initiation signal, each DG is automatically started, is ready to load in approximately 12 seconds, and will run in standby conditions (rated voltage and speed, with the DG output breaker open). The DGs will only energize their respective Engineered Safety Feature buses if a loss of offsite power occurs. (Refer to Bases for LCO 3.3.8.1.)

The actions of the ECCS are explicitly assumed in the safety analyses of References 2, 3, and 4. The ECCS is initiated to preserve the integrity of the fuel cladding by limiting the post LOCA peak cladding temperature to less than the 10 CFR 50.46 limits. ECCS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). Certain instrumentation Functions are retained for other reasons and are described below in the individual Functions discussion.

Permissive and interlock setpoints allow the blocking of trips during plant startups, and restoration of trips when the permissive conditions are not satisfied, but they are not explicitly modeled in the Safety Analyses. These permissives and interlocks ensure that the starting conditions are consistent with the safety analysis, before preventive or mitigating actions occur. Because these permissives or interlocks are only one of multiple conservative starting assumptions for the accident analysis, they are generally considered as nominal values without regard to measurement accuracy.

The OPERABILITY of the ECCS instrumentation is dependent upon the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.5.1-1. Each Function must have a required number of OPERABLE channels, with their setpoints set within the setting tolerance of the specified [LTSPs], where appropriate. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Each ECCS subsystem must also respond within its assumed response time. Table 3.3.5.1-1 is modified by a footnote which is added to show that certain ECCS instrumentation Functions also perform DG initiation and actuation of other Technical Specifications (TS) equipment.
Allowable Values are specified for each ECCS Function specified in Table 3.3.5.1-1. [LTSPs] and the methodologies for calculation of the as-left and as-found tolerances are described in [insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]. The [LTSPs] are selected to ensure that the setpoints remain conservative with respect to the as-found tolerance band between CHANNEL CALIBRATIONS. After each calibration the trip setpoint shall be left within the as-left band around the [LTSP].

[LTSPs] are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytical limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytical limits, corrected for calibration, process, and some of the instrument errors. The [LTSPs] are then determined, accounting for the remaining instrument errors (e.g., drift). The [LTSPs] derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

In general, the individual Functions are required to be OPERABLE in the MODES or other specified conditions that may require ECCS (or DG) initiation to mitigate the consequences of a design basis transient or accident. To ensure reliable ECCS and DG function, a combination of Functions is required to provide primary and secondary initiation signals.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

Core Spray and Low Pressure Coolant Injection Systems

1.a, 2.a. Reactor Vessel Water Level - Low Low Low, Level 1

Low reactor pressure vessel (RPV) water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. The low pressure ECCS and associated DGs are initiated at Level 1 to ensure that core spray and flooding functions are available to prevent or minimize fuel damage. The Reactor Vessel Water Level - Low Low Low, Level 1 is one of the Functions assumed to be OPERABLE and capable of initiating the ECCS during the transients analyzed in References 2 and 4. In addition, the
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Reactor Vessel Water Level - Low Low Low, Level 1 Function is directly assumed in the analysis of the recirculation line break (Ref. 3). The core cooling function of the ECCS, along with the scram action of the Reactor Protection System (RPS), ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Reactor Vessel Water Level - Low Low Low, Level 1 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

The Reactor Vessel Water Level - Low Low Low, Level 1 Allowable Value is chosen to allow time for the low pressure core flooding systems to activate and provide adequate cooling.

Four channels of Reactor Vessel Water Level - Low Low Low, Level 1 Function are only required to be OPERABLE when the ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation.

1.b, 2.b. Drywell Pressure – High

High pressure in the drywell could indicate a break in the reactor coolant pressure boundary (RCPB). The low pressure ECCS and associated DGs are initiated upon receipt of the Drywell Pressure - High Function in order to minimize the possibility of fuel damage. The Drywell Pressure - High Function, along with the Reactor Water Level - Low Low Low, Level 1 Function, is directly assumed in the analysis of the recirculation line break (Ref. 5). The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

High drywell pressure signals are initiated from four pressure transmitters that sense drywell pressure. The Allowable Value was selected to be as low as possible and be indicative of a LOCA inside primary containment.

The Drywell Pressure - High Function is required to be OPERABLE when the ECCS or DG is required to be OPERABLE in conjunction with times when the primary containment is required to be OPERABLE. Thus, four channels of the CS and LPCI Drywell Pressure - High Function are required to be OPERABLE in MODES 1, 2, and 3 to ensure that no single instrument failure can preclude ECCS and DG initiation. In MODES 4
and 5, the Drywell Pressure - High Function is not required, since there is insufficient energy in the reactor to pressurize the primary containment to Drywell Pressure - High setpoint. Refer to LCO 3.5.1 for Applicability Bases for the low pressure ECCS subsystems and to LCO 3.8.1 for Applicability Bases for the DGs.

1.c, 2.c. Reactor Steam Dome Pressure - Low (Injection Permissive)

Low reactor steam dome pressure signals are used as permissives for the low pressure ECCS subsystems. This ensures that, prior to opening the injection valves of the low pressure ECCS subsystems, the reactor pressure has fallen to a value below these subsystems' maximum design pressure. The Reactor Steam Dome Pressure - Low is one of the Functions assumed to be OPERABLE and capable of permitting initiation of the ECCS during the transients analyzed in References 2 and 4. In addition, the Reactor Steam Dome Pressure - Low Function is directly assumed in the analysis of the recirculation line break (Ref. 3). The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

The Reactor Steam Dome Pressure - Low signals are initiated from four pressure transmitters that sense the reactor dome pressure.

The Allowable Value is low enough to prevent overpressuring the equipment in the low pressure ECCS, but high enough to ensure that the ECCS injection prevents the fuel peak cladding temperature from exceeding the limits of 10 CFR 50.46.

Four channels of Reactor Steam Dome Pressure - Low Function are only required to be OPERABLE when the ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation.

1.d, 2.g. Core Spray and Low Pressure Coolant Injection Pump Discharge Flow - Low (Bypass)

The minimum flow instruments are provided to protect the associated low pressure ECCS pump from overheating when the pump is operating and the associated injection valve is not fully open. The minimum flow line valve is opened when low flow is sensed, and the valve is automatically closed when the flow rate is adequate to protect the pump. The LPCI and
CS Pump Discharge Flow - Low Functions are assumed to be OPERABLE and capable of closing the minimum flow valves to ensure that the low pressure ECCS flows assumed during the transients and accidents analyzed in References 2, 3, and 4 are met. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

One flow transmitter per ECCS pump is used to detect the associated subsystems’ flow rates. The logic is arranged such that each transmitter causes its associated minimum flow valve to open. The logic will close the minimum flow valve once the closure setpoint is exceeded. The LPCI minimum flow valves are time delayed such that the valves will not open for 10 seconds after the switches detect low flow. The time delay is provided to limit reactor vessel inventory loss during the startup of the RHR shutdown cooling mode. The Pump Discharge Flow - Low Allowable Values are high enough to ensure that the pump flow rate is sufficient to protect the pump, yet low enough to ensure that the closure of the minimum flow valve is initiated to allow full flow into the core.

Each channel of Pump Discharge Flow - Low Function (two CS channels and four LPCI channels) is only required to be OPERABLE when the associated ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude the ECCS function.

1.e. 2.h. Manual Initiation

The Manual Initiation push button channels introduce signals into the appropriate ECCS logic to provide manual initiation capability and are redundant to the automatic protective instrumentation. There is one push button for each of the CS and LPCI subsystems (i.e., two for CS and two for LPCI).

The Manual Initiation Function is not assumed in any accident or transient analyses in the FSAR. However, the Function is retained for overall redundancy and diversity of the low pressure ECCS function as required by the NRC in the plant licensing basis.

There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the push buttons. Each channel of the Manual Initiation Function (one channel per subsystem) is only required to be OPERABLE when the associated ECCS is required to be OPERABLE.
2.d. Reactor Steam Dome Pressure - Low (Recirculation Discharge Valve Permissive)

Low reactor steam dome pressure signals are used as permissives for recirculation discharge valve closure. This ensures that the LPCI subsystems inject into the proper RPV location assumed in the safety analysis. The Reactor Steam Dome Pressure - Low is one of the Functions assumed to be OPERABLE and capable of closing the valve during the transients analyzed in References 2 and 4. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. The Reactor Steam Dome Pressure - Low Function is directly assumed in the analysis of the recirculation line break (Ref. 3).

The Reactor Steam Dome Pressure - Low signals are initiated from four pressure transmitters that sense the reactor dome pressure.

The Allowable Value is chosen to ensure that the valves close prior to commencement of LPCI injection flow into the core, as assumed in the safety analysis.

Four channels of the Reactor Steam Dome Pressure - Low Function are only required to be OPERABLE in MODES 1, 2, and 3 with the associated recirculation pump discharge valve open. With the valve(s) closed, the function instrumentation has been performed; thus, the Function is not required. In MODES 4 and 5, the loop injection location is not critical since LPCI injection through the recirculation loop in either direction will still ensure that LPCI flow reaches the core (i.e., there is no significant reactor steam dome back pressure).

2.e. Reactor Vessel Shroud Level - Level 0

The Level 0 Function is provided as a permissive to allow the RHR System to be manually aligned from the LPCI mode to the suppression pool cooling/spray or drywell spray modes. The permissive ensures that water in the vessel is approximately two thirds core height before the manual transfer is allowed. This ensures that LPCI is available to prevent or minimize fuel damage. This function may be overridden during accident conditions as allowed by plant procedures. Reactor Vessel Shroud Level - Level 0 Function is implicitly assumed in the analysis of the recirculation line break (Ref. 3) since the analysis assumes that no LPCI flow diversion occurs when reactor water level is below Level 0.
Reactor Vessel Shroud Level - Level 0 signals are initiated from two level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. The Reactor Vessel Shroud Level - Level 0 Allowable Value is chosen to allow the low pressure core flooding systems to activate and provide adequate cooling before allowing a manual transfer.

Two channels of the Reactor Vessel Shroud Level - Level 0 Function are only required to be OPERABLE in MODES 1, 2, and 3. In MODES 4 and 5, the specified initiation time of the LPCI subsystems is not assumed, and other administrative controls are adequate to control the valves that this Function isolates (since the systems that the valves are opened for are not required to be OPERABLE in MODES 4 and 5 and are normally not used).

2.f. Low Pressure Coolant Injection Pump Start - Time Delay Relay

The purpose of this time delay is to stagger the start of the LPCI pumps that are in each of Divisions 1 and 2, thus limiting the starting transients on the 4.16 kV emergency buses. This Function is only necessary when power is being supplied from the standby power sources (DG). However, since the time delay does not degrade ECCS operation, it remains in the pump start logic at all times. The LPCI Pump Start - Time Delay Relays are assumed to be OPERABLE in the accident and transient analyses requiring ECCS initiation. That is, the analyses assume that the pumps will initiate when required and excess loading will not cause failure of the power sources.

There are four LPCI Pump Start - Time Delay Relays, one in each of the RHR pump start logic circuits. While each time delay relay is dedicated to a single pump start logic, a single failure of a LPCI Pump Start - Time Delay Relay could result in the failure of the two low pressure ECCS pumps, powered for the same ESF bus, to perform their intended function within the assumed ECCS RESPONSE TIME (e.g., as in the case where both ECCS pumps on one ESF bus start simultaneously due to an inoperable time delay relay). This still leaves four of the six low pressure ECCS pumps OPERABLE; thus, the single failure criterion is met (i.e., loss of one instrument does not preclude ECCS initiation). The Allowable Value for the LPCI Pump Start - Time Delay Relays is chosen to be long enough so that most of the starting transient of the first pump is complete before starting the second pump on the same 4.16 kV emergency bus and short enough so that ECCS operation is not degraded.
Bases

Applicable Safety Analyses, LCO, and Applicability (continued)

Each LPCI Pump Start - Time Delay Relay Function is required to be OPERABLE only when the associated LPCI subsystem is required to be OPERABLE.

HPCI System

3.a. Reactor Vessel Water Level - Low Low, Level 2

Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, the HPCI System is initiated at Level 2 to maintain level above the top of the active fuel. The Reactor Vessel Water Level - Low Low, Level 2 is one of the Functions assumed to be OPERABLE and capable of initiating HPCI during the transients analyzed in References 2 and 4. Additionally, the Reactor Vessel Water Level - Low Low, Level 2 Function associated with HPCI is directly assumed in the analysis of the recirculation line break (Ref. 3). The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

The Reactor Vessel Water Level - Low Low, Level 2 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

The Reactor Vessel Water Level - Low Low, Level 2 Allowable Value is high enough such that for complete loss of feedwater flow, the Reactor Core Isolation Cooling (RCIC) System flow with HPCI assumed to fail will be sufficient to avoid initiation of low pressure ECCS at Reactor Vessel Water Level - Low Low Low, Level 1.

Four channels of Reactor Vessel Water Level - Low Low, Level 2 Function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can preclude HPCI initiation. Refer to LCO 3.5.1 for HPCI Applicability Bases.

3.b. Drywell Pressure - High

High pressure in the drywell could indicate a break in the RCPB. The HPCI System is initiated upon receipt of the Drywell Pressure - High Function in order to minimize the possibility of fuel damage. The Drywell Pressure - High Function, along with the Reactor Water Level - Low Low, Level 2 Function, is directly assumed in the analysis of the recirculation line break (Ref. 5). The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
High drywell pressure signals are initiated from four pressure transmitters that sense drywell pressure. The Allowable Value was selected to be as low as possible to be indicative of a LOCA inside primary containment.

Four channels of the Drywell Pressure - High Function are required to be OPERABLE when HPCI is required to be OPERABLE to ensure that no single instrument failure can preclude HPCI initiation. Refer to LCO 3.5.1 for the Applicability Bases for the HPCI System.

3.c. Reactor Vessel Water Level - High, Level 8

High RPV water level indicates that sufficient cooling water inventory exists in the reactor vessel such that there is no danger to the fuel. Therefore, the Level 8 signal is used to trip the HPCI turbine to prevent overflow into the main steam lines (MSLs). The Reactor Vessel Water Level - High, Level 8 Function is not assumed in the accident and transient analyses. It was retained since it is a potentially significant contributor to risk.

Reactor Vessel Water Level - High, Level 8 signals for HPCI are initiated from two level transmitters from the narrow range water level measurement instrumentation. Both Level 8 signals are required in order to close the HPCI injection valve. This ensures that no single instrument failure can preclude HPCI initiation. The Reactor Vessel Water Level - High, Level 8 Allowable Value is chosen to prevent flow from the HPCI System from overflowing into the MSLs.

Two channels of Reactor Vessel Water Level - High, Level 8 Function are required to be OPERABLE only when HPCI is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.

3.d. Condensate Storage Tank Level – Low

Low level in the CST indicates the unavailability of an adequate supply of makeup water from this normal source. Normally the suction valves between HPCI and the CST are open and, upon receiving a HPCI initiation signal, water for HPCI injection would be taken from the CST. However, if the water level in the CST falls below a preselected level, first the suppression pool suction valves automatically open, and then the CST suction valve automatically closes. This ensures that an adequate supply of makeup water is available to the HPCI pump. To prevent losing suction to the pump, the suction valves are interlocked so that the suppression pool suction valves must be open before the CST suction valve automatically closes. The Function is implicitly assumed in the accident and transient analyses (which take credit for HPCI) since the analyses assume that the HPCI suction source is the suppression pool.
Condensate Storage Tank Level - Low signals are initiated from two level switches. The logic is arranged such that either level switch can cause the suppression pool suction valves to open and the CST suction valve to close. The Condensate Storage Tank Level - Low Function Allowable Value is high enough to ensure adequate pump suction head while water is being taken from the CST.

Two channels of the Condensate Storage Tank Level - Low Function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can preclude HPCI swap to suppression pool source. Refer to LCO 3.5.1 for HPCI Applicability Bases.

3.e. Suppression Pool Water Level – High

Excessively high suppression pool water could result in the loads on the suppression pool exceeding design values should there be a blowdown of the reactor vessel pressure through the safety/relief valves. Therefore, signals indicating high suppression pool water level are used to transfer the suction source of HPCI from the CST to the suppression pool to eliminate the possibility of HPCI continuing to provide additional water from a source outside containment. To prevent losing suction to the pump, the suction valves are interlocked so that the suppression pool suction valves must be open before the CST suction valve automatically closes. This Function is implicitly assumed in the accident and transient analyses (which take credit for HPCI) since the analyses assume that the HPCI suction source is the suppression pool.

Suppression Pool Water Level - High signals are initiated from two level switches. The logic is arranged such that either switch can cause the suppression pool suction valves to open and the CST suction valve to close. The Allowable Value for the Suppression Pool Water Level - High Function is chosen to ensure that HPCI will be aligned for suction from the suppression pool before the water level reaches the point at which suppression pool design loads would be exceeded.

Two channels of Suppression Pool Water Level - High Function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can preclude HPCI swap to suppression pool source. Refer to LCO 3.5.1 for HPCI Applicability Bases.
3.f. High Pressure Coolant Injection Pump Discharge Flow - Low (Bypass)

The minimum flow instruments are provided to protect the HPCI pump from overheating when the pump is operating and the associated injection valve is not fully open. The minimum flow line valve is opened when low flow is sensed, and the valve is automatically closed when the flow rate is adequate to protect the pump. The High Pressure Coolant Injection Pump Discharge Flow - Low Function is assumed to be OPERABLE and capable of closing the minimum flow valve to ensure that the ECCS flow assumed during the transients and accidents analyzed in References 2, 3, and 4 are met. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

One flow transmitter is used to detect the HPCI System's flow rate. The logic is arranged such that the transmitter causes the minimum flow valve to open. The logic will close the minimum flow valve once the closure setpoint is exceeded.

The High Pressure Coolant Injection Pump Discharge Flow - Low Allowable Value is high enough to ensure that pump flow rate is sufficient to protect the pump, yet low enough to ensure that the closure of the minimum flow valve is initiated to allow full flow into the core.

One channel is required to be OPERABLE when the HPCI is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.

3.g. Manual Initiation

The Manual Initiation push button channel introduces signals into the HPCI logic to provide manual initiation capability and is redundant to the automatic protective instrumentation. There is one push button for the HPCI System.

The Manual Initiation Function is not assumed in any accident or transient analyses in the FSAR. However, the Function is retained for overall redundancy and diversity of the HPCI function as required by the NRC in the plant licensing basis.
Bases

Applicable Safety Analyses, LCO, and Applicability (continued)

There is no Allowable Value for this Function since the channel is mechanically actuated based solely on the position of the push button. One channel of the Manual Initiation Function is required to be OPERABLE only when the HPCI System is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.

Automatic Depressurization System

4.a, 5.a. Reactor Vessel Water Level - Low Low Low, Level 1

Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, ADS receives one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level - Low Low Low, Level 1 is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed in Reference 3. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Reactor Vessel Water Level - Low Low Low, Level 1 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level - Low Low Low, Level 1 Function are required to be OPERABLE only when ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. Two channels input to ADS trip system A, while the other two channels input to ADS trip system B. Refer to LCO 3.5.1 for ADS Applicability Bases.

The Reactor Vessel Water Level - Low Low Low, Level 1 Allowable Value is chosen to allow time for the low pressure core flooding systems to initiate and provide adequate cooling.

4.b, 5.b. Drywell Pressure - High

High pressure in the drywell could indicate a break in the RCPB. Therefore, ADS receives one of the signals necessary for initiation from this Function in order to minimize the possibility of fuel damage. The Drywell Pressure - High is assumed to be OPERABLE and capable of initiating the ADS during the accidents analyzed in Reference 3. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
Bases

Applicable Safety Analyses, LCO, and Applicability (continued)

Drywell Pressure - High signals are initiated from four pressure transmitters that sense drywell pressure. The Allowable Value was selected to be as low as possible and be indicative of a LOCA inside primary containment.

Four channels of Drywell Pressure - High Function are only required to be OPERABLE when ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. Two channels input to ADS trip system A, while the other two channels input to ADS trip system B. Refer to LCO 3.5.1 for ADS Applicability Bases.

4.c, 5.c. Automatic Depressurization System Initiation Timer

The purpose of the Automatic Depressurization System Initiation Timer is to delay depressurization of the reactor vessel to allow the HPCI System time to maintain reactor vessel water level. Since the rapid depressurization caused by ADS operation is one of the most severe transients on the reactor vessel, its occurrence should be limited. By delaying initiation of the ADS Function, the operator is given the chance to monitor the success or failure of the HPCI System to maintain water level, and then to decide whether or not to allow ADS to initiate, to delay initiation further by recycling the timer, or to inhibit initiation permanently. The Automatic Depressurization System Initiation Timer Function is assumed to be OPERABLE for the accident analyses of Reference 3 that require ECCS initiation and assume failure of the HPCI System.

There are two Automatic Depressurization System Initiation Timer relays, one in each of the two ADS trip systems. The Allowable Value for the Automatic Depressurization System Initiation Timer is chosen so that there is still time after depressurization for the low pressure ECCS subsystems to provide adequate core cooling.

Two channels of the Automatic Depressurization System Initiation Timer Function are only required to be OPERABLE when the ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. (One channel inputs to ADS trip system A, while the other channel inputs to ADS trip system B.) Refer to LCO 3.5.1 for ADS Applicability Bases.
4.d, 5.d. Reactor Vessel Water Level - Low, Level 3

The Reactor Vessel Water Level - Low, Level 3 Function is used by the ADS only as a confirmatory low water level signal. ADS receives one of the signals necessary for initiation from Reactor Vessel Water Level - Low Low, Level 1 signals. In order to prevent spurious initiation of the ADS due to spurious Level 1 signals, a Level 3 signal must also be received before ADS initiation commences.

Reactor Vessel Water Level - Low, Level 3 signals are initiated from two level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. The Allowable Value for Reactor Vessel Water Level - Low, Level 3 is selected at the RPS Level 3 scram Allowable Value for convenience. Refer to LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," for the Bases discussion of this Function.

Two channels of Reactor Vessel Water Level - Low, Level 3 Function are only required to be OPERABLE when the ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. One channel inputs to ADS trip system A, while the other channel inputs to ADS trip system B. Refer to LCO 3.5.1 for ADS Applicability Bases.

4.e, 4.f, 5.e, 5.f. Core Spray and Low Pressure Coolant Injection Pump Discharge Pressure – High

The Pump Discharge Pressure - High signals from the CS and LPCI pumps are used as permissives for ADS initiation, indicating that there is a source of low pressure cooling water available once the ADS has depressurized the vessel. Pump Discharge Pressure - High is one of the Functions assumed to be OPERABLE and capable of permitting ADS initiation during the events analyzed in Reference 3 with an assumed HPCI failure. For these events the ADS depressurizes the reactor vessel so that the low pressure ECCS can perform the core cooling functions. This core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
Pump discharge pressure signals are initiated from twelve pressure transmitters, two on the discharge side of each of the six low pressure ECCS pumps. In order to generate an ADS permissive in one trip system, it is necessary that only one pump (both channels for the pump) indicate the high discharge pressure condition. The Pump Discharge Pressure - High Allowable Value is less than the pump discharge pressure when the pump is operating in a full flow mode and high enough to avoid any condition that results in a discharge pressure permissive when the CS and LPCI pumps are aligned for injection and the pumps are not running. The actual operating point of this function is not assumed in any transient or accident analysis.

Twelve channels of Core Spray and Low Pressure Coolant Injection Pump Discharge Pressure - High Function are only required to be OPERABLE when the ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. Two CS channels associated with CS pump A and four LPCI channels associated with LPCI pumps A and D are required for trip system A. Two CS channels associated with CS pump B and four LPCI channels associated with LPCI pumps B and C are required for trip system B. Refer to LCO 3.5.1 for ADS Applicability Bases.

4.g. 5.g. Automatic Depressurization System Low Water Level Actuation Timer

One of the signals required for ADS initiation is Drywell Pressure - High. However, if the event requiring ADS initiation occurs outside the drywell (e.g., main steam line break outside containment), a high drywell pressure signal may never be present. Therefore, the Automatic Depressurization System Low Water Level Actuation Timer is used to bypass the Drywell Pressure - High Function after a certain time period has elapsed. Operation of the Automatic Depressurization System Low Water Level Actuation Timer Function is not assumed in any accident analysis. The instrumentation is retained in the TS because ADS is part of the primary success path for mitigation of a DBA.

There are four Automatic Depressurization System Low Water Level Actuation Timer relays, two in each of the two ADS trip systems. The Allowable Value for the Automatic Depressurization System Low Water Level Actuation Timer is chosen to ensure that there is still time after depressurization for the low pressure ECCS subsystems to provide adequate core cooling.
BASES

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Four channels of the Automatic Depressurization System Low Water Level Actuation Timer Function are only required to be OPERABLE when the ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. Refer to LCO 3.5.1 for ADS Applicability Bases.

4.h, 5.h. Manual Initiation

The Manual Initiation push button channels introduce signals into the ADS logic to provide manual initiation capability and are redundant to the automatic protective instrumentation. There are two push buttons for each ADS trip system for a total of four.

The Manual Initiation Function is not assumed in any accident or transient analyses in the FSAR. However, the Function is retained for overall redundancy and diversity of the ADS functions as required by the NRC in the plant licensing basis.

There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the push buttons. Four channels of the Manual Initiation Function (two channels per trip system) are only required to be OPERABLE when the ADS is required to be OPERABLE. Refer to LCO 3.5.1 for ADS Applicability Bases.

ACTIONS

-----------------------------------REVIEWER’S NOTE-----------------------------------

Certain LCO Completion Times are based on approved topical reports. In order for a licensee to use the times, the licensee must justify the Completion Times as required by the staff Safety Evaluation Report (SER) for the topical report.

A Note has been provided to modify the ACTIONS related to ECCS instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable ECCS instrumentation channels provide appropriate compensatory measures for separate inoperable Condition entry for each inoperable ECCS instrumentation channel. When the Required Channels in Table 3.3.5.1-1 are specified (e.g., on a per steam line, per loop, etc., basis) then the Condition may be entered separately for each steam line, loop, as appropriate.
BASES

ACTIONS (continued)

A.1

Required Action A.1 directs entry into the appropriate Condition referenced in Table 3.3.5.1-1. The applicable Condition referenced in the Table is Function dependent. Each time a channel is discovered inoperative, Condition A is entered for that channel and provides for transfer to the appropriate subsequent Condition.

B.1, B.2, and B.3

Required Actions B.1 and B.2 are intended to ensure that appropriate actions are taken if multiple, inoperative, untripped channels within the same Function result in redundant automatic initiation capability being lost for the feature(s). Required Action B.1 features would be those that are initiated by Functions 1.a, 1.b, 2.a, and 2.b (e.g., low pressure ECCS). The Required Action B.2 system would be HPCI. For Required Action B.1, redundant automatic initiation capability is lost if (a) two Function 1.a channels are inoperative and untripped in the same trip system, (b) two Function 2.a channels are inoperative and untripped in the same trip system, (c) two Function 1.b channels are inoperative and untripped in the same system, or (d) two Function 2.b channels are inoperative and untripped in the same trip system. For low pressure ECCS, since each inoperative channel would have Required Action B.1 applied separately (refer to ACTIONS Note), each inoperative channel would only require the affected portion of the associated system of low pressure ECCS and DGs to be declared inoperative. However, since channels in both associated low pressure ECCS subsystems (e.g., both CS subsystems) are inoperative and untripped, and the Completion Times started concurrently for the channels in both subsystems, this results in the affected portions in the associated low pressure ECCS and DGs being concurrently declared inoperative.

For Required Action B.2, redundant automatic initiation capability is lost if two Function 3.a or two Function 3.b channels are inoperative and untripped in the same trip system. In this situation (loss of redundant automatic initiation capability), the 24 hour allowance of Required Action B.3 is not appropriate and the feature(s) associated with the inoperative, untripped channels must be declared inoperative within 1 hour.
Notes are also provided (the Note to Required Action B.1 and the Note to Required Action B.2) to delineate which Required Action is applicable for each Function that requires entry into Condition B if an associated channel is inoperable. This ensures that the proper loss of initiation capability check is performed. Required Action B.1 (the Required Action for certain inoperable channels in the low pressure ECCS subsystems) is not applicable to Function 2.e, since this Function provides backup to administrative controls ensuring that operators do not divert LPCI flow from injecting into the core when needed. Thus, a total loss of Function 2.e capability for 24 hours is allowed, since the LPCI subsystems remain capable of performing their intended function.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action B.1, the Completion Time only begins upon discovery that a redundant feature in the same system (e.g., both CS subsystems) cannot be automatically initiated due to inoperable, untripped channels within the same Function as described in the paragraph above. For Required Action B.2, the Completion Time only begins upon discovery that the HPCI System cannot be automatically initiated due to two inoperable, untripped channels for the associated Function in the same trip system. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 6) to permit restoration of any inoperable channel to OPERABLE status. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action B.3. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an initiation), Condition H must be entered and its Required Action taken.
C.1 and C.2

Required Action C.1 is intended to ensure that appropriate actions are taken if multiple, inoperable channels within the same Function result in redundant automatic initiation capability being lost for the feature(s). Required Action C.1 features would be those that are initiated by Functions 1.c, 2.c, 2.d, and 2.f (i.e., low pressure ECCS). Redundant automatic initiation capability is lost if either (a) two Function 1.c channels are inoperable in the same trip system, (b) two Function 2.c channels are inoperable in the same trip system, (c) two Function 2.d channels are inoperable in the same trip system, or (d) two or more Function 2.f channels are inoperable. In this situation (loss of redundant automatic initiation capability), the 24 hour allowance of Required Action C.2 is not appropriate and the feature(s) associated with the inoperable channels must be declared inoperable within 1 hour. Since each inoperable channel would have Required Action C.1 applied separately (refer to ACTIONS Note), each inoperable channel would only require the affected portion of the associated system to be declared inoperable. However, since channels for both low pressure ECCS subsystems are inoperable (e.g., both CS subsystems), and the Completion Times started concurrently for the channels in both subsystems, this results in the affected portions in both subsystems being concurrently declared inoperable. For Functions 1.c, 2.d, and 2.f, the affected portions are the associated low pressure ECCS pumps.

The Note states that Required Action C.1 is only applicable for Functions 1.c, 2.c, 2.d, and 2.f. Required Action C.1 is not applicable to Functions 1.e, 2.h, and 3.g (which also require entry into this Condition if a channel in these Functions is inoperable), since they are the Manual Initiation Functions and are not assumed in any accident or transient analysis. Thus, a total loss of manual initiation capability for 24 hours (as allowed by Required Action C.2) is allowed. Required Action C.1 is also not applicable to Function 3.c (which also requires entry into this Condition if a channel in this Function is inoperable), since the loss of one channel results in a loss of the Function (two-out-of-two logic). This loss was considered during the development of Reference 6 and considered acceptable for the 24 hours allowed by Required Action C.2.
BASES

ACTIONS (continued)

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action C.1, the Completion Time only begins upon discovery that the same feature in both subsystems (e.g., both CS subsystems) cannot be automatically initiated due to inoperable channels within the same Function as described in the paragraph above. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 6) to permit restoration of any inoperable channel to OPERABLE status.

[Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Condition H must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action would either cause the initiation or it would not necessarily result in a safe state for the channel in all events.

D.1, D.2.1, and D.2.2

Required Action D.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in a complete loss of automatic component initiation capability for the HPCI System. Automatic component initiation capability is lost if two Function 3.d channels or two Function 3.e channels are inoperable and untripped. In this situation (loss of automatic suction swap), the 24 hour allowance of Required Actions D.2.1 and D.2.2 is not appropriate and the HPCI System must be declared inoperable within 1 hour after discovery of loss of HPCI initiation capability. As noted, Required Action D.1 is only applicable if the HPCI pump suction is not aligned to the suppression pool, since, if aligned, the Function is already performed.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action D.1, the Completion Time only begins upon discovery that the HPCI System cannot be automatically aligned to the suppression pool due to two inoperable,
untripped channels in the same Function. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 6) to permit restoration of any inoperable channel to OPERABLE status. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action D.2.1 or the suction source must be aligned to the suppression pool within 24 hours per Required Action D.2.2. Placing the inoperable channel in trip performs the intended function of the channel (shifting the suction source to the suppression pool). Performance of either of these two Required Actions will allow operation to continue. If Required Action D.2.1 or D.2.2 is performed, measures should be taken to ensure that the HPCI System piping remains filled with water. Alternately, if it is not desired to perform Required Actions D.2.1 and D.2.2 (e.g., as in the case where shifting the suction source could drain down the HPCI suction piping), Condition H must be entered and its Required Action taken.

E.1 and E.2

Required Action E.1 is intended to ensure that appropriate actions are taken if multiple, inoperable channels within the Core Spray and Low Pressure Coolant Injection Pump Discharge Flow - Low Bypass Functions result in redundant automatic initiation capability being lost for the feature(s). For Required Action E.1, the features would be those that are initiated by Functions 1.d and 2.g (e.g., low pressure ECCS). Redundant automatic initiation capability is lost if (a) two Function 1.d channels are inoperable or (b) one or more Function 2.g channels associated with pumps in LPCI subsystem A and one or more Function 2.g channels associated with pumps in LPCI subsystem B are inoperable. Since each inoperable channel would have Required Action E.1 applied separately (refer to ACTIONS Note), each inoperable channel would only require the affected low pressure ECCS pump to be declared inoperable. However, since channels for more than one low pressure ECCS pump are inoperable, and the Completion Times started concurrently for the channels of the low pressure ECCS pumps, this results in the affected low pressure ECCS pumps being concurrently declared inoperable.
In this situation (loss of redundant automatic initiation capability), the 7 day allowance of Required Action E.2 is not appropriate and the subsystem associated with each inoperable channel must be declared inoperable within 1 hour. A Note is also provided (the Note to Required Action E.1) to delineate that Required Action E.1 is only applicable to low pressure ECCS Functions. Required Action E.1 is not applicable to HPCI Function 3.f since the loss of one channel results in a loss of the Function (one-out-of-one logic). This loss was considered during the development of Reference 6 and considered acceptable for the 7 days allowed by Required Action E.2. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock."

For Required Action E.1, the Completion Time only begins upon discovery that a redundant feature in the same system (e.g., both CS subsystems) cannot be automatically initiated due to inoperable channels within the same Function as described in the paragraph above. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration of channels.

If the instrumentation that controls the pump minimum flow valve is inoperable, such that the valve will not automatically open, extended pump operation with no injection path available could lead to pump overheating and failure. If there were a failure of the instrumentation, such that the valve would not automatically close, a portion of the pump flow could be diverted from the reactor vessel injection path, causing insufficient core cooling. These consequences can be averted by the operator's manual control of the valve, which would be adequate to maintain ECCS pump protection and required flow. Furthermore, other ECCS pumps would be sufficient to complete the assumed safety function if no additional single failure were to occur. The 7 day Completion Time of Required Action E.2 to restore the inoperable channel to OPERABLE status is reasonable based on the remaining capability of the associated ECCS subsystems, the redundancy available.
in the ECCS design, and the low probability of a DBA occurring during the allowed out of service time. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Condition H must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action would not necessarily result in a safe state for the channel in all events.

F.1 and F.2

Required Action F.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within similar ADS trip system A and B Functions result in redundant automatic initiation capability being lost for the ADS. Redundant automatic initiation capability is lost if either (a) one Function 4.a channel and one Function 5.a channel are inoperable and untripped, (b) one Function 4.b channel and one Function 5.b channel are inoperable and untripped, or (c) one Function 4.d channel and one Function 5.d channel are inoperable and untripped.

In this situation (loss of automatic initiation capability), the 96 hour or 8 day allowance, as applicable, of Required Action F.2 is not appropriate and all ADS valves must be declared inoperable within 1 hour after discovery of loss of ADS initiation capability.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action F.1, the Completion Time only begins upon discovery that the ADS cannot be automatically initiated due to inoperable, untripped channels within similar ADS trip system Functions as described in the paragraph above. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 8 days has been shown to be acceptable (Ref. 6) to permit restoration of any inoperable channel to OPERABLE status if both HPCI and RCIC are OPERABLE. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If either HPCI or RCIC is inoperable, the time is shortened to 96 hours. If the status of HPCI or RCIC changes such that the Completion Time changes
from 8 days to 96 hours [or in accordance with the Risk Informed Completion Time Program], the 96 hours begins upon discovery of HPCI or RCIC inoperability. However, the total time for an inoperable, untripped channel cannot exceed 8 days. If the status of HPCI or RCIC changes such that the Completion Time changes from 96 hours to 8 days, the "time zero" for beginning the 8 day "clock" begins upon discovery of the inoperable, untripped channel. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action F.2. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an initiation), Condition H must be entered and its Required Action taken.

G.1 and G.2

Required Action G.1 is intended to ensure that appropriate actions are taken if multiple, inoperable channels within similar ADS trip system Functions result in automatic initiation capability being lost for the ADS. Automatic initiation capability is lost if either (a) one Function 4.c channel and one Function 5.c channel are inoperable, (b) a combination of Function 4.e, 4.f, 5.e, and 5.f channels are inoperable such that channels associated with five or more low pressure ECCS pumps are inoperable, or (c) one or more Function 4.g channels and one or more Function 5.g channels are inoperable.

In this situation (loss of automatic initiation capability), the 96 hour or 8 day allowance, as applicable, of Required Action G.2 is not appropriate, and all ADS valves must be declared inoperable within 1 hour after discovery of loss of ADS initiation capability. The Note to Required Action G.1 states that Required Action G.1 is only applicable for Functions 4.c, 4.e, 4.f, 4.g, 5.c, 5.e, 5.f, and 5.g. Required Action G.1 is not applicable to Functions 4.h and 5.h (which also require entry into this Condition if a channel in these Functions is inoperable), since they are the Manual Initiation Functions and are not assumed in any accident or transient analysis. Thus, a total loss of manual initiation capability for 96 hours or 8 days (as allowed by Required Action G.2) is allowed.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action G.1, the Completion Time only begins upon discovery that the ADS cannot be automatically
initiated due to inoperable channels within similar ADS trip system Functions as described in the paragraph above. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 8 days has been shown to be acceptable (Ref. 6) to permit restoration of any inoperable channel to OPERABLE status if both HPCI and RCIC are OPERABLE (Required Action G.2). [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If either HPCI or RCIC is inoperable, the time shortens to 96 hours [or in accordance with the Risk Informed Completion Time Program]. If the status of HPCI or RCIC changes such that the Completion Time changes from 8 days to 96 hours, the 96 hours begins upon discovery of HPCI or RCIC inoperability. However, the total time for an inoperable channel cannot exceed 8 days. If the status of HPCI or RCIC changes such that the Completion Time changes from 96 hours to 8 days, the "time zero" for beginning the 8 day "clock" begins upon discovery of the inoperable channel. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Condition H must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action would not necessarily result in a safe state for the channel in all events.

H.1

With any Required Action and associated Completion Time not met, the associated feature(s) may be incapable of performing the intended function, and the supported feature(s) associated with inoperable untripped channels must be declared inoperable immediately.

--- REVIEWER'S NOTE -------------------------------

Certain Frequencies are based on approved topical reports. In order for a licensee to use these Frequencies, the licensee must justify the Frequencies as required by the staff SER for the topical report.

--- REVIEWER'S NOTE -------------------------------

Notes b and c are applied to the setpoint verification Surveillances for each ECCS Instrumentation Functions in Table 3.3.5.1-1 unless one or more of the following exclusions apply:
SURVEILLANCE REQUIREMENTS (continued)

1. Manual actuation circuits, automatic actuation logic circuits or instrument functions that derive input from contacts which have no associated sensor or adjustable device, e.g., limit switches, breaker position switches, manual actuation switches, float switches, proximity detectors, etc. are excluded. In addition, those permissives and interlocks that derive input from a sensor or adjustable device that is tested as part of another TS function are excluded.

2. Settings associated with safety relief valves are excluded. The performance of these components is already controlled (i.e., trended with as-left and as-found limits) under the ASME Code for Operation and Maintenance of Nuclear Power Plants testing program.

3. Functions and Surveillance Requirements which test only digital components are normally excluded. There is no expected change in result between SR performances for these components. Where separate as-left and as-found tolerance is established for digital component SRs, the requirements would apply.

A generic evaluation of ECCS Instrumentation Functions resulted in Notes e and f being applied to the Functions shown in TS 3.3.5.1. Each licensee adopting this change must review the list of potential Functions to identify whether any of the identified functions meet any of the exclusion criteria based on the plant specific design and safety analysis (AOOs). The footnotes applied to Function 3.3.5.1-1.[3.c], Reactor Vessel Water Level - High, Level 8 are optional. Functions 3.3.5.1-1.[1.d], Core Spray Pump Discharge Flow Low, 3.3.5.1-1.[2.g], Low Pressure Coolant Injection Pump Discharge Flow - Low Bypass and 3.3.5.1-1.[3.f], High Pressure Coolant Injection Pump Discharge Flow - Low Bypass can be removed from Technical Specifications if the corresponding valve is locked open.

As noted in the beginning of the SRs, the SRs for each ECCS instrument Function are found in the SRs column of Table 3.3.5.1-1. The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours as follows: (a) for Functions 3.c, 3.f, and 3.g; and (b) for Functions other than 3.c, 3.f, and 3.g provided the associated Function or redundant Function maintains ECCS initiation capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is
based on the reliability analysis (Ref. 6) assumption of the average time required to perform channel surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the ECCS will initiate when necessary.

SR 3.3.5.1.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK guarantees that undetected outright channel failure is limited; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

[The Frequency of 12 hours is based upon operating experience that demonstrates channel failure is rare.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.
SR 3.3.5.1.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency of 92 days is based on the reliability analyses of Reference 6.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--]

SR 3.3.5.1.3

Calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.5.1-1. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is conservative with respect to the Allowable Value, the channel performance is still within the requirements of the plant safety analyses. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than the setting accounted for in the appropriate setpoint methodology.

SR 3.3.5.1.3 for selected functions is modified by two Notes as identified in Table 3.3.5.1-1. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel
setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint more conservative than the [LTSP] is used in the plant surveillance procedures [Nominal Trip Setpoint (NTSP)], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also requires that [LTSP] and the methodologies for calculating the as-left and the as-found tolerances be in [insert the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference].

[The Frequency of 92 days is based on the reliability analysis of Reference 6.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

---]

SR 3.3.5.1.4 and SR 3.3.5.1.5

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL
CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

SR 3.3.5.1.5 for selected functions is modified by two Notes as identified in Table 3.3.5.1-1. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint more conservative than the [LTSP] is used in the plant surveillance procedures [NTSP], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also requires that [LTSP] and the methodologies for calculating the as-left and the as-found tolerances be inserted the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference.

[The Frequency of SR 3.3.5.1.4 is based upon the assumption of a 92 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

The Frequency of SR 3.3.5.1.5 is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.5.1.6

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required initiation logic for a specific channel. The system functional testing performed in LCO 3.5.1, LCO 3.5.2, LCO 3.8.1, and LCO 3.8.2 overlaps this Surveillance to complete testing of the assumed safety function.

The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.3.5.1.7

This SR ensures that the individual channel response times are less than or equal to the maximum values assumed in the accident analysis. Response time testing acceptance criteria are included in Reference 5.

ECCS RESPONSE TIME may be verified by actual response time measurements in any series of sequential, overlapping, or total channel measurements.
BASES

SURVEILLANCE REQUIREMENTS (continued)

-----------------------------------REVIEWER’S NOTE-----------------------------------
[The following Bases are applicable for plants adopting NEDO-32291-A.

However, the measurement of instrument loop response times may be excluded if the conditions of Reference 7 are satisfied.]

[ECCS RESPONSE TIME tests are conducted on an 18 month STAGGERED TEST BASIS. The 18 month Frequency is consistent with the typical industry refueling cycle and is based upon plant operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REFERENCES-----------------------------------

2. FSAR, Section [5.2].

3. FSAR, Section [6.3].

4. FSAR, Chapter [15].

REFERENCES (continued)

BP 3.3 INSTRUMENTATION

B 3.3.5.2 Reactor Pressure Vessel (RPV) Water Inventory Control Instrumentation

BASES

BACKGROUND The RPV contains penetrations below the top of the active fuel (TAF) that have the potential to drain the reactor coolant inventory to below the TAF. If the water level should drop below the TAF, the ability to remove decay heat is reduced, which could lead to elevated cladding temperatures and clad perforation. Safety Limit 2.1.1.3 requires the RPV water level to be above the top of the active irradiated fuel at all times to prevent such elevated cladding temperatures.

Technical Specifications are required by 10 CFR 50.36 to include limiting safety system settings (LSSS) for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytical Limit is the limit of the process variable at which a safety action is initiated to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytical Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytical Limit to account for instrument loop uncertainties related to the setting at which the automatic protective action would actually occur. The actual settings for the automatic isolation channels are the same as those established for the same functions in MODES 1, 2, and 3 in LCO 3.3.6.1, "Primary Containment Isolation instrumentation".

With the unit in MODE 4 or 5, RPV water inventory control is not required to mitigate any events or accidents evaluated in the safety analyses. RPV water inventory control is required in MODES 4 and 5 to protect Safety Limit 2.1.1.3 and the fuel cladding barrier to prevent the release of radioactive material should a draining event occur. Under the definition of DRAIN TIME, some penetration flow paths may be excluded from the DRAIN TIME calculation if they will be isolated by valves that will close automatically without offsite power prior to the RPV water level being equal to the TAF when actuated by RPV water level isolation instrumentation.

The purpose of the RPV Water Inventory Control Instrumentation is to support the requirements of LCO 3.5.2, "Reactor Pressure Vessel (RPV) Water Inventory Control," and the definition of DRAIN TIME. There are functions that support automatic isolation of residual heat removal subsystem and Reactor Water Cleanup System penetration flow path(s) on low RPV water level.
With the unit in MODE 4 or 5, RPV water inventory control is not required to mitigate any events or accidents evaluated in the safety analyses. RPV water inventory control is required in MODES 4 and 5 to protect Safety Limit 2.1.1.3 and the fuel cladding barrier to prevent the release of radioactive material should a draining event occur.

A double-ended guillotine break of the Reactor Coolant System (RCS) is not considered in MODES 4 and 5 due to the reduced RCS pressure, reduced piping stresses, and ductile piping systems. Instead, an event is considered in which an initiating event allows draining of the RPV water inventory through a single penetration flow path with the highest flow rate, or the sum of the drain rates through multiple penetration flow paths susceptible to a common mode failure. It is assumed, based on engineering judgment, that while in MODES 4 and 5, one low pressure ECCS injection/spray subsystem can be manually initiated to maintain adequate reactor vessel water level.

As discussed in References 1, 2, 3, 4, and 5, operating experience has shown RPV water inventory to be significant to public health and safety. Therefore, RPV Water Inventory Control satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

Permissive and interlock setpoints are generally considered as nominal values without regard to measurement accuracy.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

Additional plant- or design- specific isolation instrumentation functions initiated by low RPV water level may be included in the required Functions and credited when calculating DRAIN TIME.

RHR System Isolation

1.a - Reactor Vessel Water Level - Low, Level 3

The definition of DRAIN TIME allows crediting the closing of penetration flow paths that are capable of being automatically isolated by RPV water level isolation instrumentation prior to the RPV water level being equal to the TAF. The Reactor Vessel Water Level - Low, Level 3 Function is only required to be OPERABLE when automatic isolation of the associated RHR penetration flow path is credited in calculating DRAIN TIME.
Reactor Vessel Water Level - Low, Level 3 signals are initiated from two channels per trip system that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. While four channels (two channels per trip system) of the Reactor Vessel Water Level - Low, Level 3 Function are available, only two channels (all in the same trip system) are required to be OPERABLE.

The Reactor Vessel Water Level - Low, Level 3 Allowable Value was chosen to be the same as the Primary Containment Isolation Instrumentation Reactor Vessel Water Level - Low, Level 3 Allowable Value (LCO 3.3.6.1), since the capability to cool the fuel may be threatened.

The Reactor Vessel Water Level - Low, Level 3 Function is only required to be OPERABLE when automatic isolation of the associated penetration flow path is credited in calculating DRAIN TIME.

This Function isolates the Group 11 valves.

Reactor Water Cleanup (RWCU) System Isolation

2.a - Reactor Vessel Water level - Low Low, Level 2

The definition of DRAIN TIME allows crediting the closing of penetration flow paths that are capable of being automatically isolated by RPV water level isolation instrumentation prior to the RPV water level being equal to the TAF. The Reactor Vessel Water Level - Low Low, Level 2 Function associated with RWCU System isolation may be credited for automatic isolation of penetration flow paths associated with the RWCU System.

Reactor Vessel Water Level - Low Low, Level 2 is initiated from two channels per trip system that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. While four channels (two channels per trip system) of the Reactor Vessel Water Level – Low Low, Level 2 Function are available, only two channels (all in the same trip system) are required to be OPERABLE.

The Reactor Vessel Water Level - Low Low, Level 2 Allowable Value was chosen to be the same as the ECCS Reactor Vessel Water Level - Low Low, Level 2 Allowable Value (LCO 3.3.5.1), since the capability to cool the fuel may be threatened.
The Reactor Vessel Water Level - Low, Level 2 Function is only required to be OPERABLE when automatic isolation of the associated penetration flow path is credited in calculating DRAIN TIME. This Function isolates the Group 5 valves.

A Note has been provided to modify the ACTIONS related to RPV Water Inventory Control instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable RPV Water Inventory Control instrumentation channels provide appropriate compensatory measures for separate inoperable Condition entry for each inoperable RPV Water Inventory Control instrumentation channel.

RHR System Isolation, Reactor Vessel Water Level - Low Level 3, and Reactor Water Cleanup System, Reactor Vessel Water Level - Low Low, Level 2 functions are applicable when automatic isolation of the associated penetration flow path is credited in calculating DRAIN TIME. If the instrumentation is inoperable, Required Action A.1 directs immediate action to place the channel in trip. With the inoperable channel in the tripped condition, the remaining channel will isolate the penetration flow path on low water level. If both channels are inoperable and placed in trip, the penetration flow path will be isolated. Alternatively, Required Action A.2.1 requires the associated penetration flow path(s) to be immediately declared incapable of automatic isolation. Required Action A.2.2 directs initiating action to calculate DRAIN TIME. The calculation cannot credit automatic isolation of the affected penetration flow paths.

The following SRs apply to each RPV Water Inventory Control Instrument Function in Table 3.3.5.2-1.

SR 3.3.5.2.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar
SURVEILLANCE REQUIREMENTS (continued)

parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK guarantees that undetected outright channel failure is limited; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL FUNCTIONAL TEST.

Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

[The Frequency of 12 hours is based upon operating experience that demonstrates channel failure is rare.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--REVIEWER’S NOTE--

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

---]

The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.5.2.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests.
SURVEILLANCE REQUIREMENTS (continued)

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency of 92 days is based upon operating experience that demonstrates channel failure is rare.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. Information Notice 84-81 "Inadvertent Reduction in Primary Coolant Inventory in Boiling Water Reactors During Shutdown and Startup," November 1984.

The purpose of the RCIC System instrumentation is to initiate actions to ensure adequate core cooling when the reactor vessel is isolated from its primary heat sink (the main condenser) and normal coolant makeup flow from the Reactor Feedwater System is unavailable, such that initiation of the low pressure Emergency Core Cooling Systems (ECCS) pumps does not occur. A more complete discussion of RCIC System operation is provided in the Bases of LCO 3.5.3, "RCIC System." This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RCIC, as well as LCOs on other reactor system parameters and equipment performance.

Technical Specifications are required by 10 CFR 50.36 to include LSSSs for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytical Limit is the limit of the process variable at which a safety action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytical Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytical Limit to account for instrument loop uncertainties related to the setting at which the automatic protective action would actually occur.

--- REVIEWER'S NOTE ---

The term "Limiting Trip Setpoint" [LTSP] is generic terminology for the calculated trip setting (setpoint) value calculated by means of the plant specific setpoint methodology documented in a document controlled under 10 CFR 50.59. The term [LTSP] indicates that no additional margin has been added between the Analytical Limit and the calculated trip setting.

"Nominal Trip Setpoint [NTSP]" is the suggested terminology for the actual setpoint implemented in the plant surveillance procedures where margin has been added to the calculated [LTSP]. The as-found and as-left tolerances will apply to the [NTSP] implemented in the Surveillance procedures to confirm channel performance.

BACKGROUND (continued)

Licensees are to insert the name of the document(s) controlled under 10 CFR 50.59 that contain the methodology for calculating the as-left and as-found tolerances in Note b of Table 3.3.5.3-1, for the phrase "[insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]" throughout these Bases.

If the [LTSP] is not included in Table 3.3.5.3-1, the plant specific location for the [LTSP] or [NTSP] must be cited in Note b of Table 3.3.5.3-1. The brackets indicate plant specific terms may apply, as reviewed and approved by the NRC.

The [Limiting Trip Setpoint (LTSP)] specified in Table 3.3.5.3-1, is a predetermined setting for a protection channel chosen to ensure automatic actuation prior to the process variable reaching the Analytical Limit and thus ensuring that the SL would not be exceeded. As such, the [LTSP] accounts for uncertainties in setting the channel (e.g., calibration), uncertainties in how the channel might actually perform (e.g., repeatability), changes in the point of action of the channel over time (e.g., drift during surveillance intervals), and any other factors which may influence its actual performance (e.g., harsh accident environments). In this manner, the [LTSP] ensures that SLs are not exceeded. Therefore the [LTSP] meets the definition of an LSSS (Ref. 1).

The Allowable Value specified in Table 3.3.5.3-1, serves as the LSSS such that a channel is OPERABLE if the trip setpoint is found not to exceed the Allowable Value. As such, the Allowable Value differs from the trip setpoint by an amount primarily equal to the expected instrument loop uncertainties, such as drift, during the surveillance interval. In this manner, the actual setting of the device will still meet the LSSS definition and ensure that a SL is not exceeded at any given point of time as long as the device has not drifted beyond that expected during the surveillance interval.

Technical Specifications contain values related to the OPERABILITY of equipment required for safe operation of the facility. OPERABLE is defined in Technical Specifications as "...being capable of performing its safety function(s)." Relying solely on the [LTSP] to define OPERABILITY in Technical Specifications would be an overly restrictive requirement if it were applied as an OPERABILITY limit for the "as found" value of a protection channel setting during a Surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure safety. For example, an automatic protection channel with a setting that
BACKGROUND (continued)

has been found to be different from the [LTSP] due to some drift of the setting may still be OPERABLE because drift is to be expected. This expected drift would have been specifically accounted for in the setpoint methodology for calculating the [LTSP] and thus the automatic protective action would still have ensured that the SL would not be exceeded with the "as found" setting of the protection channel. Therefore, the channel would still be OPERABLE because it would have performed its safety function and the only corrective action required would be to reset the channel within the established as-left tolerance around [LTSP] to account for further drift during the next surveillance interval. Note that, although the channel is OPERABLE under these circumstances, the trip setpoint must be left adjusted to a value within the as-left tolerance, in accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-left criteria), and confirmed to be operating within the statistical allowances of the uncertainty terms assigned (as-found criteria).

However, there is also some point beyond which the channel would have not been able to perform its function due to, for example, greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the channel and is designated as the Allowable Value.

If the actual setting (as-found setpoint) of the channel is found to be conservative with respect to the Allowable Value but is beyond the as-found tolerance band, the channel is OPERABLE, but degraded. The degraded condition will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the [LTSP] (within the allowed tolerance), and evaluating the channel response. If the channel is functioning as required and expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation.

The RCIC System may be initiated by either automatic or manual means. Automatic initiation occurs for conditions of reactor vessel Low Low water level. The variable is monitored by four transmitters that are connected to four trip units. The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic arrangement. Once initiated, the RCIC logic seals in and can be reset by the operator only when the reactor vessel water level signals have cleared.
The RCIC test line isolation valve (which is also a primary containment isolation valve) is closed on a RCIC initiation signal to allow full system flow and maintain primary containment isolated in the event RCIC is not operating.

The RCIC System also monitors the water levels in the condensate storage tank (CST) and the suppression pool since these are the two sources of water for RCIC operation. Reactor grade water in the CST is the normal source. Upon receipt of a RCIC initiation signal, the CST suction valve is automatically signaled to open (it is normally in the open position) unless the pump suction from the suppression pool valves is open. If the water level in the CST falls below a preselected level, first the suppression pool suction valves automatically open, and then the CST suction valve automatically closes. Two level switches are used to detect low water level in the CST. Either switch can cause the suppression pool suction valves to open and the CST suction valve to close. The suppression pool suction valves also automatically open and the CST suction valve closes if high water level is detected in the suppression pool (one-out-of-two logic similar to the CST water level logic). To prevent losing suction to the pump, the suction valves are interlocked so that one suction path must be open before the other automatically closes.

The RCIC System provides makeup water to the reactor until the reactor vessel water level reaches the high water level (Level 8) trip (two-out-of-two logic), at which time the RCIC steam supply, steam supply bypass, and cooling water supply valves close (the injection valve also closes due to the closure of the steam supply valves). The RCIC System restarts if vessel level again drops to the low level initiation point (Level 2).

The function of the RCIC System to provide makeup coolant to the reactor is used to respond to transient events. The RCIC System is not an Engineered Safety Feature System and no credit is taken in the safety analyses for RCIC System operation. The RCIC System instrumentation satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii). Certain instrumentation Functions are retained for other reasons and are described below in the individual Functions discussion.

Permissive and interlock setpoints allow the blocking of trips during plant startups, and restoration of trips when the permissive conditions are not satisfied, but they are not explicitly modeled in the Safety Analyses. These permissives and interlocks ensure that the starting conditions are consistent with the safety analysis, before preventive or mitigating actions.
occur. Because these permissives or interlocks are only one of multiple conservative starting assumptions for the accident analysis, they are generally considered as nominal values without regard to measurement accuracy.

The OPERABILITY of the RCIC System instrumentation is dependent upon the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.5.3-1. Each Function must have a required number of OPERABLE channels with their setpoints set within the setting tolerance of the [LTSPs], where appropriate. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Each channel must also respond within its assumed response time.

Allowable Values are specified for each RCIC System instrumentation Function specified in Table 3.3.5.3-1. [LTSPs] and the methodologies for calculation of the as-left and as-found tolerances are described in [insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]. The [LTSP] are selected to ensure that the setpoints remain conservative to the as-left tolerance band between CHANNEL CALibrATIONS. After each calibration the trip setpoint shall be left within the as-left band around the [LTSP].

[LTSPs] are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytical limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytical limits, corrected for calibration, process, and some of the instrument errors. The [LTSPs] are then determined, accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

The individual Functions are required to be OPERABLE in MODE 1, and in MODES 2 and 3 with reactor steam dome pressure > 150 psig since this is when RCIC is required to be OPERABLE. (Refer to LCO 3.5.3 for Applicability Bases for the RCIC System.)
The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

1. Reactor Vessel Water Level - Low Low, Level 2

Low reactor pressure vessel (RPV) water level indicates that normal feedwater flow is insufficient to maintain reactor vessel water level and that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, the RCIC System is initiated at Level 2 to assist in maintaining water level above the top of the active fuel.

Reactor Vessel Water Level - Low Low, Level 2 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

The Reactor Vessel Water Level - Low Low, Level 2 Allowable Value is set high enough such that for complete loss of feedwater flow, the RCIC System flow with high pressure coolant injection assumed to fail will be sufficient to avoid initiation of low pressure ECCS at Level 1.

Four channels of Reactor Vessel Water Level - Low Low, Level 2 Function are available and are required to be OPERABLE when RCIC is required to be OPERABLE to ensure that no single instrument failure can preclude RCIC initiation. Refer to LCO 3.5.3 for RCIC Applicability Bases.

2. Reactor Vessel Water Level - High, Level 8

High RPV water level indicates that sufficient cooling water inventory exists in the reactor vessel such that there is no danger to the fuel. Therefore, the Level 8 signal is used to close the RCIC steam supply, steam supply bypass, and cooling water supply valves to prevent overflow into the main steam lines (MSLs). (The injection valve also closes due to the closure of the steam supply valve.)

Reactor Vessel Water Level - High, Level 8 signals for RCIC are initiated from two level transmitters from the narrow range water level measurement instrumentation, which sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.
The Reactor Vessel Water Level - High, Level 8 Allowable Value is high enough to preclude isolating the injection valve of the RCIC during normal operation, yet low enough to trip the RCIC System prior to water overflowing into the MSLs.

Two channels of Reactor Vessel Water Level - High, Level 8 Function are available and are required to be OPERABLE when RCIC is required to be OPERABLE to ensure that no single instrument failure can preclude RCIC initiation. Refer to LCO 3.5.3 for RCIC Applicability Bases.

3. Condensate Storage Tank Level - Low

Low level in the CST indicates the unavailability of an adequate supply of makeup water from this normal source. Normally, the suction valve between the RCIC pump and the CST is open and, upon receiving a RCIC initiation signal, water for RCIC injection would be taken from the CST. However, if the water level in the CST falls below a preselected level, first the suppression pool suction valves automatically open, and then the CST suction valve (consistency) automatically closes. This ensures that an adequate supply of makeup water is available to the RCIC pump. To prevent losing suction to the pump, the suction valves are interlocked so that the suppression pool suction valves must be open before the CST suction valve automatically closes.

Two level switches are used to detect low water level in the CST. The Condensate Storage Tank Level - Low Function Allowable Value is set high enough to ensure adequate pump suction head while water is being taken from the CST.

Two channels of Condensate Storage Tank Level - Low Function are available and are required to be OPERABLE when RCIC is required to be OPERABLE to ensure that no single instrument failure can preclude RCIC swap to suppression pool source. Refer to LCO 3.5.3 for RCIC Applicability Bases.

4. Suppression Pool Water Level - High

Excessively high suppression pool water level could result in the loads on the suppression pool exceeding design values should there be a blowdown of the reactor vessel pressure through the safety/relief valves. Therefore, signals indicating high suppression pool water level are used to transfer the suction source of RCIC from the CST to the suppression pool to eliminate the possibility of RCIC continuing to provide additional water from a source outside primary containment. This Function satisfies
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Criterion 3 of 10 CFR 50.36(c)(2)(ii). To prevent losing suction to the pump, the suction valves are interlocked so that the suppression pool suction valves must be open before the CST suction valve automatically closes.

Suppression pool water level signals are initiated from two level switches. The Allowable Value for the Suppression Pool Water Level - High Function is set low enough to ensure that RCIC will be aligned to take suction from the suppression pool before the water level reaches the point at which suppression design loads would be exceeded.

Two channels of Suppression Pool Water Level - High Function are available and are required to be OPERABLE when RCIC is required to be OPERABLE to ensure that no single instrument failure can preclude RCIC swap to suppression pool source. Refer to LCO 3.5.3 for RCIC Applicability Bases.

5. Manual Initiation

The Manual Initiation push button switch introduces a signal into the RCIC System initiation logic that is redundant to the automatic protective instrumentation and provides manual initiation capability. There is one push button for the RCIC System.

The Manual Initiation Function is not assumed in any accident or transient analyses in the FSAR. However, the Function is retained for overall redundancy and diversity of the RCIC function as required by the NRC in the plant licensing basis.

There is no Allowable Value for this Function since the channel is mechanically actuated based solely on the position of the push button. One channel of Manual Initiation is required to be OPERABLE when RCIC is required to be OPERABLE.

ACTIONS

REVIEWER’S NOTE

Certain LCO Completion Times are based on approved topical reports. In order for a licensee to use the times, the licensee must justify the Completion Times as required by the staff Safety Evaluation Report (SER) for the topical report.
A Note has been provided to modify the ACTIONS related to RCIC System instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable RCIC System instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable RCIC System instrumentation channel.

A.1

Required Action A.1 directs entry into the appropriate Condition referenced in Table 3.3.5.3-1. The applicable Condition referenced in the Table is Function dependent. Each time a channel is discovered to be inoperable, Condition A is entered for that channel and provides for transfer to the appropriate subsequent Condition.

B.1 and B.2

Required Action B.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in a complete loss of automatic initiation capability for the RCIC System. In this case, automatic initiation capability is lost if two Function 1 channels in the same trip system are inoperable and untripped. In this situation (loss of automatic initiation capability), the 24 hour allowance of Required Action B.2 is not appropriate, and the RCIC System must be declared inoperable within 1 hour after discovery of loss of RCIC initiation capability.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action B.1, the Completion Time only begins upon discovery that the RCIC System cannot be automatically initiated due to two inoperable, untripped Reactor Vessel Water Level - Low Low, Level 2 channels in the same trip system. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.
Because of the redundancy of sensors available to provide initiation signals and the fact that the RCIC System is not assumed in any accident or transient analysis, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 2) to permit restoration of any inoperative channel to OPERABLE status. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If the inoperative channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action B.2. Placing the inoperative channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperative channel in trip would result in an initiation), Condition E must be entered and its Required Action taken.

C.1

A risk based analysis was performed and determined that an allowable out of service time of 24 hours (Ref. 2) is acceptable to permit restoration of any inoperative channel to OPERABLE status (Required Action C.1). A Required Action (similar to Required Action B.1) limiting the allowable out of service time, if a loss of automatic RCIC initiation capability exists, is not required. This Condition applies to the Reactor Vessel Water Level - High, Level 8 Function whose logic is arranged such that any inoperative channel will result in a loss of automatic RCIC initiation capability. As stated above, this loss of automatic RCIC initiation capability was analyzed and determined to be acceptable. This Condition also applies to the Manual Initiation Function. Since this Function is not assumed in any accident or transient analysis, a total loss of manual initiation capability (Required Action C.1) for 24 hours is allowed. The Required Action does not allow placing a channel in trip since this action would not necessarily result in a safe state for the channel in all events.

D.1, D.2.1, and D.2.2

Required Action D.1 is intended to ensure that appropriate actions are taken if multiple, inoperative, untripped channels within the same Function result in automatic component initiation capability being lost for the feature(s). For Required Action D.1, the RCIC System is the only associated feature. In this case, automatic initiation capability is lost if two Function 3 channels or two Function 4 channels are inoperative and
 ACTIONS (continued)

untipped. In this situation (loss of automatic suction swap), the 24 hour
allowance of Required Actions D.2.1 and D.2.2 is not appropriate, and the
RCIC System must be declared inoperable within 1 hour from discovery
of loss of RCIC initiation capability. As noted, Required Action D.1 is only
applicable if the RCIC pump suction is not aligned to the suppression pool
since, if aligned, the Function is already performed.

The Completion Time is intended to allow the operator time to evaluate
and repair any discovered inoperabilities. This Completion Time also
allows for an exception to the normal "time zero" for beginning the
allowed outage time "clock." For Required Action D.1, the Completion
Time only begins upon discovery that the RCIC System cannot be
automatically aligned to the suppression pool due to two inoperable,
untipped channels in the same Function. The 1 hour Completion Time
from discovery of loss of initiation capability is acceptable because it
minimizes risk while allowing time for restoration or tripping of channels.

Because of the redundancy of sensors available to provide initiation
signals and the fact that the RCIC System is not assumed in any accident
or transient analysis, an allowable out of service time of 24 hours has
been shown to be acceptable (Ref. 2) to permit restoration of any
inoperable channel to OPERABLE status. [Alternatively, a Completion
Time can be determined in accordance with the Risk Informed
Completion Time Program.] If the inoperable channel cannot be restored
to OPERABLE status within the allowable out of service time, the channel
must be placed in the tripped condition per Required Action D.2.1, which
performs the intended function of the channel (shifting the suction source
to the suppression pool).

Alternatively, Required Action D.2.2 allows the manual alignment of the
RCIC suction to the suppression pool within 24 hours, which also
performs the intended function. If Required Action D.2.1 or D.2.2 is
performed, measures should be taken to ensure that the RCIC System
piping remains filled with water. If it is not desired to perform Required
Actions D.2.1 and D.2.2 (e.g., as in the case where shifting the suction
source could drain down the RCIC suction piping), Condition E must be
entered and its Required Action taken.

E.1

With any Required Action and associated Completion Time not met, the
RCIC System may be incapable of performing the intended function, and
the RCIC System must be declared inoperable immediately.
SURVEILLANCE REQUIREMENTS

Certain Frequencies are based on approved topical reports. In order for a licensee to use these Frequencies, the licensee must justify the Frequencies as required by the staff SER for the topical report.

Notes a and b are applied to the setpoint verification Surveillances for all RCIC System Instrumentation Functions in Table 3.3.5.3-1 unless one or more of the following exclusions apply:

1. Manual actuation circuits, automatic actuation logic circuits or instrument functions that derive input from contacts which have no associated sensor or adjustable device, e.g., limit switches, breaker position switches, manual actuation switches, float switches, proximity detectors, etc. are excluded. In addition, those permissives and interlocks that derive input from a sensor or adjustable device that is tested as part of another TS function are excluded.

2. Settings associated with safety relief valves are excluded. The performance of these components is already controlled (i.e., trended with as-left and as-found limits) under the ASME Code for Operation and Maintenance of Nuclear Power Plants testing program.

3. Functions and Surveillance Requirements which test only digital components are normally excluded. There is no expected change in result between SR performances for these components. Where separate as-left and as-found tolerance is established for digital component SRs, the requirements would apply.

A generic evaluation of RCIC System Instrumentation Functions resulted in Notes a and b being applied to the Functions shown in TS 3.3.5.3. Each licensee adopting this change must review the list of potential Functions to identify whether any of the identified functions meet any of the exclusion criteria based on the plant specific design and safety analysis (A00s). The footnotes applied to Function 3.3.5.3-1,[2], Reactor Vessel Water Level - High, Level 8 are optional.

As noted in the beginning of the SRs, the SRs for each RCIC System instrument Function are found in the SRs column of Table 3.3.5.3-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed as follows: (a) for up to 6 hours for Functions 2 and 5; and (b) for up to 6 hours for Functions 1, 3, and 4, provided the associated Function maintains trip capability. Upon completion of the Surveillance,
or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 2) assumption of the average time required to perform channel surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the RCIC will initiate when necessary.

SR 3.3.5.3.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a parameter on other similar channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

[The Frequency of 12 hours is based upon operating experience that demonstrates channel failure is rare.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWSER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.
SR 3.3.5.3.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency of 92 days is based on the reliability analysis of Reference 2.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
--]

SR 3.3.5.3.3

The calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.5.3-1. If the trip setting is discovered to be less conservative than the setting accounted for in the appropriate setpoint methodology, but is conservative with respect to the Allowable Value, the channel performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than accounted for in the appropriate setpoint methodology.
The Frequency of 92 days is based on the reliability analysis of Reference 2.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.5.3.3 is modified by two Notes as identified in Table 3.3.5.3.3-1. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint more conservative than the [LTSP] is used in the plant surveillance procedures [Nominal Trip Setpoint (NTSP)], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also requires that [LTSP] and the methodologies for calculating the as-left and the as-found tolerances be in [insert the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference].
A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The Frequency of SR 3.3.5.3.4 is based upon the assumption of a 92 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

The Frequency of SR 3.3.5.3.5 is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

 Treviwer's Note

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.5.3.4 and SR 3.3.5.3.5 are modified by two Notes as identified in Table 3.3.5.3-1. The first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found tolerance but conservative with respect to the Allowable Value. Evaluation of channel performance will verify that the channel will continue to behave in accordance with safety analysis assumptions and the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition. The second Note requires that the as-left setting for the channel be within the as-left tolerance of the [LTSP]. Where a setpoint
SURVEILLANCE REQUIREMENTS (continued)

more conservative than the [LTSP] is used in the plant surveillance procedures [NTSP], the as-left and as-found tolerances, as applicable, will be applied to the surveillance procedure setpoint. This will ensure that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting within the as-left tolerance of the [LTSP], then the channel shall be declared inoperable. The second Note also requires that [LTSP] and the methodologies for calculating the as-left and the as-found tolerances be in [insert the facility FSAR reference or the name of any document incorporated into the facility FSAR by reference].

SR 3.3.5.3.6

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required initiation logic for a specific channel. The system functional testing performed in LCO 3.5.3 overlaps this Surveillance to provide complete testing of the safety function.

[The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

REFERENCES

B 3.3 INSTRUMENTATION

B 3.3.6.1 Primary Containment Isolation Instrumentation

Bases

Background

The primary containment isolation instrumentation automatically initiates closure of appropriate primary containment isolation valves (PCIVs). The function of the PCIVs, in combination with other accident mitigation systems, is to limit fission product release during and following postulated Design Basis Accidents (DBAs). Primary containment isolation within the time limits specified for those isolation valves designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a DBA.

The isolation instrumentation includes the sensors, relays, and switches that are necessary to cause initiation of primary containment and reactor coolant pressure boundary (RCPB) isolation. Most channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a primary containment isolation signal to the isolation logic. Functional diversity is provided by monitoring a wide range of independent parameters. The input parameters to the isolation logics are (a) reactor vessel water level, (b) area ambient and differential temperatures, (c) main steam line (MSL) flow measurement, (d) Standby Liquid Control (SLC) System initiation, (e) condenser vacuum, (f) main steam line pressure, (g) high pressure coolant injection (HPCI) and reactor core isolation cooling (RCIC) steam line flow, (h) drywell radiation and pressure, (i) HPCI and RCIC steam line pressure, (j) HPCI and RCIC turbine exhaust diaphragm pressure, (k) reactor water cleanup (RWCU) differential flow, and (l) reactor steam dome pressure. Redundant sensor input signals from each parameter are provided for initiation of isolation. The only exception is SLC System initiation. In addition, manual isolation of the logics is provided.

Primary containment isolation instrumentation has inputs to the trip logic of the isolation functions listed below.

1. Main Steam Line Isolation

Most MSL Isolation Functions receive inputs from four channels. The outputs from these channels are combined in a one-out-of-two taken twice logic to initiate isolation of all main steam isolation valves (MSIVs). The outputs from the same channels are arranged into two two-out-of-two logic trip systems to isolate all MSL drain valves. Each MSL drain line has two isolation valves with one two-out-of-two logic system associated with each valve.
The exceptions to this arrangement are the Main Steam Line Flow - High Function and Area and Differential Temperature Functions. The Main Steam Line Flow - High Function uses 16 flow channels, four for each steam line. One channel from each steam line inputs to one of the four trip strings. Two trip strings make up each trip system and both trip systems must trip to cause an MSL isolation. Each trip string has four inputs (one per MSL), any one of which will trip the trip string. The trip strings are arranged in a one-out-of-two taken twice logic. This is effectively a one-out-of-eight taken twice logic arrangement to initiate isolation of the MSIVs. Similarly, the 16 flow channels are connected into two two-out-of-two logic trip systems (effectively, two one-out-of-four twice logic), with each trip system isolating one of the two MSL drain valves on the associated steam line.

The Main Steam Tunnel Temperature - High Function receives input from 16 channels. The logic is arranged similar to the Main Steam Line Flow - High Function. The Turbine Building Area Temperature - High Function receives input from 64 channels. The inputs are arranged in a one-out-of-thirty-two taken twice logic trip system to isolate all MSIVs. Similarly, the inputs are arranged in two one-out-of-sixteen twice logic trip systems, with each trip system isolating one of the two MSL drain valves per drain line.

MSL Isolation Functions isolate the Group 1 valves.

2. Primary Containment Isolation

Most Primary Containment Isolation Functions receive inputs from four channels. The outputs from these channels are arranged into two two-out-of-two logic trip systems. One trip system initiates isolation of all inboard primary containment isolation valves, while the other trip system initiates isolation of all outboard primary containment isolation valves. Each logic closes one of the two valves on each penetration, so that operation of either logic isolates the penetration.

The exception to this arrangement is the Drywell Radiation - High Function. This Function has two channels, whose outputs are arranged in two one-out-of-one logic trip systems. Each trip system isolates one valve per associated penetration, similar to the two-out-of-two logic described above.
Primary Containment Isolation Instrumentation
B 3.3.6.1

BASES

BACKGROUND (continued)

Primary Containment Isolation Drywell Pressure - High and Reactor Vessel Water Level - Low, Level 3 Functions isolate the Group 2, 6, 7, 10, and 12 valves. Reactor Building and Refueling Floor Exhaust Radiation - High Functions isolate the Group 6, 10, and 12 valves. Primary Containment Isolation Drywell Radiation - High Function isolates the containment purge and vent valves.

3. 4. High Pressure Coolant Injection System Isolation and Reactor Core Isolation Cooling System Isolation

Most Functions that isolate HPCI and RCIC receive input from two channels, with each channel in one trip system using a one-out-of-one logic. Each of the two trip systems in each isolation group is connected to one of the two valves on each associated penetration.

The exceptions are the HPCI and RCIC Turbine Exhaust Diaphragm Pressure - High and Steam Supply Line Pressure - Low Functions. These Functions receive inputs from four turbine exhaust diaphragm pressure and four steam supply pressure channels for each system. The outputs from the turbine exhaust diaphragm pressure and steam supply pressure channels are each connected to two two-out-of-two trip systems. Each trip system isolates one valve per associated penetration.

HPCI and RCIC Functions isolate the Group 3, 4, 8, and 9 valves.

5. Reactor Water Cleanup System Isolation

The Reactor Vessel Water Level - Low Low, Level 2 Isolation Function receives input from four reactor vessel water level channels. The outputs from the reactor vessel water level channels are connected into two two-out-of-two trip systems. The Differential Flow - High and SLC System Initiation Functions receive input from two channels, with each channel in one trip system using a one-out-of-one logic. The Area Temperature - High Function receives input from six temperature monitors, three to each trip system. The Area Ventilation Differential Temperature - High Function receives input from six differential temperature monitors, three in each trip system. These are configured so that any one input will trip the associated trip system. Each of the two trip systems is connected to one of the two valves on each RWCU penetration.

RWCU Functions isolate the Group 5 valves.
BASES

BACKGROUND (continued)

6. Shutdown Cooling System Isolation

The Reactor Vessel Water Level - Low, Level 3 Function receives input from four reactor vessel water level channels. The outputs from the reactor vessel water level channels are connected to two two-out-of-two trip systems. The Reactor Vessel Pressure - High Function receives input from two channels, with each channel in one trip system using a one-out-of-one logic. Each of the two trip systems is connected to one of the two valves on each shutdown cooling penetration.

Shutdown Cooling System Isolation Functions isolate the Group 11 valves.

7. Traversing Incore Probe System Isolation

The Reactor Vessel Water Level - Low, Level 3 Isolation Function receives input from two reactor vessel water level channels. The outputs from the reactor vessel water level channels are connected into one two-out-of-two logic trip system. The Drywell Pressure - High Isolation Function receives input from two drywell pressure channels. The outputs from the drywell pressure channels are connected into one two-out-of-two logic trip system.

When either Isolation Function actuates, the TIP drive mechanisms will withdraw the TIPs, if inserted, and close the inboard TIP System isolation ball valves when the TIPs are fully withdrawn. The outboard TIP System isolation valves are manual shear valves.

TIP System Isolation Functions isolate the Group [x] valves (inboard isolation ball valves).

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

The isolation signals generated by the primary containment isolation instrumentation are implicitly assumed in the safety analyses of References 1 and 2 to initiate closure of valves to limit offsite doses. Refer to LCO 3.6.1.3, "Primary Containment Isolation Valves (PCIVs)," Applicable Safety Analyses Bases for more detail of the safety analyses.

Primary containment isolation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). Certain instrumentation Functions are retained for other reasons and are described below in the individual Functions discussion.

The OPERABILITY of the primary containment instrumentation is dependent on the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.6.1-1. Each Function must have a required number of OPERABLE channels, with their setpoints within the
specified Allowable Values, where appropriate. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Each channel must also respond within its assumed response time, where appropriate.

Allowable Values are specified for each Primary Containment Isolation Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

Certain Emergency Core Cooling Systems (ECCS) and RCIC valves (e.g., minimum flow) also serve the dual function of automatic PCIVs. The signals that isolate these valves are also associated with the automatic initiation of the ECCS and RCIC. The instrumentation requirements and ACTIONS associated with these signals are addressed in LCO 3.3.5.1, "Emergency Core Cooling Systems (ECCS) Instrumentation," and LCO 3.3.5.2, "Reactor Core Isolation Cooling (RCIC) System Instrumentation," and are not included in this LCO.

In general, the individual Functions are required to be OPERABLE in MODES 1, 2, and 3 consistent with the Applicability for LCO 3.6.1.1, "Primary Containment." Functions that have different Applicabilities are discussed below in the individual Functions discussion.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.
Main Steam Line Isolation

1.a. Reactor Vessel Water Level - Low Low Low, Level 1

Low reactor pressure vessel (RPV) water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, isolation of the MSIVs and other interfaces with the reactor vessel occurs to prevent offsite dose limits from being exceeded. The Reactor Vessel Water Level - Low Low Low, Level 1 Function is one of the many Functions assumed to be OPERABLE and capable of providing isolation signals. The Reactor Vessel Water Level - Low Low Low, Level 1 Function associated with isolation is assumed in the analysis of the recirculation line break (Ref. 1). The isolation of the MSLs on Level 1 supports actions to ensure that offsite dose limits are not exceeded for a DBA.

Reactor vessel water level signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level - Low Low Low, Level 1 Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Reactor Vessel Water Level - Low Low Low, Level 1 Allowable Value is chosen to be the same as the ECCS Level 1 Allowable Value (LCO 3.3.5.1) to ensure that the MSLs isolate on a potential loss of coolant accident (LOCA) to prevent offsite doses from exceeding 10 CFR 100 limits.

This Function isolates the Group 1 valves.

1.b. Main Steam Line Pressure – Low

Low MSL pressure indicates that there may be a problem with the turbine pressure regulation, which could result in a low reactor vessel water level condition and the RPV cooling down more than 100°F/hr if the pressure loss is allowed to continue. The Main Steam Line Pressure - Low Function is directly assumed in the analysis of the pressure regulator failure (Ref. 2). For this event, the closure of the MSIVs ensures that the RPV temperature change limit (100°F/hr) is not reached. In addition, this Function supports actions to ensure that Safety Limit 2.1.1.1 is not exceeded. (This Function closes the MSIVs prior to pressure decreasing below 785 psig, which results in a scram due to MSIV closure, thus reducing reactor power to < 25% RTP.)
Bases

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The MSL low pressure signals are initiated from four transmitters that are connected to the MSL header. The transmitters are arranged such that, even though physically separated from each other, each transmitter is able to detect low MSL pressure. Four channels of Main Steam Line Pressure - Low Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value was selected to be high enough to prevent excessive RPV depressurization.

The Main Steam Line Pressure - Low Function is only required to be OPERABLE in MODE 1 since this is when the assumed transient can occur (Ref. 2).

This Function isolates the Group 1 valves.

1.c. Main Steam Line Flow – High

Main Steam Line Flow - High is provided to detect a break of the MSL and to initiate closure of the MSIVs. If the steam were allowed to continue flowing out of the break, the reactor would depressurize and the core could uncover. If the RPV water level decreases too far, fuel damage could occur. Therefore, the isolation is initiated on high flow to prevent or minimize core damage. The Main Steam Line Flow - High Function is directly assumed in the analysis of the main steam line break (MSLB) (Ref. 1). The isolation action, along with the scram function of the Reactor Protection System (RPS), ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46 and offsite doses do not exceed the 10 CFR 100 limits.

The MSL flow signals are initiated from 16 transmitters that are connected to the four MSLs. The transmitters are arranged such that, even though physically separated from each other, all four connected to one MSL would be able to detect the high flow. Four channels of Main Steam Line Flow - High Function for each unisolated MSL (two channels per trip system) are available and are required to be OPERABLE so that no single instrument failure will preclude detecting a break in any individual MSL.

The Allowable Value is chosen to ensure that offsite dose limits are not exceeded due to the break.

This Function isolates the Group 1 valves.
1.d. Condenser Vacuum – Low

The Condenser Vacuum - Low Function is provided to prevent overpressurization of the main condenser in the event of a loss of the main condenser vacuum. Since the integrity of the condenser is an assumption in offsite dose calculations, the Condenser Vacuum - Low Function is assumed to be OPERABLE and capable of initiating closure of the MSIVs. The closure of the MSIVs is initiated to prevent the addition of steam that would lead to additional condenser pressurization and possible rupture of the diaphragm installed to protect the turbine exhaust hood, thereby preventing a potential radiation leakage path following an accident.

Condenser vacuum pressure signals are derived from four pressure transmitters that sense the pressure in the condenser. Four channels of Condenser Vacuum - Low Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value is chosen to prevent damage to the condenser due to pressurization, thereby ensuring its integrity for offsite dose analysis. As noted (footnote (a) to Table 3.3.6.1-1), the channels are not required to be OPERABLE in MODES 2 and 3 when all turbine stop valves (TSVs) are closed, since the potential for condenser overpressurization is minimized. Switches are provided to manually bypass the channels when all TSVs are closed.

This Function isolates the Group 1 valves.

1.e, 1.f, 1.g. Area and Differential Temperature – High

Area and differential temperature is provided to detect a leak in the RCPB and provides diversity to the high flow instrumentation. The isolation occurs when a very small leak has occurred. If the small leak is allowed to continue without isolation, offsite dose limits may be reached. However, credit for these instruments is not taken in any transient or accident analysis in the FSAR, since bounding analyses are performed for large breaks, such as MSLBs.

Area temperature signals are initiated from thermocouples located in the area being monitored. Sixteen channels of Main Steam Tunnel Temperature - High Function and 64 channels of Turbine Building Area Temperature - High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function. Each Function has one temperature element.
Eight thermocouples provide input to the Differential Temperature - High Function. The output of these thermocouples is used to determine the differential temperature. Each channel consists of a differential temperature instrument that receives inputs from thermocouples that are located in the inlet and outlet of the area cooling system for a total of four available channels.

The ambient and differential temperature monitoring Allowable Value is chosen to detect a leak equivalent to between 1\% and 10\% rated steam flow.

These Functions isolate the Group 1 valves.

1.h. Manual Initiation

The Manual Initiation push button channels introduce signals into the MSL isolation logic that are redundant to the automatic protective instrumentation and provide manual isolation capability. There is no specific FSAR safety analysis that takes credit for this Function. It is retained for the overall redundancy and diversity of the isolation function as required by the NRC in the plant licensing basis.

There are two push buttons for the logic, one manual initiation push button per trip system. There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the push buttons.

Two channels of Manual Initiation Function are available and are required to be OPERABLE in MODES 1, 2, and 3, since these are the MODES in which the MSL isolation automatic Functions are required to be OPERABLE.

Primary Containment Isolation

2.a. Reactor Vessel Water Level - Low, Level 3

Low RPV water level indicates that the capability to cool the fuel may be threatened. The valves whose penetrations communicate with the primary containment are isolated to limit the release of fission products. The isolation of the primary containment on Level 3 supports actions to ensure that offsite dose limits of 10 CFR 100 are not exceeded. The Reactor Vessel Water Level - Low, Level 3 Function associated with isolation is implicitly assumed in the FSAR analysis as these leakage paths are assumed to be isolated post LOCA.
Reactor Vessel Water Level - Low, Level 3 signals are initiated from level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level - Low, Level 3 Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Reactor Vessel Water Level - Low, Level 3 Allowable Value was chosen to be the same as the RPS Level 3 scram Allowable Value (LCO 3.3.1.1), since isolation of these valves is not critical to orderly plant shutdown.

This Function isolates the Group 2, 6, 10, and 12 valves.

2.b. Drywell Pressure – High

High drywell pressure can indicate a break in the RCPB inside the primary containment. The isolation of some of the primary containment isolation valves on high drywell pressure supports actions to ensure that offsite dose limits of 10 CFR 100 are not exceeded. The Drywell Pressure - High Function, associated with isolation of the primary containment, is implicitly assumed in the FSAR accident analysis as these leakage paths are assumed to be isolated post LOCA.

High drywell pressure signals are initiated from pressure transmitters that sense the pressure in the drywell. Four channels of Drywell Pressure - High per Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value was selected to be the same as the ECCS Drywell Pressure - High Allowable Value (LCO 3.3.5.1), since this may be indicative of a LOCA inside primary containment.

This Function isolates the Group 2, 6, 7, 10, and 12 valves.

2.c. Drywell Radiation – High

High drywell radiation indicates possible gross failure of the fuel cladding. Therefore, when Drywell Radiation - High is detected, an isolation is initiated to limit the release of fission products. However, this Function is not assumed in any accident or transient analysis in the FSAR because other leakage paths (e.g., MSIVs) are more limiting.
The drywell radiation signals are initiated from radiation detectors that are located in the drywell. Two channels of Drywell Radiation - High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value is low enough to promptly detect gross failures in the fuel cladding.

This Function isolates the containment vent and purge valves.

2.d, 2.e. Reactor Building and Refueling Floor Exhaust Radiation – High

High secondary containment exhaust radiation is an indication of possible gross failure of the fuel cladding. The release may have originated from the primary containment due to a break in the RCPB. When Exhaust Radiation - High is detected, valves whose penetrations communicate with the primary containment atmosphere are isolated to limit the release of fission products. Additionally, the Refueling Floor Exhaust Radiation - High Function is assumed to initiate isolation of the primary containment during a fuel handling accident (Ref. 2).

The Exhaust Radiation - High signals are initiated from radiation detectors that are located on the ventilation exhaust piping coming from the reactor building and the refueling floor zones, respectively. The signal from each detector is input to an individual monitor whose trip outputs are assigned to an isolation channel. Four channels of Reactor Building Exhaust - High Function and four channels of Refueling Floor Exhaust - High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Values are chosen to promptly detect gross failure of the fuel cladding.

These Functions isolate the Group 6, 10, and 12 valves.

2.f. Manual Initiation

The Manual Initiation push button channels introduce signals into the primary containment isolation logic that are redundant to the automatic protective instrumentation and provide manual isolation capability. There is no specific FSAR safety analysis that takes credit for this Function. It is retained for overall redundancy and diversity of the isolation function as required by the NRC in the plant licensing basis.
There are two push buttons for the logic, one manual initiation push button per trip system. There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the push buttons.

Two channels of the Manual Initiation Function are available and are required to be OPERABLE in MODES 1, 2, and 3, since these are the MODES in which the Primary Containment Isolation automatic Functions are required to be OPERABLE.

High Pressure Coolant Injection and Reactor Core Isolation Cooling Systems Isolation

3.a, 4.a. HPCI and RCIC Steam Line Flow – High

Steam Line Flow - High Functions are provided to detect a break of the RCIC or HPCI steam lines and initiate closure of the steam line isolation valves of the appropriate system. If the steam is allowed to continue flowing out of the break, the reactor will depressurize and the core can uncover. Therefore, the isolations are initiated on high flow to prevent or minimize core damage. The isolation action, along with the scram function of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. Specific credit for these Functions is not assumed in any FSAR accident analyses since the bounding analysis is performed for large breaks such as recirculation and MSL breaks. However, these instruments prevent the RCIC or HPCI steam line breaks from becoming bounding.

