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ABSTRACT 

This NUREG, on probabilistic fracture mechanics (PFM), is a companion document to Draft 
Regulatory Guide 1382 (DG-1382) / Regulatory Guide 1.245 (RG-1.245), “Preparing 
Probabilistic Fracture Mechanics (PFM) Submittals.” This document provides guidance on a 
graded approach to developing PFM submittal documentation and a generalized technical basis 
for conducting PFM analyses. 
 
The guidance provided for PFM submittal documentation represents a balance between the 
efficiencies gained by clear, consistent, and comprehensive submittals and the need to maintain 
flexibility for PFM analyses that by their nature will include many situation-specific aspects. The 
resulting guidance outlines a procedure that includes a suggested graded approach for PFM 
analyses and submittals. The unique characteristics of the underlying regulatory application 
dictate the breadth and depth of content included in the submission. 
 
This document also describes a hypothetical process for conducting a PFM analysis. This 
process is aligned with the position on documentation elements given previously in the 
U.S. Nuclear Regulatory Commission’s (NRC’s) technical letter report, “Important Aspects of 
Probabilistic Fracture Mechanics Analyses,” issued in 2018. The NUREG provides fundamental 
background for the concepts and methods introduced in the analysis process. Its examples give 
details for analysts on (nonprescriptive) approaches for PFM analyses. It provides general 
guidance on PFM analysis submittals. However, specific applications or submittals may deviate 
from this guidance to address specific features, with acceptable justifications for the deviations 
from these guidelines. PFM submittals that explicitly identify deviations from these frameworks 
will assist the NRC staff in efficient reviews of those submittals. 
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EXECUTIVE SUMMARY 1 

This technical basis NUREG document, and the regulatory guide it is associated with, were 2 
developed from the guidance introduced in the technical letter report, “Important Aspects of 3 
Probabilistic Fracture Mechanics Analyses,” issued in 2018. In conjunction with the release of 4 
the technical letter report, the U.S. Nuclear Regulatory Commission held a series of public 5 
meetings to present a general framework of the expected content of a probabilistic fracture 6 
mechanics (PFM) analysis. This report further develops the concept of a PFM analysis 7 
methodology and outlines important considerations for a high-quality and high-confidence PFM 8 
analysis. Realizing that PFM information and results only make up a portion of the information 9 
needed to make risk-informed decisions, and guided by the agency’s desire to ensure that 10 
submittals that include PFM information (hence called PFM submittals) are sufficiently clear and 11 
complete, this NUREG explicitly describes the minimum expected documentation. 12 
 13 
This NUREG contains three technical sections: Section 2 presents the contents of a PFM 14 
submittal following a graded approach, Section 3 presents the analytical steps in a PFM 15 
submittal, and Section 4 presents the methods used in PFM analysis. These three sections are 16 
linked together through the development structure, but the guidance provided in each section is 17 
geared toward different audiences. The first technical section is intended for applicants of all 18 
experience levels. The second technical section could be used by applicants who are familiar 19 
with PFM submittals but are seeking some guidance on the development of an analysis 20 
structure or formalism. The third technical section could be used by applicants who are seeking 21 
explicit guidance on the theoretical underpinnings of the processes that are used to establish 22 
the credibility of a PFM analysis. 23 
 24 
The guidance provided for PFM submittal documentation represents a balance between the 25 
efficiencies gained by clear, consistent, and comprehensive submittals and the need to maintain 26 
flexibility for PFM analyses that by their nature will include many situation-specific aspects. The 27 
resulting guidance outlines a procedure in which a suggested minimum set of documented 28 
evidence may be augmented by additional details. The unique characteristics of the underlying 29 
regulatory application dictate the breadth and depth of content included in the submission. 30 
Expected documentation elements are explicitly linked to the analysis framework that is 31 
described. 32 
 33 
This report presents a general framework to describe, perform, and evaluate a PFM analysis. 34 
The important pieces of a PFM analysis that should be considered include models, inputs, 35 
uncertainty characterization, probabilistic framework, and PFM outputs:  36 
 37 
• Models can be categorized into different types, but in all cases, model verification, 38 

validation, and uncertainty quantification are key steps to gain confidence in the 39 
adequacy of the models used.  40 

• Treatment of random inputs may consist of constructing probability distributions; 41 
determining input bounds if applicable; and quantifying any assumptions, conservatisms, 42 
or dependencies among inputs.  43 

• Uncertainty characterization and treatment are at the core of a PFM analysis. In many 44 
PFM analyses, separation of epistemic and aleatory uncertainty may be useful. 45 
Uncertainty identification, quantification, and propagation are essential elements in 46 
describing a PFM methodology or analysis. The proper choice of sampling techniques is 47 



 

xiv 

also an important step that needs justification. The report discusses concepts and 1 
methods to verify and validate a probabilistic framework.  2 

• Ways to demonstrate PFM convergence include varying sample size and sampling 3 
strategy, as well as performing stability analysis. Output uncertainty analysis can take 4 
various forms depending on the problem being analyzed. Sensitivity analyses can help 5 
to identify the drivers of uncertainty for a given problem or output. Sensitivity studies are 6 
useful to understand which parameters drive the issue being investigated, and to show 7 
that some expected trends are indeed reflected in the analysis results. The report 8 
presents methods to perform such studies.  9 
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1 INTRODUCTION 1 

The purpose of this NUREG is to provide a generalized technical basis for conducting 2 
probabilistic fracture mechanics (PFM) analyses and to describe a graded approach for 3 
developing submittal documentation. PFM is a subset of fracture mechanics that complements 4 
deterministic fracture analysis. Specifically, PFM is based on a deterministic fracture mechanics 5 
framework that quantifies crack propagation or damage accumulation while accounting for 6 
uncertainty in aspects such as the physical models, physical parameters, geometry, loading, 7 
deformation mechanisms, and environmental exposure. Analysis of a PFM framework allows for 8 
assessments of the structural integrity of components to enable risk-informed decisions in a 9 
regulatory application. PFM allows the direct representation of uncertainties using best estimate 10 
models and distributed inputs. 11 

1.1 Fracture Mechanics Approach to Structural Integrity Analysis 12 

Any fracture mechanics approach (deterministic or probabilistic) to structural integrity analysis 13 
quantifies the combination of at least three key elements: (1) the applied stress produced by 14 
structural loading, (2) the flaw size, and (3) the fracture toughness. The stress and flaw size 15 
provide the driving force for fracture, while the fracture toughness provides a measure of the 16 
material’s resistance to crack propagation and failure. Techniques for computing fracture driving 17 
force range from simple to complex, and the most appropriate methodology depends on the 18 
geometry, loading, and materials properties. Flaw size may be determined by nondestructive 19 
evaluation of an indication found to exist in the structure. It may represent the size of a flaw that 20 
nondestructive evaluation could miss, or it may represent a nominal flaw size agreed to as 21 
appropriate for certain types of assessments. The driving force and fracture toughness are 22 
compared to assess the likelihood of failure. Environment and time generally complete the list of 23 
other elements included in most fracture mechanics analyses. All these variables may or may 24 
not evolve with time and spatial location within a component or structure. Fracture mechanics 25 
provides mathematical relationships among these quantities. 26 
 27 
There are two general options for performing a fracture analysis (although they can be 28 
equivalent in certain circumstances)—the energy criterion approach and the stress-intensity 29 
factor approach: 30 

• In the energy balance approach, a fracture mechanics-based failure criterion is 31 
considered when the strain energy release rate associated with crack advance matches 32 
or exceeds the energy needed to create new crack surfaces, to account for plastic flow, 33 
and to account for other types of energy dissipation associated with the degradation 34 
mechanisms considered. In this interpretation of fracture mechanics, the crack will grow 35 
when the critical energy release rate is exceeded. 36 

• In the stress-intensity factor approach, a fracture mechanics-based failure criterion 37 
considers that the material fails locally at some critical combination of stress and strain 38 
for given crack-tip conditions. In the case of a linear elastic body, the classic 39 
stress-intensity factor is used; in the case of a nonlinear body (or equivalently an 40 
elastic-plastic body under monotonic loading), the J-integral is used. 41 

For both the energy balance and stress-intensity factor approaches, the applied load is typically 42 
determined either through a finite-element analysis of the actual structure or by a closed-form 43 
analysis of a simplified representation of the structure. In the case of linear elastic fracture 44 
mechanics, one considers materials under quasistatic conditions, while elasto-plastic fracture 45 
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mechanics involve consideration of plastic deformation under quasistatic conditions. Dynamic, 1 
viscoelastic, and viscoplastic fracture mechanics include time as a variable. 2 

1.2 Historical Perspective on Probabilistic Fracture Mechanics Analysis of 3 
Nuclear Structures 4 

Historically, most assessments of structural integrity have been performed deterministically; for 5 
example, a single value of fracture toughness is used to estimate the failure stress or critical 6 
flaw size. This is true for many U.S. Nuclear Regulatory Commission (NRC) regulations. In the 7 
past, the NRC has typically regulated the use of nuclear reactor structural materials on a 8 
deterministic basis. Consensus codes and standards used for the design and analysis of such 9 
structures, such as the American Society of Mechanical Engineers (ASME) Boiler and Pressure 10 
Vessel Code, typically rely on conservative fracture models with applied safety factors and 11 
conservative bounding inputs to account for the numerous uncertainties that may be present. 12 
Improving the reliability of such models by quantifying the impacts of the assumptions and 13 
uncertainties becomes difficult because of the conservative nature of the models and inputs and 14 
the lack of historical documentation of the basis for safety factors. 15 
 16 
Observations of the character of the three key fracture mechanics elements introduced 17 
previously show that (1) loads exerted on a structure may include random noise, (2) structures 18 
contain many flaws with various sizes, orientations, and locations, and (3) fracture toughness 19 
data in the ductile-brittle transition region are widely scattered. As such, the reliance on a 20 
deterministic basis for engineering designs and regulations has given way to increased use of 21 
probabilistic techniques. Many factors support and motivate this evolution: 22 

• NRC policy decision. In the mid-1990s, the NRC issued a policy statement 23 
(Reference 1-1) that encouraged the use of probabilistic risk assessments (PRAs) to 24 
improve safety decisionmaking and improve regulatory efficiency. This policy statement 25 
formalized the Commission’s commitment to the expanded use of PRA, stating in part 26 
that “the use of PRA technology should be increased in all regulatory matters to the 27 
extent supported by the state-of-the-art in PRA methods and data and in a manner that 28 
complements the NRC’s deterministic approach and supports the NRC’s traditional 29 
defense-in-depth philosophy.” Since that time, the NRC has made progress in its efforts 30 
to implement risk-informed and performance-based approaches into its regulation and 31 
continues to revisit and update the approaches on a regular basis. Two notable efforts in 32 
PFM include the FAVOR (Fracture Analysis of Vessels—Oak Ridge) (References 1-2, 1-33 
3) and xLPR (extremely low probability of rupture) projects (Reference 1-4). 34 

• Factors unanticipated in the design phase or not addressed by codes and 35 
standards. There is a fundamental difference between how deficiencies, or potential 36 
deficiencies, are addressed when they are discovered during the design and 37 
construction of a structure versus when they are revealed later, often after many years 38 
or decades of safe service. During design and construction, deficiencies that do not 39 
meet specifications are often addressed by repair, replacement, or reconstruction, 40 
because the effort to demonstrate the acceptability of the deficiency often exceeds the 41 
effort associated with correcting the deficiency. However, once operation begins, repairs 42 
that were considered feasible during construction can become cost prohibitive (“cost” in 43 
terms of dollars, time, or dose). While the NRC’s primary mission is safety, it is obligated 44 
(see Title 10 of the Code of Federal Regulations (10 CFR) 50.109(c)(5) and (7) 45 
(Reference 1-5)) to assess whether safety benefits justify the attendant cost. PFM 46 
assessments are ideally suited to such situations because PFM metrics relate directly 47 
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and clearly to systems that can challenge safety (i.e., probability of structural failure). 1 
Indeed, the Backfit Rule (see 10 CFR 50.109(c)(3) (Reference 1-5)) explicitly requires an 2 
assessment of risk. PFM also provides more flexible methods to account for factors that 3 
occur during service (e.g., new damage mechanisms, unanticipated loadings, aging) that 4 
were not considered during design. Especially when such factors are encountered for 5 
the first time, the performance of deterministic analyses following the guidelines of 6 
codes, standards, and regulations can be difficult because these established procedures 7 
may not account for the new factors. Historically, unanticipated material degradation 8 
mechanisms have regularly arisen in nuclear power plants (Reference 1-6). Examples 9 
include the primary water stress-corrosion cracking aging issue in Alloy 600 and 182/82 10 
welds in pressurized-water reactors (which led in part to the development of the xLPR 11 
code), cold head cracking, and control rod drive mechanism thermal sleeve wear. 12 

• Need to understand conservatisms. One of the factors in the evolution of PFM is that 13 
bases are needed to understand the level of conservatism in typical deterministic 14 
evaluation. PFM is a means to calculate best estimate values and the associated 15 
uncertainties and margins, and in turn it is a means to quantify conservatisms. By 16 
understanding these conservatisms, analysts can refine the safety requirements.  17 

 18 
Over the years, the NRC has received numerous submittals that contain PFM results, with 19 
varying levels of quality. The inconsistency in the contents of the submittals has often led to low 20 
efficiency in the reviews and a lack of predictable regulatory outcomes. For example, the 21 
Electric Power Research Institute’s (EPRI’s) Materials Reliability Program (MRP) has submitted 22 
to the NRC several reports containing PFM analyses, either for information or for review and 23 
approval. Such efforts include the following: 24 
 25 
• “Materials Reliability Program: Probabilistic Fracture Mechanics Analysis of PWR 26 

Reactor Pressure Vessel Top Head Nozzle Cracking (MRP-105),” Report 1007834, 27 
issued 2004 (Reference 1-7) 28 

• “Materials Reliability Program: Alloy 82/182 Pipe Butt Weld Safety Assessment for 29 
U.S. PWR Plant Designs (MRP-113),” Report 1009549, issued 2006 (Reference 1-8) 30 

• “Materials Reliability Program: Probabilistic Risk Assessment of Alloy 82/182 Piping Butt 31 
Welds (MRP-116),” Report 1009806, issued 2004 (Reference 1-9) 32 

• “Materials Reliability Program: Inspection and Evaluation Guidelines for Reactor Vessel 33 
Bottom-Mounted Nozzles in U.S. PWR Plants (MRP-206),” Report 1016594, issued 34 
2009 (Reference 1-10) 35 

• “Materials Reliability Program: Topical Report for Primary Water Stress Corrosion 36 
Cracking Mitigation by Surface Stress Improvement (MRP-335 Revision 3),” 37 
Report 3002007392, issued 2016 (Reference 1-11) 38 

• “Materials Reliability Program: Reevaluation of Technical Basis for Inspection of 39 
Alloy 600 PWR Reactor Vessel Top Head Nozzles (MRP-395),” Report 3002003099, 40 
issued 2014 (Reference 1-12) 41 

• “BWRVIP-05: BWR Reactor Pressure Vessel Shell Weld Inspection Recommendations 42 
(BWRVIP-05),” TR-105697, issued 1995 (Reference 1-13) 43 
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• “BWRVIP-241-A: BWR Vessel and Internals Project: Probabilistic Fracture Mechanics 1 
Evaluation for the Boiling Water Reactor Nozzle-to-Vessel Shell Welds and Nozzle 2 
Blend Radii,” Report 3002013093, issued 2018 (Reference 1-14) 3 

• “BWRVIP-108-A: BWR Vessel and Internals Project: Technical Basis for the Reduction 4 
of Inspection Requirements for the Boiling Water Reactor Nozzle-to-Vessel Shell Welds 5 
and Nozzle Blend Radii,” Report 3002013092, issued 2018 (Reference 1-15) 6 

1.3 Objective 7 

The NRC intends this document to provide a generalized technical basis for the following: 8 

• validating and verifying a PFM capability 9 

• developing input distributions that feed into the PFM framework 10 

• characterizing and propagating input and model uncertainties 11 

• understanding the impacts of problem assumptions on the adequacy of the results 12 

• choosing a methodology with the appropriate complexity for the intended application 13 

• properly conducting a PFM analysis 14 

• correctly interpreting the results of a PFM analysis in a regulatory context 15 

• documenting the important steps and information relevant to the PFM code and analysis 16 
at hand 17 

This NUREG provides some thoughts on how to improve confidence in structural analyses 18 
performed using PFM by focusing on topics such as problem definition, PFM model 19 
development, input definition, uncertainty analyses, probabilistic framework development, and 20 
output analysis, including sensitivity analyses (SAs) (to determine impact of uncertainties on 21 
result) and sensitivity studies (to determine impact of plausible changes to analysis 22 
assumptions). For each of these topics, this NUREG proposes a graded approach for PFM 23 
analyses and submittals (see Section 2). 24 

1.4 Structure of This Document 25 

This NUREG has three technical sections. The content provided in all three sections is linked, 26 
but an applicant’s experience and familiarity with PFM analyses will determine whether it needs 27 
to refer to that content. 28 
 29 
Section 2 provides a tiered framework for a submittal that contains PFM analyses and results 30 
and could be used by applicants of all experience levels. This section provides a graded 31 
approach that may be used in PFM analyses and submittals. 32 
 33 
Section 3 provides a framework for performing a PFM analysis. This section could be used by 34 
applicants who have used PFM in prior submittals but who are seeking some guidance on the 35 
development of an analysis structure or formalism. This section is not intended to prescribe a 36 
linear analysis, since PFM analyses are typically iterative in nature. Furthermore, not every 37 
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application needs all steps and actions, and the analyst can evaluate the necessity to perform 1 
each step and action on a case-by-case basis. Table 2-1 in Section 2 provides a mapping 2 
between the analysis actions given in Section 3 and the associated documentation. 3 
 4 
Section 4 details analysis methodologies, including notional examples for context. This section 5 
could be used by applicants who are seeking explicit guidance on the theoretical underpinnings 6 
of the processes that are used to establish the credibility of a PFM analysis. Each subsection is 7 
linked to an action that was introduced in Section 3. 8 
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2 CONTENT OF A PROBABILISTIC FRACTURE MECHANICS 1 
SUBMITTAL 2 

Building toward the release of DG-1382/RG-1.245, “Preparing Probabilistic Fracture Mechanics 3 
(PFM) Submittals,” (Reference 2-1) , the NRC held a series of public meetings and released a 4 
technical letter report, “Important Aspects of Probabilistic Fracture Mechanics Analyses,” in 5 
2018 (Reference 2-2), to present a general framework of the expected content of a PFM 6 
analysis. The NRC’s desire to ensure that submittals containing PFM information are sufficiently 7 
clear and complete guided the development of this NUREG. The submittal guidance in this 8 
section should not be considered as a set of mandatory requirements. 9 

2.1 Background on a Probabilistic Fracture Mechanics Graded Approach 10 

In the past, the NRC has typically regulated the use of nuclear structural materials on a 11 
deterministic basis. Safety factors, margins, and conservatisms were used to account for model 12 
and input uncertainty. However, as described in Section 1, the NRC has made progress in its 13 
efforts to implement risk-informed approaches into its regulation. In one such effort, the NRC 14 
developed guidance on a risk-informed decisionmaking process that is acceptable to use for 15 
design-basis changes. 16 
 17 
In any regulatory submittal, the level of effort associated with analysis and documentation 18 
activities is dependent upon the goals of the analysis, and there is no universal set of 19 
guidelines. Instead, each analysis is considered uniquely within its own specific context to make 20 
determinations about the expected level of rigor. This guidance is particularly true as the safety 21 
significance of the analysis application increases, and the consequences of an incorrect 22 
decision are more severe. The availability of supplemental evidence to support the decision is 23 
also part of the consideration. For example, if inspection data or operational measurements are 24 
available in addition to analysis results, the analysis may be viewed as one piece of evidence in 25 
a larger context, and the level of rigor may be adjusted accordingly. The guiding principle is that 26 
the content of any PFM submittal should contain detail that is commensurate with the safety 27 
significance of the subject and the complexity of the problem. 28 
 29 
In October 2018, the NRC held a public meeting to discuss a graded approach for PFM codes 30 
and analyses for regulatory applications. At the meeting, EPRI presented suggestions for 31 
expected content in a PFM submittal. EPRI also submitted a white paper containing additional 32 
details and guidelines. The NRC staff concurred that EPRI’s approach constituted a quality 33 
basis from which to build further guidance. Consequently, based on a submitted proposal from 34 
industry (Reference 2-3), Section 2.2 defines a practical framework for the content of PFM 35 
submittals to maintain the effectiveness of NRC reviews of such submittals while improving 36 
review efficiency.   37 

2.2 Submittal Content Summary 38 

This section outlines a detailed framework for PFM submittals that integrates Section 2 of 39 
EPRI’s white paper (Reference 2-3) with Section 3 in this document. Each subsection relates to 40 
an item expected in a submittal. The content in each subsection comes from, in large part, the 41 
suggested minimum content for PFM submittals that was developed in EPRI’s white paper. 42 
Tables in each subsection provide guidance for different documentation expectations. Each 43 
table contains circumstances under which specific information should be provided for a 44 
complete submittal. Each subsection is also mapped to the NRC’s analytical steps in Section 3 45 
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and the item number of the suggested minimum content and considerations of additional 1 
content given in Tables 1 and 2, respectively, of EPRI’s white paper (Reference 2-3). Table 2-1 2 
gives the complete mapping. 3 
 4 
Table 2-1 Submittal Content Mapping to NUREG Section and EPRI White Paper 5 

(Reference 2-3) 6 

NUREG 
Section Content 

NUREG PFM 
Analytical 

Steps  
Section 3 

EPRI White Paper  
(Reference 2-3) 

Suggested 
Content, 
Table 1 

Additional 
Considerations, 

Table 2 
0 Regulatory Context 3.1.1 - - 

2.2.2 Information Made 
Available to NRC Staff  1 - 

2.2.2.1 PFM Software 3.1.3 1.1 1, 4, 11, 12, 13 
2.2.2.2 Supporting Documents 3.1.3 1.2 - 

2.2.3 Quantities of Interest and 
Acceptance Criteria 3.1.2 8 - 

2.2.4 
Software quality 
assurance and verification 
and validation 

3.1.3 6 1 

2.2.5 Models 3.1.3 2 1, 2, 5, 6, 9, 10 

2.2.6 Inputs 

3.2.1 
3.2.2 
3.3.1 
3.4.1 

3, 5 3, 4, 5, 6 

2.2.7 Uncertainty Propagation 3.3.1 7 3, 10 
2.2.8 Convergence 3.3.2 4 3 
2.2.9 Sensitivity Analyses 3.3.3 - - 

2.2.10 Output Uncertainty 
Characterization 3.3.4 - - 

2.2.11 Sensitivity Studies 3.4.1 
3.4.2 5 1, 2, 11 

 7 
It is important to note that submittals should be dictated by the specific details and elements of 8 
each analysis and need not include all of the listed elements, though careful consideration 9 
should be applied to arrive at that conclusion. 10 

2.2.1 Regulatory Context 11 

When using PFM in support of an application to the NRC, it is important to understand the need 12 
for using a probabilistic approach and how PFM informs whether regulatory requirements have 13 
been met (Section 3.1.1), specifically why a probabilistic approach is appropriate for the 14 
problem at hand and how the probabilistic approach is used to demonstrate compliance with the 15 
regulatory criteria. It is particularly important to explain how the probabilistic approach informs 16 
the regulatory action when no specific acceptance criteria exist for demonstrating compliance 17 
for the problem at hand.  18 
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2.2.2 Information Made Available to the NRC Staff with a Probabilistic Fracture 1 
Mechanics Submittal 2 

The applicant should have a plan addressing supporting information that may be necessary to 3 
review the submittal. This may include information made available with the submittal, which may 4 
be provided upon request, or which may not be directly transmittable but might be reviewed 5 
under specific agreed-upon circumstances. 6 

2.2.2.1 Probabilistic Fracture Mechanics Software 7 

A key factor in the process of the NRC developing confidence in PFM software is its availability 8 
to the NRC staff, the opportunity to perform benchmarking studies against similar existing NRC 9 
codes, or both. If a sufficiently similar PFM code is not available for the NRC to perform a 10 
meaningful benchmarking comparison, an alternate approach such as the following should be 11 
considered: 12 

• The NRC staff could participate with the applicant in an informal review meeting during 13 
which the PFM submittal developers run analysis cases as requested by the NRC staff. 14 

• The NRC staff could submit some analysis requests in advance of the meeting, or two 15 
separate meetings could be held to allow time between meetings for the PFM submittal 16 
developers to run cases.  17 

• To address runtime concerns, developers could optimize runtime or consider a fast run 18 
mode that does not include all code features. Having some capability to perform runs 19 
during a review meeting would be advantageous.  20 

More complex codes and new codes may warrant a more thorough review (e.g., more meetings 21 
or more cases run by request) than do codes more familiar to the NRC staff. The extent of the 22 
differences between the new code and the codes previously approved by the NRC should also 23 
be considered. Similar considerations should take place when a code previously reviewed by 24 
the NRC is applied in a new way (i.e., outside the previously reviewed range of use for the 25 
code). Certain specific applications of the code, such as those involving a high safety 26 
significance or if the code is plant specific (versus an intended generic application), may also 27 
warrant deeper and more thorough investigations. 28 

2.2.2.2 Probabilistic Fracture Mechanics Software Quality Assurance and Verification and 29 
Validation Documents  30 

The quality assurance (QA) program or procedures under which the PFM analysis code is being 31 
developed (and thus also the standards with which that QA program or procedures comply) will 32 
define what additional supporting QA and verification and validation (V&V) documents will need 33 
to be generated (see Section 2.2.4). It is not necessary or appropriate to transmit all such 34 
supporting documentation to the NRC. However, the organization(s) that developed the PFM 35 
analysis code will need to retain that supporting documentation. Depending on the application of 36 
the PFM code, different QA programs may apply, which in turn may impact the level of 37 
documentation required. Regardless of the QA program or procedures applied, the applicant 38 
might consider ways to facilitate making such supporting documents available for examination 39 
by the NRC staff during an in-person audit. 40 
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2.2.3 Quantities of Interest and Acceptance Criteria 1 