The HPCI and RCIC Steam Line Flow - High signals are initiated from transmitters (two for HPCI and two for RCIC) that are connected to the system steam lines. Two channels of both HPCI and RCIC Steam Line Flow - High Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Values are chosen to be low enough to ensure that the trip occurs to prevent fuel damage and maintains the MSLB event as the bounding event.

These Functions isolate the Group 3 and 4 valves, as appropriate.
3.b, 4.b. HPCI and RCIC Steam Supply Line Pressure – Low

Low MSL pressure indicates that the pressure of the steam in the HPCI or RCIC turbine may be too low to continue operation of the associated system's turbine. These isolations are for equipment protection and are not assumed in any transient or accident analysis in the FSAR. However, they also provide a diverse signal to indicate a possible system break. These instruments are included in Technical Specifications (TS) because of the potential for risk due to possible failure of the instruments preventing HPCI and RCIC initiations (Ref. 3).

The HPCI and RCIC Steam Supply Line Pressure - Low signals are initiated from transmitters (four for HPCI and four for RCIC) that are connected to the system steam line. Four channels of both HPCI and RCIC Steam Supply Line Pressure - Low Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Values are selected to be high enough to prevent damage to the system's turbine.

These Functions isolate the Group 3 and 4 valves, as appropriate.

3.c, 4.c. HPCI and RCIC Turbine Exhaust Diaphragm Pressure – High

High turbine exhaust diaphragm pressure indicates that the pressure may be too high to continue operation of the associated system's turbine. That is, one of two exhaust diaphragms has ruptured and pressure is reaching turbine casing pressure limits. These isolations are for equipment protection and are not assumed in any transient or accident analysis in the FSAR. These instruments are included in the TS because of the potential for risk due to possible failure of the instruments preventing HPCI and RCIC initiations (Ref. 3).

The HPCI and RCIC Turbine Exhaust Diaphragm Pressure - High signals are initiated from transmitters (four for HPCI and four for RCIC) that are connected to the area between the rupture diaphragms on each system's turbine exhaust line. Four channels of both HPCI and RCIC Turbine Exhaust Diaphragm Pressure - High Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Values are high enough to prevent damage to the system's turbine.

These Functions isolate the Group 3 and 4 valves, as appropriate.
3.d, 4.d. Drywell Pressure – High

High drywell pressure can indicate a break in the RCPB. The HPCI and RCIC isolation of the turbine exhaust is provided to prevent communication with the drywell when high drywell pressure exists. A potential leakage path exists via the turbine exhaust. The isolation is delayed until the system becomes unavailable for injection (i.e., low steam line pressure). The isolation of the HPCI and RCIC turbine exhaust by Drywell Pressure - High is indirectly assumed in the FSAR accident analysis because the turbine exhaust leakage path is not assumed to contribute to offsite doses.

High drywell pressure signals are initiated from pressure transmitters that sense the pressure in the drywell. Two channels of both HPCI and RCIC Drywell Pressure - High Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value was selected to be the same as the ECCS Drywell Pressure - High Allowable Value (LCO 3.3.5.1), since this is indicative of a LOCA inside primary containment.

This Function isolates the Group 8 and 9 valves.

3.e, 3.f, 3.h, 3.i, 4.e, 4.g, 4.h, 4.i, 4.j. Area and Differential Temperature – High

Area and differential temperatures are provided to detect a leak from the associated system steam piping. The isolation occurs when a very small leak has occurred and is diverse to the high flow instrumentation. If the small leak is allowed to continue without isolation, offsite dose limits may be reached. These Functions are not assumed in any FSAR transient or accident analysis, since bounding analyses are performed for large breaks such as recirculation or MSL breaks.

Area and Differential Temperature - High signals are initiated from thermocouples that are appropriately located to protect the system that is being monitored. Two instruments monitor each area. Two channels for each HPCI and RCIC Area and Differential Temperature - High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

Eight thermocouples provide input to the Area Ventilation Differential Temperature - High Function. The output of these thermocouples is used to determine the differential temperature. Each channel consists of a differential temperature instrument that receives inputs from
thermocouples that are located in the inlet and outlet of the area cooling system for a total of four available channels (two for RCIC and two for HPCI).

The Allowable Values are set low enough to detect a leak equivalent to 25 gpm.

These Functions isolate the Group 3 and 4 valves, as appropriate.

3.g, 4.f. Suppression Pool Area Temperature - Time Delay Relay

The Suppression Pool Area Temperature - Time Delay Relays are provided to allow all the other systems that may be leaking into the pool area (as indicated by the high temperature) to be isolated before HPCI and/or RCIC are automatically isolated. This ensures maximum HPCI and RCIC System operation by preventing isolations due to leaks in other systems. These Functions are not assumed in any FSAR transient or accident analysis.

There are four time delay relays (two for HPCI and two for RCIC). Two channels each for both HPCI and RCIC Suppression Pool Area Temperature - Time Delay Relay Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Values are based on maximizing the availability of the HPCI and RCIC systems. That is, they provide sufficient time to isolate all other potential leakage sources in the suppression pool area before HPCI and RCIC are isolated.

These Functions isolate the Group 3 and 4 valves, as appropriate.

3.j, 4.k. Manual Initiation

The Manual Initiation push button channels introduce signals into the HPCI and RCIC systems' isolation logics that are redundant to the automatic protective instrumentation and provide manual isolation capability. There is no specific FSAR safety analysis that takes credit for these Functions. They are retained for overall redundancy and diversity of the isolation function as required by the NRC in the plant licensing basis.

There are two push buttons for each of the logics (HPCI and RCIC), one manual initiation push button per trip system. There is no Allowable Value for these Functions, since the channels are mechanically actuated based solely on the position of the push buttons.
Two channels of both HPCI and RCIC Manual Initiation Functions are available and are required to be OPERABLE in MODES 1, 2, and 3 since these are the MODES in which the HPCI and RCIC systems' Isolation automatic Functions are required to be OPERABLE.

Reactor Water Cleanup System Isolation

5.a. Differential Flow – High

The high differential flow signal is provided to detect a break in the RWCU System. This will detect leaks in the RWCU System when area or differential temperature would not provide detection (i.e., a cold leg break). Should the reactor coolant continue to flow out of the break, offsite dose limits may be exceeded. Therefore, isolation of the RWCU System is initiated when high differential flow is sensed to prevent exceeding offsite doses. A time delay is provided to prevent spurious trips during most RWCU operational transients. This Function is not assumed in any FSAR transient or accident analysis, since bounding analyses are performed for large breaks such as MSLBs.

The high differential flow signals are initiated from transmitters that are connected to the inlet (from the reactor vessel) and outlets (to condenser and feedwater) of the RWCU System. The outputs of the transmitters are compared (in a common summer) and the resulting output is sent to two high flow trip units. If the difference between the inlet and outlet flow is too large, each trip unit generates an isolation signal. Two channels of Differential Flow - High Function are available and are required to be OPERABLE to ensure that no single instrument failure downstream of the common summer can preclude the isolation function.

The Differential Flow - High Allowable Value ensures that a break of the RWCU piping is detected.

This Function isolates the Group 5 valves.

5.b, 5.c. Area and Area Ventilation Differential Temperature – High

RWCU area and area ventilation differential temperatures are provided to detect a leak from the RWCU System. The isolation occurs even when very small leaks have occurred and is diverse to the high differential flow instrumentation for the hot portions of the RWCU System. If the small leak continues without isolation, offsite dose limits may be reached. Credit for these instruments is not taken in any transient or accident analysis in the FSAR, since bounding analyses are performed for large breaks such as recirculation or MSL breaks.
Area and area ventilation differential temperature signals are initiated from temperature elements that are located in the room that is being monitored. Six thermocouples provide input to the Area Temperature - High Function (two per area). Six channels are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

Twelve thermocouples provide input to the Area Ventilation Differential Temperature - High Function. The output of these thermocouples is used to determine the differential temperature. Each channel consists of a differential temperature instrument that receives inputs from thermocouples that are located in the inlet and outlet of the area cooling system and for a total of six available channels (two per area). Six channels are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Area and Area Ventilation Differential Temperature - High Allowable Values are set low enough to detect a leak equivalent to 25 gpm.

These Functions isolate the Group 5 valves.

5.d. SLC System Initiation

The isolation of the RWCU System is required when the SLC System has been initiated to prevent dilution and removal of the boron solution by the RWCU System (Ref. 4). SLC System initiation signals are initiated from the two SLC pump start signals.

There is no Allowable Value associated with this Function since the channels are mechanically actuated based solely on the position of the SLC System initiation switch.

Two channels (one from each pump) of the SLC System Initiation Function are available and are required to be OPERABLE only in MODES 1 and 2, since these are the only MODES where the reactor can be critical, and these MODES are consistent with the Applicability for the SLC System (LCO 3.1.7).

As noted (footnote (b) to Table 3.3.6.1-1), this Function is only required to close one of the RWCU isolation valves since the signals only provide input into one of the two trip systems.
5.e. Reactor Vessel Water Level - Low Low, Level 2

Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, isolation of some interfaces with the reactor vessel occurs to isolate the potential sources of a break. The isolation of the RWCU System on Level 2 supports actions to ensure that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. The Reactor Vessel Water Level - Low Low, Level 2 Function associated with RWCU isolation is not directly assumed in the FSAR safety analyses because the RWCU System line break is bounded by breaks of larger systems (recirculation and MSL breaks are more limiting).

Reactor Vessel Water Level - Low Low, Level 2 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level - Low Low, Level 2 Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Reactor Vessel Water Level - Low Low, Level 2 Allowable Value was chosen to be the same as the ECCS Reactor Vessel Water Level - Low Low, Level 2 Allowable Value (LCO 3.3.5.1), since the capability to cool the fuel may be threatened.

This Function isolates the Group 5 valves.

5.f. Manual Initiation

The Manual Initiation push button channels introduce signals into the RWCU System isolation logic that are redundant to the automatic protective instrumentation and provide manual isolation capability. There is no specific FSAR safety analysis that takes credit for this Function. It is retained for overall redundancy and diversity of the isolation function as required by the NRC in the plant licensing basis.

There are two push buttons for the logic, one manual initiation push button per trip system. There is no Allowable Value for this Function, since the channels are mechanically actuated based solely on the position of the push buttons.

Two channels of the Manual Initiation Function are available and are required to be OPERABLE in MODES 1, 2, and 3 since these are the MODES in which the RWCU System Isolation automatic Functions are required to be OPERABLE.
Shutdown Cooling System Isolation

6.a. Reactor Steam Dome Pressure – High

The Reactor Steam Dome Pressure - High Function is provided to isolate the shutdown cooling portion of the Residual Heat Removal (RHR) System. This interlock is provided only for equipment protection to prevent an intersystem LOCA scenario, and credit for the interlock is not assumed in the accident or transient analysis in the FSAR.

The Reactor Steam Dome Pressure - High signals are initiated from two transmitters that are connected to different taps on the RPV. Two channels of Reactor Steam Dome Pressure - High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function. The Function is only required to be OPERABLE in MODES 1, 2, and 3, since these are the only MODES in which the reactor can be pressurized; thus, equipment protection is needed. The Allowable Value was chosen to be low enough to protect the system equipment from overpressurization.

This Function isolates the Group 11 valves.

6.b. Reactor Vessel Water Level - Low, Level 3

Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, isolation of some reactor vessel interfaces occurs to begin isolating the potential sources of a break. The Reactor Vessel Water Level - Low, Level 3 Function associated with RHR Shutdown Cooling System isolation is not directly assumed in safety analyses because a break of the RHR Shutdown Cooling System is bounded by breaks of the recirculation and MSL. The RHR Shutdown Cooling System isolation on Level 3 supports actions to ensure that the RPV water level does not drop below the top of the active fuel during a vessel draindown event caused by a leak (e.g., pipe break or inadvertent valve opening) in the RHR Shutdown Cooling System.

Reactor Vessel Water Level - Low, Level 3 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels (two channels per trip system) of the Reactor Vessel Water Level - Low, Level 3 Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.
The Reactor Vessel Water Level - Low, Level 3 Allowable Value was chosen to be the same as the RPS Reactor Vessel Water Level - Low, Level 3 Allowable Value (LCO 3.3.1.1), since the capability to cool the fuel may be threatened.

The Reactor Vessel Water Level - Low, Level 3 Function is only required to be OPERABLE in MODE 3 to prevent this potential flow path from lowering the reactor vessel level to the top of the fuel. In MODES 1 and 2, another isolation (i.e., Reactor Steam Dome Pressure - High) and administrative controls ensure that this flow path remains isolated to prevent unexpected loss of inventory via this flow path.

This Function isolates the Group 11 valves.

Traversing Incore Probe System Isolation

7.a. Reactor Vessel Water Level - Low, Level 3

Low RPV water level indicates that the capability to cool the fuel may be threatened. The valves whose penetrations communicate with the primary containment are isolated to limit the release of fission products. The isolation of the primary containment on Level 3 supports actions to ensure that offsite dose limits of 10 CFR 100 are not exceeded. The Reactor Vessel Water Level - Low, Level 3 Function associated with isolation is implicitly assumed in the FSAR analysis as these leakage paths are assumed to be isolated post LOCA.

Reactor Vessel Water Level - Low, Level 3 signals are initiated from level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Two channels of Reactor Vessel Water Level - Low, Level 3 Function are available and are required to be OPERABLE to ensure that no single instrument failure can initiate an inadvertent isolation actuation. The isolation function is ensured by the manual shear valve in each penetration.

The Reactor Vessel Water Level - Low, Level 3 Allowable Value was chosen to be the same as the RPS Level 3 scram Allowable Value (LCO 3.3.1.1), since isolation of these valves is not critical to orderly plant shutdown.

This Function isolates the Group [x] valves.
7.b. Drywell Pressure – High

High drywell pressure can indicate a break in the RCPB inside the primary containment. The isolation of some of the primary containment isolation valves on high drywell pressure supports actions to ensure that offsite dose limits of 10 CFR 100 are not exceeded. The Drywell Pressure - High Function, associated with isolation of the primary containment, is implicitly assumed in the FSAR accident analysis as these leakage paths are assumed to be isolated post LOCA.

High drywell pressure signals are initiated from pressure transmitters that sense the pressure in the drywell. Two channels of Drywell Pressure - High per Function are available and are required to be OPERABLE to ensure that no single instrument failure can initiate an inadvertent actuation. The isolation function is ensured by the manual shear valve in each penetration.

The Allowable Value was selected to be the same as the ECCS Drywell Pressure - High Allowable Value (LCO 3.3.5.1), since this may be indicative of a LOCA inside primary containment.

This Function isolates the Group [x] valves.

ACTIONS

Certain LCO Completion Times are based on approved topical reports. In order for a licensee to use the times, the licensee must justify the Completion Times as required by the staff Safety Evaluation Report (SER) for the topical report.

The ACTIONS are modified by two Notes. Note 1 allows penetration flow path(s) to be unisolated intermittently under administrative controls. These controls consist of stationing a dedicated operator at the controls of the valve, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for primary containment isolation is indicated. Note 2 has been provided to modify the ACTIONS related to primary containment isolation instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion
Times based on initial entry into the Condition. However, the Required Actions for inoperative primary containment isolation instrumentation channels provide appropriate compensatory measures for separate inoperative channels. As such, a Note has been provided that allows separate Condition entry for each inoperative primary containment isolation instrumentation channel. When the Required Channels in Table 3.3.6.1-1 are specified (e.g., on a per steam line, per loop, etc., basis) then the Condition may be entered separately for each steam line, loop, as appropriate.

A.1

Because of the diversity of sensors available to provide isolation signals and the redundancy of the isolation design, an allowable out of service time of 12 hours for Functions 2.a, 2.b, and 6.b and 24 hours for Functions other than Functions 2.a, 2.b, and 6.b has been shown to be acceptable (Refs. 5 and 6) to permit restoration of any inoperative channel to OPERABLE status. This out of service time is only acceptable provided the associated Function is still maintaining isolation capability (refer to Required Action B.1 Bases). [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If the inoperative channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action A.1. Placing the inoperative channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue with no further restrictions. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperative channel in trip would result in an isolation), Condition C must be entered and its Required Action taken.

B.1

Required Action B.1 is intended to ensure that appropriate actions are taken if multiple, inoperative, untripped channels within the same Function result in redundant automatic isolation capability being lost for the associated penetration flow path(s). The MSL Isolation Functions are considered to be maintaining isolation capability when sufficient channels are OPERABLE or in trip, such that both trip systems will generate a trip signal from the given Function on a valid signal. The other isolation functions are considered to be maintaining isolation capability when sufficient channels are OPERABLE or in trip, such that one trip system will generate a trip signal from the given Function on a valid signal. This ensures that one of the two PCIVs in the associated penetration flow path.
can receive an isolation signal from the given Function. For Functions 1.a, 1.b, 1.d, and 1.f, this would require both trip systems to have one channel OPERABLE or in trip. For Function 1.c, this would require both trip systems to have one channel, associated with each MSL, OPERABLE or in trip. For Functions 1.e and 1.g, each Function consists of channels that monitor several locations within a given area (e.g., different locations within the main steam tunnel area). Therefore, this would require both trip systems to have one channel per location OPERABLE or in trip. For Functions 2.a, 2.b, 2.d, 2.e, 3.b, 3.c, 4.b, 4.c, 5.e, and 6.b, this would require one trip system to have two channels, each OPERABLE or in trip. For Functions 2.c, 3.a, 3.d, 3.e, 3.f, 3.g, 3.h, 3.i, 4.a, 4.d, 4.e, 4.f, 4.g, 4.h, 4.i, 4.j, 5.a, 5.d, and 6.a, this would require one trip system to have one channel OPERABLE or in trip. For Functions 5.b and 5.c, each Function consists of channels that monitor several different locations. Therefore, this would require one channel per location to be OPERABLE or in trip (the channels are not required to be in the same trip system). The Condition does not include the Manual Initiation Functions (Functions 1.h, 2.d, 3.j, 4.k, and 5.f), since they are not assumed in any accident or transient analysis. Thus, a total loss of manual initiation capability for 24 hours (as allowed by Required Action A.1) is allowed.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

C.1

Required Action C.1 directs entry into the appropriate Condition referenced in Table 3.3.6.1-1. The applicable Condition specified in Table 3.3.6.1-1 is Function and MODE or other specified condition dependent and may change as the Required Action of a previous Condition is completed. Each time an inoperative channel has not met any Required Action of Condition A or B and the associated Completion Time has expired, Condition C will be entered for that channel and provides for transfer to the appropriate subsequent Condition.
BASES

ACTIONS (continued)

D.1, D.2.1, and D.2.2

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. This is done by placing the plant in at least MODE 3 within 12 hours and in MODE 4 within 36 hours (Required Actions D.2.1 and D.2.2). Alternately, the associated MSLs may be isolated (Required Action D.1), and, if allowed (i.e., plant safety analysis allows operation with an MSL isolated), operation with that MSL isolated may continue. Isolating the affected MSL accomplishes the safety function of the inoperable channel. The Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

E.1

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. This is done by placing the plant in at least MODE 2 within 6 hours.

The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 2 from full power conditions in an orderly manner and without challenging plant systems.

F.1

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, plant operations may continue if the affected penetration flow path(s) is isolated. Isolating the affected penetration flow path(s) accomplishes the safety function of the inoperable channels.

For the RWCU Area and Area Ventilation Differential Temperature - High Functions, the affected penetration flow path(s) may be considered isolated by isolating only that portion of the system in the associated room monitored by the inoperable channel. That is, if the RWCU pump room A area channel is inoperative, the pump room A area can be isolated while allowing continued RWCU operation utilizing the B RWCU pump. For the RWCU Differential Flow - High Function, if the flow element/transmitter monitoring RWCU flow to radwaste and condensate is the only portion of
the channel inoperable, then the affected penetration flow path(s) may be considered isolated by isolating the RWCU return to radwaste and condensate.

Alternately, if it is not desired to isolate the affected penetration flow path(s) (e.g., as in the case where isolating the penetration flow path(s) could result in a reactor scram), Condition H must be entered and its Required Actions taken.

The 1 hour Completion Time is acceptable because it minimizes risk while allowing sufficient time for plant operations personnel to isolate the affected penetration flow path(s).

G.1

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, plant operations may continue if the affected penetration flow path(s) is isolated. Isolating the affected penetration flow path(s) accomplishes the safety function of the inoperable channels. The 24 hour Completion Time is acceptable due to the fact that these Functions are either not assumed in any accident or transient analysis in the FSAR (Manual Initiation) or, in the case of the TIP System isolation, the TIP System penetration is a small bore (approximately ½ inch), its isolation in a design basis event (with loss of offsite power) would be via the manually operated shear valves, and the ability to manually isolate by either the normal isolation valve or the shear valve is unaffected by the inoperable instrumentation. Alternately, if it is not desired to isolate the affected penetration flow path(s) (e.g., as in the case where isolating the penetration flow path(s) could result in a reactor scram), Condition H must be entered and its Required Actions taken.

H.1 and H.2

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, or any Required Action of Condition F or G is not met and the associated Completion Time has expired, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. This is done by placing the plant in at least MODE 3 within 12 hours and in MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
I.1 and I.2

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, the associated SLC subsystem(s) is declared inoperable or the RWCU System is isolated. Since this Function is required to ensure that the SLC System performs its intended function, sufficient remedial measures are provided by declaring the associated SLC subsystems inoperable or isolating the RWCU System.

The 1 hour Completion Time is acceptable because it minimizes risk while allowing sufficient time for personnel to isolate the RWCU System.

J.1

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, the associated penetration flow path should be closed. However, if the shutdown cooling function is needed to provide core cooling, these Required Actions allow the penetration flow path to remain unisolated provided action is immediately initiated to restore the channel to OPERABLE status. Actions must continue until the channel is restored to OPERABLE status.

SURVEILLANCE REQUIREMENTS

Certain Frequencies are based on approved topical reports. In order for a licensee to use these Frequencies, the licensee must justify the Frequencies as required by the staff SER for the topical report.

As noted at the beginning of the SRs, the SRs for each Primary Containment Isolation instrumentation Function are found in the SRs column of Table 3.3.6.1-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains trip capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Refs. 5 and 6) assumption of the average time required to perform channel surveillance. That analysis.
demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the PCIVs will isolate the penetration flow path(s) when necessary.

SR 3.3.6.1.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

[The Frequency of 12 hours is based on operating experience that demonstrates channel failure is rare.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.6.1.2 and SR 3.3.6.1.5

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The 92 day Frequency of SR 3.3.6.1.2 is based on the reliability analysis described in References 6 and 7. The 184 day Frequency of SR 3.3.6.1.5 is based on engineering judgment and the reliability of the components (time delay relays exhibit minimal drift).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

---]

SR 3.3.6.1.3

Calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.6.1-1. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value,
SURVEILLANCE REQUIREMENTS (continued)

the channel performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than that accounted for in the appropriate setpoint methodology.

[The Frequency of 92 days is based on the reliability analysis of References 5 and 6.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.6.1.4 and SR 3.3.6.1.6

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

[The Frequency of SR 3.3.6.1.4 is based on the assumption of a 92 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. The Frequency of SR 3.3.6.1.6 is based on the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.6.1.7

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required isolation logic for a specific channel. The system functional testing performed on PCIVs in LCO 3.6.1.3 overlaps this Surveillance to provide complete testing of the assumed safety function. [The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.3.6.1.8

This SR ensures that the individual channel response times are less than or equal to the maximum values assumed in the accident analysis. Testing is performed only on channels where the assumed response time does not correspond to the diesel generator (DG) start time. For channels assumed to respond within the DG start time, sufficient margin exists in the [10] second start time when compared to the typical channel response time (milliseconds) so as to assure adequate response without a specific measurement test. The instrument response times must be added to the PCIV closure times to obtain the ISOLATION SYSTEM RESPONSE TIME.
ISOLATION SYSTEM RESPONSE TIME acceptance criteria are included in Reference 7. ISOLATION SYSTEM RESPONSE TIME may be verified by actual response time measurements in any series of sequential, overlapping, or total channel measurements.

-----------------------------------REVIEWER’S NOTE-----------------------------------
[The following Bases are applicable for plants adopting NEDO-32291-A and/or Supplement 1.]

However, the sensors for Functions 1.a, 1.b, and 1.c are allowed to be excluded from specific ISOLATION SYSTEM RESPONSE TIME measurement if the conditions of Reference 8 are satisfied. If these conditions are satisfied, sensor response time may be allocated based on either assumed design sensor response time or the manufacturer’s stated design response time. When the requirements of Reference 8 are not satisfied, sensor response time must be measured. Furthermore, measurement of the instrument loops response time for Functions 1.a, 1.b, and 1.c is not required if the conditions of Reference 9 are satisfied. For all other Functions, the measurement of instrument loop response times may be excluded if the conditions of Reference 8 are satisfied.

A Note to the Surveillance states that the radiation detectors may be excluded from ISOLATION SYSTEM RESPONSE TIME testing. This Note is necessary because of the difficulty of generating an appropriate detector input signal and because the principles of detector operation virtually ensure an instantaneous response time. Response times for radiation detector channels shall be measured from detector output or the input of the first electronic component in the channel.

[ISOLATION SYSTEM RESPONSE TIME tests are conducted on an 18 month STAGGERED TEST BASIS. The 18 month Frequency is consistent with the typical industry refueling cycle and is based upon plant operating experience that shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES
1. FSAR, Section [6.3].
2. FSAR, Chapter [15].
4. FSAR, Section [4.2.3.4.3].
7. FSAR, Section [7.3].
B 3.3 INSTRUMENTATION

B 3.3.6.2 Secondary Containment Isolation Instrumentation

BASES

BACKGROUND
The secondary containment isolation instrumentation automatically initiates closure of appropriate secondary containment isolation valves (SCIVs) and starts the Standby Gas Treatment (SGT) System. The function of these systems, in combination with other accident mitigation systems, is to limit fission product release during and following postulated Design Basis Accidents (DBAs) (Ref. 1). Secondary containment isolation and establishment of vacuum with the SGT System within the assumed time limits ensures that fission products that leak from primary containment following a DBA, or are released outside primary containment, or are released during certain operations when primary containment is not required to be OPERABLE are maintained within applicable limits.

The isolation instrumentation includes the sensors, relays, and switches that are necessary to cause initiation of secondary containment isolation. Most channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a secondary containment isolation signal to the isolation logic. Functional diversity is provided by monitoring a wide range of independent parameters. The input parameters to the isolation logic are (1) reactor vessel water level, (2) drywell pressure, (3) reactor building exhaust, and (4) refueling floor exhaust high radiation. Redundant sensor input signals from each parameter are provided for initiation of isolation. In addition, manual initiation of the logic is provided.

The outputs of the logic channels in a trip system are arranged into two one-out-of-two trip system logics. One trip system initiates isolation of one automatic isolation valve (damper) and starts one SGT subsystem while the other trip system initiates isolation of the other automatic isolation valve in the penetration and starts the other SGT subsystem. Each logic closes one of the two valves on each penetration and starts one SGT subsystem, so that operation of either logic isolates the secondary containment and provides for the necessary filtration of fission products.

APPLICABLE SAFETY

The isolation signals generated by the secondary containment isolation instrumentation are implicitly assumed in the safety analyses of References 1 and 2 to initiate closure of valves and start the SGT System to limit offsite doses.
Refer to LCO 3.6.4.2, "Secondary Containment Isolation Valves (SCIVs)," and LCO 3.6.4.3, "Standby Gas Treatment (SGT) System," Applicable Safety Analyses Bases for more detail of the safety analyses.

The secondary containment isolation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). Certain instrumentation Functions are retained for other reasons and are described below in the individual Functions discussion.

The OPERABILITY of the secondary containment isolation instrumentation is dependent on the OPERABILITY of the individual instrumentation channel Functions. Each Function must have the required number of OPERABLE channels with their setpoints set within the specified Allowable Values, as shown in Table 3.3.6.2-1. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. Each channel must also respond within its assumed response time, where appropriate.

Allowable Values are specified for each Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable.

Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

In general, the individual Functions are required to be OPERABLE in the MODES or other specified conditions when SCIVs and the SGT System are required.
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

1. Reactor Vessel Water Level - Low Low, Level 2

Low reactor pressure vessel (RPV) water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. An isolation of the secondary containment and actuation of the SGT System are initiated in order to minimize the potential of an offsite dose release. The Reactor Vessel Water Level - Low Low, Level 2 Function is one of the Functions assumed to be OPERABLE and capable of providing isolation and initiation signals. The isolation and initiation systems on Reactor Vessel Water Level - Low Low, Level 2 support actions to ensure that any offsite releases are within the limits calculated in the safety analysis.

Reactor Vessel Water Level - Low Low, Level 2 signals are initiated from level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level - Low Low, Level 2 Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Reactor Vessel Water Level - Low Low, Level 2 Allowable Value was chosen to be the same at the High Pressure Coolant Injection/Reactor Core Isolation Cooling (HPCI/RCIC) Reactor Vessel Water Level - Low Low, Level 2 Allowable Value (LCO 3.3.5.1 and LCO 3.3.5.3), since this could indicate that the capability to cool the fuel is being threatened.

The Reactor Vessel Water Level - Low Low, Level 2 Function is required to be OPERABLE in MODES 1, 2, and 3 where considerable energy exists in the Reactor Coolant System (RCS); thus, there is a probability of pipe breaks resulting in significant releases of radioactive steam and gas. In MODES 4 and 5, the probability and consequences of these events are low due to the RCS pressure and temperature limitations of these MODES; thus, this Function is not required.
2. Drywell Pressure - High

High drywell pressure can indicate a break in the reactor coolant pressure boundary (RCPB). An isolation of the secondary containment and actuation of the SGT System are initiated in order to minimize the potential of an offsite dose release. The isolation on high drywell pressure supports actions to ensure that any offsite releases are within the limits calculated in the safety analysis. However, the Drywell Pressure - High Function associated with isolation is not assumed in any FSAR accident or transient analyses. It is retained for the overall redundancy and diversity of the secondary containment isolation instrumentation as required by the NRC approved licensing basis.

High drywell pressure signals are initiated from pressure transmitters that sense the pressure in the drywell. Four channels of Drywell Pressure - High Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude performance of the isolation function.

The Allowable Value was chosen to be the same as the ECCS Drywell Pressure - High Function Allowable Value (LCO 3.3.5.1) since this is indicative of a loss of coolant accident (LOCA).

The Drywell Pressure - High Function is required to be OPERABLE in MODES 1, 2, and 3 where considerable energy exists in the RCS; thus, there is a probability of pipe breaks resulting in significant releases of radioactive steam and gas. This Function is not required in MODES 4 and 5 because the probability and consequences of these events are low due to the RCS pressure and temperature limitations of these MODES.

3. 4. Reactor Building and Refueling Floor Exhaust Radiation - High

High secondary containment exhaust radiation is an indication of possible gross failure of the fuel cladding. The release may have originated from the primary containment due to a break in the RCPB or the refueling floor due to a fuel handling accident. When Exhaust Radiation - High is detected, secondary containment isolation and actuation of the SGT System are initiated to limit the release of fission products as assumed in the FSAR safety analyses (Ref. 4).

The Exhaust Radiation - High signals are initiated from radiation detectors that are located on the ventilation exhaust piping coming from the reactor building and the refueling floor zones, respectively. The signal from each detector is input to an individual monitor whose trip outputs are assigned to an isolation channel. Four channels of Reactor Building Exhaust...
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Radiation - High Function and four channels of Refueling Floor Exhaust Radiation - High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Values are chosen to promptly detect gross failure of the fuel cladding.

The Reactor Building and Refueling Floor Exhaust Radiation - High Functions are required to be OPERABLE in MODES 1, 2, and 3 where considerable energy exists; thus, there is a probability of pipe breaks resulting in significant releases of radioactive steam and gas. In MODES 4 and 5, the probability and consequences of these events are low due to the RCS pressure and temperature limitations of these MODES; thus, these Functions are not required. In addition, the Functions are also required to be OPERABLE during movement of [recently] irradiated fuel assemblies in the secondary containment, because the capability of detecting radiation releases due to fuel failures (due to fuel uncovery or dropped fuel assemblies) must be provided to ensure that offsite dose limits are not exceeded. [Due to radioactive decay, this Function is only required to isolate secondary containment during fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [x] days).]

5. Manual Initiation

The Manual Initiation push button channels introduce signals into the secondary containment isolation logic that are redundant to the automatic protective instrumentation channels and provide manual isolation capability. There is no specific FSAR safety analysis that takes credit for this Function. It is retained for the overall redundancy and diversity of the secondary containment isolation instrumentation as required by the NRC approved licensing basis.

There are two push buttons for the logic, one manual initiation push button per trip system. There is no Allowable Value for this Function, since the channels are mechanically actuated based solely on the position of the push buttons.

Two channels of Manual Initiation Function are available and are required to be OPERABLE in MODES 1, 2, and 3, and during movement of [recently] irradiated fuel assemblies in the secondary containment. These are the MODES and other specified conditions in which the Secondary Containment Isolation automatic Functions are required to be OPERABLE.
A Note has been provided to modify the ACTIONS related to secondary containment isolation instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable secondary containment isolation instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable secondary containment isolation instrumentation channel. When the Required Channels in Table 3.3.6.2-1 are specified (e.g., on a per steam line, per loop, etc., basis) then the Condition may be entered separately for each steam line, loop, as appropriate.

A.1

Because of the diversity of sensors available to provide isolation signals and the redundancy of the isolation design, an allowable out of service time of 12 hours for Function 2, and 24 hours for Functions other than Function 2, has been shown to be acceptable (Refs. 5 and 6) to permit restoration of any inoperable channel to OPERABLE status. This out of service time is only acceptable provided the associated Function is still maintaining isolation capability (refer to Required Action B.1 Bases). If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action A.1. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an isolation), Condition C must be entered and its Required Actions taken.
BASES

ACTIONS (continued)

B.1

Required Action B.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in a complete loss of automatic isolation capability for the associated penetration flow path(s) or a complete loss of automatic initiation capability for the SGT System. A Function is considered to be maintaining secondary containment isolation capability when sufficient channels are OPERABLE or in trip, such that one trip system will generate a trip signal from the given Function on a valid signal. This ensures that one of the two SCIVs in the associated penetration flow path and one SGT subsystem can be initiated on an isolation signal from the given Function. For the Functions with two one-out-of-two logic trip systems (Functions 1, 2, 3, and 4), this would require one trip system to have one channel OPERABLE or in trip. The Condition does not include the Manual Initiation Function (Function 5), since it is not assumed in any accident or transient analysis. Thus, a total loss of manual initiation capability for 24 hours (as allowed by Required Action A.1) is allowed.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

C.1.1, C.1.2, C.2.1, and C.2.2

If any Required Action and associated Completion Time of Condition A or B are not met, the ability to isolate the secondary containment and start the SGT System cannot be ensured. Therefore, further actions must be performed to ensure the ability to maintain the secondary containment function. Isolating the associated zone (closing the ventilation supply and exhaust automatic isolation dampers) and starting the associated SGT subsystem (Required Actions C.1.1 and C.2.1) performs the intended function of the instrumentation and allows operation to continue.

Alternately, declaring the associated SCIVs or SGT subsystem(s) inoperable (Required Actions C.1.2 and C.2.2) is also acceptable since the Required Actions of the respective LCOs (LCO 3.6.4.2 and LCO 3.6.4.3) provide appropriate actions for the inoperable components. One hour is sufficient for plant operations personnel to establish required plant conditions or to declare the associated components inoperable without unnecessarily challenging plant systems.
Bases

Surveillance Requirements

Certain Frequencies are based on approved topical reports. In order for a licensee to use these Frequencies, the licensee must justify the Frequencies as required by the staff SER for the topical report.

As noted at the beginning of the SRs, the SRs for each Secondary Containment Isolation instrumentation Function are located in the SRs column of Table 3.3.6.2-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains secondary containment isolation capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Refs. 5 and 6) assumption of the average time required to perform channel surveillance. That analysis demonstrated the 6 hour testing allowance does not significantly reduce the probability that the SCIVs will isolate the associated penetration flow paths and that the SGT System will initiate when necessary.

Sr 3.3.6.2.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

[The Frequency of 12 hours is based on operating experience that demonstrates channel failure is rare.}
The CHANNEL CHECK supplements less formal, but more frequent, checks of channel status during normal operational use of the displays associated with channels required by the LCO.

SR 3.3.6.2.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency of 92 days is based on the reliability analysis of References 5 and 6.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

==REVIEWER’S NOTE==

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

==

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

==]
SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.6.2.3

Calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.6.2-1. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than accounted for in the appropriate setpoint methodology.

[The Frequency of 92 days is based on the reliability analysis of References 5 and 6.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.6.2.4 and SR 3.3.6.2.5

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.
The Frequencies of SR 3.3.6.2.4 and SR 3.3.6.2.5 are based on the assumption of a 92 day and an 18 month calibration interval, respectively, in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

------------------------------- REVIEWER’S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.6.2.6

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required isolation logic for a specific channel. The system functional testing performed on SCIVs and the SGT System in LCO 3.6.4.2 and LCO 3.6.4.3, respectively, overlaps this Surveillance to provide complete testing of the assumed safety function.

[The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power.

Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

------------------------------- REVIEWER’S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.6.2.7

This SR ensures that the individual channel response times are less than or equal to the maximum value assumed in the accident analysis. Testing is performed only on channels where the assumed response time does not correspond to the diesel generator (DG) start time. For channels assumed to respond within the DG start time, sufficient margin exists in the [10] second start time when compared to the typical channel response time (milliseconds) so as to assure adequate response without a specific measurement test. The instrument response times must be added to the SCIV closure times to obtain the ISOLATION SYSTEM RESPONSE TIME. ISOLATION SYSTEM RESPONSE TIME acceptance criteria are included in Reference 7.

ISOLATION SYSTEM RESPONSE TIME may be verified by actual response time measurements in any series of sequential, overlapping, or total channel measurements.

-----------------------------------REVIEWER’S NOTE-----------------------------------

[The following Bases are applicable for plants adopting NEDO-32291-A.

However, the measurement of instrument loop response times may be excluded if the conditions of Reference 8 are satisfied.]

A Note to the Surveillance states that the radiation detectors may be excluded from ISOLATION SYSTEM RESPONSE TIME testing. This Note is necessary because of the difficulty of generating an appropriate detector input signal and because the principles of detector operation virtually ensure an instantaneous response time. Response time for radiation detector channels shall be measured from detector output or the input of the first electronic component in the channel.

[ISOLATION SYSTEM RESPONSE TIME tests are conducted on an 18 month STAGGERED TEST BASIS. The 18 month Frequency is consistent with the typical industry refueling cycle and is based on plant operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.]
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [6.3].
2. FSAR, Chapter [15].
3. FSAR, Section [15.1.40].
4. FSAR, Sections [15.1.39 and 15.1.41].
7. FSAR, Section [7.3].

B 3.3 INSTRUMENTATION

B 3.3.6.3 Low-Low Set (LLS) Instrumentation

BASES

BACKGROUND

The LLS logic and instrumentation is designed to mitigate the effects of postulated thrust loads on the safety/relief valve (S/RV) discharge lines by preventing subsequent actuations with an elevated water leg in the S/RV discharge line. It also mitigates the effects of postulated pressure loads on the torus shell or suppression pool by preventing multiple actuations in rapid succession of the S/RVs subsequent to their initial actuation.

Upon initiation, the LLS logic will assign preset opening and closing setpoints to four preselected S/RVs. These setpoints are selected such that the LLS S/RVs will stay open longer; thus, releasing more steam (energy) to the suppression pool, and hence more energy (and time) will be required for repressurization and subsequent S/RV openings. The LLS logic increases the time between (or prevents) subsequent actuations to allow the high water leg created from the initial S/RV opening to return to (or fall below) its normal water level; thus, reducing thrust loads from subsequent actuations to within their design limits. In addition, the LLS is designed to limit S/RV subsequent actuations to one valve, so torus loads will also be reduced.

The LLS instrumentation logic is arranged in two divisions with Logic channels A and C in one division and Logic channels B and D in the other division (Ref. 1). Each LLS logic channel (e.g., Logic A channel) controls one LLS valve. The LLS logic channels will not actuate their associated LLS valves at their LLS setpoints until the arming portion of the associated LLS logic is satisfied. Arming occurs when any one of the 11 S/RVs opens as indicated by a signal from one of the redundant pressure switches located on its tailpipe coincident with a high reactor pressure signal. Each division receives tailpipe arming signals from dedicated tailpipe pressure switches on each of the 11 S/RVs, six in Logic C and five in the other LLS logic (e.g., Logic A). Each LLS logic (e.g., Logic A) receives the reactor pressure arming signal from a different reactor pressure transmitter and trip unit. These arming signals seal in until reset. The arming signal from one logic is sent to the other logic within the same division and performs the same function as the tailpipe arming signal (i.e., Logic A will arm if it has received a high reactor pressure signal and Logic C has armed).

After arming, opening of each LLS valve is by a two-out-of-two logic from one reactor pressure transmitter and two trip units set to trip at the required LLS opening setpoint. The LLS valve recloses when reactor pressure has decreased to the reclose setpoint of one of the two trip units used to open the valve (one-out-of-two logic).
This logic arrangement prevents single instrument failures from precluding the LLS S/RV function. The channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a LLS initiation signal to the initiation logic.

The LLS instrumentation and logic function ensures that the containment loads remain within the primary containment design basis (Ref. 2).

The LLS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

The LCO requires OPERABILITY of sufficient LLS instrumentation channels to ensure successfully accomplishing the LLS function assuming any single instrumentation channel failure within the LLS logic. Therefore, the OPERABILITY of the LLS instrumentation is dependent on the OPERABILITY of the instrumentation channel Function specified in Table 3.3.6.3-1. Each Function must have a required number of OPERABLE channels, with their setpoints within the specified Allowable Value. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

Allowable Values are specified for each LLS actuation Function in Table 3.3.6.3-1. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.
The Tailpipe Pressure Switch Allowable Value is based on ensuring that a proper arming signal is sent to the LLS logic. That is, the pressure switch is initiated only when an S/RV has opened.

The Reactor Steam Dome Pressure - High was chosen to be the same as the Reactor Protection System (RPS) Reactor Steam Dome Pressure Allowable Value (LCO 3.3.1.1) because it would be expected that LLS would be needed for pressurization events. Providing LLS after a scram has been initiated would prevent false initiations of LLS at 100% power. The LLS valve open and close Allowable Values are based on the safety analysis performed in Reference 2.

The LLS instrumentation is required to be OPERABLE in MODES 1, 2, and 3 since considerable energy is in the nuclear system and the S/RVs may be needed to provide pressure relief. If the S/RVs are needed, then the LLS function is required to ensure that the primary containment design basis is maintained. In MODES 4 and 5, the reactor pressure is low enough that the overpressure limit cannot be approached by assumed operational transients or accidents. Thus, LLS instrumentation and associated pressure relief is not required.

The failure of any reactor steam dome pressure instrument channel to provide the arming, S/RV opening and closing pressure setpoints for an individual LLS valve does not affect the ability of the other LLS S/RVs to perform their LLS function. A LLS valve is OPERABLE if the associated logic, (e.g., Logic A), has one Function 1 channel, two Function 2 channels, and three Function 3 channels OPERABLE. Therefore, 24 hours is provided to restore the inoperable channel(s) to OPERABLE status (Required Action A.1). [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If the inoperable channel(s) cannot be restored to OPERABLE status within the allowable out of service time, Condition D must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action could result in an
instrumented LLS valve actuation. The 24 hour Completion Time is considered appropriate because of the redundancy in the design (four LLS valves are provided and any one LLS valve can perform the LLS function) and the very low probability of multiple LLS instrumentation channel failures, which render the remaining LLS S/RVs inoperable, occurring together with an event requiring the LLS function during the 24 hour Completion Time. The 24 hour Completion Time is also based on the reliability analysis of Reference 3.

B.1

Although the LLS circuitry is designed so that operation of a single tailpipe pressure switch will result in arming both LLS logics in its associated division, each tailpipe pressure switch provides a direct input to only one LLS logic (e.g., Logic A). Since each LLS logic normally receives at least five S/RV pressure switch inputs (and also receives the other S/RV signals from the other logic in the same division by an arming signal), the LLS logic and instrumentation remains capable of performing its safety function if any S/RV tailpipe pressure switch instrument channel becomes inoperable. Therefore, it is acceptable for plant operation to continue with only one tailpipe pressure switch OPERABLE on each S/RV. However, this is only acceptable provided each LLS valve is OPERABLE. (Refer to Required Action A.1 and D.1 Bases).

Required Action B.1 requires restoration of the tailpipe pressure switches to OPERABLE status prior to entering MODE 2 or 3 from MODE 4 to ensure that all switches are OPERABLE at the beginning of a reactor startup (this is because the switches are not accessible during plant operation). The Required Actions do not allow placing the channel in trip since this action could result in a LLS valve actuation.

C.1

A failure of two pressure switch channels associated with one S/RV tailpipe could result in the loss of the LLS function (i.e., multiple actuations of the S/RV would go undetected by the LLS logic). However, the S/RVs are organized in groups and, during an event, groups of S/RVs initially open (setpoints are at same settings for a total of 11 S/RVs in three groups). Therefore, it would be very unlikely that a single S/RV would be required to arm all the LLS logic. Therefore, it is acceptable to allow 14 days to restore one pressure switch of the associated S/RV to OPERABLE status (Required Action C.1). However, this allowable out of
BASES

ACTIONS (continued)

service time is only acceptable provided each LLS is OPERABLE (Refer to Required Action A.1 and D.1 Bases). If one inoperable tailpipe pressure switch cannot be restored to OPERABLE status within the allowable out of service time, Condition D must be entered and its Required Action taken. The Required Actions do not allow placing the channels in trip since this action could result in a LLS valve actuation.

A Note has been provided in the Condition to modify the Required Actions and Completion Times conventions related to LLS Function 3 channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory measures for separate inoperable Condition entry for each S/RV with inoperable tailpipe pressure switches.

D.1

If any Required Action and associated Completion Time of Conditions A, B, or C are not met, or two or more LLS valves are inoperable due to inoperable channels, the LLS valves may be incapable of performing their intended function. Therefore, the associated LLS valve must be declared inoperable immediately. A LLS valve is OPERABLE if the associated logic (e.g., Logic A) has one Function 1 channel, two Function 2 channels, and three Function 3 channels OPERABLE.

SURVEILLANCE REQUIREMENTS

----------REVIEWER’S NOTE----------

Certain Frequencies are based on approved topical reports. In order for a licensee to use the Frequencies, the licensee must justify the Frequencies as required by the staff SER for the topical report.

As noted at the beginning of the SRs, the SRs for each LLS instrumentation Function are located in the SRs column of Table 3.3.6.3-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains LLS initiation capability. Upon completion of the Surveillance, or
expiration of the 6 hour allowance, the channel must be returned to
OPERABLE status or the applicable Condition entered and Required
Actions taken. This Note is based on the reliability analysis (Ref. 3)
assumption of the average time required to perform channel surveillance.
That analysis demonstrated that the 6 hour testing allowance does not
significantly reduce the probability that the LLS valves will initiate when
necessary.

SR 3.3.6.3.1

Performance of the CHANNEL CHECK ensures that a gross failure of
instrumentation has not occurred. A CHANNEL CHECK is normally a
comparison of the parameter indicated on one channel to a similar
parameter on another channel. It is based on the assumption that
instrument channels monitoring the same parameter should read
approximately the same value. Significant deviations between the
instrument channels could be an indication of excessive instrument drift in
one of the channels or something even more serious. A CHANNEL
CHECK will detect gross channel failure; thus, it is key to verifying the
instrumentation continues to operate properly between each CHANNEL
CALIBRATION.

Agreement criteria are determined by the plant staff based on a
combination of the channel instrument uncertainties, including indication
and readability. If a channel is outside the criteria, it may be an indication
that the instrument has drifted outside its limit.

[The Frequency of 12 hours is based upon operating experience that
demonstrates channel failure is rare.

OR

The Surveillance Frequency is controlled under the Surveillance
Frequency Control Program.

REWIEVER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance
Frequency Control Program should utilize the appropriate Frequency
description, given above, and the appropriate choice of Frequency in the
Surveillance Requirement.

The CHANNEL CHECK supplements less formal, but more frequent,
checks of channels during normal operational use of the displays
associated with channels required by the LCO.
A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The 92 day Frequency is based on the reliability analysis of Reference 3. OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

A portion of the S/RV tailpipe pressure switch instrument channels are located inside the primary containment. The Note for SR 3.3.6.3.3, "Only required to be performed prior to entering MODE 2 during each scheduled outage > 72 hours when entry is made into primary containment," is based on the location of these instruments, ALARA considerations, and compatibility with the Completion Time of the associated Required Action (Required Action B.1).

SR 3.3.6.3.5

The calibration of trip units provides a check of the actual trip setpoints. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value. If the trip setting is discovered to be less conservative than accounted for in the appropriate
setpoint methodology, but is not beyond the Allowable Value, the channel performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than the setting accounted for in the appropriate setpoint methodology.

[The Frequency of every 92 days for SR 3.3.6.3.5 is based on the reliability analysis of Reference 3.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--
SR 3.3.6.3.6

CHANNEL CALIBRATION is a complete check of the instrument loop and sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

[The Frequency of once every 18 months for SR 3.3.6.3.6 is based on the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
SURVEILLANCE REQUIREMENTS (continued)

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.6.3.7

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required actuation logic for a specified channel. The system functional testing performed in LCO 3.4.3, "Safety/Relief Valves (S/RVs)" and LCO 3.6.1.6, "Low-Low Set (LLS) Safety/Relief Valves (S/RVs)," for S/RVs overlaps this test to provide complete testing of the assumed safety function.

[The Frequency of once every 18 months for SR 3.3.6.3.7 is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Figure [].

2. FSAR, Section [5.5.17].

B 3.3 INSTRUMENTATION

B 3.3.7.1 [Main Control Room Environmental Control (MCREC)] System Instrumentation

BASES

BACKGROUND

The [MCREC] System is designed to provide a radiologically controlled environment to ensure the habitability of the control room for the safety of control room operators under all plant conditions. Two independent [MCREC] subsystems are each capable of fulfilling the stated safety function. The instrumentation and controls for the [MCREC] System automatically initiate action to pressurize the main control room (MCR) to minimize the consequences of radioactive material in the control room environment.

In the event of a loss of coolant accident (LOCA) signal (Reactor Vessel Water Level - Low Low Low, Level 1 or Drywell Pressure - High), Main Steam Line Flow - High, Refueling Floor Area Radiation - High, or Control Room Air Inlet Radiation - High signal, the [MCREC] System is automatically started in the pressurization mode. The air is then recirculated through the charcoal filter, and sufficient outside air is drawn in through the normal intake to maintain the MCR slightly pressurized with respect to the turbine building.

The [MCREC] System instrumentation has two trip systems, either of which can initiate both [MCREC] subsystems (Ref. 1). Each trip system receives input from each of the Functions listed above. The Functions are arranged as follows for each trip system. The Reactor Vessel Water Level - Low Low Low, Level 1 and Drywell Pressure - High are each arranged in a one-out-of-two taken twice logic (these signals are the same that start the low pressure Emergency Core Cooling Systems' (ECCS) subsystems). The Main Steam Line Flow - High is arranged in a one-out-of-four taken twice logic (each main steam line has two high flow inputs to the trip system). The Refueling Floor Area Radiation - High and Control Room Air Inlet Radiation - High are each arranged in a one-out-of-one logic. The channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a [MCREC] System initiation signal to the initiation logic.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

The ability of the [MCREC] System to maintain the habitability of the MCR is explicitly assumed for certain accidents as discussed in the FSAR safety analyses (Refs. 2, 3, and 4). [MCREC] System operation ensures that the radiation exposure of control room personnel, through the duration of any one of the postulated accidents, does not exceed the limits set by GDC 19 of 10 CFR 50, Appendix A.
APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The OPERABILITY of the [MCREC] System instrumentation is dependent upon the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.7.1-1. Each Function must have a required number of OPERABLE channels, with their setpoints within the specified Allowable Values, where appropriate. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

Allowable Values are specified for each [MCREC] System Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between successive CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

1. Reactor Vessel Water Level - Low Low Low, Level 1

Low reactor pressure vessel (RPV) water level indicates that the capability of cooling the fuel may be threatened. A low reactor vessel water level could indicate a LOCA and will automatically initiate the [MCREC] System, since this could be a precursor to a potential radiation release and subsequent radiation exposure to control room personnel.
Reactor Vessel Water Level - Low Low Low, Level 1 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level - Low Low Low, Level 1 Function are available (two channels per trip system) and are required to be OPERABLE to ensure that a single instrument failure can preclude [MCREC] System initiation. The Reactor Vessel Water Level - Low Low Low, Level 1 Allowable Value was chosen to be the same as the ECCS Reactor Vessel Water Level - Low Low Low, Level 1 Allowable Value (LCO 3.3.5.1, “ECCS Instrumentation”).

The Reactor Vessel Water Level - Low Low Low, Level 1 Function is required to be OPERABLE in MODES 1, 2, and 3 to ensure that the control room personnel are protected during a LOCA. In MODES 4 and 5, adequate protection is performed by the Control Room Air Inlet Radiation - High Function. Therefore, this Function is not required in other MODES and specified conditions.

2. Drywell Pressure - High

High pressure in the drywell could indicate a break in the reactor coolant pressure boundary. A high drywell pressure signal could indicate a LOCA and will automatically initiate the [MCREC] System, since this could be a precursor to a potential radiation release and subsequent radiation exposure to control room personnel.

Drywell Pressure - High signals are initiated from four pressure transmitters that sense drywell pressure. Four channels of Drywell Pressure - High Function are available (two channels per trip system) and are required to be OPERABLE to ensure that no single instrument failure can preclude [MCREC] System initiation. The Drywell Pressure - High Allowable Value was chosen to be the same as the ECCS Drywell Pressure - High Allowable Value (LCO 3.3.5.1).

The Drywell Pressure - High Function is required to be OPERABLE in MODES 1, 2, and 3 to ensure that control room personnel are protected in the event of a LOCA. In MODES 4 and 5, the Drywell Pressure - High Function is not required since there is insufficient energy in the reactor to pressurize the drywell to the Drywell Pressure - High setpoint.
3. Main Steam Line Flow - High

High main steam line (MSL) flow could indicate a break in the MSL and will automatically initiate the [MCREC] System, since this could be a precursor to a potential radiation release and subsequent radiation exposure to control room personnel.

The Main Steam Line Flow - High signals are initiated from 16 transmitters that are connected to the four MSLs. Four channels of Main Steam Line Flow - High Function for each MSL (two channels per trip system) are available and required to be OPERABLE so that no single instrument failure will preclude [MCREC] System initiation.

The Allowable Value was chosen to be the same as the Primary Containment Isolation Main Steam Line Flow - High Allowable Value (LCO 3.3.6.1, "Primary Containment Isolation Instrumentation").

The Main Steam Line Flow - High Function is required to be OPERABLE in MODES 1, 2, and 3 to ensure that control room personnel are protected during a main steam line break (MSLB) accident. In MODES 4 and 5, the reactor is depressurized; thus, MSLB protection is not required.

4. Refueling Floor Area Radiation - High

High radiation in the refueling floor area could be the result of a fuel handling accident. A refueling floor high radiation signal will automatically initiate the [MCREC] System, since this radiation release could result in radiation exposure to control room personnel.

The refueling floor area radiation equipment consists of two independent monitors and channels located in the refueling floor area. Two channels of Refueling Floor Area Radiation - High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude [MCREC] System initiation. The Allowable Value was selected to ensure that the Function will promptly detect high activity that could threaten exposure to control room personnel.

The Refueling Floor Area Radiation - High Function is required to be OPERABLE in MODES 1, 2, and 3 and during movement of [recently] irradiated fuel assemblies in the secondary containment, to ensure that control room personnel are protected during a LOCA or fuel handling event. During MODES 4 and 5, the probability of a LOCA is low; thus, the Function is not required. [Also due to radioactive decay, this Function is only required to initiate the [MCREC] System during fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [x] days).]
5. Control Room Air Inlet Radiation - High

The control room air inlet radiation monitors measure radiation levels exterior to the inlet ducting of the MCR. A high radiation level may pose a threat to MCR personnel; thus, automatically initiating the [MCREC] System.

The Control Room Air Inlet Radiation - High Function consists of two independent monitors. Two channels of Control Room Air Inlet Radiation - High are available and are required to be OPERABLE to ensure that no single instrument failure can preclude [MCREC] System initiation. The Allowable Value was selected to ensure protection of the control room personnel.

The Control Room Air Inlet Radiation - High Function is required to be OPERABLE in MODES 1, 2, and 3 and during movement of [recently] irradiated fuel assemblies in the secondary containment, to ensure that control room personnel are protected during a LOCA or fuel handling event. During MODES 4 and 5, the probability of a LOCA is low; thus, the Function is not required. [Also due to radioactive decay, this Function is only required to initiate the [MCREC] System during fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [x] days).]

ACTIONS

REVIEWER’S NOTE

Certain LCO Completion Times are based on approved topical reports. In order for a licensee to use the times, the licensee must justify the Completion Times as required by the staff Safety Evaluation Report (SER) for the topical report.

A Note has been provided to modify the ACTIONS related to [MCREC] System instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable [MCREC] System instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable [MCREC] System instrumentation channel. When the Required Channels in Table 3.3.7.1-1 are specified (e.g., on a per steam line, etc., basis) then the Condition may be entered separately for each steam line, as appropriate.
BASES

ACTIONS (continued)

A.1

Required Action A.1 directs entry into the appropriate Condition referenced in Table 3.3.7.1-1. The applicable Condition specified in the Table is Function dependent. Each time a channel is discovered inoperable, Condition A is entered for that channel and provides for transfer to the appropriate subsequent Condition.

B.1 and B.2

Because of the diversity of sensors available to provide initiation signals and the redundancy of the [MCREC] System design, an allowable out of service time of 24 hours has been shown to be acceptable (Refs. 5 and 6) to permit restoration of any inoperable channel to OPERABLE status. However, this out of service time is only acceptable provided the associated Function is still maintaining [MCREC] System initiation capability. A Function is considered to be maintaining [MCREC] System initiation capability when sufficient channels are OPERABLE or in trip such that one trip system will generate an initiation signal from the given Function on a valid signal. For Functions 1 and 2, this would require one trip system to have one channel per logic string OPERABLE or in trip (a logic string is the one-out-of-two portion of a one-out-of-two taken twice logic arrangement). For Function 3, this would require one trip system to have one channel per logic string, associated with each MSL, OPERABLE or in trip. In this situation (loss of [MCREC] System initiation capability), the 24 hour allowance of Required Action B.2 is not appropriate. If the Function is not maintaining [MCREC] System initiation capability, the [MCREC] System must be declared inoperable within 1 hour of discovery of the loss of [MCREC] System initiation capability in both trip systems.

The 1 hour Completion Time (B.1) is acceptable because it minimizes risk while allowing time for restoring or tripping of channels.

If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action B.2. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an initiation), Condition D must be entered and its Required Action taken.
C.1 and C.2

Because of the diversity of sensors available to provide initiation signals and the redundancy of the [MCREC] System design, an allowable out of service time of 6 hours is provided to permit restoration of any inoperable channel to OPERABLE status. However, this out of service time is only acceptable provided the associated Function is still maintaining [MCREC] System initiation capability. A Function is considered to be maintaining [MCREC] System initiation capability when sufficient channels are OPERABLE or in trip such that one trip system will generate an initiation signal from the given Function on a valid signal. For Functions 4 and 5, this would require one trip system to have one channel OPERABLE or in trip. In this situation (loss of [MCREC] System initiation capability), the 6 hour allowance of Required Action C.2 is not appropriate. If the Function is not maintaining [MCREC] System initiation capability, the [MCREC] System must be declared inoperable within 1 hour of discovery of the loss of [MCREC] System initiation capability in both trip systems.

The 1 hour Completion Time (C.1) is acceptable because it minimizes risk while allowing time for restoring or tripping of channels.

If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action C.2. Placing the inoperable channel in trip performs the intended function of the channel (starts both [MCREC] subsystems in the pressurization mode). Alternately, if it is not desired to place the channel in trip (e.g., as in the case where it is not desired to start the subsystem), Condition D must be entered and its Required Action taken.

The 6 hour Completion Time is based on the consideration that this Function provides the primary signal to start the [MCREC] System; thus, ensuring that the design basis of the [MCREC] System is met.

D.1, D.2, and D.3

With any Required Action and associated Completion Time not met, the associated [MCREC] subsystem(s) must be placed in the pressurization mode of operation per Required Action D.1 to ensure that control room personnel will be protected in the event of a Design Basis Accident. The method used to place the [MCREC] subsystem(s) in operation must provide for automatically re-initiating the subsystem(s) upon restoration of power following a loss of power to the [MCREC] subsystem(s). As noted, if the toxic gas protection instrumentation is concurrently inoperable, then the [MCREC] subsystem(s) should be placed in the toxic gas mode.
instead of the pressurization mode. This provides proper protection of the control room personnel if both toxic gas instrumentation (not required by Technical Specifications) and radiation instrumentation are concurrently inoperable. Alternately, if a Function 3 channel is inoperable and untripped, the associated MSL may be isolated, since isolating the MSL performs the intended function of the [MCREC] System instrumentation. Alternately, if it is not desired to start the subsystem(s) or isolate the MSL, the [MCREC] subsystem(s) associated with inoperable, untripped channels must be declared inoperable within 1 hour.

The 1 hour Completion Time is intended to allow the operator time to place the [MCREC] subsystem(s) in operation or to isolate the associated MSLs if applicable. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels, for placing the associated [MCREC] subsystem(s) in operation, for isolating the associated MSLs, or for entering the applicable Conditions and Required Actions for the inoperable [MCREC] subsystem(s).

As noted at the beginning of the SRs, the SRs for each [MCREC] System instrumentation Function are located in the SRs column of Table 3.3.7.1-1. The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains [MCREC] System initiation capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Refs. 5 and 6) assumption of the average time required to perform channel surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the [MCREC] System will initiate when necessary.
SR 3.3.7.1.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

[The Frequency of 12 hours is based upon operating experience that demonstrates channel failure is rare.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The CHANNEL CHECK supplements less formal, but more frequent, checks of channel status during normal operational use of the displays associated with channels required by the LCO.
SR 3.3.7.1.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency of 92 days is based on the reliability analyses of References 5 and 6.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.7.1.3

The calibration of trip units provides a check of the actual trip setpoints. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.7.1-1. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, the channel...
SURVEILLANCE REQUIREMENTS (continued)

performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than the setting accounted for in the appropriate setpoint methodology.

[The Frequency of 92 days is based on the reliability analyses of References 5 and 6.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER'S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------]

SR 3.3.7.1.4

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

[The Frequency is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.3.7.1.5

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required initiation logic for a specific channel. The system functional testing performed in LCO 3.7.4, "Main Control Room Environmental Control [MCREC] System," overlaps this Surveillance to provide complete testing of the assumed safety function.

The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Figure [].
2. FSAR, Section [6.4.1].
3. FSAR, Section [6.4.1.7.2].
REFERENCES (continued)

4. FSAR, Table [15.1.28].

B 3.3 INSTRUMENTATION

B 3.3.8.1 Loss of Power (LOP) Instrumentation

BASES

BACKGROUND
Successful operation of the required safety functions of the Emergency Core Cooling Systems (ECCS) is dependent upon the availability of adequate power sources for energizing the various components such as pump motors, motor operated valves, and the associated control components. The LOP instrumentation monitors the 4.16 kV emergency buses. Offsite power is the preferred source of power for the 4.16 kV emergency buses. If the monitors determine that insufficient power is available, the buses are disconnected from the offsite power sources and connected to the onsite diesel generator (DG) power sources.

Each 4.16 kV emergency bus has its own independent LOP instrumentation and associated trip logic. The voltage for each bus is monitored at two levels, which can be considered as two different undervoltage Functions: Loss of Voltage and 4.16 kV Emergency Bus Undervoltage Degraded Voltage. Each Function causes various bus transfers and disconnects. Each Function is monitored by two undervoltage relays for each emergency bus, whose outputs are arranged in a two-out-of-two logic configuration (Ref. 1). The channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a LOP trip signal to the trip logic.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY
The LOP instrumentation is required for Engineered Safety Features to function in any accident with a loss of offsite power. The required channels of LOP instrumentation ensure that the ECCS and other assumed systems powered from the DGs, provide plant protection in the event of any of the Reference 2, 3, and 4 analyzed accidents in which a loss of offsite power is assumed. The initiation of the DGs on loss of offsite power, and subsequent initiation of the ECCS, ensure that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Accident analyses credit the loading of the DG based on the loss of offsite power during a loss of coolant accident. The diesel starting and loading times have been included in the delay time associated with each safety system component requiring DG supplied power following a loss of offsite power.

The LOP instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
The OPERABILITY of the LOP instrumentation is dependent upon the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.8.1-1. Each Function must have a required number of OPERABLE channels per 4.16 kV emergency bus, with their setpoints within the specified Allowable Values. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

The Allowable Values are specified for each Function in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within the Allowable Value, is acceptable. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., degraded voltage), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state.

The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

1. 4.16 kV Emergency Bus Undervoltage (Loss of Voltage)

Loss of voltage on a 4.16 kV emergency bus indicates that offsite power may be completely lost to the respective emergency bus and is unable to supply sufficient power for proper operation of the applicable equipment. Therefore, the power supply to the bus is transferred from offsite power to DG power when the voltage on the bus drops below the Loss of Voltage Function Allowable Values (loss of voltage with a short time delay). This ensures that adequate power will be available to the required equipment.
The Bus Undervoltage Allowable Values are low enough to prevent inadvertent power supply transfer, but high enough to ensure that power is available to the required equipment. The Time Delay Allowable Values are long enough to provide time for the offsite power supply to recover to normal voltages, but short enough to ensure that power is available to the required equipment.

Two channels of 4.16 kV Emergency Bus Undervoltage (Loss of Voltage) Function per associated emergency bus are only required to be OPERABLE when the associated DG is required to be OPERABLE to ensure that no single instrument failure can preclude the DG function. (Two channels input to each of the three DGs.) Refer to LCO 3.8.1, "AC Sources - Operating" for Applicability Bases for the DGs.

2. 4.16 kV Emergency Bus Undervoltage (Degraded Voltage)

A reduced voltage condition on a 4.16 kV emergency bus indicates that, while offsite power may not be completely lost to the respective emergency bus, available power may be insufficient for starting large ECCS motors without risking damage to the motors that could disable the ECCS function. Therefore, power supply to the bus is transferred from offsite power to onsite DG power when the voltage on the bus drops below the Degraded Voltage Function Allowable Values (degraded voltage with a time delay). This ensures that adequate power will be available to the required equipment.

The Bus Undervoltage Allowable Values are low enough to prevent inadvertent power supply transfer, but high enough to ensure that sufficient power is available to the required equipment. The Time Delay Allowable Values are long enough to provide time for the offsite power supply to recover to normal voltages, but short enough to ensure that sufficient power is available to the required equipment.

Two channels of 4.16 kV Emergency Bus Undervoltage (Degraded Voltage) Function per associated bus are only required to be OPERABLE when the associated DG is required to be OPERABLE to ensure that no single instrument failure can preclude the DG function. (Two channels input to each of the three emergency buses and DGs.) Refer to LCO 3.8.1 for Applicability Bases for the DGs.
A Note has been provided to modify the ACTIONS related to LOP instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LOP instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable LOP instrumentation channel.

A.1

With one or more channels of a Function inoperable, the Function is not capable of performing the intended function. Therefore, only 1 hour is allowed to restore the inoperable channel to OPERABLE status. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action A.1. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure (within the LOP instrumentation), and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the channel in trip would result in a DG initiation), Condition B must be entered and its Required Action taken.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

B.1

If any Required Action and associated Completion Time are not met, the associated Function is not capable of performing the intended function. Therefore, the associated DG(s) is declared inoperable immediately. This requires entry into applicable Conditions and Required Actions of LCO 3.8.1 which provide appropriate actions for the inoperable DG(s).
As noted at the beginning of the SRs, the SRs for each LOP instrumentation Function are located in the SRs column of Table 3.3.8.1-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 2 hours provided the associated Function maintains DG initiation capability. Upon completion of the Surveillance, or expiration of the 2 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken.

SR 3.3.8.1.1

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

[The Frequency of 12 hours is based upon operating experience that demonstrates channel failure is rare. OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--}
SURVEILLANCE REQUIREMENTS (continued)

The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with channels required by the LCO.

SR 3.3.8.1.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency of 31 days is based on operating experience with regard to channel OPERABILITY and drift, which demonstrates that failure of more than one channel of a given Function in any 31 day interval is a rare event.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
---]

SR 3.3.8.1.3

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with
SURVEILLANCE REQUIREMENTS (continued)

those established by the setpoint methodology. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

[The Frequency is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--]

SR 3.3.8.1.4

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required actuation logic for a specific channel. The system functional testing performed in LCO 3.8.1 overlaps this Surveillance to provide complete testing of the assumed safety functions.

[The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Figure [].
2. FSAR, Section [5.2].
3. FSAR, Section [6.3].
4. FSAR, Chapter [15].
RPS Electric Power Monitoring System is provided to isolate the RPS bus from the motor generator (MG) set or an alternate power supply in the event of overvoltage, undervoltage, or underfrequency. This system protects the loads connected to the RPS bus against unacceptable voltage and frequency conditions (Ref. 1) and forms an important part of the primary success path of the essential safety circuits. Some of the essential equipment powered from the RPS buses includes the RPS logic, scram solenoids, and various valve isolation logic.

RPS electric power monitoring assembly will detect any abnormal high or low voltage or low frequency condition in the outputs of the two MG sets or the alternate power supply and will de-energize its respective RPS bus, thereby causing all safety functions normally powered by this bus to de-energize.

In the event of failure of an RPS Electric Power Monitoring System (e.g., both in series electric power monitoring assemblies), the RPS loads may experience significant effects from the unregulated power supply. Deviation from the nominal conditions can potentially cause damage to the scram solenoids and other Class 1E devices.

In the event of a low voltage condition for an extended period of time, the scram solenoids can chatter and potentially lose their pneumatic control capability, resulting in a loss of primary scram action.

In the event of an overvoltage condition, the RPS logic relays and scram solenoids, as well as the main steam isolation valve (MSIV) solenoids, may experience a voltage higher than their design voltage. If the overvoltage condition persists for an extended time period, it may cause equipment degradation and the loss of plant safety function.

Two redundant Class 1E circuit breakers are connected in series between each RPS bus and its MG set, and between each RPS bus and its alternate power supply. Each of these circuit breakers has an associated independent set of Class 1E overvoltage, undervoltage, and underfrequency sensing logic. Together, a circuit breaker and its sensing logic constitute an electric power monitoring assembly. If the output of the MG set exceeds predetermined limits of overvoltage, undervoltage, or underfrequency, a trip coil driven by this logic circuitry opens the circuit breaker, which removes the associated power supply from service.
The RPS electric power monitoring is necessary to meet the assumptions of the safety analyses by ensuring that the equipment powered from the RPS buses can perform its intended function. RPS electric power monitoring provides protection to the RPS and other systems that receive power from the RPS buses, by acting to disconnect the RPS from the power supply under specified conditions that could damage the RPS bus powered equipment.

RPS electric power monitoring satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

The OPERABILITY of each RPS electric power monitoring assembly is dependent on the OPERABILITY of the overvoltage, undervoltage, and underfrequency logic, as well as the OPERABILITY of the associated circuit breaker. Two electric power monitoring assemblies are required to be OPERABLE for each inservice power supply. This provides redundant protection against any abnormal voltage or frequency conditions to ensure that no single RPS electric power monitoring assembly failure can preclude the function of RPS bus powered components. Each inservice electric power monitoring assembly's trip logic setpoints are required to be within the specified Allowable Value. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

Allowable Values are specified for each RPS electric power monitoring assembly trip logic (refer to SR 3.3.8.2.2). Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., overvoltage), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined, accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.
BASES

LCO (continued)

The Allowable Values for the instrument settings are based on the RPS providing \(\geq 57 \) Hz, 120 V \(\pm 10\% \) (to all equipment), and 115 V \(\pm 10 \) V (to scram and MSIV solenoids). The most limiting voltage requirement and associated line losses determine the settings of the electric power monitoring instrument channels. The settings are calculated based on the loads on the buses and RPS MG set or alternate power supply being 120 VAC and 60 Hz.

APPLICABILITY

The operation of the RPS electric power monitoring assemblies is essential to disconnect the RPS bus powered components from the MG set or alternate power supply during abnormal voltage or frequency conditions. Since the degradation of a nonclass 1E source supplying power to the RPS bus can occur as a result of any random single failure, the OPERABILITY of the RPS electric power monitoring assemblies is required when the RPS bus powered components are required to be OPERABLE. This results in the RPS Electric Power Monitoring System OPERABILITY being required in MODES 1, 2, and 3; and in MODES 4 and 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies or with both residual heat removal (RHR) shutdown cooling isolation valves open.

ACTIONS

A.1

If one RPS electric power monitoring assembly for an inservice power supply (MG set or alternate) is inoperable, or one RPS electric power monitoring assembly on each inservice power supply is inoperable, the OPERABLE assembly will still provide protection to the RPS bus powered components under degraded voltage or frequency conditions. However, the reliability and redundancy of the RPS Electric Power Monitoring System is reduced, and only a limited time (72 hours) is allowed to restore the inoperable assembly to OPERABLE status. If the inoperable assembly cannot be restored to OPERABLE status, the associated power supply(s) must be removed from service (Required Action A.1). This places the RPS bus in a safe condition. An alternate power supply with OPERABLE powering monitoring assemblies may then be used to power the RPS bus.

The 72 hour Completion Time takes into account the remaining OPERABLE electric power monitoring assembly and the low probability of an event requiring RPS electric power monitoring protection occurring during this period. It allows time for plant operations personnel to take corrective actions or to place the plant in the required condition in an orderly manner and without challenging plant systems.
BASES

ACTIONS (continued)

Alternately, if it is not desired to remove the power supply from service (e.g., as in the case where removing the power supply(s) from service would result in a scram or isolation), Condition C or D, as applicable, must be entered and its Required Actions taken.

B.1

If both power monitoring assemblies for an inservice power supply (MG set or alternate) are inoperable or both power monitoring assemblies in each inservice power supply are inoperable, the system protective function is lost. In this condition, 1 hour is allowed to restore one assembly to OPERABLE status for each inservice power supply. If one inoperable assembly for each inservice power supply cannot be restored to OPERABLE status, the associated power supply(s) must be removed from service within 1 hour (Required Action B.1). An alternate power supply with OPERABLE assemblies may then be used to power one RPS bus. The 1 hour Completion Time is sufficient for the plant operations personnel to take corrective actions and is acceptable because it minimizes risk while allowing time for restoration or removal from service of the electric power monitoring assemblies.

Alternately, if it is not desired to remove the power supply(s) from service (e.g., as in the case where removing the power supply(s) from service would result in a scram or isolation), Condition C or D, as applicable, must be entered and its Required Actions taken.

C.1

-----------------------------------REVIEWER'S NOTE----------------------------------
Adoption of a MODE 3 end state requires the licensee to make the following commitments:

--
If any Required Action and associated Completion Time of Condition A or B are not met in MODE 1, 2, or 3, the plant must be brought to a MODE in which the overall plant risk is minimized. The plant shutdown is accomplished by placing the plant in MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 2) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action C.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

D.1, D.2.1, and D.2.2

If any Required Action and associated Completion Time of Condition A or B are not met in MODE 4 or 5, or with any control rod withdrawn from a core cell containing one or more fuel assemblies or with both RHR shutdown cooling valves open, the operator must immediately initiate action to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Required Action D.1 results in the least reactive condition for the reactor core and ensures that the safety function of the RPS (e.g., scram of control rods) is not required.

In addition, action must be immediately initiated to either restore one electric power monitoring assembly to OPERABLE status for the inservice power source supplying the required instrumentation powered from the RPS bus (Required Action D.2.1) or to isolate the RHR Shutdown Cooling
BASES

ACTIONS (continued)

System (Required Action D.2.2). Required Action D.2.1 is provided because the RHR Shutdown Cooling System may be needed to provide core cooling. All actions must continue until the applicable Required Actions are completed.

SURVEILLANCE REQUIREMENTS

SR 3.3.8.2.1

A CHANNEL FUNCTIONAL TEST is performed on each overvoltage, undervoltage, and underfrequency channel to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

As noted in the Surveillance, the CHANNEL FUNCTIONAL TEST is only required to be performed while the plant is in a condition in which the loss of the RPS bus will not jeopardize steady state power operation (the design of the system is such that the power source must be removed from service to conduct the Surveillance). The 24 hours is intended to indicate an outage of sufficient duration to allow for scheduling and proper performance of the Surveillance.

The Note in the Surveillance is based on guidance provided in Generic Letter 91-09 (Ref. 3).

[The 184 day Frequency is based on Reference 3.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

}
SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.8.2.2

CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies that the channel responds to the measured parameter within the necessary range and accuracy. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

[The Frequency is based on the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--]

SR 3.3.8.2.3

Performance of a system functional test demonstrates that, with a required system actuation (simulated or actual) signal, the logic of the system will automatically trip open the associated power monitoring assembly. Only one signal per power monitoring assembly is required to be tested. This Surveillance overlaps with the CHANNEL CALIBRATION to provide complete testing of the safety function. The system functional test of the Class 1E circuit breakers is included as part of this test to provide complete testing of the safety function. If the breakers are incapable of operating, the associated electric power monitoring assembly would be inoperable.
SURVEILLANCE REQUIREMENTS (continued)

[The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

---]
The Reactor Coolant Recirculation System is designed to provide a forced coolant flow through the core to remove heat from the fuel. The forced coolant flow removes more heat from the fuel than would be possible with just natural circulation. The forced flow, therefore, allows operation at significantly higher power than would otherwise be possible. The recirculation system also controls reactivity over a wide span of reactor power by varying the recirculation flow rate to control the void content of the moderator. The Reactor Coolant Recirculation System consists of two recirculation pump loops external to the reactor vessel. These loops provide the piping path for the driving flow of water to the reactor vessel jet pumps. Each external loop contains one variable speed motor driven recirculation pump, a motor generator (MG) set to control pump speed and associated piping, jet pumps, valves, and instrumentation. The recirculation loops are part of the reactor coolant pressure boundary and are located inside the drywell structure. The jet pumps are reactor vessel internals.

The recirculated coolant consists of saturated water from the steam separators and dryers that has been subcooled by incoming feedwater. This water passes down the annulus between the reactor vessel wall and the core shroud. A portion of the coolant flows from the vessel, through the two external recirculation loops, and becomes the driving flow for the jet pumps. Each of the two external recirculation loops discharges high pressure flow into an external manifold, from which individual recirculation inlet lines are routed to the jet pump risers within the reactor vessel. The remaining portion of the coolant mixture in the annulus becomes the suction flow for the jet pumps. This flow enters the jet pump at suction inlets and is accelerated by the driving flow. The drive flow and suction flow are mixed in the jet pump throat section. The total flow then passes through the jet pump diffuser section into the area below the core (lower plenum), gaining sufficient head in the process to drive the required flow upward through the core. The subcooled water enters the bottom of the fuel channels and contacts the fuel cladding, where heat is transferred to the coolant. As it rises, the coolant begins to boil, creating steam voids within the fuel channel that continue until the coolant exits the core. Because of reduced moderation, the steam voiding introduces negative reactivity that must be compensated for to maintain or to increase reactor power. The recirculation flow control allows operators to increase recirculation flow and sweep some of the voids from the fuel channel, overcoming the negative reactivity void effect. Thus, the reason for having variable recirculation flow is to compensate for reactivity effects of boiling over a wide range of power generation (i.e., 55 to 100% of RTP) without having to move control rods and disturb desirable flux patterns.
Each recirculation loop is manually started from the control room. The MG set provides regulation of individual recirculation loop drive flows. The flow in each loop is manually controlled.

APPLICABLE SAFETY ANALYSES

The operation of the Reactor Coolant Recirculation System is an initial condition assumed in the design basis loss of coolant accident (LOCA) (Ref. 1). During a LOCA caused by a recirculation loop pipe break, the intact loop is assumed to provide coolant flow during the first few seconds of the accident. The initial core flow decrease is rapid because the recirculation pump in the broken loop ceases to pump reactor coolant to the vessel almost immediately. The pump in the intact loop coasts down relatively slowly. This pump coastdown governs the core flow response for the next several seconds until the jet pump suction is uncovered (Ref. 1). The analyses assume that both loops are operating at the same flow prior to the accident. However, the LOCA analysis was reviewed for the case with a flow mismatch between the two loops, with the pipe break assumed to be in the loop with the higher flow. While the flow coastdown and core response are potentially more severe in this assumed case (since the intact loop starts at a lower flow rate and the core response is the same as if both loops were operating at a lower flow rate), a small mismatch has been determined to be acceptable based on engineering judgement. The recirculation system is also assumed to have sufficient flow coastdown characteristics to maintain fuel thermal margins during abnormal operational transients (Ref. 2), which are analyzed in Chapter 15 of the FSAR.

A plant specific LOCA analysis has been performed assuming only one operating recirculation loop. This analysis has demonstrated that, in the event of a LOCA caused by a pipe break in the operating recirculation loop, the Emergency Core Cooling System response will provide adequate core cooling, provided the APLHGR requirements are modified accordingly (Ref. 3).

The transient analyses of Chapter 15 of the FSAR have also been performed for single recirculation loop operation (Ref. 3) and demonstrate sufficient flow coastdown characteristics to maintain fuel thermal margins during the abnormal operational transients analyzed provided the MCPR requirements are modified. During single recirculation loop operation, modification to the Reactor Protection System (RPS) average power range monitor (APRM) instrument setpoints is also required to account for the different relationships between recirculation drive flow and reactor core flow. The APLHGR and MCPR limits for single loop operation are specified in the COLR. The APRM Flow Biased Simulated THERMAL POWER - High Allowable Value is specified in LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation."
Recirculation loops operating satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO
Two recirculation loops are required to be in operation with their flows matched within the limits specified in SR 3.4.1.1 to ensure that during a LOCA caused by a break of the piping of one recirculation loop the assumptions of the LOCA analysis are satisfied. With the limits specified in SR 3.4.1.1 not met, the recirculation loop with the lower flow must be considered not in operation. With only one recirculation loop in operation, modifications to the required APLHGR limits (LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)"), MCPR limits (LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)"), and APRM Flow Biased Simulated THERMAL POWER - High Allowable Value (LCO 3.3.1.1) may be applied to allow continued operation consistent with the assumptions of Reference 3.

APPLICABILITY
In MODES 1 and 2, requirements for operation of the Reactor Coolant Recirculation System are necessary since there is considerable energy in the reactor core and the limiting design basis transients and accidents are assumed to occur.

In MODES 3, 4, and 5, the consequences of an accident are reduced and the coastdown characteristics of the recirculation loops are not important.

ACTIONS
A.1
With the requirements of the LCO not met, the recirculation loops must be restored to operation with matched flows within 24 hours. A recirculation loop is considered not in operation when the pump in that loop is idle or when the mismatch between total jet pump flows of the two loops is greater than required limits. The loop with the lower flow must be considered not in operation. Should a LOCA occur with one recirculation loop not in operation, the core flow coastdown and resultant core response may not be bounded by the LOCA analyses. Therefore, only a limited time is allowed to restore the inoperable loop to operating status.

Alternatively, if the single loop requirements of the LCO are applied to the operating limits and RPS setpoints, operation with only one recirculation loop would satisfy the requirements of the LCO and the initial conditions of the accident sequence.

The 24 hour Completion Time is based on the low probability of an accident occurring during this time period, on a reasonable time to complete the Required Action, and on frequent core monitoring by operators allowing abrupt changes in core flow conditions to be quickly detected.
This Required Action does not require tripping the recirculation pump in the lowest flow loop when the mismatch between total jet pump flows of the two loops is greater than the required limits. However, in cases where large flow mismatches occur, low flow or reverse flow can occur in the low flow loop jet pumps, causing vibration of the jet pumps. If zero or reverse flow is detected, the condition should be alleviated by changing pump speeds to re-establish forward flow or by tripping the pump.

B.1

With no recirculation loops in operation or the Required Action and associated Completion Time of Condition A not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. In this condition, the recirculation loops are not required to be operating because of the reduced severity of DBAs and minimal dependence on the recirculation loop coastdown characteristics. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

This SR ensures the recirculation loops are within the allowable limits for mismatch. At low core flow (i.e., < [70]% of rated core flow), the MCPR requirements provide larger margins to the fuel cladding integrity Safety Limit such that the potential adverse effect of early boiling transition during a LOCA is reduced. A larger flow mismatch can therefore be allowed when core flow is < [70]% of rated core flow. The recirculation loop jet pump flow, as used in this Surveillance, is the summation of the flows from all of the jet pumps associated with a single recirculation loop.

The mismatch is measured in terms of percent of rated core flow. If the flow mismatch exceeds the specified limits, the loop with the lower flow is considered inoperable. The SR is not required when both loops are not in operation since the mismatch limits are meaningless during single loop or natural circulation operation. The Surveillance must be performed within 24 hours after both loops are in operation. The 24 hour Frequency is consistent with the Surveillance Frequency for jet pump OPERABILITY verification and has been shown by operating experience to be adequate to detect off normal jet pump loop flows in a timely manner.
OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [6.3.3.4].
2. FSAR, Section [5.5.1.4].
3. [Plant specific analysis for single loop operation.]
B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.2 Jet Pumps

Bases

Background

The Reactor Coolant Recirculation System is described in the Background section of the Bases for LCO 3.4.1, "Recirculation Loops Operating," which discusses the operating characteristics of the system and how these characteristics affect the Design Basis Accident (DBA) analyses.

The jet pumps are part of the Reactor Coolant Recirculation System and are designed to provide forced circulation through the core to remove heat from the fuel. The jet pumps are located in the annular region between the core shroud and the vessel inner wall. Because the jet pump suction elevation is at two-thirds core height, the vessel can be reflooded and coolant level maintained at two-thirds core height even with the complete break of the recirculation loop pipe that is located below the jet pump suction elevation.

Each reactor coolant recirculation loop contains ten jet pumps. Recirculated coolant passes down the annulus between the reactor vessel wall and the core shroud. A portion of the coolant flows from the vessel, through the two external recirculation loops, and becomes the driving flow for the jet pumps. Each of the two external recirculation loops discharges high pressure flow into an external manifold from which individual recirculation inlet lines are routed to the jet pump risers within the reactor vessel. The remaining portion of the coolant mixture in the annulus becomes the suction flow for the jet pumps. This flow enters the jet pump at suction inlets and is accelerated by the drive flow. The drive flow and suction flow are mixed in the jet pump throat section. The total flow then passes through the jet pump diffuser section into the area below the core (lower plenum), gaining sufficient head in the process to drive the required flow upward through the core.

Applicable Safety Analyses

Jet pump OPERABILITY is an explicit assumption in the design basis loss of coolant accident (LOCA) analysis evaluated in Reference 1.

The capability of reflooding the core to two-thirds core height is dependent upon the structural integrity of the jet pumps. If the structural system, including the beam holding a jet pump in place, fails, jet pump displacement and performance degradation could occur, resulting in an increased flow area through the jet pump and a lower core flooding elevation. This could adversely affect the water level in the core during the reflood phase of a LOCA as well as the assumed blowdown flow during a LOCA.

Jet pumps satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).
BASES

| LCO | The structural failure of any of the jet pumps could cause significant degradation in the ability of the jet pumps to allow reflooding to two-thirds core height during a LOCA. OPERABILITY of all jet pumps is required to ensure that operation of the Reactor Coolant Recirculation System will be consistent with the assumptions used in the licensing basis analysis (Ref. 1). |

APPLICABILITY

In MODES 1 and 2, the jet pumps are required to be OPERABLE since there is a large amount of energy in the reactor core and since the limiting DBAs are assumed to occur in these MODES. This is consistent with the requirements for operation of the Reactor Coolant Recirculation System (LCO 3.4.1).

In MODES 3, 4, and 5, the Reactor Coolant Recirculation System is not required to be in operation, and when not in operation, sufficient flow is not available to evaluate jet pump OPERABILITY.

ACTIONS

A.1

An inoperable jet pump can increase the blowdown area and reduce the capability of reflooding during a design basis LOCA. If one or more of the jet pumps are inoperable, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. The Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.4.2.1

This SR is designed to detect significant degradation in jet pump performance that precedes jet pump failure (Ref. 2). This SR is required to be performed only when the loop has forced recirculation flow since surveillance checks and measurements can only be performed during jet pump operation. The jet pump failure of concern is a complete mixer displacement due to jet pump beam failure. Jet pump plugging is also of concern since it adds flow resistance to the recirculation loop. Significant degradation is indicated if the specified criteria confirm unacceptable deviations from established patterns or relationships. The allowable deviations from the established patterns have been developed based on the variations experienced at plants during normal operation and with jet pump assembly failures (Refs. 2 and 3). Each recirculation loop must satisfy one of the performance criteria provided. Since refueling activities (fuel assembly replacement or shuffle, as well as any modifications to fuel support orifice size or core plate bypass flow) can affect the relationship between core flow, jet pump flow, and recirculation loop flow, these relationships may need to be re-established each cycle. Similarly, initial entry into extended single loop operation may also require establishment
of these relationships. During the initial weeks of operation under such conditions, while base-lining new "established patterns", engineering judgement of the daily surveillance results is used to detect significant abnormalities which could indicate a jet pump failure.

The recirculation pump speed operating characteristics (pump flow and loop flow versus pump speed) are determined by the flow resistance from the loop suction through the jet pump nozzles. A change in the relationship indicates a plug, flow restriction, loss in pump hydraulic performance, leakage, or new flow path between the recirculation pump discharge and jet pump nozzle. For this criterion, the pump flow and loop flow versus pump speed relationship must be verified.

Individual jet pumps in a recirculation loop normally do not have the same flow. The unequal flow is due to the drive flow manifold, which does not distribute flow equally to all risers. The flow (or jet pump diffuser to lower plenum differential pressure) pattern or relationship of one jet pump to the loop average is repeatable. An appreciable change in this relationship is an indication that increased (or reduced) resistance has occurred in one of the jet pumps. This may be indicated by an increase in the relative flow for a jet pump that has experienced beam cracks.

The deviations from normal are considered indicative of a potential problem in the recirculation drive flow or jet pump system (Ref. 2). Normal flow ranges and established jet pump flow and differential pressure patterns are established by plotting historical data as discussed in Reference 2.

[The 24 hour Frequency has been shown by operating experience to be timely for detecting jet pump degradation and is consistent with the Surveillance Frequency for recirculation loop OPERABILITY verification.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
---]
BASES

SURVEILLANCE REQUIREMENTS (continued)

This SR is modified by two Notes. Note 1 allows this Surveillance not to be performed until 4 hours after the associated recirculation loop is in operation, since these checks can only be performed during jet pump operation. The 4 hours is an acceptable time to establish conditions appropriate for data collection and evaluation.

Note 2 allows this SR not to be performed when THERMAL POWER is ≤ 25% of RTP. During low flow conditions, jet pump noise approaches the threshold response of the associated flow instrumentation and precludes the collection of repeatable and meaningful data.

REFERENCES

1. FSAR, Section [6.3].

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.3 Safety/Relief Valves (S/RVs)

BASES

BACKGROUND

The ASME Boiler and Pressure Vessel Code requires the reactor pressure vessel be protected from overpressure during upset conditions by self-actuated safety valves. As part of the nuclear pressure relief system, the size and number of S/RVs are selected such that peak pressure in the nuclear system will not exceed the ASME Code limits for the reactor coolant pressure boundary (RCPB).

The S/RVs are located on the main steam lines between the reactor vessel and the first isolation valve within the drywell. The S/RVs can actuate by either of two modes: the safety mode or the relief mode. In the safety mode (or spring mode of operation), the spring loaded pilot valve opens when steam pressure at the valve inlet overcomes the spring force holding the pilot valve closed. Opening the pilot valve allows a pressure differential to develop across the main valve piston and opens the main valve. This satisfies the Code requirement.

Each S/RV discharges steam through a discharge line to a point below the minimum water level in the suppression pool. The S/RVs that provide the relief mode are the low-low set (LLS) valves and the Automatic Depressurization System (ADS) valves. The LLS requirements are specified in LCO 3.6.1.6, "Low-Low Set (LLS) Valves," and the ADS requirements are specified in LCO 3.5.1, "ECCS - Operating.”

APPLICABLE SAFETY ANALYSES

The overpressure protection system must accommodate the most severe pressurization transient. Evaluations have determined that the most severe transient is the closure of all main steam isolation valves (MSIVs), followed by reactor scram on high neutron flux (i.e., failure of the direct scram associated with MSIV position) (Ref. 1). For the purpose of the analyses, [11] S/RVs are assumed to operate in the safety mode. The analysis results demonstrate that the design S/RV capacity is capable of maintaining reactor pressure below the ASME Code limit of 110% of vessel design pressure (110% x 1250 psig = 1375 psig). This LCO helps to ensure that the acceptance limit of 1375 psig is met during the Design Basis Event.

From an overpressure standpoint, the design basis events are bounded by the MSIV closure with flux scram event described above. Reference 2 discusses additional events that are expected to actuate the S/RVs.

S/RVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
The safety function of S/RVs are required to be OPERABLE to satisfy the assumptions of the safety analysis (Refs. 1 and 2). The requirements of this LCO are applicable only to the capability of the S/RVs to mechanically open to relieve excess pressure when the lift setpoint is exceeded (safety function).

The S/RV setpoints are established to ensure that the ASME Code limit on peak reactor pressure is satisfied. The ASME Code specifications require the lowest safety valve setpoint to be at or below vessel design pressure (1250 psig) and the highest safety valve to be set so that the total accumulated pressure does not exceed 110% of the design pressure for overpressurization conditions. The transient evaluations in the FSAR are based on these setpoints, but also include the additional uncertainties of ± 1% of the nominal setpoint drift to provide an added degree of conservatism.

Operation with fewer valves OPERABLE than specified, or with setpoints outside the ASME limits, could result in a more severe reactor response to a transient than predicted, possibly resulting in the ASME Code limit on reactor pressure being exceeded.

In MODES 1, 2, and 3, all S/RVs must be OPERABLE, since considerable energy may be in the reactor core and the limiting design basis transients are assumed to occur in these MODES. The S/RVs may be required to provide pressure relief to discharge energy from the core until such time that the Residual Heat Removal (RHR) System is capable of dissipating the core heat.

In MODE 4, decay heat is low enough for the RHR System to provide adequate cooling, and reactor pressure is low enough that the overpressure limit is unlikely to be approached by assumed operational transients or accidents. In MODE 5, the reactor vessel head is unbolted or removed and the reactor is at atmospheric pressure. The S/RV function is not needed during these conditions.

With the safety function of one [or two] [required] S/RV[s] inoperable, the remaining OPERABLE S/RVs are capable of providing the necessary overpressure protection. Because of additional design margin, the ASME Code limits for the RCPB can also be satisfied with two S/RVs inoperable. However, the overall reliability of the pressure relief system is reduced because additional failures in the remaining OPERABLE S/RVs could result in failure to adequately relieve pressure during a limiting event. For this reason, continued operation is permitted for a limited time only.
The 14 day Completion Time to restore the inoperable required S/RVs to OPERABLE status is based on the relief capability of the remaining S/RVs, the low probability of an event requiring S/RV actuation, and a reasonable time to complete the Required Action. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] }

B.1

--

REVIEWER'S NOTE

--

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

--

If the safety function of the inoperable required S/RVs cannot be restored to OPERABLE status within the associated Completion Time of Required Action A.1, the plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 3) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low risk state.

Required Action B.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is
not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1 and C.2

If [three] or more [required] S/RVs are inoperable, a transient may result in the violation of the ASME Code limit on reactor pressure. The plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUISITE

SR 3.4.3.1

This Surveillance requires that the [required] S/RVs will open at the pressures assumed in the safety analysis of Reference 1. The demonstration of the S/RV safe lift settings must be performed during shutdown, since this is a bench test, [to be done in accordance with the INSERVICE TESTING PROGRAM]. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The S/RV setpoint is ± [3]% for OPERABILITY; however, the valves are reset to ± 1% during the Surveillance to allow for drift. [A Note is provided to allow up to [two] of the required [11] S/RVs to be physically replaced with S/RVs with lower setpoints. This provides operational flexibility which maintains the assumptions in the over-pressure analysis.]

REVIEWER’S NOTE

If the testing is within the scope of the licensee's INSERVICE TESTING PROGRAM, the Frequency "In accordance with the INSERVICE TESTING PROGRAM" should be used. Otherwise, the periodic Frequency of 18 months or the reference to the Surveillance Frequency Control Program should be used.

[The 18 month Frequency was selected because this Surveillance must be performed during shutdown conditions and is based on the time between refuelings.]
OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.4.3.2

A manual actuation of each [required] S/RV is performed to verify that, mechanically, the valve is functioning properly and no blockage exists in the valve discharge line. This can be demonstrated by the response of the turbine control valves or bypass valves, by a change in the measured steam flow, or by any other method suitable to verify steam flow. Adequate reactor steam dome pressure must be available to perform this test to avoid damaging the valve. Also, adequate steam flow must be passing through the main turbine or turbine bypass valves to continue to control reactor pressure when the S/RVs divert steam flow upon opening. Sufficient time is therefore allowed after the required pressure and flow are achieved to perform this test. Adequate pressure at which this test is to be performed is [920] psig (the pressure recommended by the valve manufacturer). Adequate steam flow is represented by [at least 1.25 turbine bypass valves open, or total steam flow ≥10^6 lb/hr]. Plant startup is allowed prior to performing this test because valve OPERABILITY and the setpoints for overpressure protection are verified, per ASME Code requirements, prior to valve installation. Therefore, this SR is modified by a Note that states the Surveillance is not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test. The 12 hours allowed for manual actuation after the required pressure is reached is sufficient to achieve stable conditions for testing and provides a reasonable time to complete the SR. If a valve fails to actuate due only to the failure of the solenoid but is capable of opening on overpressure, the safety function of the S/RV is considered OPERABLE.

[The [18] month on a STAGGERED TEST BASIS Frequency ensures that each solenoid for each S/RV is alternately tested. The 18 month Frequency was developed based on the S/RV tests required by the ASME Boiler and Pressure Vessel Code (Ref. 4). Operating experience has shown that these components usually pass the Surveillance when...]
SURVEILLANCE REQUIREMENTS (continued)

performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES
1. FSAR, Section [5.2.2.2.4].
2. FSAR, Section [15].
4. ASME Code for Operation and Maintenance of Nuclear Power Plants.
B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.4 RCS Operational LEAKAGE

BASES

BACKGROUND

The RCS includes systems and components that contain or transport the coolant to or from the reactor core. The pressure containing components of the RCS and the portions of connecting systems out to and including the isolation valves define the reactor coolant pressure boundary (RCPB). The joints of the RCPB components are welded or bolted.

During plant life, the joint and valve interfaces can produce varying amounts of reactor coolant LEAKAGE, through either normal operational wear or mechanical deterioration. Limits on RCS operational LEAKAGE are required to ensure appropriate action is taken before the integrity of the RCPB is impaired. This LCO specifies the types and limits of LEAKAGE. This protects the RCS pressure boundary described in 10 CFR 50.2, 10 CFR 50.55a(c), and GDC 55 of 10 CFR 50, Appendix A (Refs 1, 2, and 3).

The safety significance of RCS LEAKAGE from the RCPB varies widely depending on the source, rate, and duration. Therefore, detection of LEAKAGE in the primary containment is necessary. Methods for quickly separating the identified LEAKAGE from the unidentified LEAKAGE are necessary to provide the operators quantitative information to permit them to take corrective action should a leak occur that is detrimental to the safety of the facility or the public.

A limited amount of leakage inside primary containment is expected from auxiliary systems that cannot be made 100% leaktight. Leakage from these systems should be detected and isolated from the primary containment atmosphere, if possible, so as not to mask RCS operational LEAKAGE detection.

This LCO deals with protection of the RCPB from degradation and the core from inadequate cooling, in addition to preventing the accident analyses radiation release assumptions from being exceeded. The consequences of violating this LCO include the possibility of a loss of coolant accident.
The allowable RCS operational LEAKAGE limits are based on the predicted and experimentally observed behavior of pipe cracks. The normally expected background LEAKAGE due to equipment design and the detection capability of the instrumentation for determining system LEAKAGE were also considered. The evidence from experiments suggests that, for LEAKAGE even greater than the specified unidentified LEAKAGE limits, the probability is small that the imperfection or crack associated with such LEAKAGE would grow rapidly.

The unidentified LEAKAGE flow limit allows time for corrective action before the RCPB could be significantly compromised. The 5 gpm limit is a small fraction of the calculated flow from a critical crack in the primary system piping. Crack behavior from experimental programs (Refs. 2 and 3) shows that leakage rates of hundreds of gallons per minute will precede crack instability (Ref. 4).

The low limit on increase in unidentified LEAKAGE assumes a failure mechanism of intergranular stress corrosion cracking (IGSCC) that produces tight cracks. This flow increase limit is capable of providing an early warning of such deterioration.

No applicable safety analysis assumes the total LEAKAGE limit. The total LEAKAGE limit considers RCS inventory makeup capability and drywell floor sump capacity.

RCS operational LEAKAGE satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

RCS operational LEAKAGE shall be limited to:

a. **Pressure Boundary LEAKAGE**

 Pressure boundary LEAKAGE is prohibited as the leak itself could cause further RCPB deterioration, resulting in higher LEAKAGE.

b. **Unidentified LEAKAGE**

 The 5 gpm of unidentified LEAKAGE is allowed as a reasonable minimum detectable amount that the containment air monitoring, drywell sump level monitoring, and containment air cooler condensate flow rate monitoring equipment can detect within a reasonable time period. Separating the sources of leakage (i.e., leakage from an identified source versus leakage from an unidentified source) is necessary for prompt identification of potentially adverse conditions, assessment of the safety significance, and corrective action.
c. **Total LEAKAGE**

The total LEAKAGE limit is based on a reasonable minimum detectable amount. The limit also accounts for LEAKAGE from known sources (identified LEAKAGE). Violation of this LCO indicates an unexpected amount of LEAKAGE and, therefore, could indicate new or additional degradation in an RCPB component or system.

d. **Unidentified LEAKAGE Increase**

An unidentified LEAKAGE increase of > 2 gpm within the previous 4 hour period indicates a potential flaw in the RCPB and must be quickly evaluated to determine the source and extent of the LEAKAGE. The increase is measured relative to the steady state value; temporary changes in LEAKAGE rate as a result of transient conditions (e.g., startup) are not considered. As such, the 2 gpm increase limit is only applicable in MODE 1 when operating pressures and temperatures are established.

APPLICABILITY

In MODES 1, 2, and 3, the RCS operational LEAKAGE LCO applies, because the potential for RCPB LEAKAGE is greatest when the reactor is pressurized.

In MODES 4 and 5, RCS operational LEAKAGE limits are not required since the reactor is not pressurized and stresses in the RCPB materials and potential for LEAKAGE are reduced.

ACTIONS

A.1

If pressure boundary LEAKAGE exists, the affected component, pipe, or vessel must be isolated from the RCS by a closed manual valve, closed and de-activated automatic valve, blind flange, or check valve within 4 hours. While in this condition, structural integrity of the system should be considered because the structural integrity of the part of the system within the isolation boundary must be maintained under all licensing basis conditions, including consideration of the potential for further degradation of the isolated location. Normal LEAKAGE past the isolation device is acceptable as it will limit RCS LEAKAGE and is included in identified or unidentified LEAKAGE. This action is necessary to prevent further deterioration of the RCPB.
Bases

Actions (continued)

B.1

With RCS unidentified or total leakage greater than the limits, actions must be taken to reduce the leak. Because the leakage limits are conservatively below the leakage that would constitute a critical crack size, 4 hours is allowed to reduce the leakage rates before the reactor must be shut down. If an unidentified leakage has been identified and quantified, it may be reclassified and considered as identified leakage; however, the total leakage limit would remain unchanged.

C.1 and C.2

An unidentified leakage increase of > 2 gpm within a 4 hour period is an indication of a potential flaw in the RCPB and must be quickly evaluated. Although the increase does not necessarily violate the absolute unidentified leakage limit, certain susceptible components must be determined not to be the source of the leakage increase within the required completion time. For an unidentified leakage increase greater than required limits, an alternative to reducing leakage increase to within limits (i.e., reducing the leakage rate such that the current rate is less than the "2 gpm increase in the previous [4] hours" limit; either by isolating the source or other possible methods) is to evaluate service sensitive type 304 and type 316 austenitic stainless steel piping that is subject to high stress or that contains relatively stagnant or intermittent flow fluids and determine it is not the source of the increased leakage. This type piping is very susceptible to IGSCC.

The 4 hour completion time is reasonable to properly reduce the leakage increase or verify the source before the reactor must be shut down without unduly jeopardizing plant safety.

D.1 and D.2

If any required action and associated completion time is not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed completion times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant safety systems.
The RCS LEAKAGE is monitored by a variety of instruments designed to provide alarms when LEAKAGE is indicated and to quantify the various types of LEAKAGE. Leakage detection instrumentation is discussed in more detail in the Bases for LCO 3.4.6, "RCS Leakage Detection Instrumentation." Sump level and flow rate are typically monitored to determine actual LEAKAGE rates; however, any method may be used to quantify LEAKAGE within the guidelines of Reference 5. [In conjunction with alarms and other administrative controls, an 8 hour Frequency for this Surveillance is appropriate for identifying LEAKAGE and for tracking required trends (Ref. 6).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 30.
2. GEAP-5620, April 1968.
3. NUREG-76/067, October 1975.
4. FSAR, Section [5.2.7.5.2].
5. Regulatory Guide 1.45.
B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.5 RCS Pressure Isolation Valve (PIV) Leakage

BASES

BACKGROUND

The function of RCS PIVs is to separate the high pressure RCS from an attached low pressure system. This protects the RCS pressure boundary described in 10 CFR 50.2, 10 CFR 50.55a(c), and GDC 55 of 10 CFR 50, Appendix A (Refs. 1, 2, and 3). RCS PIVs are defined as any two normally closed valves in series within the reactor coolant pressure boundary (RCPB). PIVs are designed to meet the requirements of Reference 4. During their lives, these valves can produce varying amounts of reactor coolant leakage through either normal operational wear or mechanical deterioration.

The RCS PIV LCO allows RCS high pressure operation when leakage through these valves exists in amounts that do not compromise safety. The PIV leakage limit applies to each individual valve. Leakage through these valves is not included in any allowable LEAKAGE specified in LCO 3.4.4, "RCS Operational LEAKAGE."

Although this specification provides a limit on allowable PIV leakage rate, its main purpose is to prevent overpressure failure of the low pressure portions of connecting systems. The leakage limit is an indication that the PIVs between the RCS and the connecting systems are degraded or degrading. PIV leakage could lead to overpressure of the low pressure piping or components. Failure consequences could be a loss of coolant accident (LOCA) outside of containment, an unanalyzed event that could degrade the ability for low pressure injection.

A study (Ref. 5) evaluated various PIV configurations to determine the probability of intersystem LOCAs. This study concluded that periodic leakage testing of the PIVs can substantially reduce intersystem LOCA probability.

PIVs are provided to isolate the RCS from the following typically connected systems:

a. Residual Heat Removal (RHR) System,
b. Core Spray System,
c. High Pressure Coolant Injection System, and
d. Reactor Core Isolation Cooling System.

The PIVs are listed in Reference 6.
APPLICABLE SAFETY ANALYSES
Reference 5 evaluated various PIV configurations, leakage testing of the valves, and operational changes to determine the effect on the probability of intersystem LOCAs. This study concluded that periodic leakage testing of the PIVs can substantially reduce the probability of an intersystem LOCA.

PIV leakage is not considered in any Design Basis Accident analyses. This Specification provides for monitoring the condition of the RCPB to detect PIV degradation that has the potential to cause a LOCA outside of containment. RCS PIV leakage satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO
RCS PIV leakage is leakage into closed systems connected to the RCS. Isolation valve leakage is usually on the order of drops per minute. Leakage that increases significantly suggests that something is operationally wrong and corrective action must be taken. Violation of this LCO could result in continued degradation of a PIV, which could lead to overpressurization of a low pressure system and the loss of the integrity of a fission product barrier.

The LCO PIV leakage limit is 0.5 gpm per nominal inch of valve size with a maximum limit of 5 gpm (Ref. 4).

Reference 7 permits leakage testing at a lower pressure differential than between the specified maximum RCS pressure and the normal pressure of the connected system during RCS operation (the maximum pressure differential). The observed rate may be adjusted to the maximum pressure differential by assuming leakage is directly proportional to the pressure differential to the one-half power.

APPLICABILITY
In MODES 1, 2, and 3, this LCO applies because the PIV leakage potential is greatest when the RCS is pressurized. In MODE 3, valves in the RHR shutdown cooling flow path are not required to meet the requirements of this LCO when in, or during transition to or from, the RHR shutdown cooling mode of operation.

In MODES 4 and 5, leakage limits are not provided because the lower reactor coolant pressure results in a reduced potential for leakage and for a LOCA outside the containment. Accordingly, the potential for the consequences of reactor coolant leakage is far lower during these MODES.
The ACTIONS are modified by two Notes. Note 1 has been provided to modify the ACTIONS related to RCS PIV flow paths. Section 1.3, Completion Times, specifies once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits will not result in separate entry into the Condition. Section 1.3 also specifies Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for the Condition of RCS PIV leakage limits exceeded provide appropriate compensatory measures for separate affected RCS PIV flow paths. As such, a Note has been provided that allows separate Condition entry for each affected RCS PIV flow path.

Note 2 requires an evaluation of affected systems if a PIV is inoperable. The leakage may have affected system OPERABILITY, or isolation of a leaking flow path with an alternate valve may have degraded the ability of the interconnected system to perform its safety function. As a result, the applicable Conditions and Required Actions for systems made inoperable by PIVs must be entered. This ensures appropriate remedial actions are taken, if necessary, for the affected systems.

A.1 and A.2

If leakage from one or more RCS PIVs is not within limit, the flow path must be isolated by at least one closed manual, deactivated automatic, or check valve within 4 hours.

Required Action A.1 and Required Action A.2 are modified by a Note stating that the valves used for isolation must meet the same leakage requirements as the PIVs and must be on the RCPB [or the high pressure portion of the system].

Four hours provides time to reduce leakage in excess of the allowable limit and to isolate the flow path if leakage cannot be reduced while corrective actions to reseat the leaking PIVs are taken. The 4 hours allows time for these actions and restricts the time of operation with leaking valves.

Required Action A.2 specifies that the double isolation barrier of two valves be restored by closing another valve qualified for isolation or restoring one leaking PIV. The 72 hour Completion Time considers the time required to complete the action, the low probability of a second valve failing during this time period, and the low probability of a pressure boundary rupture of the low pressure ECCS piping when overpressurized to reactor pressure (Ref. 7).
Bases

Actions (continued)

B.1 and B.2

If leakage cannot be reduced or the system isolated, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and MODE 4 within 36 hours. This action may reduce the leakage and also reduces the potential for a LOCA outside the containment. The Completion Times are reasonable, based on operating experience, to achieve the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

Surveillance Requirements

SR 3.4.5.1

Performance of leakage testing on each RCS PIV is required to verify that leakage is below the specified limit and to identify each leaking valve. The leakage limit of 0.5 gpm per inch of nominal valve diameter up to 5 gpm maximum applies to each valve. Leakage testing requires a stable pressure condition. For the two PIVs in series, the leakage requirement applies to each valve individually and not to the combined leakage across both valves. If the PIVs are not individually leakage tested, one valve may have failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be lost.

--------------------REVIEWER’S NOTE--------------------

If the testing is within the scope of the licensee's INSERVICE TESTING PROGRAM, the Frequency "In accordance with the INSERVICE TESTING PROGRAM" should be used. Otherwise, the periodic Frequency of 18 months or the reference to the Surveillance Frequency Control Program should be used.

The 18 month Frequency required by the INSERVICE TESTING PROGRAM is within the ASME Code Frequency requirement and is based on the need to perform this Surveillance during an outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power.

OR

The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program.
SURVEILLANCE REQUIREMENTS (continued)

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by a Note that states the leakage Surveillance is not required to be performed in MODE 3. Entry into MODE 3 is permitted for leakage testing at high differential pressures with stable conditions not possible in the lower MODES.

REFERENCES

1. 10 CFR 50.2.

2. 10 CFR 50.55a(c).

3. 10 CFR 50, Appendix A, GDC 55.

4. ASME Code for Operation and Maintenance of Nuclear Power Plants.

5. NUREG-0677, May 1980.

6. FSAR, Section [].

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.6 RCS Leakage Detection Instrumentation

BASES

BACKGROUND

GDC 30 of 10 CFR 50, Appendix A (Ref. 1), requires means for detecting and, to the extent practical, identifying the location of the source of RCS LEAKAGE. Regulatory Guide 1.45, Revision 0 (Ref. 2) describes acceptable methods for selecting leakage detection systems.

Limits on LEAKAGE from the reactor coolant pressure boundary (RCPB) are required so that appropriate action can be taken before the integrity of the RCPB is impaired (Ref. 2). Leakage detection systems for the RCS are provided to alert the operators when leakage rates above normal background levels are detected and also to supply quantitative measurement of leakage rates. [In addition to meeting the OPERABILITY requirements, the monitors are typically set to provide the most sensitive response without causing an excessive number of spurious alarms.] The Bases for LCO 3.4.4, "RCS Operational LEAKAGE," discuss the limits on RCS LEAKAGE rates.

Systems for separating the LEAKAGE of an identified source from an unidentified source are necessary to provide prompt and quantitative information to the operators to permit them to take immediate corrective action.

LEAKAGE from the RCPB inside the drywell is detected by at least one of two or three independently monitored variables, such as sump level changes and drywell gaseous and particulate radioactivity levels. The primary means of quantifying LEAKAGE in the drywell is the drywell floor drain sump monitoring system.

The drywell floor drain sump monitoring system monitors the LEAKAGE collected in the floor drain sump. This unidentified LEAKAGE consists of LEAKAGE from control rod drives, valve flanges or packings, floor drains, the Closed Cooling Water System, and drywell air cooling unit condensate drains, and any LEAKAGE not collected in the drywell equipment drain sump. The primary containment floor drain sump has transmitters that supply level indications in the main control room.

The floor drain sump level indicators have switches that start and stop the sump pumps when required. A timer starts each time the sump is pumped down to the low level setpoint. If the sump fills to the high level setpoint before the timer ends, an alarm sounds in the control room, indicating a LEAKAGE rate into the sump in excess of a preset limit.
BASES

BACKGROUND (continued)

A flow indicator in the discharge line of the drywell floor drain sump pumps provides flow indication in the control room. The pumps can also be started from the control room.

The primary containment air monitoring systems continuously monitor the primary containment atmosphere for airborne particulate and gaseous radioactivity. A sudden increase of radioactivity, which may be attributed to RCPB steam or reactor water LEAKAGE, is annunciated in the control room.

Condensate from four of the six primary containment coolers is routed to the primary containment floor drain sump and is monitored by a flow transmitter that provides indication and alarms in the control room. This primary containment air cooler condensate flow rate monitoring system serves as an added indicator, but not quantifier, of RCS unidentified LEAKAGE.

APPLICABLE SAFETY ANALYSES

A threat of significant compromise to the RCPB exists if the barrier contains a crack that is large enough to propagate rapidly. LEAKAGE rate limits are set low enough to detect the LEAKAGE emitted from a single crack in the RCPB (Refs. 3 and 4).

A control room alarm allows the operators to evaluate the significance of the indicated LEAKAGE and, if necessary, shut down the reactor for further investigation and corrective action. The allowed LEAKAGE rates are well below the rates predicted for critical crack sizes (Ref. 5). Therefore, these actions provide adequate response before a significant break in the RCPB can occur.

RCS leakage detection instrumentation satisfies Criterion 1 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO requires instruments of diverse monitoring principles to be OPERABLE to provide confidence that small amounts of unidentified LEAKAGE are detected in time to allow actions to place the plant in a safe condition, when RCS LEAKAGE indicates possible RCPB degradation.

The LCO requires [three] instruments to be OPERABLE.

The drywell floor drain sump monitoring system is required to quantify the unidentified LEAKAGE rate from the RCS. Thus, for the system to be considered OPERABLE, either the flow monitoring or the sump level monitoring portion of the system must be OPERABLE and capable of determining the leakage rate. The identification of an increase in unidentified LEAKAGE will be delayed by the time required for the
unidentified LEAKAGE to travel to the drywell floor drain sump and it may take longer than one hour to detect a 1 gpm increase in unidentified LEAKAGE, depending on the origin and magnitude of the LEAKAGE. This sensitivity is acceptable for containment sump monitor OPERABILITY.

The reactor coolant contains radioactivity that, when released to the primary containment, can be detected by the gaseous or particulate primary containment atmospheric radioactivity monitor. Only one of the two detectors is required to be OPERABLE. Radioactivity detection systems are included for monitoring both particulate and gaseous activities because of their sensitivities and rapid responses to RCS LEAKAGE, but have recognized limitations. Reactor coolant radioactivity levels will be low during initial reactor startup and for a few weeks thereafter, until activated corrosion products have been formed and fission products appear from fuel element cladding contamination or cladding defects. If there are few fuel element cladding defects and low levels of activation products, it may not be possible for the gaseous or particulate primary containment atmospheric radioactivity monitors to detect a 1 gpm increase within 1 hour during normal operation. However, the gaseous or particulate containment primary atmospheric radioactivity monitor is OPERABLE when it is capable of detecting a 1 gpm increase in unidentified LEAKAGE within 1 hour given an RCS activity equivalent to that assumed in the design calculations for the monitors (Reference 6).

[An increase in humidity of the containment atmospheric could indicate the release of water vapor to the containment. Primary containment air cooler condensate flow rate is instrumented to detect when there is an increase above the normal value by 1 gpm. The time required to detect a 1 gpm increase above the normal value varies based on environmental and system conditions and may take longer than 1 hour. This sensitivity is acceptable for containment air cooler condensate flow rate monitor OPERABILITY.]

The LCO is satisfied when monitors of diverse measurement means are available. Thus, the drywell floor drain sump monitoring system, in combination with a gaseous or particulate primary containment atmospheric radioactivity monitor [and a primary containment air cooler condensate flow rate monitoring system], provides an acceptable minimum.
BASES

APPLICABILITY
In MODES 1, 2, and 3, leakage detection systems are required to be OPERABLE to support LCO 3.4.4. This Applicability is consistent with that for LCO 3.4.4.

ACTIONS

A.1

With the drywell floor drain sump monitoring system inoperable, no other form of sampling can provide the equivalent information to quantify leakage. However, the primary containment atmospheric activity monitor [and the primary containment air cooler condensate flow rate monitor] will provide indication of changes in leakage.

With the drywell floor drain sump monitoring system inoperable, but with RCS unidentified and total LEAKAGE being determined every 8 hours (SR 3.4.4.1), operation may continue for 30 days. The 30 day Completion Time of Required Action A.1 is acceptable, based on operating experience, considering the multiple forms of leakage detection that are still available.

B.1 and B.2

With both gaseous and particulate primary containment atmospheric monitoring channels inoperable, grab samples of the primary containment atmosphere must be taken and analyzed to provide periodic leakage information. [Provided a sample is obtained and analyzed once every 12 hours, the plant may be operated for up to 30 days to allow restoration of at least one of the required monitors.] [Provided a sample is obtained and analyzed every 12 hours, the plant may continue operation since at least one other form of drywell leakage detection (i.e., air cooler condensate flow rate monitor) is available.]

The 12 hour interval provides periodic information that is adequate to detect LEAKAGE. The 30 day Completion Time for restoration recognizes that at least one other form of leakage detection is available.

C.1

With the required primary containment air cooler condensate flow rate monitoring system inoperable, SR 3.4.6.1 must be performed every 8 hours to provide periodic information of activity in the primary containment at a more frequent interval than the routine Frequency of SR 3.4.6.1. The 8 hour interval provides periodic information that is adequate to detect LEAKAGE and recognizes that other forms of leakage detection are available. However, this Required Action is modified by a
BASES

ACTIONS (continued)

Note that allows this action to be not applicable if the required primary containment atmospheric monitoring system is inoperable. Consistent with SR 3.0.1, Surveillances are not required to be performed on inoperable equipment.]

D.1, D.2, D.3.1, and D.3.2

With the drywell floor drain sump monitoring system and the primary containment air cooler condensate flow rate monitoring system inoperable, the only means of detecting LEAKAGE is the primary containment atmospheric gaseous radiation monitor. A Note clarifies this applicability of the Condition. The primary containment atmospheric gaseous radiation monitor typically cannot detect a 1 gpm leak within one hour when RCS activity is low. In addition, this configuration does not provide the required diverse means of leakage detection. Indirect methods of monitoring RCS leakage must be implemented. Grab samples of the primary containment atmosphere must be taken and analyzed and monitoring of RCS leakage by administrative means must be performed every 12 hours to provide alternate periodic information.

Administrative means of monitoring RCS leakage include monitoring and trending parameters that may indicate an increase in RCS leakage. There are diverse alternative mechanisms from which appropriate indicators may be selected based on plant conditions. It is not necessary to utilize all of these methods, but a method or methods should be selected considering the current plant conditions and historical or expected sources of unidentified leakage. The administrative methods are [primary containment and drywell pressure, temperature, and humidity, Component Cooling Water System outlet temperatures and makeup, Reactor Recirculation System pump seal pressure and temperature and motor cooler temperature indications, Drywell cooling fan outlet temperatures, Reactor Building Chiller amperage, Control Rod Drive System flange temperatures, and Safety Relief Valves tailpipe temperature, flow, or pressure.] These indications, coupled with the atmospheric grab samples, are sufficient to alert the operating staff to an unexpected increase in unidentified LEAKAGE.

The 12 hour interval is sufficient to detect increasing RCS leakage. The Required Action provides 7 days to restore another RCS leakage monitor to OPERABLE status to regain the intended leakage detection diversity. The 7 day Completion Time ensures that the plant will not be operated in a degraded configuration for a lengthy time period.
With both the primary containment gaseous and particulate atmospheric monitor channels [and the primary containment air cooler condensate flow rate monitor] inoperable, the only means of detecting LEAKAGE is the drywell floor drain sump monitor. This condition does not provide the required diverse means of leakage detection. The Required Action is to restore either of the inoperable monitors to OPERABLE status within 30 days to regain the intended leakage detection diversity. The 30 day Completion Time ensures that the plant will not be operated in a degraded configuration for a lengthy time period.

If any Required Action of Condition A, B, [C D, or E] cannot be met within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to perform the actions in an orderly manner and without challenging plant systems.

With all required monitors inoperable, no required automatic means of monitoring LEAKAGE are available, and immediate plant shutdown in accordance with LCO 3.0.3 is required.
SR 3.4.6.1
This SR is for the performance of a CHANNEL CHECK of the required primary containment atmospheric monitoring system. The check gives reasonable confidence that the channel is operating properly. [The Frequency of 12 hours is based on instrument reliability and is reasonable for detecting off normal conditions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------REVIEWER’S NOTE-------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------REVIEWER’S NOTE-------------------------------

SR 3.4.6.2
This SR is for the performance of a CHANNEL FUNCTIONAL TEST of the required RCS leakage detection instrumentation. The test ensures that the monitors can perform their function in the desired manner. The test also verifies the alarm setpoint and relative accuracy of the instrument string. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state
SURVEILLANCE REQUIREMENTS (continued)

of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. [The Frequency of 31 days considers instrument reliability, and operating experience has shown it proper for detecting degradation.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.4.6.3

This SR is for the performance of a CHANNEL CALIBRATION of required leakage detection instrumentation channels. The calibration verifies the accuracy of the instrument string, including the instruments located inside containment. [The Frequency of [18] months is a typical refueling cycle and considers channel reliability. Operating experience has proven this Frequency is acceptable.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

BASES

REFERENCES

1. 10 CFR 50, Appendix A, GDC 30.

3. GEAP-5620, April 1968.

4. NUREG-75/067, October 1975.

5. FSAR, Section [5.2.7.5.2].

6. FSAR, Section [5.2.7.2.1].
B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.7 RCS Specific Activity

BASES

| BACKGROUND | During circulation, the reactor coolant acquires radioactive materials due to release of fission products from fuel leaks into the reactor coolant and activation of corrosion products in the reactor coolant. These radioactive materials in the reactor coolant can plate out in the RCS, and, at times, an accumulation will break away to spike the normal level of radioactivity. The release of coolant during a Design Basis Accident (DBA) could send radioactive materials into the environment.

Limits on the maximum allowable level of radioactivity in the reactor coolant are established to ensure that in the event of a release of any radioactive material to the environment during a DBA, radiation doses are maintained within the limits of 10 CFR 100 (Ref. 1).

This LCO contains iodine specific activity limits. The iodine isotopic activities per gram of reactor coolant are expressed in terms of a DOSE EQUIVALENT I-131. The allowable levels are intended to limit the 2 hour radiation dose to an individual at the site boundary to a small fraction of the 10 CFR 100 limit.

| APPLICABLE SAFETY ANALYSES | Analytical methods and assumptions involving radioactive material in the primary coolant are presented in the FSAR (Ref. 2). The specific activity in the reactor coolant (the source term) is an initial condition for evaluation of the consequences of an accident due to a main steam line break (MSLB) outside containment. No fuel damage is postulated in the MSLB accident, and the release of radioactive material to the environment is assumed to end when the main steam isolation valves (MSIVs) close completely.

This MSLB release forms the basis for determining offsite doses (Ref. 2). The limits on the specific activity of the primary coolant ensure that the 2 hour thyroid and whole body doses at the site boundary, resulting from an MSLB outside containment during steady state operation, will not exceed 10% of the dose guidelines of 10 CFR 100.

The limits on specific activity are values from a parametric evaluation of typical site locations. These limits are conservative because the evaluation considered more restrictive parameters than for a specific site, such as the location of the site boundary and the meteorological conditions of the site.

RCS specific activity satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
BASES

LCO

The specific iodine activity is limited to ≤ [0.2] µCi/gm DOSE EQUIVALENT I-131. This limit ensures the source term assumed in the safety analysis for the MSLB is not exceeded, so any release of radioactivity to the environment during an MSLB is less than a small fraction of the 10 CFR 100 limits.

APPLICABILITY

In MODE 1, and MODES 2 and 3 with any main steam line not isolated, limits on the primary coolant radioactivity are applicable since there is an escape path for release of radioactive material from the primary coolant to the environment in the event of an MSLB outside of primary containment.

In MODES 2 and 3 with the main steam lines isolated, such limits do not apply since an escape path does not exist. In MODES 4 and 5, no limits are required since the reactor is not pressurized and the potential for leakage is reduced.

ACTIONS

A.1 and A.2

When the reactor coolant specific activity exceeds the LCO DOSE EQUIVALENT I-131 limit, but is ≤ 4.0 µCi/gm, samples must be analyzed for DOSE EQUIVALENT I-131 at least once every 4 hours. In addition, the specific activity must be restored to the LCO limit within 48 hours. The Completion Time of once every 4 hours is based on the time needed to take and analyze a sample. The 48 hour Completion Time to restore the activity level provides a reasonable time for temporary coolant activity increases (iodine spikes or crud bursts) to be cleaned up with the normal processing systems.

A Note permits the use of the provisions of LCO 3.0.4.c. This allowance permits entry into the applicable MODE(S) while relying on the ACTIONS. This allowance is acceptable due to the significant conservatism incorporated into the specific activity limit, the low probability of an event which is limiting due to exceeding this limit, and the ability to restore transient specific activity excursions while the plant remains at, or proceeds to power operation.

B.1, B.2.1, B.2.2.1, and B.2.2.2

If the DOSE EQUIVALENT I-131 cannot be restored to ≤ 0.2 µCi/gm within 48 hours, or if at any time it is > 4.0 µCi/gm, it must be determined at least once every 4 hours and all the main steam lines must be isolated within 12 hours. Isolating the main steam lines precludes the possibility of releasing radioactive material to the environment in an amount that is more than a small fraction of the requirements of 10 CFR 100 during a postulated MSLB accident.
Alternatively, the plant can be placed in MODE 3 within 12 hours and in MODE 4 within 36 hours. This option is provided for those instances when isolation of main steam lines is not desired (e.g., due to the decay heat loads). In MODE 4, the requirements of the LCO are no longer applicable.

The Completion Time of once every 4 hours is the time needed to take and analyze a sample. The 12 hour Completion Time is reasonable, based on operating experience, to isolate the main steam lines in an orderly manner and without challenging plant systems. Also, the allowed Completion Times for Required Actions B.2.2.1 and B.2.2.2 for placing the unit in MODES 3 and 4 are reasonable, based on operating experience, to achieve the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR_3.4.7.1

This Surveillance is performed to ensure iodine remains within limit during normal operation. [The 7 day Frequency is adequate to trend changes in the iodine activity level.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------

This SR is modified by a Note that requires this Surveillance to be performed only in MODE 1 because the level of fission products generated in other MODES is much less.

REFERENCES

1. 10 CFR 100.11, 1973.

2. FSAR, Section [15.1.40].
B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.8 Residual Heat Removal (RHR) Shutdown Cooling System - Hot Shutdown

BASES

BACKGROUND

Irradiated fuel in the shutdown reactor core generates heat during the decay of fission products and increases the temperature of the reactor coolant. This decay heat must be removed to reduce the temperature of the reactor coolant to ≤ 200°F. This decay heat removal is in preparation for performing refueling or maintenance operations, or for keeping the reactor in the Hot Shutdown condition.

The two redundant, manually controlled shutdown cooling subsystems of the RHR System provide decay heat removal. Each loop consists of two motor driven pumps, a heat exchanger, and associated piping and valves. Both loops have a common suction from the same recirculation loop. Each pump discharges the reactor coolant, after circulation through the respective heat exchanger, to the reactor via the associated recirculation loop. The RHR heat exchangers transfer heat to the RHR Service Water System (LCO 3.7.1, "Residual Heat Removal Service Water (RHRSW) System").

APPLICABLE SAFETY ANALYSES

Decay heat removal by operation of the RHR System in the shutdown cooling mode is not required for mitigation of any event or accident analyzed in the safety analyses. Decay heat removal is, however, an important safety function that must be accomplished or core damage could result. The RHR shutdown cooling subsystem satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO

Two RHR shutdown cooling subsystems are required to be OPERABLE, and when no recirculation pump is in operation, one shutdown cooling subsystem must be in operation. An OPERABLE RHR shutdown cooling subsystem consists of one OPERABLE RHR pump, one heat exchanger, and the associated piping and valves. The two subsystems have a common suction source and are allowed to have a common heat exchanger and common discharge piping. Thus, to meet the LCO, both pumps in one loop or one pump in each of the two loops must be OPERABLE. Since the piping and heat exchangers are passive components that are assumed not to fail, they are allowed to be common to both subsystems. Each shutdown cooling subsystem is considered OPERABLE if it can be manually aligned (remote or local) in the shutdown cooling mode for removal of decay heat. In MODE 3, one RHR shutdown cooling subsystem can provide the required cooling, but two subsystems are required to be OPERABLE to provide redundancy. Operation of one subsystem can maintain or reduce the reactor coolant...
temperature as required. However, to ensure adequate core flow to allow for accurate average reactor coolant temperature monitoring, nearly continuous operation is required. Management of gas voids is important to RHR Shutdown Cooling System OPERABILITY.

Note 1 permits both RHR shutdown cooling subsystems to be removed from operation for a period of 2 hours in an 8 hour period. Note 2 allows one RHR shutdown cooling subsystem to be inoperable for up to 2 hours for the performance of Surveillance tests. These tests may be on the affected RHR System or on some other plant system or component that necessitates placing the RHR System in an inoperable status during the performance. This is permitted because the core heat generation can be low enough and the heatup rate slow enough to allow some changes to the RHR subsystems or other operations requiring RHR flow interruption and loss of redundancy.

APPLICABILITY

In MODE 3 with reactor steam dome pressure below [the RHR cut in permissive pressure] (i.e., the actual pressure at which the interlock resets) the RHR System may be operated in the shutdown cooling mode to remove decay heat to reduce or maintain coolant temperature. Otherwise, a recirculation pump is required to be in operation.

In MODES 1 and 2, and in MODE 3 with reactor steam dome pressure greater than or equal to [the RHR cut in permissive pressure], this LCO is not applicable. Operation of the RHR System in the shutdown cooling mode is not allowed above this pressure because the RCS pressure may exceed the design pressure of the shutdown cooling piping. Decay heat removal at reactor pressures greater than or equal to the RHR cut in permissive pressure is typically accomplished by condensing the steam in the main condenser. Additionally, in MODE 2 below this pressure, the OPERABILITY requirements for the Emergency Core Cooling Systems (ECCS) (LCO 3.5.1, "ECCS - Operating") do not allow placing the RHR shutdown cooling subsystem into operation.

The requirements for decay heat removal in MODES 4 and 5 are discussed in LCO 3.4.9, "Residual Heat Removal (RHR) Shutdown Cooling System - Cold Shutdown," LCO 3.9.8, "Residual Heat Removal (RHR) - High Water Level," and LCO 3.9.9, "Residual Heat Removal (RHR) - Low Water Level."

A Note has been provided to modify the ACTIONS related to RHR shutdown cooling subsystems. Section 1.3, Completion Times, specifies once a Condition has been entered, subsequent divisions, subsystems, components or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies Required Actions of the Condition.
BASES

ACTIONS (continued)

continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable shutdown cooling subsystems provide appropriate compensatory measures for separate inoperable shutdown cooling subsystems. As such, a Note has been provided that allows separate Condition entry for each inoperable RHR shutdown cooling subsystem.

A.1

With one required RHR shutdown cooling subsystem inoperable for decay heat removal, except as permitted by LCO Note 2, the overall reliability is reduced, however, because a single failure in the OPERABLE subsystem could result in reduced RHR shutdown cooling capability. Therefore, an alternate method of decay heat removal must be provided.

The required cooling capacity of the alternate method should be sufficient to maintain or reduce temperature. Decay heat removal by ambient losses can be considered as, or contributing to, the alternate method capability. Alternate methods that can be used include (but are not limited to) the Reactor Water Cleanup System, or an inoperable but functional RHR shutdown cooling subsystem.

B.1

If the required alternate method of decay heat removal cannot be verified within one hour, immediate action must be taken to restore the inoperable RHR shutdown cooling subsystem to OPERABLE status. The Required Action will restore redundant decay heat removal paths. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal.

C.1

With both [required] RHR shutdown cooling subsystems inoperable, an alternate method of decay heat removal must be provided in addition to that provided for the initial RHR shutdown cooling subsystem inoperability. This re-establishes backup decay heat removal capabilities, similar to the requirements of the LCO. The 1 hour Completion Time is based on the decay heat removal function and the probability of a loss of the available decay heat removal capabilities. Furthermore, verification of the functional availability of these alternate method(s) must be reconfirmed every 24 hours thereafter. This will provide assurance of continued heat removal capability.
BASES

ACTIONS (continued)

The required cooling capacity of the alternate method should be sufficient to maintain or reduce temperature. Decay heat removal by ambient losses can be considered as, or contributing to, the alternate method capability. Alternate methods that can be used include (but are not limited to) the Reactor Water Cleanup System, or an inoperable but functional RHR shutdown cooling subsystem.

D.1

If the required alternate methods of decay heat removal cannot be verified within one hour, immediate action must be taken to restore at least one RHR shutdown cooling subsystem to OPERABLE status. The immediate Completion Time reflects the importance of restoring a method of heat removal.

Required Action D.1 is modified by a Note indicating that all required MODE changes to MODE 4 may be suspended until one RHR shutdown cooling subsystem is restored to OPERABLE status. In this case, LCO 3.0.3 and other Required Actions directing entry into MODE 4 could force the unit into a less safe condition in which there may be no adequate means to remove decay heat. It is more appropriate to allow the restoration of one of the RHR shutdown cooling subsystems before requiring entry into a condition in which that subsystem would be needed and exiting a condition where other sources of cooling are available. When at least one RHR subsystem is restored to OPERABLE status, the Completion Times of LCO 3.0.3 or other Required Actions resume at the point at which they were suspended.

E.1, E.2, and E.3

With no RHR shutdown cooling subsystem and no recirculation pump in operation, except as permitted by LCO Note 1, reactor coolant circulation by the RHR shutdown cooling subsystem or recirculation pump must be restored without delay.

Until RHR or recirculation pump operation is re-established, an alternate method of reactor coolant circulation must be placed into service. This will provide the necessary circulation for monitoring coolant temperature. The 1 hour Completion Time is based on the coolant circulation function and is modified such that the 1 hour is applicable separately for each occurrence involving a loss of coolant circulation. Furthermore, verification of the functioning of the alternate method must be reconfirmed every 12 hours thereafter. This will provide assurance of continued temperature monitoring capability.
Bases

Actions (continued)

During the period when the reactor coolant is being circulated by an alternate method (other than by the required RHR shutdown cooling subsystem or recirculation pump), the reactor coolant temperature and pressure must be periodically monitored to ensure proper function of the alternate method. The once per hour Completion Time is deemed appropriate.

Surveillance Requirements

SR 3.4.8.1

This Surveillance verifies that one RHR shutdown cooling subsystem or recirculation pump is in operation and circulating reactor coolant. The required flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability. [The Frequency of 12 hours is sufficient in view of other visual and audible indications available to the operator for monitoring the RHR subsystem in the control room. OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This Surveillance is modified by a Note allowing sufficient time to align the RHR System for shutdown cooling operation after clearing the pressure interlock that isolates the system, or for placing a recirculation pump in operation. The Note takes exception to the requirements of the Surveillance being met (i.e., forced coolant circulation is not required for this initial 2 hour period), which also allows entry into the Applicability of this Specification in accordance with SR 3.0.4 since the Surveillance will not be "not met" at the time of entry into the Applicability.

SR 3.4.8.2

RHR Shutdown Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR shutdown cooling subsystems and may also prevent water hammer, pump cavitation, and pumping of noncondensible gas into the reactor vessel.
BASES

SURVEILLANCE REQUIREMENTS (continued)

Selection of RHR Shutdown Cooling System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The RHR Shutdown Cooling System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or discharge of a pump), the Surveillance is not met. If the accumulated gas is eliminated or brought within the acceptance criteria limits during performance of the Surveillance, the Surveillance is met and past system OPERABILITY is evaluated under the Corrective Action Program. If it is determined by subsequent evaluation that the RHR Shutdown Cooling System is not rendered inoperable by the accumulated gas (i.e., the system is sufficiently filled with water), the Surveillance may be declared met. Accumulated gas should be eliminated or brought within the acceptance criteria limits.

RHR Shutdown Cooling System locations susceptible to gas accumulation are monitored and, if gas is found, the gas volume is compared to the acceptance criteria for the location. Susceptible locations in the same system flow path which are subject to the same gas intrusion mechanisms may be verified by monitoring a representative subset of susceptible locations. Monitoring may not be practical for locations that are inaccessible due to radiological or environmental conditions, the plant configuration, or personnel safety. For these locations alternative methods (e.g., operating parameters, remote monitoring) may be used to monitor the susceptible location. Monitoring is not required for susceptible locations where the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.
BASES

SURVEILLANCE REQUIREMENTS (continued)

This SR is modified by a Note that states the SR is not required to be performed until 12 hours after reactor steam dome pressure is < [the RHR cut in permissive pressure]. In a rapid shutdown, there may be insufficient time to verify all susceptible locations prior to entering the Applicability.

[The 31 day Frequency takes into consideration the gradual nature of gas accumulation in the RHR Shutdown Cooling System piping and the procedural controls governing system operation.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES
None.
B 3.4.9 Residual Heat Removal (RHR) Shutdown Cooling System - Cold Shutdown

Bases

Background

Irradiated fuel in the shutdown reactor core generates heat during the decay of fission products and increases the temperature of the reactor coolant. This decay heat must be removed to maintain the temperature of the reactor coolant ≤ 200°F. This decay heat removal is in preparation for performing refueling or maintenance operations, or for keeping the reactor in the Cold Shutdown condition.

The two redundant, manually controlled shutdown cooling subsystems of the RHR System provide decay heat removal. Each loop consists of two motor driven pumps, a heat exchanger, and associated piping and valves. Both loops have a common suction from the same recirculation loop. Each pump discharges the reactor coolant, after circulation through the respective heat exchanger, to the reactor via the associated recirculation loop. The RHR heat exchangers transfer heat to the RHR Service Water System.

Applicable Safety Analyses

Decay heat removal by operation of the RHR System in the shutdown cooling mode is not required for mitigation of any event or accident evaluated in the safety analyses. Decay heat removal is, however, an important safety function that must be accomplished or core damage could result. The RHR Shutdown Cooling System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO

Two RHR shutdown cooling subsystems are required to be OPERABLE, and when no recirculation pump is in operation, one RHR shutdown cooling subsystem must be in operation. An OPERABLE RHR shutdown cooling subsystem consists of one OPERABLE RHR pump, one heat exchanger, and the associated piping and valves. The two subsystems have a common suction source and are allowed to have a common heat exchanger and common discharge piping. Thus, to meet the LCO, both pumps in one loop or one pump in each of the two loops must be OPERABLE. Since the piping and heat exchangers are passive components that are assumed not to fail, they are allowed to be common to both subsystems. In MODE 4, the RHR cross tie valve (2E11-F010) may be opened to allow pumps in one loop to discharge through the opposite recirculation loop to make a complete subsystem. Additionally, each shutdown cooling subsystem is considered OPERABLE if it can be manually aligned (remote or local) in the shutdown cooling mode for removal of decay heat. In MODE 4, one RHR shutdown cooling subsystem can provide the required cooling, but two subsystems are required to be OPERABLE to provide redundancy. Operation of one subsystem can maintain or reduce the reactor coolant temperature as
required. However, to ensure adequate core flow to allow for accurate average reactor coolant temperature monitoring, nearly continuous operation is required. Management of gas voids is important to RHR Shutdown Cooling System OPERABILITY.

Note 1 permits both RHR shutdown cooling subsystems to be removed from operation for a period of 2 hours in an 8 hour period. Note 2 allows one RHR shutdown cooling subsystem to be inoperable for up to 2 hours for the performance of Surveillance tests. These tests may be on the affected RHR System or on some other plant system or component that necessitates placing the RHR System in an inoperable status during the performance. This is permitted because the core heat generation can be low enough and the heatup rate slow enough to allow some changes to the RHR subsystems or other operations requiring RHR flow interruption and loss of redundancy.

APPLICABILITY

In MODE 4, the RHR Shutdown Cooling System may be operated in the shutdown cooling mode to remove decay heat to maintain coolant temperature below 200°F. Otherwise, a recirculation pump is required to be in operation.

In MODES 1 and 2, and in MODE 3 with reactor steam dome pressure greater than or equal to the RHR cut in permissive pressure, this LCO is not applicable. Operation of the RHR System in the shutdown cooling mode is not allowed above this pressure because the RCS pressure may exceed the design pressure of the shutdown cooling piping. Decay heat removal at reactor pressures greater than or equal to the RHR cut in permissive pressure is typically accomplished by condensing the steam in the main condenser. Additionally, in MODE 2 below this pressure, the OPERABILITY requirements for the Emergency Core Cooling Systems (ECCS) (LCO 3.5.1, "ECCS - Operating") do not allow placing the RHR shutdown cooling subsystem into operation.

The requirements for decay heat removal in MODE 3 below the cut in permissive pressure and in MODE 5 are discussed in LCO 3.4.8, "Residual Heat Removal (RHR) Shutdown Cooling System - Hot Shutdown," LCO 3.9.8, "Residual Heat Removal (RHR) - High Water Level," and LCO 3.9.9, "Residual Heat Removal (RHR) - Low Water Level."

ACTIONS

A Note has been provided to modify the ACTIONS related to RHR shutdown cooling subsystems. Section 1.3, Completion Times, specifies once a Condition has been entered, subsequent divisions, subsystems, components or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies Required Actions of the Condition.
BASES

ACTIONS (continued)

continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable shutdown cooling subsystems provide appropriate compensatory measures for separate inoperable shutdown cooling subsystems. As such, a Note has been provided that allows separate Condition entry for each inoperable RHR shutdown cooling subsystem.

A.1

With one of the two required RHR shutdown cooling subsystems inoperable, except as permitted by LCO Note 2, the remaining subsystem is capable of providing the required decay heat removal. However, the overall reliability is reduced. Therefore, an alternate method of decay heat removal must be provided. With both RHR shutdown cooling subsystems inoperable, an alternate method of decay heat removal must be provided in addition to that provided for the initial RHR shutdown cooling subsystem inoperability. This re-establishes backup decay heat removal capabilities, similar to the requirements of the LCO. The 1 hour Completion Time is based on the decay heat removal function and the probability of a loss of the available decay heat removal capabilities. Furthermore, verification of the functional availability of these alternate method(s) must be reconfirmed every 24 hours thereafter. This will provide assurance of continued heat removal capability.

The required cooling capacity of the alternate method should be sufficient to maintain or reduce temperature. Decay heat removal by ambient losses can be considered as, or contributing to, the alternate method capability. Alternate methods that can be used include (but are not limited to) the Spent Fuel Pool Cooling System, the Reactor Water Cleanup System, or an inoperable but functional RHR shutdown cooling subsystem.

B.1

If the required alternate method(s) of decay heat removal cannot be verified within one hour, immediate action must be taken to restore the inoperable RHR shutdown cooling subsystem(s) to OPERABLE status. The Required Action will restore redundant decay heat removal paths. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal.
BASES

SURVEILLANCE REQUIREMENTS

SR. 3.4.9.1

This Surveillance verifies that one RHR shutdown cooling subsystem or recirculation pump is in operation and circulating reactor coolant. The required flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability. [The Frequency of 12 hours is sufficient in view of other visual and audible indications available to the operator for monitoring the RHR subsystem in the control room.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWSER'S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--
RHR Shutdown Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR shutdown cooling subsystems and may also prevent water hammer, pump cavitation, and pumping of noncondensible gas into the reactor vessel.

Selection of RHR Shutdown Cooling System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The RHR Shutdown Cooling System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or discharge of a pump), the Surveillance is not met. If the accumulated gas is eliminated or brought within the acceptance criteria limits during performance of the Surveillance, the Surveillance is met and past system OPERABILITY is evaluated under the Corrective Action Program. If it is determined by subsequent evaluation that the RHR Shutdown Cooling System is not rendered inoperable by the accumulated gas (i.e., the system is sufficiently filled with water), the Surveillance may be declared met. Accumulated gas should be eliminated or brought within the acceptance criteria limits.

RHR Shutdown Cooling System locations susceptible to gas accumulation are monitored and, if gas is found, the gas volume is compared to the acceptance criteria for the location. Susceptible locations in the same system flow path which are subject to the same gas intrusion mechanisms may be verified by monitoring a representative subset of susceptible locations. Monitoring may not be practical for locations...
that are inaccessible due to radiological or environmental conditions, the plant configuration, or personnel safety. For these locations alternative methods (e.g., operating parameters, remote monitoring) may be used to monitor the susceptible location. Monitoring is not required for susceptible locations where the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.

[The 31 day Frequency takes into consideration the gradual nature of gas accumulation in the RHR Shutdown Cooling System piping and the procedural controls governing system operation.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

None.
B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.10 RCS Pressure and Temperature (P/T) Limits

BASES

BACKGROUND

All components of the RCS are designed to withstand effects of cyclic loads due to system pressure and temperature changes. These loads are introduced by startup (heatup) and shutdown (cooldown) operations, power transients, and reactor trips. This LCO limits the pressure and temperature changes during RCS heatup and cooldown, within the design assumptions and the stress limits for cyclic operation.

The PTLR contains P/T limit curves for heatup, cooldown, and inservice leakage and hydrostatic testing, and data for the maximum rate of change of reactor coolant temperature. The heatup curve provides limits for both heatup and criticality.

Each P/T limit curve defines an acceptable region for normal operation. The usual use of the curves is operational guidance during heatup or cooldown maneuvering, when pressure and temperature indications are monitored and compared to the applicable curve to determine that operation is within the allowable region.

The LCO establishes operating limits that provide a margin to brittle failure of the reactor vessel and piping of the reactor coolant pressure boundary (RCPB). The vessel is the component most subject to brittle failure. Therefore, the LCO limits apply mainly to the vessel.

10 CFR 50, Appendix G (Ref. 1), requires the establishment of P/T limits for material fracture toughness requirements of the RCPB materials. Reference 1 requires an adequate margin to brittle failure during normal operation, anticipated operational occurrences, and system hydrostatic tests. It mandates the use of the ASME Code, Section III, Appendix G (Ref. 2).

The actual shift in the RTNDT of the vessel material will be established periodically by removing and evaluating the irradiated reactor vessel material specimens, in accordance with ASTM E 185 (Ref. 3) and Appendix H of 10 CFR 50 (Ref. 4). The operating P/T limit curves will be adjusted, as necessary, based on the evaluation findings and the recommendations of Reference 5.

The P/T limit curves are composite curves established by superimposing limits derived from stress analyses of those portions of the reactor vessel and head that are the most restrictive. At any specific pressure, temperature, and temperature rate of change, one location within the
reactor vessel will dictate the most restrictive limit. Across the span of the P/T limit curves, different locations are more restrictive, and, thus, the curves are composites of the most restrictive regions.

The heatup curve represents a different set of restrictions than the cooldown curve because the directions of the thermal gradients through the vessel wall are reversed. The thermal gradient reversal alters the location of the tensile stress between the outer and inner walls.

The criticality limits include the Reference 1 requirement that they be at least 40°F above the heatup curve or the cooldown curve and not lower than the minimum permissible temperature for the inservice leakage and hydrostatic testing.

The consequence of violating the LCO limits is that the RCS has been operated under conditions that can result in brittle failure of the RCPB, possibly leading to a nonisolable leak or loss of coolant accident. In the event these limits are exceeded, an evaluation must be performed to determine the effect on the structural integrity of the RCPB components. ASME Code, Section XI, Appendix E (Ref. 6), provides a recommended methodology for evaluating an operating event that causes an excursion outside the limits.

The P/T limits are not derived from Design Basis Accident (DBA) analyses. They are prescribed during normal operation to avoid encountering pressure, temperature, and temperature rate of change conditions that might cause undetected flaws to propagate and cause nonductile failure of the RCPB, a condition that is unanalyzed. Reference 7 establishes the methodology for determining the P/T limits. Since the P/T limits are not derived from any DBA, there are no acceptance limits related to the P/T limits. Rather, the P/T limits are acceptance limits themselves since they preclude operation in an unanalyzed condition.

RCS P/T limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

The elements of this LCO are:

a. RCS pressure, temperature, and heatup or cooldown rate are within the limits specified in the PTLR, during RCS heatup, cooldown, and inservice leak and hydrostatic testing,
b. The temperature difference between the reactor vessel bottom head coolant and the reactor pressure vessel (RPV) coolant is within the limit of the PTLR during recirculation pump startup, and during increases in THERMAL POWER or loop flow while operating at low THERMAL POWER or loop flow,

c. The temperature difference between the reactor coolant in the respective recirculation loop and in the reactor vessel meets the limit of the PTLR during recirculation pump startup, and during increases in THERMAL POWER or loop flow while operating at low THERMAL POWER or loop flow,

d. RCS pressure and temperature are within the criticality limits specified in the PTLR, prior to achieving criticality, and

e. The reactor vessel flange and the head flange temperatures are within the limits of the PTLR when tensioning the reactor vessel head bolting studs.

These limits define allowable operating regions and permit a large number of operating cycles while also providing a wide margin to nonductile failure.

The rate of change of temperature limits control the thermal gradient through the vessel wall and are used as inputs for calculating the heatup, cooldown, and inservice leakage and hydrostatic testing P/T limit curves. Thus, the LCO for the rate of change of temperature restricts stresses caused by thermal gradients and also ensures the validity of the P/T limit curves.

Violation of the limits places the reactor vessel outside of the bounds of the stress analyses and can increase stresses in other RCS components. The consequences depend on several factors, as follows:

a. The severity of the departure from the allowable operating pressure temperature regime or the severity of the rate of change of temperature,

b. The length of time the limits were violated (longer violations allow the temperature gradient in the thick vessel walls to become more pronounced), and

c. The existences, sizes, and orientations of flaws in the vessel material.
Bases

Applicability

The potential for violating a P/T limit exists at all times. For example, P/T limit violations could result from ambient temperature conditions that result in the reactor vessel metal temperature being less than the minimum allowed temperature for boltup. Therefore, this LCO is applicable even when fuel is not loaded in the core.

Actions

A.1 and A.2

Operation outside the P/T limits while in MODES 1, 2, and 3 must be corrected so that the RCPB is returned to a condition that has been verified by stress analyses.

The 30 minute Completion Time reflects the urgency of restoring the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner.

Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify the RCPB integrity remains acceptable and must be completed if continued operation is desired. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, new analyses, or inspection of the components.

ASME Code, Section XI, Appendix E (Ref. 6), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline.

The 72 hour Completion Time is reasonable to accomplish the evaluation of a mild violation. More severe violations may require special, event specific stress analyses or inspections. A favorable evaluation must be completed if continued operation is desired.

Condition A is modified by a Note requiring Required Action A.2 be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration alone per Required Action A.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity.

B.1 and B.2

If a Required Action and associated Completion Time of Condition A are not met, the plant must be placed in a lower MODE because either the RCS remained in an unacceptable P/T region for an extended period of increased stress, or a sufficiently severe event caused entry into an
BASES

ACTIONS (continued)

unacceptable region. Either possibility indicates a need for more careful examination of the event, best accomplished with the RCS at reduced pressure and temperature. With the reduced pressure and temperature conditions, the possibility of propagation of undetected flaws is decreased.

Pressure and temperature are reduced by placing the plant in at least MODE 3 within 12 hours and in MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1 and C.2

Operation outside the P/T limits in other than MODES 1, 2, and 3 (including defueled conditions) must be corrected so that the RCPB is returned to a condition that has been verified by stress analyses. The Required Action must be initiated without delay and continued until the limits are restored.

Besides restoring the P/T limit parameters to within limits, an evaluation is required to determine if RCS operation is allowed. This evaluation must verify that the RCPB integrity is acceptable and must be completed before approaching criticality or heating up to > 200°F. Several methods may be used, including comparison with pre-analyzed transients, new analyses, or inspection of the components. ASME Code, Section XI, Appendix E (Ref. 6), may be used to support the evaluation; however, its use is restricted to evaluation of the beltline.

SURVEILLANCE REQUIREMENTS

SR 3.4.10.1

Verification that operation is within PTLR limits is required when RCS pressure and temperature conditions are undergoing planned changes. [This Frequency is considered reasonable in view of the control room indication available to monitor RCS status. Also, since temperature rate of change limits are specified in hourly increments, 30 minutes permits a reasonable time for assessment and correction of minor deviations.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
SURVEILLANCE REQUIREMENTS (continued)

--- REVIEWER’S NOTE ---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

Surveillance for heatup, cooldown, or inservice leakage and hydrostatic testing may be discontinued when the criteria given in the relevant plant procedure for ending the activity are satisfied.

This SR has been modified with a Note that requires this Surveillance to be performed only during system heatup and cooldown operations and inservice leakage and hydrostatic testing.

SR 3.4.10.2

A separate limit is used when the reactor is approaching criticality. Consequently, the RCS pressure and temperature must be verified within the appropriate limits before withdrawing control rods that will make the reactor critical.

Performing the Surveillance within 15 minutes before control rod withdrawal for the purpose of achieving criticality provides adequate assurance that the limits will not be exceeded between the time of the Surveillance and the time of the control rod withdrawal.

SR 3.4.10.3, SR 3.4.10.4, [SR 3.4.10.5, and SR 3.4.10.6]

Differential temperatures within the applicable PTLR limits ensure that thermal stresses resulting from the startup of an idle recirculation pump will not exceed design allowances. [In addition, compliance with these limits ensures that the assumptions of the analysis for the startup of an idle recirculation loop (Ref. 8) are satisfied.]

[Performing the Surveillance within 15 minutes before starting the idle recirculation pump provides adequate assurance that the limits will not be exceeded between the time of the Surveillance and the time of the idle pump start.]

[Limiting differential temperatures within the applicable limits during a THERMAL POWER increase or recirculation flow increase in single loop operations ensures that the limits will not be exceeded between the time of the Surveillance and the time of the control rod withdrawal.]

SURVEILLANCE REQUIREMENTS (continued)

operation, while THERMAL POWER \(\leq 30\% \) RTP or operating loop flow \(\leq 50\% \) of rated loop flow, ensure that resulting thermal stresses will not exceed design allowances.

Performing the Surveillance within 15 minutes before starting the idle recirculation pump, THERMAL POWER increase during single loop operation, or recirculation flow increase during single loop operation, provides adequate assurance that the limits will not be exceeded between the time of the Surveillance and the time of the idle pump start, power increase, or flow increase.

An acceptable means of demonstrating compliance with the temperature differential requirement in SR 3.4.10.4 [and SR 3.4.10.6] is to compare the temperatures of the operating recirculation loop and the idle loop.

[SR 3.4.10.3] [These SRs have been modified by [a Note] [Notes] that require[s] the Surveillance to be performed only in [MODES 1, 2, 3, and 4 [with reactor steam dome pressure \(\geq 25 \) psig.] [Certain MODES] In MODE 5, the overall stress on limiting components is lower. Therefore, \(\Delta T \) limits are not required for SRs 3.4.10.3 and 3.4.10.4 in MODE 5. [In MODES 3, 4, and 5, THERMAL POWER increases are not possible and recirculation flow increases will not result in additional stresses. Therefore, \(\Delta T \) limits are only required for SRs 3.4.10.5 and 3.4.10.6. The Notes also state that the SR is only required to be met during the event of concern (e.g., pump startup, power increase, or flow increase) since this is when the stresses occur]]. The Note also states the SR is only required to be met during a recirculation pump startup, since this is when the stresses occur.

SR 3.4.10.7, SR 3.4.10.8, and SR 3.4.10.9

Limits on the reactor vessel flange and head flange temperatures are generally bounded by the other P/T limits during system heatup and cooldown. However, operations approaching MODE 4 from MODE 5 and in MODE 4 with RCS temperature less than or equal to certain specified values require assurance that these temperatures meet the LCO limits.

The flange temperatures must be verified to be above the limits before and while tensioning the vessel head bolting studs to ensure that once the head is tensioned the limits are satisfied. When in MODE 4 with RCS temperature \(\leq 80^\circ \text{F} \), checks of the flange temperatures are required because of the reduced margin to the limits. When in MODE 4 with RCS temperature \(\leq 100^\circ \text{F} \), monitoring of the flange temperature is required to ensure the temperature is within the limits specified in the PTLR.
[The 30 minute Frequency reflects the urgency of maintaining the temperatures within limits, and also limits the time that the temperature limits could be exceeded. The 12 hour Frequency is reasonable based on the rate of temperature change possible at these temperatures.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. 10 CFR 50, Appendix G.
2. ASME, Boiler and Pressure Vessel Code, Section III, Appendix G.
4. 10 CFR 50, Appendix H.
6. ASME, Boiler and Pressure Vessel Code, Section XI, Appendix E.

[8. FSAR, Section [15.1.26].]
B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.11 Reactor Steam Dome Pressure

BASES

BACKGROUND
The reactor steam dome pressure is an assumed initial condition of design basis accidents and transients and is also an assumed value in the determination of compliance with reactor pressure vessel overpressure protection criteria.

APPLICABLE SAFETY ANALYSES
The reactor steam dome pressure of $\leq [1020]$ psig is an initial condition of the vessel overpressure protection analysis of Reference 1. This analysis assumes an initial maximum reactor steam dome pressure and evaluates the response of the pressure relief system, primarily the safety/relief valves, during the limiting pressurization transient. The determination of compliance with the overpressure criteria is dependent on the initial reactor steam dome pressure; therefore, the limit on this pressure ensures that the assumptions of the overpressure protection analysis are conserved. Reference 2 also assumes an initial reactor steam dome pressure for the analysis of design basis accidents and transients used to determine the limits for fuel cladding integrity (see Bases for LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)") and 1% cladding plastic strain (see Bases for LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)").

Reactor steam dome pressure satisfies the requirements of Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO
The specified reactor steam dome pressure limit of $\leq [1020]$ psig ensures the plant is operated within the assumptions of the transient analyses. Operation above the limit may result in a transient response more severe than analyzed.

APPLICABILITY
In MODES 1 and 2, the reactor steam dome pressure is required to be less than or equal to the limit. In these MODES, the reactor may be generating significant steam and the design basis accidents and transients are bounding.

In MODES 3, 4, and 5, the limit is not applicable because the reactor is shut down. In these MODES, the reactor pressure is well below the required limit, and no anticipated events will challenge the overpressure limits.
BASES

ACTIONS

A.1

With the reactor steam dome pressure greater than the limit, prompt action should be taken to reduce pressure to below the limit and return the reactor to operation within the bounds of the analyses. The 15 minute Completion Time is reasonable considering the importance of maintaining the pressure within limits. This Completion Time also ensures that the probability of an accident occurring while pressure is greater than the limit is minimized. If the operator is unable to restore the reactor steam dome pressure to below the limit, then the reactor should be placed in MODE 3 to be operating within the assumptions of the transient analyses.

B.1

If the reactor steam dome pressure cannot be restored to within the limit within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.4.11.1

Verification that reactor steam dome pressure is \(\leq [1020] \) psig ensures that the initial conditions of the design basis accidents and transients are met. Operating experience has shown the 12 hour Frequency to be sufficient for identifying trends and verifying operation within safety analyses assumptions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [5.2.2.2.4].

2. FSAR, Section [15].
B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS), RPV WATER INVENTORY CONTROL, AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM

B 3.5.1 ECCS - Operating

BASES

BACKGROUND The ECCS is designed, in conjunction with the primary and secondary containment, to limit the release of radioactive materials to the environment following a loss of coolant accident (LOCA). The ECCS uses two independent methods (flooding and spraying) to cool the core during a LOCA. The ECCS network consists of the High Pressure Coolant Injection (HPCI) System, the Core Spray (CS) System, the low pressure coolant injection (LPCI) mode of the Residual Heat Removal (RHR) System, and the Automatic Depressurization System (ADS). The suppression pool provides the required source of water for the ECCS. Although no credit is taken in the safety analyses for the condensate storage tank (CST), it is capable of providing a source of water for the HPCI and CS systems.

On receipt of an initiation signal, ECCS pumps automatically start; simultaneously, the system aligns and the pumps inject water, taken either from the CST or suppression pool, into the Reactor Coolant System (RCS) as RCS pressure is overcome by the discharge pressure of the ECCS pumps. Although the system is initiated, ADS action is delayed, allowing the operator to interrupt the timed sequence if the system is not needed. The HPCI pump discharge pressure almost immediately exceeds that of the RCS, and the pump injects coolant into the vessel to cool the core. If the break is small, the HPCI System will maintain coolant inventory as well as vessel level while the RCS is still pressurized. If HPCI fails, it is backed up by ADS in combination with LPCI and CS. In this event, the ADS timed sequence would be allowed to time out and open the selected safety/relief valves (S/RVs) depressurizing the RCS, thus allowing the LPCI and CS to overcome RCS pressure and inject coolant into the vessel. If the break is large, RCS pressure initially drops rapidly and the LPCI and CS cool the core.

Water from the break returns to the suppression pool where it is used again and again. Water in the suppression pool is circulated through a heat exchanger cooled by the RHR Service Water System. Depending on the location and size of the break, portions of the ECCS may be ineffective; however, the overall design is effective in cooling the core regardless of the size or location of the piping break. Although no credit is taken in the safety analysis for the RCIC System, it performs a similar function as HPCI, but has reduced makeup capability. Nevertheless, it will maintain inventory and cool the core while the RCS is still pressurized following a reactor pressure vessel (RPV) isolation.
All ECCS subsystems are designed to ensure that no single active component failure will prevent automatic initiation and successful operation of the minimum required ECCS equipment.

The CS System (Ref. 1) is composed of two independent subsystems. Each subsystem consists of a motor driven pump, a spray sparger above the core, and piping and valves to transfer water from the suppression pool to the sparger. The CS System is designed to provide cooling to the reactor core when reactor pressure is low. Upon receipt of an initiation signal, the CS pumps in both subsystems are automatically started when AC power is available. When the RPV pressure drops sufficiently, CS System flow to the RPV begins. A full flow test line is provided to route water from and to the suppression pool to allow testing of the CS System without spraying water in the RPV.

LPCI is an independent operating mode of the RHR System. There are two LPCI subsystems (Ref. 2), each consisting of two motor driven pumps and piping and valves to transfer water from the suppression pool to the RPV via the corresponding recirculation loop. The two LPCI subsystems can be interconnected via the RHR System cross tie valve; however, the cross tie valve is maintained closed with its power removed to prevent loss of both LPCI subsystems during a LOCA. The LPCI subsystems are designed to provide core cooling at low RPV pressure. Upon receipt of an initiation signal, all four LPCI pumps are automatically started (B pump immediately when AC power is available, and A, C, and D pumps approximately 10 seconds after AC power is available). RHR System valves in the LPCI flow path are automatically positioned to ensure the proper flow path for water from the suppression pool to inject into the recirculation loops. When the RPV pressure drops sufficiently, the LPCI flow to the RPV, via the corresponding recirculation loop, begins. The water then enters the reactor through the jet pumps. Full flow test lines are provided for the four LPCI pumps to route water from the suppression pool, to allow testing of the LPCI pumps without injecting water into the RPV. These test lines also provide suppression pool cooling capability, as described in LCO 3.6.2.3, "RHR Suppression Pool Cooling."

The HPCI System (Ref. 3) consists of a steam driven turbine pump unit, piping, and valves to provide steam to the turbine, as well as piping and valves to transfer water from the suction source to the core via the feedwater system line, where the coolant is distributed within the RPV through the feedwater sparger. Suction piping for the system is provided from the CST and the suppression pool. Pump suction for HPCI is normally aligned to the CST source to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or if the suppression pool level is high, an automatic transfer to the
suppression pool water source ensures a water supply for continuous operation of the HPCI System. The steam supply to the HPCI turbine is piped from a main steam line upstream of the associated inboard main steam isolation valve.

The HPCI System is designed to provide core cooling for a wide range of reactor pressures (162 psid to 1135 psid, vessel to pump suction). Upon receipt of an initiation signal, the HPCI turbine stop valve and turbine control valve open simultaneously and the turbine accelerates to a specified speed. As the HPCI flow increases, the turbine governor valve is automatically adjusted to maintain design flow. Exhaust steam from the HPCI turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the HPCI System during normal operation without injecting water into the RPV.

The ECCS pumps are provided with minimum flow bypass lines, which discharge to the suppression pool. The valves in these lines automatically open to prevent pump damage due to overheating when other discharge line valves are closed. To ensure rapid delivery of water to the RPV and to minimize water hammer effects, all ECCS pump discharge lines are filled with water. The LPCI and CS System discharge lines are kept full of water using a "keep fill" system (jockey pump system). The HPCI System is normally aligned to the CST. The height of water in the CST is sufficient to maintain the piping full of water up to the first isolation valve. The relative height of the feedwater line connection for HPCI is such that the water in the feedwater lines keeps the remaining portion of the HPCI discharge line full of water. Therefore, HPCI does not require a "keep fill" system.

The ADS (Ref. 4) consists of 7 of the 11 S/RVs. It is designed to provide depressurization of the RCS during a small break LOCA if HPCI fails or is unable to maintain required water level in the RPV. ADS operation reduces the RPV pressure to within the operating pressure range of the low pressure ECCS subsystems (CS and LPCI), so that these subsystems can provide coolant inventory makeup. Each of the S/RVs used for automatic depressurization is equipped with one air accumulator and associated inlet check valves. The accumulator provides the pneumatic power to actuate the valves.

The ECCS performance is evaluated for the entire spectrum of break sizes for a postulated LOCA. The accidents for which ECCS operation is required are presented in References 5, 6, and 7. The required analyses and assumptions are defined in Reference 8. The results of these analyses are also described in Reference 9.
APPLICABLE SAFETY ANALYSES (continued)

This LCO helps to ensure that the following acceptance criteria for the ECCS, established by 10 CFR 50.46 (Ref. 10), will be met following a LOCA, assuming the worst case single active component failure in the ECCS:

a. Maximum fuel element cladding temperature is ≤ 2200°F,

b. Maximum cladding oxidation is ≤ 0.17 times the total cladding thickness before oxidation,

c. Maximum hydrogen generation from a zirconium water reaction is ≤ 0.01 times the hypothetical amount that would be generated if all of the metal in the cladding surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react,

d. The core is maintained in a coolable geometry, and

e. Adequate long term cooling capability is maintained.

The limiting single failures are discussed in Reference 11. For a large discharge pipe break LOCA, failure of the LPCI valve on the unbroken recirculation loop is considered the most severe failure. For a small break LOCA, HPCI failure is the most severe failure. One ADS valve failure is analyzed as a limiting single failure for events requiring ADS operation. The remaining OPERABLE ECCS subsystems provide the capability to adequately cool the core and prevent excessive fuel damage.

The ECCS satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Each ECCS injection/spray subsystem and seven ADS valves are required to be OPERABLE. The ECCS injection/spray subsystems are defined as the two CS subsystems, the two LPCI subsystems, and one HPCI System. The low pressure ECCS injection/spray subsystems are defined as the two CS subsystems and the two LPCI subsystems. Management of gas voids is important to ECCS injection/spray subsystem OPERABILITY.

With less than the required number of ECCS subsystems OPERABLE, the potential exists that during a limiting design basis LOCA concurrent with the worst case single failure, the limits specified in Reference 10 could be exceeded. All ECCS subsystems must therefore be OPERABLE to satisfy the single failure criterion required by Reference 10.
[As noted, LPCI subsystems may be considered OPERABLE during alignment and operation for decay heat removal when below the actual RHR cut in permissive pressure in MODE 3, if capable of being manually realigned (remote or local) to the LPCI mode and not otherwise inoperable. Alignment and operation for decay heat removal includes when the required RHR pump is not operating or when the system is realigned from or to the RHR shutdown cooling mode. This allowance is necessary since the RHR System may be required to operate in the shutdown cooling mode to remove decay heat and sensible heat from the reactor. At these low pressures and decay heat levels, a reduced complement of ECCS subsystems should provide the required core cooling, thereby allowing operation of RHR shutdown cooling when necessary.]

All ECCS subsystems are required to be OPERABLE during MODES 1, 2, and 3, when there is considerable energy in the reactor core and core cooling would be required to prevent fuel damage in the event of a break in the primary system piping. In MODES 2 and 3, when reactor steam dome pressure is ≤ 150 psig, ADS and HPCI are not required to be OPERABLE because the low pressure ECCS subsystems can provide sufficient flow below this pressure. Requirements for MODES 4 and 5 are specified in LCO 3.5.2, "RPV Water Inventory Control."

A Note prohibits the application of LCO 3.0.4.b to an inoperable HPCI subsystem 2. There is an increased risk associated with entering a MODE or other specified condition in the Applicability with an inoperable HPCI subsystem and the provisions of LCO 3.0.4.b, which allow entry into a MODE or other specified condition in the Applicability with the LCO not met after performance of a risk assessment addressing inoperable systems and components, should not be applied in this circumstance.

A.1

If any one low pressure ECCS injection/spray subsystem is inoperable, or if one LPCI pump in both LPCI subsystems is inoperable, the inoperable subsystem(s) must be restored to OPERABLE status within 7 days [or in accordance with the Risk Informed Completion Time Program]. In this Condition, the remaining OPERABLE subsystems provide adequate core cooling during a LOCA. However, overall ECCS reliability is reduced, because a single failure in one of the remaining OPERABLE subsystems, concurrent with a LOCA, may result in the ECCS not being able to perform its intended safety function. The 7 day Completion Time is based on a reliability study (Ref. 12) that evaluated the impact on ECCS
availability, assuming various components and subsystems were taken out of service. The results were used to calculate the average availability of ECCS equipment needed to mitigate the consequences of a LOCA as a function of allowed outage times (i.e., Completion Times).

B.1

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If the inoperable low pressure ECCS subsystem cannot be restored to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 13) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action B.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.
The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1 and C.2
If the HPCI System is inoperable and the RCIC System is verified to be OPERABLE, the HPCI System must be restored to OPERABLE status within 14 days [or in accordance with the Risk Informed Completion Time Program]. In this Condition, adequate core cooling is ensured by the OPERABILITY of the redundant and diverse low pressure ECCS injection/spray subsystems in conjunction with ADS. Also, the RCIC System will automatically provide makeup water at most reactor operating pressures. Verification of RCIC OPERABILITY immediately is therefore required when HPCI is inoperable. This may be performed as an administrative check by examining logs or other information to determine if RCIC is out of service for maintenance or other reasons. It does not mean to perform the Surveillances needed to demonstrate the OPERABILITY of the RCIC System. If the OPERABILITY of the RCIC System cannot be verified, however, Condition G must be immediately entered. If a single active component fails concurrent with a design basis LOCA, there is a potential, depending on the specific failure, that the minimum required ECCS equipment will not be available. A 14 day Completion Time is based on a reliability study cited in Reference 12 and has been found to be acceptable through operating experience.

D.1 and D.2
If any one low pressure ECCS injection/spray subsystem, or one LPCI pump in both LPCI subsystems, is inoperable in addition to an inoperable HPCI System, the inoperable low pressure ECCS injection/spray subsystem or the HPCI System must be restored to OPERABLE status within 72 hours [or in accordance with the Risk Informed Completion Time Program]. In this Condition, adequate core cooling is ensured by the OPERABILITY of the ADS and the remaining low pressure ECCS subsystems. However, the overall ECCS reliability is significantly reduced because a single failure in one of the remaining OPERABLE subsystems concurrent with a design basis LOCA may result in the ECCS not being able to perform its intended safety function. Since both a high pressure system (HPCI) and a low pressure subsystem are inoperable, a more restrictive Completion Time of 72 hours is required to restore either
the HPCI System or the low pressure ECCS injection/spray subsystem to OPERABLE status. This Completion Time is based on a reliability study cited in Reference 12 and has been found to be acceptable through operating experience.

E.1

The LCO requires seven ADS valves to be OPERABLE in order to provide the ADS function. Reference 14 contains the results of an analysis that evaluated the effect of one ADS valve being out of service. Per this analysis, operation of only six ADS valves will provide the required depressurization. However, overall reliability of the ADS is reduced, because a single failure in the OPERABLE ADS valves could result in a reduction in depressurization capability. Therefore, operation is only allowed for a limited time. The 14 day Completion Time is based on a reliability study cited in Reference 12 and has been found to be acceptable through operating experience. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

F.1 and F.2

If any one low pressure ECCS injection/spray subsystem, or one LPCI pump in both LPCI subsystems, is inoperable in addition to one inoperable ADS valve, adequate core cooling is ensured by the OPERABILITY of HPCI and the remaining low pressure ECCS injection/spray subsystem. However, overall ECCS reliability is reduced because a single active component failure concurrent with a design basis LOCA could result in the minimum required ECCS equipment not being available. Since both a high pressure system (ADS) and a low pressure subsystem are inoperable, a more restrictive Completion Time of 72 hours is required to restore either the low pressure ECCS subsystem or the ADS valve to OPERABLE status. This Completion Time is based on a reliability study cited in Reference 12 and has been found to be acceptable through operating experience. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]
Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If any Required Action and associated Completion Time of Condition C, D, E, or F is not met, the plant must be brought to a MODE in which the overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 13) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action G.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
Bases

Actions (continued)

H.1 and H.2

If two or more ADS valves are inoperable, there is a reduction in the depressurization capability. The plant must be brought to a condition in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and reactor steam dome pressure reduced to \(\leq 150 \) psig within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

I.1

When multiple ECCS subsystems are inoperable, as stated in Condition H, the plant is in a condition outside of the accident analyses. Therefore, LCO 3.0.3 must be entered immediately.

Surveillance Requirements

SR 3.5.1.1

The ECCS injection/spray subsystem flow path piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the ECCS injection/spray subsystems and may also prevent a water hammer, pump cavitation, and pumping of noncondensible gas into the reactor vessel.

Selection of ECCS injection/spray subsystem locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The ECCS injection/spray subsystem is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or
discharge of a pump), the Surveillance is not met. If the accumulated gas is eliminated or brought within the acceptance criteria limits during performance of the Surveillance, the Surveillance is met and past system OPERABILITY is evaluated under the Corrective Action Program. If it is determined by subsequent evaluation that the ECCS injection/spray subsystems are not rendered inoperable by the accumulated gas (i.e., the system is sufficiently filled with water), the Surveillance may be declared met. Accumulated gas should be eliminated or brought within the acceptance criteria limits.

ECCS injection/spray subsystem locations susceptible to gas accumulation are monitored and, if gas is found, the gas volume is compared to the acceptance criteria for the location. Susceptible locations in the same system flow path which are subject to the same gas intrusion mechanisms may be verified by monitoring a representative subset of susceptible locations. Monitoring may not be practical for locations that are inaccessible due to radiological or environmental conditions, the plant configuration, or personnel safety. For these locations alternative methods (e.g., operating parameters, remote monitoring) may be used to monitor the susceptible location. Monitoring is not required for susceptible locations where the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.

[The 31 day Frequency is based on the gradual nature of void buildup in the ECCS injection/spray subsystem piping, the procedural controls governing system operation, and operating experience.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.5.1.2

Verifying the correct alignment for manual, power operated, and automatic valves in the ECCS flow paths provides assurance that the proper flow paths will exist for ECCS operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these were verified to be in the correct position prior to locking, sealing, or securing. A valve that receives an initiation signal is allowed to be in a nonaccident position provided the valve will automatically reposition in the proper stroke time. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of potentially being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves. For the HPCI System, this SR also includes the steam flow path for the turbine and the flow controller position.

[The 31 day Frequency of this SR was derived from the INSERVICE TESTING PROGRAM requirements for performing valve testing at least once every 92 days. The Frequency of 31 days is further justified because the valves are operated under procedural control and because improper valve position would only affect a single subsystem. This Frequency has been shown to be acceptable through operating experience.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The Surveillance is modified by a Note which exempts system vent flow paths opened under administrative control. The administrative control should be proceduralized and include stationing a dedicated individual at the system vent flow path who is in continuous communication with the operators in the control room. This individual will have a method to rapidly close the system vent flow path if directed.
BASES

SURVEILLANCE REQUIREMENTS (continued)

SR 3.5.1.3

Verification that ADS air supply header pressure is $\geq [90]$ psig ensures adequate air pressure for reliable ADS operation. The accumulator on each ADS valve provides pneumatic pressure for valve actuation. The design pneumatic supply pressure requirements for the accumulator are such that, following a failure of the pneumatic supply to the accumulator, at least two valve actuations can occur with the drywell at 70% of design pressure (Ref. 11). The ECCS safety analysis assumes only one actuation to achieve the depressurization required for operation of the low pressure ECCS. This minimum required pressure of $\geq [90]$ psig is provided by the ADS instrument air supply. The 31 day Frequency takes into consideration administrative controls over operation of the air system and alarms for low air pressure.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.5.1.4

Verification that the RHR System cross tie valve is closed and power to its operator is disconnected ensures that each LPCI subsystem remains independent and a failure of the flow path in one subsystem will not affect the flow path of the other LPCI subsystem. Acceptable methods of removing power to the operator include de-energizing breaker control power or racking out or removing the breaker. If the RHR System cross tie valve is open or power has not been removed from the valve operator, both LPCI subsystems must be considered inoperable. The 31 day Frequency has been found acceptable, considering that these valves are under strict administrative controls that will ensure the valves continue to remain closed with either control or motive power removed.

OR
SURVEILLANCE REQUIREMENTS (continued)

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.5.1.5

Verification that each LPCI inverter output has a voltage of ≥ [570] V and ≤ [630] V while supplying its respective bus demonstrates that the AC electrical power is available to ensure proper operation of the associated LPCI inboard injection and minimum flow valves and the recirculation pump discharge valve. Each inverter must be OPERABLE for the associated LPCI subsystem to be OPERABLE. [The 31 day Frequency has been found acceptable based on engineering judgment and operating experience.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.5.1.6

Cycling the recirculation pump discharge [and bypass] valves through one complete cycle of full travel demonstrates that the valves are mechanically OPERABLE and will close when required. Upon initiation of an automatic LPCI subsystem injection signal, these valves are required to be closed to ensure full LPCI subsystem flow injection in the reactor via the recirculation jet pumps. De-energizing the valve in the closed position will also ensure the proper flow path for the LPCI subsystem. Acceptable methods of de-energizing the valve include de-energizing breaker control power, racking out the breaker or removing the breaker.
The specified Frequency is once during reactor startup before THERMAL POWER is > 25% RTP. However, this SR is modified by a Note that states the Surveillance is only required to be performed if the last performance was more than 31 days ago. Therefore, implementation of this Note requires this test to be performed during reactor startup before exceeding 25% RTP. Verification during reactor startup prior to reaching > 25% RTP is an exception to the normal INSERVICE TESTING PROGRAM generic valve cycling Frequency, but is considered acceptable due to the demonstrated reliability of these valves. If the valve is inoperable and in the open position, the associated LPCI subsystem must be declared inoperable.