The submittal to the NRC should document the model output quantities of interest (QoIs) and 2 
the probabilistic acceptance criteria that are being applied for the PFM analysis. The basis for 3 
those acceptance criteria should also be provided, such as a previous precedent established by 4 
the NRC. Appropriate care must be taken when invoking previously approved acceptance 5 
criteria from a similar analytical process or evaluation framework to ensure that inherent 6 
assumptions and requirements of the source activity are respected, and any apparent 7 
differences are reconciled. 8 
 9 
The NRC typically approves the acceptance criteria, which may be relative or absolute. Relative 10 
acceptance criteria refer to a relative comparison of probabilistic results under the proposed 11 
approach versus an already acceptable approach. In general, the rigor required in 12 
demonstrating that a relative acceptance criterion is met is lower than that required in 13 
demonstrating that an absolute acceptance criterion is met. 14 
 15 
Acceptance criteria for any application are beyond the scope of DG-1382/RG-1.245 (Reference 16 
2-1) and this NUREG, but they should be derived based on risk-informed decisionmaking 17 
principles. Regulatory Guide 1.200 (Reference 2-4), “Acceptability of Probabilistic Risk 18 
Assessment Results for Risk-Informed Activities,” and Regulatory Guide 1.174 (Reference 2-5), 19 
“An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-20 
Specific Changes to the Licensing Basis,” discuss the topic further. 21 
 22 
Table 2-2 relates to the documentation of QoI and acceptance criteria. If the analysis includes 23 
more than one QoI, then these elements should be documented for each QoI.  24 
 25 
Table 2-2 Submittal Guidelines for QoI and Acceptance Criteria 26 

Submittal Guidelines Reference 
The QoI definition, including both the units of measurement and time period Section 3.1.2 
The relationship between the QoI and model output Section 3.1.2 
The acceptance criteria Section 3.1.2 
If the QoI is a rare probability, a description of how this affected analysis 
choices Section 3.1.4 

2.2.4 Software Quality Assurance and Verification and Validation 27 

In any analysis, the level of effort associated with software quality assurance (SQA) and V&V 28 
activities is dependent upon the goals of the analysis, and there is no universal set of 29 
requirements. For different analyses, the level of experience in using the tools may vary. For a 30 
code that the NRC has previously approved, the technical basis for using the code is likely well 31 
understood, such that supplemental SQA and V&V efforts are unnecessary to understand the 32 
credibility of the results. For a code that the NRC has previously approved but that has been 33 
modified for the analysis being performed, understanding the technical basis for the 34 
modifications is important. For a code that is new and has not been previously approved in any 35 
form, understanding the entire technical basis informs the credibility of the results. With this in 36 
mind, the set of different analysis codes can be divided into three categories, defined in Table 37 
2-3. 38 
 39 
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V&V may be performed on individual submodels and the unifying framework, or it can be 1 
performed directly on the overall code. Some QA programs also allow for checks using alternate 2 
calculation methods (e.g., spreadsheets or alternate implementations). The applicable QA 3 
program, plan, or procedures define the supporting documents created in conjunction with PFM 4 
analysis code development. A graded approach to QA for software development, with different 5 
minimum requirements depending on the software application, such as that outlined in 6 
International Atomic Energy Agency (IAEA) Technical Report Series No. 397, “Quality 7 
Assurance for Software Important to Safety,” issued in 2000 (Reference 2-6), may be 8 
considered. Furthermore, as the applicable QA program may depend on the safety significance 9 
of the component or system being evaluated, the corresponding rigor of V&V may also vary. 10 
 11 
If a code is used for an application that is different than the one for which it was developed, the 12 
existing verification may still be valid, but the validation may need to be extended or redone if 13 
the previous validation was specific to a different range of use. 14 

2.2.5 Models 15 

The goal of any engineering assessment methodology is to determine the response of a system 16 
to a variety of inputs. The assessment of the system in question should be designed and 17 
developed using a set of models that best represents the physical behavior of the system 18 
of interest. Model selection may involve balancing the accuracy and practicality of various 19 
mathematical approaches. Whenever a model is constructed, simplifications are injected into 20 
the representation to make model evaluation feasible. The rationale for each decision or 21 
simplification is communicated, and then, where possible, the effect of this simplification on the 22 
analysis results is determined. It may not always be possible to construct multiple models of 23 
varying fidelity to consider the numerical sensitivity to the analysis choices, but the influence of 24 
these choices can be considered qualitatively. 25 
 26 
Engineering judgment in the model development process helps assess the credibility of the 27 
analysis results. Determining the relevant physics and material behavior to capture in a model of 28 
interest is a critical first step in determining the applicability of a given code and modeling 29 
approach. The process of developing a model begins with a conceptual model, which defines 30 
the physics to include. This decision is often aided by a process that defines the most critical 31 
physics to capture in the analysis. Then, for each relevant physics, a mathematical model is 32 
chosen to represent that physics, and a code is selected or developed to solve the chosen 33 
mathematical model. Over the course of an analysis, the model and code may be updated, 34 
revised, or calibrated with available data to improve predictive capability and understand how 35 
similar the conditions of validation tests are to the application space of interest. 36 
 37 
Another factor for consideration is computational resources. While a particular approach may be 38 
considered the “best estimate,” it may not be practical for a PFM analysis given the time and 39 
resource constraints imposed on the analyst. The occasional need to choose a model that has 40 
less fidelity but is easier to solve due to the solution speed requirements of PFM may affect 41 
results. In such cases, biases or uncertainties relative to the “best estimate” model should be 42 
quantified and accounted for by propagating the associated uncertainty through the probabilistic 43 
model. Model choice can be complicated further by the fact that PFM requires the use of the 44 
most accurate deterministic models rather than conservative models. These more accurate 45 
models may require longer solution times but yet still contain systematic model biases and 46 
uncertainties. 47 
 48 
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The inclusion of increased detail in model development may be appropriate if the applied model 1 
is relatively new (e.g., first-of-a-kind applications), the failure mode represents a new 2 
phenomenon, the failure phenomenon is emergent or ongoing, the extent of the plant 3 
experience and operational experience with the phenomenon is small, and the implications of 4 
the unknowns are not well characterized or yield significantly different outcomes. In all cases, 5 
the degree of detail should be commensurate with the safety significance of the components 6 
being evaluated. 7 
 8 
Table 2-4 provides information on model documentation. 9 

2.2.6 Inputs 10 

Both deterministic and uncertain1 inputs should be documented in detail to justify the choice of 11 
inputs as appropriate for the PFM application. The rationale for input choices should be 12 
described clearly and supported by relevant data, references, sensitivity analyses/studies, 13 
expert judgment, or a combination of these. For inputs that are highly important or that have 14 
uncertainty in their characterization, the NRC may need additional information (e.g., the data to 15 
which a probability distribution was fit). 16 
 17 
Table 2-5 and Table 2-6 relate to the documentation of inputs. In Table 2-5, “knowledge” refers 18 
to the depth of information available to prescribe either the deterministic inputs or the 19 
distributions on the uncertain inputs. “Importance” refers to the relative effect of input on the 20 
QoI. If certain inputs are found to have a significant effect on the QoI (e.g., through SAs), a 21 
more detailed description of the basis for those inputs may be needed. Additionally, sensitivity 22 
studies (Section 3.4.1) may be necessary to demonstrate the effect of input classification or 23 
distribution choices on the QoI. 24 
 25 
A more in depth description of the basis for inputs may also be needed if the failure mode is 26 
poorly understood or has a large impact on other systems or safety or if there is an emergent 27 
issue or first-of-a-kind application. If there is little margin between the QoI and the acceptance 28 
criteria (e.g., less than one order of magnitude in the case of probabilities or frequencies), more 29 
scrutiny of highly important inputs is warranted. Additionally, if the submittal is for a generic 30 
application, additional proof may be needed to ensure the inputs cover a wide enough range for 31 
the application. 32 

2.2.7 Uncertainty Propagation 33 

Propagation of uncertainty in the model inputs is a key component of estimating uncertainty in 34 
the QoI. Documentation should be provided that explicitly describes the methods used for 35 
uncertainty propagation and allows for the reproduction of analysis results. If the code is 36 
computationally expensive, details should be provided on any additional measures that were 37 
taken to adequately propagate uncertainty under the computational constraints. In particular, if 38 
importance sampling is used to oversample important regions of the input space, a justification 39 
for the choice of importance distribution should be provided. If applicable, documentation should 40 
include details on the surrogate model used for uncertainty propagation, including the surrogate 41 
model form, any approximations or assumptions, the method used for fitting the surrogate, and 42 
a measure of the error associated with the surrogate model approximation. 43 
 44 

                                                 
1  Throughout this document, “uncertain” refers to input variability because of the randomness of the data or 

lack of knowledge; the term may be used interchangeably with “random.” 
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Table 2-7 provides information on the documentation of uncertainty propagation. 1 

2.2.8 Convergence 2 

To assess the convergence of the QoI estimate, documentation should be provided that 3 
demonstrates the convergence for any discretization used in the analysis (e.g., time step, 4 
spatial discretization), as well as statistical convergence based on the sample size and sampling 5 
method used in the probabilistic analysis. The primary goal should be to show that the 6 
conclusions of the analysis would not change if a more refined discretization or a larger sample 7 
size were used. 8 
 9 
If significant margin exists between the QoI and the acceptance criteria, less stringent 10 
convergence levels may be adequate. In this case, a basis for defining that margin should be 11 
provided. For new or modified codes (categories QV-1C, QV-2, and QV-3), more indepth 12 
discretization convergence analyses may be needed. When maintaining a separation of aleatory 13 
and epistemic uncertainties, a sample size convergence analysis should be performed for both 14 
the aleatory and epistemic sample sizes. 15 
 16 
PFM codes in categories QV-1A and QV-1B are exempted from documenting discretization 17 
convergence, but analysts should nonetheless verify that discretization convergence is 18 
achieved. For all other PFM codes, the applicant should document the approach used for 19 
assessing discretization convergence, as well as demonstrate and document that a more 20 
refined discretization does not significantly affect the outcome of the analysis. 21 
 22 
Table 2-8 relates to the documentation of statistical convergence. 23 

2.2.9 Sensitivity Analyses 24 

Sensitivity analysis (SA) is a useful tool for identifying important uncertain model inputs that 25 
explain a high proportion of the uncertainty in the QoI. There are many approaches to 26 
performing SA, and, therefore, it is important to document the method(s) used, any relevant 27 
assumptions, and the interpretation of the results. Inputs that are important may warrant 28 
additional scrutiny. 29 
 30 
More indepth documentation of SAs and important model inputs may be needed if there is a 31 
high safety significance, the failure mode is poorly understood, there is a low margin between 32 
the QoI and the acceptance criteria, or the application is the first of a kind. Additional 33 
documentation may also be necessary if the submittal is requesting a change to the plant 34 
licensing basis. 35 
 36 
Table 2-9 covers the documentation of SAs. 37 

2.2.10 Quantity of Interest (Output) Uncertainty Characterization 38 

It is important to characterize the QoI uncertainty clearly and accurately such that the results 39 
from the analysis are easy to interpret. When characterizing QoI uncertainty, information about 40 
the scope of the analysis, its limitations, and any conservatisms should be documented. A 41 
conclusive description of the results of the analysis based on this characterization should also 42 
be provided. 43 
 44 
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If little margin exists between the QoI and the acceptance criteria (e.g., less than one order of 1 
magnitude in the case of probabilities or frequencies), more indepth documentation of model 2 
assumptions and simplifications may be needed. Additionally, if potential unknowns may affect 3 
analysis conclusions, they should be noted when discussing output uncertainty results. 4 
 5 
Table 2-10 relates to the documentation of QoI uncertainty characterization. 6 

2.2.11 Sensitivity Studies 7 

Sensitivity studies can be used to assess how uncertain analysis assumptions may change 8 
analysis results. Results of the sensitivity studies can be used to justify or prompt the refinement 9 
of analysis choices. A detailed description of the sensitivity studies performed and their 10 
conclusions should be provided. 11 
 12 
More extensive sensitivity studies may be needed when an approved code has been modified, 13 
for new and highly complex codes (as the impact of different modeling choices may not be fully 14 
understood), when there is a high safety significance or poorly understood failure mode, when 15 
SAs demonstrate that particular variables drive uncertainty, or if there are large perceived 16 
uncharacterized uncertainties. 17 
 18 
Table 2-11 covers the documentation of sensitivity studies. 19 

2.2.12 Submittal Guideline Tables 20 

The tables in this section contain all of the submittal guidelines for Sections 2.2.4 through 21 
2.2.11. In general, when using these tables, the applicant should in categorize each input 22 
independently. However, the implications of input correlation or input dependencies on the input 23 
categorization should be considered.24 
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Table 2-3 SQA and V&V Code Categories 1 
Category Description Submittal Guidelines Reference 

QV-1 NRC-approved code a   

QV-1A Exercised within validated range 
Demonstrate code applicability within the validated range.  
Describe features of the specific application where the code is validated and 
applicable (i.e., areas of known code capability). Section 3.1.3 

QV-1B Exercised outside of validated 
range 

Provide evidence for the applicability of the code to the specific application 
with respect to the areas of unknown code capability. Section 3.1.3 

Describe features of the specific application where the code has not been 
previously validated and applied (i.e., areas of unknown code capability). Section 3.1.3 

QV-1C Modified 

Give an SQA summary and V&V description for modified portions of the code.  
Demonstrate that the code was not “broken” as a result of changes.  
Make detailed documentation available for further review upon request 
(audit).  

QV-2 

Commercial off-the-shelf 
software designed for the 

specific purpose of the 
application b 

Demonstrate code applicability.  
Describe the software and its pedigree.  

Make software and documentation available for review upon request (audit).  

QV-3 Custom code 

Summarize the SQA program and its implementation.  Section 3.1.3 
Provide a basic description of the measures for QA, including V&V of the PFM 
analysis code as applied in the subject report. Section 3.1.3 

For very simple applications, possibly provide the source code instead of 
standardized SQA and V&V.  

Include separate deterministic fracture mechanics analyses to support other 
validation results, as appropriate for a given application. Section 3.1.3 

a As of the publication of this NUREG/CR, NRC-approved PFM codes include the latest version of the FAVOR and xLPR codes, as well as the SRRA code 2 
approved in the Safety Evaluation Report related to Topical Report WCAP-14572, Revision 1 (Reference 2-7). 3 

b Examples would include publicly available (for purchase or free) commercial software specifically to perform PFM analyses.  Combinations of commercial off-4 
the-shelf software may be acceptable (e.g., a finite-element software such as ABAQUS or ANSYS coupled with a probabilistic framework such as GoldSim or 5 
DAKOTA).  6 
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Table 2-4 Submittal Guidelines for Models 1 
Category Description Submittal Guidelines Reference 

M-1 

Model from a code in 
category QV-1A or QV-1B 
within the same validated 

range 

Reference existing documentation for that model in the NRC-approved code, 
demonstrate that the current range of the model is within the previously approved 
and validated range, and demonstrate that the model functions as intended in the 
new software. 

 

M-2 
Model from a code in 

category QV-1A or QV-1B 
outside the validated range 

See the submittal guidelines for M-1, except demonstrate validity of the model for the 
new applicability range (document a comparison of model predictions for the entire 
new range to applicable supporting data, including quantitative goodness-of-fit 
analyses). 

 

M-3 Model derived from a 
category M-1 or M-2 model 

See the submittal guidelines for M-2, and include a detailed description of changes 
to the M-1 or M-2 model, with justification for the validity of the new model.  

M-4 
Well-established model not 

previously part of an 
NRC-approved code 

Describe gaps and limitations in the code capabilities for the analysis, combined with 
a strategy for mitigating identified gaps and communicating any remaining issues or 
risks. 

Section 3.1.3 

Describe the model(s) applied in the PFM analysis code in sufficient detail so a 
competent analyst familiar with the relevant subject area could independently 
implement the model(s) from the documentation alone. Model forms can either be 
theoretical, semiempirical, or empirical. 

Section 3.1.3 

Establish a basis for all significant aspects of the model(s). This may consist of raw 
data or published references. Document or reference any algorithms or numerical 
methods (e.g., root-finding, optimization) needed to implement the model(s). Discuss 
any significant assumptions, approximations, and simplifications made, including 
their potential impacts on the analysis. 

Section 3.1.3 

Identify important uncertainties or conservatisms. Section 3.1.3 
Describe the computational expense of the model and how that might affect analysis 
choices. Section 3.1.4 

M-5 
First-of-a-kind model not yet 

published in a 
peer-reviewed journal 

See the submittal guidelines for M-4, and perform and document model sensitivity 
studies to understand trends in the model, as compared to expected model behavior 
and to the data used to develop the model, and describe model maturity and the 
status of the technical basis. 

 

 2 
  3 
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Table 2-5 Categorization Based on Knowledge and the Importance of Inputs Used in the Analysis 1 
Input Category Low Knowledge of Input Characteristics High Knowledge of Input Characteristics 

Deterministic Uncertain Deterministic Uncertain 
High Importance I-4D I-4R I-3D I-3R 
Low Importance I-2D I-2R I-1D I-1R 

 2 
  3 



 
 

 

18 

Table 2-6 Submittal Guidelines for Inputs 1 
Category Submittal Guidelines Reference 

I-1D List input value.  

I-1R List input distribution type and parameters.   
If applicable, list uncertainty classification (aleatory or epistemic). Section 3.2.1 

I-2D List input value.  
If there is a lack of data, justify the use of expert judgment. Section 3.2.2 

I-2R 
List input distribution type and parameters.  
If applicable, list uncertainty classification (aleatory or epistemic).  
If there is a lack of data, justify the use of expert judgment. Section 3.2.2 

I-3D 

List input value.  
State the rationale for setting the input to a deterministic value.  
State the rationale for setting the input to a deterministic value. Section 3.2.1 
For each deterministic input, give the rationale (method and data) for the selection of its numerical value, along with 
any known conservatisms in that numerical value and the rationale for such conservatisms. Section 3.2.1 

Reference documents that contain the foundation for input choices. Section 3.2.2 
Explain the correlations between inputs and how they are modeled, and verify that correlated inputs remain 
consistent and physically valid. Section 3.2.2 

Describe any sensitivity analyses/studies performed to show that the input or its classification does not have a 
significant effect on the QoI. Section 3.2.2 

I-3R 

List input distribution type and parameters.  
If applicable, list uncertainty classification (aleatory or epistemic).  
If relevant, classify uncertain inputs as aleatory or epistemic and give the corresponding rationale. Section 3.2.1 
For each uncertain input, describe both its distribution parameter values and its distributional form. Give the 
rationale (method and data) for selecting each distribution, including any known conservatisms in the specified 
input distributions and the rationale for the conservatism. Detail the distributional fitting method, including 
interpolation, extrapolation, distribution truncation, and curve fitting. 

Section 3.2.2 

Reference documents that contain the foundation for input choices. Section 3.2.2 
Explain the correlations between inputs and how they are modeled, and verify that correlated inputs remain 
consistent and physically valid. Section 3.2.2 

Describe any sensitivity analyses/studies performed to show that the input or its classification does not have a 
significant effect on the QoI. Section 3.2.2 

I-4D See the submittal guidelines for I-3D.  
If there is a lack of data, justify the use of expert judgment. Section 3.2.2 

I-4R See the submittal guidelines for I-3R.  
If there is a lack of data, justify the use of expert judgment. Section 3.2.2 

 2 
  3 
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Table 2-7 Submittal Guidelines for Uncertainty Propagation 1 
Category Description Submittal Guidelines Reference 

UP-1 
Analysis does not 

employ a surrogate 
model 

Give the method for uncertainty propagation and describe the simulation framework. Section 3.3.1 
If Monte Carlo sampling is used, describe the finalized sampling scheme and rationale for 
the sampling scheme, including the sampling method, sample size, the pseudo-random 
number generation method, and the random seeds used. 

Section 3.3.1 

Describe the approach for maintaining separation of aleatory and epistemic uncertainties, if 
applicable. Section 3.3.1 

If importance sampling is used to oversample important regions of the input space, justify 
the choice of importance distribution. Section 3.3.1 

UP-2 
Analysis does 

employ a surrogate 
model 

See the submittal guidelines for UP-1, and describe the form of the surrogate model(s), any 
approximations or assumptions, the method used for fitting the surrogate, and the validation 
process for the surrogate model. 

 

UP-2A Surrogate model is 
used for SA 

See the submittal guidelines for UP-2, and describe the features of the different surrogate 
models used.  

UP-2B 
Surrogate model is 
used for uncertainty 

propagation 

See the submittal guidelines for UP-2, and quantify the magnitude of error associated with 
the surrogate model approximation and include as additional uncertainty in the estimation of 
the QoI. 

 

  2 
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Table 2-8 Submittal Guidelines for Statistical Convergence 1 
Category Description Submittal Guidelines Reference 

SC-1 a 
[Acceptance criteria met with at least one order 

of magnitude margin] AND [no importance 
sampling AND no surrogate models used] 

No sampling uncertainty characterization recommended, as long 
as the uncertainty is sufficiently small relative to the margin. b  

SC-2A 
[Acceptance criteria met with at least one order 
of magnitude margin] AND [use of importance 

sampling OR surrogate models OR both] 

Describe the approach used for assessing statistical 
convergence, with one method needed for sampling uncertainty 
characterization. 

Section 3.3.2 

Explain the approach used for characterizing sampling 
uncertainty. Section 3.3.2 

Justify why the sampling uncertainty is small enough for the 
intended purpose (i.e., why statistical convergence is sufficient 
for the intended purpose). 

Section 3.3.2 

Describe how sampling uncertainty is used in the interpretation of 
the results. Section 3.3.2 

SC-2B 

[[Acceptance criteria met with at least one 
order of magnitude margin] AND [use of 

importance sampling OR surrogate models OR 
both]] AND [separation of aleatory and 

epistemic uncertainties is implemented in the 
PFM code] 

See the submittal guidelines for SC-2A, and distinguish between 
epistemic and aleatory means and standard deviations.  

SC-3A [Acceptance criteria met with less than one 
order of magnitude margin] 

See the submittal guidelines for SC-2A, and provide two different 
methods for sampling uncertainty characterization.  

SC-3B [Acceptance criteria met with less than one 
order of magnitude margin] AND [separation of 

aleatory and epistemic uncertainties is 
implemented in the PFM code] 

See the submittal guidelines for SC-3A, and give a sample size 
convergence analysis for both the aleatory and epistemic sample 
sizes. 

Section 3.3.2 

a Data type may have an impact on the convergence category. Continuous outputs can be category SC-1, but binary outputs inherently must be category SC-2 2 
or SC-3 unless epistemic and aleatory uncertainties are separated. 3 

b Some assessment of uncertainty is necessary, even if qualitative, as long as the uncertainty itself is understood to be small. 4 
 5 
  6 
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Table 2-9 Submittal Guidelines for SAs 1 
Category Description SA 

Needed? a Submittal Guidelines Reference 

SA-1 
Previously approved code (QV-1, 
QV-1A) with same QoI and same 

inputs b 
No Describe important input and measure of input importance 

from previous use.  

SA-2 Previously approved code (QV-1, 
QV-1A) with different QoI Yes 

Explain the methods used for SA, including any initial 
screening and model approximations and assumptions. Section 3.3.3 

State whether a local or global SA approach is used. Section 3.3.3 
Give the QoI used for the SA. Section 3.3.3 
For a global SA, describe the sampling scheme along with 
the rationale for selection, including the sampling 
technique, number of model realizations, and random seed 
for the model realizations. 

Section 3.3.3 

Provide the results of the SA, including the most important 
model inputs identified; a measure of the input importance, 
such as the variance explained by the most important 
inputs; and relevant graphical summaries of the SA results. 

Section 3.3.3 

SA-3 
Modified approved code with limited 

independent variables (e.g., <5, 
determined on a case-by-case basis) 

Yes Describe analyses, important input, and measure of input 
importance.  

SA-4 
Modified approved code with many 

independent variables (e.g., >5, 
determined on a case-by-case basis) 

Yes See the submittal guidelines for SA-2.  

SA-5 
First-of-a-kind code with limited 
independent variables (e.g., <5, 

determined on a case-by-case basis) 
Yes Describe the analyses, important input, and measure of 

input importance and include additional documentation.  

SA-6 
First-of-a-kind code with many 

independent variables (e.g., >5, 
determined on a case-by-case basis) 

Yes, with 
submodel 

SA as 
appropriate 

See the submittal guidelines for SA-2.  
Indicate how the SA results informed future uncertainty 
propagation for estimation of the QoI and associated 
uncertainty. 

Section 3.3.3 

State whether the results of the SA are consistent with the 
expected important inputs based on expert judgment. Section 3.3.3 

a Local sensitivity analysis may be used as a screening step if completing a global sensitivity analysis with all inputs is not computationally feasible (as the cost 2 
of performing a global sensitivity analysis increases with the number of inputs). The results from local sensitivity analysis can help reduce the input space for a 3 
global sensitivity analysis, but local sensitivity analysis does have its risks in that it can miss important inputs if the input/output relationship is nonlinear. 4 
Sensitivity analysis should be performed unless there is a strong basis for what inputs are important (e.g., previous analyses, expert judgment, or it is obvious 5 
what inputs are important since it is a simple code). 6 

b Inputs must remain the same because sensitivity is dependent on the input distributions.  7 
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Table 2-10 Submittal Guidelines for QoI (Output) Uncertainty Characterization 1 
Category Description Submittal Guidelines Reference 

O-1 
Acceptance criteria met 
with at least one order of 

magnitude margin  

Give a measure of the best estimate and uncertainty in the QoI. Section 3.3.4 
Include a graphical display of the output uncertainty. Section 3.3.4 
Describe how the best estimate and its uncertainty were calculated, including a clear 
description of the types of uncertainty (e.g., input, sampling, epistemic) being 
summarized. 