SR 3.5.1.7, SR 3.5.1.8, and SR 3.5.1.9

The performance requirements of the low pressure ECCS pumps are determined through application of the 10 CFR 50, Appendix K criteria (Ref. 8). This periodic Surveillance is performed (in accordance with the ASME Code requirements for the ECCS pumps) to verify that the ECCS pumps will develop the flow rates required by the respective analyses. The low pressure ECCS pump flow rates ensure that adequate core cooling is provided to satisfy the acceptance criteria of Reference 10. The pump flow rates are verified against a system head equivalent to the RPV pressure expected during a LOCA. The total system pump outlet pressure is adequate to overcome the elevation head pressure between the pump suction and the vessel discharge, the piping friction losses, and RPV pressure present during a LOCA. These values may be established during preoperational testing.

The flow tests for the HPCI System are performed at two different pressure ranges such that system capability to provide rated flow is tested at both the higher and lower operating ranges of the system. Additionally, adequate steam flow must be passing through the main turbine or turbine bypass valves to continue to control reactor pressure when the HPCI System diverts steam flow. Reactor steam pressure must be ≥ [920] psig to perform SR 3.5.1.8 and ≥ [150] psig to perform SR 3.5.1.9. Adequate steam flow is represented by [at least 1.25 turbine bypass valves open, or total steam flow ≥ 10^6 lb/hr]. Therefore, sufficient time is allowed after adequate pressure and flow are achieved to perform these tests. Reactor startup is allowed prior to performing the low pressure Surveillance test because the reactor pressure is low and the time allowed to satisfactorily perform the Surveillance test is short. The reactor pressure is allowed to be increased to normal operating pressure since it is assumed that the low pressure test has been satisfactorily completed and there is no indication or reason to believe that HPCI is inoperable.
Therefore, SR 3.5.1.8 and SR 3.5.1.9 are modified by Notes that state the
Surveys are not required to be performed until 12 hours after the
reactor steam pressure and flow are adequate to perform the test.

REVIEWER’S NOTE

If the testing is within the scope of the licensee's INSERVICE TESTING
PROGRAM, the Frequency "In accordance with the INSERVICE
TESTING PROGRAM" should be used. Otherwise, the periodic
Frequency of [92 days] or the reference to the Surveillance Frequency
Control Program should be used.

[The Frequency for SR 3.5.1.7 is [92 days] [in accordance with the
INSERVICE TESTING PROGRAM]. The Frequency for SR 3.5.1.8 is in
accordance with the Inservice Testing Program requirements. The
18 month Frequency for SR 3.5.1.9 is based on the need to perform the
Surveillance under the conditions that apply just prior to or during a
startup from a plant outage. Operating experience has shown that these
components usually pass the SR when performed at the 18 month
Frequency, which is based on the refueling cycle. Therefore, the
Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequencies for [SR 3.5.1.7,] SR 3.5.1.8, and
SR 3.5.1.9 are controlled under the Surveillance Frequency Control
Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance
Frequency Control Program should utilize the appropriate Frequency
description, given above, and the appropriate choice of Frequency in the
Surveillance Requirement.

SR 3.5.1.10

The ECCS subsystems are required to actuate automatically to perform
their design functions. This Surveillance verifies that, with a required
system initiation signal (actual or simulated), the automatic initiation logic
of HPCI, CS, and LPCI will cause the systems or subsystems to operate
as designed, including actuation of the system throughout its emergency
operating sequence, automatic pump startup and actuation of all
automatic valves to their required positions. This SR also ensures that the HPCI System will automatically restart on an RPV low water level (Level 2) signal received subsequent to an RPV high water level (Level 8) trip and that the suction is automatically transferred from the CST to the suppression pool. The SR excludes automatic valves that are locked, sealed, or otherwise secured in the actuated position. The SR does not apply to valves that are locked, sealed, or otherwise secured in the actuated position since the affected valves were verified to be in the actuated position prior to being locked, sealed, or otherwise secured. Placing an automatic valve in a locked, sealed, or otherwise secured position requires an assessment of the OPERABILITY of the system or any supported systems, including whether it is necessary for the valve to be repositioned to the non-actuated position to support the accident analysis. Restoration of an automatic valve to the non-actuated position requires verification that the SR has been met within its required Frequency. The LOGIC SYSTEM FUNCTIONAL TEST performed in LCO 3.3.5.1 overlaps this Surveillance to provide complete testing of the assumed safety function.

[The 18 month Frequency is based on the need to perform the Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power.

Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency, which is based on the refueling cycle. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

---]

This SR is modified by a Note that excludes vessel injection/spray during the Surveillance. Since all active components are testable and full flow can be demonstrated by recirculation through the test line, coolant injection into the RPV is not required during the Surveillance.
SR 3.5.1.11

The ADS designated S/RVs are required to actuate automatically upon receipt of specific initiation signals. A system functional test is performed to demonstrate that the mechanical portions of the ADS function (i.e., solenoids) operate as designed when initiated either by an actual or simulated initiation signal, causing proper actuation of all the required components. SR 3.5.1.12 and the LOGIC SYSTEM FUNCTIONAL TEST performed in LCO 3.3.5.1 overlap this Surveillance to provide complete testing of the assumed safety function.

[The 18 month Frequency is based on the need to perform the Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency, which is based on the refueling cycle. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by a Note that excludes valve actuation. This prevents an RPV pressure blowdown.

SR 3.5.1.12

A manual actuation of each ADS valve is performed to verify that the valve and solenoid are functioning properly and that no blockage exists in the S/RV discharge lines. This is demonstrated by the response of the turbine control or bypass valve or by a change in the measured flow or by any other method suitable to verify steam flow. Adequate reactor steam dome pressure must be available to perform this test to avoid damaging the valve. Also, adequate steam flow must be passing through the main turbine or turbine bypass valves to continue to control reactor pressure.
when the ADS valves divert steam flow upon opening. Sufficient time is therefore allowed after the required pressure and flow are achieved to perform this SR. Adequate pressure at which this SR is to be performed is [920 psig] (the pressure recommended by the valve manufacturer). Adequate steam flow is represented by [at least 1.25 turbine bypass valves open, or total steam flow ≥ 10⁶ lb/hr]. Reactor startup is allowed prior to performing this SR because valve OPERABILITY and the setpoints for overpressure protection are verified, per ASME requirements, prior to valve installation. Therefore, this SR is modified by a Note that states the Surveillance is not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test. The 12 hours allowed for manual actuation after the required pressure is reached is sufficient to achieve stable conditions and provides adequate time to complete the Surveillance. SR 3.5.1.11 and the LOGIC SYSTEM FUNCTIONAL TEST performed in LCO 3.3.5.1 overlap this Surveillance to provide complete testing of the assumed safety function.

[The Frequency of 18 months on a STAGGERED TEST BASIS ensures that both solenoids for each ADS valve are alternately tested. The Frequency is based on the need to perform the Surveillance under the conditions that apply just prior to or during a startup from a plant outage.

Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency, which is based on the refueling cycle. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--

REFERENCES

1. FSAR, Section [6.3.2.2.3].

2. FSAR, Section [6.3.2.2.4].

3. FSAR, Section [6.3.2.2.1].
REFERENCES (continued)

4. FSAR, Section [6.3.2.2.2].

5. FSAR, Section [15.2.8].

6. FSAR, Section [15.6.4].

7. FSAR, Section [15.6.5].

8. 10 CFR 50, Appendix K.

9. FSAR, Section [6.3.3].

10. 10 CFR 50.46.

11. FSAR, Section [7.3.1.2.2].

12. Memorandum from R.L. Baer (NRC) to V. Stello, Jr. (NRC), "Recommended Interim Revisions to LCOs for ECCS Components," December 1, 1975.

14. FSAR, Section [6.3.3.3].
B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS), RPV WATER INVENTORY CONTROL, AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM

B 3.5.2 Reactor Pressure Vessel (RPV) Water Inventory Control

BASES

BACKGROUND
The RPV contains penetrations below the top of the active fuel (TAF) that have the potential to drain the reactor coolant inventory to below the TAF. If the water level should drop below the TAF, the ability to remove decay heat is reduced, which could lead to elevated cladding temperatures and clad perforation. Safety Limit 2.1.1.3 requires the RPV water level to be above the top of the active irradiated fuel at all times to prevent such elevated cladding temperatures.

APPLICABLE SAFETY ANALYSES
With the unit in MODE 4 or 5, RPV water inventory control is not required to mitigate any events or accidents evaluated in the safety analyses. RPV water inventory control is required in MODES 4 and 5 to protect Safety Limit 2.1.1.3 and the fuel cladding barrier to prevent the release of radioactive material to the environment should an unexpected draining event occur.

A double-ended guillotine break of the Reactor Coolant System (RCS) is not considered in MODES 4 and 5 due to the reduced RCS pressure, reduced piping stresses, and ductile piping systems. Instead, an event is considered in which an initiating event allows draining of the RPV water inventory through a single penetration flow path with the highest flow rate, or the sum of the drain rates through multiple penetration flow paths susceptible to a common mode failure (an event that creates a drain path through multiple vessel penetrations located below top of active fuel, such as loss of normal power, or a single human error). It is assumed, based on engineering judgment, that while in MODES 4 and 5, one low pressure ECCS injection/spray subsystem can maintain adequate reactor vessel water level.

As discussed in References 1, 2, 3, 4, and 5, operating experience has shown RPV water inventory to be significant to public health and safety. Therefore, RPV Water Inventory Control satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO
The RPV water level must be controlled in MODES 4 and 5 to ensure that if an unexpected draining event should occur, the reactor coolant water level remains above the top of the active irradiated fuel as required by Safety Limit 2.1.1.3.

The Limiting Condition for Operation (LCO) requires the DRAIN TIME of RPV water inventory to the TAF to be ≥ 36 hours. A DRAIN TIME of 36 hours is considered reasonable to identify and initiate action to
mitigate unexpected draining of reactor coolant. An event that could cause loss of RPV water inventory and result in the RPV water level reaching the TAF in greater than 36 hours does not represent a significant challenge to Safety Limit 2.1.1.3 and can be managed as part of normal plant operation.

One low pressure ECCS injection/spray subsystem is required to be OPERABLE and capable of being manually aligned and started from the control room to provide defense-in-depth should an unexpected draining event occur. OPERABILITY of the ECCS injection/spray subsystem includes any necessary valves, instrumentation, or controls needed to manually align and start the subsystem from the control room. A low pressure ECCS injection/spray subsystem consists of either one core spray (CS) subsystem or one low pressure coolant injection (LPCI) subsystem. Each CS subsystem consists of one motor driven pump, piping, and valves to transfer water from the suppression pool or condensate storage tank (CST) to the RPV. Each LPCI subsystem consists of one motor driven pump, piping, and valves to transfer water from the suppression pool to the RPV. In MODES 4 and 5, the RHR System cross tie valve is not required to be closed. Management of gas voids is important to ECCS injection/spray subsystem OPERABILITY.

APPLICABILITY
RPV water inventory control is required in MODES 4 and 5. Requirements on water inventory control in other MODES are contained in LCOs in Section 3.3, "Instrumentation," and other LCOs in Section 3.5, "ECCS, RPV Water Inventory Control, and RCIC System." RPV water inventory control is required to protect Safety Limit 2.1.1.3 which is applicable whenever irradiated fuel is in the reactor vessel.

ACTIONS
A.1 and B.1

If the required low pressure ECCS injection/spray subsystem is inoperable, it must be restored to OPERABLE status within 4 hours. In this Condition, the LCO controls on DRAIN TIME minimize the possibility that an unexpected draining event could necessitate the use of the ECCS injection/spray subsystem, however the defense-in-depth provided by the ECCS injection/spray subsystem is lost. The 4 hour Completion Time for restoring the required low pressure ECCS injection/spray subsystem to OPERABLE status is based on engineering judgment that considers the LCO controls on DRAIN TIME and the low probability of an unexpected draining event that would result in loss of RPV water inventory.
If the inoperable ECCS injection/spray subsystem is not restored to OPERABLE status within the required Completion Time, action must be initiated immediately to establish a method of water injection capable of operating without offsite electrical power. The method of water injection includes the necessary instrumentation and controls, water sources, and pumps and valves needed to add water to the RPV or refueling cavity should an unexpected draining event occur. The method of water injection may be manually initiated and may consist of one or more systems or subsystems, and must be able to access water inventory capable of maintaining the RPV water level above the TAF for ≥ 36 hours. If recirculation of injected water would occur, it may be credited in determining the necessary water volume.

C.1, C.2, and C.3

With the DRAIN TIME less than 36 hours but greater than or equal to 8 hours, compensatory measures should be taken to ensure the ability to implement mitigating actions should an unexpected draining event occur. Should a draining event lower the reactor coolant level to below the TAF, there is potential for damage to the reactor fuel cladding and release of radioactive material. Additional actions are taken to ensure that radioactive material will be contained, diluted, and processed prior to being released to the environment.

The [secondary] containment provides a controlled volume in which fission products can be contained, diluted, and processed prior to release to the environment. Required Action C.1 requires verification of the capability to establish the [secondary] containment boundary in less than the DRAIN TIME. The required verification confirms actions to establish the [secondary] containment boundary are preplanned and necessary materials are available. The [secondary] containment boundary is considered established when one standby gas treatment (SGT) subsystem is capable of maintaining a negative pressure in the [secondary] containment with respect to the environment.

Verification that the [secondary] containment boundary can be established must be performed within 4 hours. The required verification is an administrative activity and does not require manipulation or testing of equipment.
BASSES

ACTIONS (continued)

[Secondary] containment penetration flow paths form a part of the [secondary] containment boundary. Required Action C.2 requires verification of the capability to isolate each [secondary] containment penetration flow path in less than the DRAIN TIME. The required verification confirms actions to isolate the [secondary] containment penetration flow paths are preplanned and necessary materials are available. Power operated valves are not required to receive automatic isolation signals if they can be closed manually within the required time. Verification that the [secondary] containment penetration flow paths can be isolated must be performed within 4 hours. The required verification is an administrative activity and does not require manipulation or testing of equipment.

One SGT subsystem is capable of maintaining the [secondary] containment at a negative pressure with respect to the environment and filter gaseous releases. Required Action C.3 requires verification of the capability to place one SGT subsystem in operation in less than the DRAIN TIME. The required verification confirms actions to place a SGT subsystem in operation are preplanned and necessary materials are available. Verification that a SGT subsystem can be placed in operation must be performed within 4 hours. The required verification is an administrative activity and does not require manipulation or testing of equipment.

---------------------------------- REVIEWER'S NOTE ----------------------------------

The bracketed information applies to multiple unit sites with a shared secondary containment and recognizes that an OPERABLE secondary containment, secondary containment penetrations, and SGT subsystems satisfy Required Actions C.1, C.2, and C.3.

[Required Actions C.1, C.2, and C.3 are considered to be met when [secondary] containment, [secondary] containment penetrations, and the SGT System are OPERABLE in accordance with LCO 3.6.4.1, LCO 3.6.4.2, and LCO 3.6.4.3.]
D.1, D.2, D.3, and D.4

The bracketed information applies to multiple unit sites with a shared secondary containment and recognizes that an OPERABLE secondary containment, secondary containment penetrations, and SGT subsystems satisfy Required Actions D.2, D.3, and D.4.

With the DRAIN TIME less than 8 hours, mitigating actions are implemented in case an unexpected draining event should occur. Note that if the DRAIN TIME is less than 1 hour, Required Action E.1 is also applicable.

Required Action D.1 requires immediate action to establish an additional method of water injection augmenting the ECCS injection/spray subsystem required by the LCO. The additional method of water injection includes the necessary instrumentation and controls, water sources, and pumps and valves needed to add water to the RPV or refueling cavity should an unexpected draining event occur. The Note to Required Action D.1 states that either the ECCS injection/spray subsystem or the additional method of water injection must be capable of operating without offsite electrical power. The additional method of water injection may be manually initiated and may consist of one or more systems or subsystems. The additional method of water injection must be able to access water inventory capable of being injected to maintain the RPV water level above the TAF for ≥ 36 hours. The additional method of water injection and the ECCS injection/spray subsystem may share all or part of the same water sources. If recirculation of injected water would occur, it may be credited in determining the required water volume.

Should a draining event lower the reactor coolant level to below the TAF, there is potential for damage to the reactor fuel cladding and release of radioactive material. Additional actions are taken to ensure that radioactive material will be contained, diluted, and processed prior to being released to the environment.

The [secondary] containment provides a control volume in which fission products can be contained, diluted, and processed prior to release to the environment. Required Action D.2 requires that actions be immediately initiated to establish the [secondary] containment boundary. With the [secondary] containment boundary established, one SGT subsystem is capable of maintaining a negative pressure in the [secondary] containment with respect to the environment.
BASES

ACTIONS (continued)

The [secondary] containment penetrations form a part of the [secondary] containment boundary. Required Action D.3 requires that actions be immediately initiated to verify that each [secondary] containment penetration flow path is isolated or to verify that it can be [automatically or] manually isolated from the control room.

One SGT subsystem is capable of maintaining the [secondary] containment at a negative pressure with respect to the environment and filter gaseous releases. Required Action D.4 requires that actions be immediately initiated to verify that at least one SGT subsystem is capable of being placed in operation. The required verification is an administrative activity and does not require manipulation or testing of equipment.

[Required Actions D.2, D.3, and D.4 are considered to be met when [secondary] containment, [secondary] containment penetrations, and the SGT System are OPERABLE in accordance with LCO 3.6.4.1, LCO 3.6.4.2, and LCO 3.6.4.3.]

E.1

If the Required Actions and associated Completion Times of Conditions C or D are not met or if the DRAIN TIME is less than 1 hour, actions must be initiated immediately to restore the DRAIN TIME to ≥ 36 hours. In this condition, there may be insufficient time to respond to an unexpected draining event to prevent the RPV water inventory from reaching the TAF. Note that Required Actions D.1, D.2, D.3, and D.4 are also applicable when DRAIN TIME is less than 1 hour.

SURVEILLANCE REQUIREMENTS

SR 3.5.2.1

This Surveillance verifies that the DRAIN TIME of RPV water inventory to the TAF is ≥ 36 hours. The period of 36 hours is considered reasonable to identify and initiate action to mitigate draining of reactor coolant. Loss of RPV water inventory that would result in the RPV water level reaching the TAF in greater than 36 hours does not represent a significant challenge to Safety Limit 2.1.1.3 and can be managed as part of normal plant operation.
The definition of DRAIN TIME states that realistic cross-sectional areas and drain rates are used in the calculation. A realistic drain rate may be determined using a single, step-wise, or integrated calculation considering the changing RPV water level during a draining event. For a control rod RPV penetration flow path with the control rod drive mechanism removed and not replaced with a blank flange, the realistic cross-sectional area is based on the control rod blade seated in the control rod guide tube. If the control rod blade will be raised from the penetration to adjust or verify seating of the blade, the exposed cross-sectional area of the RPV penetration flow path is used.

The definition of DRAIN TIME excludes from the calculation those penetration flow paths connected to an intact closed system, or isolated by manual or automatic valves that are closed and administratively controlled, blank flanges, or other devices that prevent flow of reactor coolant through the penetration flow paths. A blank flange or other bolted device must be connected with a sufficient number of bolts to prevent draining. Normal or expected leakage from closed systems or past isolation devices is permitted. Determination that a system is intact and closed or isolated must consider the status of branch lines.

The Residual Heat Removal (RHR) Shutdown Cooling System is only considered an intact closed system when misalignment issues (Reference 6) have been precluded by functional valve interlocks or by isolation devices, such that redirection of RPV water out of an RHR subsystem is precluded. Further, RHR Shutdown Cooling System is only considered an intact closed system if its controls have not been transferred to remote shutdown, which disables the interlocks and isolation signals.

The exclusion of a single penetration flow path, or multiple penetration flow paths susceptible to a common mode failure, from the determination of DRAIN TIME should consider the effects of temporary alterations in support of maintenance (rigging, scaffolding, temporary shielding, piping plugs, freeze seals, etc.). If reasonable controls are implemented to prevent such temporary alterations from causing a draining event from a closed system, or between the RPV and the isolation device, the effect of the temporary alterations on DRAIN TIME need not be considered. Reasonable controls include, but are not limited to, controls consistent with the guidance in NUMARC 93-01, "Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants," Revision [4F], NUMARC 91-06, "Guidelines for Industry Actions to Assess Shutdown Management," or commitments to NUREG-0612, "Control of Heavy Loads at Nuclear Power Plants."
B BASES

SURVEILLANCE REQUIREMENTS (continued)

Surveillance Requirement 3.0.1 requires SRs to be met between performances. Therefore, any changes in plant conditions that would change the DRAIN TIME requires that a new DRAIN TIME be determined.

[The Frequency of 12 hours is sufficient in view of indications of RPV water level available to the operator.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---------------------------------- REVIEWER’S NOTE -------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.5.2.2 and SR 3.5.2.3

The minimum water level of [12 ft 2 inches] required for the suppression pool is periodically verified to ensure that the suppression pool will provide adequate net positive suction head (NPSH) for the CS subsystem or LPCI subsystem pump, recirculation volume, and vortex prevention. With the suppression pool water level less than the required limit, the required ECCS injection/spray subsystem is inoperable unless aligned to an OPERABLE CST.

The required CS System is OPERABLE only if it can take suction from the CST, and the CST water level is sufficient to provide the required NPSH for the CS pump. Therefore, a verification that either the suppression pool water level is $\geq [12 \text{ ft } 2 \text{ inches}]$ or that a required CS subsystem is aligned to take suction from the CST and the CST contains $\geq [150,000]$ gallons of water, equivalent to [12] ft, ensures that the CS subsystem can supply at least [50,000] gallons of makeup water to the RPV. The CS suction is uncovered at the [100,000] gallon level.
SURVEILLANCE REQUIREMENTS (continued)

[The 12 hour Frequency of these SRs was developed considering operating experience related to suppression pool water level and CST water level variations. Furthermore, the 12 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal suppression pool or CST water level condition.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

----------------------------------- }]

SR 3.5.2.4

The ECCS injection/spray subsystem flow path piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the ECCS injection/spray subsystems and may also prevent a water hammer, pump cavitation, and pumping of noncondensible gas into the reactor vessel.

Selection of ECCS injection/spray subsystem locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The ECCS injection/spray subsystem is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible
locations exceeds an acceptance criteria for gas volume at the suction or
discharge of a pump), the Surveillance is not met. If the accumulated gas
is eliminated or brought within the acceptance criteria limits during
performance of the Surveillance, the Surveillance is met and past system
OPERABILITY is evaluated under the Corrective Action Program. If it is
determined by subsequent evaluation that the ECCS injection/spray
subsystems are not rendered inoperable by the accumulated gas (i.e., the
system is sufficiently filled with water), the Surveillance may be declared
met. Accumulated gas should be eliminated or brought within the
acceptance criteria limits.

ECCS injection/spray subsystem locations susceptible to gas
accumulation are monitored and, if gas is found, the gas volume is
compared to the acceptance criteria for the location. Susceptible
locations in the same system flow path which are subject to the same gas
intrusion mechanisms may be verified by monitoring a representative sub-
set of susceptible locations. Monitoring may not be practical for locations
that are inaccessible due to radiological or environmental conditions, the
plant configuration, or personnel safety. For these locations alternative
methods (e.g., operating parameters, remote monitoring) may be used to
monitor the susceptible location. Monitoring is not required for
susceptible locations where the maximum potential accumulated gas void
volume has been evaluated and determined to not challenge system
OPERABILITY. The accuracy of the method used for monitoring the
susceptible locations and trending of the results should be sufficient to
assure system OPERABILITY during the Surveillance interval.

[The 31 day Frequency is based on operating experience, on the
procedural controls governing system operation, and on the gradual
nature of void buildup in the ECCS piping.

OR

The Surveillance Frequency is controlled under the Surveillance
Frequency Control Program. The Surveillance Frequency may vary by
location susceptible to gas accumulation.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance
Frequency Control Program should utilize the appropriate Frequency
description, given above, and the appropriate choice of Frequency in the
Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------]
SR 3.5.2.5

Verifying that the required ECCS injection/spray subsystem can be manually aligned, and the pump started and operated for at least 10 minutes demonstrates that the subsystem is available to mitigate a draining event. This SR is modified by two Notes. Note 1 states that testing the ECCS injection/spray subsystem may be done through the test return line to avoid overfilling the refueling cavity. Note 2 states that credit for meeting the SR may be taken for normal system operation that satisfies the SR, such as using the RHR mode of LPCI for \(\geq 10 \) minutes. The minimum operating time of 10 minutes was based on engineering judgement. [The performance frequency of 92 days is consistent with similar at-power testing required by SR 3.5.1.7.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.5.2.7

This Surveillance verifies that a required CS subsystem or LPCI subsystem can be manually aligned and started from the control room, including any necessary valve alignment, instrumentation, or controls, to transfer water from the suppression pool or CST to the RPV.

[The [18] month Frequency is based on the need to perform the Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power.

Operating experience has shown that these components usually pass the SR when performed at the [18] month Frequency, which is based on the refueling cycle. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------]
REFERENCES

1. Information Notice 84-81 "Inadvertent Reduction in Primary Coolant Inventory in Boiling Water Reactors During Shutdown and Startup," November 1984.

B 3.5.3 RCIC System

BACKGROUND

The RCIC System is not part of the ECCS; however, the RCIC System is included with the ECCS section because of their similar functions.

The RCIC System is designed to operate either automatically or manually following reactor pressure vessel (RPV) isolation accompanied by a loss of coolant flow from the feedwater system to provide adequate core cooling and control of the RPV water level. Under these conditions, the High Pressure Coolant Injection (HPCI) and RCIC systems perform similar functions. The RCIC System design requirements ensure that the criteria of Reference 1 are satisfied.

The RCIC System (Ref. 2) consists of a steam driven turbine pump unit, piping, and valves to provide steam to the turbine, as well as piping and valves to transfer water from the suction source to the core via the feedwater system line, where the coolant is distributed within the RPV through the feedwater sparger. Suction piping is provided from the condensate storage tank (CST) and the suppression pool. Pump suction is normally aligned to the CST to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or the suppression pool level is high, an automatic transfer to the suppression pool water source ensures a water supply for continuous operation of the RCIC System. The steam supply to the turbine is piped from a main steam line upstream of the associated inboard main steam line isolation valve.

The RCIC System is designed to provide core cooling for a wide range of reactor pressures [165 psig to 1155 psig]. Upon receipt of an initiation signal, the RCIC turbine accelerates to a specified speed. As the RCIC flow increases, the turbine control valve is automatically adjusted to maintain design flow. Exhaust steam from the RCIC turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the RCIC System during normal operation without injecting water into the RPV.

The RCIC pump is provided with a minimum flow bypass line, which discharges to the suppression pool. The valve in this line automatically open to prevent pump damage due to overheating when other discharge line valves are closed. To ensure rapid delivery of water to the RPV and to minimize water hammer effects, the RCIC System discharge piping is kept full of water. The RCIC System is normally aligned to the CST. The height of water in the CST is sufficient to maintain the piping full of water.
BASES

BACKGROUND (continued)

up to the first isolation valve. The relative height of the feedwater line connection for RCIC is such that the water in the feedwater lines keeps the remaining portion of the RCIC discharge line full of water. Therefore, RCIC does not require a "keep fill" system.

APPLICABLE SAFETY ANALYSES

The function of the RCIC System is to respond to transient events by providing makeup coolant to the reactor. The RCIC System is not an Engineered Safety Feature System and no credit is taken in the safety analyses for RCIC System operation. The RCIC System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO

The OPERABILITY of the RCIC System provides adequate core cooling such that actuation of any of the low pressure ECCS subsystems is not required in the event of RPV isolation accompanied by a loss of feedwater flow. The RCIC System has sufficient capacity for maintaining RPV inventory during an isolation event. Management of gas voids is important to RCIC System OPERABILITY.

APPLICABILITY

The RCIC System is required to be OPERABLE during MODE 1, and MODES 2 and 3 with reactor steam dome pressure > 150 psig, since RCIC is the primary non-ECCS water source for core cooling when the reactor is isolated and pressurized. In MODES 2 and 3 with reactor steam dome pressure ≤ 150 psig, the low pressure ECCS injection/spray subsystems can provide sufficient flow to the RPV. In MODES 4 and 5, RCIC is not required to be OPERABLE since RPV water inventory control is required by LCO 3.5.2, "RPV Water Level Inventory Control."

ACTIONS

A Note prohibits the application of LCO 3.0.4.b to an inoperable RCIC System. There is an increased risk associated with entering a MODE or other specified condition in the Applicability with an inoperable RCIC System and the provisions of LCO 3.0.4.b, which allow entry into a MODE or other specified condition in the Applicability with the LCO not met after performance of a risk assessment addressing inoperable systems and components, should not be applied in this circumstance.

A.1 and A.2

If the RCIC System is inoperable during MODE 1, or MODE 2 or 3 with reactor steam dome pressure > [150] psig, and the HPCI System is verified to be OPERABLE, the RCIC System must be restored to OPERABLE status within 14 days [or in accordance with the Risk Informed Completion Time Program]. In this Condition, loss of the RCIC System will not affect the overall plant capability to provide makeup inventory at high reactor pressure since the HPCI System is the only high
pressure system assumed to function during a loss of coolant accident (LOCA). OPERABILITY of HPCI is therefore verified immediately when the RCIC System is inoperable. This may be performed as an administrative check, by examining logs or other information, to determine if HPCI is out of service for maintenance or other reasons. It does not mean it is necessary to perform the Surveillances needed to demonstrate the OPERABILITY of the HPCI System. If the OPERABILITY of the HPCI System cannot be verified, however, Condition B must be immediately entered. For transients and certain abnormal events with no LOCA, RCIC (as opposed to HPCI) is the preferred source of makeup coolant because of its relatively small capacity, which allows easier control of the RPV water level. Therefore, a limited time is allowed to restore the inoperable RCIC to OPERABLE status.

The 14 day Completion Time is based on a reliability study (Ref. 3) that evaluated the impact on ECCS availability, assuming various components and subsystems were taken out of service. The results were used to calculate the average availability of ECCS equipment needed to mitigate the consequences of a LOCA as a function of allowed outage times (AOTs). Because of similar functions of HPCI and RCIC, the AOTs (i.e., Completion Times) determined for HPCI are also applied to RCIC.

B.1

-----------------------------------REVIEWER’S NOTE-----------------------------------

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If the RCIC System cannot be restored to OPERABLE status within the associated Completion Time, or if the HPCI System is simultaneously inoperable, the plant must be brought to a condition in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.
BASES

ACTIONS (continued)

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 4) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action B.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.5.3.1

The RCIC System flow path piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RCIC System and may also prevent a water hammer, pump cavitation, and pumping of noncondensible gas into the reactor vessel.

Selection of RCIC System locations susceptible to gas accumulation is based on a self-assessment of the piping configuration to identify where gases may accumulate and remain even after the system is filled and vented, and to identify vulnerable potential degassing flow paths. The review is supplemented by verification that installed high-point vents are actually at the system high points, including field verification to ensure pipe shapes and construction tolerances have not inadvertently created additional high points. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.
The RCIC System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or discharge of a pump), the Surveillance is not met. If the accumulated gas is eliminated or brought within the acceptance criteria limits during performance of the Surveillance, the Surveillance is met and past system OPERABILITY is evaluated under the Corrective Action Program. If it is determined by subsequent evaluation that the RCIC System is not rendered inoperable by the accumulated gas (i.e., the system is sufficiently filled with water), the Surveillance may be declared met. Accumulated gas should be eliminated or brought within the acceptance criteria limits.

RCIC System locations susceptible to gas accumulation are monitored and, if gas is found, the gas volume is compared to the acceptance criteria for the location. Susceptible locations in the same system flow path which are subject to the same gas intrusion mechanisms may be verified by monitoring a representative sub-set of susceptible locations. Monitoring may not be practical for locations that are inaccessible due to radiological or environmental conditions, the plant configuration, or personnel safety. For these locations alternative methods (e.g., operating parameters, remote monitoring) may be used to monitor the susceptible location. Monitoring is not required for susceptible locations where the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.

[The 31 day Frequency is based on the gradual nature of void buildup in the RCIC piping, the procedural controls governing system operation, and operating experience.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.5.3.2

Verifying the correct alignment for manual, power operated, and automatic valves in the RCIC flow path provides assurance that the proper flow path will exist for RCIC operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve that receives an initiation signal is allowed to be in a nonaccident position provided the valve will automatically reposition in the proper stroke time. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of potentially being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves. For the RCIC System, this SR also includes the steam flow path for the turbine and the flow controller position.

[The 31 day Frequency of this SR was derived from the INSERVICE TESTING PROGRAM requirements for performing valve testing at least once every 92 days. The Frequency of 31 days is further justified because the valves are operated under procedural control and because improper valve position would affect only the RCIC System. This Frequency has been shown to be acceptable through operating experience.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------
The Surveillance is modified by a Note which exempts system vent flow paths opened under administrative control. The administrative control should be proceduralized and include stationing a dedicated individual at the system vent flow path who is in continuous communication with the operators in the control room. This individual will have a method to rapidly close the system vent flow path if directed.

SR 3.5.3.3 and SR 3.5.3.4

The RCIC pump flow rates ensure that the system can maintain reactor coolant inventory during pressurized conditions with the RPV isolated. The flow tests for the RCIC System are performed at two different pressure ranges such that system capability to provide rated flow is tested both at the higher and lower operating ranges of the system. Additionally, adequate steam flow must be passing through the main turbine or turbine bypass valves to continue to control reactor pressure when the RCIC System diverts steam flow. Reactor steam pressure must be ≥ 920 psig to perform SR 3.5.3.3 and ≥ 150 psig to perform SR 3.5.3.4. Adequate steam flow is represented by [at least 1.25 turbine bypass valves open, or total steam flow $\geq 10^6$ lb/hr]. Therefore, sufficient time is allowed after adequate pressure and flow are achieved to perform these SRs. Reactor startup is allowed prior to performing the low pressure Surveillance because the reactor pressure is low and the time allowed to satisfactorily perform the Surveillance is short. The reactor pressure is allowed to be increased to normal operating pressure since it is assumed that the low pressure Surveillance has been satisfactorily completed and there is no indication or reason to believe that RCIC is inoperable. Therefore, these SRs are modified by Notes that state the Surveillance are not required to be performed until 12 hours after the reactor steam pressure and flow are adequate to perform the test.

[A 92 day Frequency for SR 3.5.3.3 is consistent with the INSERVICE TESTING PROGRAM requirements. The 18 month Frequency for SR 3.5.3.4 is based on the need to perform the Surveillance under conditions that apply just prior to or during a startup from a plant outage. Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency, which is based on the refueling cycle. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.5.3.5

The RCIC System is required to actuate automatically in order to verify its design function satisfactorily. This Surveillance verifies that, with a required system initiation signal (actual or simulated), the automatic initiation logic of the RCIC System will cause the system to operate as designed, including actuation of the system throughout its emergency operating sequence; that is, automatic pump startup and actuation of all automatic valves to their required positions. This test also ensures the RCIC System will automatically restart on an RPV low water level (Level 2) signal received subsequent to an RPV high water level (Level 8) trip and that the suction is automatically transferred from the CST to the suppression pool. The SR excludes automatic valves that are locked, sealed, or otherwise secured in the actuated position. The SR does not apply to valves that are locked, sealed, or otherwise secured in the actuated position since the affected valves were verified to be in the actuated position prior to being locked, sealed, or otherwise secured. Placing an automatic valve in a locked, sealed, or otherwise secured position requires an assessment of the OPERABILITY of the system or any supported systems, including whether it is necessary for the valve to be repositioned to the non-actuated position to support the accident analysis. Restoration of an automatic valve to the non-actuated position requires verification that the SR has been met within its required Frequency. The LOGIC SYSTEM FUNCTIONAL TEST performed in LCO 3.3.5.3 overlaps this Surveillance to provide complete testing of the assumed safety function.

The 18 month Frequency is based on the need to perform the Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency, which is based on the refueling cycle. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR
BASES

SURVEILLANCE REQUIREMENTS (continued)

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by a Note that excludes vessel injection during the Surveillance. Since all active components are testable and full flow can be demonstrated by recirculation through the test line, coolant injection into the RPV is not required during the Surveillance.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 33.
2. FSAR, Section [5.5.6].
3. Memorandum from R.L. Baer (NRC) to V. Stello, Jr. (NRC), "Recommended Interim Revisions to LCOs for ECCS Components," December 1, 1975.
B 3.6 CONTAINMENT SYSTEMS

B 3.6.1.1 Primary Containment

BASES

BACKGROUND The function of the primary containment is to isolate and contain fission products released from the Reactor Primary System following a design basis loss of coolant accident (LOCA) and to confine the postulated release of radioactive material. The primary containment consists of a steel lined, reinforced concrete vessel, which surrounds the Reactor Primary System and provides an essentially leak tight barrier against an uncontrolled release of radioactive material to the environment.

The isolation devices for the penetrations in the primary containment boundary are a part of the containment leak tight barrier. To maintain this leak tight barrier:

a. All penetrations required to be closed during accident conditions are either:

 1. Capable of being closed by an OPERABLE automatic containment isolation system or

 2. Closed by manual valves, blind flanges, or de-activated automatic valves secured in their closed positions, except as provided in LCO 3.6.1.3, "Primary Containment Isolation Valves (PCIVs),"

b. The primary containment air lock is OPERABLE, except as provided in LCO 3.6.1.2, "Primary Containment Air Lock,"

c. All equipment hatches are closed, and

 [d. The pressurized sealing mechanism associated with a penetration is OPERABLE, except as provided in LCO 3.6.1.[]]

This Specification ensures that the performance of the primary containment, in the event of a Design Basis Accident (DBA), meets the assumptions used in the safety analyses of References 1 and 2. SR 3.6.1.1.1 leakage rate requirements are in conformance with 10 CFR 50, Appendix J, Option [A][B] (Ref. 3), as modified by approved exemptions.
Bases

<table>
<thead>
<tr>
<th>APPLICABLE SAFETY ANALYSES</th>
<th>The safety design basis for the primary containment is that it must withstand the pressures and temperatures of the limiting DBA without exceeding the design leakage rate.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The DBA that postulates the maximum release of radioactive material within primary containment is a LOCA. In the analysis of this accident, it is assumed that primary containment is OPERABLE such that release of fission products to the environment is controlled by the rate of primary containment leakage.</td>
</tr>
<tr>
<td></td>
<td>Analytical methods and assumptions involving the primary containment are presented in References 1 and 2. The safety analyses assume a nonmechanistic fission product release following a DBA, which forms the basis for determination of offsite doses. The fission product release is, in turn, based on an assumed leakage rate from the primary containment. OPERABILITY of the primary containment ensures that the leakage rate assumed in the safety analyses is not exceeded.</td>
</tr>
<tr>
<td></td>
<td>The maximum allowable leakage rate for the primary containment ((L_a)) is ([1.2])% by weight of the containment air per 24 hours at the design basis LOCA maximum peak containment pressure ((P_a)) of ([57.5]) psig [or ([0.84])% by weight of the containment air per 24 hours at the reduced pressure of (P_t) ((28.8)) psig)] (Ref. 1).</td>
</tr>
<tr>
<td></td>
<td>Primary containment satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).</td>
</tr>
</tbody>
</table>

LCO	Primary containment OPERABILITY is maintained by limiting leakage to \(\leq 1.0 \ L_a \), except prior to the first startup after performing a required Primary Containment Leakage Rate Testing Program leakage test. At this time the applicable leakage limits must be met.
	Compliance with this LCO will ensure a primary containment configuration, including equipment hatches, that is structurally sound and that will limit leakage to those leakage rates assumed in the safety analyses.
	Individual leakage rates specified for the primary containment air lock are addressed in LCO 3.6.1.2.

| APPLICABILITY | In MODES 1, 2, and 3, a DBA could cause a release of radioactive material to primary containment. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, primary containment is not required to be OPERABLE in MODES 4 and 5 to prevent leakage of radioactive material from primary containment. |
Bases

Actions

A.1

In the event primary containment is inoperable, primary containment must be restored to OPERABLE status within 1 hour. The 1 hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining primary containment OPERABILITY during Modes 1, 2, and 3. This time period also ensures that the probability of an accident (requiring primary containment OPERABILITY) occurring during periods where primary containment is inoperable is minimal.

B.1 and B.2

If primary containment cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

Surveillance

Requirements

SR 3.6.1.1.1

Maintaining the primary containment OPERABLE requires compliance with the visual examinations and leakage rate test requirements of the Primary Containment Leakage Rate Testing Program. Failure to meet air lock leakage testing (SR 3.6.1.2.1), [secondary containment bypass leakage (SR 3.6.1.3.12),] [resilient seal primary containment purge valve leakage testing (SR 3.6.1.3.7),] or main steam isolation valve leakage (SR 3.6.1.3.13) does not necessarily result in a failure of this SR. The impact of the failure to meet these SRs must be evaluated against the Type A, B, and C acceptance criteria of the Primary Containment Leakage Rate Testing Program. As left leakage prior to the first startup after performing a required Primary Containment Leakage Rate Testing Program leakage test is required to be < 0.6 Lₐ for combined Type B and C leakage, and [< 0.75 Lₐ for Option A] [≤ 0.75 Lₐ for Option B] for overall Type A leakage. At all other times between required leakage rate tests, the acceptance criteria is based on an overall Type A leakage limit of ≤ 1.0 Lₐ. At ≤ 1.0 Lₐ the offsite dose consequences are bounded by the assumptions of the safety analysis. The Frequency is required by the Primary Containment Leakage Rate Testing Program.

Reviewer's Note

Regulatory Guide 1.163 and NEI 94-01 include acceptance criteria for as-left and as-found Type A leakage rates and combined Type B and C leakage rates, which may be reflected in the Bases.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.1.1.2

Maintaining the pressure suppression function of primary containment requires limiting the leakage from the drywell to the suppression chamber. Thus, if an event were to occur that pressurized the drywell, the steam would be directed through the downcomers into the suppression pool. This SR measures drywell to suppression chamber differential pressure during a [10] minute period to ensure that the leakage paths that would bypass the suppression pool are within allowable limits.

Satisfactory performance of this SR can be achieved by establishing a known differential pressure between the drywell and the suppression chamber and verifying that the pressure in either the suppression chamber or the drywell does not change by more than [0.25] inch of water per minute over a 10 minute period. [The leakage test is performed every [18 months]. The [18 month] Frequency was developed considering it is prudent that this Surveillance be performed during a unit outage and also in view of the fact that component failures that might have affected this test are identified by other primary containment SRs.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

Two consecutive test failures, however, would indicate unexpected primary containment degradation; in this event, as the Note indicates, increasing the Frequency to once every [9 months] is required until the situation is remedied as evidenced by passing two consecutive tests.

REFERENCES

1. FSAR, Section [6.2].
2. FSAR, Section [15.1.39].
3. 10 CFR 50, Appendix J, Option [A][B].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.1.2 Primary Containment Air Lock

BASES

BACKGROUND One double door primary containment air lock has been built into the primary containment to provide personnel access to the drywell and to provide primary containment isolation during the process of personnel entering and exiting the drywell. The air lock is designed to withstand the same loads, temperatures, and peak design internal and external pressures as the primary containment (Ref. 1). As part of the primary containment, the air lock limits the release of radioactive material to the environment during normal unit operation and through a range of transients and accidents up to and including postulated Design Basis Accidents (DBAs).

Each air lock door has been designed and tested to certify its ability to withstand a pressure in excess of the maximum expected pressure following a DBA in primary containment. Each of the doors contains double gasketed seals and local leakage rate testing capability to ensure pressure integrity. To effect a leak tight seal, the air lock design uses pressure seated doors (i.e., an increase in primary containment internal pressure results in increased sealing force on each door).

Each air lock is nominally a right circular cylinder, 10 ft in diameter, with doors at each end that are interlocked to prevent simultaneous opening. The air lock is provided with limit switches on both doors that provide control room indication of door position. [Additionally, control room indication is provided to alert the operator whenever an air lock interlock mechanism is defeated.] During periods when primary containment is not required to be OPERABLE, the air lock interlock mechanism may be disabled, allowing both doors of an air lock to remain open for extended periods when frequent primary containment entry is necessary. Under some conditions as allowed by this LCO, the primary containment may be accessed through the air lock, when the interlock mechanism has failed, by manually performing the interlock function.

The primary containment air lock forms part of the primary containment pressure boundary. As such, air lock integrity and leak tightness are essential for maintaining primary containment leakage rate to within limits in the event of a DBA. Not maintaining air lock integrity or leak tightness may result in a leakage rate in excess of that assumed in the unit safety analysis.
BASES

| APPLICABLE SAFETY ANALYSES | The DBA that postulates the maximum release of radioactive material within primary containment is a LOCA. In the analysis of this accident, it is assumed that primary containment is OPERABLE, such that release of fission products to the environment is controlled by the rate of primary containment leakage. The primary containment is designed with a maximum allowable leakage rate \(L_a \) of 1.2% by weight of the containment air per 24 hours at the calculated maximum peak containment pressure \(P_a \) of 57.5 psig (Ref. 3). This allowable leakage rate forms the basis for the acceptance criteria imposed on the SRs associated with the air lock.

Primary containment air lock OPERABILITY is also required to minimize the amount of fission product gases that may escape primary containment through the air lock and contaminate and pressurize the secondary containment.

The primary containment air lock satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

| LCO | As part of the primary containment pressure boundary, the air lock's safety function is related to control of containment leakage rates following a DBA. Thus, the air lock's structural integrity and leak tightness are essential to the successful mitigation of such an event.

The primary containment air lock is required to be OPERABLE. For the air lock to be considered OPERABLE, the air lock interlock mechanism must be OPERABLE, the air lock must be in compliance with the Type B air lock leakage test, and both air lock doors must be OPERABLE. The interlock allows only one air lock door to be opened at a time. This provision ensures that a gross breach of primary containment does not exist when primary containment is required to be OPERABLE. Closure of a single door in each air lock is sufficient to provide a leak tight barrier following postulated events. Nevertheless, both doors are kept closed when the air lock is not being used for normal entry or exit from primary containment.

| APPLICABILITY | In MODES 1, 2, and 3, a DBA could cause a release of radioactive material to primary containment. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, the primary containment air lock is not required to be OPERABLE in MODES 4 and 5 to prevent leakage of radioactive material from primary containment. |
Bases

Actions

The ACTIONS are modified by Note 1, which allows entry and exit to perform repairs of the affected air lock component. If the outer door is inoperable, then it may be easily accessed to repair. If the inner door is the one that is inoperable, however, then a short time exists when the containment boundary is not intact (during access through the outer door). The ability to open the OPERABLE door, even if it means the primary containment boundary is temporarily not intact, is acceptable due to the low probability of an event that could pressurize the primary containment during the short time in which the OPERABLE door is expected to be open. The OPERABLE door must be immediately closed after each entry and exit.

The ACTIONS are modified by a second Note, which ensures appropriate remedial measures are taken when necessary. Pursuant to LCO 3.0.6, actions are not required, even if primary containment is exceeding its leakage limit. Therefore, the Note is added to require ACTIONS for LCO 3.6.1.1, "Primary Containment," to be taken in this event.

A.1, A.2, and A.3

With one primary containment air lock door inoperable, the OPERABLE door must be verified closed (Required Action A.1) in the air lock. This ensures that a leak tight primary containment barrier is maintained by the use of an OPERABLE air lock door. This action must be completed within 1 hour. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1.1, which requires that primary containment be restored to OPERABLE status within 1 hour.

In addition, the air lock penetration must be isolated by locking closed the OPERABLE air lock door within the 24 hour Completion Time. The 24 hour Completion Time is considered reasonable for locking the OPERABLE air lock door, considering that the OPERABLE door is being maintained closed.

Required Action A.3 ensures that the air lock with an inoperable door has been isolated by the use of a locked closed OPERABLE air lock door. This ensures that an acceptable primary containment leakage boundary is maintained. The Completion Time of once per 31 days is based on engineering judgment and is considered adequate in view of the low likelihood of a locked door being mispositioned and other administrative controls. Required Action A.3 is modified by a Note that applies to air lock doors located in high radiation areas or areas with limited access due to inerting and allows these doors to be verified locked closed by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of the door, once it has been verified to be in the proper position, is small.
The Required Actions have been modified by two Notes. Note 1 ensures that only the Required Actions and associated Completion Times of Condition C are required if both doors in the air lock are inoperable. With both doors in the air lock inoperable, an OPERABLE door is not available to be closed. Required Actions C.1 and C.2 are the appropriate remedial actions. The exception of Note 1 does not affect tracking the Completion Time from the initial entry into Condition A; only the requirement to comply with the Required Actions. Note 2 allows use of the air lock for entry and exit for 7 days under administrative controls. Primary containment entry may be required to perform Technical Specifications (TS) Surveillances and Required Actions, as well as other activities on equipment inside primary containment that are required by TS or activities on equipment that support TS-required equipment. This Note is not intended to preclude performing other activities (i.e., non-TS-related activities) if the primary containment was entered, using the inoperable air lock, to perform an allowed activity listed above. This allowance is acceptable due to the low probability of an event that could pressurize the primary containment during the short time that the OPERABLE door is expected to be open.

B.1, B.2, and B.3

With an air lock interlock mechanism inoperable, the Required Actions and associated Completion Times are consistent with those specified in Condition A.

The Required Actions have been modified by two Notes. Note 1 ensures that only the Required Actions and associated Completion Times of Condition C are required if both doors in the air lock are inoperable. With both doors in the air lock inoperable, an OPERABLE door is not available to be closed. Required Actions C.1 and C.2 are the appropriate remedial actions. Note 2 allows entry into and exit from the primary containment under the control of a dedicated individual stationed at the air lock to ensure that only one door is opened at a time (i.e., the individual performs the function of the interlock).

Required Action B.3 is modified by a Note that applies to air lock doors located in high radiation areas or areas with limited access due to inverting and that allows these doors to be verified locked closed by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of the door, once it has been verified to be in the proper position, is small.
BASES

ACTIONS (continued)

C.1, C.2, and C.3

If the air lock is inoperable for reasons other than those described in Condition A or B, Required Action C.1 requires action to be immediately initiated to evaluate containment overall leakage rates using current air lock leakage test results. An evaluation is acceptable since it is overly conservative to immediately declare the primary containment inoperable if both doors in an air lock have failed a seal test or if the overall air lock leakage is not within limits. In many instances (e.g., only one seal per door has failed), primary containment remains OPERABLE, yet only 1 hour (according to LCO 3.6.1.1) would be provided to restore the air lock door to OPERABLE status prior to requiring a plant shutdown. In addition, even with both doors failing the seal test, the overall containment leakage rate can still be within limits.

Required Action C.2 requires that one door in the primary containment air lock must be verified closed. This action must be completed within the 1 hour Completion Time. This specified time period is consistent with the ACTIONS of LCO 3.6.1.1, which require that primary containment be restored to OPERABLE status within 1 hour.

Additionally, the air lock must be restored to OPERABLE status within 24 hours [or in accordance with the Risk Informed Completion Time Program]. The 24 hour Completion Time is reasonable for restoring an inoperable air lock to OPERABLE status considering that at least one door is maintained closed in the air lock.

D.1 and D.2

If the inoperable primary containment air lock cannot be restored to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.6.1.2.1

Maintaining primary containment air locks OPERABLE requires compliance with the leakage rate test requirements of the Primary Containment Leakage Rate Testing Program. This SR reflects the leakage rate testing requirements with respect to air lock leakage (Type B
leakage tests). The acceptance criteria were established [during initial air lock and primary containment OPERABILITY testing]. The periodic testing requirements verify that the air lock leakage does not exceed the allowed fraction of the overall primary containment leakage rate. The Frequency is required by the Primary Containment Leakage Rate Testing Program.

The SR has been modified by two Notes. Note 1 states that an inoperative air lock door does not invalidate the previous successful performance of the overall air lock leakage test. This is considered reasonable since either air lock door is capable of providing a fission product barrier in the event of a DBA. Note 2 has been added to this SR requiring the results to be evaluated against the acceptance criteria which is applicable to SR 3.6.1.1.1. This ensures that air lock leakage is properly accounted for in determining the combined Type B and C primary containment leakage.

SR 3.6.1.2.2

The air lock interlock mechanism is designed to prevent simultaneous opening of both doors in the air lock. Since both the inner and outer doors of an air lock are designed to withstand the maximum expected post accident primary containment pressure, closure of either door will support primary containment OPERABILITY. Thus, the interlock feature supports primary containment OPERABILITY while the air lock is being used for personnel transit in and out of the containment. Periodic testing of this interlock demonstrates that the interlock will function as designed and that simultaneous inner and outer door opening will not inadvertently occur. [Due to the purely mechanical nature of this interlock, and given that the interlock mechanism is not normally challenged when the primary containment airlock door is used for entry and exit (procedures require strict adherence to single door opening), this test is only required to be performed every 24 months. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage, and the potential for loss of primary containment OPERABILITY if the Surveillance were performed with the reactor at power. The 24 month Frequency for the interlock is justified based on generic operating experience. The 24 month Frequency is based on engineering judgment and is considered adequate given that the interlock is not challenged during the use of the airlock.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Bases

Surveillance Requirements (continued)

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

References

1. FSAR, Section [3.8.2.8.2.2].
2. 10 CFR 50, Appendix J, Option [A][B].
3. FSAR, Section [6.2].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.1.3 Primary Containment Isolation Valves (PCIVs)

BACKGROUND

The function of the PCIVs, in combination with other accident mitigation systems, is to limit fission product release during and following postulated Design Basis Accidents (DBAs) to within limits. Primary containment isolation within the time limits specified for those isolation valves designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a DBA.

The OPERABILITY requirements for PCIVs help ensure that an adequate primary containment boundary is maintained during and after an accident by minimizing potential paths to the environment. Therefore, the OPERABILITY requirements provide assurance that primary containment function assumed in the safety analyses will be maintained. These isolation devices are either passive or active (automatic). Manual valves, de-activated automatic valves secured in their closed position (including check valves with flow through the valve secured), blind flanges, and closed systems are considered passive devices. Check valves, or other automatic valves designed to close without operator action following an accident, are considered active devices. Two barriers in series are provided for each penetration so that no single credible failure or malfunction of an active component can result in a loss of isolation or leakage that exceeds limits assumed in the safety analyses. One of these barriers may be a closed system.

The reactor building-to-suppression chamber vacuum breakers serve a dual function, one of which is primary containment isolation. However, since the other safety function of the vacuum breakers would not be available if the normal PCIV actions were taken, the PCIV OPERABILITY requirements are not applicable to the reactor building-to-suppression chamber vacuum breakers valves. Similar surveillance requirements in the LCO for reactor building-to-suppression chamber vacuum breakers provide assurance that the isolation capability is available without conflicting with the vacuum relief function.

The primary containment purge lines are [18] inches in diameter; vent lines are [18] inches in diameter. The [18] inch primary containment purge valves are normally maintained closed in MODES 1, 2, and 3 to ensure the primary containment boundary is maintained. The isolation valves on the [18] inch vent lines have [2] inch bypass lines around them for use during normal reactor operation. Two additional redundant excess flow isolation dampers are provided on the vent line upstream of the Standby Gas Treatment (SGT) System filter trains. These isolation dampers, together with the PCIVs, will prevent high pressure from
reaching the SGT System filter trains in the unlikely event of a loss of coolant accident (LOCA) during venting. Closure of the excess flow isolation dampers will not prevent the SGT System from performing its design function (that is, to maintain a negative pressure in the secondary containment). To ensure that a vent path is available, a [2] inch bypass line is provided around the dampers.

The PCIVs LCO was derived from the assumptions related to minimizing the loss of reactor coolant inventory, and establishing the primary containment boundary during major accidents. As part of the primary containment boundary, PCIV OPERABILITY supports leak tightness of primary containment. Therefore, the safety analysis of any event requiring isolation of primary containment is applicable to this LCO.

The DBAs that result in a release of radioactive material within primary containment are a LOCA and a main steam line break (MSLB). In the analysis for each of these accidents, it is assumed that PCIVs are either closed or close within the required isolation times following event initiation. This ensures that potential paths to the environment through PCIVs (including primary containment purge valves) are minimized. Of the events analyzed in Reference 1, the MSLB is the most limiting event due to radiological consequences. The closure time of the main steam isolation valves (MSIVs) is a significant variable from a radiological standpoint. The MSIVs are required to close within 3 to 5 seconds since the 5 second closure time is assumed in the analysis. The safety analyses assume that the purge valves were closed at event initiation. Likewise, it is assumed that the primary containment is isolated such that release of fission products to the environment is controlled.

The DBA analysis assumes that within 60 seconds of the accident, isolation of the primary containment is complete and leakage is terminated, except for the maximum allowable leakage rate, \(L_a \). The primary containment isolation total response time of 60 seconds includes signal delay, diesel generator startup (for loss of offsite power), and PCIV stroke times.

[The single failure criterion required to be imposed in the conduct of unit safety analyses was considered in the original design of the primary containment purge valves. Two valves in series on each purge line provide assurance that both the supply and exhaust lines could be isolated even if a single failure occurred.]

[The primary containment purge valves may be unable to close in the environment following a LOCA. Therefore, each of the purge valves is required to remain sealed closed during MODES 1, 2, and 3. In this case, the single failure criterion remains applicable to the primary containment]
purge valve due to failure in the control circuit associated with each valve. The primary containment purge valve design precludes a single failure from compromising the primary containment boundary as long as the system is operated in accordance with this LCO.]

PCIVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

PCIVs form a part of the primary containment boundary. The PCIV safety function is related to minimizing the loss of reactor coolant inventory and establishing the primary containment boundary during a DBA.

The power operated, automatic isolation valves are required to have isolation times within limits and actuate on an automatic isolation signal. The [18] inch purge valves must be maintained sealed closed [or blocked to prevent full opening]. While the reactor building-to-suppression chamber vacuum breakers isolate primary containment penetrations, they are excluded from this Specification. Controls on their isolation function are adequately addressed in LCO 3.6.1.7, "Reactor Building-to-Suppression Chamber Vacuum Breakers." The valves covered by this LCO are listed with their associated stroke times in Reference 2.

The normally closed PCIVs are considered OPERABLE when manual valves are closed or open in accordance with appropriate administrative controls, automatic valves are de-activated and secured in their closed position, blind flanges are in place, and closed systems are intact. These passive isolation valves and devices are those listed in Reference 2.

Purge valves with resilient seals, secondary bypass valves, MSIVs, and hydrostatically tested valves must meet additional leakage rate requirements. Other PCIV leakage rates are addressed by LCO 3.6.1.1, "Primary Containment," as Type B or C testing.

This LCO provides assurance that the PCIVs will perform their designed safety functions to minimize the loss of reactor coolant inventory and establish the primary containment boundary during accidents.

APPLICABILITY

In MODES 1, 2, and 3, a DBA could cause a release of radioactive material to primary containment. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, PCIVs are not required to be OPERABLE and the primary containment purge valves are not required to be sealed closed in MODES 4 and 5.
The ACTIONS are modified by a Note allowing penetration flow path(s) [except for purge valve flow path(s)] to be unisolated intermittently under administrative controls. These controls consist of stationing a dedicated operator at the controls of the valve, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for primary containment isolation is indicated. Due to the size of the primary containment purge line penetration and the fact that those penetrations exhaust directly from the containment atmosphere to the environment, the penetration flow path containing these valves is not allowed to be opened under administrative controls. A single purge valve in a penetration flow path may be opened to effect repairs to an inoperable valve, as allowed by SR 3.6.1.3.1.

A second Note has been added to provide clarification that, for the purpose of this LCO, separate Condition entry is allowed for each penetration flow path. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable PCIV. Complying with the Required Actions may allow for continued operation, and subsequent inoperable PCIVs are governed by subsequent Condition entry and application of associated Required Actions.

The ACTIONS are modified by Notes 3 and 4. Note 3 ensures that appropriate remedial actions are taken, if necessary, if the affected system(s) are rendered inoperable by an inoperable PCIV (e.g., an Emergency Core Cooling System subsystem is inoperable due to a failed open test return valve). Note 4 ensures appropriate remedial actions are taken when the primary containment leakage limits are exceeded. Pursuant to LCO 3.0.6, these actions are not required even when the associated LCO is not met. Therefore, Notes 3 and 4 are added to require the proper actions be taken.

The bracketed phrase "following isolation" in the Completion Times for Required Actions A.2, C.2, E.2, and E.3 is only applicable to plants that have adopted a Risk Informed Completion Time Program.
BASES

ACTIONS (continued)

A.1 and A.2

REVIEWER'S NOTE---

Adoption of a Completion Time greater than 4 hours requires implementation of the following commitment: "Each licensee requesting extended Completion Times for PCIVs must commit to enhancing its configuration risk management program (CRMP), including those implemented under 10 CFR 50.65(a)(4), the Maintenance Rule, to include a Large Early Release Fraction (LERF) methodology and assessment. This commitment and the CRMP enhancements must be documented in the licensee's plant-specific application."

With one or more penetration flow paths with one PCIV inoperable, [except for secondary containment bypass leakage rate, MSIV leakage rate, purge valve leakage rate, or hydrostatically tested line leakage rate or EFCV leakage rate not within limit], the affected penetration flow paths must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, a blind flange, and a check valve with flow through the valve secured. For a penetration isolated in accordance with Required Action A.1, the device used to isolate the penetration should be the closest available valve to the primary containment. The Required Action must be completed within the specified Completion Time (4 hours for [feedwater isolation valves (FWIVs) and residual heat removal (RHR) shutdown cooling suction line PCIVs]; 8 hours for MSIVs; [and 7 days for other PCIVs in primary containment penetration flow paths with two [or more] PCIVs]; [or in accordance with the Risk Informed Completion Time Program)]. For [FWIVs and RHR shutdown cooling suction line PCIVs], a 4 hour Completion Time is allowed. The Completion Time of 4 hours is reasonable considering the time required to isolate the affected penetration and the relative importance of supporting primary containment OPERABILITY during MODES 1, 2, and 3. For MSIVs, an 8 hour Completion Time is allowed. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] The Completion Time of 8 hours allows a period of time to restore the MSIVs to OPERABLE status given the fact that MSIV closure will result in isolation of the main steam line(s) and a potential for plant shutdown.
The 7 day Completion Time is only allowed for those plants which adopt NEDC-33046-A, "Technical Justification to Support Risk-Informed Primary Containment Isolation Valve AOT Extensions for BWR Plants," dated January 2005, including the conditions described in the incorporated Safety Evaluation.

Otherwise, a 4 hour Completion Time must be maintained for PCIVs other than MSIVs.

[For other PCIVs in primary containment penetration flow paths with two [or more] PCIVs, a 7 day Completion Time is allowed. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] The Completion Time of 7 days provides the capability for on-line maintenance, repair, and testing of a PCIV and is reasonable considering the relative importance of supporting primary containment OPERABILITY in MODES 1, 2, and 3 (Ref. 3).]

For affected penetrations that have been isolated in accordance with Required Action A.1, the affected penetration flow path(s) must be verified to be isolated on a periodic basis. This is necessary to ensure that primary containment penetrations required to be isolated following an accident, and no longer capable of being automatically isolated, will be in the isolation position should an event occur. This Required Action does not require any testing or device manipulation. Rather, it involves verification that those devices outside containment and capable of potentially being mispositioned are in the correct position. The Completion Time of "once per 31 days [following isolation] for isolation devices outside primary containment" is appropriate because the devices are operated under administrative controls and the probability of their misalignment is low. For the devices inside primary containment, the time period specified "prior to entering MODE 2 or 3 from MODE 4, if primary containment was de-inerted while in MODE 4, if not performed within the previous 92 days" is based on engineering judgment and is considered reasonable in view of the inaccessibility of the devices and other administrative controls ensuring that device misalignment is an unlikely possibility.

Condition A is modified by a Note indicating that this Condition is only applicable to those penetration flow paths with two [or more] PCIVs. For penetration flow paths with one PCIV, Condition C provides the appropriate Required Actions.
Required Action A.2 is modified by two Notes. Note 1 applies to isolation devices located in high radiation areas and allows them to be verified by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Note 2 applies to isolation devices that are locked, sealed, or otherwise secured in position and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since the function of locking, sealing, or securing components is to ensure that these devices are not inadvertently repositioned. Therefore, the probability of misalignment of these devices, once they have been verified to be in the proper position, is low.

B.1

With one or more penetration flow paths with two [or more] PCIVs inoperable, [except for secondary containment bypass leakage rate, MSIV leakage rate, purge valve leakage rate, or hydrostatically tested line leakage rate or EFCV leakage rate not within limit,] either the inoperable PCIVs must be restored to OPERABLE status or the affected penetration flow path must be isolated within 1 hour. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1.1.

Condition B is modified by a Note indicating this Condition is only applicable to penetration flow paths with two [or more] PCIVs. For penetration flow paths with one PCIV, Condition C provides the appropriate Required Actions.

C.1 and C.2

With one or more penetration flow paths with one PCIV inoperable, [except for secondary containment bypass leakage rate, MSIV leakage rate, purge valve leakage rate, or hydrostatically tested line leakage rate or EFCV leakage rate not within limit,] the inoperable valve must be restored to OPERABLE status or the affected penetration flow path must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. A check valve may not be used to isolate the affected penetration.
The 7 day Completion Time is only allowed for those plants which adopt NEDC-33046-A, including the conditions described in the incorporated Safety Evaluation. Otherwise, a 4 hour Completion Time is provided for most penetrations and a 72 hour Completion Time is provided for closed system penetrations and EFCVs (for cases other than closed system penetrations and EFCVs, if a plant specific evaluation is provided for NRC review and accepted for a Completion Time of 72 hours, the Completion Time may be simplified to state 72 hours).

The Completion Time of [4] hours is reasonable considering the time required to isolate the penetration and the relative importance of supporting primary containment OPERABILITY during MODES 1, 2, and 3. [The Completion Time of 72 hours for penetrations with a closed system is reasonable considering the relative stability of the closed system (hence, reliability) to act as a penetration isolation boundary and the relative importance of supporting primary containment OPERABILITY during MODES 1, 2, and 3. The closed system must meet the requirements of Reference 6. The Completion Time of 72 hours for EFCVs is also reasonable considering the instrument and the small pipe diameter of penetration (hence, reliability) to act as a penetration isolation boundary and the small pipe diameter of the affected penetrations.] [The Completion Time of 7 days, for EFCVs and penetrations with a closed system, provides the capability for on-line maintenance, repair, and testing of a PCIV and is reasonable considering the relative importance of supporting primary containment OPERABILITY in MODES 1, 2, and 3 (Ref. 3).] In the event the affected penetration flow path is isolated in accordance with Required Action C.1, the affected penetration must be verified to be isolated on a periodic basis. This is necessary to ensure that primary containment penetrations required to be isolated following an accident are isolated. The Completion Time of once per 31 days [following isolation] for verifying each affected penetration is isolated is appropriate because the valves are operated under administrative controls and the probability of their misalignment is low.

Condition C is modified by a Note indicating that this Condition is only applicable to penetration flow paths with only one PCIV. For penetration flow paths with two [or more] PCIVs, Conditions A and B provide the appropriate Required Actions.

Required Action C.2 is modified by two Notes. Note 1 applies to valves and blind flanges located in high radiation areas and allows them to be verified by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Note 2 applies to isolation devices that are
locked, sealed, or otherwise secured in position and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since the function of locking, sealing, or securing components is to ensure that these devices are not inadvertently repositioned. Therefore, the probability of misalignment of these valves, once they have been verified to be in the proper position, is low.

[D.1]

With the [secondary containment bypass leakage rate (SR 3.6.1.3.12),] [MSIV leakage rate (SR 3.6.1.3.13),] [purge valve leakage rate (SR 3.6.1.3.7),] [hydrostatically tested line leakage rate (SR 3.6.1.3.14),] [EFCV leakage rate (SR 3.6.1.3.10)] not within limit, the assumptions of the safety analysis may not be met. Therefore, the leakage must be restored to within limit. Restoration can be accomplished by isolating the penetration that caused the limit to be exceeded by use of one closed and de-activated automatic valve, closed manual valve, or blind flange. When a penetration is isolated, the leakage rate for the isolated penetration is assumed to be the actual pathway leakage through the isolation device. If two isolation devices are used to isolate the penetration, the leakage rate is assumed to be the lesser actual pathway leakage of the two devices. The 4 hour Completion Time for hydrostatically tested line leakage [not on a closed system] and for secondary containment bypass leakage is reasonable considering the time required to restore the leakage by isolating the penetration and the relative importance of secondary containment bypass leakage to the overall containment function. For MSIV leakage, an 8 hour Completion Time is allowed. The Completion Time of 8 hours for MSIV leakage allows a period of time to restore the MSIVs to OPERABLE status given the fact the MSIV closure will result in isolation of the main steam line(s) and potential for plant shutdown. [The 24 hour Completion Time for purge valve leakage is acceptable considering the purge valves remain closed so that a gross breach of the containment does not exist.] [The 72 hour Completion Time for hydrostatically tested line leakage [on a closed system] is acceptable based on the available water seal expected to remain as a gaseous fission product boundary during the accident, and the associated closed system.] [The 72 hour Completion Time for EFCV leakage is acceptable based on the instrument and the small pipe diameter of the penetration (hence, reliability) to act as a penetration isolation boundary.] [The 7 day Completion Time for EFCV leakage is acceptable based on the evaluations documented in Reference 3.]
The bracketed options provided in ACTION D reflect options in plant design and options in adopting the associated leakage rate Surveillances.

The options (both in ACTION D and ACTION E) for purge valve leakage, are based primarily on the design. If leakage rates can be measured separately for each purge valve, ACTION E is intended to apply. This would be required to be able to implement Required Action E.3. Should the design allow only for leak testing both purge valves simultaneously, then the Completion Time for ACTION D should include the "24 hours for purge valve leakage" and ACTION E should be eliminated.

The option for EFCV is based on the acceptance criteria of SR 3.6.1.3.10. If the acceptance criteria is a specific leakage rate (e.g., 1 gph) then the Completion Time for ACTION D should include the "72 hours for EFCV leakage," or "7 days for EFCV leakage." If the acceptance criteria for SR 3.6.1.3.10 is non-specific (e.g., "actuates to the closed position") then there is no specific leakage criteria and the EFCV Completion Time is not adopted.

Similarly, adopting Completion Times for secondary containment bypass and/or hydrostatically tested lines is based on whether the associated SRs are adopted.

The additional bracketed options for whether the hydrostatically tested line is with or without a closed system is predicated on plant-specific design. If the design is such that there are not both types of hydrostatically tested lines (some with and some without closed systems), the specific 'closed system' wording can be removed and the appropriate 4 or 72 hour Completion Time retained. In the event there are both types, the clarifying wording remains and the brackets are removed. []

The 7 day Completion Time for restoration of EFCV leakage is only allowed for those plants that adopt NEDC-33046-A, including the conditions described in the incorporated Safety Evaluation. Otherwise, a 72 hour Completion Time is provided for the condition of EFCV leakage not within limits.

[E.1, E.2, and E.3]

In the event one or more containment purge valves are not within the purge valve leakage limits, purge valve leakage must be restored to within limits or the affected penetration must be isolated. The method of isolation must be by the use of at least one isolation barrier that cannot be
adversely affected by a single active failure. Isolation barriers that meet this criterion are a [closed and de-activated automatic valve, closed manual valve, and blind flange]. If a purge valve with resilient seals is utilized to satisfy Required Action E.1, it must have been demonstrated to meet the leakage requirements of SR 3.6.1.3.7. The specified Completion Time is reasonable, considering that one containment purge valve remains closed so that a gross breach of containment does not exist. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

In accordance with Required Action E.2, this penetration flow path [following isolation] must be verified to be isolated on a periodic basis. The periodic verification is necessary to ensure that containment penetrations required to be isolated following an accident, which are no longer capable of being automatically isolated, will be in the isolation position should an event occur. This Required Action does not require any testing or valve manipulation. Rather, it involves verification that those isolation devices outside containment and potentially capable of being mispositioned are in the correct position. For the isolation devices inside containment, the time period specified as "prior to entering MODE 2 or 3 from MODE 4 if not performed within the previous 92 days" is based on engineering judgment and is considered reasonable in view of the inaccessibility of the isolation devices and other administrative controls that will ensure that isolation device misalignment is an unlikely possibility.

For the containment purge valve with resilient seal that is isolated in accordance with Required Action E.1, SR 3.6.1.3.7 must be performed at least once every [] days [following isolation]. This provides assurance that degradation of the resilient seal is detected and confirms that the leakage rate of the containment purge valve does not increase during the time the penetration is isolated. The normal Frequency for SR 3.6.1.3.7 is 184 days. Since more reliance is placed on a single valve while in this Condition, it is prudent to perform the SR more often. Therefore, a Frequency of once per [] days was chosen and has been shown to be acceptable based on operating experience.

Required Action E.2 is modified by two Notes. Note 1 applies to isolation devices located in high radiation areas and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Note 2 applies to isolation devices that are locked, sealed, or otherwise secured in position and allows these devices to be verified closed by use of administrative means. Allowing verification
by administrative means is considered acceptable, since the function of locking, sealing, or securing components is to ensure that these devices are not inadvertently repositioned.

F.1 and F.2

If any Required Action and associated Completion Time cannot be met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

Each [18] inch primary containment purge valve is required to be verified sealed closed. This SR is designed to ensure that a gross breach of primary containment is not caused by an inadvertent or spurious opening of a primary containment purge valve. Detailed analysis of the purge valves failed to conclusively demonstrate their ability to close during a LOCA in time to limit offsite doses. Primary containment purge valves that are sealed closed must have motive power to the valve operator removed. This can be accomplished by de-energizing the source of electric power or removing the air supply to the valve operator. In this application, the term "sealed" has no connotation of leak tightness. The 31 day Frequency is a result of an NRC initiative, Generic Issue B-24 (Ref. 5) related to primary containment purge valve use during unit operations.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR allows a valve that is open under administrative controls to not meet the SR during the time the valve is open. Opening a purge valve under administrative controls is restricted to one valve in a penetration flow path at a given time (refer to discussion for Note 1 of the ACTIONS) in order to effect repairs to that valve. This allows one purge valve to be opened without resulting in a failure of the Surveillance and resultant entry into the ACTIONS for this purge valve, provided the stated restrictions are met. Condition E must be entered during this allowance, and the valve opened only as necessary for effecting repairs. Each purge valve in the penetration flow path may be alternately opened, provided one remains sealed closed, if necessary, to complete repairs on the penetration.

[SR 3.6.1.3.2]

This SR ensures that the primary containment purge valves are closed as required or, if open, open for an allowable reason. If a purge valve is open in violation of this SR, the valve is considered inoperable. If the inoperable valve is not otherwise known to have excessive leakage when closed, it is not considered to have leakage outside of limits. The SR is modified by a Note stating that the SR is not required to be met when the purge valves are open for the stated reasons. The Note states that these valves may be opened for inerting, de-inerting, pressure control, ALARA or air quality considerations for personnel entry, or Surveillances that require the valves to be open. The [18] inch purge valves are capable of closing in the environment following a LOCA. Therefore, these valves are allowed to be open for limited periods of time. [The 31 day Frequency is consistent with other PCIV requirements discussed in SR 3.6.1.3.3.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------
SR 3.6.1.3.3

This SR verifies that each primary containment isolation manual valve and blind flange that is located outside primary containment and not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside the primary containment boundary is within design limits.

This SR does not require any testing or valve manipulation. Rather, it involves verification that those PCIVs outside primary containment, and capable of being mispositioned, are in the correct position. Since verification of valve position for PCIVs outside primary containment is relatively easy, the 31 day Frequency was chosen to provide added assurance that the PCIVs are in the correct positions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

Two Notes have been added to this SR. The first Note allows valves and blind flanges located in high radiation areas to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable since the primary containment is inerted and access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA reasons. Therefore, the probability of misalignment of these PCIVs, once they have been verified to be in the proper position, is low. A second Note has been included to clarify that PCIVs that are open under administrative controls are not required to meet the SR during the time that the PCIVs are open.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.1.3.4

This SR verifies that each primary containment manual isolation valve and blind flange that is located inside primary containment and not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside the primary containment boundary is within design limits. For PCIVs inside primary containment, the Frequency defined as "prior to entering MODE 2 or 3 from MODE 4 if primary containment was de-inerted while in MODE 4, if not performed within the previous 92 days" is appropriate since these PCIVs are operated under administrative controls and the probability of their misalignment is low. This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

Two Notes have been added to this SR. The first Note allows valves and blind flanges located in high radiation areas to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable since the primary containment is inerted and access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA reasons. Therefore, the probability of misalignment of these PCIVs, once they have been verified to be in their proper position, is low. A second Note has been included to clarify that PCIVs that are open under administrative controls are not required to meet the SR during the time that the PCIVs are open.

SR 3.6.1.3.5

The traversing incore probe (TIP) shear isolation valves are actuated by explosive charges. Surveillance of explosive charge continuity provides assurance that TIP valves will actuate when required. Other administrative controls, such as those that limit the shelf life of the explosive charges, must be followed. The 31 day Frequency is based on operating experience that has demonstrated the reliability of the explosive charge continuity.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
SURVEILLANCE REQUIREMENTS (continued)

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.6.1.3.6

Verifying the isolation time of each power operated, automatic PCIV is within limits is required to demonstrate OPERABILITY. MSIVs may be excluded from this SR since MSIV full closure isolation time is demonstrated by SR 3.6.1.3.7. The isolation time test ensures that the valve will isolate in a time period less than or equal to that assumed in the safety analyses. The isolation time is in accordance with the INSERVICE TESTING PROGRAM.

If the testing is within the scope of the licensee's INSERVICE TESTING PROGRAM, the Frequency "In accordance with the INSERVICE TESTING PROGRAM" should be used. Otherwise, the periodic Frequency of 92 days or the reference to the Surveillance Frequency Control Program should be used.

[The Frequency of this SR is [in accordance with the requirements of the INSERVICE TESTING PROGRAM] [92 days]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.]

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
SURVEILLANCE REQUIREMENTS (continued)

[SR 3.6.1.3.7]

For primary containment purge valves with resilient seals, additional leakage rate testing beyond the test requirements of 10 CFR 50, Appendix J, Option [A][B] (Ref. 4), is required to ensure OPERABILITY. Operating experience has demonstrated that this type of seal has the potential to degrade in a shorter time period than do other seal types. Based on this observation and the importance of maintaining this penetration leak tight (due to the direct path between primary containment and the environment), a Frequency of 184 days was established.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

Additionally, this SR must be performed once within 92 days after opening the valve. The 92 day Frequency was chosen recognizing that cycling the valve could introduce additional seal degradation (beyond that which occurs to a valve that has not been opened). Thus, decreasing the interval is a prudent measure after a valve has been opened.

SR 3.6.1.3.8

Verifying that the isolation time of each MSIV is within the specified limits is required to demonstrate OPERABILITY. The isolation time test ensures that the MSIV will isolate in a time period that does not exceed the times assumed in the DBA analyses. This ensures that the calculated radiological consequences of these events remain within 10 CFR 100 limits.
If the testing is within the scope of the licensee's INSERVICE TESTING PROGRAM, the Frequency "In accordance with the INSERVICE TESTING PROGRAM" should be used. Otherwise, the periodic Frequency of 18 months or the reference to the Surveillance Frequency Control Program should be used.

[The Frequency of this SR is [in accordance with the requirements of the INSERVICE TESTING PROGRAM] [18 months]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.6.1.3.9

Automatic PCIVs close on a primary containment isolation signal to prevent leakage of radioactive material from primary containment following a DBA. This SR ensures that each automatic PCIV will actuate to its isolation position on a primary containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.6.3.7 overlaps this SR to provide complete testing of the safety function. [The [18] month Frequency was developed considering it is prudent that this Surveillance be performed only during a unit outage since isolation of penetrations would eliminate cooling water flow and disrupt the normal operation of many critical components. Operating experience has shown that these components usually pass this Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR
SURVEILLANCE REQUIREMENTS (continued)

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.6.1.3.10

The Surveillance is only allowed for those plants for which NEDO-32977-A, "Excess Flow Check Valve Testing Relaxation," June 2000, is applicable. In addition, the licensee must develop EFCV performance criteria and basis to ensure that their corrective action program can provide meaningful feedback for appropriate corrective actions. The EFCV performance criteria and basis must be found acceptable by the technical staff. If required, an INSERVICE TESTING PROGRAM relief request pursuant to 10 CFR 50.55a needs to be approved by the Technical Staff in order to implement this Surveillance. Otherwise, each EFCV shall be verified to actuate on an [18] month Frequency. The bracketed portions of these Bases apply to the representative sample as discussed in NEDO-32977-A.

This SR requires a demonstration that each [a representative sample of] reactor instrumentation line excess flow check valves (EFCV) is OPERABLE by verifying that the valve [reduces flow to ≤ 1 gph on a simulated instrument line break]. [The representative sample consists of an approximately equal number of EFCVs, such that each EFCV is tested at least once every 10 years (nominal). In addition, the EFCVs in the sample are representative of the various plant configurations, models, sizes and operating environments. This ensures that any potentially common problem with a specific type or application of EFCV is detected at the earliest possible time.]
This SR provides assurance that the instrumentation line EFCVs will perform so that predicted radiological consequences will not be exceeded during the postulated instrument line break event evaluated in Reference 7. [The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass this Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. [The nominal 10 year interval is based on performance testing as discussed in NEDO-32977-A, "Excess Flow Check Valve Testing Relaxation." Furthermore, any EFCV failures will be evaluated to determine if additional testing in that test interval is warranted to ensure overall reliability is maintained. Operating experience has demonstrated that these components are highly reliable and that failures to isolate are very infrequent. Therefore, testing of a representative sample was concluded to be acceptable from a reliability standpoint.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

----------------------------------- }

SR 3.6.1.3.11

The TIP shear isolation valves are actuated by explosive charges. An in place functional test is not possible with this design. The explosive squib is removed and tested to provide assurance that the valves will actuate when required. The replacement charge for the explosive squib shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of the batch successfully fired. [The Frequency of 18 months on a STAGGERED TEST BASIS is considered adequate given the administrative controls on replacement charges and the frequent checks of circuit continuity (SR 3.6.1.3.5).]
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

[SR 3.6.1.3.12]

This SR ensures that the leakage rate of secondary containment bypass leakage paths is less than the specified leakage rate. This provides assurance that the assumptions in the radiological evaluations of Reference 8 are met. The leakage rate of each bypass leakage path is assumed to be the maximum pathway leakage (leakage through the worse of the two isolation valves) unless the penetration is isolated by use of one closed and de-activated automatic valve, closed manual valve, or blind flange. In this case, the leakage rate of the isolated bypass leakage path is assumed to be the actual pathway leakage through the isolation device. If both isolation valves in the penetration are closed, the actual leakage rate is the lesser leakage rate of the two valves. The Frequency is required by the Primary Containment Leakage Rate Testing Program. This SR simply imposes additional acceptance criteria.

[Bypass leakage is considered part of L_a.]

----------------------------------- REVIEWER’S NOTE -----------------------------------

Unless specifically exempted.]]

[SR 3.6.1.3.13]

The analyses in References 1 and 8 are based on leakage that is less than the specified leakage rate. Leakage through each MSIV must be $\leq [11.5]$ scfh when tested at $\geq P_t$ ([28.8] psig). This ensures that MSIV leakage is properly accounted for in determining the overall primary containment leakage rate. The Frequency is required by the Primary Containment Leakage Rate Testing Program.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.1.3.14

Surveillance of hydrostatically tested lines provides assurance that the calculation assumptions of Reference 2 are met. The acceptance criteria for the combined leakage of all hydrostatically tested lines is \[1.0 \text{ gpm times the total number of hydrostatically tested PCIVs}\] when tested at \(1.1 \text{ P}_a\) ([63.25] psig). The combined leakage rates must be demonstrated in accordance with the leakage rate test Frequency required by the Primary Containment Leakage Rate Testing Program.

[SR 3.6.1.3.15

-----------------------------------REVIEWER’S NOTE-----------------------------------
This SR is only required for those plants with purge valves with resilient seals allowed to be open during [MODE 1, 2, 3, or 4] and having blocking devices that are not permanently installed on the valves.

Verifying each [] inch primary containment purge valve is blocked to restrict opening to ≤ [50]% is required to ensure that the valves can close under DBA conditions within the times assumed in the analysis of References 1 and 7. [The [18] month Frequency is appropriate because the blocking devices are typically removed only during a refueling outage.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--]]
REFERENCES

1. FSAR, Chapter [15].

2. FSAR, Table [6.2-5].

4. 10 CFR 50, Appendix J, Option [A][B].

6. FSAR, Section 6.2.[].

7. FSAR, Section [15.1.39].

8. FSAR, Section [6.2].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.1.4 Drywell Pressure

BASES

BACKGROUND
The drywell pressure is limited during normal operations to preserve the initial conditions assumed in the accident analysis for a Design Basis Accident (DBA) or loss of coolant accident (LOCA).

APPLICABLE SAFETY ANALYSES
Primary containment performance is evaluated for the entire spectrum of break sizes for postulated LOCAs (Ref. 1). Among the inputs to the DBA is the initial primary containment internal pressure (Ref. 1). Analyses assume an initial drywell pressure of [0.75 psig]. This limitation ensures that the safety analysis remains valid by maintaining the expected initial conditions and ensures that the peak LOCA drywell internal pressure does not exceed the maximum allowable of [62] psig.

The maximum calculated drywell pressure occurs during the reactor blowdown phase of the DBA, which assumes an instantaneous recirculation line break. The calculated peak drywell pressure for this limiting event is [57.5] psig (Ref. 1).

Drywell pressure satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO
In the event of a DBA, with an initial drywell pressure ≤ [0.75 psig], the resultant peak drywell accident pressure will be maintained below the drywell design pressure.

APPLICABILITY
In MODES 1, 2, and 3, a DBA could cause a release of radioactive material to primary containment. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining drywell pressure within limits is not required in MODE 4 or 5.

ACTIONS
A.1

With drywell pressure not within the limit of the LCO, drywell pressure must be restored within 1 hour. The Required Action is necessary to return operation to within the bounds of the primary containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1.1, "Primary Containment," which requires that primary containment be restored to OPERABLE status within 1 hour.
Bases

Actions (continued)

B.1 and B.2

If drywell pressure cannot be restored to within limit within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

Surveillance Requirements

SR 3.6.1.4.1

Verifying that drywell pressure is within limit ensures that unit operation remains within the limit assumed in the primary containment analysis. [The 12 hour Frequency of this SR was developed, based on operating experience related to trending of drywell pressure variations during the applicable MODES. Furthermore, the 12 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal drywell pressure condition.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Reviewer’s Note

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

References

1. FSAR, Section [6.2].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.1.5 Drywell Air Temperature

BASES

BACKGROUND
The drywell contains the reactor vessel and piping, which add heat to the airspace. Drywell coolers remove heat and maintain a suitable environment. The average airspace temperature affects the calculated response to postulated Design Basis Accidents (DBAs). The limitation on the drywell average air temperature was developed as reasonable, based on operating experience. The limitation on drywell air temperature is used in the Reference 1 safety analyses.

APPLICABLE SAFETY ANALYSES
Primary containment performance is evaluated for a spectrum of break sizes for postulated loss of coolant accidents (LOCAs) (Ref. 1). Among the inputs to the design basis analysis is the initial drywell average air temperature (Ref. 1). Analyses assume an initial average drywell air temperature of [135]°F. This limitation ensures that the safety analysis remains valid by maintaining the expected initial conditions and ensures that the peak LOCA drywell temperature does not exceed the maximum allowable temperature of [340]°F (Ref. 2). Exceeding this design temperature may result in the degradation of the primary containment structure under accident loads. Equipment inside primary containment required to mitigate the effects of a DBA is designed to operate and be capable of operating under environmental conditions expected for the accident.

LCO
In the event of a DBA, with an initial drywell average air temperature less than or equal to the LCO temperature limit, the resultant accident temperature profile assures that the drywell structural temperature is maintained below its design temperature and that required safety related equipment will continue to perform its function.

APPLICABILITY
In MODES 1, 2, and 3, a DBA could cause a release of radioactive material to primary containment. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining drywell average air temperature within the limit is not required in MODE 4 or 5.
ACTIONS

A.1

With drywell average air temperature not within the limit of the LCO, drywell average air temperature must be restored within 8 hours. The Required Action is necessary to return operation to within the bounds of the primary containment analysis. The 8 hour Completion Time is acceptable, considering the sensitivity of the analysis to variations in this parameter, and provides sufficient time to correct minor problems.

B.1 and B.2

If the drywell average air temperature cannot be restored to within limit within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.6.1.5.1

Verifying that the drywell average air temperature is within the LCO limit ensures that operation remains within the limits assumed for the primary containment analyses. Drywell air temperature is monitored in all quadrants and at various elevations (referenced to mean sea level). Due to the shape of the drywell, a volumetric average is used to determine an accurate representation of the actual average temperature.

[The 24 hour Frequency of the SR was developed based on operating experience related to drywell average air temperature variations and temperature instrument drift during the applicable MODES and the low probability of a DBA occurring between surveillances. Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal drywell air temperature condition.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [6.2].
2. FSAR, Section [6.2.1.4.1].
3. FSAR, Section [6.2.1.4.5].
Bases

Background

The safety/relief valves (S/RVs) can actuate in either the safety mode, the Automatic Depressurization System mode, or the LLS mode. In the LLS mode (or power actuated mode of operation), a pneumatic diaphragm and stem assembly overcomes the spring force and opens the pilot valve. As in the safety mode, opening the pilot valve allows a differential pressure to develop across the main valve piston and opens the main valve. The main valve can stay open with valve inlet steam pressure as low as 50 psig. Below this pressure, steam pressure may not be sufficient to hold the main valve open against the spring force of the pilot valves. The pneumatic operator is arranged so that its malfunction will not prevent the valve disk from lifting if steam inlet pressure exceeds the safety mode pressure setpoints.

Four of the S/RVs are equipped to provide the LLS function. The LLS logic causes the LLS valves to be opened at a lower pressure than the relief or safety mode pressure setpoints and stay open longer, so that reopening more than one S/RV is prevented on subsequent actuations. Therefore, the LLS function prevents excessive short duration S/RV cycles with valve actuation at the relief setpoint.

Each S/RV discharges steam through a discharge line and quencher to a location near the bottom of the suppression pool, which causes a load on the suppression pool wall. Actuation at lower reactor pressure results in a lower load.

Applicable Safety Analyses

The LLS relief mode functions to ensure that the containment design basis of one S/RV operating on "subsequent actuations" is met. In other words, multiple simultaneous openings of S/RVs (following the initial opening), and the corresponding higher loads, are avoided. The safety analysis demonstrates that the LLS functions to avoid the induced thrust loads on the S/RV discharge line resulting from "subsequent actuations" of the S/RV during Design Basis Accidents (DBAs). Furthermore, the LLS function justifies the primary containment analysis assumption that simultaneous S/RV openings occur only on the initial actuation for DBAs. Even though [four] LLS S/RVs are specified, all [four] LLS S/RVs do not operate in any DBA analysis.

LLS valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
[Four] LLS valves are required to be OPERABLE to satisfy the assumptions of the safety analyses (Ref. 1). The requirements of this LCO are applicable to the mechanical and electrical/pneumatic capability of the LLS valves to function for controlling the opening and closing of the S/RVs.

In MODES 1, 2, and 3, an event could cause pressurization of the reactor and opening of S/RVs. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining the LLS valves OPERABLE is not required in MODE 4 or 5.

With one LLS valve inoperable, the remaining OPERABLE LLS valves are adequate to perform the designed function. However, the overall reliability is reduced. The 14 day Completion Time takes into account the redundant capability afforded by the remaining LLS valves and the low probability of an event in which the remaining LLS valve capability would be inadequate.

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If an inoperable LLS valve cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 2) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However,
voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action B.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1 and C.2

If two or more LLS valves are inoperable, there could be excessive short duration S/RV cycling during an overpressure event. The plant must be brought to a condition in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.6.1.6.1

A manual actuation of each LLS valve is performed to verify that the valve and solenoids are functioning properly and no blockage exists in the valve discharge line. This can be demonstrated by the response of the turbine control or bypass valve, by a change in the measured steam flow, or by any other method that is suitable to verify steam flow. Adequate reactor steam dome pressure must be available to perform this test to avoid damaging the valve. Adequate pressure at which this test is to be performed is ≥ [920] psig (the pressure recommended by the valve manufacturer). Also, adequate steam flow must be passing through the main turbine or turbine bypass valves to continue to control reactor pressure when the LLS valves divert steam flow upon opening. Adequate steam flow is represented by [at least 1.25 turbine bypass valves open, or
BASES

SURVEILLANCE REQUIREMENTS (continued)

The [18] month Frequency was based on the S/RV tests required by the ASME Boiler and Pressure Vessel Code (Ref. 3). The Frequency of 18 months on a STAGGERED TEST BASIS ensures that each solenoid for each S/RV is alternately tested. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE-----------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

Since steam pressure is required to perform the Surveillance, however, and steam may not be available during a unit outage, the Surveillance may be performed during the startup following a unit outage. Unit startup is allowed prior to performing the test because valve OPERABILITY and the setpoints for overpressure protection are verified by Reference 3 prior to valve installation. After adequate reactor steam dome pressure and flow are reached, 12 hours is allowed to prepare for and perform the test.

SR 3.6.1.6.2

The LLS designated S/RVs are required to actuate automatically upon receipt of specific initiation signals. A system functional test is performed to verify that the mechanical portions (i.e., solenoids) of the LLS function operate as designed when initiated either by an actual or simulated automatic initiation signal. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.6.3.7 overlaps this SR to provide complete testing of the safety function.

[The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the...]
Bases

Surveillance Requirements (continued)

18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by a Note that excludes valve actuation. This prevents a reactor pressure vessel pressure blowdown.

References

1. FSAR, Section [5.5.17].

3. ASME Code for Operation and Maintenance of Nuclear Power Plants.
B 3.6 CONTAINMENT SYSTEMS

B 3.6.1.7 Reactor Building-to-Suppression Chamber Vacuum Breakers

BASES

BACKGROUND

The function of the reactor building-to-suppression chamber vacuum breakers is to relieve vacuum when primary containment depressurizes below reactor building pressure. If the drywell depressurizes below reactor building pressure, the negative differential pressure is mitigated by flow through the reactor building-to-suppression chamber vacuum breakers and through the suppression-chamber-to-drywell vacuum breakers. The design of the external (reactor building-to-suppression chamber) vacuum relief provisions consists of two vacuum breakers (a vacuum breaker and an air operated butterfly valve), located in series in each of two lines from the reactor building to the suppression chamber airspace. The butterfly valve is actuated by differential pressure. The vacuum breaker is self actuating and can be remotely operated for testing purposes. The two vacuum breakers in series must be closed to maintain a leak tight primary containment boundary.

A negative differential pressure across the drywell wall is caused by rapid depressurization of the drywell. Events that cause this rapid depressurization are cooling cycles, inadvertent primary containment spray actuation, and steam condensation in the event of a primary system rupture. Reactor building-to-suppression chamber vacuum breakers prevent an excessive negative differential pressure across the primary containment boundary. Cooling cycles result in minor pressure transients in the drywell, which occur slowly and are normally controlled by heating and ventilation equipment. Inadvertent spray actuation results in a more significant pressure transient and becomes important in sizing the external (reactor building-to-suppression chamber) vacuum breakers.

The external vacuum breakers are sized on the basis of the air flow from the secondary containment that is required to mitigate the depressurization transient and limit the maximum negative containment (drywell and suppression chamber) pressure to within design limits. The maximum depressurization rate is a function of the primary containment spray flow rate and temperature and the assumed initial conditions of the primary containment atmosphere. Low spray temperatures and atmospheric conditions that yield the minimum amount of contained noncondensible gases are assumed for conservatism.
Analytical methods and assumptions involving the reactor building-to-suppression chamber vacuum breakers are presented in Reference 1 as part of the accident response of the containment systems. Internal (suppression-chamber-to-drywell) and external (reactor building-to-suppression chamber) vacuum breakers are provided as part of the primary containment to limit the negative differential pressure across the drywell and suppression chamber walls, which form part of the primary containment boundary.

The safety analyses assume the external vacuum breakers to be closed initially and to be fully open at [0.5] psid (Ref. 1). Additionally, of the two reactor building-to-suppression chamber vacuum breakers, one is assumed to fail in a closed position to satisfy the single active failure criterion. Design Basis Accident (DBA) analyses require the vacuum breakers to be closed initially and to remain closed and leak tight with positive primary containment pressure.

Five cases were considered in the safety analyses to determine the adequacy of the external vacuum breakers:

a. A small break loss of coolant accident followed by actuation of both primary containment spray loops,

b. Inadvertent actuation of one primary containment spray loop during normal operation,

c. Inadvertent actuation of both primary containment spray loops during normal operation,

d. A postulated DBA assuming Emergency Core Cooling Systems (ECCS) runout flow with a condensation effectiveness of 50%, and

e. A postulated DBA assuming ECCS runout flow with a condensation effectiveness of 100%.

The results of these five cases show that the external vacuum breakers, with an opening setpoint of [0.5] psid, are capable of maintaining the differential pressure within design limits.

The reactor building-to-suppression chamber vacuum breakers satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
Reactor Building-to-Suppression Chamber Vacuum Breakers
B 3.6.1.7

BASES

LCO
All reactor building-to-suppression chamber vacuum breakers are required to be OPERABLE to satisfy the assumptions used in the safety analyses. The requirement ensures that the two vacuum breakers (vacuum breaker and air operated butterfly valve) in each of the two lines from the reactor building to the suppression chamber airspace are closed (except during testing or when performing their intended function). Also, the requirement ensures both vacuum breakers in each line will open to relieve a negative pressure in the suppression chamber.

APPLICABILITY
In MODES 1, 2, and 3, a DBA could cause pressurization of primary containment. In MODES 1, 2, and 3, the Suppression Pool Spray System is required to be OPERABLE to mitigate the effects of a DBA. Excessive negative pressure inside primary containment could occur due to inadvertent initiation of this system. Therefore, the vacuum breakers are required to be OPERABLE in MODES 1, 2, and 3, when the Suppression Pool Spray System is required to be OPERABLE, to mitigate the effects of inadvertent actuation of the Suppression Pool Spray System.

Also, in MODES 1, 2, and 3, a DBA could result in excessive negative differential pressure across the drywell wall caused by the rapid depressurization of the drywell. The event that results in the limiting rapid depressurization of the drywell is the primary system rupture, which purges the drywell of air and fills the drywell free airspace with steam. Subsequent condensation of the steam would result in depressurization of the drywell. The limiting pressure and temperature of the primary system prior to a DBA occur in MODES 1, 2, and 3.

In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining reactor building-to-suppression chamber vacuum breakers OPERABLE is not required in MODE 4 or 5.

ACTIONS
A Note has been added to provide clarification that, for the purpose of this LCO, separate Condition entry is allowed for each penetration flow path.

A.1
With one or more vacuum breakers not closed, the leak tight primary containment boundary may be threatened. Therefore, the inoperable vacuum breakers must be restored to OPERABLE status or the open vacuum breaker closed within 72 hours. The 72 hour Completion Time is consistent with requirements for inoperable suppression-chamber-to-drywell vacuum breakers in LCO 3.6.1.8, "Suppression-Chamber-to-Drywell Vacuum Breakers." The 72 hour Completion Time takes into account the redundancy capability afforded by the remaining breakers,
the fact that the OPERABLE breaker in each of the lines is closed, and
the low probability of an event occurring that would require the vacuum
breakers to be OPERABLE during this period.

B.1

With one or more lines with two vacuum breakers not closed, primary
containment integrity is not maintained. Therefore, one open vacuum
breaker must be closed within 1 hour. This Completion Time is consistent
with the ACTIONS of LCO 3.6.1.1, "Primary Containment," which requires
that primary containment be restored to OPERABLE status within 1 hour.

C.1

With one line with one or more vacuum breakers inoperable for opening,
the leak tight primary containment boundary is intact. The ability to
mitigate an event that causes a containment depressurization is
threatened, however, if both vacuum breakers in at least one vacuum
breaker penetration are not OPERABLE. Therefore, the inoperable
vacuum breaker must be restored to OPERABLE status within 72 hours
[or in accordance with the Risk Informed Completion Time Program].
This is consistent with the Completion Time for Condition A and the fact
that the leak tight primary containment boundary is being maintained.

D.1

-------------------------------------REVIEWER’S NOTE -------------------------------------
Adoption of a MODE 3 end state requires the licensee to make the
following commitments:

1. [LICENSEE] will follow the guidance established in Section 11 of
NUMARC 93-01, "Industry Guidance for Monitoring the Effectiveness
of Maintenance at Nuclear Power Plants," Nuclear Management and
Resource Council, Revision [4F].

2. [LICENSEE] will follow the guidance established in TSTF-IG-05-02,
Implementation Guidance for TSTF-423, Revision 2, "Technical

If one line has one or more reactor building-to-suppression chamber vacuum breakers inoperable for opening and they are not restored within the Completion Time in Condition C, the remaining breakers in the remaining lines can provide the opening function. The plant must be brought to a condition in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 2) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action D.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

E.1

With two [or more] lines with one or more vacuum breakers inoperable for opening, the primary containment boundary is intact. However, in the event of a containment depressurization, the function of the vacuum breakers is lost. Therefore, all vacuum breakers in [one] line must be restored to OPERABLE status within 1 hour [or in accordance with the Risk Informed Completion Time Program]. This Completion Time is consistent with the ACTIONS of LCO 3.6.1.1, which requires that primary containment be restored to OPERABLE status within 1 hour.
Bases

Actions (continued)

F.1 and F.2

If the vacuum breakers in [one] or more lines cannot be closed or restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

Surveillance

Surveillance Requirements

SR 3.6.1.7.1

Each vacuum breaker is verified to be closed to ensure that a potential breach in the primary containment boundary is not present. This Surveillance is performed by observing local or control room indications of vacuum breaker position or by verifying a differential pressure of [0.5] psid is maintained between the reactor building and suppression chamber. [The 14 day Frequency is based on engineering judgment, is considered adequate in view of other indications of vacuum breaker status available to operations personnel, and has been shown to be acceptable through operating experience.

Or

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER'S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

Two Notes are added to this SR. The first Note allows reactor-to-suppression chamber vacuum breakers opened in conjunction with the performance of a Surveillance to not be considered as failing this SR. These periods of opening vacuum breakers are controlled by plant procedures and do not represent inoperable vacuum breakers. The second Note is included to clarify that vacuum breakers open due to an actual differential pressure are not considered as failing this SR.
SR 3.6.1.7.2

Each vacuum breaker must be cycled to ensure that it opens properly to perform its design function and returns to its fully closed position. This ensures that the safety analysis assumptions are valid. [The [92] day Frequency of this SR was developed based upon INSERVICE TESTING PROGRAM requirements to perform valve testing at least once every [92] days.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.6.1.7.3

Demonstration of vacuum breaker opening setpoint is necessary to ensure that the safety analysis assumption regarding vacuum breaker full open differential pressure of ≤ [0.5] psid is valid. [The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. For this unit, the [18] month Frequency has been shown to be acceptable, based on operating experience, and is further justified because of other surveillances performed at shorter Frequencies that convey the proper functioning status of each vacuum breaker.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
<table>
<thead>
<tr>
<th>BASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
</tr>
<tr>
<td>1. FSAR, Section [6.2].</td>
</tr>
</tbody>
</table>
The function of the suppression-chamber-to-drywell vacuum breakers is to relieve vacuum in the drywell. There are [12] internal vacuum breakers located on the vent header of the vent system between the drywell and the suppression chamber, which allow air and steam flow from the suppression chamber to the drywell when the drywell is at a negative pressure with respect to the suppression chamber. Therefore, suppression chamber-to-drywell vacuum breakers prevent an excessive negative differential pressure across the wetwell drywell boundary. Each vacuum breaker is a self-actuating valve, similar to a check valve, which can be remotely operated for testing purposes.

A negative differential pressure across the drywell wall is caused by rapid depressurization of the drywell. Events that cause this rapid depressurization are cooling cycles, inadvertent drywell spray actuation, and steam condensation from sprays or subcooled water reflux of a break in the event of a primary system rupture. Cooling cycles result in minor pressure transients in the drywell that occur slowly and are normally controlled by heating and ventilation equipment. Spray actuation or spill of subcooled water out of a break results in more significant pressure transients and becomes important in sizing the internal vacuum breakers.

In the event of a primary system rupture, steam condensation within the drywell results in the most severe pressure transient. Following a primary system rupture, air in the drywell is purged into the suppression chamber free airspace, leaving the drywell full of steam. Subsequent condensation of the steam can be caused in two possible ways, namely, Emergency Core Cooling Systems flow from a recirculation line break, or drywell spray actuation following a loss of coolant accident (LOCA). These two cases determine the maximum depressurization rate of the drywell.

In addition, the waterleg in the Mark I Vent System downcomer is controlled by the drywell-to-suppression chamber differential pressure. If the drywell pressure is less than the suppression chamber pressure, there will be an increase in the vent waterleg. This will result in an increase in the water clearing inertia in the event of a postulated LOCA, resulting in an increase in the peak drywell pressure. This in turn will result in an increase in the pool swell dynamic loads. The internal vacuum breakers limit the height of the waterleg in the vent system during normal operation.
Analytical methods and assumptions involving the suppression chamber-to-drywell vacuum breakers are presented in Reference 1 as part of the accident response of the primary containment systems. Internal (suppression chamber-to-drywell) and external (reactor building-to-suppression chamber) vacuum breakers are provided as part of the primary containment to limit the negative differential pressure across the drywell and suppression chamber walls that form part of the primary containment boundary.

The safety analyses assume that the internal vacuum breakers are closed initially and are fully open at a differential pressure of [0.5] psid (Ref. 1). Additionally, 3 of the 12 internal vacuum breakers are assumed to fail in a closed position (Ref. 1). The results of the analyses show that the design pressure is not exceeded even under the worst case accident scenario. The vacuum breaker opening differential pressure setpoint and the requirement that [9] of [12] vacuum breakers be OPERABLE are a result of the requirement placed on the vacuum breakers to limit the vent system waterleg height. The total cross sectional area of the main vent system between the drywell and suppression chamber needed to fulfill this requirement has been established as a minimum of [51.5] times the total break area (Ref. 1). In turn, the vacuum relief capacity between the drywell and suppression chamber should be [1/16] of the total main vent cross sectional area, with the valves set to operate at [0.5] psid differential pressure. Design Basis Accident (DBA) analyses require the vacuum breakers to be closed initially and to remain closed and leak tight, with the suppression pool at a positive pressure relative to the drywell.

The suppression chamber-to-drywell vacuum breakers satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Only [9] of the [12] vacuum breakers must be OPERABLE for opening. All suppression chamber-to-drywell vacuum breakers, however, are required to be closed (except during testing or when the vacuum breakers are performing their intended design function). The vacuum breaker OPERABILITY requirement provides assurance that the drywell-to-suppression chamber negative differential pressure remains below the design value. The requirement that the vacuum breakers be closed ensures that there is no excessive bypass leakage should a LOCA occur.

In MODES 1, 2, and 3, the Suppression Pool Spray System is required to be OPERABLE to mitigate the effects of a DBA. Excessive negative pressure inside the drywell could occur due to inadvertent actuation of this system. The vacuum breakers, therefore, are required to be OPERABLE in MODES 1, 2, and 3, when the Suppression Pool Spray System is required to be OPERABLE, to mitigate the effects of inadvertent actuation of the Suppression Pool Spray System.
BASES

APPLICABILITY (continued)

Also, in MODES 1, 2, and 3, a DBA could result in excessive negative differential pressure across the drywell wall, caused by the rapid depressurization of the drywell. The event that results in the limiting rapid depressurization of the drywell is the primary system rupture that purges the drywell of air and fills the drywell free airspace with steam. Subsequent condensation of the steam would result in depressurization of the drywell. The limiting pressure and temperature of the primary system prior to a DBA occur in MODES 1, 2, and 3.

In MODES 4 and 5, the probability and consequences of these events are reduced by the pressure and temperature limitations in these MODES; therefore, maintaining suppression chamber-to-drywell vacuum breakers OPERABLE is not required in MODE 4 or 5.

ACTIONS

A.1

With one of the required vacuum breakers inoperable for opening (e.g., the vacuum breaker is not open and may be stuck closed or not within its opening setpoint limit, so that it would not function as designed during an event that depressurized the drywell), the remaining [eight] OPERABLE vacuum breakers are capable of providing the vacuum relief function. However, overall system reliability is reduced because a single failure in one of the remaining vacuum breakers could result in an excessive suppression chamber-to-drywell differential pressure during a DBA. Therefore, with one of the [nine] required vacuum breakers inoperable, 72 hours is allowed to restore at least one of the inoperable vacuum breakers to OPERABLE status so that plant conditions are consistent with those assumed for the design basis analysis. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] The 72 hour Completion Time is considered acceptable due to the low probability of an event in which the remaining vacuum breaker capability would not be adequate.

B.1

-----------------------------------REVIEWER’S NOTE----------------------------------
Adoption of a MODE 3 end state requires the licensee to make the following commitments:

BASES

ACTIONS (continued)

If a required suppression chamber-to-drywell vacuum breaker is inoperable for opening and is not restored to OPERABLE status within the required Completion Time, the plant must be brought to a condition in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 2) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action B.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1

An open vacuum breaker allows communication between the drywell and suppression chamber airspace, and, as a result, there is the potential for suppression chamber overpressurization due to this bypass leakage if a LOCA were to occur. Therefore, the open vacuum breaker must be closed. A short time is allowed to close the vacuum breaker due to the low probability of an event that would pressurize primary containment. If vacuum breaker position indication is not reliable, an alternate method of verifying that the vacuum breakers are closed is to verify that a differential pressure of [0.5] psid between the suppression chamber and drywell is
Bases

Actions (continued)

Maintained for 1 hour without makeup. The required 2 hour completion time is considered adequate to perform this test.

D.1 and D.2

If the open suppression chamber-to-drywell vacuum breaker cannot be closed within the required completion time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed completion times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

Surveillance

SR 3.6.1.8.1

Each vacuum breaker is verified closed to ensure that this potential large bypass leakage path is not present. This Surveillance is performed by observing the vacuum breaker position indication or by verifying that a differential pressure of [0.5] psid between the suppression chamber and drywell is maintained for 1 hour without makeup. [The 14 day frequency is based on engineering judgment, is considered adequate in view of other indications of vacuum breaker status available to operations personnel, and has been shown to be acceptable through operating experience.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Reviewer's Note

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This verification is also required within 2 hours after any discharge of steam to the suppression chamber from the safety/relief valves or any operation that causes the drywell-to-suppression chamber differential pressure to be reduced by ≥ [0.5] psid.

A Note is added to this SR which allows suppression chamber-to-drywell vacuum breakers opened in conjunction with the performance of a
SURVEILLANCE REQUIREMENTS (continued)

Surveillance to not be considered as failing this SR. These periods of opening vacuum breakers are controlled by plant procedures and do not represent inoperable vacuum breakers.

SR 3.6.1.8.2

Each required vacuum breaker must be cycled to ensure that it opens adequately to perform its design function and returns to the fully closed position. This ensures that the safety analysis assumptions are valid. [The 31 day Frequency of this SR was developed, based on INSERVICE TESTING PROGRAM requirements to perform valve testing at least once every 92 days. A 31 day Frequency was chosen to provide additional assurance that the vacuum breakers are OPERABLE, since they are located in a harsh environment (the suppression chamber airspace).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--]

In addition, this functional test is required within 12 hours after either a discharge of steam to the suppression chamber from the safety/relief valves or after an operation that causes any of the vacuum breakers to open.

SR 3.6.1.8.3

Verification of the vacuum breaker opening setpoint is necessary to ensure that the safety analysis assumption regarding vacuum breaker full open differential pressure of [0.5] psid is valid. [The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. For this facility, the [18] month Frequency has been shown to be acceptable, based on operating experience, and is further justified because of other surveillances performed at shorter Frequencies that convey the proper functioning status of each vacuum breaker.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--]
BASES

SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [6.2].

B 3.6 CONTAIEMON TS SYSTEMS

B 3.6.1.9 Main Steam Isolation Valve (MSIV) Leakage Control System (LCS)

BASES

BACKGROUND

The MSIV LCS supplements the isolation function of the MSIVs by processing the fission products that could leak through the closed MSIVs after a Design Basis Accident (DBA) loss of coolant accident (LOCA).

The MSIV LCS consists of two independent subsystems: an inboard subsystem, connected between the inboard and outboard MSIVs, and an outboard subsystem, connected immediately downstream of the outboard MSIVs. Each subsystem is capable of processing leakage from MSIVs following a DBA LOCA. Each subsystem consists of blowers (one blower for the inboard subsystem and two blowers for the outboard subsystem), valves, piping, and heaters (for the inboard subsystem only). Four electric heaters in the inboard subsystem are provided to boil off any condensate prior to the gas mixture passing through the flow limiter.

Each subsystem operates in two process modes: depressurization and bleedoff. The depressurization process reduces the steam line pressure to within the operating capability of equipment used for the bleedoff mode. During bleedoff (long term leakage control), the blowers maintain a negative pressure in the main steam lines (Ref. 1). This ensures the leakage through the closed MSIVs is collected and processed by the MSIV LCS. In both process modes, the effluent is discharged to the secondary containment and ultimately filtered by the Standby Gas Treatment (SGT) System.

The MSIV LCS is manually initiated approximately 20 minutes following a DBA LOCA (Ref. 2).

APPLICABLE SAFETY ANALYSES

The MSIV LCS mitigates the consequences of a DBA LOCA by ensuring that fission products that may leak from the closed MSIVs are diverted to the secondary containment and ultimately filtered by the SGT System. The operation of the MSIV LCS prevents a release of untreated leakage for this type of event.

The MSIV LCS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

One MSIV LCS subsystem can provide the required processing of the MSIV leakage. To ensure that this capability is available, assuming worst case single failure, two MSIV LCS subsystems must be OPERABLE.
BASES

APPLICABILITY

In MODES 1, 2, and 3, a DBA could lead to a fission product release to primary containment. Therefore, MSIV LCS OPERABILITY is required during these MODES. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining the MSIV LCS OPERABLE is not required in MODE 4 or 5 to ensure MSIV leakage is processed.

ACTIONS

A.1

With one MSIV LCS subsystem inoperable, the inoperable MSIV LCS subsystem must be restored to OPERABLE status within 30 days. In this Condition, the remaining OPERABLE MSIV LCS subsystem is adequate to perform the required leakage control function. However, the overall reliability is reduced because a single failure in the remaining subsystem could result in a total loss of MSIV leakage control function. The 30 day Completion Time is based on the redundant capability afforded by the remaining OPERABLE MSIV LCS subsystem and the low probability of a DBA LOCA occurring during this period.

B.1

With two MSIV LCS subsystems inoperable, at least one subsystem must be restored to OPERABLE status within 7 days. The 7 day Completion Time is based on the low probability of the occurrence of a DBA LOCA.

C.1

----------------------------------- REVIEWER’S NOTE -----------------------------------

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If the MSIV LCS subsystem cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.
BASES

ACTIONS (continued)

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 3) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action C.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.6.1.9.1

Each MSIV LCS blower is operated for ≥ [15] minutes to verify OPERABILITY. [The 31 day Frequency was developed considering the known reliability of the LCS blower and controls, the two subsystem redundancy, and the low probability of a significant degradation of the MSIV LCS subsystems occurring between surveillances and has been shown to be acceptable through operating experience.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.1.9.2

The electrical continuity of each inboard MSIV LCS subsystem heater is verified by a resistance check, by verifying that the rate of temperature increase meets specifications, or by verifying that the current or wattage draw meets specifications. [The 31 day Frequency is based on operating experience that has shown that these components usually pass this Surveillance when performed at this Frequency.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.6.1.9.3

A system functional test is performed to ensure that the MSIV LCS will operate through its operating sequence. This includes verifying that the automatic positioning of the valves and the operation of each interlock and timer are correct, that the blowers start and develop the required flow rate and the necessary vacuum, and that the upstream heaters meet current or wattage draw requirements (if not used to verify electrical continuity in SR 3.6.1.9.2). [The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
SURVEILLANCE REQUIREMENTS (continued)

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

References

1. FSAR, Section [6.5].
2. Regulatory Guide 1.96, Revision [1].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.2.1 Suppression Pool Average Temperature

BASES

BACKGROUND The suppression chamber is a toroidal shaped, steel pressure vessel containing a volume of water called the suppression pool. The suppression pool is designed to absorb the decay heat and sensible energy released during a reactor blowdown from safety/relief valve discharges or from Design Basis Accidents (DBAs). The suppression pool must quench all the steam released through the downcomer lines during a loss of coolant accident (LOCA). This is the essential mitigative feature of a pressure suppression containment that ensures that the peak containment pressure is maintained below the maximum allowable pressure for DBAs ([62] psig). The suppression pool must also condense steam from steam exhaust lines in the turbine driven systems (i.e., the High Pressure Coolant Injection System and Reactor Core Isolation Cooling System). Suppression pool average temperature (along with LCO 3.6.2.2, "Suppression Pool Water Level") is a key indication of the capacity of the suppression pool to fulfill these requirements.

The technical concerns that lead to the development of suppression pool average temperature limits are as follows:

a. Complete steam condensation - [the original limit for the end of a LOCA blowdown was 170°F, based on the Bodega Bay and Humboldt Bay Tests],

b. Primary containment peak pressure and temperature - [design pressure is [62] psig and design temperature is [340]°F (Ref. 1)],

c. Condensation oscillation loads - [maximum allowable initial temperature is [110]°F], and

d. Chugging loads - [these only occur at < [135]°F; therefore, there is no initial temperature limit because of chugging].

APPLICABLE SAFETY ANALYSES The postulated DBA against which the primary containment performance is evaluated is the entire spectrum of postulated pipe breaks within the primary containment. Inputs to the safety analyses include initial suppression pool water volume and suppression pool temperature (Reference 1 for LOCAs and Reference 2 for the pool temperature analyses required by Reference 3). An initial pool temperature of [95]°F is assumed for the Reference 1 and Reference 2 analyses. Reactor shutdown at a pool temperature of [110]°F and vessel depressurization at a pool temperature of [120]°F are assumed for the Reference 2 analyses.
APPLICABLE SAFETY ANALYSES (continued)

The limit of [105]°F, at which testing is terminated, is not used in the safety analyses because DBAs are assumed to not initiate during unit testing.

Suppression pool average temperature satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).

LCO

A limitation on the suppression pool average temperature is required to provide assurance that the containment conditions assumed for the safety analyses are met. This limitation subsequently ensures that peak primary containment pressures and temperatures do not exceed maximum allowable values during a postulated DBA or any transient resulting in heatup of the suppression pool. The LCO requirements are:

a. Average temperature ≤ [95]°F [when any OPERABLE intermediate range monitor (IRM) channel is > [25/40] divisions of full scale on Range 7] [with THERMAL POWER > 1% RATED THERMAL POWER (RTP)] and no testing that adds heat to the suppression pool is being performed. This requirement ensures that licensing bases initial conditions are met.

b. Average temperature ≤ [105]°F [when any OPERABLE IRM channel is > [25/40] divisions of full scale on Range 7] [with THERMAL POWER > 1% RTP] and testing that adds heat to the suppression pool is being performed. This required value ensures that the unit has testing flexibility, and was selected to provide margin below the [110]°F limit at which reactor shutdown is required. When testing ends, temperature must be restored to ≤ [95]°F within 24 hours according to Required Action A.2. Therefore, the time period that the temperature is > [95]°F is short enough not to cause a significant increase in unit risk.

c. Average temperature ≤ [110]°F [when all OPERABLE IRM channels are ≤ [25/40] divisions of full scale on Range 7] [with THERMAL POWER ≤ 1% RTP]. This requirement ensures that the unit will be shut down at > [110]°F. The pool is designed to absorb decay heat and sensible heat but could be heated beyond design limits by the steam generated if the reactor is not shut down.

[Note that [25/40] divisions of full scale on IRM Range 7 is a convenient measure of when the reactor is producing power essentially equivalent to 1% RTP]. At [this power level] [1% RTP], heat input is approximately equal to normal system heat losses.
BASES

APPLICABILITY

In MODES 1, 2, and 3, a DBA could cause significant heatup of the suppression pool. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining suppression pool average temperature within limits is not required in MODE 4 or 5.

ACTIONS

A.1 and A.2

With the suppression pool average temperature above the specified limit when not performing testing that adds heat to the suppression pool and when above the specified power indication, the initial conditions exceed the conditions assumed for the Reference 1, 3, and 4 analyses. However, primary containment cooling capability still exists, and the primary containment pressure suppression function will occur at temperatures well above those assumed for safety analyses. Therefore, continued operation is allowed for a limited time. The 24 hour Completion Time is adequate to allow the suppression pool average temperature to be restored below the limit. Additionally, when suppression pool temperature is > [95]°F, increased monitoring of the suppression pool temperature is required to ensure that it remains ≤ [110]°F. The once per hour Completion Time is adequate based on past experience, which has shown that pool temperature increases relatively slowly except when testing that adds heat to the suppression pool is being performed. Furthermore, the once per hour Completion Time is considered adequate in view of other indications in the control room, including alarms, to alert the operator to an abnormal suppression pool average temperature condition.

B.1

If the suppression pool average temperature cannot be restored to within limits within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the power must be reduced to [< 25/40] divisions of full scale on Range 7 for all OPERABLE IRMs] [≤ 1% RTP] within 12 hours. The 12 hour Completion Time is reasonable, based on operating experience, to reduce power from full power conditions in an orderly manner and without challenging plant systems.

C.1

Suppression pool average temperature is allowed to be > [95]°F [when any OPERABLE IRM channel is > [25/40] divisions of full scale on Range 7] [with THERMAL POWER > 1% RTP], and when testing that adds heat to the suppression pool is being performed. However, if temperature is > [105]°F, all testing must be immediately suspended to
Suppression Pool Average Temperature

D.1, D.2 and D.3

Suppression pool average temperature > [110]°F requires that the reactor be shut down immediately. This is accomplished by placing the reactor mode switch in the shutdown position. Further cooldown to Mode 4 is required at normal cooldown rates (provided pool temperature remains ≤ [120]°F). Additionally, when suppression pool temperature is > [110]°F, increased monitoring of pool temperature is required to ensure that it remains ≤ [120]°F. The once per 30 minute Completion Time is adequate, based on operating experience. Given the high suppression pool average temperature in this Condition, the monitoring Frequency is increased to twice that of Condition A. Furthermore, the 30 minute Completion Time is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal suppression pool average temperature condition.

E.1 and E.2

If suppression pool average temperature cannot be maintained at ≤ [120]°F, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the reactor pressure must be reduced to < [200] psig within 12 hours, and the plant must be brought to at least MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

Continued addition of heat to the suppression pool with suppression pool temperature > [120]°F could result in exceeding the design basis maximum allowable values for primary containment temperature or pressure. Furthermore, if a blowdown were to occur when the temperature was > [120]°F, the maximum allowable bulk and local temperatures could be exceeded very quickly.
The suppression pool average temperature is regularly monitored to ensure that the required limits are satisfied. The average temperature is determined by taking an arithmetic average of OPERABLE suppression pool water temperature channels. [The 24 hour Frequency has been shown, based on operating experience, to be acceptable. When heat is being added to the suppression pool by testing, however, it is necessary to monitor suppression pool temperature more frequently.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The 5 minute Frequency during testing is justified by the rates at which tests will heat up the suppression pool, has been shown to be acceptable based on operating experience, and provides assurance that allowable pool temperatures are not exceeded. The Frequency is further justified in view of other indications available in the control room, including alarms, to alert the operator to an abnormal suppression pool average temperature condition.

REFERENCES

1. FSAR, Section [6.2].
2. FSAR, Section [15.1].
3. NUREG-0783.

[4. Mark I Containment Program.]
B 3.6 CONTAINMENT SYSTEMS

B 3.6.2.2 Suppression Pool Water Level

BASES

BACKGROUND
The suppression chamber is a toroidal shaped, steel pressure vessel containing a volume of water called the suppression pool. The suppression pool is designed to absorb the energy associated with decay heat and sensible heat released during a reactor blowdown from safety/relief valve (S/RV) discharges or from a Design Basis Accident (DBA). The suppression pool must quench all the steam released through the downcomer lines during a loss of coolant accident (LOCA). This is the essential mitigative feature of a pressure suppression containment, which ensures that the peak containment pressure is maintained below the maximum allowable pressure for DBAs ([62] psig).

The suppression pool must also condense steam from the steam exhaust lines in the turbine driven systems (i.e., High Pressure Coolant Injection (HPCI) System and Reactor Core Isolation Cooling (RCIC) System) and provides the main emergency water supply source for the reactor vessel. The suppression pool volume ranges between [87,300] ft3 at the low water level limit of [12 ft 2 inches] and [90,550] ft3 at the high water level limit of [12 ft 6 inches].

If the suppression pool water level is too low, an insufficient amount of water would be available to adequately condense the steam from the S/RV quenchers, main vents, or HPCI and RCIC turbine exhaust lines. Low suppression pool water level could also result in an inadequate emergency makeup water source to the Emergency Core Cooling System. The lower volume would also absorb less steam energy before heating up excessively. Therefore, a minimum suppression pool water level is specified.

If the suppression pool water level is too high, it could result in excessive clearing loads from S/RV discharges and excessive pool swell loads during a DBA LOCA. Therefore, a maximum pool water level is specified. This LCO specifies an acceptable range to prevent the suppression pool water level from being either too high or too low.

APPLICABLE SAFETY ANALYSES
Initial suppression pool water level affects suppression pool temperature response calculations, calculated drywell pressure during vent clearing for a DBA, calculated pool swell loads for a DBA LOCA, and calculated loads due to S/RV discharges. Suppression pool water level must be maintained within the limits specified so that the safety analysis of Reference 1 remains valid.

Suppression pool water level satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).
BASES

LCO
A limit that suppression pool water level be ≥ [12 ft 2 inches] and ≤ [12 ft 6 inches] is required to ensure that the primary containment conditions assumed for the safety analyses are met. Either the high or low water level limits were used in the safety analyses, depending upon which is more conservative for a particular calculation.

APPLICABILITY
In MODES 1, 2, and 3, a DBA would cause significant loads on the primary containment. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. The requirements for maintaining suppression pool water level within limits in MODE 4 or 5 is addressed in LCO 3.5.2, "RPV Water Inventory Control."

ACTIONS

A.1
With suppression pool water level outside the limits, the conditions assumed for the safety analyses are not met. If water level is below the minimum level, the pressure suppression function still exists as long as main vents are covered, HPCI and RCIC turbine exhausts are covered, and S/RV quenchers are covered. If suppression pool water level is above the maximum level, protection against overpressurization still exists due to the margin in the peak containment pressure analysis and the capability of the Drywell Spray System. Therefore, continued operation for a limited time is allowed. The 2 hour Completion Time is sufficient to restore suppression pool water level to within limits. Also, it takes into account the low probability of an event impacting the suppression pool water level occurring during this interval.

B.1 and B.2
If suppression pool water level cannot be restored to within limits within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
BASES

<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>SR 3.6.2.2.1</th>
</tr>
</thead>
</table>

Verification of the suppression pool water level is to ensure that the required limits are satisfied. The 24 hour Frequency of this SR was developed considering operating experience related to trending variations in suppression pool water level and water level instrument drift during the applicable MODES and to assessing the proximity to the specified LCO level limits. Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal suppression pool water level condition.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [6.2].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.2.3 Residual Heat Removal (RHR) Suppression Pool Cooling

BASES

BACKGROUND Following a Design Basis Accident (DBA), the RHR Suppression Pool Cooling System removes heat from the suppression pool. The suppression pool is designed to absorb the sudden input of heat from the primary system. In the long term, the pool continues to absorb residual heat generated by fuel in the reactor core. Some means must be provided to remove heat from the suppression pool so that the temperature inside the primary containment remains within design limits. This function is provided by two redundant RHR suppression pool cooling subsystems. The purpose of this LCO is to ensure that both subsystems are OPERABLE in applicable MODES.

Each RHR subsystem contains two pumps and one heat exchanger and is manually initiated and independently controlled. The two subsystems perform the suppression pool cooling function by circulating water from the suppression pool through the RHR heat exchangers and returning it to the suppression pool. RHR service water, circulating through the tube side of the heat exchangers, exchanges heat with the suppression pool water and discharges this heat to the external heat sink.

The heat removal capability of one RHR pump in one subsystem is sufficient to meet the overall DBA pool cooling requirement for loss of coolant accidents (LOCAs) and transient events such as a turbine trip or stuck open safety/relief valve (S/RV). S/RV leakage and high pressure core injection and Reactor Core Isolation Cooling System testing increase suppression pool temperature more slowly. The RHR Suppression Pool Cooling System is also used to lower the suppression pool water bulk temperature following such events.

APPLICABLE SAFETY ANALYSES Reference 1 contains the results of analyses used to predict primary containment pressure and temperature following large and small break LOCAs. The intent of the analyses is to demonstrate that the heat removal capacity of the RHR Suppression Pool Cooling System is adequate to maintain the primary containment conditions within design limits. The suppression pool temperature is calculated to remain below the design limit.

The RHR Suppression Pool Cooling System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
BASES

LCO During a DBA, a minimum of one RHR suppression pool cooling subsystem is required to maintain the primary containment peak pressure and temperature below design limits (Ref. 1). To ensure that these requirements are met, two RHR suppression pool cooling subsystems must be OPERABLE with power from two safety related independent power supplies. Therefore, in the event of an accident, at least one subsystem is OPERABLE assuming the worst case single active failure. An RHR suppression pool cooling subsystem is OPERABLE when one of the pumps, the heat exchanger, and associated piping, valves, instrumentation, and controls are OPERABLE. Management of gas voids is important to RHR Suppression Pool Cooling System OPERABILITY.

APPLICABILITY In MODES 1, 2, and 3, a DBA could cause a release of radioactive material to primary containment and cause a heatup and pressurization of primary containment. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Therefore, the RHR Suppression Pool Cooling System is not required to be OPERABLE in MODE 4 or 5.

ACTIONS A.1

With one RHR suppression pool cooling subsystem inoperable, the inoperable subsystem must be restored to OPERABLE status within 7 days [or in accordance with the Risk Informed Completion Time Program]. In this Condition, the remaining RHR suppression pool cooling subsystem is adequate to perform the primary containment cooling function. However, the overall reliability is reduced because a single failure in the OPERABLE subsystem could result in reduced primary containment cooling capability. The 7 day Completion Time is acceptable in light of the redundant RHR suppression pool cooling capabilities afforded by the OPERABLE subsystem and the low probability of a DBA occurring during this period.

B.1

------------------------REVIEWER’S NOTE ------------------------
Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If one RHR suppression pool cooling subsystem is inoperable and is not restored to OPERABLE status within the required Completion Time, the plant must be brought to a condition in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Required Action B.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1

With two RHR suppression pool cooling subsystems inoperable, one subsystem must be restored to OPERABLE status within 8 hours. In this condition, there is a substantial loss of the primary containment pressure and temperature mitigation function. The 8 hour Completion Time is based on this loss of function and is considered acceptable due to the low probability of a DBA and the potential avoidance of a plant shutdown transient that could result in the need for the RHR suppression pool cooling subsystems to operate.
D.1 and D.2

If the Required Action and associated Completion Time of Condition C cannot be met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.6.2.3.1

Verifying the correct alignment for manual, power operated, and automatic valves in the RHR suppression pool cooling mode flow path provides assurance that the proper flow path exists for system operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position provided it can be aligned to the accident position within the time assumed in the accident analysis. This is acceptable since the RHR suppression pool cooling mode is manually initiated. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

[The Frequency of 31 days is justified because the valves are operated under procedural control, improper valve position would affect only a single subsystem, the probability of an event requiring initiation of the system is low, and the subsystem is a manually initiated system. This Frequency has been shown to be acceptable based on operating experience.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
SR 3.6.2.3.2

RHR Suppression Pool Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR suppression pool cooling subsystems and may also prevent water hammer and pump cavitation.

Selection of RHR Suppression Pool Cooling System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The RHR Suppression Pool Cooling System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or discharge of a pump), the Surveillance is not met. If the accumulated gas is eliminated or brought within the acceptance criteria limits during performance of the Surveillance, the Surveillance is met and past system OPERABILITY is evaluated under the Corrective Action Program. If it is determined by subsequent evaluation that the RHR Suppression Pool Cooling System is not rendered inoperable by the accumulated gas (i.e., the system is sufficiently filled with water), the Surveillance may be declared met. Accumulated gas should be eliminated or brought within the acceptance criteria limits.

RHR Suppression Pool Cooling System locations susceptible to gas accumulation are monitored and, if gas is found, the gas volume is compared to the acceptance criteria for the location. Susceptible locations in the same system flow path which are subject to the same gas intrusion mechanisms may be verified by monitoring a representative subset of susceptible locations. Monitoring may not be practical for locations that are inaccessible due to radiological or environmental conditions, the plant configuration, or personnel safety. For these locations alternative methods (e.g., operating parameters, remote monitoring) may be used to monitor the susceptible location. Monitoring is not required for
susceptible locations where the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.

[The 31 day Frequency takes into consideration the gradual nature of gas accumulation in the RHR Suppression Pool Cooling System piping and the procedural controls governing system operation.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.6.2.3.3

Verifying that each RHR pump develops a flow rate ≥ [7700] gpm while operating in the suppression pool cooling mode with flow through the associated heat exchanger ensures that pump performance has not degraded during the cycle. Flow is a normal test of centrifugal pump performance required by ASME Code (Ref. 3). This test confirms one point on the pump design curve, and the results are indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance.

If the testing is within the scope of the licensee's INSERVICE TESTING PROGRAM, the Frequency "In accordance with the INSERVICE TESTING PROGRAM" should be used. Otherwise, the periodic Frequency of 92 days or the reference to the Surveillance Frequency Control Program should be used.
BASES

SURVEILLANCE REQUIREMENTS (continued)

[The Frequency of this SR is [in accordance with the INSERVICE TESTING PROGRAM] [92 days]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------

REFERENCES

1. FSAR, Section [6.2].

3. ASME Code for Operation and Maintenance of Nuclear Power Plants.
B 3.6 CONTAINMENT SYSTEMS

B 3.6.2.4 Residual Heat Removal (RHR) Suppression Pool Spray

BASES

BACKGROUND Following a Design Basis Accident (DBA), the RHR Suppression Pool Spray System removes heat from the suppression chamber airspace. The suppression pool is designed to absorb the sudden input of heat from the primary system from a DBA or a rapid depressurization of the reactor pressure vessel (RPV) through safety/relief valves. The heat addition to the suppression pool results in increased steam in the suppression chamber, which increases primary containment pressure. Steam blowdown from a DBA can also bypass the suppression pool and end up in the suppression chamber airspace. Some means must be provided to remove heat from the suppression chamber so that the pressure and temperature inside primary containment remain within analyzed design limits. This function is provided by two redundant RHR suppression pool spray subsystems. The purpose of this LCO is to ensure that both subsystems are OPERABLE in applicable MODES.

Each of the two RHR suppression pool spray subsystems contains two pumps and one heat exchanger, which are manually initiated and independently controlled. The two subsystems perform the suppression pool spray function by circulating water from the suppression pool through the RHR heat exchangers and returning it to the suppression pool spray spargers. The spargers only accommodate a small portion of the total RHR pump flow; the remainder of the flow returns to the suppression pool through the suppression pool cooling return line. Thus, both suppression pool cooling and suppression pool spray functions are performed when the Suppression Pool Spray System is initiated. RHR service water, circulating through the tube side of the heat exchangers, exchanges heat with the suppression pool water and discharges this heat to the external heat sink. Either RHR suppression pool spray subsystem is sufficient to condense the steam from small bypass leaks from the drywell to the suppression chamber airspace during the postulated DBA.

APPLICABLE SAFETY ANALYSES Reference 1 contains the results of analyses used to predict primary containment pressure and temperature following large and small break loss of coolant accidents. The intent of the analyses is to demonstrate that the pressure reduction capacity of the RHR Suppression Pool Spray System is adequate to maintain the primary containment conditions within design limits. The time history for primary containment pressure is calculated to demonstrate that the maximum pressure remains below the design limit.

The RHR Suppression Pool Spray System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
Bases

LCO

In the event of a DBA, a minimum of one RHR suppression pool spray subsystem is required to mitigate potential bypass leakage paths and maintain the primary containment peak pressure below the design limits (Ref. 1). To ensure that these requirements are met, two RHR suppression pool spray subsystems must be OPERABLE with power from two safety related independent power supplies. Therefore, in the event of an accident, at least one subsystem is OPERABLE assuming the worst case single active failure. An RHR suppression pool spray subsystem is OPERABLE when one of the pumps, the heat exchanger, and associated piping, valves, instrumentation, and controls are OPERABLE. Management of gas voids is important to RHR Suppression Pool Spray System OPERABILITY.

Applicability

In MODES 1, 2, and 3, a DBA could cause pressurization of primary containment. In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining RHR suppression pool spray subsystems OPERABLE is not required in MODE 4 or 5.

Actions

A.1

With one RHR suppression pool spray subsystem inoperable, the inoperable subsystem must be restored to OPERABLE status within 7 days [or in accordance with the Risk Informed Completion Time Program]. In this Condition, the remaining OPERABLE RHR suppression pool spray subsystem is adequate to perform the primary containment bypass leakage mitigation function. However, the overall reliability is reduced because a single failure in the OPERABLE subsystem could result in reduced primary containment bypass mitigation capability. The 7 day Completion Time was chosen in light of the redundant RHR suppression pool spray capabilities afforded by the OPERABLE subsystem and the low probability of a DBA occurring during this period.

B.1

With both RHR suppression pool spray subsystems inoperable, at least one subsystem must be restored to OPERABLE status within 8 hours. In this Condition, there is a substantial loss of the primary containment bypass leakage mitigation function. The 8 hour Completion Time is based on this loss of function and is considered acceptable due to the low probability of a DBA and because alternative methods to remove heat from primary containment are available.
Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If the inoperable RHR suppression pool spray subsystem cannot be restored to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 2) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action C.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
SR 3.6.2.4.1

Verifying the correct alignment for manual, power operated, and automatic valves in the RHR suppression pool spray mode flow path provides assurance that the proper flow paths will exist for system operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position provided it can be aligned to the accident position within the time assumed in the accident analysis. This is acceptable since the RHR suppression pool cooling mode is manually initiated. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

[The Frequency of 31 days is justified because the valves are operated under procedural control, improper valve position would affect only a single subsystem, the probability of an event requiring initiation of the system is low, and the subsystem is a manually initiated system. This Frequency has been shown to be acceptable based on operating experience.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--------------------REVIEWER’S NOTE-----------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--]

SR 3.6.2.4.2

RHR Suppression Pool Spray System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR suppression pool spray subsystems and may also prevent water hammer and pump cavitation.
SURVEILLANCE REQUIREMENTS (continued)

Selection of RHR Suppression Pool Spray System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The RHR Suppression Pool Spray System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or discharge of a pump), the Surveillance is not met. If the accumulated gas is eliminated or brought within the acceptance criteria limits during performance of the Surveillance, the Surveillance is met and past system OPERABILITY is evaluated under the Corrective Action Program. If it is determined by subsequent evaluation that the RHR Suppression Pool Spray System is not rendered inoperable by the accumulated gas (i.e., the system is sufficiently filled with water), the Surveillance may be declared met. Accumulated gas should be eliminated or brought within the acceptance criteria limits.

RHR Suppression Pool Spray System locations susceptible to gas accumulation are monitored and, if gas is found, the gas volume is compared to the acceptance criteria for the location. Susceptible locations in the same system flow path which are subject to the same gas intrusion mechanisms may be verified by monitoring a representative subset of susceptible locations. Monitoring may not be practical for locations that are inaccessible due to radiological or environmental conditions, the plant configuration, or personnel safety. For these locations alternative methods (e.g., operating parameters, remote monitoring) may be used to monitor the susceptible location. Monitoring is not required for susceptible locations where the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.
The 31 day Frequency takes into consideration the gradual nature of gas accumulation in the RHR Suppression Pool Spray System piping and the procedural controls governing system operation.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.

--------------------REVIEWER'S NOTE-------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.6.2.4.3

Verifying each RHR pump develops a flow rate ≥ [400] gpm while operating in the suppression pool spray mode with flow through the heat exchanger ensures that pump performance has not degraded during the cycle. Flow is a normal test of centrifugal pump performance required by the ASME Code (Ref. 3). This test confirms one point on the pump design curve and is indicative of overall performance. Such in-service inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance.

--------------------REVIEWER'S NOTE--------------------

If the testing is within the scope of the licensee’s INSERVICE TESTING PROGRAM, the Frequency "In accordance with the INSERVICE TESTING PROGRAM" should be used. Otherwise, the periodic Frequency of 92 days or the reference to the Surveillance Frequency Control Program should be used.

--

[The Frequency of this SR is [in accordance with the INSERVICE TESTING PROGRAM, but the Frequency must not exceed 92 days.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
SURTVEILLANCE REQUIREMENTS (continued)

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [6.2].
3. ASME Code for Operation and Maintenance of Nuclear Power Plants.
B 3.6 CONTAINMENT SYSTEMS

B 3.6.2.5 Drywell-to-Suppression Chamber Differential Pressure

BASES

BACKGROUND The toroidal shaped suppression chamber, which contains the suppression pool, is connected to the drywell (part of the primary containment) by [eight] main vent pipes. The main vent pipes exhaust into a continuous vent header, from which [96] downcomer pipes extend into the suppression pool. The pipe exit is [4] ft below the minimum suppression pool water level required by LCO 3.6.2.2, "Suppression Pool Water Level." During a loss of coolant accident (LOCA), the increasing drywell pressure will force the waterleg in the downcomer pipes into the suppression pool at substantial velocities as the "blowdown" phase of the event begins. The length of the waterleg has a significant effect on the resultant primary containment pressures and loads.

APPLICABLE SAFETY ANALYSES The purpose of maintaining the drywell at a slightly higher pressure with respect to the suppression chamber is to minimize the drywell pressure increase necessary to clear the downcomer pipes to commence condensation of steam in the suppression pool and to minimize the mass of the accelerated water leg. This reduces the hydrodynamic loads on the torus during the LOCA blowdown. The required differential pressure results in a downcomer waterleg of [3.06 to 3.58] ft.

Initial drywell-to-suppression chamber differential pressure affects both the dynamic pool loads on the suppression chamber and the peak drywell pressure during downcomer pipe clearing during a Design Basis Accident LOCA. Drywell-to-suppression chamber differential pressure must be maintained within the specified limits so that the safety analysis remains valid.

Drywell-to-suppression chamber differential pressure satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO A drywell-to-suppression chamber differential pressure limit of [1.5] psid is required to ensure that the containment conditions assumed in the safety analyses are met. A drywell-to-suppression chamber differential pressure of < [1.5] psid corresponds to a downcomer water leg of > [3.58] ft. Failure to maintain the required differential pressure could result in excessive forces on the suppression chamber due to higher water clearing loads from downcomer vents and higher pressure buildup in the drywell.
Drywell-to-Suppression Chamber Differential Pressure
B 3.6.2.5

BASES

APPLICABILITY
Drywell-to-suppression chamber differential pressure must be controlled when the primary containment is inert. The primary containment must be inert in MODE 1 with THERMAL POWER > [15]% RTP, since this is the condition with the highest probability for an event that could impose large loads on the primary containment.

ACTIONS
A.1

If drywell-to-suppression chamber differential pressure is not within the limit, the conditions assumed in the safety analyses are not met and the differential pressure must be restored to within the limit within 8 hours. The 72 hour Completion Time takes into account the low probability of an event that would create excessive suppression chamber loads occurring during this time period.

A Note permits the use of the provisions of LCO 3.0.4.c. This allowance permits entry into the applicable MODE(S) while relying on the ACTIONS. This allowance is acceptable because inerting the primary containment prevents containment access without an appropriate breathing apparatus. Therefore, the primary containment is inerted as late as possible in the plant startup, after entering MODE 1 with THERMAL POWER > [15]% RTP, and de-inerted as soon as possible in the plant shutdown. It is acceptable to intentionally enter Required Action A.1 prior to a shutdown in order to begin de-inerting the primary containment prior to exiting the Applicability.

B.1

If the differential pressure cannot be restored to within limits within the associated Completion Time, the plant must be placed in a MODE in which the LCO does not apply. This is done by reducing power to ≤ [15]% RTP within 12 hours. The 12 hour Completion Time is reasonable, based on operating experience, to reduce reactor power from full power conditions in an orderly manner and without challenging plant systems.
BASES

<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>SR 3.6.2.5.1</th>
</tr>
</thead>
</table>
| The drywell-to-suppression chamber differential pressure is regularly monitored to ensure that the required limits are satisfied. [The 12 hour Frequency of this SR was developed based on operating experience relative to differential pressure variations and pressure instrument drift during applicable MODES and by assessing the proximity to the specified LCO differential pressure limit. Furthermore, the 12 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal pressure condition.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES
None.
B 3.6 CONTAINMENT SYSTEMS

B 3.6.3.1 [Drywell Cooling System Fans]

BASES

BACKGROUND
The [Drywell Cooling System fans] ensure a uniformly mixed post accident primary containment atmosphere, thereby minimizing the potential for local hydrogen burns due to a pocket of hydrogen above the flammable concentration.

The [Drywell Cooling System fans] are an Engineered Safety Feature and are designed to withstand post accident environments without loss of function. The system has two independent subsystems consisting of fans, fan coil units, motors, controls, and ducting. Each subsystem is sized to circulate [500] scfm. The [Drywell Cooling System fans] employ both forced circulation and natural circulation to ensure the proper mixing of hydrogen in primary containment. The recirculation fans provide the forced circulation to mix hydrogen while the fan coils provide the natural circulation by increasing the density through the cooling of the hot gases at the top of the drywell causing the cooled gases to gravitate to the bottom of the drywell. The two subsystems are initiated manually since flammability limits would not be reached until several days after an accident. Each subsystem is powered from a separate emergency power supply. Since each subsystem can provide 100% of the mixing requirements, the system will provide its design function with a worst case single active failure.

The [Drywell Cooling System fans] use the Drywell Cooling System recirculating fans to mix the drywell atmosphere. The fan coil units and recirculation fans are automatically disengaged during an accident but may be restored to service manually by the operator. In the event of a loss of offsite power, all fan coil units, recirculating fans, and primary containment water chillers are transferred to the emergency diesels. The fan coil units and recirculating fans are started automatically from diesel power upon loss of offsite power.

APPLICABLE SAFETY ANALYSES
The [Drywell Cooling System fans] ensure a mixed atmosphere for combustible gas control as required by 10 CFR 50.44 (b)(1). The [Drywell Cooling System fans] were originally designed to help mitigate the potential consequences of hydrogen generation following a Design Basis Accident (DBA) loss of coolant accident (LOCA). However, more recent studies have shown that the hydrogen release postulated from a DBA LOCA is not risk significant because it is not large enough to lead to early containment failure. The revised rule effective October 16, 2003, eliminated the design basis LOCA hydrogen release from 10 CFR 50.44 but retained the requirement for all containment types to have the capability for ensuring a mixed atmosphere in order to prevent
local accumulation of detonable gases that could threaten containment integrity or equipment operating in a local compartment.

The [Drywell Cooling System fans] provide the capability for reducing the local hydrogen concentration to approximately the bulk average concentration following an accident.

Hydrogen may accumulate in primary containment following an accident as a result of:

a. A metal steam reaction between the zirconium fuel rod cladding and the reactor coolant or

b. Radiolytic decomposition of water in the Reactor Coolant System.

To evaluate the potential for hydrogen accumulation in primary containment following an accident, the hydrogen generation as a function of time following the initiation of the accident is calculated. Conservative assumptions recommended by Reference 1 are used to maximize the amount of hydrogen calculated.

The Reference 2 calculations show that natural circulation phenomena result in acceptably small gradient concentration differences in the drywell and in the suppression chamber. Even though this gradient is acceptably small and no credit for mechanical mixing was assumed in the analysis, two [Drywell Cooling System fans] are required to be OPERABLE (typically four to six fans are required to keep the drywell cool during operation in MODE 1 or 2) by this LCO.

The [Drywell Cooling System fans] satisfy Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO Two [Drywell Cooling System fans] must be OPERABLE to ensure operation of at least one fan in the event of a worst case single active failure. Each of these fans must be powered from an independent safety related bus.

Operation with at least one fan provides the capability of controlling the bulk hydrogen concentration in primary containment without exceeding the flammability limit.

APPLICABILITY In MODES 1 and 2, the two [Drywell Cooling System fans] ensure the capability to prevent localized hydrogen concentrations above the flammability limit of 4.0 v/o in drywell, assuming a worst case single active failure.
In MODE 3, both the hydrogen production rate and the total hydrogen produced after an accident would be less than that calculated for an accident in MODE 1 or 2. Also, because of the limited time in this MODE, the probability of an accident requiring the [Drywell Cooling System fans] is low. Therefore, the [Drywell Cooling System fans] are not required in MODE 3.

In MODES 4 and 5, the probability and consequences of an accident are reduced due to the pressure and temperature limitations in these MODES. Therefore, the [Drywell Cooling System fans] are not required in these MODES.

ACTIONS

A.1

With one [required] [Drywell Cooling System fan] inoperable, the inoperable fan must be restored to OPERABLE status within 30 days. In this Condition, the remaining OPERABLE fan is adequate to perform the hydrogen mixing function. However, the overall reliability is reduced because a single failure in the OPERABLE fan could result in reduced hydrogen mixing capability. The 30 day Completion Time is based on the availability of the second fan, the low probability of the occurrence of an accident that would generate hydrogen in amounts capable of exceeding the flammability limit, and the amount of time available after the event for operator action to prevent exceeding this limit.

B.1

Continued operation is permitted with two [Drywell Cooling System fans] inoperable for up to 7 days [or in accordance with the Risk Informed Completion Time Program]. Seven days is a reasonable time to allow two [Drywell Cooling System fans] to be inoperable because of the low probability of the occurrence of an accident that would generate hydrogen in amounts capable of exceeding the flammability limit and due to post-accident natural circulation forces that promote mixing.

C.1

If any Required Action and associated Completion Time cannot be met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE REQUIREMENTS

SR 3.6.3.1.1
Operating each [required] [Drywell Cooling System fan] for ≥ 15 minutes ensures that each subsystem is OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. [The 92 day Frequency is consistent with the INSERVICE TESTING PROGRAM Frequencies, operating experience, the known reliability of the fan motors and controls, and the two redundant fans available.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.6.3.1.2
Verifying that each [required] [Drywell Cooling System fan] flow rate is ≥ [500] scfm ensures that each fan is capable of maintaining localized hydrogen concentrations below the flammability limit. [The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES
1. Regulatory Guide 1.7, Revision [3].
2. FSAR, Section [6.2.5].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.3.2 Primary Containment Oxygen Concentration

BASES

BACKGROUND
All nuclear reactors must be designed to withstand events that generate hydrogen either due to the zirconium metal water reaction in the core or due to radiolysis. The primary method to control hydrogen is to inert the primary containment. With the primary containment inert, that is, oxygen concentration < 4.0 volume percent (v/o), a combustible mixture cannot be present in the primary containment for any hydrogen concentration. An event that rapidly generates hydrogen from zirconium metal water reaction will result in excessive hydrogen in primary containment, but oxygen concentration will remain < 4.0 v/o and no combustion can occur. This LCO ensures that oxygen concentration does not exceed 4.0 v/o during operation in the applicable conditions.

APPLICABLE SAFETY ANALYSES
The Reference 1 calculations assume that the primary containment is inerted when a Design Basis Accident loss of coolant accident occurs. Thus, the hydrogen assumed to be released to the primary containment as a result of metal water reaction in the reactor core will not produce combustible gas mixtures in the primary containment.

Primary containment oxygen concentration satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO
The primary containment oxygen concentration is maintained < 4.0 v/o to ensure that an event that produces any amount of hydrogen does not result in a combustible mixture inside primary containment.

APPLICABILITY
The primary containment oxygen concentration must be within the specified limit when primary containment is inerted. The primary containment must be inert in MODE 1 and 2, since this is the condition with the highest probability of an event that could produce hydrogen.

ACTIONS
A.1
If oxygen concentration is ≥ 4.0 v/o while operating in MODE 1 or 2, oxygen concentration must be restored to < 4.0 v/o within 72 hours. The 72 hour Completion Time is allowed when oxygen concentration is ≥ 4.0 v/o because of the low probability and long duration of an event that would generate significant amounts of hydrogen occurring during this period.
A Note permits the use of the provisions of LCO 3.0.4.c. This allowance permits entry into the applicable MODE(S) while relying on the ACTIONS. This allowance is acceptable because inerting the primary containment prevents containment access without an appropriate breathing apparatus. Therefore, the primary containment is inerted as late as possible in the plant startup, after entering MODES 1 and 2, and de-inerted as soon as possible in the plant shutdown. It is acceptable to intentionally enter Required Action A.1 prior to a shutdown in order to begin de-inerting the primary containment prior to exiting the Applicability.

B.1

If oxygen concentration cannot be restored to within limits within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, power must be reduced to MODE 3 within 12 hours. The 12 hour Completion Time is reasonable, based on operating experience, to reduce reactor power from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

The primary containment must be determined to be inert by verifying that oxygen concentration is < 4.0 v/o. [The 7 day Frequency is based on the slow rate at which oxygen concentration can change and on other indications of abnormal conditions (which would lead to more frequent checking by operators in accordance with plant procedures). Also, this Frequency has been shown to be acceptable through operating experience.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REFERENCES

1. FSAR, Section [6.2.5].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.4.1 [Secondary] Containment

BASES

BACKGROUND

The function of the [secondary] containment is to contain, dilute, and hold up fission products that may leak from primary containment following a Design Basis Accident (DBA). In conjunction with operation of the Standby Gas Treatment (SGT) System and closure of certain valves whose lines penetrate the [secondary] containment, the [secondary] containment is designed to reduce the activity level of the fission products prior to release to the environment and to isolate and contain fission products that are released during certain operations that take place inside primary containment, when primary containment is not required to be OPERABLE, or that take place outside primary containment.

The [secondary] containment is a structure that completely encloses the primary containment and those components that may be postulated to contain primary system fluid. This structure forms a control volume that serves to hold up and dilute the fission products. It is possible for the pressure in the control volume to rise relative to the environmental pressure (e.g., due to pump and motor heat load additions). To prevent ground level exfiltration while allowing the [secondary] containment to be designed as a conventional structure, the [secondary] containment requires support systems to maintain the control volume pressure at less than the external pressure. Requirements for these systems are specified separately in LCO 3.6.4.2, "Secondary Containment Isolation Valves (SCIVs)," and LCO 3.6.4.3, "Standby Gas Treatment (SGT) System."

APPLICABLE SAFETY ANALYSES

There are two principal accidents for which credit is taken for [secondary] containment OPERABILITY. These are a loss of coolant accident (LOCA) (Ref. 1) and a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)] inside [secondary] containment (Ref. 2). The [secondary] containment performs no active function in response to each of these limiting events; however, its leak tightness is required to ensure that the release of radioactive materials from the primary containment is restricted to those leakage paths and associated leakage rates assumed in the accident analysis and that fission products entrapped within the [secondary] containment structure will be treated by the SGT System prior to discharge to the environment.

BASES

LCO An OPERABLE [secondary] containment provides a control volume into which fission products that bypass or leak from primary containment, or are released from the reactor coolant pressure boundary components located in [secondary] containment, can be diluted and processed prior to release to the environment. For the [secondary] containment to be considered OPERABLE, it must have adequate leak tightness to ensure that the required vacuum can be established and maintained.

APPLICABILITY In MODES 1, 2, and 3, a LOCA could lead to a fission product release to primary containment that leaks to [secondary] containment. Therefore, [secondary] containment OPERABILITY is required during the same operating conditions that require primary containment OPERABILITY.

In MODES 4 and 5, the probability and consequences of the LOCA are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining [secondary] containment OPERABLE is not required in MODE 4 or 5 to ensure a control volume, except for other situations for which significant releases of radioactive material can be postulated, such as during movement of [recently] irradiated fuel assemblies in the [secondary] containment. [Due to radioactive decay, secondary containment is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days).]

REVIEWER’S NOTE

The addition of the term "recently" associated with handling irradiated fuel in all of the containment function Technical Specification requirements is only applicable to those licensees who have demonstrated by analysis that after sufficient radioactive decay has occurred, off-site doses resulting from a fuel handling accident remain below the Standard Review Plan limits (well within 10 CFR 100).

Additionally, licensees adding the term "recently" must make the following commitment which is consistent with NUMARC 93-01, Revision [4F], Section 11.3.6.5, "Safety Assessment for Removal of Equipment from Service During Shutdown Conditions," subheading "Containment - Secondary (BWR)."

"The following guidelines are included in the assessment of systems removed from service during movement of irradiated fuel:
BASES

APPLICABILITY (continued)

-During fuel handling/core alterations, ventilation system and radiation monitor availability (as defined in NUMARC 91-06) should be assessed, with respect to filtration and monitoring of releases from the fuel. Following shutdown, radioactivity in the fuel decays away fairly rapidly. The basis of the Technical Specification operability amendment is the reduction in doses due to such decay. The goal of maintaining ventilation system and radiation monitor availability is to reduce doses even further below that provided by the natural decay.

-A single normal or contingency method to promptly close primary or secondary containment penetrations should be developed. Such prompt methods need not completely block the penetration or be capable of resisting pressure.

The purpose of the "prompt methods" mentioned above are to enable ventilation systems to draw the release from a postulated fuel handling accident in the proper direction such that it can be treated and monitored."

ACTIONS

A.1

If [secondary] containment is inoperable, it must be restored to OPERABLE status within 4 hours. The 4 hour Completion Time provides a period of time to correct the problem that is commensurate with the importance of maintaining [secondary] containment during MODES 1, 2, and 3. This time period also ensures that the probability of an accident (requiring [secondary] containment OPERABILITY) occurring during periods where [secondary] containment is inoperable is minimal.

B.1

---REVIEWER’S NOTE --

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If [secondary] containment cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 3), because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action B.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1

Movement of [recently] irradiated fuel assemblies in the [secondary] containment can be postulated to cause significant fission product release to the [secondary] containment. In such cases, the [secondary] containment is the only barrier to release of fission products to the environment. Therefore, movement of [recently] irradiated fuel assemblies must be immediately suspended if the [secondary] containment is inoperable.

Suspension of these activities shall not preclude completing an action that involves moving a component to a safe position.
Required Action C.1 has been modified by a Note stating that LCO 3.0.3 is not applicable. If moving [recently] irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, in either case, inability to suspend movement of [recently] irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown.

SURVEILLANCE

REQUIREMENTS

This SR ensures that the [secondary] containment boundary is sufficiently leak tight to preclude exfiltration under expected wind conditions.

The SR is modified by a Note which states the SR is not required to be met for up to 4 hours if an analysis demonstrates that one SGT subsystem remains capable of establishing the required [secondary] containment vacuum. Use of the Note is expected to be infrequent but may be necessitated by situations in which [secondary] containment vacuum may be less than the required containment vacuum, such as, but not limited to, wind gusts or failure or change of operating normal ventilation subsystems. These conditions do not indicate any change in the leak tightness of the [secondary] containment boundary. The analysis should consider the actual conditions (equipment configuration, temperature, atmospheric pressure, wind conditions, measured [secondary] containment vacuum, etc.) to determine whether, if an accident requiring [secondary] containment to be OPERABLE were to occur, one train of SGT could establish the assumed [secondary] containment vacuum within the time assumed in the accident analysis. If so, the SR may be considered met for a period up to 4 hours. The 4 hour limit is based on the expected short duration of the situations when the Note would be applied.

[The 24 hour Frequency of this SR was developed based on operating experience related to [secondary] containment vacuum variations during the applicable MODES and the low probability of a DBA occurring between surveillances.

Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal [secondary] containment vacuum condition.

OR
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.6.4.1.2

Verifying that [secondary] containment equipment hatches are closed ensures that the infiltration of outside air of such a magnitude as to prevent maintaining the desired negative pressure does not occur and provides adequate assurance that exfiltration from the [secondary] containment will not occur. In this application, the term "sealed" has no connotation of leak tightness.

[The 31 day Frequency for this SR has been shown to be adequate, based on operating experience, and is considered adequate in view of the other indications of hatch status that are available to the operator.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.4.1.3

Verifying that one [secondary] containment access door in each access opening is closed provides adequate assurance that exfiltration from the [secondary] containment will not occur. An access opening contains at least one inner and one outer door. [In some cases, [secondary] containment access openings are shared such that there are multiple inner or outer doors.] The intent is to not breach the [secondary] containment, which is achieved by maintaining the inner or outer portion of the barrier closed except when the access opening is being used for entry and exit.

[The 31 day Frequency for this SR has been shown to be adequate, based on operating experience, and is considered adequate in view of the other indications of door status that are available to the operator.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

[SR 3.6.4.1.4 and] SR 3.6.4.1.5

The SGT System exhausts the [secondary] containment atmosphere to the environment through appropriate treatment equipment. Each SGT subsystem is designed to draw down pressure in the [secondary] containment to ≥ [0.25] inches of vacuum water gauge in ≤ [120] seconds and maintain pressure in the [secondary] containment at ≥ [0.266] inches of vacuum water gauge for 1 hour at a flow rate ≤ [4000] cfm. To ensure that all fission products released to the [secondary] containment are treated, [SR 3.6.4.1.4 and] SR 3.6.4.1.5 verify that a pressure in the [secondary] containment that is less than the lowest postulated pressure external to the [secondary] containment boundary can [rapidly] be [established and] maintained. When the SGT System is operating as designed, the establishment and maintenance of [secondary] containment...
BASES

SURVEILLANCE REQUIREMENTS (continued)

pressure cannot be accomplished if the [secondary] containment boundary is not intact. [Establishment of this pressure is confirmed by SR 3.6.4.1.4, which demonstrates that the [secondary] containment can be drawn down to ≥ [0.25] inches of vacuum water gauge in ≤ [120] seconds using one SGT subsystem.] SR 3.6.4.1.5 demonstrates that the pressure in the [secondary] containment can be maintained ≥ [0.266] inches of vacuum water gauge for 1 hour using one SGT subsystem at a flow rate ≤ [4000] cfm. The 1 hour test period allows [secondary] containment to be in thermal equilibrium at steady state conditions. The primary purpose of these SR[s] is to ensure [secondary] containment boundary integrity. The secondary purpose of these SR[s] is to ensure that the SGT subsystem being tested functions as designed. There is a separate LCO with Surveillance Requirements which serves the primary purpose of ensuring OPERABILITY of the SGT System. The inoperability of the SGT System does not necessarily constitute a failure of these Surveillance[s] relative to the [secondary] containment OPERABILITY. [These SR[s] need not be performed with each SGT subsystem. The SGT subsystem used for these Surveillance[s] is staggered to ensure that in addition to the requirements of LCO 3.6.4.3, either SGT subsystem will perform this test. Operating experience has shown the [secondary] containment boundary usually passes these Surveillance[s] when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [15.1.39].
2. FSAR, Section [15.1.41].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.4.2 Secondary Containment Isolation Valves (SCIVs)

BASES

BACKGROUND

The function of the SCIVs, in combination with other accident mitigation systems, is to limit fission product release during and following postulated Design Basis Accidents (DBAs) (Ref. 1). Secondary containment isolation within the time limits specified for those isolation valves designed to close automatically ensures that fission products that leak from primary containment following a DBA, or that are released during certain operations when primary containment is not required to be OPERABLE or take place outside primary containment, are maintained within the secondary containment boundary.

The OPERABILITY requirements for SCIVs help ensure that an adequate [secondary] containment boundary is maintained during and after an accident by minimizing potential paths to the environment. These isolation devices consist of either passive devices or active (automatic) devices. Manual valves, de-activated automatic valves secured in their closed position (including check valves with flow through the valve secured), and blind flanges are considered passive devices.

Automatic SCIVs close on a [secondary] containment isolation signal to establish a boundary for untreated radioactive material within [secondary] containment following a DBA or other accidents.

Other penetrations are isolated by the use of valves in the closed position or blind flanges.

APPLICABLE SAFETY ANALYSES

The SCIVs must be OPERABLE to ensure the [secondary] containment barrier to fission product releases is established. The principal accidents for which the [secondary] containment boundary is required are a loss of coolant accident (Ref. 1) and a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)] inside [secondary] containment (Ref. 2). The [secondary] containment performs no active function in response to either of these limiting events, but the boundary established by SCIVs is required to ensure that leakage from the primary containment is processed by the Standby Gas Treatment (SGT) System before being released to the environment.

Maintaining SCIVs OPERABLE with isolation times within limits ensures that fission products will remain trapped inside [secondary] containment so that they can be treated by the SGT System prior to discharge to the environment.

SCIVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
SCIVs form a part of the [secondary] containment boundary. The SCIV safety function is related to control of offsite radiation releases resulting from DBAs.

The power operated, automatic isolation valves are considered OPERABLE when their isolation times are within limits and the valves actuate on an automatic isolation signal. The valves covered by this LCO, along with their associated stroke times, are listed in Reference 3.

The normally closed isolation valves or blind flanges are considered OPERABLE when manual valves are closed or open in accordance with appropriate administrative controls, automatic SCIVs are de-activated and secured in their closed position, and blind flanges are in place. These passive isolation valves or devices are listed in Reference 3.

In MODES 1, 2, and 3, a DBA could lead to a fission product release to the primary containment that leaks to the [secondary] containment. Therefore, the OPERABILITY of SCIVs is required.

In MODES 4 and 5, the probability and consequences of these events are reduced due to pressure and temperature limitations in these MODES. Therefore, maintaining SCIVs OPERABLE is not required in MODE 4 or 5, except for other situations under which significant radioactive releases can be postulated, such as during movement of [recently] irradiated fuel assemblies in the [secondary] containment. Moving [recently] irradiated fuel assemblies in the [secondary] containment may also occur in MODES 1, 2, and 3. [Due to radioactive decay, SCIVs are only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)].

The ACTIONS are modified by three Notes. The first Note allows penetration flow paths to be unisolated intermittently under administrative controls. These controls consist of stationing a dedicated operator, who is in continuous communication with the control room, at the controls of the isolation device. In this way, the penetration can be rapidly isolated when a need for [secondary] containment isolation is indicated.

The second Note provides clarification that for the purpose of this LCO separate Condition entry is allowed for each penetration flow path. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable SCIV. Complying with the Required Actions may allow for continued operation, and subsequent inoperable SCIVs are governed by subsequent Condition entry and application of associated Required Actions.
The third Note ensures appropriate remedial actions are taken, if necessary, if the affected system(s) are rendered inoperable by an inoperable SCIV.

A.1 and A.2

In the event that there are one or more penetration flow paths with one SCIV inoperable, the affected penetration flow path(s) must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic SCIV, a closed manual valve, and a blind flange. For penetrations isolated in accordance with Required Action A.1, the device used to isolate the penetration should be the closest available device to [secondary] containment. The Required Action must be completed within the 8 hour Completion Time. The specified time period is reasonable considering the time required to isolate the penetration, and the probability of a DBA, which requires the SCIVs to close, occurring during this short time is very low.

For affected penetrations that have been isolated in accordance with Required Action A.1, the affected penetration must be verified to be isolated on a periodic basis. This is necessary to ensure that [secondary] containment penetrations required to be isolated following an accident, but no longer capable of being automatically isolated, will be in the isolation position should an event occur. The Completion Time of once per 31 days is appropriate because the valves are operated under administrative controls and the probability of their misalignment is low. This Required Action does not require any testing or device manipulation. Rather, it involves verification that the affected penetration remains isolated.

Required Action A.2 is modified by two Notes. Note 1 applies to devices located in high radiation areas and allows them to be verified closed by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted. Note 2 applies to isolation devices that are locked, sealed, or otherwise secured in position and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since the function of locking, sealing, or securing components is to ensure that these devices are not inadvertently repositioned. Therefore, the probability of misalignment, once they have been verified to be in the proper position, is low.
BASES

ACTIONS (continued)

B.1

With two SCIVs in one or more penetration flow paths inoperable, the affected penetration flow path must be isolated within 4 hours. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. The 4 hour Completion Time is reasonable considering the time required to isolate the penetration and the probability of a DBA, which requires the SCIVs to close, occurring during this short time, is very low.

The Condition has been modified by a Note stating that Condition B is only applicable to penetration flow paths with two isolation valves. This clarifies that only Condition A is entered if one SCIV is inoperable in each of two penetrations.

C.1 and C.2

If any Required Action and associated Completion Time cannot be met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

D.1

If any Required Action and associated Completion Time are not met, the plant must be placed in a condition in which the LCO does not apply. If applicable, the movement of [recently] irradiated fuel assemblies in the [secondary] containment must be immediately suspended. Suspension of these activities shall not preclude completion of movement of a component to a safe position.

Required Action D.1 has been modified by a Note stating that LCO 3.0.3 is not applicable. If moving [recently] irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving fuel while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, in either case, inability to suspend movement of [recently] irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown.
This SR verifies that each secondary containment manual isolation valve and blind flange that is not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the [secondary] containment boundary is within design limits. This SR does not require any testing or valve manipulation. Rather, it involves verification that those SCIVs in [secondary] containment that are capable of being mispositioned are in the correct position.

[Since these SCIVs are readily accessible to personnel during normal operation and verification of their position is relatively easy, the 31 day Frequency was chosen to provide added assurance that the SCIVs are in the correct positions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

Two Notes have been added to this SR. The first Note applies to valves and blind flanges located in high radiation areas and allows them to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA reasons. Therefore, the probability of misalignment of these SCIVs, once they have been verified to be in the proper position, is low.

A second Note has been included to clarify that SCIVs that are open under administrative controls are not required to meet the SR during the time the SCIVs are open.
SR 3.6.4.2.2

Verifying that the isolation time of each power operated, automatic SCIV is within limits is required to demonstrate OPERABILITY. The isolation time test ensures that the SCIV will isolate in a time period less than or equal to that assumed in the safety analyses. The isolation time is in accordance with the INSERVICE TESTING PROGRAM.

--------------------REVIEWER'S NOTE--------------------
If the testing is within the scope of the licensee's INSERVICE TESTING PROGRAM, the Frequency "In accordance with the INSERVICE TESTING PROGRAM" should be used. Otherwise, the periodic Frequency of 92 days or the reference to the Surveillance Frequency Control Program should be used.

[The Frequency of this SR is [in accordance with the INSERVICE TESTING PROGRAM] [92 days.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--------------------REVIEWER'S NOTE--------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--------------------REVIEWER'S NOTE--------------------

SR 3.6.4.2.3

Verifying that each automatic SCIV closes on a secondary containment isolation signal is required to prevent leakage of radioactive material from [secondary] containment following a DBA or other accidents. This SR ensures that each automatic SCIV will actuate to the isolation position on a [secondary] containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.6.2.6 overlaps this SR to provide complete testing of the safety function. [The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the
SURVEILLANCE REQUIREMENTS (continued)

Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [15.1.39].
2. FSAR, Section [15.1.41].
3. FSAR, Section [].
B 3.6 CONTAINMENT SYSTEMS

B 3.6.4.3 Standby Gas Treatment (SGT) System

BASES

BACKGROUND

The SGT System is required by 10 CFR 50, Appendix A, GDC 41, "Containment Atmosphere Cleanup" (Ref. 1). The function of the SGT System is to ensure that radioactive materials that leak from the primary containment into the [secondary] containment following a Design Basis Accident (DBA) are filtered and adsorbed prior to exhausting to the environment.

The SGT System consists of two fully redundant subsystems, each with its own set of ductwork, dampers, charcoal filter train, and controls.

Each charcoal filter train consists of (components listed in order of the direction of the air flow):

a. A demister or moisture separator,
b. An electric heater,c. A prefilter,
d. A high efficiency particulate air (HEPA) filter,
e. A charcoal adsorber,
f. A second HEPA filter, and
g. A centrifugal fan.

The sizing of the SGT System equipment and components is based on the results of an infiltration analysis, as well as an exfiltration analysis of the [secondary] containment. The internal pressure of the SGT System boundary region is maintained at a negative pressure of [0.25] inches water gauge when the system is in operation, which represents the internal pressure required to ensure zero exfiltration of air from the building when exposed to a [10] mph wind blowing at an angle of [45]° to the building.

The demister is provided to remove entrained water in the air, while the electric heater reduces the relative humidity of the airstream to less than [70]% (Ref. 2). The prefilter removes large particulate matter, while the HEPA filter removes fine particulate matter and protects the charcoal from fouling. The charcoal adsorber removes gaseous elemental iodine and organic iodides, and the final HEPA filter collects any carbon fines exhausted from the charcoal adsorber.
BASES

BACKGROUND (continued)

The SGT System automatically starts and operates in response to actuation signals indicative of conditions or an accident that could require operation of the system. Following initiation, both charcoal filter train fans start. Upon verification that both subsystems are operating, the redundant subsystem is normally shut down.

APPLICABLE SAFETY ANALYSES

The design basis for the SGT System is to mitigate the consequences of a loss of coolant accident and fuel handling accidents [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)] (Ref. 2). For all events analyzed, the SGT System is shown to be automatically initiated to reduce, via filtration and adsorption, the radioactive material released to the environment.

The SGT System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Following a DBA, a minimum of one SGT subsystem is required to maintain the [secondary] containment at a negative pressure with respect to the environment and to process gaseous releases. Meeting the LCO requirements for two OPERABLE subsystems ensures operation of at least one SGT subsystem in the event of a single active failure.

APPLICABILITY

In MODES 1, 2, and 3, a DBA could lead to a fission product release to primary containment that leaks to secondary containment. Therefore, SGT System OPERABILITY is required during these MODES.

In MODES 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining the SGT System in OPERABLE status is not required in MODE 4 or 5, except for other situations under which significant releases of radioactive material can be postulated, such as during movement of [recently] irradiated fuel assemblies in the [secondary] containment. [Due to radioactive decay, the SGT System is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days).]

ACTIONS

A.1

With one SGT subsystem inoperable, the inoperable subsystem must be restored to OPERABLE status in 7 days. In this Condition, the remaining OPERABLE SGT subsystem is adequate to perform the required radioactivity release control function. However, the overall system reliability is reduced because a single failure in the OPERABLE
subsystem could result in the radioactivity release control function not being adequately performed. The 7 day Completion Time is based on consideration of such factors as the availability of the OPERABLE redundant SGT System and the low probability of a DBA occurring during this period.

B.1

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If the SGT subsystem cannot be restored to OPERABLE status within the required Completion Time in MODE 1, 2, or 3, the plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 3) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action B.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.
The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1 and C.2

During movement of [recently] irradiated fuel assemblies, in the [secondary] containment, when Required Action A.1 cannot be completed within the required Completion Time, the OPERABLE SGT subsystem should immediately be placed in operation. This action ensures that the remaining subsystem is OPERABLE, that no failures that could prevent automatic actuation have occurred, and that any other failure would be readily detected.

An alternative to Required Action C.1 is to immediately suspend activities that represent a potential for releasing a significant amount of radioactive material to the [secondary] containment, thus placing the plant in a condition that minimizes risk. If applicable, movement of [recently] irradiated fuel assemblies must immediately be suspended. Suspension of these activities must not preclude completion of movement of a component to a safe position.

The Required Actions of Condition C have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving [recently] irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, in either case, inability to suspend movement of [recently] irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown.

D.1

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If both SGTS subsystems are inoperable in MODE 1, 2, or 3, the SGT system may not be capable of supporting the required radioactivity release control function. Therefore, the plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 3) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action D.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

E.1

When two SGT subsystems are inoperable, if applicable, movement of [recently] irradiated fuel assemblies in [secondary] containment must immediately be suspended. Suspension of these activities shall not preclude completion of movement of a component to a safe position.
Required Action E.1 has been modified by a Note stating that LCO 3.0.3 is not applicable. If moving [recently] irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, in either case, inability to suspend movement of [recently] irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown.

SURVEILLANCE REQUIREMENTS

SR 3.6.4.3.1

Operation [with the heaters on] for ≥ 15 continuous minutes demonstrates OPERABILITY of the system. Periodic operation ensures that [heater failure,] blockage, fan or motor failure, or excessive vibration can be detected for corrective action. [The 31 day Frequency was developed in consideration of the known reliability of fan motors and controls and the redundancy available in the system.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.6.4.3.2

This SR verifies that the required SGT filter testing is performed in accordance with the Ventilation Filter Testing Program (VFTP). The VFTP includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the VFTP.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.4.3.3

This SR verifies that each SGT subsystem starts on receipt of an actual or simulated initiation signal. The SR excludes automatic dampers that are locked, sealed, or otherwise secured in the actuated position. The SR does not apply to dampers that are locked, sealed, or otherwise secured in the actuated position since the affected dampers were verified to be in the actuated position prior to being locked, sealed, or otherwise secured. Placing an automatic damper in a locked, sealed, or otherwise secured position requires an assessment of the OPERABILITY of the system or any supported systems, including whether it is necessary for the damper to be repositioned to the non-actuated position to support the accident analysis. Restoration of an automatic damper to the non-actuated position requires verification that the SR has been met within its required Frequency. [While this Surveillance can be performed with the reactor at power, operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.6.2.6 overlaps this SR to provide complete testing of the safety function. Therefore, the Frequency was found to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

[SR 3.6.4.3.4

This SR verifies that the filter cooler bypass damper can be opened and the fan started. This ensures that the ventilation mode of SGT System operation is available. The SR excludes automatic dampers that are locked, sealed, or otherwise secured in the open position. The SR does not apply to dampers that are locked, sealed, or otherwise secured in the open position since the affected dampers were verified to be in the open
position prior to being locked, sealed, or otherwise secured. Placing an automatic damper in a locked, sealed, or otherwise secured position requires an assessment of the OPERABILITY of the system or any supported systems, including whether it is necessary for the damper to be closed to support the accident analysis. Restoration of an automatic damper to the closed position requires verification that the SR has been met within its required Frequency. [While this Surveillance can be performed with the reactor at power, operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency, which is based on the refueling cycle. Therefore, the Frequency was found to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

_COMMITTEE_NOTES
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES
1. 10 CFR 50, Appendix A, GDC 41.
2. FSAR, Section [6.2.3].
B 3.7 PLANT SYSTEMS

B 3.7.1 Residual Heat Removal Service Water (RHRSW) System

Bases

BACKGROUND

The RHRSW System is designed to provide cooling water for the Residual Heat Removal (RHR) System heat exchangers, required for a safe reactor shutdown following a Design Basis Accident (DBA) or transient. The RHRSW System is operated whenever the RHR heat exchangers are required to operate in the shutdown cooling mode or in the suppression pool cooling or spray mode of the RHR System.

The RHRSW System consists of two independent and redundant subsystems. Each subsystem is made up of a header, two [4000] gpm pumps, a suction source, valves, piping, heat exchanger, and associated instrumentation. Either of the two subsystems is capable of providing the required cooling capacity with one pump operating to maintain safe shutdown conditions. The two subsystems are separated from each other by normally closed motor operated cross tie valves, so that failure of one subsystem will not affect the OPERABILITY of the other subsystem. The RHRSW System is designed with sufficient redundancy so that no single active component failure can prevent it from achieving its design function. The RHRSW System is described in the FSAR, Section [9.2.7], Reference 1.

Cooling water is pumped by the RHRSW pumps from the [Altamaha River] through the tube side of the RHR heat exchangers, and discharges to the [circulating water flume]. A minimum flow line from the pump discharge to the intake structure prevents the pump from overheating when pumping against a closed discharge valve.

The system is initiated manually from the control room. If operating during a loss of coolant accident (LOCA), the system is automatically tripped to allow the diesel generators to automatically power only that equipment necessary to reflood the core. The system can be manually started any time 10 minutes after the LOCA, or manually started any time the LOCA signal is manually overridden or clears.

APPLICABLE SAFETY ANALYSES

The RHRSW System removes heat from the suppression pool to limit the suppression pool temperature and primary containment pressure following a LOCA. This ensures that the primary containment can perform its function of limiting the release of radioactive materials to the environment following a LOCA. The ability of the RHRSW System to support long term cooling of the reactor or primary containment is
discussed in the FSAR, Chapters [6] and [15] (Refs. 2 and 3, respectively). These analyses explicitly assume that the RHRSW System will provide adequate cooling support to the equipment required for safe shutdown. These analyses include the evaluation of the long term primary containment response after a design basis LOCA.

The safety analyses for long term cooling were performed for various combinations of RHR System failures. The worst case single failure that would affect the performance of the RHRSW System is any failure that would disable one subsystem of the RHRSW System. As discussed in the FSAR, Section [6.2.1.4.3] (Ref. 4) for these analyses, manual initiation of the OPERABLE RHRSW subsystem and the associated RHR System is assumed to occur [10] minutes after a DBA. The RHRSW flow assumed in the analyses is [4000] gpm per pump with two pumps operating in one loop. In this case, the maximum suppression chamber water temperature and pressure are [206.4]°F and [36.59] psig, respectively, well below the design temperature of [340]°F and maximum allowable pressure of [62] psig.