Section 3.3.4 

Summarize key uncertainties considered in the analysis and any major assumptions, 
conservatisms, or simplifications that were included and assess (qualitative or 
quantitative) their effect on the analysis conclusions. 

Section 3.3.4 

O-2A 

Acceptance criteria met 
with less than one order 
of magnitude margin and 
a strong basis for input 

distributions and 
uncertainty classification 

See the submittal guidelines for O-1, and provide the reasoning behind a strong basis.  

O-2B 

Acceptance criteria met 
with less than one order 
of magnitude margin and 
no strong basis for input 

distributions or 
uncertainty classification, 

or both 

See the submittal guidelines for O-1.   
 

Include an SA (if important inputs are unknown) and sensitivity studies for any inputs 
that do not have a strong basis. 

Section 3.4.1  
Section 3.4.2 

O-3 O-1, O-2A, or O-2B and 
potential unknowns 

See the submittal guidelines for O-1, and provide the reasoning behind a strong basis. 
 
Describe potential unknowns and their possible effect on analysis results. 

 

OR 
Include an SA (if important inputs are unknown) and sensitivity studies for any inputs 
that do not have a strong basis. 

Section 3.4.1  
Section 3.4.2 

 2 
  3 
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Table 2-11 Submittal Guidelines for Sensitivity Studies 1 

Category Description Sensitivity 
Study Needed? Submittal Guidelines Reference 

SS-1 Category QV-1A code with same QoI a No Summarize sensitivity studies conducted in prior 
approval.  

SS-2 Category QV-1A code with different QoI 
Limited, focused 
on inputs related 

to QoI 

Summarize past sensitivity studies conducted in 
prior approval and current sensitivity studies.  

SS-3 
Category QV-1B or QV-1C code with limited 
independent variables (e.g., <5, determined 

on a case-by-case basis) 

Limited, focused 
on impact of 
modification 

Summarize past and current sensitivity studies.  

SS-4 
Category QV-1B or QV-1C code with many 
independent variables (e.g., >5, determined 

on a case-by-case basis) 

Yes, focused on 
inputs related to 

QoI 

Summarize past and current sensitivity studies.  
List the uncertain assumptions that are 
considered for sensitivity studies.  Section 3.4.1 

State the impact and conclusion of each 
sensitivity study. Section 3.4.1 

Give the rationale for why certain assumptions 
were or were not considered for sensitivity 
studies. 

Section 3.4.1 

Provide the specific question(s) each sensitivity 
study is attempting to answer. Section 3.4.2 

Describe a reference realization. Section 3.4.2 
Describe how each sensitivity study is translated 
into model realizations, and compare the study 
and the reference realization. 

Section 3.4.2 

List changes to the code and the QA procedure 
used. Section 3.4.2 

SS-5 
Category QV-2 or QV-3 code with limited 

independent variables (e.g., <5, determined 
on a case-by-case basis) 

Yes See the submittal guidelines for SS-4.  

SS-6 
Category QV-2 or QV-3 code with many 

independent variables (e.g., >5, determined 
on a case-by-case basis) 

Yes, model and 
input studies See the submittal guidelines for SS-4.  

a Inputs must remain the same because sensitivity is dependent on the input distributions. 2 



 

24 

2.3 References 1 

2-1. U.S. Nuclear Regulatory Commission, DG-1382/RG-1.245: Preparing Probabilistic 2 
Fracture Mechanics (PFM) Submittals, Washington, DC, USA: U.S. NRC.  3 

2-2. Raynaud, P., Kirk, M., Benson, M., and Homiack, M., “Important Aspects of Probabilistic 4 
Fracture Mechanics Analyses,” U.S. Nuclear Regulatory Commission, 2018.  5 

2-3. Palm, N., “White Paper on Suggested Content for PFM Submittals to the NRC,” 6 
BWRVIP 2019-016, Electrical Power Research Institute, 2019. 7 

2-4. U.S. Nuclear Regulatory Commission, RG-1.200: An Approach for Determining the 8 
Technical Adequacy of Probabilistic Risk Assessment Results for Risk-Informed 9 
Activities, Washington, DC, USA: U.S. NRC. 10 

2-5. U.S. Nuclear Regulatory Commission, RG-1.174: An Approach for Using Probabilistic 11 
Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing 12 
Basis, Washington, DC, USA: U.S. NRC. 13 

2-6. International Atomic Energy Agency, “Quality Assurance for Software Important to 14 
Safety,” Technical Report Series No. 397 (TRS-397), Vienna, Austria, 2000. 15 

2-7. U.S. Nuclear Regulatory Commission, Safety Evaluation Report related to 16 
“Westinghouse Owners Group application of Risk-Informed Methods to Piping Inservice 17 
Inspection” (Topical Report WCAP-14572, Revision 1), December 1998, Washington, 18 
DC: U.S. NRC. 19 

 20 



 

25 

3 ANALYTICAL STEPS IN A PROBABILISTIC FRACTURE 1 
MECHANICS ANALYSIS 2 

This section describes a process for conducting a PFM analysis. It is generally assumed that an 3 
analysis process is implemented after PFM code quality and credibility have been established 4 
through SQA processes and V&V. The process followed in performing analyses for a PFM 5 
submittal is not required to be the same as the process outlined here, but it should be structured 6 
to address the specific features of the application under investigation. 7 
 8 
A generalized PFM analysis process is structured according to five key steps: 9 

(1) Translate regulatory requirements into an analysis plan. 10 
(2) Characterize input uncertainty.  11 
(3) Estimate QoIs and their associated uncertainty. 12 
(4) Conduct sensitivity studies to assess credibility of modeling assumptions. 13 
(5) Draw conclusions from analysis results. 14 

This section describes each step in the PFM analysis process and its corresponding analyst 15 
actions, along with the following information: 16 

• Purpose. Motivation for including this step in a PFM analysis.  17 
• Description. High-level description of the concept. 18 

These steps and actions are intended to provide a conceptual framework for conducting and 19 
presenting the results of a PFM analysis that can be used in a risk-informed regulatory 20 
assessment, but they are not intended to be performed in a strictly linear fashion. PFM analyses 21 
are typically iterative in nature. Furthermore, not all steps and actions are needed in every 22 
application, and the analyst should evaluate the necessity to perform each step and action on a 23 
case-by-case basis. Different applications will warrant different levels of analysis complexity and 24 
documentation. If separate PFM analyses are conducted for different regulatory contexts or 25 
QoIs, then these analyses should be documented separately.  26 
 27 
Figure 3-1 summarizes the steps and actions and their relationship to one another. This figure 28 
also shows the organization of this section and the iterative nature of PFM analyses.  29 
 30 
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 1 

Figure 3-1 Flowchart Describing the Steps and Actions of a PFM Analysis 2 
3 
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A key element of risk-informed decisionmaking is identifying uncertainties that impact the 1 
analysis results and subsequent regulatory decision. The proposed steps and actions are 2 
intended to reflect sources of uncertainty that are common to all PFM applications, including the 3 
following: 4 

• Step 2: Input uncertainty. The specific values of model inputs are typically unknown; 5 
this input uncertainty results in uncertainty in the model output, such as the likelihood of 6 
an adverse event. Accounting for this uncertainty in model inputs is what distinguishes 7 
deterministic and probabilistic fracture mechanics applications. 8 

• Step 3: QoI approximation uncertainty. PFM analyses are based on a finite number of 9 
model realizations, resulting in sampling uncertainty. This sampling uncertainty can 10 
impact the accuracy of the analysis results. 11 

• Step 4: Modeling assumption uncertainties. PFM analyses may rely on assumptions 12 
and approximations that introduce additional uncertainty into the analysis. The impact of 13 
uncertain assumptions can be addressed using sensitivity studies. 14 

The discussion in this section refers to Section 4, which includes specific technical details about 15 
elements of PFM analyses. Section 2.2 suggests documentation for different steps in this 16 
process. 17 

3.1 Step 1: Translation of Regulatory Requirements into an Analysis Plan 18 

The first step in a PFM analysis is translating regulatory requirements into a PFM analysis plan. 19 
This step involves four key actions: 20 

(1) Define the regulatory context. 21 
(2) Define the QoI and how it relates to the PFM model output. 22 
(3) Determine suitability of the PFM code for the application. 23 
(4) Identify key elements of the problem that impact analysis choices. 24 

3.1.1 Step 1: Action 1—Define the Regulatory Context 25 

Purpose: The purpose of this step is to define how PFM analyses will be used as a technical 26 
basis for a regulatory action, including the criteria to be used to support a proposed regulatory 27 
action. 28 
 29 
Description: When using PFM in support of an application to the NRC, it is important to 30 
understand how PFM informs whether regulatory requirements have been met, specifically why 31 
a probabilistic approach is appropriate for the problem at hand, and how the probabilistic 32 
approach is used to demonstrate compliance with the regulatory criteria. It is particularly 33 
important to explain how the probabilistic approach informs the regulatory action when no 34 
specific acceptance criteria exist to demonstrate compliance for the problem at hand.  35 

3.1.2 Step 1: Action 2—Define the Quantity of Interest and How it Relates to the Model 36 
Output and Acceptance Criteria 37 

Purpose: The purpose of this step is to directly map regulatory requirements onto specific 38 
model outputs, ensuring that the model is predicting appropriate and relevant quantities. 39 
 40 
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Description: The model output is directly linked to one or more QoIs and the acceptance 1 
criteria. 2 
 3 
A QoI is a quantity that is directly tied to a regulatory decision. The QoI is a model output or a 4 
function of outputs; for a PFM model to be useful, understanding the relationship between the 5 
model output and the QoI is critical. For example, suppose the QoI is the probability of rupture 6 
by year for a single pipe. For each set of inputs, the PFM model may output the year in which 7 
rupture occurs. The QoI is then estimated by calculating the frequency of rupture by year across 8 
many realizations of this single pipe’s performance. 9 
 10 
In PFM analyses, the QoI will frequently be a probability of an adverse event; however, using a 11 
proxy for an adverse event may be necessary when its probability is too small to accurately 12 
estimate using computer simulation. For example, probability of rupture could be related to 13 
crack length or crack depth, and one or both of these quantities could potentially be used as 14 
surrogates for rupture.  15 
 16 
The QoI is typically tied to the acceptance criteria. Often, an acceptance criterion is expressed 17 
as a point in the QoI space at which decisions are determined based on whether the QoI 18 
exceeds the threshold. An example acceptance criterion is “the 95th percentile of the predicted 19 
leak rate must remain below the makeup capacity of the system.” 20 
 21 
Both the QoI and acceptance criteria are defined relative to the unit of measurement and the 22 
time period over which the QoI is calculated.  23 
 24 
The unit of measurement specifies the target population for inference, defined as the entire set 25 
of objects to which the analyst is trying to generalize the results of the analysis. The QoI is 26 
interpreted relative to the units of measurement, such as a fleet of power plants, a single plant, 27 
a line within the plant, or a single weld within a plant. The units of measurement can also be 28 
defined spatially, such as per kilometer of pipe.  29 
 30 
The time period is the interval of time over which the QoI is calculated, such as per year, per 31 
decade, or over the life of the plant. 32 
 33 
As an example, consider an analysis intended to show that the likelihood of a single pipe 34 
leaking is small over the life of a plant. The QoI is the probability of pipe leakage, the 35 
acceptance criterion is the acceptable upper limit on the probability of leakage, the time period 36 
is the plant life duration, and the units are the single pipe of interest. All quantities are 37 
dependent on the modeling assumptions. For example, no mitigation, 10-year inspection 38 
intervals, and the leak detection system all impact the assessments. 39 

3.1.3 Step 1: Action 3—Determine the Suitability of the Probabilistic Fracture 40 
Mechanics Code for the Specific Application 41 

Purpose: The purpose of this step is to determine whether a specific PFM code is suitable for 42 
the application of interest and to identify any potential limitations of the code with regard to the 43 
application. 44 
 45 
Description: The SQA process should follow the graded approach suggested in Section 2.2.4. 46 
It is intended to provide assurance that the software was developed in a deliberate and 47 
controlled manner, such that every aspect of the software is known and understood. 48 
Furthermore, the SQA process ensures source and version control, so as to prevent inadvertent 49 
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changes to the software that could have unintended consequences on the software predictions. 1 
For nuclear regulatory applications, Title 10 of the Code of Regulations, Part 50, “Domestic 2 
licensing of production and utilization facilities,” (Reference 3-1) Appendix B, “Quality Assurance 3 
Criteria for Nuclear Power Plants and Fuel Reprocessing Plants,” requires that the applicants 4 
have an approved QA process in place. 5 
 6 
The V&V process is intended to provide the critical evidence for the credibility of a code and a 7 
set of analysis tools, and it is composed of two primary activities, known as verification and 8 
validation. In general, verification seeks to determine whether a given mathematical model has 9 
been solved correctly within the analysis framework. This process has two components, referred 10 
to as code verification and solution verification. Code verification specifically focuses on the 11 
implementation of software to solve a given set of governing equations (i.e., the mathematical 12 
model). Solution verification focuses on approximations to the governing equations that are 13 
needed in order to solve them on a computer. These approximations may be made in space, 14 
time, or stochastic dimensions. Solution verification has the goal of quantifying the error incurred 15 
by these approximations and determining that these effects converge toward zero as resolution 16 
is increased (e.g., time steps are reduced or spatial approximations are refined). 17 
 18 
Validation seeks to determine whether a chosen mathematical model is an accurate description 19 
of reality. Traditional validation involves comparing outcomes of a simulation to experimental 20 
data taken from a representative real-world scenario to determine the accuracy of the overall 21 
model representation. An alternative validation approach in the absence of experimental data 22 
includes benchmarking the software with comparable software that has been verified and 23 
validated previously. The model fidelity has several components, including the physics-based 24 
models, the material models, and the geometric description of a system of interest. 25 
 26 
Researchers have detailed these elements in a variety of references (e.g., References 3-2, 3-3, 27 
3-4) and a set of standards produced by ASME (References 3-5 and 3-6). While nominally 28 
discipline specific, the methods described in these guides and the references therein are very 29 
general in nature and provide a good basis for foundational V&V activities in support of model 30 
credibility. 31 
 32 
Section 2.2.4 provides SQA and V&V documentation guidance for all PFM analysis codes used 33 
in analysis. Individual analyses will apply the code in a specific manner; an important aspect of 34 
the credibility of the overall analysis is the degree of confidence in the code for the intended 35 
application. The intent of this action is to identify and resolve any important gaps in the code 36 
capabilities for the intended application.  37 
 38 
Code capabilities. Code capabilities refer to all scenarios for which a code has been through an 39 
appropriate set of V&V activities. Examples of code capabilities include (1) the range of inputs 40 
that were included in verification tests and validation test data, (2) the set of material models or 41 
geometries that have an established pedigree, (3) the underlying physics models and the 42 
assumptions underlying their range of applicability, and (4) the numerical approximation 43 
schemes (e.g., grid size, spatial and temporal resolution) with appropriate solution verification.  44 
 45 
Examples of questions to consider with regard to code capabilities include the following: 46 

• How well does the chosen model represent the application?  47 

• Is there a rationale for defining certain model assumptions as conservative?  48 
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• Is the coding for the physics-based models available for review? 1 

• Are the physics-based models well understood and established? 2 

• Are code limitations that may impact the regulatory question/issue identified? 3 

• Is mathematical justification for the model representation of the physics well 4 
established?  5 

• Are limitations of the methodology identified with respect to interpolation or 6 
extrapolation? 7 

Analysis features and code capabilities. An important first step in an analysis is to compare 8 
features of the intended application to the code capabilities to determine whether the code is 9 
suitable for the application. This process identifies any features that are incompatible with the 10 
code capabilities. Further, it identifies any features of the analysis for which the code does not 11 
have sufficient V&V evidence. As an example, if a PFM code was validated and calibrated for a 12 
specific range of weld residual stresses, then considering the implications of applying the code 13 
outside of this input range is critical for interpreting the model credibility.  14 
 15 
The following are some of the key considerations for code capability: 16 

• Does the range of inputs for which the code has been calibrated and validated include 17 
the range of inputs that are required for the specific application? Have the physics 18 
models been changed for the specific application? Are the numerical approximations 19 
sufficient for the application? 20 

• If application-specific changes have been made, is the phenomenological behavior of 21 
the code expected to be similar for this application relative to the applications for which 22 
validation occurred (i.e., are the same physics models still relevant and adequate?) 23 

• Are there any additional test data to support the applicability of the code for the current 24 
application? 25 

Addressing code limitations. Potential limitations of the code for the application can be 26 
addressed in two ways:  27 

(1) Risk can be mitigated by collecting additional information to improve the vetting of the 28 
code in the identified risk areas.  29 

(2) When it is not possible to collect additional information, justification for the credibility of 30 
the code capabilities for the application can often be based on appropriate engineering 31 
arguments. When sufficient evidence cannot be collected to address certain gaps, 32 
understanding the associated risk to the analysis credibility is critical to interpreting the 33 
final results. 34 

3.1.4 Step 1: Action 4—Identify Key Elements of the Problem that Impact Analysis 35 
Choices 36 

Purpose: The purpose of this step is to identify key elements of the PFM application that will 37 
determine how to conduct the analysis. Simplifying assumptions and approximations may be 38 
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necessary based on the complexity of the problem or, conversely, may be justified because the 1 
problem at hand is inherently not complex. 2 
 3 
Description: Specific aspects of the application drive the methods used in a PFM analysis. In 4 
an ideal situation, simple analysis techniques can be applied. More sophisticated analysis 5 
methodologies are useful when the following is true: 6 

• The model is computationally expensive. When models are computationally inexpensive 7 
to run, sampling uncertainty due to limited model realizations is a secondary issue, 8 
because the sample size can often be made arbitrarily large such that sampling 9 
uncertainty is negligible. On the other hand, computationally expensive models require 10 
more forethought about how to select model realizations and how to design model 11 
sampling schemes to achieve converged results.  12 

• The QoI is a rare event probability. Estimating rare event likelihoods typically requires 13 
more realizations, more sophisticated sampling schemes, or both. Rare event 14 
probabilities (e.g., adverse event or failure probabilities) are defined as probabilities that 15 
are close enough to zero that the number of samples needed to estimate the probability 16 
is large with respect to computational budget. For example, to estimate a 17 
1x10-6 probability using simple Monte Carlo sampling (Section 4.3.1), more than 18 
1x106 model realizations are required.  19 

• There are many model inputs. When the number of model inputs is large, then there are 20 
more input uncertainties to characterize. Also, identifying important/sensitive model 21 
inputs is more difficult because there are more candidate inputs.  22 

• Separation of aleatory and epistemic uncertainty is maintained. Uncertainty can arise 23 
from different causes; the most commonly considered types of uncertainty are aleatory 24 
and epistemic uncertainty (Section 4.1.1). For a specific adverse event, the 25 
quantification of aleatory uncertainties targets the question, “How likely is the event to 26 
happen?” while the quantification of the epistemic uncertainties targets the question, 27 
“How confident are we in this estimate of the event likelihood?” PFM analyses can treat 28 
aleatory and epistemic uncertainties separately to distinguish the frequency of event 29 
occurrence from the confidence in the frequency estimate. Separating uncertainty 30 
introduces additional complexity and computational burden into an analysis, because of 31 
the double-looping algorithm for separation described in Section 4.1.1. Section 3.2.1 and 32 
Section 4.1.1 provide more details about classifying and separating aleatory and 33 
epistemic uncertainty.  34 

For each of these attributes, it is generally more challenging to conduct SAs to identify important 35 
inputs (Section 3.3.3) and design sampling algorithms to achieve statistical model convergence 36 
(Sections 3.3.1 and 3.3.2). The points at which these elements can impact the analysis 37 
decisions are highlighted throughout the PFM analysis process. 38 

3.2 Step 2: Model Input Uncertainty Characterization 39 

The second step in a PFM analysis is characterizing input uncertainty. This step involves two 40 
key actions: 41 

(1) Identify uncertain model inputs. 42 
(2) Specify probability distributions on uncertain inputs. 43 



 

32 

The end goal of this step is to determine probability distributions to represent input uncertainty. 1 

3.2.1 Step 2: Action 1—Identify Uncertain Model Inputs 2 

Purpose: The purpose of this step is to determine which model inputs are treated with 3 
uncertainty and, if relevant, the type of uncertainty (aleatory or epistemic) for each input. 4 
 5 
Description: This action includes classifying deterministic versus uncertain inputs and 6 
classifying aleatory versus epistemic uncertain inputs (if relevant). 7 
 8 
Deterministic versus uncertain inputs. Inputs to a PFM analysis can be represented in two ways:  9 

• Deterministic inputs take on a single value.  10 
• Uncertain inputs can take on a range of potential values.  11 

Deterministic inputs are fixed to a single value across all model realizations. Such inputs can be 12 
fixed for several reasons: (1) they have known physical values (e.g., a known yield strength of a 13 
material), (2) the chosen fixed value is determined to be a value of interest (e.g., a conservative 14 
value used for a specific reason or a value of relevance for sensitivity studies (see Section 3.4)), 15 
or (3) including uncertainty would not affect decisionmaking. Uncertain inputs determine the 16 
amount of variability in the model output, conditional on the values of the deterministic inputs. 17 
This uncertainty in model inputs is what distinguishes a purely deterministic analysis from a 18 
PFM analysis. If the QoI is a failure probability, this probability is determined based on the 19 
uncertainty in the model’s uncertain inputs, conditional on the values of the deterministic inputs. 20 
Data, expert judgment, and SA (Section 3.3.3) inform whether an input is modeled as 21 
deterministic or uncertain.  22 
 23 
Understanding the rationale for classifying inputs as deterministic or uncertain is important when 24 
interpreting the analysis results. If there is uncertainty as to whether an input is deterministic or 25 
uncertain, then modeling the input as uncertain is preferable.  26 
 27 
Avoiding excessive conservatism in model inputs. Deterministic fracture mechanics models 28 
have historically relied on conservatisms; introducing conservatism into a PFM analysis makes 29 
the results difficult to interpret. Conservatisms in inputs may propagate to produce an 30 
unrealistically conservative output. For example, the probability that 10 independent variables all 31 
take values at or above their respective 90th percentile is 1x10-10, or 1 chance in 10 billion. 32 
Hence, taking a conservative approach and setting each of these inputs to their 90th percentile 33 
in a deterministic model realization results in a highly unlikely output. Even setting a single input 34 
to a conservative value can substantively change the interpretation of the model results; if the 35 
model output is highly sensitive to this input, then subsequent modeling results will on average 36 
be conservative. Additionally, conservative assumptions in submodels may be anticonservative 37 
in full system models. For example, increases in leak rate may be considered conservative at a 38 
submodel level. However, when combined with leak rate detection, this conservatism could lead 39 
to the suppression of failures due to increased leak rate detection.  40 

Understanding when and why conservative inputs are used is important to interpreting the final 41 
model results. The influence of conservative choices can be addressed using sensitivity studies. 42 
These sensitivity studies are especially important when specifying a best estimate or 43 
conservative value is difficult due to limited information.  44 
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The best estimate is defined as an approximation based on the best available information. 1 
Using a best estimate does not imply the chosen deterministic value or input distribution has no 2 
uncertainty.  3 

Aleatory versus epistemic uncertain inputs. If an analysis maintains separation between aleatory 4 
and epistemic uncertainty, then uncertain inputs are classified as epistemic or aleatory. 5 
Section 4.1.1 provides more details on aleatory versus epistemic uncertainty. This classification 6 
is not necessarily straightforward, because the uncertainty type often depends on the context 7 
and granularity of the problem. As an example, in a conventional linear elastic fracture 8 
mechanics model, the uncertainty in the linear elastic fracture toughness (KIc) may be regarded 9 
as aleatory (irreducible or inherent). Conversely, in a micromechanics model that accounts for 10 
features such as grain size, inclusions, and dislocations (i.e., the factors that create the 11 
uncertainty in KIc), this uncertainty may be regarded as epistemic. Mixed situations (part 12 
aleatory, part epistemic) are also possible. The categorization of uncertainty is therefore not 13 
totally objective and may change depending on the context of the problem.  14 
 15 
To interpret modeling results, it is important to understand how aleatory and epistemic 16 
uncertainty are defined in the context of the application and to understand the rationale for 17 
classifying inputs as epistemic or aleatory. If it is uncertain whether an important input is 18 
aleatory or epistemic, sensitivity studies (Section 3.4) can be conducted to determine the impact 19 
of changing the classification. 20 

3.2.2 Step 2: Action 2—Specify Probability Distributions on Uncertain Inputs  21 

Purpose: In PFM analyses, uncertainty in model inputs is represented through probability 22 
distributions. This uncertainty is propagated forward to the model outputs to estimate and 23 
quantify uncertainty in QoIs.  24 
 25 
Description: This action includes considering attributes of input distribution specification, 26 
including the following: 27 

• iterative nature of input distribution specification 28 
• importance of analysis context in characterizing input uncertainty 29 
• nonprobabilistic representations of input uncertainty 30 
• expert judgment 31 
• distribution specification methods 32 
• bounding input distributions 33 
• accounting for correlation in model inputs  34 