The RHRSW System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Two RHRSW subsystems are required to be OPERABLE to provide the required redundancy to ensure that the system functions to remove post accident heat loads, assuming the worst case single active failure occurs coincident with the loss of offsite power.

An RHRSW subsystem is considered OPERABLE when:

a. Two pumps are OPERABLE and

b. An OPERABLE flow path is capable of taking suction from the intake structure and transferring the water to the RHR heat exchangers at the assumed flow rate. Additionally, the RHRSW cross tie valves (which allow the two RHRSW loops to be connected) must be closed so that failure of one subsystem will not affect the OPERABILITY of the other subsystems."

An adequate suction source is not addressed in this LCO since the minimum net positive suction head ([59] ft mean sea level in the pump well) is bounded by the plant service water pump requirements (LCO 3.7.2, "[Plant Service Water (PSW)] System and [Ultimate Heat Sink (UHS)]]").
BASES

APPLICABILITY

In MODES 1, 2, and 3, the RHRSW System is required to be OPERABLE to support the OPERABILITY of the RHR System for primary containment cooling (LCO 3.6.2.3, "Residual Heat Removal (RHR) Suppression Pool Cooling," and LCO 3.6.2.4, "Residual Heat Removal (RHR) Suppression Pool Spray") and decay heat removal (LCO 3.4.8, "Residual Heat Removal (RHR) Shutdown Cooling System - Hot Shutdown"). The Applicability is therefore consistent with the requirements of these systems.

Although the LCO for the RHRSW System is not applicable in MODES 4 and 5, the capability of the RHRSW System to perform its necessary related support functions may be required for OPERABILITY of supported systems.

ACTIONS

A.1

With one RHRSW pump inoperable, the inoperable pump must be restored to OPERABLE status within 30 days. With the unit in this condition, the remaining OPERABLE RHRSW pumps are adequate to perform the RHRSW heat removal function. However, the overall reliability is reduced because a single failure in the OPERABLE subsystem could result in reduced RHRSW capability. The 30 day Completion Time is based on the remaining RHRSW heat removal capability, including enhanced reliability afforded by manual cross connect capability, and the low probability of a DBA with concurrent worst case single failure.

B.1

With one RHRSW pump inoperable in each subsystem, if no additional failures occur in the RHRSW System, and the two OPERABLE pumps are aligned by opening the normally closed cross tie valves, then the remaining OPERABLE pumps and flow paths provide adequate heat removal capacity following a design basis LOCA. However, capability for this alignment is not assumed in long term containment response analysis and an additional single failure in the RHRSW System could reduce the system capacity below that assumed in the safety analysis. Therefore, continued operation is permitted only for a limited time. One inoperable pump is required to be restored to OPERABLE status within 7 days [or in accordance with the Risk Informed Completion Time Program]. The 7 day Completion Time for restoring one inoperable RHRSW pump to OPERABLE status is based on engineering judgment, considering the level of redundancy provided.
C.1

Required Action C.1 is intended to handle the inoperability of one RHRSW subsystem for reasons other than Condition A. The Completion Time of 7 days is allowed to restore the RHRSW subsystem to OPERABLE status. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] With the unit in this condition, the remaining OPERABLE RHRSW subsystem is adequate to perform the RHRSW heat removal function. However, the overall reliability is reduced because a single failure in the OPERABLE RHRSW subsystem could result in loss of RHRSW function. The Completion Time is based on the redundant RHRSW capabilities afforded by the OPERABLE subsystem and the low probability of an event occurring requiring RHRSW during this period.

The Required Action is modified by a Note indicating that the applicable Conditions of LCO 3.4.8, be entered and Required Actions taken if the inoperable RHRSW subsystem results in inoperable [RHR shutdown cooling]. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components.

D.1

**

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

**

If one RHRSW subsystem is inoperable or one RHRSW pump in one or two subsystems is inoperable and not restored within the provided Completion Time, the plant must be brought to a condition in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 5) and
because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action D.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

E.1

With both RHRSW subsystems inoperable for reasons other than Condition B (e.g., both subsystems with inoperable flow paths, or one subsystem with an inoperable pump and one subsystem with an inoperable flow path), the RHRSW System is not capable of performing its intended function. At least one subsystem must be restored to OPERABLE status within 8 hours. The 8 hour Completion Time for restoring one RHRSW subsystem to OPERABLE status, is based on the Completion Times provided for the RHR suppression pool cooling and spray functions.

The Required Action is modified by a Note indicating that the applicable Conditions of LCO 3.4.8, be entered and Required Actions taken if the inoperable RHRSW subsystem results in inoperable [RHR shutdown cooling]. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components.

F.1 and F.2

If the RHRSW subsystems cannot be not restored to OPERABLE status within the associated Completion Time of Condition E, the unit must be placed in a MODE in which the LCO does not apply. To achieve this
status, the unit must be placed in at least MODE 3 within 12 hours and in MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.1.1

Verifying the correct alignment for each manual, power operated, and automatic valve in each RHRSW subsystem flow path provides assurance that the proper flow paths will exist for RHRSW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves are verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position, and yet considered in the correct position, provided it can be realigned to its accident position. This is acceptable because the RHRSW System is a manually initiated system. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

[The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------]
<table>
<thead>
<tr>
<th>BASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
</tr>
<tr>
<td>1. FSAR, Section [9.2.7].</td>
</tr>
<tr>
<td>2. FSAR, Chapter [6].</td>
</tr>
<tr>
<td>3. FSAR, Chapter [15].</td>
</tr>
<tr>
<td>4. FSAR, Section [6.2.1.4.3].</td>
</tr>
</tbody>
</table>
B 3.7 PLANT SYSTEMS

B 3.7.2 [Plant Service Water (PSW)] System and [Ultimate Heat Sink (UHS)]

BACKGROUND

The [PSW] System is designed to provide cooling water for the removal of heat from equipment, such as the diesel generators (DGs), residual heat removal (RHR) pump coolers, and room coolers for Emergency Core Cooling System equipment, required for a safe reactor shutdown following a Design Basis Accident (DBA) or transient. The [PSW] System also provides cooling to unit components, as required, during normal operation. Upon receipt of a loss of offsite power or loss of coolant accident (LOCA) signal, nonessential loads are automatically isolated, the essential loads are automatically divided between [PSW] Divisions 1 and 2, and one [PSW] pump is automatically started in each division.

The [PSW] System consists of the [UHS] and two independent and redundant subsystems. Each of the two [PSW] subsystems is made up of a header, two [8500] gpm pumps, a suction source, valves, piping and associated instrumentation. Either of the two subsystems is capable of providing the required cooling capacity to support the required systems with one pump operating. The two subsystems are separated from each other so failure of one subsystem will not affect the OPERABILITY of the other system.

Cooling water is pumped from the [Altamaha River] by the [PSW] pumps to the essential components through the two main headers. After removing heat from the components, the water is discharged to the circulating water flume to replace evaporation losses from the circulating water system, or directly to the river via a bypass valve.

APPLICABLE SAFETY ANALYSES

Sufficient water inventory is available for all [PSW] System post LOCA cooling requirements for a 30 day period with no additional makeup water source available. The ability of the [PSW] System to support long term cooling of the reactor containment is assumed in evaluations of the equipment required for safe reactor shutdown presented in the FSAR, Chapters [4] and [6] (Refs. 1 and 2, respectively). These analyses include the evaluation of the long term primary containment response after a design basis LOCA.

The ability of the [PSW] System to provide adequate cooling to the identified safety equipment is an implicit assumption for the safety analyses evaluated in References 1 and 2. The ability to provide onsite emergency AC power is dependent on the ability of the [PSW] System to
BASES

APPLICABLE SAFETY ANALYSES (continued)

cool the DGs. The long term cooling capability of the RHR, core spray, and RHR service water pumps is also dependent on the cooling provided by the [PSW] System.

The [PSW] System, together with the [UHS], satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The [PSW] subsystems are independent of each other to the degree that each has separate controls, power supplies, and the operation of one does not depend on the other. In the event of a DBA, one subsystem of [PSW] is required to provide the minimum heat removal capability assumed in the safety analysis for the system to which it supplies cooling water. To ensure this requirement is met, two subsystems of [PSW] must be OPERABLE. At least one subsystem will operate, if the worst single active failure occurs coincident with the loss of offsite power.

A subsystem is considered OPERABLE when it has an OPERABLE [UHS], two OPERABLE pumps, and an OPERABLE flow path capable of taking suction from the intake structure and transferring the water to the appropriate equipment.

The OPERABILITY of the [UHS] is based on having a minimum water level in the pump well of the intake structure of [60.7] ft mean sea level and a maximum water temperature of [90]°F.

The isolation of the [PSW] System to components or systems may render those components or systems inoperable, but does not affect the OPERABILITY of the [PSW] System.

APPLICABILITY

In MODES 1, 2, and 3, the [PSW] System and [UHS] are required to be OPERABLE to support OPERABILITY of the equipment serviced by the [PSW] System. Therefore, the [PSW] System and [UHS] are required to be OPERABLE in these MODES.

Although the LCO for the [PSW] System and [UHS] is not applicable in MODES 4 and 5, the capability of the [PSW] System and [UHS] to perform its necessary related support functions may be required for OPERABILITY of supported systems.

ACTIONS

A.1

With one [PSW] pump inoperable in each subsystem, the inoperable pump must be restored to OPERABLE status within 7 days. With the unit in this condition, the remaining OPERABLE [PSW] pumps (even allowing
BASES

ACTIONS (continued)

for an additional single failure) are adequate to perform the [PSW] heat removal function; however, the overall reliability is reduced. The 30 day Completion Time is based on the remaining [PSW] heat removal capability to accommodate additional single failures, and the low probability of an event occurring during this time period.

B.1

With one [PSW] pump inoperable in each subsystem, one inoperable pump must be restored to OPERABLE status within 7 days [or in accordance with the Risk Informed Completion Time Program]. With the unit in this condition, the remaining OPERABLE [PSW] pumps are adequate to perform the [PSW] heat removal function; however, the overall reliability is reduced. The 7 day Completion Time is based on the remaining [PSW] heat removal capability to accommodate an additional single failure and the low probability of an event occurring during this time period.

C.1

-----------------------------------REVIEWER'S NOTE-----------------------------------

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If one PSW pump in one or both subsystems is inoperable and is not restored to OPERABLE status within the required Completion Times, the plant must be brought to a condition in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 3) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However,
voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action C.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

[D.1]

If one or more cooling towers have one fan inoperable (i.e., up to one fan per cooling tower inoperable), action must be taken to restore the inoperable cooling tower fan(s) to OPERABLE status within 7 days [or in accordance with the Risk Informed Completion Time Program]. The 7 day Completion Time is based on the low probability of an accident occurring during the 7 days that one cooling tower fan is inoperable in one or more cooling towers, the number of available systems, and the time required to reasonably complete the Required Action.]

[E.1]

The []°F is the maximum allowed UHS temperature value and is based on temperature limitations of the equipment that is relied upon for accident mitigation and safe shutdown of the unit.

With water temperature of the UHS > [90]°F, the design basis assumption associated with initial UHS temperature are bounded provided the temperature of the UHS averaged over the previous 24 hour period is ≤ [90]°F. With the water temperature of the UHS > [90]°F, long term cooling capability of the ECCS loads and DGs may be affected. Therefore, to ensure long term cooling capability is provided to the ECCS
loads when water temperature of the UHS is > [90]°F, Required Action E.1 is provided to more frequently monitor the water temperature of the UHS and verify the temperature is ≤ [90]°F when averaged over the previous 24 hour period. The once per hour Completion Time takes into consideration UHS temperature variations and the increased monitoring frequency needed to ensure design basis assumptions and equipment limitations are not exceeded in this condition. If the water temperature of the UHS exceeds [90]°F when averaged over the previous 24 hour period or the water temperature of the UHS exceeds []°F, Condition G must be entered immediately.

F.1

With one [PSW] subsystem inoperable for reasons other than Condition A and [Condition D] (e.g., inoperable flow path or both pumps inoperable in a loop), the [PSW] subsystem must be restored to OPERABLE status within 72 hours [or in accordance with the Risk Informed Completion Time Program]. With the unit in this condition, the remaining OPERABLE [PSW] subsystem is adequate to perform the heat removal function. However, the overall reliability is reduced because a single failure in the OPERABLE [PSW] subsystem could result in loss of [PSW] function.

The 72 hour Completion Time is based on the redundant [PSW] System capabilities afforded by the OPERABLE subsystem, the low probability of an accident occurring during this time period, and is consistent with the allowed Completion Time for restoring an inoperable DG.

Required Action F.1 is modified by two Notes indicating that the applicable Conditions of LCO 3.8.1, "AC Sources - Operating," LCO 3.4.8, "Residual Heat Removal (RHR) Shutdown Cooling System - Hot Shutdown," be entered and Required Actions taken if the inoperable [PSW] subsystem results in an inoperable DG or RHR shutdown cooling subsystem, respectively. This is in accordance with LCO 3.0.6 and ensures the proper actions are taken for these components.

G.1 and G.2

If both [PSW] subsystems are inoperable for reasons other than Condition B and [Condition D], [or the [UHS] is determined inoperable for reasons other than Condition D or E] the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 12 hours and in MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on
Bases

Actions (continued)

Operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

Surveillance Requirements

[SR 3.7.2.1]

This SR ensures adequate long term (30 days) cooling can be maintained. With the [UHS] water source below the minimum level, the affected [PSW] subsystem must be declared inoperable. [The 24 hour Frequency is based on operating experience related to trending of the parameter variations during the applicable Modes.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- READER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--- }

[SR 3.7.2.2]

This SR verifies the water level [in each pump well of the intake structure] to be sufficient for the proper operation of the [PSW] pumps (net positive suction head and pump vortexing are considered in determining this limit). [The 24 hour Frequency is based on operating experience related to trending of the parameter variations during the applicable Modes.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- READER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

---]

OR

THE SURVEILLANCE FREQUENCY IS CONTROLLED UNDER THE SURVEILLANCE FREQUENCY CONTROL PROGRAM.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

[SR 3.7.2.3]

Operating each cooling tower fan for \(\geq 15 \) minutes ensures that all fans are OPERABLE and that all associated controls are functioning properly. It also ensures that fan or motor failure, or excessive vibration, can be detected for corrective action. [The 31 day Frequency is based on operating experience, the known reliability of the fan units, the redundancy available, and the low probability of significant degradation of the cooling tower fans occurring between surveillances.]

OR

THE SURVEILLANCE FREQUENCY IS CONTROLLED UNDER THE SURVEILLANCE FREQUENCY CONTROL PROGRAM.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

[SR 3.7.2.4]
SR 3.7.2.5

Verifying the correct alignment for each manual, power operated, and automatic valve in each [PSW] subsystem flow path provides assurance that the proper flow paths will exist for [PSW] operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position, and yet considered in the correct position, provided it can be automatically realigned to its accident position within the required time. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

This SR is modified by a Note indicating that isolation of the [PSW] System to components or systems may render those components or systems inoperable, but does not affect the OPERABILITY of the [PSW] System. As such, when all [PSW] pumps, valves, and piping are OPERABLE, but a branch connection off the main header is isolated, the [PSW] System is still OPERABLE.

The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.7.2.6

This SR verifies that the automatic isolation valves of the [PSW] System will automatically switch to the safety or emergency position to provide cooling water exclusively to the safety related equipment during an accident event. This is demonstrated by the use of an actual or simulated initiation signal. This SR also verifies the automatic start capability of one
of the two [PSW] pumps in each subsystem. The SR excludes automatic valves that are locked, sealed, or otherwise secured in the actuated position. The SR does not apply to valves that are locked, sealed, or otherwise secured in the actuated position since the affected valves were verified to be in the actuated position prior to being locked, sealed, or otherwise secured. Placing an automatic valve in a locked, sealed, or otherwise secured position requires an assessment of the OPERABILITY of the system or any supported systems, including whether it is necessary for the valve to be repositioned to the non-actuated position to support the accident analysis. Restoration of an automatic valve to the non-actuated position requires verification that the SR has been met within its required Frequency.

[Operating experience has shown that these components usually pass the SR when performed at the [18] month Frequency. Therefore, this Frequency is concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Chapter [4].

2. FSAR, Chapter [6].

B 3.7 PLANT SYSTEMS

B 3.7.3 Diesel Generator (DG) [1B] Standby Service Water (SSW) System

BASES

BACKGROUND

The DG [1B] SSW System is designed to provide cooling water for the removal of heat from the DG [1B]. DG [1B] is the only component served by the DG [1B] SSW System.

The DG [1B] SSW pump autostarts upon receipt of a diesel generator (DG) start signal when power is available to the pump's electrical bus. Cooling water is pumped from the [Altamaha River] by the DG [1B] SSW pump to the essential DG components through the SSW supply header. After removing heat from the components, the water is discharged to the unit service water (PSW) discharge header. The capability exists to manually cross connect the PSW System to supply cooling to the DG [1B] during times when the SSW pump is inoperable. A complete description of the DG [1B] SSW System is presented in the FSAR, Section [9.5.5] (Ref. 1).

APPLICABLE

SAFETY

ANALYSES

The ability of the DG [1B] SSW System to provide adequate cooling to the DG [1B] is an implicit assumption for the safety analyses presented in the FSAR, Chapters [6] and [15] (Refs. 2 and 3, respectively). The ability to provide onsite emergency AC power is dependent on the ability of the DG [1B] SSW System to cool the DG [1B].

The DG [1B] SSW System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The OPERABILITY of the DG [1B] SSW System is required to provide a coolant source to ensure effective operation of the DG [1B] in the event of an accident or transient. The OPERABILITY of the DG [1B] SSW System is based on having an OPERABLE pump and an OPERABLE flow path.

An adequate suction source is not addressed in this LCO since the minimum net positive suction head of the DG [1B] SSW pump is bounded by the PSW requirements (LCO 3.7.2, "[Unit Service Water (PSW)] System and [Ultimate Heat Sink (UHS)]").

APPLICABILITY

The requirements for OPERABILITY of the DG [1B] SSW System are governed by the required OPERABILITY of the DG [1B] (LCO 3.8.1, "AC Sources - Operating," and LCO 3.8.2, "AC Sources - Shutdown").
If the DG [1B] SSW System is inoperable, the OPERABILITY of the DG [1B] is affected due to loss of its cooling source; however, the capability exists to provide cooling to DG [1B] from the PSW System of Unit [1]. Continued operation is allowed for 60 days if the OPERABILITY of a Unit 1 PSW System, with respect to its capability to provide cooling to the DG [1B], can be verified. This is accomplished by aligning cooling water to DG [1B] from the Unit 1 PSW System within 8 hours and verifying this lineup once every 31 days. The 8 hour Completion Time is based on the time required to reasonably complete the Required Action, and the low probability of an event occurring requiring DG [1B] during this period. The 31 day verification of the Unit [1] PSW lineup to the DG [1B] is consistent with the PSW valve lineup SRs. The 60 day Completion Time to restore the DG [1B] SSW System to OPERABLE status allows sufficient time to repair the system, yet prevents indefinite operation with cooling water provided from the Unit [1] PSW System.

If cooling water cannot be made available to the DG [1B] within the 8 hour Completion Time, or if cooling water cannot be verified to be aligned to DG [1B] from a Unit [1] PSW subsystem as required by the 31 day verification Required Action, the DG [1B] cannot perform its intended function and must be immediately declared inoperable. In accordance with LCO 3.0.6, this also requires entering into the Applicable Conditions and Required Actions for LCO 3.8.1 or LCO 3.8.2. Additionally, if the DG [1B] SSW System is not restored to OPERABLE status within 60 days, DG [1B] must be immediately declared inoperable.

Verifying the correct alignment for manual, power operated, and automatic valves in the DG [1B] SSW System flow path provides assurance that the proper flow paths will exist for DG [1B] SSW System operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position, and yet be considered in the correct position provided it can be automatically realigned to its accident position, within the required time. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.
The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.7.3.2

This SR ensures that the DG [1B] SSW System pump will automatically start to provide required cooling to the DG [1B] when the DG [1B] starts and the respective bus is energized.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [9.5.5].
2. FSAR, Chapter [6].
3. FSAR, Chapter [15].
B 3.7 PLANT SYSTEMS

B 3.7.4 [Main Control Room Environmental Control (MCREC)] System

BASES

BACKGROUND

The [MCREC] System provides a protected environment from which occupants can control the unit following an uncontrolled release of radioactivity, hazardous chemicals, or smoke.

The safety related function of the [MCREC] System includes two independent and redundant high efficiency air filtration subsystems for emergency treatment of recirculated air or outside supply air and a control room envelope (CRE) boundary that limits the inleakage of unfiltered air. Each [MCREC] subsystem consists of a demister, an electric heater, a prefilter, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section, a second HEPA filter, a booster fan, an air handling unit (excluding the condensing unit), and the associated ductwork, valves or dampers, doors, barriers, and instrumentation. Demisters remove water droplets from the airstream. Prefilters and HEPA filters remove particulate matter, which may be radioactive. The charcoal adsorbers provide a holdup period for gaseous iodine, allowing time for decay.

The CRE is the area within the confines of the CRE boundary that contains the spaces that control room occupants inhabit to control the unit during normal and accident conditions. This area encompasses the control room, and may encompass other non-critical areas to which frequent personnel access or continuous occupancy is not necessary in the event of an accident. The CRE is protected during normal operation, natural events, and accident conditions. The CRE boundary is the combination of walls, floor, roof, ducting, doors, penetrations and equipment that physically form the CRE. The OPERABILITY of the CRE boundary must be maintained to ensure that the inleakage of unfiltered air into the CRE will not exceed the inleakage assumed in the licensing basis analysis of design basis accident (DBA) consequences to CRE occupants. The CRE and its boundary are defined in the Control Room Envelope Habitability Program.

The [MCREC] System is a standby system, parts of which also operate during normal unit operations to maintain the CRE environment. Upon receipt of the initiation signal(s) (indicative of conditions that could result in radiation exposure to CRE occupants), the [MCREC] System automatically switches to the pressurization mode of operation to minimize infiltration of contaminated air into the CRE. A system of dampers isolates the CRE, and a part of the recirculated air is routed through either of the two filter subsystems. Outside air is taken in at the normal ventilation intake and is mixed with the recirculated air before
being passed through one of the charcoal adsorber filter subsystems for removal of airborne radioactive particles.

The [MCREC] System is designed to maintain a habitable environment in the CRE for a 30 day continuous occupancy after a DBA without exceeding [5 rem whole body dose or its equivalent to any part of the body] [5 rem total effective does equivalent (TEDE)]. A single [MCREC] subsystem operating at a flow rate of ≤ [400] cfm will pressurize the CRE to about [0.1] inches water gauge relative to external areas adjacent to the CRE boundary to minimize infiltration of air from all surrounding areas adjacent to the CRE boundary. [MCREC] System operation in maintaining CRE habitability is discussed in the FSAR, Chapters [6] and [9], (Refs. 1 and 2, respectively).

The ability of the [MCREC] System to maintain the habitability of the CRE is an explicit assumption for the safety analyses presented in the FSAR, Chapters [6] and [15] (Refs. 1 and 3, respectively). The pressurization mode of the [MCREC] System is assumed to operate following a DBA, as discussed in the FSAR, Section [6.4.1.2.2] (Ref. 4). The radiological doses to the CRE occupants as a result of the various DBAs are summarized in Reference 3. No single active or passive failure will cause the loss of outside or recirculated air from the CRE.

The [MCREC] System provides protection from smoke and hazardous chemicals to the CRE occupants. The analysis of hazardous chemical releases demonstrates that the toxicity limits are not exceeded in the CRE following a hazardous chemical release (Ref. 5). The evaluation of a smoke challenge demonstrates that it will not result in the inability of the CRE occupants to control the reactor either from the control room or from the remote shutdown panels (Ref. 6).

The [MCREC] System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Two redundant subsystems of the [MCREC] System are required to be OPERABLE to ensure that at least one is available if a single active failure disables the other subsystem. Total [MCREC] System failure, such as from a loss of both ventilation subsystems or from an inoperable CRE boundary, could result in exceeding a dose of [5 rem whole body or its equivalent to any part of the body] [5 rem TEDE] to the CRE occupants in the event of a DBA.

Each [MCREC] subsystem is considered OPERABLE when the individual components necessary to limit CRE occupant exposure are OPERABLE. A subsystem is considered OPERABLE when its associated:

a. Fan is OPERABLE,
b. HEPA filter and charcoal adsorbers are not excessively restricting flow and are capable of performing their filtration functions, and

c. Heater, demister, ductwork, valves, and dampers are OPERABLE, and air circulation can be maintained.

In order for the [MCREC] subsystems to be considered OPERABLE, the CRE boundary must be maintained such that the CRE occupant dose from a large radioactive release does not exceed the calculated dose in the licensing basis consequence analyses for DBAs, and that CRE occupants are protected from hazardous chemicals and smoke.

The LCO is modified by a Note allowing the CRE boundary to be opened intermittently under administrative controls. This Note only applies to openings in the CRE boundary that can be rapidly restored to the design condition, such as doors, hatches, floor plugs, and access panels. For entry and exit through doors, the administrative control of the opening is performed by the person(s) entering or exiting the area. For other openings, these controls should be proceduralized and consist of stationing a dedicated individual at the opening who is in continuous communication with the operators in the CRE. This individual will have a method to rapidly close the opening and to restore the CRE boundary to a condition equivalent to the design condition when a need for CRE isolation is indicated.

APPLICABILITY In MODES 1, 2, and 3, the [MCREC] System must be OPERABLE to ensure that the CRE will remain habitable during and following a DBA, since the DBA could lead to a fission product release.

In MODES 4 and 5, the probability and consequences of a DBA are reduced because of the pressure and temperature limitations in these MODES. Therefore, maintaining the [MCREC] System OPERABLE is not required in MODE 4 or 5, except during movement of [recently] irradiated fuel assemblies in the [secondary] containment. [Due to radioactive decay, the MCREC System is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days).]
A.1

With one [MCREC] subsystem inoperable, for reasons other than an inoperable CRE boundary, the inoperable [MCREC] subsystem must be restored to OPERABLE status within 7 days. With the unit in this condition, the remaining OPERABLE [MCREC] subsystem is adequate to perform the CRE occupant protection function. However, the overall reliability is reduced because a failure in the OPERABLE subsystem could result in loss of the [MCREC] System function. The 7 day Completion Time is based on the low probability of a DBA occurring during this time period, and that the remaining subsystem can provide the required capabilities.

B.1, B.2, and B.3

If the unfiltered inleakage of potentially contaminated air past the CRE boundary and into the CRE can result in CRE occupant radiological dose greater than the calculated dose of the licensing basis analyses of DBA consequences (allowed to be up to [5 rem whole body or its equivalent to any part of the body] [5 rem TEDE]), or inadequate protection of CRE occupants from hazardous chemicals or smoke, the CRE boundary is inoperable. Actions must be taken to restore an OPERABLE CRE boundary within 90 days.

During the period that the CRE boundary is considered inoperable, action must be initiated to implement mitigating actions to lessen the effect on CRE occupants from the potential hazards of a radiological or chemical event or a challenge from smoke. Actions must be taken within 24 hours to verify that in the event of a DBA, the mitigating actions will ensure that CRE occupant radiological exposures will not exceed the calculated dose of the licensing basis analyses of DBA consequences, and that CRE occupants are protected from hazardous chemicals and smoke. These mitigating actions (i.e., actions that are taken to offset the consequences of the inoperable CRE boundary) should be preplanned for implementation upon entry into the condition, regardless of whether entry is intentional or unintentional. The 24 hour Completion Time is reasonable based on the low probability of a DBA occurring during this time period, and the use of mitigating actions. The 90 day Completion Time is reasonable based on the determination that the mitigating actions will ensure protection of CRE occupants within analyzed limits while limiting the probability that CRE occupants will have to implement protective measures that may adversely affect their ability to control the reactor and maintain it in a safe shutdown condition in the event of a DBA. In addition, the 90 day Completion Time is a reasonable time to diagnose, plan and possibly repair, and test most problems with the CRE boundary.
Adoption of a MODE 3 end state requires the licensee to make the following commitments:

In MODE 1, 2, or 3, if the inoperable [MCREC] subsystem or the CRE boundary cannot be restored to OPERABLE status within the required Completion Time, the unit must be placed in a MODE that minimizes overall plant risk. To achieve this status, the unit must be placed in at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 7) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action C.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.
BASES

ACTIONS (continued)

D.1 and D.2

The Required Actions of Condition D are modified by a Note indicating that LCO 3.0.3 does not apply. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of [recently] irradiated fuel assemblies is not sufficient reason to require a reactor shutdown.

During movement of [recently] irradiated fuel assemblies in the [secondary] containment, if the inoperable [MCREC] subsystem cannot be restored to OPERABLE status within the required Completion Time, the OPERABLE [MCREC] subsystem may be placed in the pressurization mode. This action ensures that the remaining subsystem is OPERABLE, that no failures that would prevent automatic actuation will occur, and that any active failure will be readily detected.

[Required Action D.1 is modified by a Note alerting the operator to place the system in the toxic gas protection mode if the toxic gas protection mode automatic transfer capability is inoperable.]

An alternative to Required Action D.1 is to immediately suspend activities that present a potential for releasing radioactivity that might require isolation of the CRE. This places the unit in a condition that minimizes the accident risk.

If applicable, movement of [recently] irradiated fuel assemblies in the [secondary] containment must be suspended immediately. Suspension of these activities shall not preclude completion of movement of a component to a safe position.

E.1

--REVIEWER’S NOTE--

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If both [MREC] subsystems are inoperable in MODE 1, 2, or 3 for reasons other than an inoperable CRE boundary (i.e., Condition B), the [MREC] System may not be capable of performing the intended function. Therefore, the plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 7) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action E.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

F.1

The Required Actions of Condition F are modified by a Note indicating that LCO 3.0.3 does not apply. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of [recently] irradiated fuel assemblies is not sufficient reason to require a reactor shutdown.
BASSES

ACTIONS (continued)

During movement of [recently] irradiated fuel assemblies in the [secondary] containment, with two [MCREC] subsystems inoperable or with one or more [MCREC] subsystems inoperable due to an inoperable CRE boundary, action must be taken immediately to suspend activities that present a potential for releasing radioactivity that might require isolation of the CRE. This places the unit in a condition that minimizes the accident risk.

If applicable, movement of [recently] irradiated fuel assemblies in the [secondary] containment must be suspended immediately. Suspension of these activities shall not preclude completion of movement of a component to a safe position.

SURVEILLANCE REQUIREMENTS

SR 3.7.4.1

This SR verifies that a subsystem in a standby mode starts on demand and continues to operate. Standby systems should be checked periodically to ensure that they start and function properly. As the environmental and normal operating conditions of this system are not severe, testing each subsystem once every month provides an adequate check on this system. Operation [with the heaters on] for ≥ 15 continuous minutes demonstrates OPERABILITY of the system. Periodic operation ensures that [heater failure,] blockage, fan or motor failure, or excessive vibration can be detected for corrective action. [Furthermore, the 31 day Frequency is based on the known reliability of the equipment and the two subsystem redundancy available.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER'S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

----------------------------------- []
SURVEILLANCE REQUIREMENTS (continued)

SR 3.7.4.2

This SR verifies that the required [MCREC] testing is performed in accordance with the [Ventilation Filter Testing Program (VFTP)]. The [VFTP] includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test Frequencies and additional information are discussed in detail in the [VFTP].

SR 3.7.4.3

This SR verifies that on an actual or simulated initiation signal, each [MCREC] subsystem starts and operates. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.7.1.5 overlaps this SR to provide complete testing of the safety function. The SR excludes automatic dampers and valves that are locked, sealed, or otherwise secured in the actuated position. The SR does not apply to dampers or valves that are locked, sealed, or otherwise secured in the actuated position since the affected dampers or valves were verified to be in the actuated position prior to being locked, sealed, or otherwise secured. Placing an automatic valve or damper in a locked, sealed, or otherwise secured position requires an assessment of the OPERABILITY of the system or any supported systems, including whether it is necessary for the valve or damper to be repositioned to the non-actuated position to support the accident analysis. Restoration of an automatic valve or damper to the non-actuated position requires verification that the SR has been met within its required Frequency. [The Frequency of [18] months is based on industry operating experience and is consistent with the typical refueling cycle. OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--REVIEWER’S NOTE--
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
--
SURVEILLANCE REQUIREMENTS (continued)

SR 3.7.4.4

This SR verifies the OPERABILITY of the CRE boundary by testing for unfiltered air inleakage past the CRE boundary and into the CRE. The details of the testing are specified in the Control Room Envelope Habitability Program.

The CRE is considered habitable when the radiological dose to CRE occupants calculated in the licensing basis analyses of DBA consequences is no more than [5 rem whole body or its equivalent to any part of the body] [5 rem TEDE] and the CRE occupants are protected from hazardous chemicals and smoke. This SR verifies that the unfiltered air inleakage into the CRE is no greater than the flow rate assumed in the licensing basis analyses of DBA consequences. When unfiltered air inleakage is greater than the assumed flow rate, Condition B must be entered. Required Action B.3 allows time to restore the CRE boundary to OPERABLE status provided mitigating actions can ensure that the CRE remains within the licensing basis habitability limits for the occupants following an accident. Compensatory measures are discussed in Regulatory Guide 1.196, Section C.2.7.3, (Ref. 8) which endorses, with exceptions, NEI 99-03, Section 8.4 and Appendix F (Ref. 9). These compensatory measures may also be used as mitigating actions as required by Required Action B.2. Temporary analytical methods may also be used as compensatory measures to restore OPERABILITY (Ref. 10). Options for restoring the CRE boundary to OPERABLE status include changing the licensing basis DBA consequence analysis, repairing the CRE boundary, or a combination of these actions. Depending upon the nature of the problem and the corrective action, a full scope inleakage test may not be necessary to establish that the CRE boundary has been restored to OPERABLE status.

REFERENCES

1. FSAR, Chapter [6].
2. FSAR, Chapter [9].
3. FSAR, Chapter [15].
4. FSAR, Section [6.4.1.2.2].
5. FSAR, Section [6.4].
REFERENCES (continued)

6. FSAR, Section [9.5].

B 3.7 PLANT SYSTEMS

B 3.7.5 [Control Room Air Conditioning (AC)] System

BASES

BACKGROUND The [Control Room AC] System provides temperature control for the control room following isolation of the control room.

The [Control Room AC] System consists of two independent, redundant subsystems that provide cooling and heating of recirculated control room air. Each subsystem consists of heating coils, cooling coils, fans, chillers, compressors, ductwork, dampers, and instrumentation and controls to provide for control room temperature control.

The [Control Room AC] System is designed to provide a controlled environment under both normal and accident conditions. A single subsystem provides the required temperature control to maintain a suitable control room environment for a sustained occupancy of 12 persons. The design conditions for the control room environment are 76°F and 50% relative humidity. The [Control Room AC] System operation in maintaining the control room temperature is discussed in the FSAR, Section [6.4] (Ref. 1).

APPLICABLE SAFETY ANALYSES The design basis of the [Control Room AC] System is to maintain the control room temperature for a 30 day continuous occupancy.

The [Control Room AC] System components are arranged in redundant safety related subsystems. During emergency operation, the [Control Room AC] System maintains a habitable environment and ensures the OPERABILITY of components in the control room. A single failure of a component of the [Control Room AC] System, assuming a loss of offsite power, does not impair the ability of the system to perform its design function. Redundant detectors and controls are provided for control room temperature control. The [Control Room AC] System is designed in accordance with Seismic Category I requirements. The [Control Room AC] System is capable of removing sensible and latent heat loads from the control room, including consideration of equipment heat loads and personnel occupancy requirements to ensure equipment OPERABILITY.

The [Control Room AC] System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO Two independent and redundant subsystems of the [Control Room AC] System are required to be OPERABLE to ensure that at least one is available, assuming a single failure disables the other subsystem. Total system failure could result in the equipment operating temperature exceeding limits.
BASES

LCO (continued)

The [Control Room AC] System is considered OPERABLE when the individual components necessary to maintain the control room temperature are OPERABLE in both subsystems. These components include the cooling coils, fans, chillers, compressors, ductwork, dampers, and associated instrumentation and controls.

APPLICABILITY

In MODE 1, 2, or 3, the [Control Room AC] System must be OPERABLE to ensure that the control room temperature will not exceed equipment OPERABILITY limits following control room isolation.

In MODES 4 and 5, the probability and consequences of a Design Basis Accident are reduced due to the pressure and temperature limitations in these MODES. Therefore, maintaining the [Control Room AC] System OPERABLE is not required in MODE 4 or 5, except during movement of [recently] irradiated fuel assemblies in the [secondary] containment. [Due to radioactive decay, the Control Room AC System is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days).]

ACTIONS

A.1

With one [control room AC] subsystem inoperable, the inoperable [control room AC] subsystem must be restored to OPERABLE status within 30 days. With the unit in this condition, the remaining OPERABLE [control room AC] subsystem is adequate to perform the control room air conditioning function. However, the overall reliability is reduced because a single failure in the OPERABLE subsystem could result in loss of the control room air conditioning function. The 30 day Completion Time is based on the low probability of an event occurring requiring control room isolation, the consideration that the remaining subsystem can provide the required protection, and the availability of alternate safety and nonsafety cooling methods.

B.1 and B.2

If both [control room AC] subsystems are inoperable, the [Control Room AC] System may not be capable of performing its intended function. Therefore, the control room area temperature is required to be monitored to ensure that temperature is being maintained low enough that equipment in the control room is not adversely affected. With the control room temperature being maintained within the temperature limit, 72 hours is allowed to restore a [Control Room AC] subsystem to OPERABLE
status. This Completion Time is reasonable considering that the control room temperature is being maintained within limits and the low probability of an event occurring requiring control room isolation.

C.1

-----------------------------------REVIEWER’S NOTE----------------------------------

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

In MODE 1, 2, or 3, if the inoperable [control room AC] subsystem(s) cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE that minimizes overall plant risk. To achieve this status, the unit must be placed in at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 2) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action C.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.
BASES

ACTIONS (continued)

The allowed Completion Time is reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

D.1 and D.2

The Required Actions of Condition D are modified by a Note indicating that LCO 3.0.3 does not apply. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of [recently] irradiated fuel assemblies is not sufficient reason to require a reactor shutdown.

During movement of [recently] irradiated fuel assemblies in the [secondary] containment, if Required Action A.1 cannot be completed within the required Completion Time, the OPERABLE [control room AC] subsystem may be placed immediately in operation. This action ensures that the remaining subsystem is OPERABLE, that no failures that would prevent actuation will occur, and that any active failure will be readily detected.

An alternative to Required Action D.1 is to immediately suspend activities that present a potential for releasing radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk.

If applicable, movement of [recently] irradiated fuel assemblies in the [secondary] containment must be suspended immediately. Suspension of these activities shall not preclude completion of movement of a component to a safe position.

E.1

The Required Actions of Condition E are modified by a Note indicating that LCO 3.0.3 does not apply. If moving [recently] irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of [recently] irradiated fuel assemblies is not a sufficient reason to require a reactor shutdown.
Bases

Actions (continued)

During movement of [recently] irradiated fuel assemblies in the [secondary] containment, if Required Actions B.1 and B.2 cannot be met within the required Completion Times, action must be taken to immediately suspend activities that present a potential for releasing radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk.

If applicable, handling of [recently] irradiated fuel in the [secondary] containment must be suspended immediately. Suspension of these activities shall not preclude completion of movement of a component to a safe position.

Surveillance Requirements

SR 3.7.5.1

This SR verifies that the heat removal capability of the system is sufficient to remove the control room heat load assumed in the [safety analyses]. The SR consists of a combination of testing and calculation. [The [18] month Frequency is appropriate since significant degradation of the [Control Room AC] System is not expected over this time period.

Or

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

References

1. FSAR, Section [6.4].

B 3.7 PLANT SYSTEMS

B 3.7.6 Main Condenser Offgas

BASES

BACKGROUND

During unit operation, steam from the low pressure turbine is exhausted directly into the condenser. Air and noncondensible gases are collected in the condenser, then exhausted through the steam jet air ejectors (SJAES) to the Main Condenser Offgas System. The offgas from the main condenser normally includes radioactive gases.

The Main Condenser Offgas System has been incorporated into the unit design to reduce the gaseous radwaste emission. This system uses a catalytic recombiner to recombine radiolytically dissociated hydrogen and oxygen. The gaseous mixture is cooled by the offgas condenser; the water and condensibles are stripped out by the offgas condenser and moisture separator. The radioactivity of the remaining gaseous mixture (i.e., the offgas recombiner effluent) is monitored downstream of the moisture separator prior to entering the holdup line.

APPLICABLE SAFETY ANALYSES

The main condenser offgas gross gamma activity rate is an initial condition of the Main Condenser Offgas System failure event, discussed in the FSAR, Section [15.1.35] (Ref. 1). The analysis assumes a gross failure in the Main Condenser Offgas System that results in the rupture of the Main Condenser Offgas System pressure boundary. The gross gamma activity rate is controlled to ensure that, during the event, the calculated offsite doses will be well within the limits of 10 CFR 100 (Ref. 2) or the NRC staff approved licensing basis.

The main condenser offgas limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

To ensure compliance with the assumptions of the Main Condenser Offgas System failure event (Ref. 1), the fission product release rate should be consistent with a noble gas release to the reactor coolant of 100 µCi/MWt-second after decay of 30 minutes. The LCO is established consistent with this requirement ([2436] MWt x 100 µCi/MWt-second = [240] mCi/second).

APPLICABILITY

The LCO is applicable when steam is being exhausted to the main condenser and the resulting noncondensibles are being processed via the Main Condenser Offgas System. This occurs during MODE 1, and during MODES 2 and 3 with any [main steam line not isolated and] the SJAES in operation. In MODES 4 and 5, steam is not being exhausted to the main condenser and the requirements are not applicable.
ACTIONS

A.1

If the offgas radioactivity rate limit is exceeded, 72 hours is allowed to restore the gross gamma activity rate to within the limit. The 72 hour Completion Time is reasonable, based on engineering judgment, the time required to complete the Required Action, the large margins associated with permissible dose and exposure limits, and the low probability of a Main Condenser Offgas System rupture.

B.1, B.2, and B.3

-- Reviewed by: READER'S NOTE--
Adoption of a MODE 3 end state requires the licensee to make the following commitments:

-- If the gross gamma activity rate is not restored to within the limits in the associated Completion Time, [all main steam lines or] the SJAE must be isolated. This isolates the Main Condenser Offgas System from the source of the radioactive steam. The main steam lines are considered isolated if at least one main steam isolation valve in each main steam line is closed, and at least one main steam line drain valve in each drain line is closed. The 12 hour Completion Time is reasonable, based on operating experience, to perform the actions from full power conditions in an orderly manner and without challenging unit systems.

An alternative to Required Actions B.1 and B.2 is to place the unit in a MODE in which overall plant risk is minimized. To achieve this status, the unit must be placed in at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 3) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.
BASES

ACTIONS (continued)

Required Action B.3 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>SR 3.7.6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>This SR requires an isotopic analysis of an offgas sample to ensure that the required limits are satisfied. The noble gases to be sampled are Xe-133, Xe-135, Xe-138, Kr-85, Kr-87, and Kr-88. If the measured rate of radioactivity increases significantly (by ≥ 50% after correcting for expected increases due to changes in THERMAL POWER), an isotopic analysis is also performed within 4 hours after the increase is noted, to ensure that the increase is not indicative of a sustained increase in the radioactivity rate. [The 31 day Frequency is adequate in view of other instrumentation that continuously monitor the offgas, and is acceptable, based on operating experience.</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.</td>
<td></td>
</tr>
</tbody>
</table>

---REVIEWS NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by a Note indicating that the SR is not required to be performed until 31 days after any [main steam line is not isolated and] the SJAE is in operation. Only in this condition can radioactive fission gases be in the Main Condenser Offgas System at significant rates.
BASSES

REFERENCES

1. FSAR, Section [15.1.35].

2. 10 CFR 100.

B 3.7 PLANT SYSTEMS

B 3.7.7 Main Turbine Bypass System

BASES

BACKGROUND

The Main Turbine Bypass System is designed to control steam pressure when reactor steam generation exceeds turbine requirements during unit startup, sudden load reduction, and cooldown. It allows excess steam flow from the reactor to the condenser without going through the turbine. The bypass capacity of the system is [25]% of the Nuclear Steam Supply System rated steam flow. Sudden load reductions within the capacity of the steam bypass can be accommodated without reactor scram. The Main Turbine Bypass System consists of three valves connected to the main steam lines between the main steam isolation valves and the turbine stop valve bypass valve chest. Each of these three valves is operated by hydraulic cylinders. The bypass valves are controlled by the pressure regulation function of the Turbine Electro Hydraulic Control System, as discussed in the FSAR, Section [7.7.4] (Ref. 1). The bypass valves are normally closed, and the pressure regulator controls the turbine control valves that direct all steam flow to the turbine. If the speed governor or the load limiter restricts steam flow to the turbine, the pressure regulator controls the system pressure by opening the bypass valves. When the bypass valves open, the steam flows from the bypass chest, through connecting piping, to the pressure breakdown assemblies, where a series of orifices are used to further reduce the steam pressure before the steam enters the condenser.

APPLICABLE SAFETY ANALYSES

The Main Turbine Bypass System is assumed to function during the turbine generator load rejection transient, as discussed in the FSAR, Section [15.1.1] (Ref. 2). Opening the bypass valves during the pressurization event mitigates the increase in reactor vessel pressure, which affects the MCPR during the event. An inoperable Main Turbine Bypass System may result in APLHGR and MCPR penalties.

The Main Turbine Bypass System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The Main Turbine Bypass System is required to be OPERABLE to limit peak pressure in the main steam lines and maintain reactor pressure within acceptable limits during events that cause rapid pressurization, so that the Safety Limit MCPR is not exceeded. [With the Main Turbine Bypass System inoperable, modifications to the APLHGR limits (LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)") and the MCPR limits (LCO 3.2.2, "MINIMUM CRITICAL
BASES

LCO (continued)

POWER RATIO (MCPR)*) may be applied to allow this LCO to be met.] The APLHGR and MCPR limits for the inoperable Main Turbine Bypass System are specified in the COLR. An OPERABLE Main Turbine Bypass System requires the bypass valves to open in response to increasing main steam line pressure. This response is within the assumptions of the applicable analysis (Ref. 2).

APPLICABILITY

The Main Turbine Bypass System is required to be OPERABLE at \(\geq 25\% \) RTP to ensure that the fuel cladding integrity Safety Limit and the cladding 1% plastic strain limit are not violated during the turbine generator load rejection transient. As discussed in the Bases for LCO 3.2.1 and LCO 3.2.2, sufficient margin to these limits exists at \(< 25\% \) RTP. Therefore, these requirements are only necessary when operating at or above this power level.

ACTIONS

[A.1]

If the Main Turbine Bypass System is inoperable (one or more bypass valves inoperable), or the APLHGR and MCPR limits for an inoperable Main Turbine Bypass System, as specified in the COLR, are not applied, the assumptions of the design basis transient analysis may not be met. Under such circumstances, prompt action should be taken to restore the Main Turbine Bypass System to OPERABLE status or adjust the APLHGR and MCPR limits accordingly. The 2 hour Completion Time is reasonable, based on the time to complete the Required Action and the low probability of an event occurring during this period requiring the Main Turbine Bypass System. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program if the inoperability of the Main Turbine Bypass System is not the result of APLHGR or MCPR limit malfunctions.]

B.1

If the Main Turbine Bypass System cannot be restored to OPERABLE status or the APLHGR and MCPR limits for an inoperable Main Turbine Bypass System are not applied, THERMAL POWER must be reduced to \(< 25\% \) RTP. As discussed in the Applicability section, operation at \(< 25\% \) RTP results in sufficient margin to the required limits, and the Main Turbine Bypass System is not required to protect fuel integrity during the turbine generator load rejection transient. The 4 hour Completion Time is reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.
The Surveillances are modified by a Note that states that the Surveillances are not required to be met when the Main Turbine Bypass System is not required to be OPERABLE. When the Main Turbine Bypass System is not required to be OPERABLE, the [APLHGR and MCPR] limits for an inoperable Main Turbine Bypass System are required to be met. Surveillances for verifying that the [APLHGR and MCPR] limits are met are provided in [LCO 3.2.1 and LCO 3.2.2]. This Note is necessary since the LCO can be met if the applicable thermal limits are applied. Thus, the SRs for the Main Turbine Bypass System would not be required to be met under this condition.

SR 3.7.7.1

Cycling each main turbine bypass valve through one complete cycle of full travel demonstrates that the valves are mechanically OPERABLE and will function when required. [The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions. Operating experience has shown that these components usually pass the SR when performed at the 31 day Frequency. Therefore, the Frequency is acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
--

SR 3.7.7.2

The Main Turbine Bypass System is required to actuate automatically to perform its design function. This SR demonstrates that, with the required system initiation signals, the valves will actuate to their required position. [The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and because of the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown the [18] month Frequency, which is based on the refueling cycle, is acceptable from a reliability standpoint.
SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.7.7.3

This SR ensures that the TURBINE BYPASS SYSTEM RESPONSE TIME is in compliance with the assumptions of the appropriate safety analysis. The response time limits are specified in [unit specific documentation]. [The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and because of the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown the [18] month Frequency, which is based on the refueling cycle, is acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [7.7.4].

2. FSAR, Section [15.1.1].
B 3.7 PLANT SYSTEMS

B 3.7.8 Spent Fuel Storage Pool Water Level

BASES

<table>
<thead>
<tr>
<th>BACKGROUND</th>
<th>The minimum water level in the spent fuel storage pool meets the assumptions of iodine decontamination factors following a fuel handling accident. A general description of the spent fuel storage pool design is found in the FSAR, Section [] (Ref. 1). The assumptions of the fuel handling accident are found in the FSAR, Section [15.1.4] (Ref. 2).</th>
</tr>
</thead>
</table>

|APPLICABLE SAFETY ANALYSES| The water level above the irradiated fuel assemblies is an explicit assumption of the fuel handling accident. A fuel handling accident is evaluated to ensure that the radiological consequences (calculated whole body and thyroid doses at the exclusion area and low population zone boundaries) are ≤ 25% of 10 CFR 100 (Ref. 3) exposure guidelines NUREG-0800 (Ref. 4). A fuel handling accident could release a fraction of the fission product inventory by breaching the fuel rod cladding as discussed in the Regulatory Guide 1.25 (Ref. 5). The fuel handling accident is evaluated for the dropping of an irradiated fuel assembly onto the reactor core. The consequences of a fuel handling accident over the spent fuel storage pool are no more severe than those of the fuel handling accident over the reactor core, as discussed in the FSAR, Section [9.1.2.2.2] (Ref. 6). The water level in the spent fuel storage pool provides for absorption of water soluble fission product gases and transport delays of soluble and insoluble gases that must pass through the water before being released to the secondary containment atmosphere. This absorption and transport delay reduces the potential radioactivity of the release during a fuel handling accident. The spent fuel storage pool water level satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii). |

|LCO| The specified water level preserves the assumptions of the fuel handling accident analysis (Ref. 2). As such, it is the minimum required for fuel movement within the spent fuel storage pool. |

|APPLICABILITY| This LCO applies during movement of irradiated fuel assemblies in the spent fuel storage pool since the potential for a release of fission products exists. |
Bases

Actions

A.1

Required Action A.1 is modified by a Note indicating that LCO 3.0.3 does not apply. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of irradiated fuel assemblies is not a sufficient reason to require a reactor shutdown.

When the initial conditions for an accident cannot be met, action must be taken to preclude the accident from occurring. If the spent fuel storage pool level is less than required, the movement of irradiated fuel assemblies in the spent fuel storage pool is suspended immediately. Suspension of this activity shall not preclude completion of movement of an irradiated fuel assembly to a safe position. This effectively precludes a spent fuel handling accident from occurring.

Surveillance Requirements

SR 3.7.8.1

This SR verifies that sufficient water is available in the event of a fuel handling accident. The water level in the spent fuel storage pool must be checked periodically. [The 7 day Frequency is acceptable, based on operating experience, considering that the water volume in the pool is normally stable, and all water level changes are controlled by unit procedures.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

References

1. FSAR, Section [].
2. FSAR, Section [15.1.4].
3. NUREG-0800, Section 15.7.4, Revision 1, July 1981.
4. 10 CFR 100.
REFERENCES (continued)

6. FSAR, Section [9.1.2.2.2].
The unit Class 1E AC Electrical Power Distribution System AC sources consist of the offsite power sources (preferred power sources, normal and alternates), and the onsite standby power sources (diesel generators (DGs) 2A, 2C, and 1B). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the design of the AC electrical power system provides independence and redundancy to ensure an available source of power to the Engineered Safety Feature (ESF) systems.

The Class 1E AC distribution system is divided into redundant load groups, so loss of any one group does not prevent the minimum safety functions from being performed. Each load group has connections to two preferred offsite power supplies and a single DG.

Offsite power is supplied to the 230 kV and 500 kV switchyards from the transmission network by eight transmission lines. From the 230 kV switchyards, two electrically and physically separated circuits provide AC power, through auxiliary transformers 2C and 2D, to 4.16 kV ESF buses 2E, 2F, and 2G. A detailed description of the offsite power network and circuits to the onsite Class 1E ESF buses is found in the FSAR, Section [8.2] (Ref. 2).

An offsite circuit consists of all breakers, transformers, switches, interrupting devices, cabling, and controls required to transmit power from the offsite transmission network to the onsite Class 1E ESF bus or buses.

Startup auxiliary transformer (SAT) 2D provides the normal source of power to the ESF buses 2E, 2F, and 2G. If any 4.16 kV ESF bus loses power, an automatic transfer from SAT 2D to SAT 2C occurs. At this time, 4.16 kV buses 2A and 2B and supply breakers from SAT 2C also trip open, disconnecting all nonessential loads from SAT 2C to preclude overloading of the transformer.

SATs 2C and 2D are sized to accommodate the simultaneous starting of all ESF loads on receipt of an accident signal without the need for load sequencing.

The onsite standby power source for 4.16 kV ESF buses 2E, 2F, and 2G consists of three DGs. DGs 2A and 2C are dedicated to ESF buses 2E and 2G, respectively. DG 1B is a shared power source and can supply either Unit 1 ESF bus 1F or Unit 2 ESF bus 2F. A DG starts automatically on a loss of coolant accident (LOCA) signal (i.e., low reactor water level.
signal or high drywell pressure signal) or on an ESF bus degraded voltage or undervoltage signal. After the DG has started, it automatically ties to its respective bus after offsite power is tripped as a consequence of ESF bus undervoltage or degraded voltage, independent of or coincident with a LOCA signal. The DGs also start and operate in the standby mode without tying to the ESF bus on a LOCA signal alone. Following the trip of offsite power, a sequencer strips nonpermanent loads from the ESF bus. When the DG is tied to the ESF bus, loads are then sequentially connected to its respective ESF bus by the automatic sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading the DG.

In the event of a loss of preferred power, the ESF electrical loads are automatically connected to the DGs in sufficient time to provide for safe reactor shutdown and to mitigate the consequences of a Design Basis Accident (DBA) such as a LOCA.

Certain required plant loads are returned to service in a predetermined sequence in order to prevent overloading of the DGs in the process. Within 46 seconds after the initiating signal is received, all automatic and permanently connected loads needed to recover the unit or maintain it in a safe condition are returned to service.

Ratings for the DGs satisfy the requirements of Regulatory Guide 1.9 (Ref. 3). DGs 2A and 2C have the following ratings:

a. 2850 kW - continuous,
b. 3100 kW - 2000 hours,
c. 3250 kW - 300 hours,
d. 3500 kW - 30 minutes.

DG 1B has the following ratings:

a. 2850 kW - continuous,
b. 3250 kW - 168 hours.

The initial conditions of DBA and transient analyses in the FSAR, Chapter [6] (Ref. 4) and Chapter [15] (Ref. 5), assume ESF systems are OPERABLE. The AC electrical power sources are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor
Bases

Applicable Safety Analyses (continued)

Coolant System (RCS), and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

The operability of the AC electrical power sources is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining the onsite or offsite AC sources operable during accident conditions in the event of:

a. An assumed loss of all offsite power or all onsite AC power and

b. A worst case single failure.

AC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Two qualified circuits between the offsite transmission network and the onsite Class 1E Distribution System and three separate and independent DGs (2A, 2C, and 1B) ensure availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an anticipated operational occurrence (AOO) or a postulated DBA.

Qualified offsite circuits are those that are described in the FSAR, and are part of the licensing basis for the unit. [In addition, [one required automatic load sequencer per ESF bus] shall be operable.]

Each offsite circuit must be capable of providing three phases of AC power, maintaining rated frequency and voltage, and accepting required loads during an accident, while connected to the ESF buses. Each offsite circuit consists of incoming breaker and disconnect to the respective 2C and 2D SATs, the 2C and 2D transformers, and the respective circuit path including feeder breakers to 4.16 kV ESF buses. Feeder breakers from each circuit are required to the 2F ESF buses; however, if 2C SAT is connected to ESF bus 2E (or 2G) and 2D SAT is connected to 2G (or 2E), the remaining breakers to 2E and 2G are not required.

Each DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective ESF bus on detection of bus undervoltage. This sequence must be accomplished within 12 seconds. Each DG must also be capable of accepting required loads within the assumed loading sequence intervals, and must continue to operate until offsite power can be restored to the ESF buses. These capabilities are required to be met from a variety of initial conditions, such as DG in standby with the engine hot and DG in standby with the engine at ambient
Bases

LCO (continued)

Condition. Additional DG capabilities must be demonstrated to meet required surveillances, e.g., capability of the DG to revert to standby status on an ECCS signal while operating in parallel test mode.

Proper sequencing of loads, including tripping of nonessential loads, is a required function for DG OPERABILITY.

The AC sources must be separate and independent (to the extent possible) of other AC sources. For the DGs, the separation and independence are complete. For the offsite AC sources, the separation and independence are to the extent practical. A circuit may be connected to more than one ESF bus, with fast transfer capability to the other circuit OPERABLE, and not violate separation criteria. A circuit that is not connected to an ESF bus is required to have OPERABLE fast transfer interlock mechanisms to at least two ESF buses to support OPERABILITY of that circuit.

Applicability

The AC sources [and sequencers] are required to be OPERABLE in MODES 1, 2, and 3 to ensure that:

a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and

b. Adequate core cooling is provided and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

The AC power requirements for MODES 4 and 5 are covered in LCO 3.8.2, "AC Sources - Shutdown."

Actions

A Note prohibits the application of LCO 3.0.4.b to an inoperable DG. There is an increased risk associated with entering a MODE or other specified condition in the Applicability with an inoperable DG and the provisions of LCO 3.0.4.b, which allow entry into a MODE or other specified condition in the Applicability with the LCO not met after performance of a risk assessment addressing inoperable systems and components, should not be applied in this circumstance.

A.1

To ensure a highly reliable power source remains with one offsite circuit inoperable, it is necessary to verify the availability of the remaining required offsite circuit on a more frequent basis. Since the Required Action only specifies “perform,” a failure of SR 3.8.1.1 acceptance criteria
does not result in a Required Action not met. However, if a second required circuit fails SR 3.8.1.1, the second offsite circuit is inoperable, and Condition C, for two offsite circuits inoperable, is entered.

A.2

Required Action A.2, which only applies if the division cannot be powered from an offsite source, is intended to provide assurance that an event with a coincident single failure of the associated DG does not result in a complete loss of safety function of critical systems. These features are designed with redundant safety related divisions (i.e., single division systems are not included). Redundant required features failures consist of inoperable features associated with a division redundant to the division that has no offsite power.

The Completion Time for Required Action A.2 is intended to allow time for the operator to evaluate and repair any discovered inoperabilities. This Completion Time also allows an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action the Completion Time only begins on discovery that both:

a. The division has no offsite power supplying its loads and

b. A required feature on the other division is inoperable.

If, at any time during the existence of this Condition (one offsite circuit inoperable) a required feature subsequently becomes inoperable, this Completion Time would begin to be tracked.

Discovering no offsite power to one 4160 V ESF bus of the onsite Class 1E Power Distribution System coincident with one or more inoperable required support or supported features, or both, that are associated with any other ESF bus that has offsite power, results in starting the Completion Times for the Required Action. Twenty-four hours is acceptable because it minimizes risk while allowing time for restoration before the unit is subjected to transients associated with shutdown.

The remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the onsite Class 1E Distribution System. Thus, on a component basis, single failure protection may have been lost for the required feature's function; however, function is not lost. The 24 hour
BASES

ACTIONS (continued)

Completion Time takes into account the component OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 24 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

A.3

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition A for a period that should not exceed 72 hours. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] With one offsite circuit inoperable, the reliability of the offsite system is degraded, and the potential for a loss of offsite power is increased, with attendant potential for a challenge to the plant safety systems. In this condition, however, the remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the onsite Class 1E Distribution System.

The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, reasonable time for repairs, and the low probability of a DBA occurring during this period.

B.1

To ensure a highly reliable power source remains with one DG inoperable, it is necessary to verify the availability of the required offsite circuits on a more frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action being not met. However, if a circuit fails to pass SR 3.8.1.1, it is inoperable. Upon offsite circuit inoperability, additional Conditions must then be entered.

B.2

Required Action B.2 is intended to provide assurance that a loss of offsite power, during the period that a DG is inoperable, does not result in a complete loss of safety function of critical systems. These features are designed with redundant safety related divisions (i.e., single division systems are not included). Redundant required features failures consist of inoperable features associated with a division redundant to the division that has an inoperable DG.
Bases

Actions (continued)

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action the Completion Time only begins on discovery that both:

a. An inoperable DG exists and

b. A required feature on the other division (Division 1 or 2) is inoperable.

If, at any time during the existence of this Condition (one DG inoperable), a required feature subsequently becomes inoperable, this Completion Time begins to be tracked.

Discovering one required DG inoperable coincident with one or more inoperable required support or supported features, or both, that are associated with the OPERABLE DG[s] results in starting the Completion Time for the Required Action. Four hours from the discovery of these events existing concurrently is acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown.

The remaining OPERABLE DGs and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. Thus, on a component basis, single failure protection for the required feature's function may have been lost; however, function has not been lost. The 4 hour Completion Time takes into account the component OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 4 hour Completion Time takes into account the capacity and capability of the remaining AC sources, reasonable time for repairs, and low probability of a DBA occurring during this period.

B.3.1 and B.3.2

Required Action B.3.1 provides an allowance to avoid unnecessary testing of OPERABLE DGs. If it can be determined that the cause of the inoperable DG does not exist on the OPERABLE DG, SR 3.8.1.2 does not have to be performed. If the cause of inoperability exists on other DG(s), they are declared inoperable upon discovery, and Condition E of LCO 3.8.1 is entered. Once the failure is repaired, and the common cause failure no longer exists, Required Action B.3.1 is satisfied. If the cause of the initial inoperable DG cannot be confirmed not to exist on the remaining DG(s), performance of SR 3.8.1.2 suffices to provide assurance of continued OPERABILITY of those DGs.
In the event the inoperable DG is restored to OPERABLE status prior to completing either B.3.1 or B.3.2, the [plant corrective action program] will continue to evaluate the common cause possibility. This continued evaluation, however, is no longer under the 24 hour constraint imposed while in Condition B.

According to Generic Letter 84-15 (Ref. 7), [24] hours is a reasonable time to confirm that the OPERABLE DGs are not affected by the same problem as the inoperable DG.

B.4

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition B for a period that should not exceed 72 hours. In Condition B, the remaining OPERABLE DGs and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, reasonable time for repairs, and low probability of a DBA occurring during this period. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

C.1 and C.2

Required Action C.1 addresses actions to be taken in the event of inoperability of redundant required features concurrent with inoperability of two offsite circuits. Required Action C.1 reduces the vulnerability to a loss of function. The Completion Time for taking these actions is reduced to 12 hours from that allowed with one division without offsite power (Required Action A.2). The rationale for the reduction to 12 hours is that Regulatory Guide 1.93 (Ref. 6) allows a Completion Time of 24 hours for two required offsite circuits inoperable, based upon the assumption that two complete safety divisions are OPERABLE. When a concurrent redundant required feature failure exists, this assumption is not the case, and a shorter Completion Time of 12 hours is appropriate. These features are designed with redundant safety related divisions, (i.e., single division systems are not included in the list). Redundant required features failures consist of any of these features that are inoperable because any inoperability is on a division redundant to a division with inoperable offsite circuits.
The Completion Time for Required Action C.1 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both:

a. All required offsite circuits are inoperable and

b. A required feature is inoperable.

If, at any time during the existence of this Condition (two offsite circuits inoperable), a required feature subsequently becomes inoperable, this Completion Time begins to be tracked.

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition C for a period that should not exceed 24 hours. This level of degradation means that the offsite electrical power system does not have the capability to effect a safe shutdown and to mitigate the effects of an accident; however, the onsite AC sources have not been degraded. This level of degradation generally corresponds to a total loss of the immediately accessible offsite power sources.

Because of the normally high availability of the offsite sources, this level of degradation may appear to be more severe than other combinations of two AC sources inoperable that involve one or more DGs inoperable. However, two factors tend to decrease the severity of this degradation level:

a. The configuration of the redundant AC electrical power system that remains available is not susceptible to a single bus or switching failure and

b. The time required to detect and restore an unavailable offsite power source is generally much less than that required to detect and restore an unavailable onsite AC source.

With both of the required offsite circuits inoperable, sufficient onsite AC sources are available to maintain the unit in a safe shutdown condition in the event of a DBA or transient. In fact, a simultaneous loss of offsite AC sources, a LOCA, and a worst case single failure were postulated as a part of the design basis in the safety analysis. Thus, the 24 hour Completion Time provides a period of time to effect restoration of one of the offsite circuits commensurate with the importance of maintaining an AC electrical power system capable of meeting its design criteria.
BASES

ACTIONS (continued)

According to Regulatory Guide 1.93 (Ref. 6), with the available offsite AC sources two less than required by the LCO, operation may continue for 24 hours. If two offsite sources are restored within 24 hours, unrestricted operation may continue. If only one offsite source is restored within 24 hours, power operation continues in accordance with Condition A. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

D.1 and D.2

Pursuant to LCO 3.0.6, the Distribution System ACTIONS would not be entered even if all AC sources to it were inoperable, resulting in de-energization. Therefore, the Required Actions of Condition D are modified by a Note to indicate that when Condition D is entered with no AC source to any ESF bus, ACTIONS for LCO 3.8.9, "Distribution Systems - Operating," must be immediately entered. This allows Condition D to provide requirements for the loss of the offsite circuit and one DG without regard to whether a division is de-energized. LCO 3.8.9 provides the appropriate restrictions for a de-energized division.

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition D for a period that should not exceed 12 hours. In Condition D, individual redundancy is lost in both the offsite electrical power system and the onsite AC electrical power system. Since power system redundancy is provided by two diverse sources of power, however, the reliability of the power systems in this Condition may appear higher than that in Condition C (loss of both required offsite circuits). This difference in reliability is offset by the susceptibility of this power system configuration to a single bus or switching failure. The 12 hour Completion Time takes into account the capacity and capability of the remaining AC sources, reasonable time for repairs, and the low probability of a DBA occurring during this period. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

E.1

With two DGs inoperable, there is [one] remaining standby AC source. Thus, with an assumed loss of offsite electrical power, insufficient standby AC sources are available to power the minimum required ESF functions. Since the offsite electrical power system is the only source of AC power for the majority of ESF equipment at this level of degradation, the risk associated with continued operation for a very short time could be less than that associated with an immediate controlled shutdown. (The
immediate shutdown could cause grid instability, which could result in a total loss of AC power.) Since any inadvertent unit generator trip could also result in a total loss of offsite AC power, however, the time allowed for continued operation is severely restricted. The intent here is to avoid the risk associated with an immediate controlled shutdown and to minimize the risk associated with this level of degradation. According to Regulatory Guide 1.93 (Ref. 6), with both DGs inoperable, operation may continue for a period that should not exceed 2 hours.

[F.1]

The sequencer(s) is an essential support system to [both the offsite circuit and the DG associated with a given ESF bus.] [Furthermore, the sequencer(s) is on the primary success path for most major AC electrically powered safety systems powered from the associated ESF bus.] Therefore, loss of an [ESF bus's sequencer] affects every major ESF System in the [division]. The [12] hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining sequencer OPERABILITY. This time period also ensures that the probability of an accident requiring sequencer OPERABILITY occurring during periods when the sequencer is inoperable is minimal. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

This Condition is preceded by a Note that allows the Condition to be deleted if the unit design is such that any sequencer failure mode only affects the ability of the associated DG to power its respective safety loads under any conditions. Implicit in this Note is the concept that the Condition must be retained if any sequencer failure mode results in the inability to start all or part of the safety loads when required regardless of power availability, or results in overloading the offsite power circuit to a safety bus during an event thereby causing its failure. Also implicit in the Note is that the Condition is not applicable to any division that does not have a sequencer.]

G.1

-----------------------------------REVIEWER’S NOTE-----------------------------------

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

--

If the inoperable AC electrical power sources cannot be restored to OPERABLE status within the associated Completion Time, the unit must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the unit must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 8) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action G.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
Condition H corresponds to a level of degradation in which all redundancy in the AC electrical power supplies has been lost. At this severely degraded level, any further losses in the AC electrical power system will cause a loss of function. Therefore, no additional time is justified for continued operation. The unit is required by LCO 3.0.3 to commence a controlled shutdown.

The AC sources are designed to permit inspection and testing of all important areas and features, especially those that have a standby function, in accordance with 10 CFR 50, GDC 18 (Ref. 9). Periodic component tests are supplemented by extensive functional tests during refueling outages (under simulated accident conditions). The SRs for demonstrating the OPERABILITY of the DGs are in accordance with the recommendations of Regulatory Guide 1.9 (Ref. 3), Regulatory Guide 1.108 (Ref. 10), and Regulatory Guide 1.137 (Ref. 11), as addressed in the FSAR.

Where the SRs discussed herein specify voltage and frequency tolerances, the following summary is applicable. The minimum steady state output voltage of [3740] V is 90% of the nominal 4160 V output voltage. This value, which is specified in ANSI C84.1 (Ref. 12), allows for voltage drop to the terminals of 4000 V motors whose minimum operating voltage is specified as 90% or 3600 V. It also allows for voltage drops to motors and other equipment down through the 120 V level where minimum operating voltage is also usually specified as 90% of name plate rating. The specified maximum steady state output voltage of [4576] V is equal to the maximum operating voltage specified for 4000 V motors. It ensures that for a lightly loaded distribution system, the voltage at the terminals of 4000 V motors is no more than the maximum rated operating voltages. The specified minimum and maximum frequencies of the DG are 58.8 Hz and 61.2 Hz, respectively. These values are equal to ± 2% of the 60 Hz nominal frequency and are derived from the recommendations found in Regulatory Guide 1.9 (Ref. 3).

This SR ensures correct breaker alignment for each [required] offsite circuit to ensure that distribution buses and loads are connected to their preferred power source, and that appropriate independence of offsite circuits is maintained. The SR also verifies the indicated availability of three-phase AC electrical power from each [required] offsite circuit to the
AC Sources

B 3.8.1

SURVEILLANCE REQUIREMENTS (continued)

onsite distribution network. [The 7 day Frequency is adequate since breaker position is not likely to change without the operator being aware of it and because its status is displayed in the control room.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--REVIEWER’S NOTE--
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.8.1.2 and SR 3.8.1.7

These SRs help to ensure the availability of the standby electrical power supply to mitigate DBAs and transients and maintain the unit in a safe shutdown condition.

To minimize the wear on moving parts that do not get lubricated when the engine is not running, these SRs have been modified by a Note (Note 1 for SR 3.8.1.2 and Note for SR 3.8.1.7) to indicate that all DG starts for these Surveillances may be preceded by an engine prelube period and followed by a warmup prior to loading.

For the purposes of this testing, the DGs are started from standby conditions. Standby conditions for a DG mean that the diesel engine coolant and oil are being continuously circulated and temperature is being maintained consistent with manufacturer recommendations.

[In order to reduce stress and wear on diesel engines, some manufacturers recommend a modified start in which the starting speed of DGs is limited, warmup is limited to this lower speed, and the DGs are gradually accelerated to synchronous speed prior to loading. These start procedures are the intent of Note 2, which is only applicable when such modified start procedures are recommended by the manufacturer.]

SR 3.8.1.7 requires that the DG starts from standby conditions and achieves required voltage and frequency within 12 seconds. The 12 second start requirement supports the assumptions in the design basis LOCA analysis of FSAR, Section 6.3 (Ref. 13). The 12 second start requirement is not applicable to SR 3.8.1.2 (see Note 2 of SR 3.8.1.2),
when a modified start procedure as described above is used. If a modified start is not used, the 12 second start requirement of SR 3.8.1.7 applies.

Since SR 3.8.1.7 does require a 12 second start, it is more restrictive than SR 3.8.1.2, and it may be performed in lieu of SR 3.8.1.2.

In addition to the SR requirements, the time for the DG to reach steady state operation, unless the modified DG start method is employed, is periodically monitored and the trend evaluated to identify degradation of governor and voltage regulator performance.

[The 31 day Frequency for SR 3.8.1.2 is consistent with Regulatory Guide 1.9 (Ref. 3). The 184 day Frequency for SR 3.8.1.7 is a reduction in cold testing consistent with Generic Letter 84-15 (Ref. 7). These Frequencies provide adequate assurance of DG OPERABILITY, while minimizing degradation resulting from testing.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

---]

SR 3.8.1.3

This Surveillance verifies that the DGs are capable of synchronizing and accepting greater than or equal to the equivalent of the maximum expected accident loads. A minimum run time of 60 minutes is required to stabilize engine temperatures, while minimizing the time that the DG is connected to the offsite source.

Although no power factor requirements are established by this SR, the DG is normally operated at a power factor between [0.8 lagging] and [1.0]. The [0.8] value is the design rating of the machine, while [1.0] is an operational limitation [to ensure circulating currents are minimized]. The load band is provided to avoid routine overloading of the DG. Routine
overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY.

[The 31 day Frequency for this Surveillance is consistent with Regulatory Guide 1.9 (Ref. 3).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

Note 1 modifies this Surveillance to indicate that diesel engine runs for this Surveillance may include gradual loading, as recommended by the manufacturer, so that mechanical stress and wear on the diesel engine are minimized.

Note 2 modifies this Surveillance by stating that momentary transients because of changing bus loads do not invalidate this test. Similarly, momentary power factor transients above the limit do not invalidate the test.

Note 3 indicates that this Surveillance should be conducted on only one DG at a time in order to avoid common cause failures that might result from offsite circuit or grid perturbations.

Note 4 stipulates a prerequisite requirement for performance of this SR. A successful DG start must precede this test to credit satisfactory performance.

SR 3.8.1.4

This SR provides verification that the level of fuel oil in the day tank [and engine mounted tank] is at or above the level at which fuel oil is automatically added. The level is expressed as an equivalent volume in gallons, and is selected to ensure adequate fuel oil for a minimum of 1 hour of DG operation at full load plus 10%.
 SURVEILLANCE REQUIREMENTS (continued)

[The 31 day Frequency is adequate to ensure that a sufficient supply of fuel oil is available, since low level alarms are provided and facility operators would be aware of any large uses of fuel oil during this period.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.8.1.5

Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Periodic removal of water from the fuel oil day [and engine mounted] tanks eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, contaminated fuel oil, and breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. [The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 11). This SR is for preventive maintenance. The presence of water does not necessarily represent a failure of this SR provided that accumulated water is removed during performance of this Surveillance.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.8.1.6

This Surveillance demonstrates that each required fuel oil transfer pump operates and transfers fuel oil from its associated storage tank to its associated day tank. It is required to support continuous operation of standby power sources. This Surveillance provides assurance that the fuel oil transfer pump is OPERABLE, the fuel oil piping system is intact, the fuel delivery piping is not obstructed, and the controls and control systems for automatic fuel transfer systems are OPERABLE.

The Frequency for this SR is variable, depending on individual system design, with up to a [92] day interval. The [92] day Frequency corresponds to the testing requirements for pumps as contained in the ASME Code (Ref. 14); however, the design of fuel transfer systems is such that pumps operate automatically or must be started manually in order to maintain an adequate volume of fuel oil in the day [and engine mounted] tanks during or following DG testing. In such a case, a 31 day Frequency is appropriate. Since proper operation of fuel transfer systems is an inherent part of DG OPERABILITY, the Frequency of this SR should be modified to reflect individual designs.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.8.1.7

See SR 3.8.1.2.
Transfer of each 4.16 kV ESF bus power supply from the normal offsite circuit to the alternate offsite circuit demonstrates the OPERABILITY of the alternate circuit distribution network to power the shutdown loads.

The [18 month] Frequency of the Surveillance is based on engineering judgment taking into consideration the plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed on the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by a Note. The reason for the Note is that, during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. Credit may be taken for unplanned events that satisfy this SR.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.1.9

Each DG is provided with an engine overspeed trip to prevent damage to the engine. Recovery from the transient caused by the loss of a large load could cause diesel engine overspeed, which, if excessive, might result in a trip of the engine. This Surveillance demonstrates the DG load response characteristics and capability to reject the largest single load without exceeding predetermined voltage and frequency and while maintaining a specified margin to the overspeed trip. The largest single load for each DG is a residual heat removal service water pump (1225 bhp). This Surveillance may be accomplished by either:

a. Tripping the DG output breaker with the DG carrying greater than or equal to its associated single largest post-accident load while paralleled to offsite power, or while solely supplying the bus, or

b. Tripping its associated single largest post-accident load with the DG solely supplying the bus.

As required by IEEE-308 (Ref. 15), the load rejection test is acceptable if the increase in diesel speed does not exceed 75% of the difference between synchronous speed and the overspeed trip setpoint, or 15% above synchronous speed, whichever is lower. For DGs 2A, 2C, and 1B, this represents 65.5 Hz, equivalent to 75% of the difference between nominal speed and the overspeed trip setpoint.

The time, voltage, and frequency tolerances specified in this SR are derived from Regulatory Guide 1.9 (Ref. 3) recommendations for response during load sequence intervals. The [6] seconds specified is equal to 60% of the 10 second load sequence interval associated with sequencing the residual heat removal (RHR) pumps during an undervoltage on the bus concurrent with a LOCA. The voltage and frequency specified are consistent with the design range of the equipment powered by the DG. SR 3.8.1.9.a corresponds to the maximum frequency excursion, while SR 3.8.1.9.b and SR 3.8.1.9.c are steady state voltage and frequency values to which the system must recover following load rejection. [The [18 month] Frequency is consistent with the recommendation of Regulatory Guide 1.108 (Ref. 10).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by two Notes. The reason for Note 1 is that, during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. Credit may be taken for unplanned events that satisfy this SR. Note 2 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of ≤ 0.9. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 2 allows the surveillance to be conducted at a power factor other than ≤ 0.9. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to ≤ 0.9 results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as close as practicable to 0.9 while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DG excitation levels needed to obtain a power factor of 0.9 may not cause unacceptable voltages on the emergency busses, but the excitation levels are in excess of those recommended for the DG. In such cases, the power factor shall be maintained as close as practicable to 0.9 without exceeding the DG excitation limits.
The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

a. Performance of the SR will not render any safety system or component inoperable,

b. Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and

c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

SR 3.8.1.10

This Surveillance demonstrates the DG capability to reject a full load without overspeed tripping or exceeding the predetermined voltage limits. The DG full load rejection may occur because of a system fault or inadvertent breaker tripping. This Surveillance ensures proper engine generator load response under the simulated test conditions. This test simulates the loss of the total connected load that the DG experiences following a full load rejection and verifies that the DG does not trip upon loss of the load. These acceptance criteria provide DG damage protection. While the DG is not expected to experience this transient during an event, and continues to be available, this response ensures that the DG is not degraded for future application, including reconnection to the bus if the trip initiator can be corrected or isolated.

[The [18 month] Frequency is consistent with the recommendation of Regulatory Guide 1.108 (Ref. 10) and is intended to be consistent with expected fuel cycle lengths.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by two Notes. The reason for Note 1 is that during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that would challenge continued steady state operation and, as a result, plant safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. Credit may be taken for unplanned events that satisfy this SR. Note 2 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of ≤ [0.9]. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 2 allows the surveillance to be conducted at a power factor other than ≤ [0.9]. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to ≤ [0.9] results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as close as practicable to [0.9] while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DG excitation levels needed to obtain a power factor of [0.9] may not cause unacceptable voltages on the emergency busses, but the excitation levels are in excess of those recommended for the DG. In such cases, the power factor shall be maintained as close as practicable to [0.9] without exceeding the DG excitation limits.
The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

a. Performance of the SR will not render any safety system or component inoperable,

b. Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and

c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

SR 3.8.1.11

As required by Regulatory Guide 1.108 (Ref. 10), paragraph 2.a.(1), this Surveillance demonstrates the as designed operation of the standby power sources during loss of the offsite source. This test verifies all actions encountered from the loss of offsite power, including shedding of the nonessential loads and energization of the emergency buses and respective loads from the DG. It further demonstrates the capability of the DG to automatically achieve the required voltage and frequency within the specified time.

The DG auto-start time of 12 seconds is derived from requirements of the accident analysis for responding to a design basis large break LOCA. The Surveillance should be continued for a minimum of 5 minutes in order to demonstrate that all starting transients have decayed and stability has been achieved.

The requirement to verify the connection and power supply of permanent and auto-connected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, Emergency Core Cooling Systems (ECCS) injection valves are not desired to be stroked open, or systems are not capable of being operated at full flow, or RHR systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of the connection and loading of these loads, testing that adequately shows the capability of the DG system to
SURVEILLANCE REQUIREMENTS (continued)

perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

[The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 10), paragraph 2.a.(1), takes into consideration plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--REVIEWER’S NOTE--
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
--

This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs shall be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. Credit may be taken for unplanned events that satisfy this SR.
SR 3.8.1.12

[This Surveillance demonstrates that the DG automatically starts and achieves the required voltage and frequency within the specified time ([12] seconds) from the design basis actuation signal (LOCA signal) and operates for ≥ [5] minutes. The [5] minute period provides sufficient time to demonstrate stability. SR 3.8.1.12.d and SR 3.8.1.12.e ensure that permanently connected loads and emergency loads are energized from the offsite electrical power system on a LOCA signal without loss of offsite power.

The requirement to verify the connection and power supply of permanent and autoconnected loads is intended to satisfactorily show the relationship of these loads to the loading logic for loading onto offsite power. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, ECCS injection valves are not desired to be stroked open, high pressure injection systems are not capable of being operated at full flow, or RHR systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of the connection and loading of these loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

[The Frequency of [18 months] takes into consideration plant conditions required to perform the Surveillance and is intended to be consistent with the expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency is acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

---]
This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that during operation with the reactor critical, performance of this Surveillance could potentially cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment. Credit may be taken for unplanned events that satisfy this SR.]

SR 3.8.1.13

This Surveillance demonstrates that DG non-critical protective functions (e.g., high jacket water temperature) are bypassed on an ECCS initiation test signal. Noncritical automatic trips are all automatic trips except:

a. Engine overspeed;

b. Generator differential current;

c. Low lube oil pressure;

d. High crankcase pressure; and

e. Start failure relay.]
The non-critical trips are bypassed during DBAs and provide an alarm on an abnormal engine condition. This alarm provides the operator with sufficient time to react appropriately. The DG availability to mitigate the DBA is more critical than protecting the engine against minor problems that are not immediately detrimental to emergency operation of the DG.

[The [18 month] Frequency is based on engineering judgment, takes into consideration plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

The SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required DG from service. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. Credit may be taken for unplanned events that satisfy this SR.
The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

a. Performance of the SR will not render any safety system or component inoperable,

b. Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and

c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

SR 3.8.1.14

Regulatory Guide 1.108 (Ref. 10), paragraph 2.a.(3), requires demonstration that the DGs can start and run continuously at full load capability for an interval of not less than 24 hours - 22 hours of which is at a load equivalent to the continuous rating of the DG, and 2 hours of which is at a load equivalent to 110% of the continuous duty rating of the DG. Plant Hatch has taken an exception to this requirement and performs the 2 hour run at the 2000 hour rating (3100 kW). The DG starts for this Surveillance can be performed either from standby or hot conditions. The provisions for prelube and warmup, discussed in SR 3.8.1.2, and for gradual loading, discussed in SR 3.8.1.3, are applicable to this SR.

A load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY.

[The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 10), paragraph 2.a.(3); takes into consideration plant conditions required to perform the Surveillance; and is intended to be consistent with expected fuel cycle lengths.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This Surveillance has been modified by three Notes. Note 1 states that momentary transients due to changing bus loads do not invalidate this test. Similarly, momentary power factor transients above the limit do not invalidate the test. The reason for Note 2 is that during operation with the reactor critical, performance of this Surveillance could cause perturbations to the electrical distribution systems that would challenge continued steady state operation and, as a result, plant safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. Credit may be taken for unplanned events that satisfy this SR. Note 3 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of ≤ [0.9]. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 3 allows the surveillance to be conducted at a power factor other than ≤ [0.9]. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to ≤ [0.9] results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as close as practicable to [0.9] while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DG excitation levels needed to obtain a power factor of [0.9] may not cause unacceptable voltages on the emergency busses, but the
excitation levels are in excess of those recommended for the DG. In such cases, the power factor shall be maintained as close as practicable to [0.9] without exceeding the DG excitation limits.

SR 3.8.1.15

This Surveillance demonstrates that the diesel engine can restart from a hot condition, such as subsequent to shutdown from normal Surveillances, and achieve the required voltage and frequency within [12] seconds. The [12] second time is derived from the requirements of the accident analysis to respond to a design basis large break LOCA. [The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 10), paragraph 2.a.(5).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by two Notes. Note 1 ensures that the test is performed with the diesel sufficiently hot. The requirement that the diesel has operated for at least 2 hours at full load conditions prior to performance of this Surveillance is based on manufacturer recommendations for achieving hot conditions. The load band is provided to avoid routine overloading of the DG. Routine overloads may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY. Momentary transients due to changing bus loads do not invalidate this test. Note 2 allows all DG starts to be preceded by an engine prelube period to minimize wear and tear on the diesel during testing.

SR 3.8.1.16

As required by Regulatory Guide 1.108 (Ref. 10), paragraph 2.a.(6), this Surveillance ensures that the manual synchronization and automatic load transfer from the DG to the offsite source can be made and that the DG can be returned to ready-to-load status when offsite power is restored. It
also ensures that the auto-start logic is reset to allow the DG to reload if a subsequent loss of offsite power occurs. The DG is considered to be in ready-to-load status when the DG is at rated speed and voltage, the output breaker is open and can receive an auto-close signal on bus undervoltage, and the load sequence timers are reset.

[The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 10), paragraph 2.a.(6), and takes into consideration plant conditions required to perform the Surveillance.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------REVIEWER’S NOTE-------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. Credit may be taken for unplanned events that satisfy this SR.
Demonstration of the test mode override ensures that the DG availability under accident conditions is not compromised as the result of testing. Interlocks to the LOCA sensing circuits cause the DG to automatically reset to ready-to-load operation if an ECCS initiation signal is received during operation in the test mode. Ready-to-load operation is defined as the DG running at rated speed and voltage with the DG output breaker open. These provisions for automatic switchover are required by IEEE-308 (Ref. 15), paragraph 6.2.6(2).

The requirement to automatically energize the emergency loads with offsite power is essentially identical to that of SR 3.8.1.12. The intent in the requirements associated with SR 3.8.1.17.b is to show that the emergency loading is not affected by the DG operation in test mode. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the emergency loads to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

[The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 10), paragraph 2.a.(8); takes into consideration plant conditions required to perform the Surveillance; and is intended to be consistent with expected fuel cycle lengths.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY
concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment. Credit may be taken for unplanned events that satisfy this SR.

SR 3.8.1.18

Under accident conditions [and loss of offsite power] loads are sequentially connected to the bus by the automatic load sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading of the DGs due to high motor starting currents. The [10]% load sequence time interval tolerance ensures that sufficient time exists for the DG to restore frequency and voltage prior to applying the next load and that safety analysis assumptions regarding ESF equipment time delays are not violated. Reference 2 provides a summary of the automatic loading of ESF buses.

[The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 10), paragraph 2.a.(2); takes into consideration plant conditions required to perform the Surveillance; and is intended to be consistent with expected fuel cycle lengths.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
---]
This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment. Credit may be taken for unplanned events that satisfy this SR.

The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable:

a. Performance of the SR will not render any safety system or component inoperable,

b. Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems, and

c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems.

In the event of a DBA coincident with a loss of offsite power, the DGs are required to supply the necessary power to ESF systems so that the fuel, RCS, and containment design limits are not exceeded.
This Surveillance demonstrates DG operation, as discussed in the Bases for SR 3.8.1.11, during a loss of offsite power actuation test signal in conjunction with an ECCS initiation signal. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

[The Frequency of [18 months] takes into consideration plant conditions required to perform the Surveillance and is intended to be consistent with an expected fuel cycle length of [18 months].

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced.
when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment. Credit may be taken for unplanned events that satisfy this SR.

SR 3.8.1.20

This Surveillance demonstrates that the DG starting independence has not been compromised. Also, this Surveillance demonstrates that each engine can achieve proper speed within the specified time when the DGs are started simultaneously.

[The 10 year Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 10).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--

REVIEWER’S NOTE

--

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--]

This SR is modified by a Note. The reason for the Note is to minimize wear on the DG during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 17.
2. FSAR, Section [8.2].
4. FSAR, Chapter [6].
5. FSAR, Chapter [15].
REFERENCES (continued)

12. ANSI C84.1, 1982.

13. FSAR, Section [6.3].

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.2 AC Sources - Shutdown

BASES

<table>
<thead>
<tr>
<th>BACKGROUND</th>
<th>A description of the AC sources is provided in the Bases for LCO 3.8.1, "AC Sources - Operating."</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLICABLE SAFETY ANALYSES</td>
<td>The OPERABILITY of the minimum AC sources during MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies ensures that:</td>
</tr>
<tr>
<td>a.</td>
<td>The facility can be maintained in the shutdown or refueling condition for extended periods,</td>
</tr>
<tr>
<td>b.</td>
<td>Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and</td>
</tr>
<tr>
<td>c.</td>
<td>Adequate AC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident [involving handling recently irradiated fuel]. Due to radioactive decay, AC electrical power is only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)].</td>
</tr>
</tbody>
</table>

In general, when the unit is shut down the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or loss of all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES 1, 2, and 3 have no specific analyses in MODES 4 and 5. Worst case bounding events are deemed not credible in MODES 4 and 5 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and corresponding stresses result in the probabilities of occurrences significantly reduced or eliminated, and minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

During MODES 1, 2, and 3, various deviations from the analysis assumptions and design requirements are allowed within the ACTIONS. This allowance is in recognition that certain testing and maintenance activities must be conducted, provided an acceptable level of risk is not exceeded. During MODES 4 and 5, performance of a significant number of required testing and maintenance activities is also required. In
MODES 4 and 5, the activities are generally planned and administratively controlled. Relaxations from typical MODES 1, 2, and 3 LCO requirements are acceptable during shutdown MODES, based on:

a. The fact that time in an outage is limited. This is a risk prudent goal as well as a utility economic consideration.

b. Requiring appropriate compensatory measures for certain conditions. These may include administrative controls, reliance on systems that do not necessarily meet typical design requirements applied to systems credited in operation MODE analyses, or both.

c. Prudent utility consideration of the risk associated with multiple activities that could affect multiple systems.

d. Maintaining, to the extent practical, the ability to perform required functions (even if not meeting MODES 1, 2, and 3 OPERABILITY requirements) with systems assumed to function during an event.