Iterative nature of input distribution specification. A PFM analysis focuses on those inputs that 35 
have the most influence on the model output. These influential inputs are typically identified 36 
using SA (Section 3.3.3). If an input’s uncertainty has little impact on the output uncertainty, a 37 
strong technical basis for the input distribution may not be necessary and a deterministic value 38 
could be used. If these results indicate a large impact, additional data, more refined statistical 39 
techniques, or further expert elicitation may be needed to further refine the input’s probability 40 
distribution. In this way, the development of inputs for PFM analysis is an iterative process, and 41 
the distributions specified in this step may be iteratively refined in the analysis process. 42 
 43 
Importance of analysis context in characterizing input uncertainty. The context of the analysis 44 
impacts the input uncertainty. Specific analyses will often have narrower uncertainty ranges 45 
than more general analyses. For example, if an analysis is specific to a certain pipe in a specific 46 
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plant, then the geometry and other characteristics of the system are likely to be defined 1 
precisely and the uncertainty range may be relatively small. In contrast, for an analysis meant to 2 
represent a series of welds or generic configurations across the U.S. reactor fleet, the variability 3 
in geometry, operating conditions, materials, and possible flaw mitigation is likely to be larger.  4 
 5 
Nonprobabilistic representations of input uncertainty. In PFM applications, it is common practice 6 
to represent input uncertainty by specifying probability distributions on the inputs. In some 7 
analyses, it may be appropriate to use other nonprobabilistic representations of uncertainty to 8 
characterize an unknown input. Specifically, for epistemic uncertainties, if the lack of knowledge 9 
is too great to specify a probability distribution on an input, then nonprobabilistic, interval-based 10 
bounding methods can be considered (References 3-2,3-7). Probabilistic representation of 11 
uncertainty is often sufficient in PFM applications; understanding the rationale for deviating from 12 
a fully probabilistic analysis is important to interpreting the analysis results.  13 
 14 
Expert judgment. In PFM applications, relevant data needed to define input distributions are 15 
often sparse or unavailable. In these cases, literature and expert opinion can be leveraged. The 16 
NRC has provided specific guidance on expert elicitation, with applications to uncertain model 17 
inputs (Reference 3-9).  18 
 19 
Distribution specification methods. Proper selection of a probability distribution for an uncertain 20 
input requires detailed knowledge of the available data as well as qualitative judgments. Expert 21 
judgment and the amount and pedigree of the data, as well as the importance of the particular 22 
input on the analysis results, are relevant considerations when justifying a distribution. 23 
Distribution specification can be highly subjective and uncertain when data are limited.  24 
 25 
Inputs with substantial uncertainty about the probability distribution or uncertainty representation 26 
may be candidates for future sensitivity studies to understand the impact of the chosen 27 
distribution on analysis results. 28 

Section 4.2.1 contains more information about fitting probability distributions to data.  29 

Bounding input distributions. Input bounds are the upper and lower truncation points defining the 30 
physical range of the input. In PFM applications, uncertain inputs are often bounded within a 31 
known range. Probability distributions that place nonzero likelihood only within this range can be 32 
used to prevent the sampling algorithm from selecting input values that are undesirable, 33 
nonphysical, or both. Section 4.2.1 discusses methods for specifying bounded probability 34 
distributions.  35 
 36 
Inputs with substantial uncertainty about the ranges may be candidates for future sensitivity 37 
studies. 38 
 39 
Accounting for correlation in model inputs. In a PFM analysis, some uncertain input variables 40 
may be statistically dependent (i.e., correlated). Accounting for the dependence between inputs 41 
often ensures a physically possible input set (i.e., ensures that physical laws are preserved).  42 

Section 4.2.2 contains more information on dependent inputs.  43 

3.3 Step 3: Estimation of Quantity of Interest and Associated Uncertainty 44 

The third step of a PFM analysis is propagating input uncertainty established in Step 2 through 45 
the model to provide a converged estimate of the QoI and characterize its uncertainty. The QoI 46 
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uncertainty characterized in this step includes uncertainty induced by input uncertainty and 1 
sampling uncertainty.  2 
  3 
The goal is to estimate the QoI and its uncertainty with sufficient sampling precision 4 
(i.e., achieve converged model results). This step includes four key actions: 5 

(1) Select a sampling scheme for sampling uncertain model inputs. 6 
(2) Assess sampling uncertainty. 7 
(3) Conduct SA to determine input uncertainty importance.  8 
(4) Conduct output uncertainty analysis. 9 

These actions are iterative. First, a sampling scheme is selected and used to estimate the QoI. 10 
The second action uses the sampling scheme to estimate the sampling uncertainty in the QoI 11 
and determines whether the estimate has converged. The third action uses SAs to identify the 12 
input uncertainties that drive the problem. SAs help to better understand the input-output 13 
relationship. Results from the second and third actions can be used as a basis to update a 14 
sampling scheme to improve convergence. Once a converged solution is found, the fourth 15 
action provides a final estimate of the QoI and associated uncertainty.  16 

3.3.1 Step 3: Action 1—Select a Sampling Scheme for Sampling Uncertain Model 17 
Inputs 18 

Purpose: The purpose of this step is to select a method for propagating uncertainty in the 19 
model inputs through the model to estimate the QoI and the associated uncertainty.  20 
 21 
Description: This action involves selecting a sampling scheme and using it to estimate the QoI 22 
and its uncertainty. While many PFM analyses will rely on Monte Carlo sampling methods to 23 
estimate a QoI, nonsampling based methods are also available and may be appropriate in some 24 
applications.  25 
 26 
Nonsampling approaches. Reliability methods, such as the first-order reliability methods 27 
(FORM) and second-order reliability methods (SORM), use gradient-based methods to calculate 28 
failure probabilities (Section 4.3.4). These methods work best when the model output is 29 
sufficiently smooth and differentiable. In such conditions, they can estimate low probabilities 30 
(i.e., 1x10-4 probability or less) with greater accuracy and fewer realizations than with Monte 31 
Carlo sampling methods. These derivative methods are limited by the fact that calculating 32 
second-order derivatives can quickly become impracticable as the number of uncertain inputs 33 
increases beyond 15 or 20.  34 
 35 
Sampling approaches. PFM analyses often use Monte Carlo methods to propagate input 36 
uncertainty through the model. Selecting a sampling scheme includes specifying the following: 37 

• sampling method  38 
• sample size 39 
• random seed 40 
• method for sampling aleatory and epistemic uncertainties, if relevant 41 

Sampling methods. Inputs can be sampled in different ways. The simplest form of Monte Carlo 42 
sampling is simple random sampling (SRS), described in Section 4.3.1. SRS is easy to 43 
implement but is often not the most statistically efficient method. Relative to SRS, other 44 
sampling schemes can produce more precise estimates of a QoI with the same number of 45 
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model realizations. When models are computationally expensive or the QoI is a rare probability, 1 
or both, more targeted sampling methods can be implemented to decrease the number of 2 
realizations required for model convergence. Examples of targeted sampling methods include 3 
Latin hypercube sampling (LHS) (Section 4.3.2), importance sampling (Section 4.3.3), and 4 
adaptive sampling. 5 
 6 
Importance sampling (Section 4.3.3) is a common sampling method for oversampling important 7 
regions of the input space to reduce the sampling uncertainty of QoI estimates. When 8 
estimating rare probabilities, the regions of the input space where failures are more likely are 9 
oversampled to estimate the probability with less sampling uncertainty (making importance 10 
sampling particularly relevant for PFM applications targeting adverse event likelihoods). To 11 
implement importance sampling, the analyst selects variables on which the technique is to be 12 
applied and their respective importance distributions. One general strategy is to first find the 13 
failure regions that contribute to the probability of the rare event and construct the importance 14 
distributions based on this information. SAs (Section 3.3.3) and subject matter expertise on 15 
important inputs can inform this process. The choice of importance distributions is paramount, 16 
since poor choices can lead to higher variance estimates with higher sampling uncertainty. 17 
Inefficiency in importance sampling often occurs in high-dimensional problems where many 18 
variables are importance sampled (Reference 3-10).  19 
 20 
Sample size. The sample size is the number of realizations at different input settings (i.e., the 21 
number of sets of inputs that are propagated through the model). There is a natural relationship 22 
between the computational burden of the model, the sample size, and the sampling scheme. 23 
Specifically, computationally inexpensive models can be run many times, resulting in large 24 
sample sizes. In such cases, simple sampling schemes such as SRS are likely sufficient. If the 25 
model is computationally expensive, sample sizes will be lower and more efficient sampling 26 
schemes are required. Relatedly, if the QoI is a probability, the sample scheme and sample size 27 
are related to the magnitude of the probabilities. As the probability gets closer to 0 or 1, more 28 
samples or more efficient sampling schemes, or both, are required. 29 
 30 
Random seed. Sampling-based approaches rely on random number generators to select the 31 
random sample. Random seeds can be selected for a random number generator to ensure that 32 
the same random sample is selected each time a set of model realizations is run so that exact 33 
results can be reproduced. 34 
 35 
Separation of aleatory and epistemic uncertainty. If the analysis maintains separation of aleatory 36 
and epistemic uncertainty, then the input uncertainties are typically sampled using a double-loop 37 
method, described in Section 4.1.1. This method first samples epistemic inputs. Then, for each 38 
set of epistemic inputs, aleatory inputs are sampled numerous times to obtain a distribution of 39 
model outputs over aleatory uncertainty. The double-loop structure is computationally 40 
expensive, because the QoI is estimated for each set of epistemic samples. Surrogate modeling 41 
(Section 4.3.10) is often used to increase the computational efficiency of the double-loop 42 
method, relying on a computationally inexpensive statistical model approximation to post hoc 43 
separate aleatory and epistemic uncertainty (as described in Section 4.1.1).  44 

3.3.2 Step 3: Action 2—Assess Sampling Uncertainty: Statistical Convergence 45 
Analysis 46 

Purpose: The purpose of this step is to assess the statistical convergence of QoI estimates 47 
from model outputs given a sampling scheme. 48 
 49 
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Description: PFM analyses are based on a finite number of realizations. Since the model 1 
cannot be run at all points in the input space, sampling uncertainty is associated with estimating 2 
a QoI. Quantifying the sampling uncertainty of QoI estimates is important to determine whether 3 
the analysis conclusions might change with an improved sampling scheme. Methods to assess 4 
sampling uncertainty convergence include the following: 5 

• assessing stability of an estimate as the sample size increases 6 
• calculating statistical sampling uncertainty metrics 7 
• comparing replicates and assessing variation in the QoI estimates 8 
• using surrogate modeling to estimate sampling uncertainty 9 
• updating the sampling scheme 10 

Section 4.3.5 discusses these methods in more detail. 11 
 12 
Assessing stability in an estimate as the sample size increases. For a given sampling scheme, 13 
the sample size can be increased iteratively until QoI estimate is sufficiently stable, suggesting 14 
statistical convergence. For example, with an SRS sampling scheme, more input samples can 15 
be selected to increase the sample size. Augmented LHS designs can be used to add input 16 
samples to an initial LHS design. Stability in the QoI can again be measured as the sample size 17 
increases. The major advantages of this approach are that it can be applied to any sampling 18 
scheme and that it does not require multiple independent model realizations. However, the 19 
approach does not provide a direct measure of sampling uncertainty in the QoI estimate and 20 
can be rather computationally expensive.  21 
 22 
Calculating statistical sampling uncertainty metrics. Statistical sampling uncertainty metrics 23 
quantify the sampling uncertainty in the QoI estimate using statistical sampling theory. Methods 24 
for calculating statistical sampling uncertainty metrics are specific to the sampling scheme. 25 
Using an SRS sampling scheme, the standard deviation, coefficient of variation (CV), or 26 
confidence interval for a QoI can be calculated directly from the sample (Section 4.3.6). If the 27 
QoI for a PFM analysis is a rare probability and zero events are observed, then an upper bound 28 
on the probability can be calculated using statistical metrics under an SRS scheme. However, 29 
SRS is not the most efficient sampling scheme when the QoI is a rare probability.  30 
 31 
Under sampling schemes other than SRS, statistical resampling methods, such as 32 
bootstrapping, can be used to calculate statistical sampling uncertainty metrics (Section 4.3.7). 33 
Resampling methods are easy to implement but can be more computationally expensive; 34 
further, resampling methods can produce inaccurate estimates when the QoI is a rare 35 
probability. 36 
 37 
LHS schemes do not offer a simple analytic form for an unbiased estimate of sampling 38 
uncertainties from a single sample (References 3-11, 3-12). Furthermore, bootstrapping an LHS 39 
is not possible. Since LHS is more efficient (Reference 3-11), SRS uncertainty metrics applied 40 
to an LHS scheme will be conservative.  41 
 42 
Comparing replicates and assessing variation in the QoI estimates. Another method to assess 43 
QoI convergence is to run the sampling scheme several independent times with unique random 44 
number seeds. The QoI is estimated for each independent realization, and the variation across 45 
the realizations is measured. Example metrics to assess convergence based on these 46 
realizations include the standard deviation of the QoI across realizations, the CV (ratio of the 47 
standard deviation to the mean), or a confidence interval on the QoI. These metrics can be 48 
compared to the desired level of convergence for the application. The major advantages of this 49 
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approach are that it can be applied to any sampling scheme and that it gives a direct 1 
measurement of estimate variability; however, the approach is computationally expensive. In 2 
general, the number of replicates is selected to be large enough that the conclusion would not 3 
change significantly if more replicates were provided.  4 
 5 
Using surrogate modeling to estimate sampling uncertainty. When the model is computationally 6 
expensive to run and only a small number of input samples can be propagated through the 7 
model, surrogate models (Section 4.3.10) can be used to provide a computationally efficient 8 
alternative to the full model. A surrogate model is a statistical approximation to the full, 9 
computationally expensive model and is estimated from a set of model realizations. The 10 
sampling uncertainty in the surrogate model can be propagated to sampling uncertainty 11 
estimates for the QoI. 12 
 13 
Updating the Sampling Scheme. If the selected sampling scheme does not provide converged 14 
results, then this scheme can be updated by increasing the sample size, changing the sampling 15 
method, or both. 16 

3.3.3 Step 3: Action 3—Conduct Sensitivity Analyses to Determine Input Uncertainty 17 
Importance 18 

Purpose: SAs help identify problem drivers, defined as uncertain model inputs that explain 19 
substantial uncertainty in the model output. Understanding problem drivers allows the analyst to 20 
do the following: 21 

• Confirm that the model is behaving as expected.  22 

• Identify inputs whose uncertainty distribution is itself uncertain and that may need 23 
refinement before final estimation of the QoI.  24 

• Identify assumptions that are uncertain and thus may be candidates for sensitivity 25 
studies (Step 4).  26 

• Improve the accuracy of the output uncertainty analysis by reducing the dimension of the 27 
input space and identifying important inputs that can be used in more targeted sampling 28 
methods such as importance sampling. 29 

SA plays a critical role in improving output uncertainty analysis. A common goal of a PFM 30 
analysis is to accurately estimate a QoI along with its associated uncertainty. By informing the 31 
final sampling scheme, SAs can improve QoI estimation. For example, SA can identify inputs 32 
with a large impact on the model output; these inputs may be candidates for importance 33 
sampling (Section 4.3.3) to increase the precision of QoI estimates. This action is closely tied to 34 
Step 3, Action 1, which provides more detail on selecting an appropriate sampling scheme for 35 
the estimation of a QoI and its uncertainty.  36 
 37 
Description: In broad terms, SA focuses on identifying how the input uncertainties contribute to 38 
the uncertainty in the outputs of interest. References 3-13, 3-14, 3-15, 3-16, 3-17, 3-18, and 3-39 
19 are some of the sources that describe SA techniques and examples. The discussion below 40 
addresses the following: 41 

• the types of SA 42 
• forward propagation of uncertainty for SA  43 
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• the stages of SA 1 
• modeling nonlinearities and interactions in SA 2 
• SA for submodels 3 
• uncertainties in SA 4 

Types of SA. There are two general types of SA:  5 

(1) Global SA is the process of decomposing variance in the model output according to the 6 
model inputs (see Section 4.3.8). 7 

(2) Local SA is the process of determining how changes to uncertain inputs affect outputs 8 
with respect to a reference point in the input domain (see Section 4.3.9).  9 

Forward propagation of uncertainty for SA. SA is performed after an initial set of uncertain 10 
inputs has been propagated through the model, resulting in a distribution of model outputs. SA 11 
is often conducted on an initial set of model realizations, with uncertain inputs sampled using a 12 
standard Monte Carlo-based sampling scheme with broad coverage of the input space, such 13 
that model input-output relationships can be discerned from the sample. The number of model 14 
realizations needed depends on the goals of the SA and the computational burden of the model. 15 
For example, if the goal of global SA is to understand how inputs vary with the output to select 16 
the number of model realizations, the analyst can consider the complexity of the input-output 17 
relationship and the number of uncertain model inputs. Local SA typically requires fewer model 18 
realizations. After model results are obtained from forward propagation of uncertainty, the 19 
analyst can proceed with the two stages of SA described below.   20 
 21 
Stages of SA. Typically, SAs have two stages:  22 

(1) Exploratory data analysis involves graphically exploring input-output relationships using 23 
scatter plots and calculating local SA metrics, as needed. The SA results can present 24 
scatter plots for important inputs. Reference 3-20 describes formal procedures for the 25 
analysis of scatterplots.  26 

 27 
(2) Global sensitivity metrics estimation involves the estimation of the proportion of variance 28 

in the model output explained by each model input (first-order sensitivity index) and its 29 
interactions with other inputs (total-order sensitivity index). 30 

In practice, SA is an iterative process, and these two stages may repeat multiple times. For 31 
example, given a large number of inputs and complexities in the input-output relationships, 32 
selecting the correct visualizations and interpreting them can be difficult. Estimation of the global 33 
sensitivity metrics in the second stage can help to identify the important inputs to visualize. 34 
These visualizations can inform results of the global SA.  35 
 36 
Model nonlinearities and interactions in SA. PFM applications often involve systems of linked 37 
models with complex relationships. SAs allow for the identification and quantification of the 38 
input-output relationship, including nonlinearities in the input-output relationship and interactions 39 
between model inputs. 40 
 41 
Global SA is a commonly used tool for summarizing input importance in PFM studies and 42 
identifying the effects of nonlinearities and interactions. Local SAs identify sensitivities within a 43 
small neighborhood around a point of interest and therefore do not identify nonlinearities and 44 
interactions; local SA is informative if the goal is to understand local variations (see 45 
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Section 4.3.9 for more detail). Global and local SA are often used together in the same PFM 1 
analysis at different iterations of the SA.  2 

SA for submodels. Since PFM applications often involve systems of linked models, it may be 3 
appropriate to conduct SA on specific submodels (in addition to the full PFM model) as some 4 
dominant submodels may hide the results and impacts of other submodels. For example, to 5 
investigate the impact of active degradation mechanisms on the probability of leakage or 6 
rupture, it may be appropriate for the analysis to exclude fatigue damage. As another example, 7 
it may be prudent to identify inputs impacting crack growth before a full SA determining 8 
important inputs for rupture.  9 
 10 
Uncertainties in SA. Understanding aspects of the model and input uncertainty characterization 11 
informs how to conduct SA, as shown in the following examples:   12 

• Model approximations for computationally expensive models. Estimating sensitivity 13 
metrics is computationally expensive, often requiring many model realizations. As a 14 
solution, model approximations or surrogates (Section 4.3.10) are often used in SA as a 15 
computationally practical approximation to the full model. Sufficiently flexible model 16 
surrogates allow for nonlinearities and interactions between inputs. If the model 17 
approximation contains substantial uncertainty, then multiple different model 18 
approximation methods can be compared to assess robustness of the SA results to the 19 
model approximation method. 20 

• High-dimensional inputs. Building an accurate model approximation requires more 21 
model realizations when the input space is high dimensional. Without enough 22 
realizations, true input-output relationships may not be identified.  23 

• Continuous versus binary or discrete outputs for SA. Binary or discrete outputs (such as 24 
failure events) inherently contain less statistical information than continuous outputs. 25 
More realizations will be needed to identify important model inputs impacting a binary 26 
indicator variable than for a continuous model output. An alternative is to identify 27 
continuous responses associated with the binary event for SAs, insofar as there is a 28 
clear, justifiable connection between the binary event and the continuous variable. For 29 
example, instead of conducting SA on the binary indicator for rupture, the analyst could 30 
use crack length as the output for SA.  31 

• Separation of aleatory and epistemic uncertainty. If the separation of uncertainty types is 32 
maintained, SA is conducted for both uncertain aleatory and epistemic inputs. The SA 33 
can be run over all uncertainties to determine which inputs have the largest impact on 34 
the outputs of interest. Additional SAs can be conducted for aleatory and epistemic 35 
inputs separately to identify the impacts of irreducible and reducible uncertainties, 36 
respectively.  37 

3.3.4 Step 3: Action 4—Conduct Output Uncertainty Analysis 38 

Purpose: The purpose of this step is to provide a final estimate, with associated uncertainty, of 39 
the QoI and to visualize results.  40 
 41 
Description: A summary of the QoI results may include the following:  42 

• a best estimate of the QoI  43 
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• an estimate of uncertainty in the QoI 1 
• a graphical display of the QoI estimate and uncertainty 2 

Best estimate of a QoI. The definition of the best estimate of a QoI will depend on the 3 
application. When the QoI is uncertain, the best estimate is often quantified using either the 4 
mean or median of the QoI distribution. The mean is the arithmetic average over the QoI 5 
distribution, and the median is the 50th percentile of this distribution.  6 
 7 
Estimate of uncertainty in the QoI. When estimating and visualizing uncertainty in a QoI 8 
estimate, it is critical to be clear about the type of uncertainty being summarized. QoI 9 
uncertainty can refer to different types of uncertainty, depending on the relationship between the 10 
model output and the QoI. Example types of uncertainty include the following: 11 

• Input uncertainty. If the QoI is a model output, QoI uncertainty may refer to uncertainty in 12 
the QoI due to uncertain inputs. A best estimate of the QoI is the mean or median of the 13 
QoI over the input space, and the uncertainty in the QoI refers to the distribution of the 14 
QoI over uncertain inputs. 15 

• Sampling uncertainty (also called aleatory uncertainty). QoI uncertainty may also arise 16 
due to a limited number of model realizations resulting in uncertain QoI estimates. When 17 
convergence analyses (Section 3.3.2) suggest sampling uncertainty is negligible, then 18 
visualizing sampling uncertainty will not be necessary. If the sampling uncertainty is not 19 
sufficiently small based on convergence analysis results, then this sampling uncertainty 20 
can be measured and presented as a source of QoI uncertainty. 21 

• Epistemic (lack of knowledge) uncertainty. When aleatory and epistemic uncertainty are 22 
separated, the QoI is typically calculated for each epistemic sample. Epistemic 23 
uncertainty in the QoI measures how the QoI varies due to knowledge uncertainty. A 24 
best estimate of the QoI is the mean or median QoI estimate over all epistemic samples. 25 

• Uncertainty in the QoI results in a distribution of QoI estimates. This uncertainty can be 26 
summarized using percentiles of the uncertainty distribution; measures such as variance 27 
and standard deviation can also provide useful summaries of QoI uncertainty. 28 

If the QoI is a failure probability calculated from uncertain model outputs, then the QoI already 29 
incorporates uncertainty in the model inputs. In this case, if aleatory and epistemic uncertainty 30 
are not separated and sampling uncertainty is negligible (i.e., a high degree of statistical 31 
convergence has been achieved), then there may be no need to present a measure of 32 
uncertainty about the failure probability estimate. 33 
 34 
Graphical display of the QoI estimate and uncertainty. Graphical displays of the best estimate 35 
and uncertainty in the QoI can be used to communicate the results of an uncertainty analysis. 36 
The form of the graphical display will depend on the types of uncertainty being visualized and 37 
whether the QoI is a function of time or a single scalar. The best approach to visualizing results 38 
is application specific. Section 4.3.11 provides more details on output uncertainty analysis. 39 

3.4 Step 4: Sensitivity Studies to Assess the Credibility of Modeling 40 
Assumptions 41 

The fourth step in a PFM analysis is conducting sensitivity studies, defined as additional 42 
analyses conducted under different, yet plausible, assumptions. The purpose of sensitivity 43 
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studies is to challenge uncertain analysis assumptions that could substantively change the 1 
analysis results. Sensitivity studies involve two key actions: 2 

(1) Determine a set of sensitivity studies. 3 
(2) Conduct sensitivity studies and present results. 4 

3.4.1 Step 4: Action 1—Determine a Set of Sensitivity Studies 5 

Purpose: The purpose of this action is to identify important assumptions that merit further 6 
scrutiny to understand what might happen if these assumptions were changed. For example, in 7 
the study of a plant, the distribution of a specific input could have been calibrated using 8 
information from a global set of similar but different plants. This calibration raises the question of 9 
what might be different about the distribution for the individual plant and how that would change 10 
the conclusions of the analysis.  11 
 12 
Description: Given the complexity of PFM analyses, it is not possible to enumerate all plausible 13 
changes in the assumptions. Instead, to evaluate whether a sensitivity study is needed for a 14 
specific assumption, two criteria are evaluated: 15 

(1) Plausible alternate assumptions can be identified. 16 
(2) Changes to the assumption in question can substantively impact the calculated QoI. 17 

The specific number of sensitivity studies will depend on the application, but the goal is to 18 
conduct enough studies such that there is a sufficiently low chance that the results of the 19 
analysis depend heavily on unverifiable or uncertain assumptions.  20 
 21 
Uncertain analysis assumptions can often be classified as either modeling assumptions or input 22 
parameter specification assumptions. Modeling assumptions include any assumptions in the 23 
computational modeling framework, while input parameter specification assumptions refer to 24 
any assumptions made when specifying the values of the input parameters to the PFM model. 25 
Common types of sensitivity studies include considering changes in the results if the following 26 
occurs: 27 

• A plausible alternative model is used. 28 

• A different probability distribution for an uncertain input (or several uncertain inputs) is 29 
used. 30 

• The categorization of an input as aleatory or epistemic is changed. 31 

Reference 3-21 provides guidance on selecting sensitivity studies, which this report reviews in 32 
Section 4.4.  33 

3.4.2 Step 4: Action 2—Conduct Sensitivity Studies and Present Results 34 

Purpose: The purpose of this action is to perform the sensitivity studies.  35 
 36 
Description: Sensitivity studies can take on many different forms, and there is no prescriptive 37 
method for conducting sensitivity studies. However, they will all include some common 38 
elements: 39 
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• a reference realization (or baseline case) with a documentation of the QoI 1 
• one or several modified realizations illustrating the concept that needs to be represented 2 
• a comparison between the reference realization and the modified realization(s) 3 
• a comparison criterion to decide whether the change is significant 4 
• a conclusion, including potential consequences 5 

3.5 Step 5: Draw Conclusions from Analysis Results 6 

The fifth step in a PFM analysis is to draw conclusions using the results of Steps 1–4. This step 7 
includes two key actions: 8 

(1) Interpret analysis results. 9 
(2) Iterate on the analysis process to refine model results.  10 

3.5.1 Step 5: Action 1—Interpret Analysis Results 11 

Purpose. The purpose of this action is to synthesize the information gathered in Steps 1–4 and 12 
draw conclusions from this information. 13 
 14 
Description. In an ideal situation, PFM analysis results can be compared directly to acceptance 15 
criteria to make a regulatory decision. In practice, determinations about whether acceptance 16 
criteria are met are typically not made based on a single PFM calculation or analysis but rather 17 
based on a set of analyses that are compiled into an overall evidence package. Information 18 
about the analysis results, scope, and limitations must be considered when drawing final 19 
conclusions, considering all elements of the PFM analyses described above in Steps 1–4. 20 
Subsequently, drawing final conclusions based on the analysis requires substantial expert 21 
judgment to synthesize all information together to make actionable guidelines. 22 

3.5.2 Step 5: Action 2—Iterate on the Analysis Process to Refine Model Results  23 

Purpose. The purpose of this action is to determine whether additional analyses are required to 24 
draw informative conclusions from the modeling. 25 
 26 
Description. If analysis results are inconclusive concerning whether the acceptance criteria are 27 
met, then the analyst can consider additional refinements to the analysis to provide the required 28 
additional information. For example, the analyst can consider the following: 29 

• changing or clarifying aspects of the PFM code (Section 3.1.3) 30 

• refining the input uncertainty distributions (Section 3.2.2) 31 

• choosing a different sampling scheme or increasing the number of model realizations 32 
(Section 3.3.1) 33 

• adding more sensitivity studies to address existing limitations (Section 3.3.3)   34 

PFM analyses are typically iterative in nature, such that initial modeling results inform future 35 
analyses. The iterative process continues until the analyst has sufficient information to draw 36 
clear conclusions about whether the acceptance criteria are met for the application. 37 
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4 USEFUL METHODS FOR ESTABLISHING CONFIDENCE IN 1 
PROBABILISTIC FRACTURE MECHANICS ANALYSIS 2 

This section details a concise review of analysis methodologies, including notional examples for 3 
context that are linked directly to an action introduced in Section 3. While this is not a 4 
comprehensive list of acceptable methodologies, this section can be used by applicants who are 5 
seeking explicit guidance on the theoretical underpinnings of the processes that are used to 6 
establish the credibility of a PFM analysis. For example, Section 4.1 provides technical detail 7 
that could be used to develop the technical basis for the action defined in Section 3.1. Each 8 
section introduces a concept/method and provides the following information about it: 9 
 10 
• What is it?—Gives a high-level description of the concept/method. 11 
 12 
• How to use?—Provides general details on how the concept/method is used, including 13 

specific steps or an algorithm where appropriate. 14 
 15 

• When/Why?—Discusses the PFM context in which the concept/method is used and 16 
maps this use to the process described in Section 3. 17 

 18 
• Technical details—Describes technical details and complexities that are important to 19 

the use/implementation/interpretation of the method in the PFM context.  20 
 21 
• References—Lists references that provide further technical details. 22 

4.1 Useful Methods for Translating Regulatory Requirements into an Analysis 23 
Plan 24 

4.1.1 Separation of Aleatory and Epistemic Uncertainty 25 

When constructing an analysis plan, one aspect to consider is the treatment of uncertainty—26 
namely, will uncertainty be treated probabilistically, and, if so, will different types of uncertainty 27 
be distinguished? Separating types of uncertainty can be necessary when there is a need to 28 
quantify the uncertainty on a statistical QoI (a frequency or probability) or to separate inherent 29 
variability from lack-of-knowledge uncertainty. Such separation generally provides additional 30 
insights on the magnitude of the uncertainties and on whether they can be reduced. However, 31 
separation of uncertainties also comes with increased computational cost and analysis effort, 32 
and the decision to maintain the separation influences many steps of the subsequent analysis 33 
workflow. As a result, this tradeoff decision needs to be considered at an early stage of the 34 
analysis planning. 35 
 36 
Specifically, the strategy for handling uncertainty may vary for different types of analysis 37 
questions. If the analysis objective is to compute a single best estimate event probability, it is 38 
likely sufficient to consider all sources of uncertainty together to arrive at this probability. 39 
However, this approach can obscure information. Separating types of uncertainty instead of 40 
considering all sources of uncertainty together can lead to more interpretable analysis. For 41 
example, rather than computing a single best estimate probability, the analyst may want to 42 
understand the confidence in the computed frequency of an event given the current state of 43 
knowledge. Some elements of this knowledge uncertainty may be reducible, potentially 44 
improving confidence in the frequency estimate and increasing the precision of the analysis 45 
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results. As described in this section, these reducible sources of uncertainty (referred to as 1 
epistemic uncertainty) can be treated separately to maintain this information for the 2 
communication of results and decisionmaking about additional activities to conduct.  3 

4.1.1.1 What Is It?   4 

Two primary types of uncertainty sources are often considered in risk analysis (References 4-1, 5 
4-2, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8): 6 

(1) Aleatory uncertainty is defined as “uncertainty based on the randomness of the nature 7 
of the events or phenomena that cannot be reduced by increasing the analyst’s 8 
knowledge of the systems being modeled” (Reference 4-9). Aleatory uncertainty 9 
represents the (perceived) randomness in the modeled system that cannot be reduced. 10 
Aleatory uncertainties reflect natural, intrinsic, or stochastic variability.  11 

(2) Epistemic uncertainty is defined as “the uncertainty related to the lack of knowledge or 12 
confidence about the system or model and is also known as state-of-knowledge 13 
uncertainty” (Reference 4-9). Epistemic uncertainty represents the lack-of-knowledge 14 
uncertainty in the modeled system that can be reduced. 15 

Historical PFM analyses of nuclear power plant structures either (1) do not distinguish between 16 
types of uncertainty (References 4-10, 4-11, 4-12, 4-13) or (2) treat the uncertainty as either 17 
aleatory or epistemic (References 4-14, 4-15).  18 

4.1.1.2 How to Use?  19 

If an analysis separates aleatory and epistemic uncertainty, then it requires additional effort to 20 
separate uncertainty types and iterate over epistemic samples in a “double-loop” sampling 21 
algorithm, as described below. This involves the following three steps: 22 

(1) Classify types of uncertainty for an application. The first step in separating types of 23 
uncertainty is classifying input variables as aleatory or epistemic. The specific PFM 24 
application typically drives classification choices. If it is unclear how to classify an 25 
uncertainty, it may be worth considering a sensitivity study (Section 4.4) to understand 26 
the impact of the classification. 27 

 28 
(2) Determine how to represent uncertainty. After classifying uncertainty types, the next 29 

step is to determine how to represent the different types of uncertainty. PFM analysis 30 
typically represents uncertainties using probability distributions, though other options are 31 
possible (see Section 4.1.1.4). 32 

 33 
(3) Propagate uncertainty while maintaining separation of types. Given a model output, 34 

a QoI, and uncertainties related to the model input parameters, the next step is 35 
propagating both types of uncertainty. For sampling-based uncertainty propagation, 36 
separation of aleatory and epistemic uncertainty is maintained using a double-loop 37 
(i.e., nested loop) framework. The following steps can be applied to propagate input 38 
uncertainty: 39 
 40 
– Epistemic variables are sampled in an outer loop. 41 

– For each epistemic sample, aleatory variables are sampled in an inner loop. 42 
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– QoIs are calculated for each epistemic sample (calculated over all aleatory 1 
samples), generating an epistemic distribution of QoIs. 2 

The sections below provide more information about the double-loop procedure. 3 

4.1.1.3 When/Why?  4 

The risk community has made the distinction between the inherent risk (aleatory) and the 5 
uncertainty due to lack of knowledge (epistemic). The purpose of this distinction is to 6 
acknowledge there will always be a risk given a specific situation, and the consequences can 7 
lead to different interpretations in terms of decisionmaking. The analyst can choose whether to 8 
separate types of uncertainty. The decision to separate uncertainty types typically depends on 9 
several factors: 10 

• Computational feasibility. In practice, maintaining separation during uncertainty 11 
propagation (for example, through Monte Carlo sampling) can be computationally 12 
challenging, due to the need to construct a “double-loop” sampling scheme. 13 
Section 4.1.1.4 contains more information and suggestions for efficiently implementing 14 
the double-loop scheme. 15 

 16 
• Conceptual interpretation of results. The interpretation of the results of a PFM 17 

analysis changes depending on whether the separation of uncertainty types is 18 
maintained (Reference 0). Section 4.1.1.4 contains more information. 19 

 20 
• Strength of technical basis. Ultimately, the separation of uncertainties can help to 21 

make a stronger, more comprehensive case and help the analyst understand what 22 
needs to be done to improve the accuracy of the answer. 23 

4.1.1.4 Technical Details   24 

Representing epistemic uncertainty. In many risk analysis applications, it can be difficult to 25 
specify probability distributions on epistemic uncertainties because, by definition, these 26 
uncertainties arise due to lack of knowledge. While probabilistic representation of epistemic 27 
uncertainty will be sufficient for most PFM applications, nonprobabilistic representations may be 28 
appropriate in certain instances (Reference 4-3, 4-16, 4-17). For example, sensitivity studies 29 
(Section 4.4) conducted at deterministic (i.e., fixed) values of the epistemic inputs can inform 30 
about a “worst case scenario.”  31 
 32 
Computational burden of separating uncertainty. The double-loop framework for sampling 33 
typically requires a large sample size. For each epistemic sample, the aleatory sample is 34 
selected to be sufficiently large for the accurate estimation of the QoI (e.g., failure frequency). 35 
More sophisticated sampling schemes (Sections 4.3.2 and 4.3.3) may be needed to make 36 
double-looping computationally feasible. If the model is too computationally expensive to directly 37 
implement the double-loop sampling, there are two options: (1) do not separate uncertainty 38 
types, or (2) build a computationally efficient surrogate model to approximate the full model. 39 
Surrogate models are data-driven approximations of the physics model output across the input 40 
space, as discussed in Section 4.3.10. Surrogate models introduce additional uncertainty into 41 
the problem because the surrogate is itself a model approximation.  42 
 43 
Interpretation of results. Maintaining separation of the two types of uncertainty facilitates 44 
making statements about confidence in the frequency of an event or the probability of 45 
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frequency. Specifically, probability of frequency refers to an analysis that models aleatory and 1 
epistemic uncertainties probabilistically and separates them in presenting the results 2 
(References 4-2, 4-18). As an example, in a PFM analysis aiming to characterize the likelihood 3 
of an adverse event, aleatory probabilities represent the frequency of an adverse event 4 
(e.g., crack, rupture) given a set of epistemic inputs/assumptions. These frequencies will vary 5 
with the set of epistemic inputs/assumptions. This variation represents the epistemic 6 
uncertainty/confidence in the frequency. 7 
 8 
If an analysis does not distinguish between aleatory and epistemic uncertainties, frequencies of 9 
an adverse event are computed over all uncertainties, and the analysis cannot quantify the 10 
impact of uncertainties that arise due to lack of knowledge. The implications of such a choice 11 
are explained with an example of the double-loop procedure below.  12 
 13 
To illustrate the double-looping procedure, consider estimating the frequency of pipe rupture. 14 
The model output is a binary indicator taking the value 1 if the pipe ruptured and 0 otherwise. 15 
Each input is categorized as either epistemic or aleatory and is assigned a probability 16 
distribution to represent its uncertainty. Then, the model is run, each time with different inputs, 17 
using the double-loop algorithm to separate uncertainty: 18 

(1) A set of epistemic variables is sampled randomly from the variables’ probability 19 
distributions. 20 

(2) Fixing this set, many samples (e.g., 1x104) of the aleatory variables are sampled 21 
randomly and the model is run, collecting the binary output for each realization. 22 

(3) Steps 1 and 2 are repeated many times (e.g., 1x103). The separation of the results by 23 
epistemic variable is maintained. 24 

Example results appear in Figure 4-1, which shows the proportion of the 1x104 aleatory samples 25 
that resulted in pipe rupture for the first 50 epistemic samples. For each epistemic realization, 26 
this proportion is the estimated frequency of pipe rupture, given the set of epistemic variables.  27 
 28 
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 1 

Figure 4-1 The Estimated Probability of Pipe Rupture for the First 50 Epistemic Samples 2 
 3 
For many of the epistemic realizations, the estimated failure frequency is zero, meaning none of 4 
the 1x104 random realizations resulted in a pipe rupture. However, several of the estimates are 5 
nonzero. Across the 1x103 epistemic realizations, the estimated failure frequency ranges from 0 6 
to 0.99, with roughly 83 percent falling below 0.05 (the vertical line). The histogram of the 7 
estimated failure frequencies in Figure 4-2 shows this. 8 
 9 
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 1 

Figure 4-2 Histogram of Estimated Probabilities Across 1,000 Epistemic Realizations 2 
 3 
With maintaining the separation of aleatory and epistemic uncertainties, the results can be 4 
interpreted as follows: there is roughly 83-percent confidence that the rupture probability is 5 
below 0.05. This is likely an optimistic estimate of confidence in the sense that the sampling 6 
uncertainty (i.e., finite sample size uncertainty) for each of the estimated probabilities has not 7 
been considered.  8 
 9 
Without maintaining separation of aleatory and epistemic uncertainties, the estimate of pipe 10 
rupture probability would be the proportion over all samples. This proportion is 0.046, which is 11 
below the 0.05 threshold used above. However, such an approach mixes the likelihood of 12 
rupture (i.e., aleatory uncertainty in rupture) and the confidence associated with rupture 13 
(epistemic uncertainty of rupture). When separating, the conclusion is that roughly 17 percent of 14 
epistemic values result in rupture probabilities above 0.05. When not separating, the conclusion 15 
is the estimated probability of pipe rupture is 0.046. These are two very different conclusions.  16 
  17 
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4.2 Methods for Model Input Uncertainty Characterization 1 

4.2.1 Statistical Distribution Fitting 2 

4.2.1.1 What Is It?  3 

Given a set of representative data about the input parameter, statistical distribution fitting is the 4 
process of estimating the probability distribution of the input parameter using the available data.  5 

4.2.1.2 How to Use?  6 

Statistical distribution fitting has five steps: 7 

(1) Determine relevant data. 8 
(2) Select candidate probability distributions. 9 
(3) Fit distributions to the data. 10 
(4) Evaluate the fit of the distributions to the data. 11 
(5) Select a final input distribution model. 12 

Given a candidate distribution and ample data, most statistical software programs can produce 13 
estimates of input distribution parameters, uncertainty in these parameters, and evaluations of 14 
model fit. Important considerations for statistical distribution fitting include the following: 15 

• How many data are available and what is the pedigree of those data? 16 

• How much subject matter knowledge is available about the range and shape of the input 17 
parameter distribution? 18 

• How much accuracy is needed in the input distribution? (More important inputs require 19 
more accuracy.) 20 

• After distribution fitting, how much uncertainty is there in the final estimate of the input 21 
distribution? 22 

Reference 4-19 provides specific guidance on fitting models to input distributions. The sections 23 
below provide more technical details on distribution fitting. 24 

4.2.1.3 When/Why?  25 

Probability distributions are often used to represent uncertainty in model inputs. Statistical 26 
distribution fitting is used when data are available to learn about the form of the input 27 
distribution.  28 
 29 
The chosen input distribution can impact the PFM results. Expert judgment can inform the 30 
distribution, especially when limited or inexact data are available. Additionally, sensitivity studies 31 
(Section 4.4) on important input distributions may be needed to assess the impact of 32 
assumptions made in the distribution fitting process. When data are not available to estimate 33 
probability distributions, expert elicitation can be used (Reference 4-20).  34 
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4.2.1.4 Technical Details  1 

This section discusses the five steps in statistical distribution fitting in more detail. 2 

(1) Determine relevant data.  3 

Data quality. The amount and pedigree of the source data are important considerations when 4 
determining an input distribution. In practice, cost and time limit data quality. Data quality 5 
considerations include the following: 6 

• limited data/small sample size (i.e., the sample is too small to estimate the input 7 
distribution with sufficient accuracy)  8 

• data relevance (i.e., not all data points are direct measures of the outcome of interest) 9 

• data uncertainty (i.e., individual data points can contain uncertainty due to measurement 10 
error) 11 

The minimum number of data points needed for a suitable fit is subjective and context specific, 12 
but smaller sample sizes lead to larger uncertainty in the best fitting input probability distribution. 13 
Additionally, very small sample sizes do not allow for data-driven statistical distribution fitting. 14 
Expert judgment about the input and its impact on the results can provide additional insight into 15 
the process of choosing the input probability distribution.  16 

(2) Select candidate probability distributions.  17 

Distribution models. There is a large set of possible distribution models for input parameters, 18 
but, in most cases, simple parametric forms for inputs are used. Common choices include the 19 
normal, truncated normal, lognormal, uniform, triangular, and Weibull distributions. Other 20 
distributions can be selected, based on their appropriateness for the application at hand. 21 
 22 
Considerations in choosing probability distributions include the following: 23 

• range of values the input takes 24 
• tail behavior and overall shape of the distribution 25 

Input Ranges. To specify an input distribution, it is important to consider the range of inputs. 26 
Specifically, the range of a distribution should be broad enough to include all possibilities but 27 
narrow enough to exclude unrealistic or nonphysical values.  28 
 29 
There are two options for bounding the range of an input: (1) select a probability distribution 30 
whose range is consistent with the known range of the data, or (2) use a truncated form of a 31 
probability distribution. For example, suppose we know an input parameter, such as material 32 
strength, is always greater than 0. Then, we can use a distributional model that puts 33 
0 probability mass on values less than 0, such as the lognormal, uniform, or Weibull model. 34 
Alternatively, we could use a truncated normal model that truncates the normal distribution such 35 
that the input is always greater than 0. Figure 4-3 depicts these two options. 36 

 37 
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 1 

Figure 4-3 Distributions with Nonnegative Input Parameters 2 
 3 

Tail behavior and shape. Examples of heavy-tailed and skewed distributions appear in Figure 4 
4-4. Determining the tail behavior and shape requires large sample sizes or expert judgment. 5 
Given that the tails of distributions often drive structural failures, it is important to investigate the 6 
confidence in the underlying probability distributional form and whether the specified distribution 7 
fits the underlying data well in the tails.  8 

 9 

 10 

Figure 4-4 Heavy-Tailed and Skewed Distributions 11 
 12 

Data transformations. Inputs can be modeled on different scales. A common data 13 
transformation is the natural logarithm, where inputs are modeled on the natural log scale, 14 
rather than the absolute scale, of the data. This transformation is particularly useful for skewed, 15 
positive inputs.  16 
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(3) Fit the distributions. 1 

Parameter estimation. Given a candidate probability distribution and a set of data, statistical 2 
inference can be used to estimate the parameters of that distribution. Most statistical software 3 
programs (e.g., R, Python, Minitab, MATLAB with the appropriate toolbox, Easyfit©) can 4 
estimate distribution parameters, along with uncertainty in those parameters. These parameters 5 
are typically estimated using statistical inference techniques such as maximum likelihood 6 
estimation, Bayesian inference, or method of moments. If the data cannot be modeled well 7 
using a known probability distribution, then nonparametric approaches can be applied.  8 

 9 
Input uncertainty. The estimated distribution parameters contain sampling uncertainty, 10 
because they were estimated based on a finite sample of data (Figure 4-5). In the figure, the 11 
grey bars are a histogram of the data, with best fit normal distribution shown as the black line. 12 
The blue lines are sampling uncertainty in the distributional fit due to the limited sample size 13 
when n=10 (left) and n=100 (right).  14 

 15 

  16 

Figure 4-5 Sampling Uncertainty in Input Distribution Fits 17 

(4) Evaluate distributional fit. 18 

After fitting a distribution to data, it is important to evaluate how well the distribution matches the 19 
observed data. From Reference 4-19, the basic principle behind evaluating distributional fits is 20 
to compare the parametric estimates from the model fit to nonparametric quantities that are not 21 
based on a fitted model. Representations of some of the graphical tools, described below, 22 
appear in Figure 4-6: 23 

• Overlay a parametric fit of the probability density function onto a histogram of the data. 24 
The left plot shows n=50 data points fit to a Weibull distribution. Large differences 25 
between the histogram and parametric probability density function (PDF) estimate would 26 
signal poor model fit. 27 
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• Overlay a parametric fit of the cumulative distribution function (CDF) onto the empirical 1 
CDF of the data (middle plot). Large differences between the empirical CDF and 2 
parametric CDF estimate would signal poor model fit. 3 

• Construct a probability plot, also called a Quantile-Quantile plot (right plot). Probability 4 
plots compare model-estimated versus empirical quantiles of the data. A departure from 5 
the reference line indicates a region where the model poorly fits the data. Because there 6 
is sampling uncertainty in the quantile estimates, confidence intervals can help assess 7 
whether there is statistical evidence of a lack of model fit. Points falling outside the 8 
bounds indicate a lack of fit of the probability distribution.  9 

 10 

 11 

Figure 4-6 Graphical Diagnostics for Parametric Model Fit 12 
 13 

Additionally, statistical goodness-of-fit hypothesis tests can also be used to detect evidence of a 14 
poor model fit. These tests have strong, known limitations that limit their applicability in practice 15 
and must be supplemented with graphical tools and expert judgment to determine whether a 16 
model is a reasonable fit to data (Reference 4-19).  17 

(5) Select a final input distribution model.  18 

The final input distribution is an estimate of input uncertainty that reflects both data-driven 19 
evidence and expert judgment (particularly in limited-data scenarios). To select an input 20 
distribution, the analyst selects the following: 21 

• Distribution model. It is best practice to consider several different candidate probability 22 
distributions (e.g., normal, lognormal, Weibull), and select the final distribution based on 23 
which is the best fit to the data, a process known as model selection.  24 

• Values for the distribution parameters. Recall that input parameters are uncertain, 25 
due to estimation based on a finite sample size. 26 

In many instances, there will be uncertainty in the choice of the distribution model and 27 
distribution parameter values. Input distribution uncertainty can have a large impact on the final 28 
estimate in a PFM analysis. This source of uncertainty is most important when one of the 29 
following is true: 30 

• The output is sensitive to the input. 31 
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• There are insufficient data to accurately estimate an input distribution. 1 

• The acceptance criterion relates to bounding a probability below a very low threshold 2 
(e.g., p < 1x10-6). 3 

This uncertainty can be incorporated into the final PFM analysis in different ways: 4 

• Treat uncertain probability distributions and their parameters as additional sources of 5 
epistemic uncertainty.  6 

• Choose values of the distribution parameters resulting in conservative values for the 7 
inputs with respect to the application at hand. 8 

• Examine the robustness to changes in the input distribution using a sensitivity study 9 
(Section 4.4). 10 

4.2.2 Preserving Physical Relationships between Inputs 11 

4.2.2.1 What Is It?  12 

In a PFM analysis, most uncertain inputs are assumed to be statistically independent; that is, 13 
changing the value of one input does not impact the value of other inputs. However, a subset of 14 
input variables is often statistically dependent. For the input set to be physically realistic, these 15 
dependencies should be preserved. 16 

4.2.2.2 How to Use?  17 

Before modeling, expert judgment is applied and exploratory data analyses are conducted to 18 
understand the relationship between inputs. Relationships can manifest themselves as 19 
correlations or as more general dependencies such as nonlinear relationships or ordering 20 
relationships (i.e., input 1 must be larger than input 2). 21 
 22 
Some approaches to specifying statistically dependent inputs include the following:  23 

• inducing correlation in random samples through the transformation of independent 24 
samples  25 

• constructing a joint probability distribution for the inputs that includes the dependencies 26 

• specifying a conditional probability distribution for one input as a function of the other 27 
input 28 

• constraining the parameter space 29 

Section 4.2.2.4 provides technical details on these approaches. 30 

4.2.2.3 When/Why?  31 

Preserving dependence between variables is often needed to ensure a physically realistic input 32 
set or to maintain the physical laws that drive the problem. For example, the inner diameter of a 33 
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pipe must be smaller than its outer diameter, so a relationship between these variables may be 1 
imposed to ensure the physicality of the inputs.  2 

4.2.2.4 Technical Details  3 

The technical details below describe the four approaches to specifying statistically dependent 4 
inputs given above.  5 
 6 
Transforming Independent Samples. Correlated inputs can be generated by transforming 7 
independent random samples. If inputs follow a multivariate normal distribution, then we can 8 
directly transform the inputs to induce correlation. Specifically, consider two inputs x and y and a 9 
random, independent sample of size n for each. Center and scale the samples of x and y to 10 
have mean 0 and standard deviation 1. Let  be the nx2 matrix whose columns are formed by 11 
the centered and scaled samples of x and y, respectively. Let  be the 2x2 matrix specifying the 12 
correlation: 13 = 1 1 , 14 
 15 
where  is the desired correlation between the inputs. Let =  be the Cholesky 16 
decomposition of  and set ∗ =  . The correlation between the columns of ∗ is ( ∗) =17  ( ) ( )  =      =     =  . The desired standard deviation for each input can be 18 
achieved by scaling each column by its desired standard deviation. Next, the desired mean can 19 
be added to each column. If inputs are not normally distributed, then this transformation method 20 
will not preserve the probability distributions of the individual inputs (i.e., marginal distributions).   21 
 22 
If inputs are not normally distributed, then an alternative approach is to induce correlation on the 23 
ranks of the inputs (Reference 4-21). This approach has the advantages of being distribution 24 
free and preserving the marginal distribution of the inputs. To implement this approach, the 25 
analyst specifies the correlations between the ranks of the inputs, which ideally can be 26 
estimated using experimental data or expert judgment. This estimate can be applied with SRS 27 
and LHS. Reference 4-21 gives details on implementing the rank correlation method. Figure 4-7 28 
provides an example of the rank approach for two input variables. On the left is a scatterplot of a 29 
random sample of two variables. Transforming these points using the rank method results in the 30 
scatterplot on the right where a strong negative correlation now exists.   31 
 32 
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 1 