In the event of an accident during shutdown, this LCO ensures the capability of supporting systems necessary for avoiding immediate difficulty, assuming either a loss of all offsite power or a loss of all onsite (diesel generator (DG)) power.

The AC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

One offsite circuit capable of supplying the onsite Class 1E power distribution subsystem(s) of LCO 3.8.10, "Distribution Systems - Shutdown," ensures that all required loads are powered from offsite power. An OPERABLE DG, associated with a Distribution System Engineered Safety Feature (ESF) bus required OPERABLE by LCO 3.8.10, ensures that a diverse power source is available for providing electrical power support assuming a loss of the offsite circuit. Together, OPERABILITY of the required offsite circuit and the ability to manually start a DG ensures the availability of sufficient AC sources to operate the plant in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel]).

The qualified offsite circuit(s) must be capable of providing three phases of AC power, maintaining rated frequency and voltage while connected to their respective ESF bus(es), and of accepting required loads during an accident. Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the unit. [The offsite circuit consists of incoming breaker and disconnect to the 2C or 2D startup]
auxiliary transformer (SAT), associated 2C or 2D SAT, and the respective circuit path including feeder breakers to all 4.16 kV ESF buses required by LCO 3.8.10.]

The required DG must be capable of being manually started, accelerating to rated speed and voltage, connecting to its respective ESF bus, and accepting required loads.

It is acceptable for divisions to be cross tied during shutdown conditions, permitting a single offsite power circuit to supply all required divisions. No fast transfer capability is required for offsite circuits to be considered OPERABLE.

The AC sources are required to be OPERABLE in MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies in the secondary containment to provide assurance that:

a. Systems that provide core cooling are available,

b. Systems needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)] are available,

c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and

d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

AC power requirements for MODES 1, 2, and 3 are covered in LCO 3.8.1.

LCO 3.0.3 is not applicable while in MODE 4 or 5. However, since irradiated fuel assembly movement can occur in MODE 1, 2, or 3, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, or 3 would require the unit to be shutdown unnecessarily.
A.1

An offsite circuit is considered inoperable if it is not available to one required ESF division. If two or more ESF 4.16 kV buses are required per LCO 3.8.10, one division with offsite power available may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and [recently] irradiated fuel movement. By the allowance of the option to declare required features inoperable with no offsite power available, appropriate restrictions can be implemented in accordance with the affected required feature(s) LCOs' ACTIONS.

A.2.1, A.2.2, A.2.3, B.1, B.2, and B.3

With the offsite circuit not available to all required divisions, the option still exists to declare all required features inoperable. Since this option may involve undesired administrative efforts, the allowance for sufficiently conservative actions is made. With the required DG inoperable, the minimum required diversity of AC power sources is not available. It is, therefore, required to suspend CORE ALTERATIONS and movement of [recently] irradiated fuel assemblies in the [secondary] containment.

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC sources and to continue this action until restoration is accomplished in order to provide the necessary AC power to the plant safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required AC electrical power sources should be completed as quickly as possible in order to minimize the time during which the plant safety systems may be without sufficient power.

Pursuant to LCO 3.0.6, the Distribution System ACTIONS would not be entered even if all AC sources to it are inoperable, resulting in de-energization. Therefore, the Required Actions of Condition A have been modified by a Note to indicate that when Condition A is entered with no AC power to any required ESF bus, ACTIONS for LCO 3.8.10 must be immediately entered. This Note allows Condition A to provide requirements for the loss of the offsite circuit whether or not a division is de-energized. LCO 3.8.10 provides the appropriate restrictions for the situation involving a de-energized division.
SR 3.8.2.1 requires the SRs from LCO 3.8.1 that are necessary for ensuring the OPERABILITY of the AC sources in other than MODES 1, 2, and 3. SR 3.8.1.8 is not required to be met since only one offsite circuit is required to be OPERABLE. SR 3.8.1.7, SR 3.8.1.11, SR 3.8.1.12, SR 3.8.1.13, SR 3.8.1.15, [SR 3.8.1.18], and SR 3.8.1.19 are not required to be met because DG start and load within a specified time and response on an offsite power or ECCS initiation signal is not required. SR 3.8.1.17 is not required to be met because the required OPERABLE DG(s) is not required to undergo periods of being synchronized to the offsite circuit. SR 3.8.1.20 is excepted because starting independence is not required with the DG(s) that is not required to be OPERABLE. Refer to the corresponding Bases for LCO 3.8.1 for a discussion of each SR.

This SR is modified by a Note which precludes requiring the OPERABLE DG(s) from being paralleled with the offsite power network or otherwise rendered inoperable during the performance of SRs, and to preclude deenergizing a required 4160 V ESF bus or disconnecting a required offsite circuit during performance of SRs. With limited AC sources available, a single event could compromise both the required circuit and the DG. It is the intent that these SRs must still be capable of being met, but actual performance is not required during periods when the DG and offsite circuit is required to be OPERABLE.

REFERENCES
None.
B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air

BASES

BACKGROUND

Each diesel generator (DG) is provided with a storage tank having a fuel oil capacity sufficient to operate that DG for a period of 7 days while the DG is supplying maximum post loss of coolant accident (LOCA) load demand discussed in FSAR, Section 9.5.2 (Ref. 1) and Regulatory Guide 1.137 (Ref. 2). The maximum load demand is calculated using the assumption that at least two DGs are available. This onsite fuel oil capacity is sufficient to operate the DGs for longer than the time to replenish the onsite supply from outside sources.

Fuel oil is transferred from storage tank to day tank by either of two transfer pumps associated with each storage tank. Redundancy of pumps and piping precludes the failure of one pump, or the rupture of any pipe, valve, or tank to result in the loss of more than one DG. All outside tanks, pumps, and piping are located underground.

For proper operation of the standby DGs, it is necessary to ensure the proper quality of the fuel oil. Regulatory Guide 1.137 (Ref. 2) addresses the recommended fuel oil practices as supplemented by ANSI N195 (Ref. 3). The fuel oil properties governed by these SRs are the water and sediment content, the kinematic viscosity, specific gravity (or API gravity), and impurity level.

The DG lubrication system is designed to provide sufficient lubrication to permit proper operation of its associated DG under all loading conditions. The system is required to circulate the lube oil to the diesel engine working surfaces and to remove excess heat generated by friction during operation. Each engine oil sump contains an inventory capable of supporting a minimum of 7 days of operation. The onsite storage in addition to the engine oil sump is sufficient to ensure 7 days' continuous operation. This supply is sufficient to allow the operator to replenish lube oil from outside sources.

Each DG has an air start system with adequate capacity for five successive start attempts on the DG without recharging the air start receiver(s).

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in FSAR, Chapter 6 (Ref. 4), and Chapter 15 (Ref. 5), assume Engineered Safety Feature (ESF) systems are OPERABLE. The DGs are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems.
systems so that fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

Since diesel fuel oil, lube oil, and starting air subsystem support the operation of the standby AC power sources, they satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Stored diesel fuel oil is required to have sufficient supply for [7] days of full load operation. It is also required to meet specific standards for quality. Additionally, sufficient lube oil supply must be available to ensure the capability to operate at full load for [7] days. This requirement, in conjunction with an ability to obtain replacement supplies within [7] days, supports the availability of DGs required to shut down the reactor and to maintain it in a safe condition for an anticipated operational occurrence (AOO) or a postulated DBA with loss of offsite power. DG day tank fuel oil requirements, as well as transfer capability from the storage tank to the day tank, are addressed in LCO 3.8.1, "AC Sources - Operating," and LCO 3.8.2, "AC Sources - Shutdown."

The starting air system is required to have a minimum capacity for five successive DG start attempts without recharging the air start receivers.

APPLICABILITY

The AC sources (LCO 3.8.1 and LCO 3.8.2) are required to ensure the availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an AOO or a postulated DBA. Because stored diesel fuel oil, lube oil, and starting air subsystem support LCO 3.8.1 and LCO 3.8.2, stored diesel fuel oil, lube oil, and starting air are required to be within limits when the associated DG is required to be OPERABLE.

ACTIONS

The ACTIONS Table is modified by a Note indicating that separate Condition entry is allowed for each DG. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperative DG subsystem. Complying with the Required Actions for one inoperative DG subsystem may allow for continued operation, and subsequent inoperative DG subsystem(s) governed by separate Condition entry and application of associated Required Actions.
A.1

In this Condition, the [7] day fuel oil supply for a DG is not available. However, the Condition is restricted to fuel oil level reductions that maintain at least a [6] day supply. The fuel oil level equivalent to a [6] day supply is [28,285] gallons. These circumstances may be caused by events such as either:

a. Full load operation required for an inadvertent start while at minimum required level or

b. Feed and bleed operations that may be necessitated by increasing particulate levels or any number of other oil quality degradations.

This restriction allows sufficient time for obtaining the requisite replacement volume and performing the analyses required prior to addition of the fuel oil to the tank. A period of 48 hours is considered sufficient to complete restoration of the required level prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> [6] days), the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period.

B.1

In this Condition, the [7] day lube oil inventory i.e., sufficient lube oil to support [7] days of continuous DG operation at full load conditions, is not available. However, the Condition is restricted to lube oil volume reductions that maintain at least a [6] day supply. The lube oil inventory equivalent to a [6] day supply is [425] gallons. This restriction allows sufficient time for obtaining the requisite replacement volume. A period of 48 hours is considered sufficient to complete restoration of the required volume prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> [6] days), the low rate of usage, the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period.

C.1

This Condition is entered as a result of a failure to meet the acceptance criterion for particulates. Normally, trending of particulate levels allows sufficient time to correct high particulate levels prior to reaching the limit of acceptability. Poor sample procedures (bottom sampling),
BASES

ACTIONS (continued)

contaminated sampling equipment, and errors in laboratory analysis can produce failures that do not follow a trend. Since the presence of particulates does not mean failure of the fuel oil to burn properly in the diesel engine, since particulate concentration is unlikely to change significantly between Surveillance Frequency intervals, and since proper engine performance has been recently demonstrated (within 31 days), it is prudent to allow a brief period prior to declaring the associated DG inoperable. The 7 day Completion Time allows for further evaluation, resampling, and re-analysis of the DG fuel oil.

D.1

With the new fuel oil properties defined in the Bases for SR 3.8.3.3 not within the required limits, a period of 30 days is allowed for restoring the stored fuel oil properties. This period provides sufficient time to test the stored fuel oil to determine that the new fuel oil, when mixed with previously stored fuel oil, remains acceptable, or to restore the stored fuel oil properties. This restoration may involve feed and bleed procedures, filtering, or combination of these procedures. Even if a DG start and load was required during this time interval and the fuel oil properties were outside limits, there is high likelihood that the DG would still be capable of performing its intended function.

E.1

With starting air receiver pressure < [225] psig, sufficient capacity for five successive DG start attempts does not exist. However, as long as the receiver pressure is > [125] psig, there is adequate capacity for at least one start attempt, and the DG can be considered OPERABLE while the air receiver pressure is restored to the required limit. A period of 48 hours is considered sufficient to complete restoration to the required pressure prior to declaring the DG inoperable. This period is acceptable based on the remaining air start capacity, the fact that most DG starts are accomplished on the first attempt, and the low probability of an event during this brief period.

F.1

With a Required Action and associated Completion Time not met, or the stored diesel fuel oil, lube oil, or starting air subsystem not within limits for reasons other than addressed by Conditions A through E, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable.
Diesel Fuel Oil, Lube Oil, and Starting Air

BASES

<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>SR 3.8.3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This SR provides verification that there is an adequate inventory of fuel oil in the storage tanks to support each DG's operation for [7] days at full load. The fuel oil level equivalent to a [7] day supply is [33,000] gallons when calculated in accordance with References 2 and 3. The required fuel storage volume is determined using the most limiting energy content of the stored fuel. Using the known correlation of diesel fuel oil absolute specific gravity or API gravity to energy content, the required diesel generator output, and the corresponding fuel consumption rate, the onsite fuel storage volume required for [7] days of operation can be determined. SR 3.8.3.3 requires a new fuel to be tested to verify that the absolute specific gravity or API gravity is within the range assumed in the diesel fuel oil consumptions calculations. The [7] day period is sufficient time to place the unit in a safe shutdown condition and to bring in replenishment fuel from an offsite location.</td>
</tr>
</tbody>
</table>

[The 31 day Frequency is adequate to ensure that a sufficient supply of fuel oil is available, since low level alarms are provided and unit operators would be aware of any large uses of fuel oil during this period.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER’S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.8.3.2

This Surveillance ensures that sufficient lubricating oil inventory is available to support at least [7] days of full load operation for each DG. The lube oil inventory equivalent to a [7] day supply is [500] gallons and is based on the DG manufacturer's consumption values for the run time of the DG. Implicit in this SR is the requirement to verify the capability to transfer the lube oil from its storage location to the DG, when the DG lube oil sump does not hold adequate inventory for [7] days of full load operation without the level reaching the manufacturer's recommended minimum level.
B 3.8.3

BASES

SURVEILLANCE REQUIREMENTS (continued)

[A 31 day Frequency is adequate to ensure that a sufficient lube oil supply
is onsite, since DG starts and run time are closely monitored by the plant
staff.

OR

The Surveillance Frequency is controlled under the Surveillance
Frequency Control Program.

--
Plants controlling Surveillance Frequencies under a Surveillance
Frequency Control Program should utilize the appropriate Frequency
description, given above, and the appropriate choice of Frequency in the
Surveillance Requirement.

--

SR 3.8.3.3

The tests listed below are a means of determining whether new fuel oil is
of the appropriate grade and has not been contaminated with substances
that would have an immediate detrimental impact on diesel engine
combustion. If results from these tests are within acceptable limits, the
fuel oil may be added to the storage tanks without concern for
contaminating the entire volume of fuel oil in the storage tanks. These
tests are to be conducted prior to adding the new fuel to the storage
tank(s), but in no case is the time between receipt of new fuel and
conducting the tests to exceed 31 days. The tests, limits, and applicable
ASTM Standards are as follows:

a. Sample the new fuel oil in accordance with ASTM D4057-[] (Ref. 6),

b. Verify in accordance with the tests specified in ASTM D975-[]
 (Ref. 6) that the sample has an absolute specific gravity at 60/60°F of
 ≥ 0.83 and ≤ 0.89 or an API gravity at 60°F of ≥ 27° and ≤ 39° when
tested in accordance with ASTM D1298-[] (Ref. 6), a kinematic
viscosity at 40°C of ≥ 1.9 centistokes and ≤ 4.1 centistokes, and a
flash point of ≥ 125°F, and

c. Verify that the new fuel oil has a clear and bright appearance with
 proper color when tested in accordance with ASTM D4176-[] or a
 water and sediment content within limits when tested in accordance
 with [ASTM D2709-[] (Ref. 6).
Failure to meet any of the above limits is cause for rejecting the new fuel oil, but does not represent a failure to meet the LCO concern since the fuel oil is not added to the storage tanks.

Within [31] days following the initial new fuel oil sample, the fuel oil is analyzed to establish that the other properties specified in Table 1 of ASTM D975-[] (Ref. 6) are met for new fuel oil when tested in accordance with ASTM D975-[] (Ref. 6), except that the analysis for sulfur may be performed in accordance with ASTM D1552-[], ASTM D2622-[], or ASTM D4294-[] (Ref. 6). The [31] day period is acceptable because the fuel oil properties of interest, even if they were not within stated limits, would not have an immediate effect on DG operation. This Surveillance ensures the availability of high quality fuel oil for the DGs.

Fuel oil degradation during long term storage shows up as an increase in particulate, mostly due to oxidation. The presence of particulate does not mean that the fuel oil will not burn properly in a diesel engine. The particulate can cause fouling of filters and fuel oil injection equipment, however, which can cause engine failure.

Particulate concentrations should be determined in accordance with ASTM D5452-[] (Ref. 6). This method involves a gravimetric determination of total particulate concentration in the fuel oil and has a limit of 10 mg/l. It is acceptable to obtain a field sample for subsequent laboratory testing in lieu of field testing. [For those designs in which the total volume of stored fuel oil is contained in two or more interconnected tanks, each tank must be considered and tested separately.]

The Frequency of this test takes into consideration fuel oil degradation trends that indicate that particulate concentration is unlikely to change significantly between Frequency intervals.

SR 3.8.3.4

This Surveillance ensures that, without the aid of the refill compressor, sufficient air start capacity for each DG is available. The system design requirements provide for a minimum of [five] engine start cycles without recharging. [A start cycle is defined by the DG vendor, but usually is measured in terms of time (seconds of cranking) or engine cranking speed.] The pressure specified in this SR is intended to reflect the lowest value at which the [five] starts can be accomplished.
The [31] day Frequency takes into account the capacity, capability, redundancy, and diversity of the AC sources and other indications available in the control room, including alarms, to alert the operator to below normal air start pressure.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.8.3.5

Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Periodic removal of water from the fuel storage tanks eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, contaminated fuel oil, and from breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. [The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 2). This SR is for preventive maintenance. The presence of water does not necessarily represent failure of this SR, provided the accumulated water is removed during performance of the Surveillance.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [9.5.2].
2. Regulatory Guide 1.137.
4. FSAR, Chapter [6].
5. FSAR, Chapter [15].
6. ASTM Standards: D4057-[]; D975-[]; D1298-[]; D4176-[]; D2709-[]; D1552-[]; D2622-[]; D4294-[]; D5452-[].
B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.4 DC Sources - Operating

BASES

BACKGROUND

The DC electrical power system provides the AC emergency power system with control power. It also provides both motive and control power to selected safety related equipment. Also, these DC subsystems provide DC electrical power to inverters, which in turn power the AC vital buses. As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the DC electrical power system is designed to have sufficient independence, redundancy, and testability to perform its safety functions, assuming a single failure. The DC electrical power system also conforms to the recommendations of Regulatory Guide 1.6 (Ref. 2) and IEEE-308 (Ref. 3).

The station service DC power sources provide both motive and control power to selected safety related equipment, as well as circuit breaker control power for the nonsafety related 4160 V, and all 600 V and lower, AC distribution systems. Each DC subsystem is energized by one 125/250 V station service battery and three 125 V battery chargers (two normally inservice chargers and one spare charger). Each battery is exclusively associated with a single 125/250 VDC bus. Each set of battery chargers exclusively associated with a 125/250 VDC subsystem cannot be interconnected with any other 125/250 VDC subsystem. The normal and backup chargers are supplied from the same AC load groups for which the associated DC subsystem supplies the control power. The loads between the redundant 125/250 VDC subsystem are not transferable except for the Automatic Depressurization System, the logic circuits and valves of which are normally fed from the Division 1 DC system.

The diesel generator (DG) DC power sources provide control and instrumentation power for their respective DG. In addition, DG 2A and 2C DC power sources provide circuit breaker control power for the loads on the 4160 V 2E, 2F, and 2G emergency buses. Each DG DC subsystem is energized by one 125 V battery and one 125 V battery charger. Provisions exist for connecting a portable alternate battery charger.

During normal operation, the DC loads are powered from the battery chargers with the batteries floating on the system. In case of loss of normal power to the battery charger, the DC loads are automatically powered from the station batteries.

The DC power distribution system is described in more detail in Bases for LCO 3.8.9, "Distribution System - Operating," and LCO 3.8.10, "Distribution System - Shutdown."
Each DC battery subsystem is separately housed in a ventilated room apart from its charger and distribution centers. Each subsystem is located in an area separated physically and electrically from the other subsystems to ensure that a single failure in one subsystem does not cause a failure in a redundant subsystem. [There is no sharing between redundant Class 1E subsystems such as batteries, battery chargers, or distribution panels.]

Each battery has adequate storage capacity to meet the duty cycle(s) discussed in the FSAR, Chapter [8] (Ref 4). The battery is designed with additional capacity above that required by the design duty cycle to allow for temperature variations and other factors.

The batteries for DC electrical power subsystems are sized to produce required capacity at 80% of nameplate rating, corresponding to warranted capacity at end of life cycles and the 100% design demand. The minimum design voltage limit is $[105/210]$ V.

The battery cells are of flooded lead acid construction with a nominal specific gravity of [1.215]. This specific gravity corresponds to an open circuit battery voltage of approximately 120 V for a [58] cell battery (i.e., cell voltage of [2.065] volts per cell (Vpc)). The open circuit voltage is the voltage maintained when there is no charging or discharging. Once fully charged with its open circuit voltage $\geq [2.065]$ Vpc, the battery cell will maintain its capacity for [30] days without further charging per manufacturer's instructions. Optimal long term performance however, is obtained by maintaining a float voltage [2.20 to 2.25] Vpc. This provides adequate over-potential, which limits the formation of lead sulfate and self discharge. The nominal float voltage of [2.22] Vpc corresponds to a total float voltage output of [128.8] V for a [58] cell battery as discussed in the FSAR, Chapter [8] (Ref. 4).

Each battery charger of DC electrical power subsystem has ample power output capacity for the steady state operation of connected loads required during normal operation, while at the same time maintaining its battery bank fully charged. Each station service battery charger has sufficient excess capacity to restore the battery from the design minimum charge to its fully charged state within [24] hours while supplying normal steady state loads (Ref. 4).

The battery charger is normally in the float-charge mode. Float-charge is the condition in which the charger is supplying the connected loads and the battery cells are receiving adequate current to optimally charge the battery. This assures the internal losses of a battery are overcome and the battery is maintained in a fully charged state.
When desired, the charger can be placed in the equalize mode. The equalize mode is at a higher voltage than the float mode and charging current is correspondingly higher. The battery charger is operated in the equalize mode after a battery discharge or for routine maintenance. Following a battery discharge, the battery recharge characteristic accepts current at the current limit of the battery charger (if the discharge was significant, e.g., following a battery service test) until the battery terminal voltage approaches the charger voltage setpoint. Charging current then reduces exponentially during the remainder of the recharge cycle. Lead-calcium batteries have recharge efficiencies of greater than 95%, so once at least 105% of the ampere-hours discharged have been returned, the battery capacity would be restored to the same condition as it was prior to the discharge. This can be monitored by direct observation of the exponentially decaying charging current or by evaluating the amp-hours discharged from the battery and amp-hours returned to the battery.

The initial conditions of Design Basis Accident (DBA) and transient safety analyses in the FSAR, Chapter [6] (Ref. 5) and Chapter [15] (Ref. 6), assume that Engineered Safety Feature (ESF) systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the DGs, emergency auxiliaries, and control and switching during all MODES of operation. The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining DC sources OPERABLE during accident conditions in the event of:

a. An assumed loss of all offsite AC power or all onsite AC power and
b. A worst case single failure.

The DC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
The DC electrical power sources are required to be OPERABLE in MODES 1, 2, and 3 to ensure safe unit operation and to ensure that:

a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and

b. Adequate core cooling is provided, and containment integrity and other vital functions are maintained in the event of a postulated DBA.

The DC electrical power requirements for MODES 4 and 5 are addressed in the Bases for LCO 3.8.5, "DC Sources - Shutdown."

Condition A represents one subsystem with one [or two] battery chargers inoperable (e.g., the voltage limit of SR 3.8.4.1 is not maintained). The ACTIONS provide a tiered response that focuses on returning the battery to the fully charged state and restoring a fully qualified charger to OPERABLE status in a reasonable time period. Required Action A.1 requires that the battery terminal voltage be restored to greater than or equal to the minimum established float voltage within 2 hours. This time provides for returning the inoperable charger to OPERABLE status or providing an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage provides good assurance that, within [12] hours, the battery will be restored to its fully charged condition (Required Action A.2) from any discharge that might have occurred due to the charger inoperability.

A plant that cannot meet the 12 hour Completion Time due to an inherent battery charging characteristic can propose an alternate time equal to 2 hours plus the time experienced to accomplish the exponential charging current portion of the battery charge profile following the service test (SR 3.8.4.3).

A discharged battery having terminal voltage of at least the minimum established float voltage indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within [12] hours, avoiding a premature shutdown with its own attendant risk.
If established battery terminal float voltage cannot be restored to greater than or equal to the minimum established float voltage within 2 hours, and the charger is not operating in the current-limiting mode, a faulty charger is indicated. A faulty charger that is incapable of maintaining established battery terminal float voltage does not provide assurance that it can revert to and operate properly in the current limit mode that is necessary during the recovery period following a battery discharge event that the DC system is designed for.

If the charger is operating in the current limit mode after 2 hours that is an indication that the battery is partially discharged and its capacity margins will be reduced. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within [12] hours (Required Action A.2).

Required Action A.2 requires that the battery float current be verified as less than or equal to [2] amps. This indicates that, if the battery had been discharged as the result of the inoperable battery charger, it is now fully capable of supplying the maximum expected load requirements. The [2] amp value is based on returning the battery to [95]% charge and assumes a [5]% design margin for the battery. If at the expiration of the initial [12] hour period the battery float current is not less than or equal to [2] amps this indicates there may be additional battery problems and the battery must be declared inoperative.

Any licensee wishing to adopt Completion Time greater than 72 hours for Required Action A.3 will need to demonstrate that the longer Completion Time is appropriate for the plant in accordance with the guidance in Regulatory Guide (RG) 1.177, "An Approach for Plant-Specific, Risk-Informed Decisionmaking: Technical Specifications," and RG 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis."
Alternatively, a 7 day Completion Time can be justified by an acceptable method, such as a regulatory commitment that an alternate means to charge the batteries will be available that is capable of being supplied power from a power source that is independent of the offsite power supply. Otherwise, the 72 hour Completion Time must be adopted.
BASES

ACTIONS (continued)

Required Action A.3 limits the restoration time for the inoperable battery charger to [72] hours [or in accordance with the Risk Informed Completion Time Program]. This action is applicable if an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage has been used (e.g., balance of plant non-Class 1E battery charger). The [72] hour Completion Time reflects a reasonable time to effect restoration of the qualified battery charger to OPERABLE status.

B.1

REVIEWER’S NOTES

1. The 2 hour Completion Times of Required Actions B.1 and C.1 are in brackets. Any licensee wishing to request a longer Completion Time will need to demonstrate that the longer Completion Time is appropriate for the plant in accordance with the guidance in RG 1.177 and 1.174.

2. Condition B is included if Required Action B.1 (one [or two] battery[ies on one subsystem] inoperable) and Required Action C.1 (one DC electrical power subsystem inoperable for reasons other than Condition A [or B]) would have different Completion Times. If the plant design supports different Completion Times when a battery is inoperable but the charger is OPERABLE, then Condition B is used. If not, Condition B is deleted and only Condition C is used.

Condition B represents one subsystem with one [or two] battery[ies] inoperable. With one [or two] battery[ies] inoperable, the DC bus is being supplied by the OPERABLE battery charger[s]. Any event that results in a loss of the AC bus supporting the battery charger[s] will also result in loss of DC to that subsystem. Recovery of the AC bus, especially if it is due to a loss of offsite power, will be hampered by the fact that many of the components necessary for the recovery (e.g., diesel generator control and field flash, AC load shed and diesel generator output circuit breakers, etc.) likely rely upon the battery[ies]. In addition the energization transients of any DC loads that are beyond the capability of the battery charger[s] and normally require the assistance of the battery[ies] will not be able to be brought online. The [2] hour limit allows sufficient time to effect restoration of an inoperable battery given that the majority of the conditions that lead to battery inoperability (e.g.,
BASES

ACTIONS (continued)

loss of battery charger, battery cell voltage less than [2.07] V, etc.) are identified in Specifications 3.8.4, 3.8.5, and 3.8.6 together with additional specific completion times. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

C.1

Condition C represents one subsystem with a loss of ability to completely respond to an event, and a potential loss of ability to remain energized during normal operation. It is therefore imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for complete loss of DC power to the affected subsystem. The 2 hour limit is consistent with the allowed time for an inoperable DC Distribution System subsystem. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

If one of the required DC electrical power subsystems is inoperable for reasons other than Condition A or B (e.g., inoperable battery charger and associated inoperable battery), the remaining DC electrical power subsystems have the capacity to support a safe shutdown and to mitigate an accident condition. Since a subsequent worst case single failure could, however, result in the loss of the minimum necessary DC electrical subsystems to mitigate a worst case accident, continued power operation should not exceed 2 hours. The 2 hour Completion Time is based on Regulatory Guide 1.93 (Ref. 7) and reflects a reasonable time to assess unit status as a function of the inoperable DC electrical power subsystem and, if the DC electrical power subsystem is not restored to OPERABLE status, to prepare to effect an orderly and safe unit shutdown.

D.1

---REVIEWER’S NOTE---

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If the inoperable station service DC electrical power subsystem cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the unit must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 8) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action D.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

E.1

If the DG DC electrical power subsystem cannot be restored to OPERABLE status in the associated Completion Time, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable. This declaration also requires entry into applicable Conditions and Required Actions for an inoperable DG, LCO 3.8.1, "AC Sources - Operating."
VERIFICATION OF BATTERY TERMINAL VOLTAGE:

1. **SR 3.8.4.1**

 Verifying battery terminal voltage while on float charge for the batteries helps to ensure the effectiveness of the battery chargers, which support the ability of the batteries to perform their intended function. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery and maintain the battery in a fully charged state while supplying the continuous steady state loads of the associated DC subsystem. On float charge, battery cells will receive adequate current to optimally charge the battery. The voltage requirements are based on the nominal design voltage of the battery and are consistent with the minimum float voltage established by the battery manufacturer ([2.20] V_{pc} times the number of connected cells or [127.6] V for a 58 cell battery at the battery terminals). This voltage maintains the battery plates in a condition that supports maintaining the grid life. The 7 day Frequency is consistent with manufacturer recommendations.

 OR

 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

 REVIEWER’S NOTE

 Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

2. **SR 3.8.4.2**

 SR 3.8.4.2

 This SR verifies the design capacity of the battery chargers. According to Regulatory Guide 1.32 (Ref. 9), the battery charger supply is recommended to be based on the largest combined demands of the various steady state loads and the charging capacity to restore the battery from the design minimum charge state to the fully charged state, irrespective of the status of the unit during these demand occurrences. The minimum required amperes and duration ensures that these requirements can be satisfied.

 This SR provides two options. One option requires that each battery charger be capable of supplying [400] amps at the minimum established float voltage for [8] hours. The ampere requirements are based on the output rating of the chargers. The voltage requirements are based on the charger voltage level after a response to a loss of AC power. The time
SURVEILLANCE REQUIREMENTS (continued)

period is sufficient for the charger temperature to have stabilized and to have been maintained for at least [2] hours.

The other option requires that each battery charger be capable of recharging the battery after a service test coincident with supplying the largest coincident demands of the various continuous steady state loads (irrespective of the status of the plant during which these demands occur). This level of loading may not normally be available following the battery service test and will need to be supplemented with additional loads. The duration for this test may be longer than the charger sizing criteria since the battery recharge is affected by float voltage, temperature, and the exponential decay in charging current. The battery is recharged when the measured charging current is ≤ [2] amps.

[The Frequency is acceptable, given the unit conditions required to perform the test and the other administrative controls existing to ensure adequate charger performance during these [18 month] intervals. In addition, this Frequency is intended to be consistent with expected fuel cycle lengths.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.8.4.3

A battery service test is a special test of the battery’s capability, as found, to satisfy the design requirements (battery duty cycle) of the DC electrical power system. The discharge rate and test length corresponds to the design duty cycle requirements as specified in Reference 4.

[The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.32 (Ref. 9) and Regulatory Guide 1.129 (Ref. 10), which state that the battery service test should be performed during refueling operations or at some other outage, with intervals between tests not to exceed [18 months].
OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

[]

This SR is modified by two Notes. Note 1 allows the performance of a modified performance discharge test in lieu of a service test.

The reason for Note 2 is that performing the Surveillance would remove a required DC electrical power subsystem from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment. Credit may be taken for unplanned events that satisfy this SR.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 17.
4. FSAR, Chapter [8].
REFERENCES (continued)

5. FSAR, Chapter [6].

6. FSAR, Chapter [15].

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.5 DC Sources - Shutdown

BASES

BACKGROUND
A description of the DC sources is provided in the Bases for LCO 3.8.4, "DC Sources - Operating."

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume that Engineered Safety Feature systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the diesel generators (DGs), emergency auxiliaries, and control and switching during all MODES of operation.

The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum DC electrical power sources during MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies ensures that:

a. The facility can be maintained in the shutdown or refueling condition for extended periods,

b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and

c. Adequate DC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident [involving handling recently irradiated fuel]. Due to radioactive decay, DC electrical power is only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days).

In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES 1, 2, and 3 have no specific analyses in MODES 4 and 5. Worst case bounding events are deemed not credible in MODES 4 and 5 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal
consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

The shutdown Technical Specification requirements are designed to ensure that the unit has the capability to mitigate the consequences of certain postulated accidents. Worst case DBAs which are analyzed for operating MODES are generally viewed not to be a significant concern during shutdown MODES due to the lower energies involved. The Technical Specifications therefore require a lesser complement of electrical equipment to be available during shutdown than is required during operating MODES. More recent work completed on the potential risks associated with shutdown, however, have found significant risk associated with certain shutdown evolutions. As a result, in addition to the requirements established in the Technical Specifications, the industry has adopted NUMARC 91-06, "Guidelines for Industry Actions to Assess Shutdown Management," as an Industry initiative to manage shutdown tasks and associated electrical support to maintain risk at an acceptable low level. This may require the availability of additional equipment beyond that required by the shutdown Technical Specifications.

The DC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The DC electrical power subsystems - with: 1) [each required] [the required] station service DC subsystem consisting of two 125 V batteries in series, two battery chargers, and the corresponding control equipment and interconnecting cabling; and 2) [each required] [the required] DG DC subsystem consisting of one battery bank, one battery charger, and the corresponding control equipment and interconnecting cabling - [are] [is] required to be OPERABLE to support [required] [one] DC distribution subsystem[s] [required OPERABLE by LCO 3.8.10, "Distribution Systems - Shutdown."] This requirement ensures the availability of sufficient DC electrical power sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel]).

APPLICABILITY

The DC electrical power sources required to be OPERABLE in MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies in the secondary containment provide assurance that:

a. Required features to provide core cooling are available,
APPLICABILITY (continued)

b. Required features needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)] are available,

c. Required features necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and

d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

The DC electrical power requirements for MODES 1, 2, and 3 are covered in LCO 3.8.4.

ACTIONS

LCO 3.0.3 is not applicable while in MODE 4 or 5. However, since irradiated fuel assembly movement can occur in MODE 1, 2, or 3, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, or 3 would require the unit to be shutdown unnecessarily.

A.1, A.2, and A.3

--

Condition A represents one subsystem with one [or two] battery chargers inoperable (e.g., the voltage limit of SR 3.8.4.1 is not maintained). The ACTIONS provide a tiered response that focuses on returning the battery to the fully charged state and restoring a fully qualified charger to OPERABLE status in a reasonable time period. Required Action A.1 requires that the battery terminal voltage be restored to greater than or equal to the minimum established float voltage within 2 hours. This time provides for returning the inoperable charger to OPERABLE status or providing an alternate means of restoring battery terminal voltage to
greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage provides good assurance that, within [12] hours, the battery will be restored to its fully charged condition (Required Action A.2) from any discharge that might have occurred due to the charger inoperability.

-------------------------REVIEWER'S NOTE----------------------------------
A plant that cannot meet the 12 hour Completion Time due to an inherent battery charging characteristic can propose an alternate time equal to 2 hours plus the time experienced to accomplish the exponential charging current portion of the battery charge profile following the service test (SR 3.8.4.3).

A discharged battery having terminal voltage of at least the minimum established float voltage indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within [12] hours, avoiding a premature shutdown with its own attendant risk.

If established battery terminal float voltage cannot be restored to greater than or equal to the minimum established float voltage within 2 hours, and the charger is not operating in the current-limiting mode, a faulty charger is indicated. A faulty charger that is incapable of maintaining established battery terminal float voltage does not provide assurance that it can revert to and operate properly in the current limit mode that is necessary during the recovery period following a battery discharge event that the DC system is designed for.

If the charger is operating in the current limit mode after 2 hours that is an indication that the battery is partially discharged and its capacity margins will be reduced. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within [12] hours (Required Action A.2).
Required Action A.2 requires that the battery float current be verified as less than or equal to [2] amps. This indicates that, if the battery had been discharged as the result of the inoperable battery charger, it has now been fully recharged. If at the expiration of the initial [12] hour period the battery float current is not less than or equal to [2] amps this indicates there may be additional battery problems and the battery must be declared inoperable.

Any licensee wishing to adopt a Completion Time greater than 72 hours for Required Action A.3 will need to demonstrate that the Completion Time is appropriate for the plant in accordance with the guidance in Regulatory Guide (RG) 1.177, "An Approach for Plant-Specific, Risk-Informed Decisionmaking: Technical Specifications." Otherwise, the 72 hour Completion Time must be adopted.

Required Action A.3 limits the restoration time for the inoperable battery charger to [72] hours. This action is applicable if an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage has been used (e.g., balance of plant non-Class 1E battery charger). The [72] hour Completion Time reflects a reasonable time to effect restoration of the qualified battery charger to OPERABLE status.

B.1, B.2.1, B.2.2, and B.2.3

[If more than one DC distribution subsystem is required according to LCO 3.8.10, the DC subsystems remaining OPERABLE with one or more DC power sources inoperable may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and [recently] irradiated fuel movement.] By allowance of the option to declare required features inoperable with associated DC power sources inoperable, appropriate restrictions are implemented in accordance with the affected system LCOs’ ACTIONS. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS and movement of [recently] irradiated fuel assemblies).
Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required DC electrical power subsystem[s] and to continue this action until restoration is accomplished in order to provide the necessary DC electrical power to the plant safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required DC electrical power subsystems should be completed as quickly as possible in order to minimize the time during which the plant safety systems may be without sufficient power.

SR 3.8.5.1 requires performance of all Surveillances required by SR 3.8.4.1 through SR 3.8.4.3. Therefore, see the corresponding Bases for LCO 3.8.4 for a discussion of each SR.

This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DC sources from being discharged below their capability to provide the required power supply or otherwise rendered inoperable during the performance of SRs. It is the intent that these SRs must still be capable of being met, but actual performance is not required.

REFERENCES

1. FSAR, Chapter [6].

2. FSAR, Chapter [15].
This LCO delineates the limits on battery float current as well as electrolyte temperature, level, and float voltage for the DC electrical power subsystems batteries. A discussion of these batteries and their OPERABILITY requirements is provided in the Bases for LCO 3.8.4, "DC Sources - Operating," and LCO 3.8.5, "DC Sources - Shutdown." In addition to the limitations of this Specification, the [licensee controlled program] also implements a program specified in Specification 5.5.1 for monitoring various battery parameters.

The battery cells are of flooded lead acid construction with a nominal specific gravity of [1.215]. This specific gravity corresponds to an open circuit battery voltage of approximately 120 V for [58] cell battery (i.e., cell voltage of [2.065] volts per cell (Vpc)). The open circuit voltage is the voltage maintained when there is no charging or discharging. Once fully charged with its open circuit voltage ≥ [2.065] Vpc, the battery cell will maintain its capacity for [30] days without further charging per manufacturer's instructions. Optimal long term performance however, is obtained by maintaining a float voltage [2.20 to 2.25] Vpc. This provides adequate over-potential which limits the formation of lead sulfate and self discharge. The nominal float voltage of [2.22] Vpc corresponds to a total float voltage output of [128.8] V for a [58] cell battery as discussed in the FSAR, Chapter [8] (Ref. 2).

The initial conditions of Design Basis Accident (DBA) and transient analyses in FSAR, Chapter [6] (Ref. 3) and Chapter [15] (Ref. 4), assume Engineered Safety Feature systems are OPERABLE. The DC electrical power subsystems provide normal and emergency DC electrical power for the diesel generators (DGs), emergency auxiliaries, and control and switching during all MODES of operation.

The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining at least one subsystem of DC sources OPERABLE during accident conditions, in the event of:

a. An assumed loss of all offsite AC or all onsite AC power and

b. A worst case single failure.

Since battery parameters support the operation of the DC electrical power subsystems, they satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
Battery parameters must remain within acceptable limits to ensure availability of the required DC power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. Battery parameter limits are conservatively established, allowing continued DC electrical system function even with limits not met. Additional preventative maintenance, testing, and monitoring performed in accordance with the [licensee controlled program] is conducted as specified in Specification 5.5.13.

The battery parameters are required solely for the support of the associated DC electrical power subsystem. Therefore, battery parameter limits are only required when the DC power source is required to be OPERABLE. Refer to the Applicability discussions in Bases for LCO 3.8.4 and LCO 3.8.5.

With one or more cells in one or more batteries in one subsystem < [2.07] V, the battery cell is degraded. Within 2 hours verification of the required battery charger OPERABILITY is made by monitoring the battery terminal voltage (SR 3.8.4.1) and of the overall battery state of charge by monitoring the battery float charge current (SR 3.8.6.1). This assures that there is still sufficient battery capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of one or more cells in one or more batteries < [2.07] V, and continued operation is permitted for a limited period up to 24 hours.

Since the Required Actions only specify "perform," a failure of SR 3.8.4.1 or SR 3.8.6.1 acceptance criteria does not result in this Required Action not met. However, if one of the SRs is failed the appropriate Condition(s), depending on the cause of the failures, is entered. If SR 3.8.6.1 is failed then there is not assurance that there is still sufficient battery capacity to perform the intended function and the battery must be declared inoperable immediately.

One or more batteries in one subsystem with float > [2] amps indicates that a partial discharge of the battery capacity has occurred. This may be due to a temporary loss of a battery charger or possibly due to one or more battery cells in a low voltage condition reflecting some loss of capacity. Within 2 hours verification of the required battery charger OPERABILITY is made by monitoring the battery terminal voltage. If the terminal voltage is found to be less than the minimum established float voltage there are two possibilities, the battery charger is inoperable or is
operating in the current limit mode. Condition A addresses charger inoperability. If the charger is operating in the current limit mode after 2 hours that is an indication that the battery has been substantially discharged and likely cannot perform its required design functions. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within [12] hours (Required Action B.2). The battery must therefore be declared inoperable.

If the float voltage is found to be satisfactory but there are one or more battery cells with float voltage less than [2.07] V, the associated "OR" statement in Condition F is applicable and the battery must be declared inoperable immediately. If float voltage is satisfactory and there are no cells less than [2.07] V there is good assurance that, within [12] hours, the battery will be restored to its fully charged condition (Required Action B.2) from any discharge that might have occurred due to a temporary loss of the battery charger.

-----------------------------------REVIEWER'S NOTE-----------------------------------

A plant that cannot meet the 12 hour Completion Time due to an inherent battery charging characteristic can propose an alternate time equal to 2 hours plus the time experienced to accomplish the exponential charging current portion of the battery charge profile following the service test (SR 3.8.4.3).

A discharged battery with float voltage (the charger setpoint) across its terminals indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within [12] hours, avoiding a premature shutdown with its own attendant risk.

If the condition is due to one or more cells in a low voltage condition but still greater than [2.07] V and float voltage is found to be satisfactory, this is not indication of a substantially discharged battery and [12] hours is a reasonable time prior to declaring the battery inoperable.
Since Required Action B.1 only specifies "perform," a failure of SR 3.8.4.1 acceptance criteria does not result in the Required Action not met. However, if SR 3.8.4.1 is failed, the appropriate Condition(s), depending on the cause of the failure, is entered.

C.1, C.2, and C.3

With one or more batteries in one subsystem with one or more cells electrolyte level above the top of the plates, but below the minimum established design limits, the battery still retains sufficient capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of electrolyte level not met. Within 31 days the minimum established design limits for electrolyte level must be re-established.

With electrolyte level below the top of the plates there is a potential for dryout and plate degradation. Required Actions C.1 and C.2 address this potential (as well as provisions in Specification 5.5.13, Battery Monitoring and Maintenance Program). They are modified by a Note that indicates they are only applicable if electrolyte level is below the top of the plates. Within 8 hours level is required to be restored to above the top of the plates. The Required Action C.2 requirement to verify that there is no leakage by visual inspection and the Specification 5.5.13.b item to initiate action to equalize and test in accordance with manufacturer's recommendation are taken from IEEE Standard 450. They are performed following the restoration of the electrolyte level to above the top of the plates. Based on the results of the manufacturer's recommended testing the battery[ies] may have to be declared inoperable and the affected cell[s] replaced.

D.1

With one or more batteries in one subsystem with pilot cell temperature less than the minimum established design limits, 12 hours is allowed to restore the temperature to within limits. A low electrolyte temperature limits the current and power available. Since the battery is sized with margin, while battery capacity is degraded, sufficient capacity exists to perform the intended function and the affected battery is not required to be considered inoperable solely as a result of the pilot cell temperature not met.
E.1

With one or more batteries in redundant subsystems with battery parameters not within limits there is not sufficient assurance that battery capacity has not been affected to the degree that the batteries can still perform their required function, given that redundant batteries are involved. With redundant batteries involved this potential could result in a total loss of function on multiple systems that rely upon the batteries. The longer Completion Times specified for battery parameters on non-redundant batteries not within limits are therefore not appropriate, and the parameters must be restored to within limits on at least one subsystem within 2 hours.

F.1

When any battery parameter is outside the allowances of the Required Actions for Condition A, B, C, D, or E, sufficient capacity to supply the maximum expected load requirement is not ensured and the corresponding battery must be declared inoperable. Additionally, discovering one or more batteries in one subsystem with one or more battery cells float voltage less than \[2.07\] V and float current greater than \[2\] amps indicates that the battery capacity may not be sufficient to perform the intended functions. The battery must therefore be declared inoperable immediately.

SR 3.8.6.1

Verifying battery float current while on float charge is used to determine the state of charge of the battery. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery and maintain the battery in a charged state. The float current requirements are based on the float current indicative of a charged battery. Use of float current to determine the state of charge of the battery is consistent with IEEE-450 (Ref. 1). [The 7 day Frequency is consistent with IEEE-450 (Ref. 1).]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

This SR is modified by a Note that states the float current requirement is not required to be met when battery terminal voltage is less than the minimum established float voltage of SR 3.8.4.1. When this float voltage is not maintained the Required Actions of LCO 3.8.4 ACTION A are being taken, which provide the necessary and appropriate verifications of the battery condition. Furthermore, the float current limit of [2] amps is established based on the nominal float voltage value and is not directly applicable when this voltage is not maintained.

SR 3.8.6.2 and SR 3.8.6.5

Optimal long term battery performance is obtained by maintaining a float voltage greater than or equal to the minimum established design limits provided by the battery manufacturer, which corresponds to [130.5] V at the battery terminals, or [2.25] Vpc. This provides adequate overpotential, which limits the formation of lead sulfate and self discharge, which could eventually render the battery inoperable. Float voltages in this range or less, but greater than [2.07] Vpc, are addressed in Specification 5.5.13. SRs 3.8.6.2 and 3.8.6.5 require verification that the cell float voltages are equal to or greater than the short term absolute minimum voltage of [2.07] V. [The Frequency for cell voltage verification every 31 days for pilot cell and 92 days for each connected cell is consistent with IEEE-450 (Ref. 1).

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.6.3

The limit specified for electrolyte level ensures that the plates suffer no physical damage and maintains adequate electron transfer capability. [The Frequency is consistent with IEEE-450 (Ref. 1).]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.8.6.4

This Surveillance verifies that the pilot cell temperature is greater than or equal to the minimum established design limit (i.e., [40]°F). Pilot cell electrolyte temperature is maintained above this temperature to assure the battery can provided the required current and voltage to meet the design requirements. Temperatures lower than assumed in battery sizing calculations act to inhibit or reduce battery capacity. [The Frequency is consistent with IEEE-450 (Ref. 1).]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.6.6

A battery performance discharge test is a test of constant current capacity of a battery, normally done in the as found condition, after having been in service, to detect any change in the capacity determined by the acceptance test. The test is intended to determine overall battery degradation due to age and usage.

Either the battery performance discharge test or the modified performance discharge test is acceptable for satisfying SR 3.8.6.6; however, only the modified performance discharge test may be used to satisfy the battery service test requirements of SR 3.8.4.3.

A modified discharge test is a test of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle). This will often confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. Initial conditions for the modified performance discharge test should be identical to those specified for a service test.

It may consist of just two rates; for instance, the one minute rate for the battery or the largest current load of the duty cycle, followed by the test rate employed for the performance test, both of which envelope the duty cycle of the service test. Since the ampere-hours removed by a one minute discharge represents a very small portion of the battery capacity, the test rate can be changed to that for the performance test without compromising the results of the performance discharge test. The battery terminal voltage for the modified performance discharge test must remain above the minimum battery terminal voltage specified in the battery service test for the duration of time equal to that of the service test.

The acceptance criteria for this Surveillance are consistent with IEEE-450 (Ref. 1) and IEEE-485 (Ref. 5). These references recommend that the battery be replaced if its capacity is below 80% of the manufacturer's rating. A capacity of 80% shows that the battery rate of deterioration is increasing, even if there is ample capacity to meet the load requirements. Furthermore, the battery is sized to meet the assumed duty cycle loads when the battery design capacity reaches this [80]% limit.

[The Frequency for this test is normally 60 months.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.]
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

If the battery shows degradation, or if the battery has reached 85% of its expected life and capacity is < 100% of the manufacturer's rating, the Surveillance Frequency is reduced to 12 months. However, if the battery shows no degradation but has reached 85% of its expected life, the Surveillance Frequency is only reduced to 24 months for batteries that retain capacity ≥ 100% of the manufacturer's rating. Degradation is indicated, according to IEEE-450 (Ref. 3), when the battery capacity drops by more than 10% relative to its capacity on the previous performance test or when it is 10% below the manufacturer's rating. All these Frequencies are consistent with the recommendations in IEEE-450 (Ref. 1).

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required DC electrical power subsystem from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment. Credit may be taken for unplanned events that satisfy this Surveillance.

REFERENCES
1. IEEE 450.
2. FSAR, Chapter [8].
3. FSAR, Chapter [6].
REFERENCES (continued)

4. FSAR, Chapter [15].

BASES

BACKGROUND

The inverters are the preferred source of power for the AC vital buses because of the stability and reliability they achieve. There is one inverter per AC vital bus, making a total of four inverters. The function of the inverter is to provide AC electrical power to the vital buses. The inverter can be powered from an internal AC source/rectifier or from the station battery. The station battery provides an uninterruptible power source for the instrumentation and controls for the Reactor Protection System (RPS) and the Emergency Core Cooling Systems (ECCS) initiation.

Specific details on inverters and their operating characteristics are found in FSAR, Chapter [8] (Ref. 1).

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 2) and Chapter [15] (Ref. 3), assume Engineered Safety Feature systems are OPERABLE. The inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the RPS and ECCS instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and is based on meeting the design basis of the unit. This includes maintaining electrical power sources OPERABLE during accident conditions in the event of:

a. An assumed loss of all offsite AC electrical power or all onsite AC electrical power and

b. A worst case single failure.

The inverters are a part of the distribution system and, as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The inverters ensure the availability of AC electrical power for the instrumentation for the systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA.
Maintaining the required inverters OPERABLE ensures that the redundancy incorporated into the design of the RPS and ECCS instrumentation and controls is maintained. The four battery powered inverters ensure an uninterruptible supply of AC electrical power to the AC vital buses even if the 4.16 kV safety buses are de-energized.

OPERABLE inverters require the associated vital bus to be powered by the inverter with output voltage and frequency within tolerances, and power input to the inverter from a 125 VDC station battery. Alternatively, power supply may be from an internal AC source via rectifier as long as the station battery is available as the uninterruptible power supply.

This LCO is modified by a Note allowing [two] inverter[s] to be disconnected from their associated DC buses for ≤ 24 hours. This allowance is provided to perform an equalizing charge on one battery. If the inverters were not disconnected, the resulting voltage condition might damage the inverters energized from their associated DC bus. Disconnecting the inverters is allowed provided that the associated AC vital buses are energized from their Class 1E constant voltage source transformer or inverter using an internal AC source and that the AC vital buses for the other division(s) are energized from the associated inverters connected to their DC buses. These provisions minimize the loss of equipment that occurs in the event of a loss of offsite power. The 24 hour time period for the allowance minimizes the time during which a loss of offsite power could result in the loss of equipment energized from the affected AC vital bus while it takes into consideration the time required to perform an equalizing charge on the batteries.

The intent of the Note is to limit the number of inverters that may be disconnected. Only those inverters associated with the single battery undergoing an equalizing charge may be disconnected. All other inverters must be aligned to their associated batteries, regardless of the number of inverters or plant design.

APPLICABILITY

The inverters are required to be OPERABLE in MODES 1, 2, and 3 to ensure that:

a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and

b. Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.
Bases

Applicability (continued)

Inverter requirement for MODES 4 and 5 are covered in the Bases for LCO 3.8.8, "Inverters - Shutdown."

Actions

A.1

With a required inverter inoperable, its associated AC vital bus becomes inoperable until it is manually re-energized from its [Class 1E constant voltage source transformer or inverter using an internal AC source]. LCO 3.8.9 addresses this action; however, pursuant to LCO 3.0.6, these actions would not be entered even if the AC vital bus were de-energized. Therefore, the ACTIONS are modified by a Note to require the ACTIONS for LCO 3.8.9 be entered immediately. This ensures the vital bus is re-energized within 2 hours.

Required Action A.1 allows 24 hours to fix the inoperable inverter and return it to service. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.] The 24 hour limit is based upon engineering judgment and takes into consideration the time required to repair an inverter and the additional risk to which the unit is exposed because of the inverter inoperability. This risk has to be balanced against the risk of an immediate shutdown, along with the potential challenges to safety systems that such a shutdown might entail. When the AC vital bus is powered from its constant voltage source, it is relying upon interruptible AC electrical power sources (offsite and onsite). Similarly, the uninterruptible inverter source to the AC vital buses is the preferred source for powering instrumentation trip setpoint devices.

B.1

-----------------------------------REVIEWER’S NOTE-----------------------------------

Adoption of a MODE 3 end state requires the licensee to make the following commitments:

--
Bases

Actions (continued)

If the inoperable devices or components cannot be restored to OPERABLE status within the associated Completion Time, the unit must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.

Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 4) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action B.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging unit systems.

Surveillance

Requirements

SR 3.8.7.1

This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for instrumentation connected to the AC vital buses. [The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
BASES

SURVEILLANCE REQUIREMENTS (continued)

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Chapter [8].
2. FSAR, Chapter [6].
3. FSAR, Chapter [15].
B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.8 Inverters - Shutdown

BASES

BACKGROUND
A description of the inverters is provided in the Bases for LCO 3.8.7, "Inverters - Operating."

APPLICABLE SAFETY ANALYSES
The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC to AC inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the Reactor Protection System and Emergency Core Cooling Systems instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.

The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum inverters to each AC vital bus during MODES 4 and 5 ensures that:

a. The facility can be maintained in the shutdown or refueling condition for extended periods,

b. Sufficient instrumentation and control capability are available for monitoring and maintaining the unit status, and

c. Adequate power is available to mitigate events postulated during shutdown, such as a fuel handling accident involving handling recently irradiated fuel. Due to radioactive decay, the AC and DC inverters are only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days).

In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis
Inverters - Shutdown
B 3.8.8

APPLICABLE SAFETY ANALYSES (continued)

Accidents (DBAs) that are analyzed in MODES 1, 2, and 3 have no specific analyses in MODES 4 and 5. Worst case bounding events are deemed not credible in MODES 4 and 5 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

The shutdown Technical Specification requirements are designed to ensure that the unit has the capability to mitigate the consequences of certain postulated accidents. Worst case DBA which are analyzed for operating MODES are generally viewed not to be a significant concern during shutdown MODES due to the lower energies involved. The Technical Specifications therefore require a lesser complement of electrical equipment to be available during shutdown than is required during operating MODES. More recent work completed on the potential risks associated with shutdown, however, have found significant risk associated with certain shutdown evolutions. As a result, in addition to the requirements established in the Technical Specifications, the industry has adopted NUMARC 91-06, "Guidelines for Industry Actions to Assess Shutdown Management," as an Industry initiative to manage shutdown tasks and associated electrical support to maintain risk at an acceptable low level. This may require the availability of additional equipment beyond that required by the shutdown Technical Specifications.

The inverters were previously identified as part of the Distribution System and, as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The inverter[s] ensure the availability of electrical power for the instrumentation for systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or postulated DBA. The battery powered inverter[s] provide[s] uninterruptible supply of AC electrical power to the AC vital bus[es] even if the 4.16 kV safety buses are de-energized. OPERABLE inverter[s] require the AC vital bus be powered by the inverter through inverted DC voltage. This ensures the availability of sufficient inverter power sources to operate the plant in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel]).
Inverters - Shutdown

B 3.8.8

BASES

APPLICABILITY

The inverter[s] required to be OPERABLE in MODES 4 and 5 and also any time during movement of [recently] irradiated fuel assemblies in the [primary or secondary] containment provide assurance that:

a. Systems that provide core cooling are available,

b. Systems needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)] are available,

c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and

d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

Inverter requirements for MODES 1, 2, and 3 are covered in LCO 3.8.7.

ACTIONS

LCO 3.0.3 is not applicable while in MODE 4 or 5. However, since irradiated fuel assembly movement can occur in MODE 1, 2, or 3, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, or 3 would require the unit to be shutdown unnecessarily.

A.1, A.2.1, A.2.2, and A.2.3

[If two divisions are required by LCO 3.8.10, "Distribution Systems - Shutdown," the remaining OPERABLE inverters may be capable of supporting sufficient required feature(s) to allow continuation of CORE ALTERATIONS and [recently] irradiated fuel movement.] By the allowance of the option to declare required feature(s) inoperable with the associated inverter(s) inoperable, appropriate restrictions are implemented in accordance with the affected required feature(s) of the LCOs' ACTIONS. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS and movement of [recently] irradiated fuel assemblies in the [primary or secondary] containment).
Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required inverter[s] and to continue this action until restoration is accomplished in order to provide the necessary inverter power to the plant safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required inverters should be completed as quickly as possible in order to minimize the time the plant safety systems may be without power or powered from a constant voltage source transformer.

This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the instrumentation connected to the AC vital buses. [The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-------------------REVIEWER’S NOTE-------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-------------------REFERENCES-------------------
1. FSAR, Chapter [6].
2. FSAR, Chapter [15].
B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.9 Distribution Systems - Operating

BASES

BACKGROUND

The onsite Class 1E AC and DC electrical power distribution system is divided into redundant and independent AC, DC, and AC vital bus electrical power distribution subsystems.

The primary AC electrical power distribution subsystem for each division consists of a 4.16 kV Engineered Safety Feature (ESF) bus having an offsite source of power as well as a dedicated onsite diesel generator (DG) source. Each 4.16 kV ESF bus is normally connected to a normal source startup auxiliary transformer (SAT) (2D). During a loss of the normal offsite power source to the 4.16 kV ESF buses, the alternate supply breaker from SAT 2C attempts to close. If all offsite sources are unavailable, the onsite emergency DGs supply power to the 4.16 kV ESF buses.

The secondary plant distribution subsystem includes 600 VAC emergency buses 2C and 2D and associated load centers, motor control centers, distribution panels, and transformers.

The 120 VAC vital buses 2YV1, 2YV2, 2YV3, and 2YV4 are arranged in four load groups and are normally powered from DC. The alternate power supply for the vital buses is a Class 1E constant voltage source transformer powered from the same division as the associated inverter, and its use is governed by LCO 3.8.7, "Inverters - Operating." Each constant voltage source transformer is powered from AC.

There are two independent 125/250 VDC station service electrical power distribution subsystems and three independent 125 VDC DG electrical power distribution subsystems that support the necessary power for ESF functions. Each subsystem consists of a 125V and a 250V bus and associated distribution panels.

The list of all distribution subsystem buses, load centers, motor control centers, and distribution panels is presented in Table B 3.8.9-1.

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume ESF systems are OPERABLE. The AC and DC electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6 Containment Systems.
The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining distribution systems OPERABLE during accident conditions in the event of:

a. An assumed loss of all offsite power or all onsite AC electrical power and

b. A worst case single failure.

The AC and DC electrical power distribution system satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

The required electrical power distribution subsystems listed in Table B 3.8.9-1 ensure the availability of AC, DC, and AC vital bus electrical power for the systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. The AC, DC, and AC vital bus electrical power distribution subsystems are required to be OPERABLE.

Maintaining the [Division 1 and 2] AC, DC, and AC vital bus electrical power distribution subsystems OPERABLE ensures that the redundancy incorporated into the design of ESF is not defeated. Therefore, a single failure within any system or within the electrical power distribution subsystems will not prevent safe shutdown of the reactor.

The AC electrical power distribution subsystems require the associated buses and electrical circuits, including any load centers, motor control centers, and distribution panels, to be energized to their proper voltages. OPERABLE DC electrical power distribution subsystems require the associated buses and distribution panels to be energized to their proper voltage from either the associated battery or charger. OPERABLE vital bus electrical power distribution subsystems require the associated buses to be energized to their proper voltage from the associated [inverter via inverted DC voltage, inverter using interval AC source, or Class 1E constant voltage transformer].

In addition, tie breakers between redundant safety related AC, DC, and AC vital bus power distribution subsystems, if they exist, must be open. This prevents any electrical malfunction in any power distribution subsystem from propagating to the redundant subsystem, which could cause the failure of a redundant subsystem and a loss of essential safety function(s). If any tie breakers are closed, the affected redundant electrical power distribution subsystems are considered inoperable. This
BASES

LCO (continued)

| Applies to the onsite, safety related, redundant electrical power distribution subsystems. It does not, however, preclude redundant Class IE 4.16 kV ESF buses from being powered from the same offsite circuit. |

APPLICABILITY

The electrical power distribution subsystems are required to be OPERABLE in MODES 1, 2, and 3 to ensure that:

- a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and
- b. Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

Electrical power distribution subsystem requirements for MODES 4 and 5 are covered in the Bases for LCO 3.8.10, "Distribution Systems - Shutdown."

ACTIONS

A.1

With one or more Division 1 and 2 required AC buses, load centers, motor control centers, or distribution panels (except AC vital buses), in one division inoperable and a loss of function has not occurred, the remaining AC electrical power distribution subsystems are capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining power distribution subsystems could result in the minimum required ESF functions not being supported. Therefore, the required AC buses, load centers, motor control centers, and distribution panels must be restored to OPERABLE status within 8 hours. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]

The Condition A worst scenario is one division without AC power (i.e., no offsite power to the division and the associated DG inoperable). In this Condition, the unit is more vulnerable to a complete loss of AC power. It is, therefore, imperative that the unit operators' attention be focused on minimizing the potential for loss of power to the remaining division by stabilizing the unit, and on restoring power to the affected division. The 8 hour time limit before requiring a unit shutdown in this Condition is acceptable because:
BASES

ACTIONS (continued)

a. There is a potential for decreased safety if the unit operators' attention is diverted from the evaluations and actions necessary to restore power to the affected division to the actions associated with taking the unit to shutdown within this time limit.

b. The potential for an event in conjunction with a single failure of a redundant component in the division with AC power. (The redundant component is verified OPERABLE in accordance with Specification 5.5.11, "Safety Function Determination Program (SFDP).")

Required Action A.1 is modified by a Note that requires the applicable Conditions and Required Actions of LCO 3.8.4, "DC Sources - Operating," to be entered for DC divisions made inoperable by inoperable power distribution subsystems. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components. Inoperability of a distribution system can result in loss of charging power to batteries and eventual loss of DC power. This Note ensures that the appropriate attention is given to restoring charging power to batteries, if necessary, after loss of distribution systems.

[B.1]

With one or more AC vital buses inoperable, and a loss of function has not yet occurred, the remaining OPERABLE AC vital buses are capable of supporting the minimum safety functions necessary to shut down the unit and maintain it in the safe shutdown condition. Overall reliability is reduced, however, since an additional single failure could result in the minimum required ESF functions not being supported. Therefore, the required AC vital bus must be restored to OPERABLE status within 2 hours [or in accordance with the Risk Informed Completion Time Program] by powering the bus from the associated [inverter via inverted DC, inverter using internal AC source, or Class 1E constant voltage transformer].

Condition B represents one or more AC vital buses without power; potentially both the DC source and the associated AC source are nonfunctioning. In this situation the plant is significantly more vulnerable to a complete loss of all noninterruptible power. It is, therefore, imperative that the operator's attention focus on stabilizing the plant, minimizing the potential for loss of power to the remaining vital buses, and restoring power to the affected AC vital buses.
BASES

ACTIONS (continued)

This 2 hour limit is more conservative than Completion Times allow for the majority of components that are without adequate vital AC power. Taking exception to LCO 3.0.2 for components without adequate vital AC power, that would have Required Action Completion Times shorter than 2 hours if declared inoperable, is acceptable because of:

a. The potential for decreased safety when requiring a change in plant conditions (i.e., requiring a shutdown) while not allowing stable operations to continue,

b. The potential for decreased safety when requiring entry into numerous applicable Conditions and Required Actions for components without adequate vital AC power, while not providing sufficient time for the operators to perform the necessary evaluations and actions to restore power to the affected division, and

c. The potential for an event in conjunction with a single failure of a redundant component.

The 2 hour Completion Time takes into account the importance to safety of restoring the AC vital bus to OPERABLE status, the redundant capability afforded by the other OPERABLE vital buses, and the low probability of a DBA occurring during this period.

C.1

With one or more station service DC bus or distribution panel inoperable, and a loss of function has not yet occurred, the remaining DC electrical power distribution subsystem is capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining DC electrical power distribution subsystem could result in the minimum required ESF functions not being supported. Therefore, the required DC buses and distribution panels must be restored to OPERABLE status within 2 hours [or in accordance with the Risk Informed Completion Time Program] by powering the bus from the associated battery or charger.

Condition C represents one or more DC buses or distribution panels without adequate DC power, potentially with both the battery significantly degraded and the associated charger nonfunctioning. In this situation the plant is significantly more vulnerable to a complete loss of all DC power. It is, therefore, imperative that the operator's attention focus on stabilizing the plant, minimizing the potential for loss of power to the remaining divisions, and restoring power to the affected division.
This 2 hour limit is more conservative than Completion Times allowed for the majority of components that would be without power. Taking exception to LCO 3.0.2 for components without adequate DC power, which would have Required Action Completion Times shorter than 2 hours, is acceptable because of:

a. The potential for decreased safety when requiring a change in plant conditions (i.e., requiring a shutdown) while not allowing stable operations to continue,

b. The potential for decreased safety when requiring entry into numerous applicable Conditions and Required Actions for components without DC power, while not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected division,

c. The potential for an event in conjunction with a single failure of a redundant component.

The 2 hour Completion Time for DC buses is consistent with Regulatory Guide 1.93 (Ref. 3).

D.1
-------------------REVIEWER’S NOTE-------------------
Adoption of a MODE 3 end state requires the licensee to make the following commitments:

If the inoperable distribution subsystem cannot be restored to OPERABLE status within the associated Completion Time, the unit must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours.
Remaining in the Applicability of the LCO is acceptable because the plant risk in MODE 3 is similar to or lower than the risk in MODE 4 (Ref. 4) and because the time spent in MODE 3 to perform the necessary repairs to restore the system to OPERABLE status will be short. However, voluntary entry into MODE 4 may be made as it is also an acceptable low-risk state.

Required Action D.1 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 3. This Note prohibits the use of LCO 3.0.4.a to enter MODE 3 during startup with the LCO not met. However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 3, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

[E.1]

With one or more DG DC buses inoperable, the associated DG(s) may be incapable of performing their intended functions. In this situation the DG(s) must be immediately declared inoperable. This action also requires entry into applicable Conditions and Required Actions of LCO 3.8.1, "AC Sources - Operating."

[F.1]

Condition F corresponds to a level of degradation in the electrical distribution system that causes a required safety function to be lost. When more than one AC or DC electrical power distribution subsystem is lost, and this results in the loss of a required function, the plant is in a condition outside the accident analysis. Therefore, no additional time is justified for continued operation. LCO 3.0.3 must be entered immediately to commence a controlled shutdown.
This Surveillance verifies that the AC and DC, electrical power distribution systems are functioning properly, with the correct circuit breaker alignment. The correct breaker alignment ensures the appropriate separation and independence of the electrical buses are maintained, and the appropriate voltage is available to each required bus. The verification of proper voltage availability on the buses ensures that the required voltage is readily available for motive as well as control functions for critical system loads connected to these buses. [The 7 day Frequency takes into account the redundant capability of the AC, DC, and AC vital bus electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Chapter [6].

2. FSAR, Chapter [15].

Table B 3.8.9-1 (page 1 of 1)

AC and DC Electrical Power Distribution Systems

<table>
<thead>
<tr>
<th>TYPE</th>
<th>VOLTAGE</th>
<th>[DIVISION 1]*</th>
<th>[DIVISION 2]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC safety buses</td>
<td>[4160 V]</td>
<td>[ESF Bus] [NB01]</td>
<td>[ESF Bus] [NB02]</td>
</tr>
<tr>
<td></td>
<td>[480 V]</td>
<td>Load Centers [NG01, NG03]</td>
<td>Load Centers [NG02, NG04]</td>
</tr>
<tr>
<td></td>
<td>[480 V]</td>
<td>Motor Control Centers [NG01A, NG01I, NG01B, NG03C, NG03I, NG03D]</td>
<td>Motor Control Centers [NG02A, NG02I, NG02B, NG04C, NG04I, NG04D]</td>
</tr>
<tr>
<td></td>
<td>[120 V]</td>
<td>Distribution Panels [NP01, NP03]</td>
<td>Distribution Panels [NP02, NP04]</td>
</tr>
<tr>
<td>DC buses</td>
<td>[125 V]</td>
<td>Bus [NK01]</td>
<td>Bus [NK02]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus [NK03]</td>
<td>Bus [NK04]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distribution Panels [NK41, NK43, NK51]</td>
<td>Distribution Panels [NK42, NK44, NK52]</td>
</tr>
<tr>
<td>AC vital buses</td>
<td>[120 V]</td>
<td>Bus [NN01]</td>
<td>Bus [NN02]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus [NN03]</td>
<td>Bus [NN04]</td>
</tr>
</tbody>
</table>

* Each train of the AC and DC electrical power distribution systems is a subsystem.
B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.10 Distribution Systems - Shutdown

BASES

BACKGROUND
A description of the AC, DC, and AC vital bus electrical power distribution system is provided in the Bases for LCO 3.8.9, "Distribution Systems - Operating."

APPLICABLE SAFETY ANALYSES
The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature (ESF) systems are OPERABLE. The AC, DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.

The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution system is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum AC, DC, and AC vital bus electrical power sources and associated power distribution subsystems during MODES 4 and 5, and during movement of [recently] irradiated fuel assemblies in the secondary containment ensures that:

a. The facility can be maintained in the shutdown or refueling condition for extended periods,

b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status, and

c. Adequate power is provided to mitigate events postulated during shutdown, such as a fuel handling accident [involving handling recently irradiated fuel]. Due to radioactive decay, AC and DC electrical power is only required to mitigate fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days).

The AC and DC electrical power distribution systems satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
Various combinations of subsystems, equipment, and components are required OPERABLE by other LCOs, depending on the specific plant condition. Implicit in those requirements is the required OPERABILITY of necessary support required features. This LCO explicitly requires energization of the portions of the electrical distribution system necessary to support OPERABILITY of Technical Specifications required systems, equipment, and components - both specifically addressed by their own LCO, and implicitly required by the definition of OPERABILITY.

Maintaining these portions of the distribution system energized ensures the availability of sufficient power to operate the plant in a safe manner to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents [involving handling recently irradiated fuel]).

The AC and DC electrical power distribution subsystems required to be OPERABLE in MODES 4 and 5 and during movement of [recently] irradiated fuel assemblies in the [secondary] containment provide assurance that:

a. Systems that provide core cooling are available,

b. Systems needed to mitigate a fuel handling accident [involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [X] days)] are available,

c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available, and

d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

The AC, DC, and AC vital bus electrical power distribution subsystem requirements for MODES 1, 2, and 3 are covered in LCO 3.8.9.

LCO 3.0.3 is not applicable while in MODE 4 or 5. However, since irradiated fuel assembly movement can occur in MODE 1, 2, or 3, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, or 3 would require the unit to be shutdown unnecessarily.
A.1, A.2.1, A.2.2, A.2.3, and A.2.4

Although redundant required features may require redundant divisions of electrical power distribution subsystems to be OPERABLE, one OPERABLE distribution subsystem division may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and [recently] irradiated fuel movement. By allowing the option to declare required features associated with an inoperable distribution subsystem inoperable, appropriate restrictions are implemented in accordance with the affected distribution subsystem LCO's Required Actions. In many instances this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made, (i.e., to suspend CORE ALTERATIONS and movement of [recently] irradiated fuel assemblies in the [secondary] containment).

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC and DC electrical power distribution subsystems and to continue this action until restoration is accomplished in order to provide the necessary power to the plant safety systems.

Notwithstanding performance of the above conservative Required Actions, a required residual heat removal-shutdown cooling (RHR-SDC) subsystem may be inoperable. In this case, Required Actions A.2.1 through A.2.4 do not adequately address the concerns relating to coolant circulation and heat removal. Pursuant to LCO 3.0.6, the RHR-SDC ACTIONS would not be entered. Therefore, Required Action A.2.5 is provided to direct declaring RHR-SDC inoperable, which results in taking the appropriate RHR-SDC ACTIONS.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required distribution subsystems should be completed as quickly as possible in order to minimize the time the plant safety systems may be without power.
This Surveillance verifies that the AC, DC, and AC vital bus electrical power distribution subsystem is functioning properly, with the buses energized. The verification of proper voltage availability on the buses ensures that the required power is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the redundant capability of the electrical power distribution subsystems, as well as other indications available in the control room that alert the operator to subsystem malfunctions.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
B 3.9 REFUELING OPERATIONS

B 3.9.1 Refueling Equipment Interlocks

BASES

BACKGROUND

Refueling equipment interlocks restrict the operation of the refueling equipment or the withdrawal of control rods to reinforce unit procedures that prevent the reactor from achieving criticality during refueling. The refueling interlock circuitry senses the conditions of the refueling equipment and the control rods. Depending on the sensed conditions, interlocks are actuated to prevent the operation of the refueling equipment or the withdrawal of control rods.

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The control rods, when fully inserted, serve as the system capable of maintaining the reactor subcritical in cold conditions during all fuel movement activities and accidents.

One channel of instrumentation is provided to sense the position of the refueling platform, the loading of the refueling platform fuel grapple, and the full insertion of all control rods. Additionally, inputs are provided for the loading of the refueling platform frame mounted hoist, the loading of the refueling platform monorail mounted hoist, the full retraction of the fuel grapple, and the loading of the service platform hoist. With the reactor mode switch in the shutdown or refueling position, the indicated conditions are combined in logic circuits to determine if all restrictions on refueling equipment operations and control rod insertion are satisfied.

A control rod not at its full-in position interrupts power to the refueling equipment and prevents operating the equipment over the reactor core when loaded with a fuel assembly. Conversely, the refueling equipment located over the core and loaded with fuel inserts a control rod withdrawal block in the Control Rod Drive System to prevent withdrawing a control rod.

The refueling platform has two mechanical switches that open before the platform or any of its hoists are physically located over the reactor vessel. All refueling hoists have switches that open when the hoists are loaded with fuel.
The refueling interlocks use these indications to prevent operation of the refueling equipment with fuel loaded over the core whenever any control rod is withdrawn, or to prevent control rod withdrawal whenever fuel loaded refueling equipment is over the core (Ref. 2).

The hoist switches open at a load lighter than the weight of a single fuel assembly in water.

The refueling interlocks are explicitly assumed in the FSAR analyses for the control rod removal error during refueling (Ref. 3) and the fuel assembly insertion error during refueling (Ref. 4). These analyses evaluate the consequences of control rod withdrawal during refueling and also fuel assembly insertion with a control rod withdrawn. A prompt reactivity excursion during refueling could potentially result in fuel failure with subsequent release of radioactive material to the environment.

Criticality and, therefore, subsequent prompt reactivity excursions are prevented during the insertion of fuel, provided all control rods are fully inserted during the fuel insertion. The refueling interlocks accomplish this by preventing loading of fuel into the core with any control rod withdrawn or by preventing withdrawal of a rod from the core during fuel loading.

The refueling platform location switches activate at a point outside of the reactor core such that, considering switch hysteresis and maximum platform momentum toward the core at the time of power loss with a fuel assembly loaded and a control rod withdrawn, the fuel is not over the core.

Refueling equipment interlocks satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

To prevent criticality during refueling, the refueling interlocks ensure that fuel assemblies are not loaded with any control rod withdrawn.

To prevent these conditions from developing, the all-rods-in, the refueling platform position, the refueling platform fuel grapple fuel loaded, the refueling platform trolley frame mounted hoist fuel loaded, the refueling platform monorail mounted hoist fuel loaded, the refueling platform fuel grapple fully retracted position, and the service platform hoist fuel loaded inputs are required to be OPERABLE. These inputs are combined in logic circuits, which provide refueling equipment or control rod blocks to prevent operations that could result in criticality during refueling operations.
BASES

APPLICABILITY
In MODE 5, a prompt reactivity excursion could cause fuel damage and subsequent release of radioactive material to the environment. The refueling equipment interlocks protect against prompt reactivity excursions during MODE 5. The interlocks are required to be OPERABLE during in-vessel fuel movement with refueling equipment associated with the interlocks.

In MODES 1, 2, 3, and 4, the reactor pressure vessel head is on, and CORE ALTERATIONS are not possible. Therefore, the refueling interlocks are not required to be OPERABLE in these MODES.

ACTIONS
A.1, A.2.1, and A.2.2

With one or more of the required refueling equipment interlocks inoperative, the unit must be placed in a condition in which the LCO does not apply. Therefore, Required Action A.1 requires that in-vessel fuel movement with the affected refueling equipment must be immediately suspended. This action ensures that operations are not performed with equipment that would potentially not be blocked from unacceptable operations (e.g., loading fuel into a cell with a control rod withdrawn). Suspension of in-vessel fuel movement shall not preclude completion of movement of a component to a safe position.

Alternatively, Required Actions A.2.1 and A.2.2 require a control rod withdrawal block to be inserted, and all control rods to be subsequently verified to be fully inserted. Required Action A.2.1 ensures no control rods can be withdrawn, because a block to control rod withdrawal is in place. The withdrawal block utilized must ensure that if rod withdrawal is requested, the rod will not respond (i.e., it will remain inserted). Required Action A.2.2 is performed after placing the rod withdrawal block in effect, and provides a verification that all control rods are fully inserted. This verification that all control rods are fully inserted is in addition to the periodic verifications required by SR 3.9.3.1.

Like Required Action A.1, Required Actions A.2.1 and A.2.2 ensure unacceptable operations are blocked (e.g., loading fuel into a cell with the control rod withdrawn).

SURVEILLANCE REQUIREMENTS
SR 3.9.1.1

Performance of a CHANNEL FUNCTIONAL TEST demonstrates each required refueling equipment interlock will function properly when a simulated or actual signal indicative of a required condition is injected into the logic. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the
other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The CHANNEL FUNCTIONAL TEST may be performed by any series of sequential, overlapping, or total channel steps so that the entire channel is tested.

[The 7 day Frequency is based on engineering judgment and is considered adequate in view of other indications of refueling interlocks and their associated input status that are available to unit operations personnel.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 26.
2. FSAR, Section [7.6.1].
3. FSAR, Section [15.1.13].
4. FSAR, Section [15.1.14].
B 3.9 REFUELING OPERATIONS

B 3.9.2 Refuel Position One-Rod-Out Interlock

BASES

BACKGROUND

The refuel position one-rod-out interlock restricts the movement of control rods to reinforce unit procedures that prevent the reactor from becoming critical during refueling operations. During refueling operations, no more than one control rod is permitted to be withdrawn.

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The control rods serve as the system capable of maintaining the reactor subcritical in cold conditions.

The refuel position one-rod-out interlock prevents the selection of a second control rod for movement when any other control rod is not fully inserted (Ref. 2). It is a logic circuit that has redundant channels. It uses the all-rods-in signal (from the control rod full-in position indicators discussed in LCO 3.9.4, "Control Rod Position Indication") and a rod selection signal (from the Reactor Manual Control System).

This Specification ensures that the performance of the refuel position one-rod-out interlock in the event of a Design Basis Accident meets the assumptions used in the safety analysis of Reference 3.

APPLICABLE SAFETY ANALYSES

The refueling position one-rod-out interlock is explicitly assumed in the FSAR analysis for the control rod withdrawal error during refueling (Ref. 3). This analysis evaluates the consequences of control rod withdrawal during refueling. A prompt reactivity excursion during refueling could potentially result in fuel failure with subsequent release of radioactive material to the environment.

The refuel position one-rod-out interlock and adequate SDM (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)" prevent criticality by preventing withdrawal of more than one control rod. With one control rod withdrawn, the core will remain subcritical, thereby preventing any prompt critical excursion.

The refuel position one-rod-out interlock satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

To prevent criticality during MODE 5, the refuel position one-rod-out interlock ensures no more than one control rod may be withdrawn. Both channels of the refuel position one-rod-out interlock are required to be OPERABLE and the reactor mode switch must be locked in the refuel position to support the OPERABILITY of these channels.
BASES

APPLICABILITY

In MODE 5, with the reactor mode switch in the refuel position, the OPERABLE refuel position one-rod-out interlock provides protection against prompt reactivity excursions.

In MODES 1, 2, 3, and 4, the refuel position one-rod-out interlock is not required to be OPERABLE and is bypassed. In MODES 1 and 2, the Reactor Protection System (LCO 3.3.1.1) and the control rods (LCO 3.1.3) provide mitigation of potential reactivity excursions. In MODES 3 and 4, with the reactor mode switch in the shutdown position, a control rod block (LCO 3.3.2.1) ensures all control rods are inserted, thereby preventing criticality during shutdown conditions.

ACTIONS

A.1 and A.2

With one or both channels of the refueling position one-rod-out interlock inoperable, the refueling interlocks may not be capable of preventing more than one control rod from being withdrawn. This condition may lead to criticality.

Control rod withdrawal must be immediately suspended, and action must be immediately initiated to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Action must continue until all such control rods are fully inserted. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and, therefore, do not have to be inserted.

SURVEILLANCE REQUIREMENTS

SR 3.9.2.1

Proper functioning of the refueling position one-rod-out interlock requires the reactor mode switch to be in Refuel. During control rod withdrawal in MODE 5, improper positioning of the reactor mode switch could, in some instances, allow improper bypassing of required interlocks. Therefore, this Surveillance imposes an additional level of assurance that the refueling position one-rod-out interlock will be OPERABLE when required. By "locking" the reactor mode switch in the proper position (i.e., removing the reactor mode switch key from the console while the reactor mode switch is positioned in refuel), an additional administrative control is in place to preclude operator errors from resulting in unanalyzed operation.

The Frequency of 12 hours is sufficient in view of other administrative controls utilized during refueling operations to ensure safe operation.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.9.2.2

Performance of a CHANNEL FUNCTIONAL TEST on each channel demonstrates the associated refuel position one-rod-out interlock will function properly when a simulated or actual signal indicative of a required condition is injected into the logic. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The CHANNEL FUNCTIONAL TEST may be performed by any series of sequential, overlapping, or total channel steps so that the entire channel is tested. [The 7 day Frequency is considered adequate because of demonstrated circuit reliability, procedural controls on control rod withdrawals, and visual and audible indications available in the control room to alert the operator to control rods not fully inserted.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

To perform the required testing, the applicable condition must be entered (i.e., a control rod must be withdrawn from its full-in position). Therefore, SR 3.9.2.2 has been modified by a Note that states the CHANNEL FUNCTIONAL TEST is not required to be performed until 1 hour after any control rod is withdrawn.
BASES

REFERENCES

1. 10 CFR 50, Appendix A, GDC 26.
2. FSAR, Section [7.6.1.1].
3. FSAR, Section [15.4.1.1].
B 3.9 REFUELING OPERATIONS

B 3.9.3 Control Rod Position

BASES

BACKGROUND

Control rods provide the capability to maintain the reactor subcritical under all conditions and to limit the potential amount and rate of reactivity increase caused by a malfunction in the Control Rod Drive System. During refueling, movement of control rods is limited by the refueling interlocks (LCO 3.9.1 and LCO 3.9.2) or the control rod block with the reactor mode switch in the shutdown position (LCO 3.3.2.1).

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The control rods serve as the system capable of maintaining the reactor subcritical in cold conditions.

The refueling interlocks allow a single control rod to be withdrawn at any time unless fuel is being loaded into the core. To preclude loading fuel assemblies into the core with a control rod withdrawn, all control rods must be fully inserted. This prevents the reactor from achieving criticality during refueling operations.

APPLICABLE SAFETY ANALYSES

Prevention and mitigation of prompt reactivity excursions during refueling are provided by the refueling interlocks (LCO 3.9.1 and LCO 3.9.2), the SDM (LCO 3.1.1), the intermediate range monitor neutron flux scram (LCO 3.3.1.1), the average power range monitor neutron flux scram (LCO 3.3.1.1), and the control rod block instrumentation (LCO 3.3.2.1).

The safety analysis for the control rod withdrawal error during refueling in the FSAR (Ref. 2) assumes the functioning of the refueling interlocks and adequate SDM. The analysis for the fuel assembly insertion error (Ref. 3) assumes all control rods are fully inserted. Thus, prior to fuel reload, all control rods must be fully inserted to minimize the probability of an inadvertent criticality.

Control rod position satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

All control rods must be fully inserted during applicable refueling conditions to minimize the probability of an inadvertent criticality during refueling.
APPLICABILITY

During MODE 5, loading fuel into core cells with control rods withdrawn may result in inadvertent criticality. Therefore, the control rods must be inserted before loading fuel into a core cell. All control rods must be inserted before loading fuel to ensure that a fuel loading error does not result in loading fuel into a core cell with the control rod withdrawn.

In MODES 1, 2, 3, and 4, the reactor pressure vessel head is on, and no fuel loading activities are possible. Therefore, this Specification is not applicable in these MODES.

ACTIONS

A.1

With all control rods not fully inserted during the applicable conditions, an inadvertent criticality could occur that is not analyzed in the FSAR. All fuel loading operations must be immediately suspended. Suspension of these activities shall not preclude completion of movement of a component to a safe position.

SURVEILLANCE REQUIREMENTS

SR 3.9.3.1

During refueling, to ensure that the reactor remains subcritical, all control rods must be fully inserted prior to and during fuel loading. Periodic checks of the control rod position ensure this condition is maintained.

The 12 hour Frequency takes into consideration the procedural controls on control rod movement during refueling as well as the redundant functions of the refueling interlocks.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REFERENCES

1. 10 CFR 50, Appendix A, GDC 26.

2. FSAR, Section [15.1.13].

3. FSAR, Section [15.1.14].
B 3.9 REFUELING OPERATIONS

B 3.9.4 Control Rod Position Indication

BASES

BACKGROUND

The full-in position indication channel for each control rod provides necessary information to the refueling interlocks to prevent inadvertent criticalities during refueling operations. During refueling, the refueling interlocks (LCO 3.9.1 and LCO 3.9.2) use the full-in position indication channel to limit the operation of the refueling equipment and the movement of the control rods. The absence of the full-in position channel signal for any control rod removes the all-rods-in permissive for the refueling equipment interlocks and prevents fuel loading. Also, this condition causes the refuel position one-rod-out interlock to not allow the withdrawal of any other control rod.

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The control rods serve as the system capable of maintaining the reactor subcritical in cold conditions.

APPLICABLE SAFETY ANALYSES

Prevention and mitigation of prompt reactivity excursions during refueling are provided by the refueling interlocks (LCO 3.9.1 and LCO 3.9.2), the SDM (LCO 3.1.1), the intermediate range monitor neutron flux scram (LCO 3.3.1.1), and the control rod block instrumentation (LCO 3.3.2.1).

The safety analysis for the control rod withdrawal error during refueling (Ref. 2) assumes the functioning of the refueling interlocks and adequate SDM. The analysis for the fuel assembly insertion error (Ref. 3) assumes all control rods are fully inserted. The full-in position indication channel is required to be OPERABLE so that the refueling interlocks can ensure that fuel cannot be loaded with any control rod withdrawn and that no more than one control rod can be withdrawn at a time.

Control rod position indication satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

Each control rod full-in position indication channel must be OPERABLE to provide the required input to the refueling interlocks. A channel is OPERABLE if it provides correct position indication to the refueling interlock logic.
BASES

APPLICABILITY

During MODE 5, the control rods must have OPERABLE full-in position indication channels to ensure the applicable refueling interlocks will be OPERABLE.

In MODES 1 and 2, requirements for control rod position are specified in LCO 3.1.3, "Control Rod OPERABILITY." In MODES 3 and 4, with the reactor mode switch in the shutdown position, a control rod block (LCO 3.3.2.1) ensures all control rods are inserted, thereby preventing criticality during shutdown conditions.

ACTIONS

A Note has been provided to modify the ACTIONS related to control rod position indication channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable control rod position indication channels provide appropriate compensatory measures for separate inoperable channels. As such, this Note has been provided, which allows separate Condition entry for each inoperable required control rod position indication channel.

A.1.1, A.1.2, A.1.3, A.2.1 and A.2.2

With one or more required full-in position indication channels inoperable, compensating actions must be taken to protect against potential reactivity excursions from fuel assembly insertions or control rod withdrawals. This may be accomplished by immediately suspending in-vessel fuel movement and control rod withdrawal, and immediately initiating action to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Actions must continue until all insertable control rods in core cells containing one or more fuel assemblies are fully inserted. Suspension of in-vessel fuel movements and control rod withdrawal shall not preclude moving a component to a safe position.