Figure 4-7 Randomly Sampled Inputs (Left) and Transformed Inputs (Right) 2 
 3 
Joint distribution modeling. Input parameters can be directly sampled from a joint distribution 4 
for the parameters that include a correlation structure. The multivariate normal distribution is a 5 
straightforward model for correlated inputs but is only appropriate when a normal distribution 6 
can reasonably represent the inputs. The multivariate normal distribution is parameterized by 7 
the mean and variance of each variable, along with the statistical (Pearson) correlation between 8 
pairs of variables.  9 
 10 
If a multivariate normal distribution cannot reasonably represent the joint distribution, more 11 
sophisticated statistical models can be applied to specify a joint distribution. Specifically, copula 12 
methods are a popular statistical approach for specifying joint distributions of correlated 13 
variables (Reference 4-22).  14 
 15 
Conditional probability. If one input is dependent on another input, the relationship can be 16 
modeled to induce correlation between inputs. Specifically, the joint distribution of inputs  and 17 

 can be factorized as the product between the marginal distribution of  and the conditional 18 
distribution of  given : ( , )  =  ( ) ( | ). As an example, suppose the marginal 19 
distribution of  is Weibull:  20 ∼ (1,1), (1) 

and the conditional distribution of  given =  is normal with a mean dependent on : 21 = (15 + 2 log( ) , .3). (2) 

Figure 4-8 displays samples from the joint distribution of  and . To sample from the joint 22 
distribution of  and , first sample a value of  from the Weibull distribution (Eq. 1), and then 23 
sample the value of  from a normal distribution with mean 15 + 2 log( ) and variance 0.3 24 
(Eq. 2).  25 
 26 



 

61 

 1 

 2 

Figure 4-8 Sampled Inputs from the Joint Distribution of  and  3 
 4 
Constrain the parameter space. The input set can be constrained to ensure consistency and 5 
physicality. For example, yield strength of a material is lower than its ultimate tensile strength 6 
(Figure 4-9), and any samples not satisfying this constraint can simply be discarded. Note that 7 
constraining the input space changes the uncertainty distribution on the inputs and can induce 8 
correlation between inputs. Therefore, this approach should be used with caution to ensure that 9 
imposed constraints accurately represent uncertainty in the inputs.  10 
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 1 

Figure 4-9 Constraining Input Distributions to Ensure that Yield Strength Is Less than 2 
Ultimate Tensile Strength (Open Circles Are Not Admissible) 3 

 4 
All four of the above approaches are viable options for modeling dependencies in inputs. An 5 
advantage of the first approach (transforming independent samples) is that it is distribution free 6 
and requires only knowledge of the correlation between inputs (Reference 4-21). An advantage 7 
of the second approach (joint distribution modeling) is that correlation is directly built into the 8 
input parameter distribution. The third approach (conditional probability) gives flexibility with 9 
respect to the functional form of the dependency between variables. The fourth approach 10 
(constrain the parameter space) offers simplicity in implementation. 11 

4.3 Useful Methods for Forward Propagation of Input Uncertainty 12 

4.3.1 Simple Random Sampling 13 

4.3.1.1 What Is It?   14 

Simple random sampling (SRS) is a Monte Carlo sampling technique in which each uncertain 15 
input is sampled randomly from its corresponding probability distribution.  16 

4.3.1.2 How to Use?  17 

The SRS approach follows four steps: 18 

(1) Specify probability distributions for the uncertain inputs.  19 

(2) Choose the sample size. 20 

(3) Implement SRS by randomly sampling the inputs from their probability distributions.  21 
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(4) Evaluate the computer model at each of the sampled inputs. The sampled outputs 1 
represent a random sample of outputs corresponding to the probability distribution 2 
implied by the distributions on the inputs.  3 

4.3.1.3 When/Why?   4 

SRS is easy to implement and therefore serves as a good “first pass” sampling scheme for 5 
understanding output variability. However, SRS is often less efficient than alternative sampling 6 
schemes (see Sections 4.3.2, 4.3.3, and 4.3.4 for alternatives); that is, more realizations are 7 
needed using SRS than alternative sampling schemes to estimate a QoI with the same 8 
precision. Section 4.3.1.4 gives information on choosing a sample size for SRS. 9 

4.3.1.4 Technical Details   10 

Specifying probability distributions for the uncertain inputs. Section 4.2 discusses 11 
methods to identify and specify probability distributions for uncertain inputs.  12 
 13 
Choosing a sample size n. It is usually feasible to directly estimate the amount of sampling 14 
uncertainty in a QoI associated with SRS. For example, the law of large numbers indicates that 15 
the magnitude of the sampling error associated with many QoIs estimated using SRS will be 16 
proportional to 1 √⁄  where  represents the sample size. 17 
 18 
To use SRS to estimate a probability, the number of samples should be large relative to the 19 
probability of the event occurring. As a rule of thumb, the sample size should be at least 10 to 20 
20 times larger than 1⁄ , where < 0.5 is the probability of interest, to generate stable results 21 
(Reference 4-23). 22 
 23 
Implementing SRS. Most software programs can directly implement SRS for many common 24 
probability distributions. Alternatively, a simple random sample can be generated for general 25 
distributions by transforming uniform random samples on the interval 0 to 1 using the probability 26 
integral transform (Reference 4-24). The uniform samples represent the quantiles of the 27 
distribution from which the sample is desired. These quantiles are transformed by applying the 28 
inverse CDF for the desired distribution. All that is needed to implement the probability integral 29 
transform is the ability to randomly sample uniform variables and evaluate the inverse CDF. As 30 
an example, a two-dimensional sample of uniform variables appears in Figure 4-10. Each 31 
dimension is transformed using the probability integral transform to obtain the simple random 32 
sample of variables shown in Figure 4-11, where the first dimension is distributed uniformly on 33 
the interval -1, 1 ( (−1,1)) and the second dimension is normally distributed with mean 0 and 34 
variance 1 ( (0,1)).  35 
 36 
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 1 

Figure 4-10 SRS Sample in the Quantile Space for Two Input Variables (n=10) 2 
 3 

 4 

Figure 4-11 SRS Sample Transformed into the Input Space for Two Input Variables (n=10) 5 
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4.3.2 Latin Hypercube Sampling 1 

4.3.2.1 What Is It?   2 

Latin hypercube sampling (LHS) is a Monte Carlo sampling technique. LHS is a method to 3 
obtain a sample that is more spread out across the input space than a typical SRS sample, 4 
producing estimates with more statistical precision on average.  5 

4.3.2.2 How to Use?  6 

Many statistical software programs can implement LHS. The following steps describe a method 7 
for generating an LHS of size  from independent input distributions associated with  uncertain 8 
inputs (Reference 4-25): 9 

(1) Stratify the input space by dividing the range of each input, , into  disjoint intervals of 10 
equal probability. 11 

(2) For each input, randomly sample a single value from each interval, resulting in  12 
sampled values for each input. For a given input and interval, the sample is taken from 13 
the conditional distribution of the input on the interval. 14 

(3) Randomly combine samples without replacement: 15 

a. Randomly pair, without replacement, the  values sampled from the first input, 16 
, with the  values from the second input, , to produce  pairs. 17 

b. Randomly combine these pairs, without replacement, with the  values sampled 18 
from the third input, . 19 

c. Continue this process iteratively on , ,… ,  resulting in a set of  -tuples. 20 

The correlation between inputs can be incorporated using the Iman-Conover procedure that 21 
induces correlation based on the ranks of inputs (Reference 4.3; see Section 4.2.2). 22 
 23 
To summarize, LHS stratifies each input dimension into equally probable strata. In each 24 
dimension, each stratum is sampled once (the regions formed by the sampled strata create a 25 
pattern akin to a Latin hypercube in experimental design, such as described in Reference 4-26). 26 
Within each of the sampled regions, a single sample is randomly sampled according to the 27 
distribution within the region (Reference 4-25, 4-27).  28 

4.3.2.3 When/Why?   29 

LHS is designed to cover the range of the input space more efficiently than SRS (Section 4.3.1). 30 
For this reason, it is a common technique for forward propagation of uncertainty and for building 31 
surrogate models (Section 4.3.10). Compared to SRS, LHS will typically result in more 32 
statistically precise estimates of a QoI; however, the increase in precision diminishes as the 33 
sample size increases. Quantifying statistical uncertainties on QoIs calculated using LHS is 34 
more challenging.  35 
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4.3.2.4 Technical Details   1 

The following simple example demonstrates the steps of the LHS algorithm outlined above. It 2 
shows an LHS for two input variables,  and , with =10 samples. In this example,  is 3 
uniformly distributed from -1 to 1, and  is normally distributed with a mean of 0 and a standard 4 
deviation of 1:  5 

(1) Stratify the input space. First, each input distribution is divided into = 10 intervals 6 
(strata) of equal probability according to their respective distributions. This stratification 7 
can be done first in the quantile space defined as the two-dimensional hypercube on 8 
(0,1). The intervals (strata) in the quantile space are evenly spaced, as displayed in 9 
Figure 4-12. 10 

 11 

Figure 4-12 Example of an LHS in the Quantile Space for Two Input Variables (n=10) 12 
 13 
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 1 

Figure 4-13 LHS Transformed into the Input Space for Two Input Variables (n=10) 2 
 3 

(2) Randomly sample from each interval. Next, random uniform samples are taken on 4 
each interval in each dimension. These samples are transformed to a sample from their 5 
specified input distributions using the probability integral transform (Reference 4-28). 6 
Figure 4-12 shows uniform samples for each stratum plotted in the two-dimensional 7 
quantile space. The transformed samples (and strata) appear in Figure 4-13. The next 8 
step describes the displayed pairing of each  sample with an  sample.  9 

 10 
(3) Randomly combine samples without replacement. Finally, the values sampled from 11 

the first input, , are randomly paired without replacement with the values sampled from 12 
the second input, . Once a sampled value of  is randomly paired with a sampled 13 
value of , this sampled value of  cannot be paired with a different value of . In the 14 
example shown in Figure 4-12, the sample from the first strata of  is randomly paired 15 
with the sample from the ninth strata of . The sample from the first strata of  is not 16 
paired with any other samples of . Similarly, the sample from the ninth strata of  is 17 
not paired with any other samples of . Next, the sample from the second strata of  is 18 
randomly paired with the sample from the sixth strata of , and so on, until all =10 19 
pairs are selected.  20 

Augmenting LHS designs. The design of an LHS depends on a known sample size. If, after a 21 
sample is selected, the analyst wants to decrease sampling uncertainty in a QoI by increasing 22 
the sample size, care must be taken to preserve the properties of an LHS. Reference 4-29 23 
outlines one method for augmenting an initial LHS while preserving the LHS structure. 24 
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Discrete Probability Distributions. A discrete probability distribution is a related method that 1 
produces a discrete approximation to a continuous distribution (Reference 4-30). Like LHS, 2 
strata are created in each dimension. Rather than sampling within each stratum, the conditional 3 
mean within the stratum is chosen as the sample point.  4 

4.3.3 Importance Sampling 5 

4.3.3.1 What Is It? 6 

Importance sampling is a Monte Carlo technique that can be used to more efficiently sample 7 
from the model input space than equal-probability sampling methods such as SRS and LHS 8 
(Reference 4-31). Importance sampling concentrates samples in a specific area of interest in 9 
the input space to improve estimation of QoIs (e.g., failure probabilities). 10 

4.3.3.2 How to Use?  11 

The implementation of importance sampling follows three steps: 12 

(1) Choose an importance distribution for the model inputs. The importance sampling 13 
distribution concentrates samples in regions of the input range that have a strong 14 
influence on the estimate of the QoI. The importance distribution depends on the 15 
relationship between the QoI and the inputs and therefore can be informed by SA. The 16 
distribution should be selected such that the estimated QoI has smaller variance than a 17 
QoI estimate from an equal-probability sample.  18 

 19 
(2) Sample inputs from the importance distribution and run the model at these inputs.  20 
 21 
(3) Estimate the QoI. Importance samples are weighted to obtain an unbiased estimate of 22 

the QoI. The importance weights are derived from the density functions of the original 23 
input distribution and the importance distribution (Reference 4-32). 24 

4.3.3.3 When/Why?   25 

Importance sampling is used to reduce the sampling uncertainty in the estimate of a QoI. If a 26 
good importance sampling distribution has been selected, then the estimate of the QoI will be 27 
more precise with fewer samples relative to SRS or LHS. Importance sampling reduces 28 
sampling uncertainty by concentrating samples in the regions of importance (i.e., those regions 29 
that contribute most to the QoI). While importance sampling is theoretically used for variance 30 
reduction, poor choice of an importance distribution will increase the variance of a QoI estimate 31 
(Reference 4-31). 32 
 33 
Importance sampling can be particularly beneficial in PFM applications when the QoI is a rare 34 
probability. That is, to estimate a 1x10-6 probability, it is more computationally efficient to 35 
concentrate more samples around the area where events are more likely to occur. Without 36 
importance sampling, an event will only be observed, on average, every one million samples. 37 
Importance sampling algorithms can be designed to dramatically increase the number of 38 
observed events and, subsequently, decrease the variance of the probability estimate for a fixed 39 
number of samples. 40 
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4.3.3.4 Technical Details   1 

Many QoI estimation problems can be formulated as the estimation of an expectation: 2 
 3 [ ( )] = ∫ ( ) ( )  4 
 5 
A common PFM example is when ( ) represents the probability distribution on a multivariate 6 
input  and ( ) is a model output; that is, the indicator of an adverse event (e.g., pipe rupture) 7 
at input  (i.e., ( )  =  1 if the event occurs and 0 otherwise). In this case, the expectation 8 
reduces to the probability of the adverse event.  9 
 10 
By the law of large numbers, the average of  over a random sample ( ), ( ), … , ( ) from ( ) 11 
will converge to [ ( )] as  grows. Hence, it is straightforward to estimate the integral with 12 
the average: 13 [ ( )] ≈ 1 ( )  14 

 15 
In the case of an indicator of a rare event (and other cases), this average is inefficient since very 16 
few of the random samples will result in ( )  =  1 (i.e., it is difficult to randomly sample an input 17 
that results in the adverse event). Instead of sampling from ( ), importance sampling takes its 18 
sample from an importance distribution ℎ( ). Rewriting the above integral as 19 [ ( )] = ∫ ( ) ( )ℎ( ) ℎ( ) = ( ) ( )ℎ( ) , 20 

 21 
we notice that it can be estimated from a sample ( ), ( ), … , ( ) from ℎ( ) using a weighted 22 
average: 23 [ ( )] ≈ 1 ( ) ( )ℎ( ( )). 24 

 25 
The values ( ) = ( )( )  are importance weights on the ( ). As we demonstrate below, the 26 
careful choice of importance distribution ℎ can dramatically reduce sampling uncertainty of the 27 
estimate. Reference 4-32 gives the technical conditions on ℎ needed for the weighted average 28 
to converge to [ ( )] as  grows. 29 
 30 
Choose an importance distribution for the model inputs. In practice, choosing the 31 
importance distribution ℎ usually involves selecting individual importance distributions for a few 32 
of the inputs. An incorrect choice of inputs for importance sampling or a poor selection of the 33 
importance distribution may lead to increasing the sampling uncertainty in the estimate of the 34 
QoI when compared to an estimate generated without the use of importance sampling. As a 35 
result, a careful and thorough analysis is necessary before selecting the importance distribution. 36 
Effective implementation of importance sampling requires (1) understanding what regions of the 37 
input space are important to the QoI and (2) selecting the importance distribution correctly given 38 
the relationship between the important input and the QoI (References 4-31, 4-33, 4-34, 4-35). 39 
This aspect of importance sampling is often not straightforward in PFM studies and requires 40 
SAs to support the selected inputs, which are often confirmed with expert elicitation. 41 
 42 
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Inputs that have a strong relationship with the output are good candidates for importance 1 
sampling. SA methods (Section 4.3.8) can be used to quantify the input-output relationship and 2 
rank variables in terms of their influence on the QoI. The variables that are found to have the 3 
strongest relationship with the QoI are considered for importance sampling.  4 
 5 
Inefficiency in importance sampling often occurs in high-dimensional problems where too many 6 
variables are importance sampled (Reference 4-36). To avoid this inefficiency, importance 7 
sampling should be limited to only a few important variables.  8 
 9 
Importance sampling and estimation of the QoI. After the nontrivial task of choosing a good 10 
importance distribution, the implementation of the importance sampling methodology is 11 
straightforward. Inputs are randomly sampled from their importance distribution and propagated 12 
through the model. The final QoI is then estimated as a weighted average, weighted by the 13 
importance weights (References 4-31, 4-33, 4-35). 14 
 15 
Illustration of importance sampling. Importance sampling can be demonstrated as follows. 16 
Suppose there is one normally distributed input ∼  (0,1), and the goal is to estimate 17 [ ( )]  =  ( > 2.5). The true probability is known to be 0.0062. Figure 4-14 shows estimates 18 
using repeated simple random samples of size = 1,000 from (0,1) and repeated importance 19 
samples from a Student-t distribution centered at 2.5 with 3 degrees of freedom. The 20 
importance distribution was chosen to ensure more samples fell inside the failure region (> 2.5), 21 
and 3 degrees of freedom were used to produce a heavy-tailed Student-t distribution in that 22 
region, as smaller degrees of freedom increase the tail weight of the distribution. The 23 
histograms in Figure 4-14 represent sampling uncertainty in the QoI estimate. While both 24 
estimates are unbiased around the true probability indicated by the vertical dashed line, the 25 
standard deviation of the estimates under importance sampling is 0.0003 compared to 0.003 26 
under random sampling. This change represents a reduction in the sampling uncertainty by an 27 
order of magnitude. Reference 4-32 describes a similar example. 28 
 29 

 30 

Figure 4-14 Example of Estimating a Probability Using Random Sampling and Importance 31 
Sampling 32 

 33 
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Adaptive importance sampling. In reliability analysis (see Section 4.3.4), whose goal is to 1 
estimate a failure probability, adaptive importance sampling techniques are often used to help 2 
refine the importance distribution. The goal in these applications is to detect the failure 3 
boundary, defined as the boundary of the region separating failures and nonfailures 4 
(Reference 4-37), in order to improve failure probability estimates. Adaptive methods iteratively 5 
update the importance distribution to better estimate this boundary by considering the outputs of 6 
previously sampled points in the domain (References 4-38, 4-39). 7 
 8 
To implement adaptive importance sampling, first, an optimization problem is solved to find a 9 
particular point on the failure boundary known as the most probable point (MPP). The MPP can 10 
be used as a starting point to define an initial importance distribution, which through adaptive 11 
sampling is updated as model evaluations are obtained. For example, multimodal sampling 12 
(Reference 4-38) and curvature-based sampling (Reference 4-39) begin centered at the MPP 13 
and then update the sampling distribution by assigning weights to various candidate density 14 
functions. Many software packages such as DAKOTA (Reference 4-31) have the capability to 15 
implement adaptive sampling methods. 16 
 17 
Instead of using additional evaluations of the computational model, adaptive sampling can also 18 
use information from surrogate models (Section 4.3.10). This feature is most useful when there 19 
is a need to reduce the computational expense of model evaluations. For example, efficient 20 
global reliability analysis (Reference 4-40) aims to create a Gaussian process (GP) surrogate 21 
model for the function of interest and then adaptively select sample points in the domain near 22 
the failure region to improve the quality of the surrogate model. 23 

4.3.4 First- and Second-Order Reliability Methods 24 

4.3.4.1 What Is It? 25 

Reliability methods estimate a failure probability by approximating the probability of violating a 26 
certain threshold criterion for a probabilistic analysis of continuous random variables. For 27 
example, these methods can estimate the probability that a particular material stress is greater 28 
than the yield stress. Often, the estimate requires many fewer samples of the computer model 29 
than using Monte Carlo sampling methods. The methods described here are known as the 30 
first-order reliability method (FORM) and the second order reliability method (SORM). 31 

4.3.4.2 How to Use? 32 

The use of FORM and SORM follows three steps: 33 

(1) Define the failure region in terms of a continuous output and a threshold value. 34 
Specifically, a failure occurs when the output exceeds the threshold. The failure 35 
probability is the integral of the input probability distributions over the failure region. 36 

(2) Approximate the failure region using FORM or SORM Taylor series approximation 37 
around the MPP. The MPP is the point on the failure region boundary with highest input 38 
probability density. Determining the location of the MPP requires evaluating the 39 
computational model within an optimization algorithm.  40 

(3) Estimate the failure probability using the integral over the approximate failure region.  41 
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4.3.4.3 When/Why? 1 

Reliability methods are particularly useful because of the computational efficiency of the 2 
algorithms. As described in Sections 4.3.1, 4.3.2, and 4.3.3, sampling-based algorithms can 3 
also be used to approximate the failure probability of a system. However, these methods often 4 
require thousands or tens of thousands of samples to provide good estimates. In contrast, 5 
FORM and SORM are more efficient reliability methods because they seek to directly 6 
understand the location and probabilistic distance to the limit state (i.e., the boundary of the 7 
failure region). Often, for some low-dimensional input spaces, the MPP can be located 8 
accurately with a small number of model evaluations (on the order of 10 points). This difference 9 
provides substantial computational savings especially when the analysis model is 10 
computationally expensive to evaluate. However, the failure probability estimate obtained from 11 
FORM or SORM relies on a Taylor series approximation to the shape of the limit state 12 
(first-order series in FORM and second-order series in SORM) and can result in a poor estimate 13 
if the approximation is not good. 14 

4.3.4.4 Technical Details 15 

Defining the failure region: Following Reference 4-41, consider a model that predicts an 16 
output  as a function  of some set of input random variables = ( , , … , ): 17 

= ( )  

Suppose a failure event of interest is defined when < 0. Note that any problem can be 18 
formulated in this way by considering  to be a margin against failure. For example,  might be 19 
the predicted stress in a material, and  might be the yield stress of the material. If we define 20 
failure when the material yields, then the margin  against failure is defined as = − , and 21 
failure occurs when < 0 for some values ( , ). 22 
 23 
In any such scenario, the goal of reliability methods is to compute the failure probability =24 ( < 0) = ∫ ( )  , where  is the joint probability density function of the inputs  and  25 = { ∶ = ( ) < 0} is the failure region. The unknown and potentially complex failure 26 
region makes computing the integral difficult. To simplify the computation, reliability methods 27 
like FORM and SORM make simplifying assumptions on ( ). 28 
 29 
Approximating the failure region using FORM with normally distributed inputs. After the 30 
failure region has been defined, the failure probability can be estimated with FORM using the 31 
following steps, described in detail below:  32 

(1) Transform each input variable into the standard normal space.  33 

(2) Find the MPP, ∗.  34 

(3) Calculate the distance, , from 0 to the MPP. 35 

(4) Use this distance to estimate the failure probability ≈ 1 −  Φ( ), where Φ is the CDF 36 
of the standard normal distribution. 37 

Figure 4-15 depicts this process visually (following Reference 4-42).  38 
 39 
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Transformation of inputs. A problem first addressed by the Hasofer-Lind method 1 
(Reference 4-43) assumes each input is independently normally distributed. The first step in this 2 
method (and others that relax the normality assumption) is to transform each random variable 3 
into the standard normal space (i.e., (0,1)) so that all variables in the input domain have a 4 
common scale: 5 

= −  , ∀ ∈ = 1,2, … ,  

Here, ′ denotes the standard normal transformation of input random variable . Figure 4-15 6 
depicts this transformation.  7 
 8 
Find the MPP. Once this transformation has been performed for all the input random variables, 9 
determining the location of the MPP ( ∗) involves solving the following inverse problem: 10 

′∗ = argmin  . . ( ) = 0 

The point ∗ is estimated by finding the values of  that fall on the failure region boundary 11 ( ( ) = 0) and are the closest (minimum) distance to 0 (the mean of the transformed random 12 
variables). The inverse equation above can be solved by optimization methods such as the 13 
Rackwitz algorithm (Reference 4-44) and the Newton-Raphson recursive algorithm 14 
(Reference 4-45).  15 
 16 
Calculate the distance from the MPP to 0. Once ∗ is found, its distance from 0 can be 17 
calculated as =  ∗ ∗. A visualization of ∗ and  appears in Figure 4-15. The parameter 18 

 is the distance from 0 to the MPP ∗ and is known as the safety index for the reliability 19 
problem. 20 
 21 
Estimate the failure probability. The failure probability  can then be approximated directly 22 
by making an assumption about the shape of the failure envelope. The simplest assumption, 23 
known as the FORM, is to assume the failure envelope is linear, as shown by the blue dashed 24 
line in Figure 4-15. In this case, the approximation of  becomes  25 

≈ ( ( ) < 0) =  Φ(− ) = 1 − Φ( ), 
where ( ) is the first-order Taylor series approximation of ( ) about ∗ and Φ is the standard 26 
normal CDF. The first equality follows from the linear (and normal) assumption on ( ) with 27 
parameters governed by the Taylor series about ∗. The second equality follows from the 28 
symmetry of the standard normal distribution. Figure 4-15 shows the linear approximation of the 29 
failure envelope using the FORM method.  30 
 31 
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 1 
Figure 4-15 Example of the FORM and SORM Methods in the Standard Normal Space 2 