Alternatively, actions must be immediately initiated to fully insert the control rod(s) associated with the inoperable full-in position indicator(s) and disarm the drive(s) to ensure that the control rod is not withdrawn. Actions must continue until all associated control rods are fully inserted and drives are disarmed. Under these conditions (control rod fully inserted and disarmed), an inoperable full-in channel may be bypassed to allow refueling operations to proceed. An alternate method must be used to ensure the control rod is fully inserted (e.g., use the "00" notch position indication).
The full-in position indication channels provide input to the one-rod-out interlock and other refueling interlocks that require an all-rods-in permissive. The interlocks are actuated when the full-in position indication for any control rod is not present, since this indicates that all rods are not fully inserted. Therefore, testing of the full-in position indication channels is performed to ensure that when a control rod is withdrawn, the full-in position indication is not present. Note that failure to indicate full-in when the control rod is not withdrawn results in conservative actuation of the one-rod-out interlock, and therefore, is not explicitly required to be verified by this SR. The full-in position indication channel is considered inoperable even with the control rod fully inserted, if it would continue to indicate full-in with the control rod withdrawn. Performing the SR each time a control rod is withdrawn is considered adequate because of the procedural controls on control rod withdrawals and the visual and audible indications available in the control room to alert the operator to control rods not fully inserted.
B 3.9 REFUELING OPERATIONS

B 3.9.5 Control Rod OPERABILITY - Refueling

BASES

BACKGROUND
Control rods are components of the Control Rod Drive (CRD) System, the primary reactivity control system for the reactor. In conjunction with the Reactor Protection System, the CRD System provides the means for the reliable control of reactivity changes during refueling operation. In addition, the control rods provide the capability to maintain the reactor subcritical under all conditions and to limit the potential amount and rate of reactivity increase caused by a malfunction in the CRD System.

GDC 26 of 10 CFR 50, Appendix A, requires that one of the two required independent reactivity control systems be capable of holding the reactor core subcritical under cold conditions (Ref. 1). The CRD System is the system capable of maintaining the reactor subcritical in cold conditions.

APPLICABLE SAFETY ANALYSES
Prevention and mitigation of prompt reactivity excursions during refueling are provided by refueling interlocks (LCO 3.9.1 and LCO 3.9.2), the SDM (LCO 3.1.1), the intermediate range monitor neutron flux scram (LCO 3.3.1.1), and the control rod block instrumentation (LCO 3.3.2.1).

The safety analyses for the control rod withdrawal error during refueling (Ref. 2) and the fuel assembly insertion error (Ref. 3) evaluate the consequences of control rod withdrawal during refueling and also fuel assembly insertion with a control rod withdrawn. A prompt reactivity excursion during refueling could potentially result in fuel failure with subsequent release of radioactive material to the environment. Control rod scram provides protection should a prompt reactivity excursion occur.

Control rod OPERABILITY during refueling satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO
Each withdrawn control rod must be OPERABLE. The withdrawn control rod is considered OPERABLE if the scram accumulator pressure is \(\geq [940] \) psig and the control rod is capable of being automatically inserted upon receipt of a scram signal. Inserted control rods have already completed their reactivity control function, and therefore are not required to be OPERABLE.

APPLICABILITY
During MODE 5, withdrawn control rods must be OPERABLE to ensure that in a scram the control rods will insert and provide the required negative reactivity to maintain the reactor subcritical.
BASES

APPLICABILITY (continued)

For MODES 1 and 2, control rod requirements are found in LCO 3.1.2, "Reactivity Anomalies," LCO 3.1.3, "Control Rod OPERABILITY," LCO 3.1.4, "Control Rod Scram Times," and LCO 3.1.5, "Control Rod Scram Accumulators." During MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate requirements for control rod OPERABILITY during these conditions.

ACTIONS

A.1

With one or more withdrawn control rods inoperable, action must be immediately initiated to fully insert the inoperable control rod(s). Inserting the control rod(s) ensures the shutdown and scram capabilities are not adversely affected. Actions must continue until the inoperable control rod(s) is fully inserted.

SURVEILLANCE REQUIREMENTS

SR 3.9.5.1 and SR 3.9.5.2

During MODE 5, the OPERABILITY of control rods is primarily required to ensure a withdrawn control rod will automatically insert if a signal requiring a reactor shutdown occurs. Because no explicit analysis exists for automatic shutdown during refueling, the shutdown function is satisfied if the withdrawn control rod is capable of automatic insertion and the associated CRD scram accumulator pressure is $\geq [940]$ psig.

[The 7 day Frequency takes into consideration equipment reliability, procedural controls over the scram accumulators, and control room alarms and indicating lights that indicate low accumulator charge pressures.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-----------------------------------REVIEWER’S NOTE-----------------------------------]
Bases

Surveillance Requirements (continued)

SR 3.9.5.1 is modified by a Note that allows 7 days after withdrawal of the control rod to perform the Surveillance. This acknowledges that the control rod must first be withdrawn before performance of the Surveillance, and therefore avoids potential conflicts with SR 3.0.3 and SR 3.0.4.

References

1. 10 CFR 50, Appendix A, GDC 26.
2. FSAR, Section [15.1.13].
3. FSAR, Section [15.1.14].
B 3.9 REFUELLING OPERATIONS

B 3.9.6 [Reactor Pressure Vessel (RPV)] Water Level - [Irradiated Fuel]

BASES

BACKGROUND
The movement of [irradiated] fuel assemblies [or handling of control rods] within the [RPV] requires a minimum water level of [23] ft above the top of the [RPV] flange. During refueling, this maintains a sufficient water level in the reactor vessel cavity and spent fuel pool. Sufficient water is necessary to retain iodine fission product activity in the water in the event of a fuel handling accident (Refs. 1 and 2). Sufficient iodine activity would be retained to limit offsite doses from the accident to ≤ 25% of 10 CFR 100 limits, as provided by the guidance of Reference 3.

APPLICABLE SAFETY ANALYSES
During movement of [irradiated] fuel assemblies [or handling of control rods], the water level in the [RPV] is an initial condition design parameter in the analysis of a fuel handling accident in containment postulated by Regulatory Guide 1.25 (Ref. 1). A minimum water level of 23 ft (Regulatory Position C.1.c of Ref. 1) allows a decontamination factor of 100 (Regulatory Position C.1.g of Ref. 1) to be used in the accident analysis for iodine. This relates to the assumption that 99% of the total iodine released from the pellet to cladding gap of all the dropped fuel assembly rods is retained by the water. The fuel pellet to cladding gap is assumed to contain 10% of the total fuel rod iodine inventory (Ref. 1).

Analysis of the fuel handling accident inside containment is described in Reference 2. With a minimum water level of 23 ft and a minimum decay time of 24 hours prior to fuel handling, the analysis and test programs demonstrate that the iodine release due to a postulated fuel handling accident is adequately captured by the water and that offsite doses are maintained within allowable limits (Ref. 4).

While the worst case assumptions include the dropping of the irradiated fuel assembly being handled onto the reactor core, the possibility exists of the dropped assembly striking the [RPV] flange and releasing fission products. Therefore, the minimum depth for water coverage to ensure acceptable radiological consequences is specified from the [RPV] flange. Since the worst case event results in failed fuel assemblies seated in the core, as well as the dropped assembly, dropping an assembly on the [RPV] flange will result in reduced releases of fission gases. [Based on this judgement, and the physical dimensions which preclude normal operation with water level 23 feet above the flange, a slight reduction in this water level is acceptable (Ref. 4).]

[RPV] water level satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
A minimum water level of 23 ft above the top of the [RPV] flange is required to ensure that the radiological consequences of a postulated fuel handling accident are within acceptable limits, as provided by the guidance of Reference 3.

LCO 3.9.6 is applicable when moving [irradiated] fuel assemblies [or handling control rods (i.e., movement with other than the normal control rod drive)] within the [RPV]. The LCO minimizes the possibility of a fuel handling accident in containment that is beyond the assumptions of the safety analysis. [If irradiated fuel is not present within the [RPV], there can be no significant radioactivity release as a result of a postulated fuel handling accident.] Requirements for handling of new fuel assemblies or control rods (where water depth to the [RPV] flange is not of concern) are covered by LCO 3.9.7, "[RPV] Water Level - New Fuel or Control Rods." Requirements for fuel handling accidents in the spent fuel storage pool are covered by LCO 3.7.8, "Spent Fuel Storage Pool Water Level."

LCO 3.9.6 is written to cover new fuel and control rods as well as irradiated fuel. If a plant adopts LCO 3.9.7, however, the second bracketed portion of this Applicability is adopted in lieu of the first bracketed portion, and the LCO name and Required Action A.1 modified appropriately.

If the water level is < 23 ft above the top of the [RPV] flange, all operations involving movement of [irradiated] fuel assemblies [and handling of control rods] within the [RPV] shall be suspended immediately to ensure that a fuel handling accident cannot occur. The suspension of [irradiated] fuel movement [and control rod handling] shall not preclude completion of movement of a component to a safe position.

Verification of a minimum water level of 23 ft above the top of the [RPV] flange ensures that the design basis for the postulated fuel handling accident analysis during refueling operations is met. Water at the required level limits the consequences of damaged fuel rods, which are postulated to result from a fuel handling accident in containment (Ref. 2).

[The Frequency of 24 hours is based on engineering judgment and is considered adequate in view of the large volume of water and the normal procedural controls on valve positions, which make significant unplanned level changes unlikely.]
SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

2. FSAR, Section [15.1.41].

3. NUREG-0800, Section 15.7.4.

4. 10 CFR 100.11.
B 3.9 REFUELING OPERATIONS

B 3.9.7 [Reactor Pressure Vessel (RPV)] Water Level - [New Fuel or Control Rods]

BASES

BACKGROUND

The movement of new fuel assemblies or handling of control rods within the [RPV] when fuel assemblies seated within the reactor vessel are irradiated requires a minimum water level of [23] ft above the top of irradiated fuel assemblies seated within the [RPV]. During refueling, this maintains a sufficient water level above the irradiated fuel. Sufficient water is necessary to retain iodine fission product activity in the water in the event of a fuel handling accident (Refs. 1 and 2). Sufficient iodine activity would be retained to limit offsite doses from the accident to ≤ 25% of 10 CFR 100 limits, as provided by the guidance of Reference 3.

APPLICABLE SAFETY ANALYSES

During movement of new fuel assemblies or handling of control rods over irradiated fuel assemblies, the water level in the [RPV] is an initial condition design parameter in the analysis of a fuel handling accident in containment postulated by Regulatory Guide 1.25 (Ref. 1). A minimum water level of [23] ft (Regulatory Position C.1.c of Ref. 1) allows a decontamination factor of 100 (Regulatory Position C.1.g of Ref. 1) to be used in the accident analysis for iodine. This relates to the assumption that 99% of the total iodine released from the pellet to cladding gap of all the dropped fuel assembly rods is retained by the water. The fuel pellet to cladding gap is assumed to contain 10% of the total fuel rod iodine inventory (Ref. 1).

Analysis of the fuel handling accident inside containment is described in Reference 2. With a minimum water level of [23] ft and a minimum decay time of 24 hours prior to fuel handling, the analysis and test programs demonstrate that the iodine release due to a postulated fuel handling accident is adequately captured by the water and that offsite doses are maintained within allowable limits (Ref. 4).

The related assumptions include the worst case dropping of an irradiated fuel assembly onto the reactor core loaded with irradiated fuel assemblies.

[RPV] water level satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

A minimum water level of [23] ft above the top of irradiated fuel assemblies seated within the [RPV] flange is required to ensure that the radiological consequences of a postulated fuel handling accident are within acceptable limits, as provided by the guidance of Reference 3.
B 3.9.7

BASES

APPLICABILITY
LCO 3.9.7 is applicable when moving new fuel assemblies or handling control rods (i.e., movement with other than the normal control rod drive) over irradiated fuel assemblies seated within the [RPV]. The LCO minimizes the possibility of a fuel handling accident in containment that is beyond the assumptions of the safety analysis. If irradiated fuel is not present within the [RPV], there can be no significant radioactivity release as a result of a postulated fuel handling accident. Requirements for fuel handling accidents in the spent fuel storage pool are covered by LCO 3.7.8, "Spent Fuel Storage Pool Water Level." Requirements for handling irradiated fuel over the [RPV] are covered by LCO 3.9.6, "[Reactor Pressure Vessel (RPV)] Water Level - [Irradiated Fuel]."

ACTIONS
A.1
If the water level is < [23] ft above the top of irradiated fuel assemblies seated within the [RPV], all operations involving movement of new fuel assemblies and handling of control rods within the [RPV] shall be suspended immediately to ensure that a fuel handling accident cannot occur. The suspension of fuel movement and control rod handling shall not preclude completion of movement of a component to a safe position.

SURVEILLANCE REQUIREMENTS
SR 3.9.7.1
Verification of a minimum water level of [23] ft above the top of irradiated fuel assemblies seated within the [RPV] ensures that the design basis for the postulated fuel handling accident analysis during refueling operations is met. Water at the required level limits the consequences of damaged fuel rods, which are postulated to result from a fuel handling accident in containment (Ref. 2).

[The Frequency of 24 hours is based on engineering judgment and is considered adequate in view of the large volume of water and the normal procedural controls on valve positions, which make significant unplanned level changes unlikely.

OR
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

--
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
--]
REFERENCES

2. FSAR, Section [15.1.41].

3. NUREG-0800, Section 15.7.4.

4. 10 CFR 100.11.
B 3.9 REFUELING OPERATIONS

B 3.9.8 Residual Heat Removal (RHR) - High Water Level

BASES

BACKGROUND

The purpose of the RHR System in MODE 5 is to remove decay heat and sensible heat from the reactor coolant, as required by GDC 34. Each of the two shutdown cooling loops of the RHR System can provide the required decay heat removal. Each loop consists of two motor driven pumps, a heat exchanger, and associated piping and valves. Both loops have a common suction from the same recirculation loop. Each pump discharges the reactor coolant, after it has been cooled by circulation through the respective heat exchangers, to the reactor via the associated recirculation loop or to the reactor via the low pressure coolant injection path. The RHR heat exchangers transfer heat to the RHR Service Water System. The RHR shutdown cooling mode is manually controlled.

In addition to the RHR subsystems, the volume of water above the reactor pressure vessel (RPV) flange provides a heat sink for decay heat removal.

APPLICABLE SAFETY ANALYSES

With the unit in MODE 5, the RHR System is not required to mitigate any events or accidents evaluated in the safety analyses. The RHR System is required for removing decay heat to maintain the temperature of the reactor coolant.

The RHR System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO

Only one RHR shutdown cooling subsystem is required to be OPERABLE and in operation in MODE 5 with irradiated fuel in the RPV and the water level ≥ [23] ft above the RPV flange. Only one subsystem is required because the volume of water above the RPV flange provides backup decay heat removal capability.

An OPERABLE RHR shutdown cooling subsystem consists of an RHR pump, a heat exchanger, valves, piping, instruments, and controls to ensure an OPERABLE flow path. In MODE 5, the RHR cross tie valve is not required to be closed; thus, the valve may be opened to allow pumps in one loop to discharge through the opposite loop’s heat exchanger to make a complete subsystem. Management of gas voids is important to RHR Shutdown Cooling System OPERABILITY.

Additionally, each RHR shutdown cooling subsystem is considered OPERABLE if it can be manually aligned (remote or local) in the shutdown cooling mode for removal of decay heat. Operation (either continuous or intermittent) of one subsystem can maintain and reduce the reactor coolant temperature as required. However, to ensure adequate...
core flow to allow for accurate average reactor coolant temperature monitoring, nearly continuous operation is required. A Note is provided to allow a 2 hour exception for the operating subsystem to be removed from operation every 8 hours.

APPLICABILITY

One RHR shutdown cooling subsystem must be OPERABLE and in operation in MODE 5, with irradiated fuel in the reactor pressure vessel and with the water level ≥ [23] feet above the top of the RPV flange, to provide decay heat removal. RHR System requirements in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS); Section 3.5, Emergency Core Cooling Systems (ECCS) and Reactor Core Isolation Cooling (RCIC) System; and Section 3.6, Containment Systems. RHR Shutdown Cooling System requirements in MODE 5 with irradiated fuel in the reactor pressure vessel and with the water level < [23] ft above the RPV flange are given in LCO 3.9.9.

ACTIONS

A.1

With no RHR shutdown cooling subsystem OPERABLE, an alternate method of decay heat removal must be established within 1 hour. In this condition, the volume of water above the RPV flange provides adequate capability to remove decay heat from the reactor core. However, the overall reliability is reduced because loss of water level could result in reduced decay heat removal capability. The 1 hour Completion Time is based on decay heat removal function and the probability of a loss of the available decay heat removal capabilities. Furthermore, verification of the functional availability of these alternate method(s) must be reconfirmed every 24 hours thereafter. This will ensure continued heat removal capability.

Alternate decay heat removal methods are available to the operators for review and preplanning in the unit's Operating Procedures. The required cooling capacity of the alternate method should be sufficient to maintain or reduce temperature. Decay heat removal by ambient losses can be considered as, or contributing to, the alternate method capability. Alternate methods that can be used include (but are not limited to) the Spent Fuel Pool Cooling System, the Reactor Water Cleanup System, or an inoperable but functional RHR shutdown cooling subsystem. The method used to remove the decay heat should be the most prudent choice based on unit conditions.
BASES

ACTIONS (continued)

B.1, B.2, B.3, and B.4

If no RHR shutdown cooling subsystem is OPERABLE and an alternate method of decay heat removal is not available in accordance with Required Action A.1, actions shall be taken immediately to suspend operations involving an increase in reactor decay heat load by suspending loading of irradiated fuel assemblies into the RPV.

Additional actions are required to minimize any potential fission product release to the environment. This includes ensuring secondary containment is OPERABLE; one standby gas treatment subsystem is OPERABLE; and secondary containment isolation capability (i.e., one secondary containment isolation valve and associated instrumentation are OPERABLE or other acceptable administrative controls to assure isolation capability) in each associated penetration not isolated that is assumed to be isolated to mitigate radioactive releases. This may be performed as an administrative check, by examining logs or other information to determine whether the components are out of service for maintenance or other reasons. It is not necessary to perform the Surveillances needed to demonstrate the OPERABILITY of the components. If, however, any required component is inoperative, then it must be restored to OPERABLE status. In this case, a surveillance may need to be performed to restore the component to OPERABLE status. Actions must continue until all required components are OPERABLE.

C.1 and C.2

If no RHR Shutdown Cooling System is in operation, an alternate method of coolant circulation is required to be established within 1 hour. The Completion Time is modified such that the 1 hour is applicable separately for each occurrence involving a loss of coolant circulation.

During the period when the reactor coolant is being circulated by an alternate method (other than by the required RHR Shutdown Cooling System), the reactor coolant temperature must be periodically monitored to ensure proper functioning of the alternate method. The once per hour Completion Time is deemed appropriate.

SURVEILLANCE REQUIREMENTS

SR 3.9.8.1

This Surveillance demonstrates that the RHR subsystem is in operation and circulating reactor coolant.
The required flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability. [The Frequency of 12 hours is sufficient in view of other visual and audible indications available to the operator for monitoring the RHR subsystem in the control room.]

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--
SR 3.9.8.2

RHR Shutdown Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the required RHR shutdown cooling subsystem(s) and may also prevent water hammer, pump cavitation, and pumping of noncondensible gas into the reactor vessel.

Selection of RHR Shutdown Cooling System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The RHR Shutdown Cooling System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or
discharge of a pump), the Surveillance is not met. If the accumulated gas is eliminated or brought within the acceptance criteria limits during performance of the Surveillance, the Surveillance is met and past system OPERABILITY is evaluated under the Corrective Action Program. If it is determined by subsequent evaluation that the RHR Shutdown Cooling System is not rendered inoperable by the accumulated gas (i.e., the system is sufficiently filled with water), the Surveillance may be declared met. Accumulated gas should be eliminated or brought within the acceptance criteria limits.

RHR Shutdown Cooling System locations susceptible to gas accumulation are monitored and, if gas is found, the gas volume is compared to the acceptance criteria for the location. Susceptible locations in the same system flow path which are subject to the same gas intrusion mechanisms may be verified by monitoring a representative subset of susceptible locations. Monitoring may not be practical for locations that are inaccessible due to radiological or environmental conditions, the plant configuration, or personnel safety. For these locations alternative methods (e.g., operating parameters, remote monitoring) may be used to monitor the susceptible location. Monitoring is not required for susceptible locations where the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.

[The 31 day Frequency takes into consideration the gradual nature of gas accumulation in the RHR Shutdown Cooling System piping and the procedural controls governing system operation.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCE
None.
B 3.9 REFUELING OPERATIONS

B 3.9.9 Residual Heat Removal (RHR) - Low Water Level

BASES

BACKGROUND
The purpose of the RHR System in MODE 5 is to remove decay heat and sensible heat from the reactor coolant, as required by GDC 34. Each of the two shutdown cooling loops of the RHR System can provide the required decay heat removal. Each loop consists of two motor driven pumps, a heat exchanger, and associated piping and valves. Both loops have a common suction from the same recirculation loop. Each pump discharges the reactor coolant, after it has been cooled by circulation through the respective heat exchangers, to the reactor via the associated recirculation loop or to the reactor via the low pressure coolant injection path. The RHR heat exchangers transfer heat to the RHR Service Water System. The RHR shutdown cooling mode is manually controlled.

APPLICABLE

With the unit in MODE 5, the RHR System is not required to mitigate any events or accidents evaluated in the safety analyses. The RHR System is required for removing decay heat to maintain the temperature of the reactor coolant.

The RHR System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LCO
In MODE 5 with irradiated fuel in the reactor pressure vessel (RPV) and the water level < 23 ft above the reactor pressure vessel (RPV) flange both RHR shutdown cooling subsystems must be OPERABLE.

An OPERABLE RHR shutdown cooling subsystem consists of an RHR pump, a heat exchanger, valves, piping, instruments, and controls to ensure an OPERABLE flow path. To meet the LCO, both pumps in one loop or one pump in each of the two loops must be OPERABLE. In MODE 5, the RHR cross tie valve is not required to be closed; thus, the valve may be opened to allow pumps in one loop to discharge through the opposite loop's heat exchanger to make a complete subsystem.

Management of gas voids is important to RHR Shutdown Cooling System OPERABILITY.

Additionally, each RHR shutdown cooling subsystem is considered OPERABLE if it can be manually aligned (remote or local) in the shutdown cooling mode for removal of decay heat. Operation (either continuous or intermittent) of one subsystem can maintain and reduce the reactor coolant temperature as required. However, to ensure adequate core flow to allow for accurate average reactor coolant temperature monitoring, nearly continuous operation is required. A Note is provided to allow a 2 hour exception for the operating subsystem to be removed from operation every 8 hours.
BASES

APPLICABILITY
Two RHR shutdown cooling subsystems are required to be OPERABLE, and one must be in operation in MODE 5, with irradiated fuel in the RPV and with the water level < [23] ft above the top of the RPV flange, to provide decay heat removal. RHR System requirements in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS); Section 3.5, Emergency Core Cooling Systems (ECCS) and Reactor Core Isolation Cooling (RCIC) System; and Section 3.6, Containment Systems. RHR Shutdown Cooling System requirements in MODE 5 with irradiated fuel in the RPV and with the water level ≥ [23] ft above the RPV flange are given in LCO 3.9.8, "Residual Heat Removal (RHR) - High Water Level."

ACTIONS
A.1

With one of the two required RHR shutdown cooling subsystems inoperable, the remaining subsystem is capable of providing the required decay heat removal. However, the overall reliability is reduced. Therefore an alternate method of decay heat removal must be provided. With both required RHR shutdown cooling subsystems inoperable, an alternate method of decay heat removal must be provided in addition to that provided for the initial RHR shutdown cooling subsystem inoperability. This re-establishes backup decay heat removal capabilities, similar to the requirements of the LCO. The 1 hour Completion Time is based on the decay heat removal function and the probability of a loss of the available decay heat removal capabilities. Furthermore, verification of the functional availability of this alternate method(s) must be reconfirmed every 24 hours thereafter. This will ensure continued heat removal capability.

Alternate decay heat removal methods are available to the operators for review and preplanning in the unit's Operating Procedures. The required cooling capacity of the alternate method should be sufficient to maintain or reduce temperature. Decay heat removal by ambient losses can be considered as, or contributing to, the alternate method capability. Alternate methods that can be used include (but are not limited to) the Spent Fuel Pool Cooling System, the Reactor Water Cleanup System, or an inoperable but functional RHR shutdown cooling subsystem. The method used to remove decay heat should be the most prudent choice based on unit conditions.
B.1, B.2, and B.3

With the required decay heat removal subsystem(s) inoperable and the required alternate method(s) of decay heat removal not available in accordance with Required Action A.1, additional actions are required to minimize any potential fission product release to the environment. This includes ensuring secondary containment is OPERABLE; one standby gas treatment subsystem is OPERABLE; and secondary containment isolation capability (i.e., one secondary containment isolation valve and associated instrumentation are OPERABLE or other acceptable administrative controls to assure isolation capability) in each associated penetration not isolated that is assumed to be isolated to mitigate radioactive releases. This may be performed as an administrative check, by examining logs or other information to determine whether the components are out of service for maintenance or other reasons. It is not necessary to perform the Surveillances needed to demonstrate the OPERABILITY of the components. If, however, any required component is inoperable, then it must be restored to OPERABLE status. In this case, the surveillance may need to be performed to restore the component to OPERABLE status. Actions must continue until all required components are OPERABLE.

C.1 and C.2

If no RHR subsystem is in operation, an alternate method of coolant circulation is required to be established within 1 hour. The Completion Time is modified such that the 1 hour is applicable separately for each occurrence involving a loss of coolant circulation.

During the period when the reactor coolant is being circulated by an alternate method (other than by the required RHR Shutdown Cooling System), the reactor coolant temperature must be periodically monitored to ensure proper functioning of the alternate method. The once per hour Completion Time is deemed appropriate.

SURVEILLANCE REQUIREMENTS

SR 3.9.9.1

This Surveillance demonstrates that one RHR shutdown cooling subsystem is in operation and circulating reactor coolant. The required flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability.

[The Frequency of 12 hours is sufficient in view of other visual and audible indications available to the operator for monitoring the RHR subsystems in the control room.
OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

--

SR 3.9.9.2

RHR Shutdown Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR shutdown cooling subsystems and may also prevent water hammer, pump cavitation, and pumping of noncondensible gas into the reactor vessel.

Selection of RHR Shutdown Cooling System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The RHR Shutdown Cooling System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or discharge of a pump), the Surveillance is not met. If the accumulated gas is eliminated or brought within the acceptance criteria limits during performance of the Surveillance, the Surveillance is met and past system OPERABILITY is evaluated under the Corrective Action Program. If it is determined by subsequent evaluation that the RHR Shutdown Cooling
System is not rendered inoperable by the accumulated gas (i.e., the system is sufficiently filled with water), the Surveillance may be declared met. Accumulated gas should be eliminated or brought within the acceptance criteria limits.

RHR Shutdown Cooling System locations susceptible to gas accumulation are monitored and, if gas is found, the gas volume is compared to the acceptance criteria for the location. Susceptible locations in the same system flow path which are subject to the same gas intrusion mechanisms may be verified by monitoring a representative subset of susceptible locations. Monitoring may not be practical for locations that are inaccessible due to radiological or environmental conditions, the plant configuration, or personnel safety. For these locations alternative methods (e.g., operating parameters, remote monitoring) may be used to monitor the susceptible location. Monitoring is not required for susceptible locations where the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.

[The 31 day Frequency takes into consideration the gradual nature of gas accumulation in the RHR Shutdown Cooling System piping and the procedural controls governing system operation.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES
None.
B 3.10 SPECIAL OPERATIONS

B 3.10.1 Inservice Leak and Hydrostatic Testing Operation

BASES

BACKGROUND

The purpose of this Special Operations LCO is to allow certain reactor coolant pressure tests to be performed in MODE 4 when the metallurgical characteristics of the reactor pressure vessel (RPV) require the pressure testing at temperatures > 200°F (normally corresponding to MODE 3) or to allow completing these reactor coolant pressure tests when the initial conditions do not require temperatures > 200°F. Furthermore, the purpose is to allow continued performance of control rod scram time testing required by SR 3.1.4.1 or SR 3.1.4.4 if reactor coolant temperatures exceed 200°F when the control rod scram time testing is initiated in conjunction with an inservice leak or hydrostatic test. These control rod scram time tests would be performed in accordance with LCO 3.10.4, "Single Control Rod Withdrawal – Cold Shutdown," during MODE 4 operation.

Inservice hydrostatic testing and system leakage pressure tests required by Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Ref. 1) are performed prior to the reactor going critical after a refueling outage. Recirculation pump operation and a water solid RPV (except for an air bubble for pressure control) are used to achieve the necessary temperatures and pressures required for these tests. The minimum temperatures (at the required pressures) allowed for these tests are determined from the RPV pressure and temperature (P/T) limits required by LCO 3.4.10, "Reactor Coolant System (RCS) Pressure and Temperature (P/T) Limits." These limits are conservatively based on the fracture toughness of the reactor vessel, taking into account anticipated vessel neutron fluence.

With increased reactor vessel fluence over time, the minimum allowable vessel temperature increases at a given pressure. Periodic updates to the RPV P/T limit curves are performed as necessary, based upon the results of analyses of irradiated surveillance specimens removed from the vessel. Hydrostatic and leak testing may eventually be required with minimum reactor coolant temperatures > 200°F. However, even with required minimum reactor coolant temperatures < 200°F, maintaining RCS temperatures within a small band during the test can be impractical. Removal of heat addition from recirculation pump operation and reactor core decay heat is coarsely controlled by Control Rod Drive Hydraulic System flow and Reactor Water Cleanup System non-regenerative heat exchanger operation. Test conditions are focused on maintaining a steady state pressure, and tightly limited temperature control poses an unnecessary burden on the operator and may not be achievable in certain instances.
The hydrostatic [and/or RCS System leakage] tests requires increasing pressure to approximately \([_ _ _] \) psig. Scram time testing required by SR 3.1.4.1 and SR 3.1.4.4 requires reactor pressure > [800] psig.

Other testing may be performed in conjunction with the allowances for inservice leak or hydrostatic tests and control rod scram time tests.

Allowing the reactor to be considered in MODE 4 when the reactor coolant temperature is > 200°F, during, or as a consequence of, hydrostatic or leak testing, or as a consequence of control rod scram time testing initiated in conjunction with an inservice leak or hydrostatic test, effectively provides an exception to MODE 3 requirements, including OPERABILITY of primary containment and the full complement of redundant Emergency Core Cooling Systems. Since the tests are performed nearly water solid, at low decay heat values, and near MODE 4 conditions, the stored energy in the reactor core will be very low. Under these conditions, the potential for failed fuel and a subsequent increase in coolant activity above the LCO 3.4.7, "RCS Specific Activity," limits are minimized. In addition, the secondary containment will be OPERABLE, in accordance with this Special Operations LCO, and will be capable of handling any airborne radioactivity or steam leaks that could occur during the performance of hydrostatic or leak testing. The required pressure testing conditions provide adequate assurance that the consequences of a steam leak will be conservatively bounded by the consequences of the postulated main steam line break outside of primary containment described in Reference 2. Therefore, these requirements will conservatively limit radiation releases to the environment.

In the unlikely event of any primary system leak that could result in draining of the RPV, the reactor vessel would rapidly depressurize. The make-up capability required in MODE 4 by LCO 3.5.2, "RPV Water Inventory Control," would be more than adequate to keep the RPV water level above the top of the active fuel (TAF) under this low decay heat load condition. Small system leaks would be detected by leakage inspections before significant inventory loss occurred.

For the purposes of this test, the protection provided by normally required MODE 4 applicable LCOs, in addition to the secondary containment requirements required to be met by this Special Operations LCO, will ensure acceptable consequences during normal hydrostatic test conditions and during postulated accident conditions.
As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation at reactor coolant temperatures > 200°F can be in accordance with Table 1.1-1 for MODE 3 operation without meeting this Special Operations LCO or its ACTIONS. This option may be required due to P/T limits, however, which require testing at temperatures > 200°F, performance of inservice leak and hydrostatic testing would also necessitate the inoperability of some subsystems normally required to be OPERABLE when > 200°F. Additionally, even with required minimum reactor coolant temperatures ≤ 200°F, RCS temperatures may drift above 200°F during the performance of inservice leak and hydrostatic testing or during subsequent control rod scram time testing, which is typically performed in conjunction with inservice leak and hydrostatic testing. While this Special Operations LCO is provided for inservice leak and hydrostatic testing, and for scram time testing initiated in conjunction with an inservice leak or hydrostatic test, parallel performance of other tests and inspections is not precluded.

If it is desired to perform these tests while complying with this Special Operations LCO, then the MODE 4 applicable LCOs and specified MODE 3 LCOs must be met. This Special Operations LCO allows changing Table 1.1-1 temperature limits for MODE 4 to "NA" and suspending the requirements of LCO 3.4.9, "Residual Heat Removal (RHR) Shutdown Cooling System - Cold Shutdown." The additional requirements for secondary containment LCOs to be met will provide sufficient protection for operations at reactor coolant temperatures > 200°F for the purpose of performing an inservice leak or hydrostatic test, and for control rod scram time testing initiated in conjunction with an inservice leak or hydrostatic test.

This LCO allows primary containment to be open for frequent unobstructed access to perform inspections, and for outage activities on various systems to continue consistent with the MODE 4 applicable requirements.

APPLICABILITY

The MODE 4 requirements may only be modified for the performance of, or as a consequence of, inservice leak or hydrostatic tests, or as a consequence of control rod scram time testing initiated in conjunction with an inservice leak or hydrostatic test, so that these operations can be considered as in MODE 4, even though the reactor coolant temperature is
APPLICABILITY (continued)

> 200°F. The additional requirement for secondary containment operability according to the imposed MODE 3 requirements provides conservatism in the response of the unit to any event that may occur. Operations in all other MODES are unaffected by this LCO.

ACTIONS

A Note has been provided to modify the ACTIONS related to inservice leak and hydrostatic testing operation. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for each requirement of the LCO not met provide appropriate compensatory measures for separate requirements that are not met. As such, a Note has been provided that allows separate Condition entry for each requirement of the LCO.

A.1

If an LCO specified in LCO 3.10.1 is not met, the ACTIONS applicable to the stated requirements are entered immediately and complied with. Required Action A.1 has been modified by a Note that clarifies the intent of another LCO's Required Action to be in MODE 4 includes reducing the average reactor coolant temperature to ≤ 200°F.

A.2.1 and A.2.2

Required Action A.2.1 and Required Action A.2.2 are alternate Required Actions that can be taken instead of Required Action A.1 to restore compliance with the normal MODE 4 requirements, and thereby exit this Special Operation LCO's Applicability. Activities that could further increase reactor coolant temperature or pressure are suspended immediately, in accordance with Required Action A.2.1, and the reactor coolant temperature is reduced to establish normal MODE 4 requirements. The allowed Completion Time of 24 hours for Required Action A.2.2 is based on engineering judgment and provides sufficient time to reduce the average reactor coolant temperature from the highest expected value to ≤ 200°F with normal cooldown procedures. The Completion Time is also consistent with the time provided in LCO 3.0.3 to reach MODE 4 from MODE 3.
SURVEILLANCE REQUIREMENTS

SR 3.10.1.1

The LCOs made applicable are required to have their Surveillances met to establish that this LCO is being met. A discussion of the applicable SRs is provided in their respective Bases.

REFERENCES

1. American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section XI.

2. FSAR, Section [15.1.40].
B 3.10 SPECIAL OPERATIONS

B 3.10.2 Reactor Mode Switch Interlock Testing

BASES

BACKGROUND

The purpose of this Special Operations LCO is to permit operation of the reactor mode switch from one position to another to confirm certain aspects of associated interlocks during periodic tests and calibrations in MODES 3, 4, and 5.

The reactor mode switch is a conveniently located, multiposition, keylock switch provided to select the necessary scram functions for various plant conditions (Ref. 1). The reactor mode switch selects the appropriate trip relays for scram functions and provides appropriate bypasses. The mode switch positions and related scram interlock functions are summarized as follows:

a. Shutdown - Initiates a reactor scram; bypasses main steam line isolation and reactor high water level scrams,

b. Refuel - Selects Neutron Monitoring System (NMS) scram function for low neutron flux level operation (but does not disable the average power range monitor scram); bypasses main steam line isolation and reactor high water level scrams,

c. Startup/Hot Standby - Selects NMS scram function for low neutron flux level operation (intermediate range monitors and average power range monitors); bypasses main steam line isolation and reactor high water level scrams, and

d. Run - Selects NMS scram function for power range operation.

The reactor mode switch also provides interlocks for such functions as control rod blocks, scram discharge volume trip bypass, refueling interlocks, suppression pool makeup, and main steam isolation valve isolations.

APPLICABLE SAFETY ANALYSES

The acceptance criterion for reactor mode switch interlock testing is to prevent fuel failure by precluding reactivity excursions or core criticality. The interlock functions of the shutdown and refuel positions normally maintained for the reactor mode switch in MODES 3, 4, and 5 are provided to preclude reactivity excursions that could potentially result in fuel failure. Interlock testing that requires moving the reactor mode switch to other positions (run, startup/hot standby, or refuel) while in MODE 3, 4, or 5, requires administratively maintaining all control rods inserted and no other CORE ALTERATIONS in progress. With all control rods inserted in
core cells containing one or more fuel assemblies, and no CORE ALTERATIONS in progress, there are no credible mechanisms for unacceptable reactivity excursions during the planned interlock testing.

For postulated accidents, such as control rod removal error during refueling or loading of fuel with a control rod withdrawn, the accident analysis demonstrates that fuel failure will not occur (Refs. 2 and 3). The withdrawal of a single control rod will not result in criticality when adequate SDM is maintained. Also, loading fuel assemblies into the core with a single control rod withdrawn will not result in criticality, thereby preventing fuel failure.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. MODES 3, 4, and 5 operations not specified in Table 1.1-1 can be performed in accordance with other Special Operations LCOs (i.e., LCO 3.10.1, "Inservice Leak and Hydrostatic Testing Operation," LCO 3.10.3, "Single Control Rod Withdrawal - Hot Shutdown," LCO 3.10.4, "Single Control Rod Withdrawal - Cold Shutdown," and LCO 3.10.8, "SDM Test - Refueling") without meeting this LCO or its ACTIONS. If any testing is performed that involves the reactor mode switch interlocks and requires repositioning beyond that specified in Table 1.1-1 for the current MODE of operation, the testing can be performed, provided all interlock functions potentially defeated are administratively controlled. In MODES 3, 4, and 5 with the reactor mode switch in shutdown as specified in Table 1.1-1, all control rods are fully inserted and a control rod block is initiated. Therefore, all control rods in core cells that contain one or more fuel assemblies must be verified fully inserted while in MODES 3, 4, and 5, with the reactor mode switch in other than the shutdown position. The additional LCO requirement to preclude CORE ALTERATIONS is appropriate for MODE 5 operations, as discussed below, and is inherently met in MODES 3 and 4 by the definition of CORE ALTERATIONS, which cannot be performed with the vessel head in place.

In MODE 5, with the reactor mode switch in the refuel position, only one control rod can be withdrawn under the refuel position one-rod-out interlock (LCO 3.9.2, "Refuel Position One-Rod-Out Interlock"). The refueling equipment interlocks (LCO 3.9.1, "Refueling Equipment
Interlocks*) appropriately control other CORE ALTERATIONS. Due to the increased potential for error in controlling these multiple interlocks, and the limited duration of tests involving the reactor mode switch position, conservative controls are required, consistent with MODES 3 and 4. The additional controls of administratively not permitting other CORE ALTERATIONS will adequately ensure that the reactor does not become critical during these tests.

APPLICABILITY

Any required periodic interlock testing involving the reactor mode switch, while in MODES 1 and 2, can be performed without the need for Special Operations exceptions. Mode switch manipulations in these MODES would likely result in unit trips. In MODES 3, 4, and 5, this Special Operations LCO is only permitted to be used to allow reactor mode switch interlock testing that cannot conveniently be performed without this allowance. Such interlock testing may consist of required Surveillances, or may be the result of maintenance, repair, or troubleshooting activities. In MODES 3, 4, and 5, the interlock functions provided by the reactor mode switch in shutdown (i.e., all control rods inserted and incapable of withdrawal) and refueling (i.e., refueling interlocks to prevent inadvertent criticality during CORE ALTERATIONS) positions can be administratively controlled adequately during the performance of certain tests.

ACTIONS

A.1, A.2, A.3.1, and A.3.2

These Required Actions are provided to restore compliance with the Technical Specifications overridden by this Special Operations LCO. Restoring compliance will also result in exiting the Applicability of this Special Operations LCO.

All CORE ALTERATIONS, except control rod insertion, if in progress, are immediately suspended in accordance with Required Action A.1, and all insertable control rods in core cells that contain one or more fuel assemblies are fully inserted within 1 hour, in accordance with Required Action A.2. This will preclude potential mechanisms that could lead to criticality. Suspension of CORE ALTERATIONS shall not preclude the completion of movement of a component to a safe condition. Placing the reactor mode switch in the shutdown position will ensure that all inserted control rods remain inserted and result in operating in accordance with Table 1.1-1. Alternatively, if in MODE 5, the reactor mode switch may be placed in the refuel position, which will also result in operating in accordance with Table 1.1-1. A Note is added to Required Action A.3.2 to indicate that this Required Action is not applicable in MODES 3 and 4, since only the shutdown position is allowed in these MODES. The allowed Completion Time of 1 hour for Required Action A.2, Required

*) Interlocks
BASES

ACTIONS (continued)

Action A.3.1, and Required Action A.3.2 provides sufficient time to normally insert the control rods and place the reactor mode switch in the required position, based on operating experience, and is acceptable given that all operations that could increase core reactivity have been suspended.

SURVEILLANCE REQUIREMENTS

SR 3.10.2.1 and SR 3.10.2.2

Meeting the requirements of this Special Operations LCO maintains operation consistent with or conservative to operating with the reactor mode switch in the shutdown position (or the refuel position for MODE 5). The functions of the reactor mode switch interlocks that are not in effect, due to the testing in progress, are adequately compensated for by the Special Operations LCO requirements. The administrative controls are to be periodically verified to ensure that the operational requirements continue to be met. [The Surveillances performed at the 12 hour and 24 hour Frequencies are intended to provide appropriate assurance that each operating shift is aware of and verifies compliance with these Special Operations LCO requirements. OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Chapter [7].
2. FSAR, Section [15.1.13].
3. FSAR, Section [15.1.14].
B 3.10 SPECIAL OPERATIONS
B 3.10.3 Single Control Rod Withdrawal - Hot Shutdown

BASES

BACKGROUND
The purpose of this MODE 3 Special Operations LCO is to permit the withdrawal of a single control rod for testing while in hot shutdown, by imposing certain restrictions. In MODE 3, the reactor mode switch is in the shutdown position, and all control rods are inserted and blocked from withdrawal. Many systems and functions are not required in these conditions, due to the other installed interlocks that are actuated when the reactor mode switch is in the shutdown position. However, circumstances may arise while in MODE 3 that present the need to withdraw a single control rod for various tests (e.g., friction tests, scram timing, and coupling integrity checks). These single control rod withdrawals are normally accomplished by selecting the refuel position for the reactor mode switch. This Special Operations LCO provides the appropriate additional controls to allow a single control rod withdrawal in MODE 3.

APPLICABLE SAFETY ANALYSES
With the reactor mode switch in the refuel position, the analyses for control rod withdrawal during refueling are applicable and, provided the assumptions of these analyses are satisfied in MODE 3, these analyses will bound the consequences of an accident. Explicit safety analyses in the FSAR (Ref. 1) demonstrate that the functioning of the refueling interlocks and adequate SDM will preclude unacceptable reactivity excursions.

Refueling interlocks restrict the movement of control rods to reinforce operational procedures that prevent the reactor from becoming critical. These interlocks prevent the withdrawal of more than one control rod. Under these conditions, since only one control rod can be withdrawn, the core will always be shut down even with the highest worth control rod withdrawn if adequate SDM exists.

The control rod scram function provides backup protection to normal refueling procedures and the refueling interlocks, which prevent inadvertent criticalities during refueling.

Alternate backup protection can be obtained by ensuring that a five by five array of control rods, centered on the withdrawn control rod, are inserted and incapable of withdrawal.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.
Single Control Rod Withdrawal - Hot Shutdown

Bases

LCO
As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation in MODE 3 with the reactor mode switch in the refuel position can be performed in accordance with other Special Operations LCOs (i.e., LCO 3.10.2, "Reactor Mode Switch Interlock Testing," without meeting this Special Operations LCO or its ACTIONS. However, if a single control rod withdrawal is desired in MODE 3, controls consistent with those required during refueling must be implemented and this Special Operations LCO applied. "Withdrawal" in this application includes the actual withdrawal of the control rod as well as maintaining the control rod in a position other than the full-in position, and reinserting the control rod. The refueling interlocks of LCO 3.9.2, "Refuel Position One-Rod-Out Interlock," required by this Special Operations LCO, will ensure that only one control rod can be withdrawn.

To back up the refueling interlocks (LCO 3.9.2), the ability to scram the withdrawn control rod in the event of an inadvertent criticality is provided by this Special Operations LCO’s requirements in Item d.1. Alternately, provided a sufficient number of control rods in the vicinity of the withdrawn control rod are known to be inserted and incapable of withdrawal (Item d.2), the possibility of criticality on withdrawal of this control rod is sufficiently precluded, so as not to require the scram capability of the withdrawn control rod. Also, once this alternate (Item d.2) is completed, the SDM requirement to account for both the withdrawn-untrippable control rod and the highest worth control rod may be changed to allow the withdrawn-untrippable control rod to be the single highest worth control rod.

Applicability
Control rod withdrawals are adequately controlled in MODES 1, 2, and 5 by existing LCOs. In MODES 3 and 4, control rod withdrawal is only allowed if performed in accordance with this Special Operations LCO or Special Operations LCO 3.10.4, and if limited to one control rod. This allowance is only provided with the reactor mode switch in the refuel position. For these conditions, the one-rod-out interlock (LCO 3.9.2), control rod position indication (LCO 3.9.4, "Control Rod Position Indication"), full insertion requirements for all other control rods and scram functions (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," and LCO 3.9.5," Control Rod OPERABILITY - Refueling"), or the added administrative controls in Item d.2 of this Special Operations LCO, minimize potential reactivity excursions.

Actions
A Note has been provided to modify the ACTIONS related to a single control rod withdrawal while in MODE 3. Section 1.3, Completion Times, specifies once a Condition has been entered, subsequent divisions, subsystems, components or variables expressed in the Condition discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies Required Actions of
the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for each requirement of the LCO not met provide appropriate compensatory measures for separate requirements that are not met. As such, a Note has been provided that allows separate Condition entry for each requirement of the LCO.

A.1

If one or more of the requirements specified in this Special Operations LCO are not met, the ACTIONS applicable to the stated requirements of the affected LCOs are immediately entered as directed by Required Action A.1. Required Action A.1 has been modified by a Note that clarifies the intent of any other LCO’s Required Action, to insert all control rods. This Required Action includes exiting this Special Operations Applicability by returning the reactor mode switch to the shutdown position. A second Note has been added, which clarifies that this Required Action is only applicable if the requirements not met are for an affected LCO.

A.2.1 and A.2.2

Required Actions A.2.1 and A.2.2 are alternate Required Actions that can be taken instead of Required Action A.1 to restore compliance with the normal MODE 3 requirements, thereby exiting this Special Operations LCO’s Applicability. Actions must be initiated immediately to insert all insertable control rods. Actions must continue until all such control rods are fully inserted. Placing the reactor mode switch in the shutdown position will ensure all inserted rods remain inserted and restore operation in accordance with Table 1.1-1. The allowed Completion Time of 1 hour to place the reactor mode switch in the shutdown position provides sufficient time to normally insert the control rods.

SURVEILLANCE REQUIREMENTS

SR 3.10.3.1, SR 3.10.3.2, and SR 3.10.3.3

The other LCOs made applicable in this Special Operations LCO are required to have their Surveillances met to establish that this Special Operations LCO is being met. If the local array of control rods is inserted and disarmed while the scram function for the withdrawn rod is not
available, periodic verification in accordance with SR 3.10.3.2 is required to preclude the possibility of criticality. SR 3.10.3.2 has been modified by a Note, which clarifies that this SR is not required to be met if SR 3.10.3.1 is satisfied for LCO 3.10.3.d.1 requirements, since SR 3.10.3.2 demonstrates that the alternative LCO 3.10.3.d.2 requirements are satisfied. Also, SR 3.10.3.3 verifies that all control rods other than the control rod being withdrawn are fully inserted. [The 24 hour Frequency is acceptable because of the administrative controls on control rod withdrawal, the protection afforded by the LCOs involved, and hardwire interlocks that preclude additional control rod withdrawals.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES

1. FSAR, Section [15.1.13].
B 3.10 SPECIAL OPERATIONS

B 3.10.4 Single Control Rod Withdrawal - Cold Shutdown

BASSES

BACKGROUND
The purpose of this MODE 4 Special Operations LCO is to permit the withdrawal of a single control rod for testing or maintenance, while in cold shutdown, by imposing certain restrictions. In MODE 4, the reactor mode switch is in the shutdown position, and all control rods are inserted and blocked from withdrawal. Many systems and functions are not required in these conditions, due to the installed interlocks associated with the reactor mode switch in the shutdown position. Circumstances may arise while in MODE 4, however, that present the need to withdraw a single control rod for various tests (e.g., friction tests, scram time testing, and coupling integrity checks). Certain situations may also require the removal of the associated control rod drive (CRD). These single control rod withdrawals and possible subsequent removals are normally accomplished by selecting the refuel position for the reactor mode switch.

APPLICABLE SAFETY ANALYSES
With the reactor mode switch in the refuel position, the analyses for control rod withdrawal during refueling are applicable and, provided the assumptions of these analyses are satisfied in MODE 4, these analyses will bound the consequences of an accident. Explicit safety analyses in the FSAR (Ref. 1) demonstrate that the functioning of the refueling interlocks and adequate SDM will preclude unacceptable reactivity excursions.

Refueling interlocks restrict the movement of control rods to reinforce operational procedures that prevent the reactor from becoming critical. These interlocks prevent the withdrawal of more than one control rod. Under these conditions, since only one control rod can be withdrawn, the core will always be shut down even with the highest worth control rod withdrawn if adequate SDM exists.

The control rod scram function provides backup protection in the event normal refueling procedures and the refueling interlocks fail to prevent inadvertent criticalities during refueling. Alternate backup protection can be obtained by ensuring that a five by five array of control rods, centered on the withdrawn control rod, are inserted and incapable of withdrawal. This alternate backup protection is required when removing a CRD because this removal renders the withdrawn control rod incapable of being scrammed.
As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation in MODE 4 with the reactor mode switch in the refuel position can be performed in accordance with other LCOs (i.e., Special Operations LCO 3.10.2, "Reactor Mode Switch Interlock Testing") without meeting this Special Operations LCO or its ACTIONS. If a single control rod withdrawal is desired in MODE 4, controls consistent with those required during refueling must be implemented and this Special Operations LCO applied. "Withdrawal" in this application includes the actual withdrawal of the control rod as well as maintaining the control rod in a position other than the full-in position, and reinserting the control rod.

The refueling interlocks of LCO 3.9.2, "Refuel Position One-Rod-Out Interlock," required by this Special Operations LCO will ensure that only one control rod can be withdrawn. At the time CRD removal begins, the disconnection of the position indication probe will cause LCO 3.9.4, "Control Rod Position Indication," and therefore, LCO 3.9.2 to fail to be met. Therefore, prior to commencing CRD removal, a control rod withdrawal block is required to be inserted to ensure that no additional control rods can be withdrawn and that compliance with this Special Operations LCO is maintained.

To back up the refueling interlocks (LCO 3.9.2) or the control rod withdrawal block, the ability to scram the withdrawn control rod in the event of an inadvertent criticality is provided by the Special Operations LCO requirements in Item c.1. Alternatively, when the scram function is not OPERABLE, or when the CRD is to be removed, a sufficient number of rods in the vicinity of the withdrawn control rod are required to be inserted and made incapable of withdrawal (Item c.2). This precludes the possibility of criticality upon withdrawal of this control rod. Also, once this alternate (Item c.2) is completed, the SDM requirement to account for both the withdrawn-untrippable control rod and the highest worth control rod may be changed to allow the withdrawn-untrippable control rod to be the single highest worth control rod.
BASES

APPLICABILITY
Control rod withdrawals are adequately controlled in MODES 1, 2, and 5 by existing LCOs. In MODES 3 and 4, control rod withdrawal is only allowed if performed in accordance with Special Operations LCO 3.10.3, or this Special Operations LCO, and if limited to one control rod. This allowance is only provided with the reactor mode switch in the refuel position.

During these conditions, the full insertion requirements for all other control rods, the one-rod-out interlock (LCO 3.9.2), control rod position indication (LCO 3.9.4), and scram functions (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," and LCO 3.9.5, "Control Rod OPERABILITY - Refueling"), or the added administrative controls in Item b.2 and Item c.2 of this Special Operations LCO, provide mitigation of potential reactivity excursions.

ACTIONS
A Note has been provided to modify the ACTIONS related to a single control rod withdrawal while in MODE 3. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for each requirement of the LCO not met provide appropriate compensatory measures for separate requirements that are not met. As such, a Note has been provided that allows separate Condition entry for each requirement of the LCO.

A.1, A.2.1, and A.2.2

If one or more of the requirements of this Special Operations LCO are not met with the affected control rod insertable, these Required Actions restore operation consistent with normal MODE 4 conditions (i.e., all rods inserted) or with the exceptions allowed in this Special Operations LCO. Required Action A.1 has been modified by a Note that clarifies that the intent of any other LCO's Required Action to insert all control rods. This Required Action includes exiting this Special Operations Applicability by returning the reactor mode switch to the shutdown position. A second Note has been added to Required Action A.1 to clarify that this Required Action is only applicable if the requirements not met are for an affected LCO.

Required Actions A.2.1 and A.2.2 are specified, based on the assumption that the control rod is being withdrawn. If the control rod is still insertable, actions must be immediately initiated to fully insert all insertable control rods and within 1 hour place the reactor mode switch in the shutdown position.
position. Actions must continue until all such control rods are fully inserted. The allowed Completion Time of 1 hour for placing the reactor mode switch in the shutdown position provides sufficient time to normally insert the control rods.

B.1, B.2.1, and B.2.2

If one or more of the requirements of this Special Operations LCO are not met with the affected control rod not insertable, withdrawal of the control rod and removal of the associated CRD must be immediately suspended. If the CRD has been removed, such that the control rod is not insertable, the Required Actions require the most expeditious action be taken to either initiate action to restore the CRD and insert its control rod, or initiate action to restore compliance with this Special Operations LCO.

SURVEILLANCE REQUIREMENTS

The other LCOs made applicable by this Special Operations LCO are required to have their associated surveillances met to establish that this Special Operations LCO is being met. If the local array of control rods is inserted and disarmed while the scram function for the withdrawn rod is not available, periodic verification is required to ensure that the possibility of criticality remains precluded. Verification that all the other control rods are fully inserted is required to meet the SDM requirements. Verification that a control rod withdrawal block has been inserted ensures that no other control rods can be inadvertently withdrawn under conditions when position indication instrumentation is inoperable for the affected control rod. [The 24 hour Frequency is acceptable because of the administrative controls on control rod withdrawals, the protection afforded by the LCOs involved, and hardwire interlocks to preclude an additional control rod withdrawal.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

----------------------------------- REVIEWER’S NOTE -----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.10.4.2 and SR 3.10.4.4 have been modified by Notes, which clarify that these SRs are not required to be met if the alternative requirements demonstrated by SR 3.10.4.1 are satisfied.

REFERENCES
1. FSAR, Section [15.1.13].
B 3.10 SPECIAL OPERATIONS

B 3.10.5 Single Control Rod Drive (CRD) Removal - Refueling

BASES

BACKGROUND

The purpose of this MODE 5 Special Operations LCO is to permit the removal of a single CRD during refueling operations by imposing certain administrative controls. Refueling interlocks restrict the movement of control rods and the operation of the refueling equipment to reinforce operational procedures that prevent the reactor from becoming critical during refueling operations. During refueling operations, no more than one control rod is permitted to be withdrawn from a core cell containing one or more fuel assemblies. The refueling interlocks use the "full in" position indicators to determine the position of all control rods. If the "full in" position signal is not present for every control rod, then the all rods in permissive for the refueling equipment interlocks is not present and fuel loading is prevented. Also, the refuel position one-rod-out interlock will not allow the withdrawal of a second control rod.

The control rod scram function provides backup protection in the event normal refueling procedures, and the refueling interlocks described above fail to prevent inadvertent criticalities during refueling. The requirement for this function to be OPERABLE precludes the possibility of removing the CRD once a control rod is withdrawn from a core cell containing one or more fuel assemblies. This Special Operations LCO provides controls sufficient to ensure the possibility of an inadvertent criticality is precluded, while allowing a single CRD to be removed from a core cell containing one or more fuel assemblies. The removal of the CRD involves disconnecting the position indication probe, which causes noncompliance with LCO 3.9.4, "Control Rod Position Indication," and, therefore, LCO 3.9.1, "Refueling Equipment Interlocks," and LCO 3.9.2, "Refueling Position One-Rod-Out Interlock." The CRD removal also requires isolation of the CRD from the CRD Hydraulic System, thereby causing inoperability of the control rod (LCO 3.9.5, "Control Rod OPERABILITY - Refueling").

APPLICABLE SAFETY ANALYSES

With the reactor mode switch in the refuel position, the analyses for control rod withdrawal during refueling are applicable and, provided the assumptions of these analyses are satisfied, these analyses will bound the consequences of accidents. Explicit safety analyses in the FSAR (Ref. 1) demonstrate that proper operation of the refueling interlocks and adequate SDM will preclude unacceptable reactivity excursions.

Refueling interlocks restrict the movement of control rods and the operation of the refueling equipment to reinforce operational procedures that prevent the reactor from becoming critical. These interlocks prevent the withdrawal of more than one control rod. Under these conditions, since only one control rod can be withdrawn, the core will always be shut...
APPLICABLE SAFETY ANALYSES (continued)

down even with the highest worth control rod withdrawn if adequate SDM exists. By requiring all other control rods to be inserted and a control rod withdrawal block initiated, the function of the inoperable one-rod-out interlock (LCO 3.9.2) is adequately maintained. This Special Operations LCO requirement to suspend all CORE ALTERATIONS adequately compensates for the inoperable all rods in permissive for the refueling equipment interlocks (LCO 3.9.1).

The control rod scram function provides backup protection to normal refueling procedures and the refueling interlocks, which prevent inadvertent criticalities during refueling. Since the scram function and refueling interlocks may be suspended, alternate backup protection required by this Special Operations LCO is obtained by ensuring that a five by five array of control rods, centered on the withdrawn control rod, are inserted and are incapable of being withdrawn (by insertion of a control rod block).

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation in MODE 5 with any of the following LCOs, LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," LCO 3.3.8.2, "Reactor Protection System (RPS) Electric Power Monitoring," LCO 3.9.1, LCO 3.9.2, LCO 3.9.4, or LCO 3.9.5 not met, can be performed in accordance with the Required Actions of these LCOs without meeting this Special Operations LCO or its ACTIONS. However, if a single CRD removal from a core cell containing one or more fuel assemblies is desired in MODE 5, controls consistent with those required by LCO 3.3.1.1, LCO 3.3.8.2, LCO 3.9.1, LCO 3.9.2, LCO 3.9.4, and LCO 3.9.5 must be implemented, and this Special Operations LCO applied.

By requiring all other control rods to be inserted and a control rod withdrawal block initiated, the function of the inoperable one-rod-out interlock (LCO 3.9.2) is adequately maintained. This Special Operations LCO requirement to suspend all CORE ALTERATIONS adequately compensates for the inoperable all rods in permissive for the refueling equipment interlocks (LCO 3.9.1). Ensuring that the five by five array of
control rods, centered on the withdrawn control rod, are inserted and incapable of withdrawal adequately satisfies the backup protection that LCO 3.3.1.1 and LCO 3.9.2 would have otherwise provided. Also, once these requirements (Items a, b, and c) are completed, the SDM requirement to account for both the withdrawn-untrippable control rod and the highest worth control rod may be changed to allow the withdrawn-untrippable control rod to be the single highest worth control rod.

APPLICABILITY

Operation in MODE 5 is controlled by existing LCOs. The allowance to comply with this Special Operations LCO in lieu of the ACTIONS of LCO 3.3.1.1, LCO 3.3.8.2, LCO 3.9.1, LCO 3.9.2, LCO 3.9.4, and LCO 3.9.5 is appropriately controlled with the additional administrative controls required by this Special Operations LCO, which reduce the potential for reactivity excursions.

ACTIONS

A.1, A.2.1, and A.2.2

If one or more of the requirements of this Special Operations LCO are not met, the immediate implementation of these Required Actions restores operation consistent with the normal requirements for failure to meet LCO 3.3.1.1, LCO 3.9.1, LCO 3.9.2, LCO 3.9.4, and LCO 3.9.5 (i.e., all control rods inserted) or with the allowances of this Special Operations LCO. The Completion Times for Required Action A.1, Required Action A.2.1, and Required Action A.2.2 are intended to require that these Required Actions be implemented in a very short time and carried through in an expeditious manner to either initiate action to restore the CRD and insert its control rod, or initiate action to restore compliance with this Special Operations LCO. Actions must continue until either Required Action A.2.1 or Required Action A.2.2 is satisfied.

SURVEILLANCE REQUIREMENTS

SR 3.10.5.1, SR 3.10.5.2, SR 3.10.5.3, SR 3.10.5.4, and SR 3.10.5.5

Verification that all the control rods, other than the control rod withdrawn for the removal of the associated CRD, are fully inserted is required to ensure the SDM is within limits. Verification that the local five by five array of control rods, other than the control rod withdrawn for removal of the associated CRD, is inserted and disarmed, while the scram function for the withdrawn rod is not available, is required to ensure that the possibility of criticality remains precluded. Verification that a control rod withdrawal block has been inserted ensures that no other control rods can be inadvertently withdrawn under conditions when position indication instrumentation is inoperable for the withdrawn control rod. The Surveillance for LCO 3.1.1, which is made applicable by this Special
BASES

SURVEILLANCE REQUIREMENTS (continued)

Operations LCO, is required in order to establish that this Special Operations LCO is being met. Verification that no other CORE ALTERATIONS are being made is required to ensure the assumptions of the safety analysis are satisfied.

Periodic verification of the administrative controls established by this Special Operations LCO is prudent to preclude the possibility of an inadvertent criticality. [The 24 hour Frequency is acceptable, given the administrative controls on control rod removal and hardwire interlock to block an additional control rod withdrawal.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-----------------------------------REVIEWER’S NOTE-----------------------------------

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

[]

REFERENCES

1. FSAR, Section [15.1.13].
Bases

Background

The purpose of this MODE 5 Special Operations LCO is to permit multiple control rod withdrawal during refueling by imposing certain administrative controls.

Refueling interlocks restrict the movement of control rods and the operation of the refueling equipment to reinforce operational procedures that prevent the reactor from becoming critical during refueling operations. During refueling operations, no more than one control rod is permitted to be withdrawn from a core cell containing one or more fuel assemblies. When all four fuel assemblies are removed from a cell, the control rod may be withdrawn with no restrictions. Any number of control rods may be withdrawn and removed from the reactor vessel if their cells contain no fuel.

The refueling interlocks use the "full in" position indicators to determine the position of all control rods. If the "full in" position signal is not present for every control rod, then the all rods in permissive for the refueling equipment interlocks is not present and fuel loading is prevented. Also, the refuel position one-rod-out interlock will not allow the withdrawal of a second control rod.

To allow more than one control rod to be withdrawn during refueling, these interlocks must be defeated. This Special Operations LCO establishes the necessary administrative controls to allow bypassing the "full in" position indicators.

Applicable Safety Analyses

Explicit safety analyses in the FSAR (Ref. 1) demonstrate that the functioning of the refueling interlocks and adequate SDM will prevent unacceptable reactivity excursions during refueling. To allow multiple control rod withdrawals, control rod removals, associated control rod drive (CRD) removal, or any combination of these, the "full in" position indication is allowed to be bypassed for each withdrawn control rod if all fuel has been removed from the cell. With no fuel assemblies in the core cell, the associated control rod has no reactivity control function and is not required to remain inserted. Prior to reloading fuel into the cell, however, the associated control rod must be inserted to ensure that an inadvertent criticality does not occur, as evaluated in the Reference 1 analysis.
APPLICABLE SAFETY ANALYSES (continued)

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Operation in MODE 5 with either LCO 3.9.3, "Control Rod Position," LCO 3.9.4, "Control Rod Position Indication," or LCO 3.9.5, "Control Rod OPERABILITY - Refueling," not met, can be performed in accordance with the Required Actions of these LCOs without meeting this Special Operations LCO or its ACTIONS. If multiple control rod withdrawal or removal, or CRD removal is desired, all four fuel assemblies are required to be removed from the associated cells. Prior to entering this LCO, any fuel remaining in a cell whose CRD was previously removed under the provisions of another LCO must be removed. "Withdrawal" in this application includes the actual withdrawal of the control rod as well as maintaining the control rod in a position other than the full-in position, and reinserting the control rod.

When fuel is loaded into the core with multiple control rods withdrawn, special spiral reload sequences are used to ensure that reactivity additions are minimized. Spiral reloading encompasses reloading a cell (four fuel locations immediately adjacent to a control rod) on the edge of a continuous fueled region (the cell can be loaded in any sequence). Otherwise, all control rods must be fully inserted before loading fuel.

APPLICABILITY

Operation in MODE 5 is controlled by existing LCOs. The exceptions from other LCO requirements (e.g., the ACTIONS of LCO 3.9.3, LCO 3.9.4, or LCO 3.9.5) allowed by this Special Operations LCO are appropriately controlled by requiring all fuel to be removed from cells whose "full in" indicators are allowed to be bypassed.

ACTIONS

A.1, A.2.1, and A.2.2

If one or more of the requirements of this Special Operations LCO are not met, the immediate implementation of these Required Actions restores operation consistent with the normal requirements for refueling (i.e., all control rods inserted in core cells containing one or more fuel assemblies) or with the exceptions granted by this Special Operations LCO. The
Completion Times for Required Action A.1, Required Action A.2.1, and Required Action A.2.2 are intended to require that these Required Actions be implemented in a very short time and carried through in an expeditious manner to either initiate action to restore the affected CRDs and insert their control rods, or initiate action to restore compliance with this Special Operations LCO.

SURVEILLANCE REQUIREMENTS

SR 3.10.6.1, SR 3.10.6.2, and SR 3.10.6.3

Periodic verification of the administrative controls established by this Special Operations LCO is prudent to preclude the possibility of an inadvertent criticality. [The 24 hour Frequency is acceptable, given the administrative controls on fuel assembly and control rod removal, and takes into account other indications of control rod status available in the control room.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

-------------------------------REVIEWER’S NOTE------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

-------------------------------REVIEWER’S NOTE------------------------------

REFERENCES

1. FSAR, Section [15.1.13].
B 3.10 SPECIAL OPERATIONS

B 3.10.7 Control Rod Testing - Operating

BASES

BACKGROUND

The purpose of this Special Operations LCO is to permit control rod testing, while in MODES 1 and 2, by imposing certain administrative controls. Control rod patterns during startup conditions are controlled by the operator and the rod worth minimizer (RWM) (LCO 3.3.2.1, "Control Rod Block Instrumentation"), such that only the specified control rod sequences and relative positions required by LCO 3.1.6, "Rod Pattern Control," are allowed over the operating range from all control rods inserted to the low power setpoint (LPSP) of the RWM. The sequences effectively limit the potential amount and rate of reactivity increase that could occur during a control rod drop accident (CRDA). During these conditions, control rod testing is sometimes required that may result in control rod patterns not in compliance with the prescribed sequences of LCO 3.1.6. These tests include SDM demonstrations, control rod scram time testing, control rod friction testing, and testing performed during the Startup Test Program. This Special Operations LCO provides the necessary exemption to the requirements of LCO 3.1.6 and provides additional administrative controls to allow the deviations in such tests from the prescribed sequences in LCO 3.1.6.

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in evaluating the CRDA are summarized in References 1 and 2. CRDA analyses assume the reactor operator follows prescribed withdrawal sequences. These sequences define the potential initial conditions for the CRDA analyses. The RWM provides backup to operator control of the withdrawal sequences to ensure the initial conditions of the CRDA analyses are not violated. For special sequences developed for control rod testing, the initial control rod patterns assumed in the safety analysis of References 1 and 2 may not be preserved. Therefore special CRDA analyses are required to demonstrate that these special sequences will not result in unacceptable consequences, should a CRDA occur during the testing. These analyses, performed in accordance with an NRC approved methodology, are dependent on the specific test being performed.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.
BASES

LCO As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Control rod testing may be performed in compliance with the prescribed sequences of LCO 3.1.6, and during these tests, no exceptions to the requirements of LCO 3.1.6 are necessary. For testing performed with a sequence not in compliance with LCO 3.1.6, the requirements of LCO 3.1.6 may be suspended, provided additional administrative controls are placed on the test to ensure that the assumptions of the special safety analysis for the test sequence are satisfied. Assurances that the test sequence is followed can be provided by either programming the test sequence into the RWM, with conformance verified as specified in SR 3.3.2.1.8 and allowing the RWM to monitor control rod withdrawal and provide appropriate control rod blocks if necessary, or by verifying conformance to the approved test sequence by a second licensed operator or other qualified member of the technical staff. These controls are consistent with those normally applied to operation in the startup range as defined in the SRs and ACTIONS of LCO 3.3.2.1, "Control Rod Block Instrumentation."

APPLICABILITY Control rod testing, while in MODES 1 and 2, with THERMAL POWER greater than the LPSP of the RWM, is adequately controlled by the existing LCOs on power distribution limits and control rod block instrumentation. Control rod movement during these conditions is not restricted to prescribed sequences and can be performed within the constraints of LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)," LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR)," and LCO 3.3.2.1. With THERMAL POWER less than or equal to the LPSP of the RWM, the provisions of this Special Operations LCO are necessary to perform special tests that are not in conformance with the prescribed sequences of LCO 3.1.6. While in MODES 3 and 4, control rod withdrawal is only allowed if performed in accordance with Special Operations LCO 3.10.3, "Single Control Rod Withdrawal - Hot Shutdown," or Special Operations LCO 3.10.4, "Single Control Rod Withdrawal - Cold Shutdown," which provide adequate controls to ensure that the assumptions of the safety analyses of Reference 1 and 2 are satisfied. During these Special Operations and while in MODE 5, the one-rod-out interlock (LCO 3.9.2, "Refuel Position One-Rod-Out Interlock,") and scram functions (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," and LCO 3.9.5, "Control Rod OPERABILITY - Refueling"), or the added administrative controls prescribed in the applicable Special Operations LCOs, provide mitigation of potential reactive excursions.
BASES

ACTIONS

A.1

With the requirements of the LCO not met (e.g., the control rod pattern is
not in compliance with the special test sequence, the sequence is
improperly loaded in the RWM) the testing is required to be immediately
suspended. Upon suspension of the special test, the provisions of
LCO 3.1.6 are no longer excepted, and appropriate actions are to be
taken to restore the control rod sequence to the prescribed sequence of
LCO 3.1.6, or to shut down the reactor, if required by LCO 3.1.6.

SURVEILLANCE REQUIREMENTS

SR 3.10.7.1

With the special test sequence not programmed into the RWM, a second
licensed operator or other qualified member of the technical staff is
required to verify conformance with the approved sequence for the test.
[Note: A member of the technical staff is considered to be qualified if he
possesses skills equal to a licensed operator [in the following areas:]]
This verification must be performed during control rod movement to
prevent deviations from the specified sequence. A Note is added to
indicate that this Surveillance does not need to be performed if
SR 3.10.7.2 is satisfied.

SR 3.10.7.2

When the RWM provides conformance to the special test sequence, the
test sequence must be verified to be correctly loaded into the RWM prior
to control rod movement. This Surveillance demonstrates compliance
with SR 3.3.2.1.8, thereby demonstrating that the RWM is OPERABLE. A
Note has been added to indicate that this Surveillance does not need to
be performed if SR 3.10.7.1 is satisfied.

REFERENCES

1. NEDE-24011-P-A-US, General Electric Standard Application for
Reactor Fuel, Supplement for United States (as amended).

2. Letter from T. Pickens (BWROG) to G.C. Lainas (NRC)
"Amendment 17 to General Electric Licensing Topical Report
B 3.10 SPECIAL OPERATIONS

B 3.10.8 SHUTDOWN MARGIN (SDM) Test - Refueling

BASES

BACKGROUND

The purpose of this MODE 5 Special Operations LCO is to permit SDM testing to be performed for those plant configurations in which the reactor pressure vessel (RPV) head is either not in place or the head bolts are not fully tensioned.

LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," requires that adequate SDM be demonstrated following fuel movements or control rod replacement within the RPV. The demonstration must be performed prior to or within 4 hours after criticality is reached. This SDM test may be performed prior to or during the first startup following the refueling. Performing the SDM test prior to startup requires the test to be performed while in MODE 5, with the vessel head bolts less than fully tensioned (and possibly with the vessel head removed). While in MODE 5, the reactor mode switch is required to be in the shutdown or refuel position, where the applicable control rod blocks ensure that the reactor will not become critical. The SDM test requires the reactor mode switch to be in the startup/hot standby position, since more than one control rod will be withdrawn for the purpose of demonstrating adequate SDM. This Special Operations LCO provides the appropriate additional controls to allow withdrawing more than one control rod from a core cell containing one or more fuel assemblies when the reactor vessel head bolts are less than fully tensioned.

APPLICABLE SAFETY ANALYSES

Prevention and mitigation of unacceptable reactivity excursions during control rod withdrawal, with the reactor mode switch in the startup/hot standby position while in MODE 5, is provided by the intermediate range monitor (IRM) neutron flux scram (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation"), and control rod block instrumentation (LCO 3.3.2.1, "Control Rod Block Instrumentation"). The limiting reactivity excursion during startup conditions while in MODE 5 is the control rod drop accident (CRDA).

CRDA analyses assume that the reactor operator follows prescribed withdrawal sequences. For SDM tests performed within these defined sequences, the analyses of References 1 and 2 are applicable. However, for some sequences developed for the SDM testing, the control rod patterns assumed in the safety analyses of References 1 and 2 may not be met. Therefore, special CRDA analyses, performed in accordance with an NRC approved methodology, are required to demonstrate the SDM test sequence will not result in unacceptable consequences should a CRDA occur during the testing. For the purpose of this test, the protection provided by the normally required MODE 5 applicable LCOs, in addition to the requirements of this LCO, will maintain normal test
operations as well as postulated accidents within the bounds of the appropriate safety analyses (Refs. 1 and 2). In addition to the added requirements for the RWM, APRM, and control rod coupling, the notch out mode is specified for out of sequence withdrawals. Requiring the notch out mode limits withdrawal steps to a single notch, which limits inserted reactivity, and allows adequate monitoring of changes in neutron flux, which may occur during the test.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. SDM tests may be performed while in MODE 2, in accordance with Table 1.1-1, without meeting this Special Operations LCO or its ACTIONS. For SDM tests performed while in MODE 5, additional requirements must be met to ensure that adequate protection against potential reactivity excursions is available. To provide additional scram protection, beyond the normally required IRMs, the APRMs are also required to be OPERABLE (LCO 3.3.1.1, Functions 2.a and 2.e) as though the reactor were in MODE 2. Because multiple control rods will be withdrawn and the reactor will potentially become critical, RPS MODE 2 requirements for Functions 2.a and 2.e of Table 3.3.1.1-1 must be enforced and the approved control rod withdrawal sequence must be enforced by the RWM (LCO 3.3.2.1, Function 2, MODE 2), or must be verified by a second licensed operator or other qualified member of the technical staff. To provide additional protection against an inadvertent criticality, control rod withdrawals that do not conform to the banked position withdrawal sequence specified in LCO 3.1.6, "Rod Pattern Control," (i.e., out of sequence control rod withdrawals) must be made in the individual notched withdrawal mode to minimize the potential reactivity insertion associated with each movement. Coupling integrity of withdrawn control rods is required to minimize the probability of a CRDA and ensure proper functioning of the withdrawn control rods, if they are required to scram. Because the reactor vessel head may be removed during these tests, no other CORE ALTERATIONS may be in progress. Furthermore, since the control rod scram function with the RCS at atmospheric pressure relies solely on the CRD accumulator, it is essential that the CRD charging water header remain pressurized. This Special Operations LCO then allows changing the Table 1.1-1 reactor mode switch position requirements to include the startup/hot standby position, such that the SDM tests may be performed while in MODE 5.
BASES

APPLICABILITY
These SDM test Special Operations requirements are only applicable if the SDM tests are to be performed while in MODE 5 with the reactor vessel head removed or the head bolts not fully tensioned. Additional requirements during these tests to enforce control rod withdrawal sequences and restrict other CORE ALTERATIONS provide protection against potential reactivity excursions. Operations in all other MODES are unaffected by this LCO.

ACTIONS

A.1

With one or more control rods discovered uncoupled during this Special Operation, a controlled insertion of each uncoupled control rod is required; either to attempt recoupling, or to preclude a control rod drop. This controlled insertion is preferred since, if the control rod fails to follow the drive as it is withdrawn (i.e., is "stuck" in an inserted position), placing the reactor mode switch in the shutdown position per Required Action B.1 could cause substantial secondary damage. If recoupling is not accomplished, operation may continue, provided the control rods are fully inserted within 3 hours and disarmed (electrically or hydraulically) within 4 hours. Inserting a control rod ensures the shutdown and scram capabilities are not adversely affected. The control rod is disarmed to prevent inadvertent withdrawal during subsequent operations. The control rods can be hydraulically disarmed by closing the drive water and exhaust water isolation valves. Electrically the control rods can be disarmed by disconnecting power from all four directional control valve solenoids. Required Action A.1 is modified by a Note that allows the RWM to be bypassed if required to allow insertion of the inoperable control rods and continued operation. LCO 3.3.2.1, "Control Rod Block Instrumentation," Actions provide additional requirements when the RWM is bypassed to ensure compliance with the CRDA analysis.

The allowed Completion Times are reasonable, considering the small number of allowed inoperable control rods, and provide time to insert and disarm the control rods in an orderly manner and without challenging plant systems.

Condition A is modified by a Note allowing separate Condition entry for each uncoupled control rod. This is acceptable since the Required Actions for this Condition provide appropriate compensatory actions for each uncoupled control rod. Complying with the Required Actions may allow for continued operation. Subsequent uncoupled control rods are governed by subsequent entry into the Condition and application of the Required Actions.
BASES

ACTIONS (continued)

B.1

With one or more of the requirements of this LCO not met for reasons other than an uncoupled control rod, the testing should be immediately stopped by placing the reactor mode switch in the shutdown or refuel position. This results in a condition that is consistent with the requirements for MODE 5 where the provisions of this Special Operations LCO are no longer required.

SURVEILLANCE REQUIREMENTS

SR 3.10.8.1

Performance of the applicable SRs for LCO 3.3.1.1, Functions 2.a and 2.e will ensure that the reactor is operated within the bounds of the safety analysis.

SR 3.10.8.1, SR 3.10.8.2, and SR 3.10.8.3

LCO 3.3.1.1, Functions 2.a and 2.e, made applicable in this Special Operations LCO, are required to have applicable Surveillances met to establish that this Special Operations LCO is being met. However, the control rod withdrawal sequences during the SDM tests may be enforced by the RWM (LCO 3.3.2.1, Function 2, MODE 2 requirements) or by a second licensed operator or other qualified member of the technical staff. As noted, either the applicable SRs for the RWM (LCO 3.3.2.1) must be satisfied according to the applicable Frequencies (SR 3.10.8.2), or the proper movement of control rods must be verified (SR 3.10.8.3). This latter verification (i.e., SR 3.10.8.3) must be performed during control rod movement to prevent deviations from the specified sequence. These surveillances provide adequate assurance that the specified test sequence is being followed.

SR 3.10.8.4

Periodic verification of the administrative controls established by this LCO will ensure that the reactor is operated within the bounds of the safety analysis. [The 12 hour Frequency is intended to provide appropriate assurance that each operating shift is aware of and verifies compliance with these Special Operations LCO requirements.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
BASES

SURVEILLANCE REQUIREMENTS (continued)

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

SR 3.10.8.5

Coupling verification is performed to ensure the control rod is connected to the control rod drive mechanism and will perform its intended function when necessary. The verification is required to be performed any time a control rod is withdrawn to the "full out" notch position, or prior to declaring the control rod OPERABLE after work on the control rod or CRD System that could affect coupling. This Frequency is acceptable, considering the low probability that a control rod will become uncoupled when it is not being moved as well as operating experience related to uncoupling events.

SR 3.10.8.6

CRD charging water header pressure verification is performed to ensure the motive force is available to scram the control rods in the event of a scram signal. A minimum accumulator pressure is specified, below which the capability of the accumulator to perform its intended function becomes degraded and the accumulator is considered inoperable. The minimum accumulator pressure of 940 psig is well below the expected pressure of 1100 psig. The 7 day Frequency has been shown to be acceptable through operating experience and takes into account indications available in the control room.

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

BASES

REFERENCES

3. [Plant specific transient analysis].

4. [Plant specific reload analysis].
B 3.10 SPECIAL OPERATIONS

B 3.10.9 Recirculation Loops - Testing

BASES

BACKGROUND

The purpose of this Special Operations LCO in MODES 1 and 2 is to allow either PHYSICS TESTS or the Startup Test Program to be performed with less than two recirculation loops in operation.

Testing performed as part of the Startup Test Program (Ref. 1), or PHYSICS TESTS authorized under the provisions of 10 CFR 50.59 (Ref. 2) or otherwise approved by the NRC, may be required to be performed under natural circulation conditions with the reactor critical. LCO 3.4.1, "Recirculation Loops Operating," requires that one or both recirculation loops be in operation during MODES 1 and 2. This Special Operations LCO provides the appropriate additional restrictions to allow testing at natural circulation conditions or in single loop operation with the reactor critical.

APPLICABLE SAFETY ANALYSES

The operation of the Reactor Coolant Recirculation System is an initial condition assumed in the design basis loss of coolant accident (LOCA) (Ref. 3). During a LOCA caused by a recirculation loop pipe break, the intact loop is assumed to provide coolant flow during the first few seconds of the postulated accident. During PHYSICS TESTS ≤ [5]% RTP, or limited testing during the Startup Test Program for the initial cycle, the decay heat in the reactor is sufficiently low, such that the consequences of an accident are reduced and the coastdown characteristics of the recirculation loops are not important. In addition, the probability of a Design Basis Accident (DBA) or other accidents occurring during the limited time allowed at natural circulation or in single loop operation is low.

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore, no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. However, to perform testing at natural circulation conditions or with a single operating loop, operations must be limited to those tests defined in the Startup Test Program or approved PHYSICS TESTS performed at ≤ [5]% RTP. To minimize the probability of an accident,
Bases

LCO (continued)

While operating at natural circulation conditions or with one operating loop, the duration of these tests is limited to ≤ 24 hours. This Special Operations LCO then allows suspension of the requirements of LCO 3.4.1 during such testing. In addition to the requirements of this LCO, the normally required MODE 1 or MODE 2 applicable LCOs must be met.

Applicability

This Special Operations LCO may only be used while performing testing at natural circulation conditions or while operating with a single loop, as may be required as part of the Startup Test Program or during low power PHYSICS TESTS. Additional requirements during these tests to limit the time at natural circulation conditions reduces the probability that a DBA may occur with both recirculation loops not in operation. Operations in all other MODES are unaffected by this LCO.

Actions

A.1

With the testing performed at natural circulation conditions or with a single operating loop, and the duration of the test exceeding the 24 hour time limit, actions should be taken to promptly shut down. Inserting all insertable control rods will result in a condition that does not require both recirculation loops to be in operation. The allowed Completion Time of 1 hour provides sufficient time to normally insert the withdrawn control rods.

B.1

With the requirements of this LCO not met for reasons other than those specified in Condition A (i.e., low power PHYSICS TESTS exceeding [5]% RTP, or unapproved testing at natural circulation), the reactor mode switch should immediately be placed in the shutdown position. This results in a condition that does not require both recirculation loops to be in operation. The action to immediately place the reactor mode switch in the shutdown position prevents unacceptable consequences from an accident initiated from outside the analysis bounds. Also, operation beyond authorized bounds should be terminated upon discovery.

Surveillance Requirements

SR 3.10.9.1 and SR 3.10.9.2

Periodic verification of the administrative controls established by this LCO will ensure that the reactor is operated within the bounds of this LCO. [Because the 1 hour Frequency provides frequent checks of the LCO requirements during the allowed 24 hour testing interval, the probability of operation outside the limits concurrent with a postulated accident is reduced even further.]
SURVEILLANCE REQUIREMENTS (continued)

OR

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REVIEWER’S NOTE
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

REFERENCES
1. FSAR, Chapter [14].
2. 10 CFR 50.59.
3. FSAR, Section [6.3.3.4].
4. FSAR, Section [].
B 3.10 SPECIAL OPERATIONS

B 3.10.10 Training Startups

Bases

Background

The purpose of this Special Operations LCO is to permit training startups to be performed while in MODE 2 to provide plant startup experience for reactor operators. This training involves withdrawal of control rods to achieve criticality and then further withdrawal of control rods, as would be experienced during an actual plant startup. During these training startups, if the reactor coolant is allowed to heat up, maintenance of a constant reactor vessel water level requires the rejection of reactor coolant through the Reactor Water Cleanup System as the reactor coolant specific volume increases. Since this results in reactor water discharge to the radioactive waste disposal system, the amount of discharge should be minimized. This Special Operations LCO provides the appropriate additional controls to allow one residual heat removal (RHR) subsystem to be aligned in the shutdown cooling mode, so that the reactor coolant temperature can be controlled during the training startups, thereby minimizing the discharge of reactor water to the radioactive waste disposal system.

Applicable Safety Analyses

The Emergency Core Cooling System (ECCS) is designed to provide core cooling following a loss of coolant accident (LOCA). The low pressure coolant injection (LPCI) mode of the RHR System is one of the ECCS subsystems assumed to function during a LOCA. With reactor power \(\leq 1\% \text{ RTP} \) (equivalent to all OPERABLE intermediate range monitor (IRM) channels \(\leq 25/40 \) divisions of full scale on Range 7) and average reactor coolant temperature < 200\(^\circ\)F, the stored energy in the reactor core and coolant system is very low, and a reduced complement of ECCS can provide the required core cooling, thereby allowing operation with one RHR subsystem in the shutdown cooling mode (Ref. 1).

As described in LCO 3.0.7, compliance with Special Operations LCOs is optional, and therefore no criteria of 10 CFR 50.36(c)(2)(ii) apply. Special Operations LCOs provide flexibility to perform certain operations by appropriately modifying requirements of other LCOs. A discussion of the criteria satisfied for the other LCOs is provided in their respective Bases.

LCO

As described in LCO 3.0.7, compliance with this Special Operations LCO is optional. Training startups may be performed while in MODE 2 with no RHR subsystems aligned in the shutdown cooling mode and, therefore, without meeting this Special Operations LCO or its ACTIONS. However, to minimize the discharge of reactor coolant to the radioactive waste disposal system.
BASES

LCO (continued)

waste disposal system, performance of the training startups may be accomplished with one RHR subsystem aligned in the shutdown cooling mode to maintain average reactor coolant temperature < 200°F. Under these conditions, the THERMAL POWER must be maintained ≤ 1% RTP (equivalent to all OPERABLE IRM channels ≤ 25/40 divisions of full scale on Range 7) and the average reactor coolant temperature must be < 200°F. This Special Operations LCO then allows changing the LPCI OPERABILITY requirements. In addition to the requirements of this LCO, the normally required MODE 2 applicable LCOs must also be met.

APPLICABILITY

Training startups while in MODE 2 may be performed with one RHR subsystem aligned in the shutdown cooling mode to control the reactor coolant temperature. Additional requirements during these tests to restrict the reactor power and reactor coolant temperature provide protection against potential conditions that could require operation of both RHR subsystems in the LPCI mode of operation. Operations in all other MODES are unaffected by this LCO.

ACTIONS

A.1

With one or more of the requirements of this LCO not met, (i.e., any OPERABLE IRM channel > 25/40 divisions of full scale on Range 7, or average reactor coolant temperature ≥ 200°F) the reactor may be in a condition that requires the full complement of ECCS subsystems and the reactor mode switch must be immediately placed in the shutdown position. This results in a condition that does not require all RHR subsystems to be OPERABLE in the LPCI mode of operation. This action may restore compliance with the requirements of this Special Operations LCO or may result in placing the plant in either MODE 3 or MODE 4.

SURVEILLANCE REQUIREMENTS

SR 3.10.10.1 and SR 3.10.10.2

Periodic verification that the THERMAL POWER and reactor coolant temperature limits of this Special Operations LCO are satisfied will ensure that the stored energy in the reactor core and reactor coolant are sufficiently low to preclude the need for all RHR subsystems to be aligned in the LPCI mode of operation. [The 1 hour Frequency provides frequent checks of these LCO requirements during the training startup.

OR
Bases

Surveillance Requirements (continued)

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

---REVIEWER'S NOTE---

Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.

References

1. FSAR, Section [6.3.2].
Bibliographic Data Sheet

Title and Subtitle:
Standard Technical Specifications, General Electric Plants, BWR/4: Bases (Revision 5)

Date Report Published:
- **Month:** September
- **Year:** 2021

Performing Organization:
- Division of Safety Systems
- Office of Nuclear Reactor Regulation
- U.S. Nuclear Regulatory Commission
- Washington, DC 20555-0001

Sponsoring Organization:
- Same as above

Abstract:
This NUREG contains the improved Standard Technical Specifications (STS) for General Electric, BWR/4 plants. The changes reflected in Revision 5 result from the experience gained from plant operation using the improved STS and extensive public technical meetings and discussions among the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees and the Nuclear Steam Supply System (NSSS) Owners Groups.

The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132), which was subsequently codified by changes to Section 36 of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR 50.36) (60 FR 36953). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the practical extent, to Revision 5 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

Users may access the STS NUREGs in the PDF format at http://www.nrc.gov. Users may print or download copies from the NRC Web site.

Key Words/Descriptors:
- NUREG-1433
- Standard Technical Specifications
- STS
- General Electric
- GE

Availability Statement:
- Unlimited

Security Classification:
- Unclassified

Number of Pages:
- Unclassified

Price:
- Unclassified