(Following Reference 4-42) 3 
 4 
Nonnormally distributed inputs. One limitation of the approach above is that all input 5 
variables must be independent normal random variables in order for the approach to be valid. 6 
When they are instead independent nonnormal random variables, they can be transformed into 7 
approximate standard normal random variables by estimating equivalent normal distribution 8 
parameters  and  for each nonnormal random variable . The Rackwitz-Fiessler 9 
two-parameter equivalent normal transformation (Reference 4-46) achieves this by equating the 10 
PDF and CDF of variable  to the PDF and CDF of an equivalent standard normal distribution. 11 
Once this additional transformation is performed, the same inverse problem can be solved by 12 
the previously mentioned optimization methods to arrive at the MPP in equivalent standard 13 
normal space.  14 
 15 
Approximating the failure region using SORM. Another limitation of the FORM approximation 16 
is that it may be overly conservative when the actual failure envelope is highly nonlinear. To 17 
improve upon this limitation, curvature of the limit state can be considered by also including the 18 
partial derivatives ( ∗) of the function  with respect to each  in the Taylor series 19 
expansion of the function . These improvements to the approximation of the limit state function 20 
lead to an improvement to the approximation of . Since the approximation is now a 21 
second-order Taylor series, the method is called the second-order reflexibility method (SORM). 22 
The yellow dashed line in Figure 4-15 provides a notional example of the curved approximation 23 
to the failure envelope using SORM. References 4-47, 4-48, and 4-49 provide further details. 24 

4.3.5 Convergence Analysis 25 

4.3.5.1 What Is It? 26 

When propagating uncertainty forward through a model, there will be uncertainty in the estimate 27 
of the QoI due to the limited number of model realizations. The purpose of a convergence 28 
analysis is to assess the magnitude of sampling uncertainty associated with the QoI estimates 29 
obtained from Monte Carlo forward propagation of uncertainty (e.g., Sections 4.3.1, 4.3.2, and 30 
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4.3.3). Ultimately, an estimate has converged if the conclusions of the analysis do not change 1 
solely due to sampling uncertainty. 2 

4.3.5.2 How to Use? 3 

To conduct a convergence analysis, the analyst will take the following steps: 4 

(1) Quantify sampling uncertainty with a metric. 5 
(2) Compare the metric to a threshold value.  6 

The threshold defines the maximum level of uncertainty acceptable for the application.  7 
 8 
When Monte Carlo sampling (e.g., Sections 4.3.1, 4.3.2, and 4.3.3) is used to estimate a QoI, 9 
the following are three general methods for quantifying sampling uncertainty: 10 

• Calculate sampling uncertainty metrics for an estimate. Section 4.3.6 covers 11 
closed-form sampling uncertainty metrics under SRS for probability estimates. 12 
Section 4.3.7 discusses statistical bootstrapping as an alternative to closed-form metrics. 13 
The metrics are calculated on a single simulation but require statistical assumptions that 14 
must be evaluated in practice. 15 

• Assess stability of a QoI estimate as the sample size increases. The estimate of the 16 
QoI is monitored as the sample size grows to determine the appropriate sample size. 17 

• Compare QoI estimates over replicate simulations. Several independent replicates of 18 
the model simulations are needed, which may not be feasible to implement in practice. 19 
The variation between these replicate simulations is assessed. 20 

Section 4.3.5.4 discusses these methods in more depth. In general, the best method for 21 
convergence analysis depends on the computational complexity of the model as well as the 22 
type of sampling scheme. 23 

4.3.5.3 When/Why? 24 

In PFM, sampling uncertainty exists in estimates of QoIs. Rigorous assessment of the sampling 25 
uncertainty is conducted to ensure that the conclusions of the PFM analysis would not change 26 
solely due to random variations of estimates in different simulations.  27 

4.3.5.4 Technical Details 28 

Sampling uncertainty. Sampling uncertainty arises because the model can only be run for a 29 
finite number of realizations; a set of model realizations used to estimate a QoI such as a failure 30 
probability is called a model simulation. Replicate model simulations at different random seeds 31 
will produce different results. Consider the problem of estimating a rare probability. The 32 
histogram in Figure 4-16 displays estimates of this probability from many independent 33 
simulations; each simulation is based on n=10,000 model realizations sampled using SRS. This 34 
histogram represents the sampling distribution of the probability estimate, defined as the 35 
distribution of estimates obtained from repeated simulations. The true probability is 0.001, 36 
indicated by the red vertical dashed line, with estimates ranging from 0 to approximately 0.003. 37 
This range represents the sampling uncertainty. For a PFM analysis, this range could be 38 
acceptable or unacceptable, depending on the requirements of the analysis. 39 
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 1 

 2 

Figure 4-16 Histogram of Probability Estimates from a Simple Random Sample 3 
 4 
Quantifying sampling uncertainty with a statistical metric. A convergence metric quantifies 5 
the sampling uncertainty in the estimate of a QoI, calculated using the output realizations. 6 
Convergence metrics can be compared to a prespecified threshold to determine whether the 7 
sample size is sufficiently large. Examples of statistical metrics to quantify sampling uncertainty 8 
in a convergence analysis include the following: 9 

• Standard error is the standard deviation of the sampling distribution of the QoI. It is a 10 
measure of the variation in the estimate across repeated simulations. 11 

• Coefficient of variation (CV) is the ratio of the estimated standard error of the QoI to the 12 
mean estimate of the QoI. The CV should only be used for a positive QoI, and it is not 13 
recommended if the mean estimate of the QoI is close to zero because the estimate of 14 
the CV can become very volatile. 15 

• Confidence interval is an interval estimate of a QoI, providing a range of values for which 16 
we have high confidence that the true value of the QoI lies in the interval.  17 

Sections 4.3.6 and 4.3.7 discuss methods for calculating these metrics based on a model 18 
simulation. These metrics are compared against predetermined thresholds to determine 19 
whether sampling uncertainty is sufficiently low. For example, the standard error or CV can be 20 
compared to a threshold defining the maximum acceptable value. The maximum acceptable 21 
width of a confidence interval is another possible threshold (Reference 4-50).  22 
 23 
Assessing the stability of an estimate as the sample size increases. One common method 24 
for assessing model convergence is incrementally increasing the sample size and examining 25 
the stability of the QoI estimate as a function of sample size. As the sample size increases and 26 
sampling uncertainty decreases, the estimate of the QoI will stabilize. Metrics for QoI stability 27 
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include the standard error, CV, and confidence intervals, all of which are calculated from the 1 
sample.  2 

Figure 4-17 depicts an example demonstrating the convergence of estimating a small probability 3 
(1x10-3) using SRS. The simulation was run for 1x107 iterations, and the x-axis is plotted on the 4 
log scale. The estimated probability is plotted as the black line in the figure. This estimate is 0 5 
until a sampling size of about 1x103. Then it is volatile until a sample size of around 1x106, 6 
where it begins to converge to the true value. A two-sided 95-percent confidence interval, 7 
represented by the red dashed lines, provides a convergence metric. This bound was 8 
constructed using the Clopper-Pearson confidence interval (References 4-50, 4-51). Suppose 9 
that the threshold for model convergence is met when the 95-percent confidence interval has 10 
width less than 1x10-4. It takes 1,516,000 samples to satisfy the metric in this case. 11 
 12 

 13 

Figure 4-17 Confidence Interval used to Assess the Convergence of a Probability Estimate 14 
 15 
Comparing estimates over replicate simulations. A more computationally expensive 16 
approach to assessing convergence of a QoI is to conduct many replicate simulations to 17 
repeatedly estimate a QoI and then directly estimate variability in the QoI across replicates. The 18 
variability in the QoI estimate across simulations provides information for sampling uncertainty. 19 
The advantage of this method is that it is easy to apply to any sampling scheme. The 20 
disadvantage is that conducting replicate simulations is computationally expensive. To 21 
determine whether a sample of size  is sufficient, a total of  realizations is computed, where 22 
 is the number of replications of the simulation. The specific sample size and reasonable 23 

number of resamples depend on the application. The sample size of each replicate set should 24 
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be close to that of the empirical data. Further, these samples can later be combined to produce 1 
a more precise final estimate of the QoI. 2 
 3 
This sampling uncertainty can be quantified using different metrics, such as the standard 4 
deviation of the QoI estimates, the CV, or a statistical prediction interval for future QoI 5 
estimates. A prediction interval is similar to a confidence interval and provides interval bounds 6 
such that there is a high level of confidence that a new QoI estimate would lie in this range. An 7 
approximate 100(1 − )% confident prediction interval for a normally distributed random 8 
variable is  9 

̅ ± / , 1 +  ,  

where ̅ is the average of the QoI estimates,  is the standard deviation of the QoI estimates, 10 
and ,  is the ( /2) ℎ percentile of the Student-t distribution with − 1 degrees of freedom. 11 
Note that, to compute a prediction interval, the distribution of the QoI estimate must be known. 12 
Often, the QoI is an average of many model realizations such that QoI estimates will be 13 
approximately normally distributed (based on the central limit theorem). When the QoI is a rare 14 
probability, this normal approximation can perform poorly, and normal prediction intervals 15 
should be interpreted with caution.  16 
 17 
As an example, suppose we are measuring sampling variability in an estimate of the probability 18 
of an axial crack in a pipe over 60 years. Figure 4-18 plots replicate QoI estimates as a function 19 
of time based on = 5 replications. Figure 4-19 shows the two-sided 95-percent prediction 20 
interval for this example. The width of the prediction interval as a function of time can be 21 
compared to a predetermined threshold on the acceptable maximal width to assess 22 
convergence. The choice of = 5 should be justified. The more replicates the better, and one 23 
can assess the stability of the estimated standard deviation as  increases. Second, the chosen 24 
threshold (width of the prediction interval) is important. In more typical PFM analyses where the 25 
probability of the event is much lower, the threshold will be much more difficult to achieve than 26 
in this simple example. 27 
 28 
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 1 

Figure 4-18 Estimates of the Probability of Axial Crack for r=5 Independent Replications 2 
Using the Same Sampling Scheme 3 

 4 
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 1 

Figure 4-19 Prediction Interval Computed from the Five Independent Simulations 2 

4.3.6 Closed-Form Metric for Simple Random Sampling Uncertainty in a Probability 3 
Estimate 4 

4.3.6.1 What Is It? 5 

When estimating the probability of an event (e.g., some failure scenario of interest), the 6 
sampling uncertainty in the estimate should be well understood to determine model 7 
convergence (Section 4.3.5). Both the sample size and the rarity of the event under 8 
consideration influence the accuracy of the estimate. This section provides a sampling 9 
uncertainty metric for a probability estimate when SRS is applied in uncertainty propagation. 10 

4.3.6.2 How to Use? 11 

Computing this sampling uncertainty metric involves the following three steps: 12 

(1) Propagate an SRS of size n from the inputs through the model. Record the number of 13 
events and nonevents. 14 

(2) Estimate the probability of the event using the total number of recorded events divided 15 
by the sample size.  16 

(3) Compute a sampling uncertainty metric, such as the standard error, the CV, or 17 
confidence interval (see Section 4.3.5). 18 

When LHS or adaptive sampling methods are used, care should be taken when estimating 19 
closed-form metrics for sampling uncertainty since assumptions may be violated. Sampling 20 
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uncertainty is still present when these sampling algorithms are used and should be assessed 1 
using alternative approaches (see Sections 4.3.5 and 4.3.7).  2 

4.3.6.3 When/Why? 3 

When SRS is used for forward propagation of uncertainty, these metrics can be computed to 4 
quantify sampling uncertainty in the probability estimate, providing useful insight about the 5 
precision of the estimate. Results may suggest that a larger sample or other variance reduction 6 
techniques (see Sections 4.3.2 and 4.3.3) are needed if the precision is insufficient. 7 

4.3.6.4 Technical Details 8 

Estimate the event probability. After propagating inputs sampled using SRS through the 9 
model and recording whether the event occurred, the probability of failure  can be estimated 10 
by the ratio of number of failures ( ) to the number of trials ( ), known as a binomial proportion 11 

≈ ̂ = . 
 12 
Compute the standard error and CV. The sampling uncertainty of ̂  relative to  decreases 13 
as → ∞ and → 1. That is, increasing n will decrease the sampling uncertainty in the 14 
estimate, but the relative decrease depends on the failure probability, with smaller  resulting in 15 
larger relative sampling uncertainty. References 4-52 and 4-53 explain SRS and its associated 16 
uncertainty in estimation in detail. 17 
 18 
Assuming each 0/1 outcome is independent, the number of failures  can be assumed to follow 19 
a binomial distribution. Based on the binomial distribution, the estimated standard error of ̂  is  20 

≈ 1 − ̂ ̂
 

The accuracy of this approximation increases as / (1 − ) gets large. Given the estimated 21 
standard error, the CV is 22 

̂ = = 1 −
  

where  and  are the mean and standard error of the ̂ , respectively.  23 
 24 
The CV highlights the fact that the relative uncertainty in a probability estimate ̂  can be quite 25 
large, especially when the target  is small. For example, for 10,000 simulations of an event 26 
with = 0.01,  is about 0.001 (or 10 percent of the desired estimate), but if = 0.001, with 27 
10,000 simulations  is about 0.00032 (32 percent of the desired estimate).  28 
 29 



 

82 

Compute a confidence Interval. Statistical confidence intervals provide a plausible range in 1 
which a parameter is likely to fall based on the observed data. There are many methods for 2 
computing confidence intervals for ; Reference 4-54 discusses several in detail. A commonly 3 
used approximate 100(1 − )% confidence interval for a binomial proportion is  4 ̂ ± /   

where /  is the ( /2) ℎ percentile of the standard normal distribution. This confidence interval 5 
relies on approximate normality of ̂ , which is valid only if ̂  is not too close to 0 or 1. A rule of 6 
thumb is to use this interval only if ̂ > 5 and 1 − ̂ > 5; that is, at least five failures and 7 
nonfailures are observed. In PFM applications where the true probability of failure is very small, 8 
this confidence interval is unlikely to perform well since the number of observed failures under 9 
SRS will often be very small. In addition, when  is small, zero failures may be observed, and 10 
the interval above is meaningless. Reference 4-54 outlines several alternative confidence 11 
intervals for binomial proportions. The next paragraph outlines one method for bounding the 12 
probability of failure when no failures are observed.  13 
 14 
Confidence interval when no failures are observed. If = 0 failures are observed in 15 

 realizations, then we can use the fact that  follows a binomial distribution to place a 16 
one-sided confidence interval on the probability of failure. Specifically, there is 100(1- )% 17 
confidence that  <  , where  18 

= 1 −   

For example, if it must be established that < 10  with 95-percent confidence, a simple 19 
random sample of size n=log(. 05) / log(1 − 10 ) ≈ 3 × 10  with no observed failures is 20 
needed. References 4-55 and 4-56 provide more details. 21 

4.3.7 Statistical Bootstrapping 22 

4.3.7.1 What Is It? 23 

Statistical bootstrapping is a flexible statistical method for calculating sampling uncertainty in a 24 
QoI estimate. Bootstrapping relies on resampling from the observed data to calculate QoI 25 
uncertainty and is particularly useful when closed-form metrics (as described in Section 4.3.6) 26 
are difficult or impossible to derive.  27 
 28 
While there are many versions of bootstrapping, the general idea is to repeatedly resample from 29 
the observed data, each time estimating the QoI. The variability in the QoI estimates across 30 
bootstrap resamples provides a measure of sampling uncertainty.  31 

4.3.7.2 How to Use? 32 

The most common bootstrap method is to resample directly from the observed data. This form 33 
of bootstrapping has three steps: 34 

(1) Take a sample from the observed data. The sample size is the same size as the 35 
observed data. The sample is taken with replacement, where single observations in the 36 
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data can be included multiple times in a single bootstrap resample. The sampling at this 1 
step should be consistent with the way the data were generated. 2 

(2) Calculate the QoI from the sampled data. 3 

(3) Repeat steps 1 and 2 many times. Use the collection of calculated QoIs to approximate 4 
the sampling uncertainty in the QoI. For example, the standard deviation of the collection 5 
of QoIs is an estimate of the standard error.  6 

4.3.7.3 When/Why? 7 

Bootstrapping offers a flexible method for estimating sampling uncertainty. The following are the 8 
main reasons to use bootstrapping:  9 

• The algorithm is generic, so it can be applied to most QoIs and many sampling 10 
schemes. 11 

• The algorithm is simple to implement, requiring only the ability to resample from the data 12 
and repeatedly calculate the QoI. 13 

• Closed-form metrics for sampling uncertainty (e.g., Section 4.3.6 for a probability 14 
estimate) are difficult to estimate without violating assumptions in many cases. 15 

However, it is important to understand when not to use bootstrapping. The bootstrap will result 16 
in inaccurate measures of sampling uncertainty when either of the following is true: 17 

• The sample size is small (i.e., sparse data). 18 

• The original sample was drawn using a complex sampling scheme that cannot be 19 
resampled (e.g., LHS). 20 

Section 4.3.7.4 contains more information about conditions for bootstrap failure. 21 

4.3.7.4 Technical Details 22 

Figure 4-20 depicts the steps of the bootstrap. The left plot is a histogram of the original data. 23 
The middle histograms displayed vertically represent B different bootstrap samples of the 24 
original data. Each of these has the same sample size as the original data. However, these 25 
samples are taken with replacement, meaning that some values may be observed more than 26 
once. The variation among these histograms is an estimate of the sampling variation of the 27 
observed sample. For each of the bootstrap samples, an estimate of the QoI is computed and is 28 
aggregated in the histogram on the right. This right-most histogram is an estimate of the 29 
sampling uncertainty in the estimate of the QoI. The vertical dashed lines are the 0.025 and 30 
0.975 quantiles of the bootstrap QoI estimates and correspond to an estimate of a 95-percent 31 
confidence interval.  32 
 33 
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 1 

Figure 4-20 Visualization of the Steps Taken for the Standard Statistical Bootstrap 2 
 3 
The following are the most common ways the bootstrap fails: 4 

• Data are too sparse. 5 
• The resampling does not reflect how the data were generated. 6 

The bootstrap can underestimate uncertainty when data are sparse. Specifically, standard 7 
errors will be too small, and confidence intervals will be too narrow. In PFM applications, sparse 8 
data are likely to occur when the number of computer realizations is small relative to the QoI. 9 
More samples are needed for estimating rare event probabilities and extreme percentiles, 10 
because the sparsity of the data is not judged based on the overall number of model realizations 11 
but on the overall number of events of interest that occur. Therefore, we may need many more 12 
than 1x106 simulated realizations to accurately quantify uncertainty in a 1x10-6 probability.  13 
 14 
Further, the bootstrap will not accurately estimate sampling uncertainty unless, in the 15 
resampling step, the resampling reflects how the data were generated. In PFM applications, the 16 
bootstrap can be used with both simple random samples and importance sampling. The 17 
bootstrap cannot provide accurate uncertainty quantification in complex sampling schemes such 18 
as LHS because there is no way to resample from the observed data in a way that 19 
approximates the original LHS scheme.  20 
 21 
More technically, the major assumption of the bootstrap is that, by resampling from the data, we 22 
are constructing samples that approximate the empirical distribution of the data. When data are 23 
sparse, we cannot approximate this distribution well. When data are generated from a complex 24 
sampling scheme such as LHS, we cannot resample from the data in a way that approximates 25 
the empirical distribution of the original sample obtained using LHS.  26 
 27 
Bootstrap confidence intervals. Confidence intervals are often desired to provide a plausible 28 
range in which a parameter is likely to fall based on the sampled data (see Section 4.3.5). 29 
Commonly, a probability distribution for the observed data is assumed (either through fitting to 30 
data or by expert judgment), and confidence intervals can be derived directly from this 31 
assumption. If the choice of probability distribution does not have a strong basis, the bootstrap 32 



 

85 

is an alternative approach as it bypasses the need to analytically derive confidence intervals 1 
using an assumed probability distribution.  2 
 3 
For example, suppose the QoI is the mean  from a population from which a sample of data of 4 
size  is collected: ( ), … , ( ). If it is assumed the population is normally distributed, then the 5 
analytically derived 100(1 − )% confidence interval is 6 

 7 
 8 
 9 
 10 

where ̅ and  are the sample mean and standard deviation and , /  is the /2 quantile of a 11 
t-distribution with − 1 degrees of freedom.  12 
 13 
The nonparametric bootstrap approach to the above problem takes a sample of the data of size 14 

 with replacement  times (commonly 1,000 or more), each time computing the sample mean. 15 
This procedure results in a collection of sample means from which confidence intervals can be 16 
constructed. The simplest, but often least accurate, approach to constructing bootstrap 17 
confidence interval for a QoI  is using empirical quantiles of the bootstrap distribution 18 ( ∗ / , ∗ / ) , 19 
 20 
where ∗ /  is the /2th percentile of the bootstrap distribution of . Another approach is the 21 
basic method, defined as  22 (2 −  /∗ , 2 −  /∗ ), 23 
 24 
where  is the estimate of  from the original sample and /∗  is the 1 − ( /2)th percentile of 25 
the bootstrap distribution for . Alternatively, the Studentized method for estimating a 26 
confidence interval can be calculated as  27 
 28 ( − /∗ , − /∗ ),   29 
 30 
where /∗  is the 1 − ( /2)th percentile of the bootstrapped Student’s t-test  31 ∗ = ( ∗ −  )/ . Here, ∗ and  are the estimate and the standard error, respectively, of the 32 
bootstrap distribution of . There are many other ways to construct bootstrap intervals, each 33 
with their own advantages and disadvantages. References 4-57 and 4-58 provide more 34 
information. 35 
 36 
When no closed-form expression is available for a confidence interval, bootstrapping is often a 37 
simple solution for obtaining a confidence interval. As an example, suppose the QoI was some 38 
function of the population mean and standard deviation, such as ( + )/ . For each bootstrap 39 
sample, the estimated QoI ( ̅ + ̅)/  is computed. 40 
 41 
As an example, Figure 4-21 shows the bootstrap distribution of this statistic from a sample of 42 
size 100 of data from a normal distribution with mean and variance 1. Using the bootstrap 43 
distribution, a confidence interval for ( + )/  can be easily calculated (see References 4-57 44 
and 4-58). The vertical dashed lines in the figure show a 95-percent bootstrap interval. In this 45 
example, the true value of ( + )/  is known to be 2, which is clearly within the bootstrap 46 
confidence interval. 47 
 48 

̅ ± , / √  , 
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 1 

Figure 4-21 Bootstrap Sampling Distribution along with a 95-Percent Confidence Interval 2 
for the Complex Estimator Example 3 

4.3.8 Global Sensitivity Analysis 4 

4.3.8.1 What Is It?  5 

Sensitivity analysis (SA) seeks to answer a fundamental question: how sensitive is a model to 6 
its input parameters and which inputs are most important (Reference 4-59)? SA can be used to 7 
identify the inputs that have the strongest impact on the outputs (i.e., most sensitive or important 8 
inputs). Further, SA can help understand the nature of the input-output relationship. Global SA 9 
is used to quantify the amount of output uncertainty that can be attributed to uncertainty in the 10 
input variables (Reference 4-59). 11 

4.3.8.2 How to Use?  12 

Before performing a SA, it is important to choose a relevant output to analyze. The output 13 
should be closely related to the QoI. Further, binary/categorical outputs inherently contain less 14 
statistical information than continuous outputs. Frequently, the binary output is a function of 15 
continuous outputs, and these continuous outputs can often provide better information on input 16 
sensitivity with fewer samples. Because of this, it is generally beneficial to use continuous 17 
outputs for SA when possible.  18 
 19 
After an output has been chosen, an SA can be performed using exploratory data analysis and 20 
global sensitivity metrics estimation: 21 

• Exploratory data analysis. Exploratory data analysis summarizes characteristics of the 22 
input-output relationships using summary statistics and visualizations (Reference 4-60). 23 
Perhaps the most useful visualization to understand the relationship between PFM 24 
inputs and outputs is a scatterplot. If the number of input and output variables is small, 25 
scatterplots can be produced for each output with each input. With many inputs and 26 
outputs, relevant visualizations may be chosen based on subject matter knowledge. 27 
Alternatively, one can estimate the global sensitivity metrics first and use these to 28 
choose the visualizations.  29 
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• Global sensitivity metrics estimation. Sensitivity metrics provide a quantitative value 1 
that characterizes the relationship between inputs and outputs. The following two metrics 2 
can be used to quantify the input/output relationship (References 4-59, 4-61, 4-62): 3 

– First-order sensitivity indices refer to the proportion of the variance in the output 4 
that is explained by the variance in a single input. 5 

– Total-order sensitivity indices refer to the proportion of the variance in the output 6 
that is explained by the variance in an input and its interactions with other inputs. 7 

Section 4.3.8.4 includes details about estimating these sensitivity metrics. 8 

4.3.8.3 When/Why?  9 

SA can be performed to achieve the following:  10 

• Understand the problem drivers and rank inputs based on the magnitude of their effect 11 
on the output(s).  12 

• Improve the precision and accuracy of uncertainty propagation by doing the following: 13 

– identifying important inputs whose uncertainty distributions may need further 14 
refinement 15 

– determining candidate inputs for importance sampling  16 

4.3.8.4 Technical Details  17 

Exploratory data analysis. Scatterplots can be used to visually assess the nature and 18 
magnitude of the relationship between an input and output. 19 
 20 
Figure 4-22 shows an example of an input without (left) and with (right) a strong relationship 21 
with the response. For important inputs, scatterplots can also be used to determine whether the 22 
relationship is roughly linear, monotonic (i.e., entirely increasing or decreasing), or more 23 
complex.  24 
 25 
Figure 4-23 shows examples of linear (left), nonlinear/monotonic (middle), and 26 
nonlinear/nonmonotonic (right) input/output relationships. Reference 4-63 gives formal 27 
procedures for analyzing scatter plots. In practice, it can be difficult to visually inspect a large 28 
number of scatter plots, and more complex relationships involving interactions can often be 29 
missed. Estimating sensitivity metrics can help identify the most important relationships to 30 
visualize. 31 
 32 
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 1 

Figure 4-22 Scatterplots Showing an Input Without (Left) and with (Right) a Significant 2 
Relationship with the Output Variable 3 

 4 

 5 

Figure 4-23 Scatterplots Showing Linear (Left), Nonlinear/Monotonic (Middle), and 6 
Nonlinear/Nonmonotonic (Right) Relationships between the Input and Output 7 
Variables 8 

 9 
Global sensitivity metrics estimation. Input sensitivity can be measured in a variety of 10 
different ways (References 4-64 and 4-65). Variance-based indices are common sensitivity 11 
metrics that decompose the output variance and attribute this variance to certain inputs. 12 
Heuristically, the first-order sensitivity index reflects the proportion of the total output uncertainty 13 
that is explained by the uncertainty in the input  alone. The total effects sensitivity index 14 
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reflects the fraction of the output uncertainty that is explained by  by itself and together with its 1 
interaction with other variables.  2 
 3 
Mathematically, the first-order and total effects sensitivity indices can be described as follows. 4 
Suppose the output of the computer model is 5 = ( ), (3) 

where  is the model output, = [ , … , ] is a vector of  input variables, and  is the model. 6 
The first- and total-order sensitivity indices for an input  (denoted  and , respectively) are 7 
defined as 8 

=  ( [ ( )| ])( ( )) , (4) 

=  ( ( ) ( ) )( ( )) = 1 −  ( ( ) ( ) )( ( )) , (5) 

where ( ) is a vector of all  input variables, excluding the  input (Reference 4-59). The 9 
numerator of the first-order sensitivity metric in Eq. 4 is the variance of [ ( )| ], the average 10 
value of the output ( ), conditional on the input of interest . This variance is taken with 11 
respect to the distribution on ; therefore, the numerator measures how much the average 12 
output varies as  varies. A large variance indicates  affects the output ( ) and a small 13 
variance indicates it does not. The meaning of “large” and “small” is relative to the total variation 14 
of the output, the denominator of Eq. 4.  15 
 16 

 reflects the proportion of the total output uncertainty that is explained by the uncertainty in  17 
alone, though a similar metric, , is used to assess the proportion of uncertainty in the output 18 
explained by  and its interactions with other variables. The numerator in the total-order 19 
sensitivity metric in Eq. 5 is the expectation (average) of ( ) ( ) , the variance of the 20 
output ( ) given all but the  input. If there is high variation for a wide range of ( ), then the 21 
outer expectation will be large, resulting in a large value for . If  is much larger than , it 22 
implies that there are significant interactions between  and the other inputs.  23 
 24 
Estimating sensitivity metrics using surrogate models. The calculation of first- and 25 
total-order sensitivity indices involves the estimation of high-dimensional integrals representing 26 
the expectations and variances in Eq. 4 and Eq. 5. The Monte Carlo integration approaches 27 
detailed in References 4-59 and 4-66 can be used to estimate these indices. However, this can 28 
be computationally prohibitive for many applications because it requires a large number of 29 
realizations when there are a large number of inputs. To address this problem, surrogate 30 
models can be used to estimate the indices (References 4-67 and 4-68). Section 4.3.10 31 
contains more information on surrogate models.  32 
 33 
Active subspaces. At times, the dimensionality of the input space may be prohibitively large for 34 
performing SAs. If this is the case, dimensionality reduction methods such as active subspaces 35 
may be useful. Active subspaces are a way to identify important directions of the input space 36 
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that affect the QOI. Directions that are not important can be ignored, resulting in reduced 1 
dimensionality. References 4-69 and 4-70 provide more information on active subspaces. 2 

4.3.9 Local Sensitivity Analysis 3 

4.3.9.1 What Is It? 4 

Local SA specifically focuses on how changes to each input at or near a specific reference point 5 
in the input domain, like a mean or median, affect outputs of interest (Reference 4-71). 6 
Alternatively, global SA attempts to quantify the effects of the uncertain inputs on the output 7 
relative to the entire input space (Section 4.3.8). 8 

4.3.9.2 How to Use? 9 

Local SA determines the rate of change of a specified output with respect to a given model 10 
input. The aim is to compute the partial derivative with respect to the input at a specific point in 11 
the domain (input space). One method for computing this partial derivative for a single input 12 
involves the following steps: 13 

(1) Run the model at the specified value of the input. 14 
(2) Perturb the input and run the model again. 15 
(3) Measure the change in the output by estimating the partial derivative. 16 

Typically, the other inputs remain fixed during this process, and the measured change in the 17 
output is attributed to a single input, conditional on the values of the other inputs. 18 

4.3.9.3 When/Why? 19 

Local SA is a relatively efficient first step toward learning about the important parameters in a 20 
model. With only two evaluations of a model, the linear effect on an output of changing a single 21 
parameter can be estimated. This step can help down-select to a smaller set of parameters to 22 
study in a full uncertainty analysis. It also provides some physical intuition for how certain 23 
parameters affect the output. However, the local nature of this analysis should always be kept in 24 
mind because (1) a parameter with low local sensitivity can still have a major effect on an output 25 
of interest if its associated uncertainty is large, and (2) the local sensitivity of a parameter can 26 
sometimes change significantly over the domain of interest. Global SA informs the effect of the 27 
parameter over its full uncertainty range and across the entire domain. 28 

4.3.9.4 Technical Details 29 

Calculating local sensitivity metrics. Local SA only requires a small number of model 30 
evaluations. First, a nominal input value is chosen and that value is perturbed by some amount 31 
in one direction (i.e., perturb one dimension of the input space). The amount chosen should be 32 
large enough so that a significant change in the output can be observed, but it should be small 33 
enough to stay within the region of the input space of concern.  34 
 35 
The sensitivity is measured by the partial derivative, which is estimated by a finite difference. 36 
For example, for some output of interest ℎ, the sensitivity of a single input  at 37  =  ( , , … , ) is approximated by perturbing  by an amount  and approximating the 38 
partial derivative with the finite difference: 39 
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ℎ( ) ≈ ℎ , … , + , … , − ℎ( ) 
 (6) 

Partial derivatives can be compared across a set of inputs by repeating Steps 1–3 in 1 
Section 4.3.9.2, perturbing a single input each time. Approximating the partial derivative with a 2 
finite difference is effectively a polynomial approximation using a Taylor series expansion 3 
around the reference point (Reference 4-71, 4-72). Note that the reference point (the model 4 
realization at the nominal input values) can be reused for the computation for each input. From 5 
the results of the local SA, the inputs can be ranked in terms of their contribution to an output of 6 
interest.  7 

4.3.10 Surrogate Models 8 

4.3.10.1 What Is It? 9 

Surrogate models (also known as emulators, metamodels, and response surfaces) are relatively 10 
fast statistical models that approximate more complex computer models. Surrogates are less 11 
computationally expensive to evaluate than the computer model and can be useful for SA and 12 
uncertainty propagation when conducting a sufficient number of computer model realizations is 13 
computationally prohibitive. 14 

4.3.10.2 How to Use? 15 

Surrogate models are constructed using the following steps (with more information in 16 
Section 4.3.10.4):  17 

(1) Generate training data by running the computer model using several sets of input values 18 
and obtaining the corresponding output values.  19 

(2) Use the training data to construct the surrogate model.  20 

(3) Validate the surrogate on a new set of computer model realizations (testing data) to 21 
check its quality. 22 

A surrogate can be used to approximate the full computer model for SA and uncertainty 23 
propagation. The choice of surrogate is dependent on the assumptions the user is willing to 24 
make, which relate to the type of output and the complexity of the input/output relationship. Two 25 
different output types are commonly seen in PFM models:  26 

(1) Continuous data can take on an infinite number of possible (physical) values 27 
(e.g., crack length). Common surrogates for continuous data include linear regression, 28 
multivariate adaptive regression splines, and GP regression. 29 

(2) Binary data take on only two levels for the output. Typically, the binary variable is an 30 
indicator for an event, taking on 0 if the event did not occur and 1 if it did (e.g., rupture or 31 
no rupture). Surrogates for binary data model the probability of the event occurring. An 32 
example surrogate for binary data is a generalized linear model. 33 
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4.3.10.3 When/Why? 1 

Surrogate models can be used to decrease computation time through building a computationally 2 
efficient computer model approximation. In PFM applications, surrogates can be used in SA and 3 
uncertainty propagation: 4 

• In SA, surrogates can be used to determine how uncertainty in the inputs affects 5 
uncertainty in the outputs (Sections 4.3.8 and 4.3.9).  6 

• In uncertainty propagation, surrogates can be used for propagating uncertainty in the 7 
inputs through the computer model (Section 4.3). Input samples are propagated through 8 
the surrogate model rather than the full computer model to allow for many more 9 
evaluations.  10 

Surrogate models approximate the computer model, and this approximation adds uncertainty in 11 
the PFM analysis. Surrogate uncertainty should be considered in the interpretation of the results 12 
under the following conditions:  13 

• If surrogates are used for SA, several different surrogates can be tried to explore the 14 
sensitivity of the SA results to the selected surrogate model.  15 

• If surrogates are used for uncertainty propagation, the magnitude of error associated 16 
with the surrogate model approximation can be quantified and included as additional 17 
uncertainty in the estimation of the QoI. 18 

4.3.10.4 Technical Details 19 

Generate training data. An output  of a physical process or computer model can be 20 
represented as a function of the input : 21  =  ( ). 22 
 23 
The representation here is deterministic; given the same value of , the same value of the 24 
output  will result. A surrogate estimates the true process function  statistically using a set of 25 
training data ( ( ), ( )) ,  =  1, 2, … ,  where ( ) is the  set of inputs on which a computer 26 
model of the process is evaluated resulting in the output ( ).  27 
 28 
The accuracy of the surrogate increases with the size of the training set. For continuous 29 
outputs, a general rule of thumb for the number of data points n is approximately 10p, where p 30 
is the number of input variables (Reference 4-73). Reference 4-74 gives an overview of options 31 
for choosing the input combinations that will be used in constructing the surrogate model. A 32 
useful and common choice is an LHS (Section 4.3.2). This section outlines several options for 33 
constructing a surrogate. 34 
 35 
Construct the surrogate model. The training data are used to fit a statistical model 36 
approximating ( ) for any . The choice of surrogate model to use will depend on several 37 
aspects of the problem, such as the type of output variable (e.g., continuous or binary), 38 
continuity or discontinuity of , the size of the training data set, and the domain on which a 39 
surrogate is required. This section discusses several types of surrogate models. Ideally, 40 
uncertainty in the surrogate model predictions are measured. An example surrogate appears in 41 
Figure 4-24 where the black points represent the training data, the blue curve represents the 42 
true computer model ( ) across the entire input space, the red curve is the surrogate estimate 43 
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( ), and the gray curves represent statistical uncertainty in the surrogate estimate. This 1 
particular surrogate, a GP, interpolates the training data and has the intuitive property that 2 
statistical uncertainty is larger for locations farther away from the training data 3 
(e.g., Reference 4-75). 4 
 5 

 6 

Figure 4-24 GP Surrogate Fit to Training Data (Black Points) from the True but Unknown 7 
Function ( ) 8 

 9 
Surrogate validation. Validation of the surrogate can be done using the following steps:  10 

(1) Use the surrogate to predict the response at a set of new input values  not used in 11 
construction of the surrogate.  12 

(2) Run the full computer model at . 13 

(3) Compare the predicted response using the surrogate to the response using the 14 
computer model.  15 

(4) Determine whether the surrogate is sufficiently accurate. If not, then more realizations 16 
from the computer model are needed to improve the surrogate, or a different surrogate 17 
model is needed.  18 

(5) If the surrogate is used for uncertainty propagation, the error associated with the 19 
surrogate’s approximation should be considered when quantifying uncertainty in the QoI.  20 

Reference 4-74 provides more information on surrogate validation. 21 
 22 
It is important to ensure that the surrogate model is properly approximating the computer model 23 
by checking for potential over- or under-fitting of the surrogate, and multicollinearity. Overfitting 24 
refers to a surrogate representing the training data set so well that the surrogate does not 25 
generalize to new datasets and has low prediction capabilities. Underfitting refers to a surrogate 26 
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that does not represent the training data well and therefore also does not generalize well. 1 
Multicollinearity may arise when two or more independent input variables in a surrogate model 2 
are correlated. This is potentially concerning because multicollinearity can result in unstable and 3 
unreliable output results. 4 
 5 
Iterating between the surrogate model construction and validation steps is necessary to develop 6 
the most appropriate surrogate model for approximating the computer model. 7 
 8 
Surrogate models for continuous data. There are many types of surrogates for continuous 9 
data. Examples of surrogate models include linear regression (Reference 4-76), multivariate 10 
adaptive regression splines (MARS) (Reference 4-77), and GPs (Reference 4-75). 11 
References 4-78 and 4-79 provide detailed overviews of these and other techniques, as well as 12 
details on how to use these surrogates for SA. The following gives a brief description of them:  13 

• Linear regression is a statistical surrogate that models the output as a linear function of 14 
the inputs and tends to be one of the more interpretable models. It includes uncertainty 15 
in the coefficients and allows for uncertainty estimates in the outputs. Linear regression 16 
is often used as an initial screening tool in SA to identify the most important variables 17 
and can be used as a surrogate for the computer model.  18 
 19 
Despite the name, it is possible to model interactions and nonlinearities within a linear 20 
model. To sort through the many potential model candidates, fit criteria can be used to 21 
find the best model. For example, the Akaike Information Criterion (AIC) and the 22 
Bayesian Information Criterion (BIC) can be used to quantify model fit to the data, as 23 
well as automated methods to find the optimal AIC/BIC, such as stepwise selection. 24 

• Multivariate adaptive regression splines (MARS) is a machine learning (ML) method 25 
that is used for flexible nonparametric regression modeling of high-dimensional data. 26 
Separate splines are fit to different intervals of the predictor variables. Variables, knots 27 
and interactions are evaluated simultaneously to produce an optimal fit. MARS allows for 28 
automatic variable selection and transformations and for variable interactions. 29 

• Gaussian process (GP) regression is an ML method that assumes the input-output 30 
relationship can be modeled as a GP, which is a specific type of multivariate normal 31 
distribution. Specifically, correlation between the outputs is induced using a correlation 32 
structure that is a function of the inputs. The correlation structure is constructed such 33 
that inputs close together produce more similar outputs. GP is a flexible tool for 34 
interpolating outputs throughout the parameter input space. A primary disadvantage of 35 
GP is that it can become computationally expensive and unstable with large training sets 36 
or many inputs. Dimension reduction approximation techniques can be applied to make 37 
GPs more computationally feasible (Reference 4-78). 38 

Surrogates for binary data. Binary data can arise in PFM applications when the model output 39 
is the occurrence of an adverse event (such as crack or rupture). As with continuous data, there 40 
are many different options for fitting surrogates to binary data. Because binary data contain less 41 
information than continuous data do, more initial computer model realizations (i.e., a larger 42 
training sample) are required to accurately model the relationship between inputs and outputs. 43 
In particular, to create a surrogate for rare events, more initial computer model realizations are 44 
commonly required, along with a strategic sampling plan, such as importance sampling 45 
(Section 4.3.3).  46 
 47 
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For example, a generalized linear model is a flexible extension of linear regression that can be 1 
used when the response does not satisfy the assumption of having a normal error distribution 2 
(e.g., when the response variable is binary). Common examples of generalized linear models for 3 
binary data are logistic regression and probit regression (References 4-80, 4-81).  4 
 5 
Additional methods. Additional methods (for both continuous and binary data) include the 6 
following: 7 

• Machine learning (ML) covers a broad group of flexible techniques that fit complex 8 
relationships in the data, with the goal of predicting an unobserved output as accurately 9 
as possible. ML methods can be used for both continuous and binary outputs. Examples 10 
of ML techniques include the already mentioned MARS and GP models, as well as 11 
neural networks (deep learning), regression trees, and support vector machines. Many 12 
texts (e.g., Reference 4-82, 4-83, 4-84, 4-85) provide technical details for a wide range 13 
of ML and statistical learning methods. Note that whether a model is considered to be an 14 
ML model varies from group to group. Some texts also consider select Bayesian models 15 
to be ML models. While some ML models may be limited in interpretability and 16 
uncertainty quantification, research is underway to improve interpretability and 17 
uncertainty estimates for ML models. 18 

 19 
• Bayesian models integrate information based on probability theory. These models take 20 

into consideration prior knowledge with data to produce an output using the Bayes 21 
Theorem. The posterior distribution (output) is proportional to the product of the 22 
likelihood distribution (probability distribution that represents the observed test data from 23 
the computer experiment) and the prior distribution (probability distribution that 24 
represents the knowledge before observing the test data). All statistical inferences on 25 
the QoI are done on the posterior distribution. 26 

Figure 4-25 shows an example of a surrogate prediction for binary data, where the probability of 27 
failure is predicted as a function of a single input variable—age. The surrogate models the 28 
probability of failure based on observed pass/fail (y=0 or y=1) outputs; the surrogate model is 29 
then compared to predictions of the failure probability from the computer model as validation of 30 
the surrogate. The points represent responses for components of varying ages, with a 0 31 
meaning the component did not fail and a 1 meaning the component did fail. The orange line 32 
shows the true probability of failure (estimated from the computer model). The teal line shows 33 
the estimated probability of failure using logistic regression. The gray band represents 34 
95-percent confidence bands on the probability. 35 
 36 
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 1 

Figure 4-25 Example of a Generalized Linear Model for Binary Data—Component Failure 2 
as a Function of Age 3 

4.3.11 Visualizing Output Uncertainty Due to Input Uncertainty 4 

4.3.11.1 What Is It? 5 

PFM analyses are conducted to estimate a specific QoI, though QoIs are never estimated as a 6 
single exact value due to uncertainty. Uncertainty analysis is the process of understanding and 7 
documenting uncertainty in a QoI estimate across model realizations. The uncertainty analysis 8 
approach depends on the QoI and the sampling design for the model realizations. 9 
Communication of the uncertainty analysis involves visualization. This section outlines common 10 
techniques for visualizing QoI estimates along with the quantifiable uncertainty in those 11 
estimates.  12 

4.3.11.2 How to Use? 13 

The appropriate visualization technique depends on three considerations:  14 

(1) whether the analysis separates aleatory and epistemic uncertainties 15 

(2) the type of the QoI (i.e., whether the probability QoI is represented as a function of time 16 
(continuous performance measure) or for a single point in time) 17 

(3) whether the model realizations have equal weight 18 

Section 4.3.11.4 describes the appropriate visualization techniques based on these three 19 
dependencies.  20 
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4.3.11.3 When/Why 1 

Analysts visualize uncertainty and variability throughout a study. Thoughtful visualizations 2 
enhance the final results and help communicate the results effectively.  3 

4.3.11.4 Technical Details 4 

This section distinguishes the cases with and without separation of uncertainty types and 5 
discusses the type of the QoI. It also gives an overview of visualizing results with unequal 6 
weighting.  7 
 8 
No separation of aleatory and epistemic uncertainty. Without separation of uncertainty, the 9 
model results will consist of a set of n outputs, where the outputs may be measured over time.  10 
 11 
QoI is a continuous performance measure. Often, the QoI is continuous, such as crack length or 12 
leak rate. When the output is continuous and is not measured over time, the empirical CDF of 13 
the output samples should be plotted. When the output is measured over time, uncertainty in a 14 
continuous output can be visualized by plotting the output over time for each of the 15 
n realizations and overlaying the best estimate (e.g., a mean or median) and measure of 16 
uncertainty (e.g., quantiles of the output) at each time point. Figure 4-26 provides an example 17 
for two scenarios: (1) the output is not measured over time, and (2) the output is measured over 18 
time. The left plot shows an empirical CDF of a continuous output at a single time point over 19 
1,000 realizations, with a solid vertical line at the median and dashed vertical lines at the 5th 20 
and 95th percentiles of the output. The right plot shows a continuous output over time over 21 
1,000 realizations, with a solid line at the median and dashed lines at the 5th and 95th 22 
percentiles of the output. 23 

 24 

Figure 4-26 Continuous Output at a Single Time Point (Left) and Over Time (Right) 25 
 26 
QoI is a probability. If the QoI is a probability (e.g., probability of failure), the model often outputs 27 
a binary 0/1 variable indicating that an event did or did not occur for that realization. The number 28 
of the 0/1 outputs divided by n number of samples is then used to estimate the probability of the 29 
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event. Sampling uncertainty in the probability estimate can be computed using confidence 1 
intervals or other methods for computing sampling uncertainty. 2 
 3 
When the QoI is measured over time, a graph of the estimate over time provides insight into 4 
how the estimate changes with time (Figure 4-27). When estimating rare probabilities, it is often 5 
more informative to plot the estimates on the log scale, so that the order of magnitude of the 6 
probability can be easily ascertained from the plot.  7 
 8 

  9 

Figure 4-27 Failure Probability Over Time when Aleatory and Epistemic Uncertainty are 10 
not Separated; Linear Scale (Left) and Log Scale (Right) 11 

 12 
Separation of aleatory and epistemic uncertainty. Separating uncertainties allows for the 13 
direct quantification of the impact of epistemic uncertainty (Section 4.1.1). Specifically, when 14 
uncertainties are separated using a double-loop algorithm, the set of model realizations will 15 
consist of ne unique epistemic samples and na aleatory samples within each epistemic sample. 16 
The final sample size is then = ∗ .  17 
 18 
QoI is a continuous performance measure. An estimate of the QoI, say Qi, is computed from the 19 
output across the aleatory samples for each unique epistemic sample i = 1,2,..., ne. A best 20 
estimate of the QoI is a measure of centrality (e.g., the mean or median) of the set of Qis. The 21 
epistemic uncertainty in the QoI can be represented using percentiles of the Qis. Specifically, 22 
the median, 5th, and 95th percentile of the Qis can be presented as a best estimate and 23 
uncertainty for the QoI.  24 
 25 
QoI is a probability. When the QoI is a probability, the average of the 0/1 output across the 26 
aleatory samples for each unique epistemic sample is computed to estimate the probability of 27 
the event, conditioned on the value of the epistemic input. A best estimate of the probability is 28 
the mean or median of these estimates. The epistemic uncertainty in the probability can be 29 
represented using percentiles of the estimates. Specifically, the median, 5th, and 95th 30 
percentiles can be presented as a best estimate with uncertainty.  31 
 32 
In general, an estimate Qi is provided for each epistemic input. These estimates contain 33 
sampling uncertainty due to a finite aleatory sample size. The precision of the individual Qis 34 
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should be considered. The number of samples na and sampling scheme determine how 1 
accurately each Qi can be estimated. For example, if the probability of failure is on the order of 2 
1x10-3, then more than 1x103 samples (na > 103) will be required to accurately estimate each Qi 3 
using equal-probability weighted samples of 0/1 outputs (see Section 4.1.1).  4 
 5 
The left plot in Figure 4-28 displays visualizations for the case when a probability is estimated at 6 
a single time point (or not a function of time) from 0/1 output. The figure plots the CDF of the 7 
estimated probabilities for each epistemic sample out of 1,000 samples. The solid vertical line is 8 
the median, and the dashed vertical lines are the 5th and 95th percentiles of the output. The 9 
estimated probabilities represent frequencies of the event over the aleatory samples. While it 10 
looks similar to the plot in Figure 4-26, its interpretation is different. If the aleatory sample size is 11 
large enough to make the sampling uncertainty in each estimate negligible, the spread in this 12 
CDF represents the spread due to epistemic uncertainty. Likewise, the plot on the right 13 
visualizes probability estimates as a function of time. Each blue curve represents an estimate of 14 
the probability given a fixed epistemic parameter. The solid line is the median, and the dashed 15 
lines are the 5th and 95th percentiles of the epistemic output. If the aleatory sample size is large 16 
enough, the spread in these blue curves represents uncertainty due to epistemic uncertainty in 17 
the inputs.  18 
 19 
It is important to understand that if the aleatory uncertainty is a significant contributor to the 20 
uncertainty in each Qi, the variability observed in these plots is due to both aleatory and 21 
epistemic uncertainty (Reference 4-86).  22 
 23 

   24 

Figure 4-28 Frequency over Aleatory Samples at a Single Time Point (Left) and as a 25 
Function of Time (Right) 26 

 27 
Weighting model realizations. When inputs are sampled using SRS or LHS, the generated 28 
inputs all have an equal probability of selection and the outputs are weighted equally when 29 
calculating a QoI. When inputs are sampled using importance sampling or another weighted 30 
sampling method, the model outputs are weighted differently. When calculating the best 31 
estimate and uncertainty in a QoI, the relevant weights should be applied. When visualizing 32 
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uncertainty, realizations from the true output distribution should be plotted, rather than the 1 
observed output distribution with unequally weighted outputs. Sampling from the true output 2 
distribution can be achieved by sampling with replacement from the observed, weighted data 3 
using the following algorithm: 4 

(1) Each output  has a corresponding weight  based on the selected sampling method 5 
(under SRS or LHS with no importance sampling, = 1 for each ). 6 

(2) The analyst should resample with replacement from the n outputs, where each output 7 
has a probability of being sampled proportional to its weight. 8 

(3) The resampled data can be considered an unweighted, simple random sample of 9 
outputs. 10 

Figure 4-29 shows an example of reweighting an importance-sampled distribution. The figure 11 
displays empirical CDFs of a probability of failure. The blue CDF is that of the output from the 12 
importance sampling. Since the importance sampling oversamples regions where failures are 13 
likely to occur, the CDF calculated directly from these outputs results in much larger estimated 14 
probabilities than those computed under SRS (black CDF). The green CDF is created by 15 
resampling the importance-sampled distribution using the importance sampling weights as 16 
described in the algorithm above. As desired, this reconstructed CDF is much closer to the one 17 
observed under SRS and actually estimates the distribution of failure probability.  18 
 19 

 20 

Figure 4-29 Importance-Sampled Distribution (Blue), Simple Random Sample (Black) 21 
Distribution, and Reconstructed Unweighted Distribution (Green) for a 22 
Probability of Failure 23 
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4.4 Useful Methods for Sensitivity Studies 1 

4.4.1 Sensitivity Studies  2 

4.4.1.1 What Is It? 3 

Sensitivity studies are case studies that exercise the PFM computational framework under 4 
different assumptions. The goal of sensitivity studies is to determine whether uncertain 5 
assumptions impact the conclusions of the PFM analysis. 6 

4.4.1.2 How to Use? 7 

Key aspects of conducting sensitivity studies include the following: 8 

• determining the set of uncertain assumptions that will be evaluated using sensitivity 9 
studies 10 

• designing and running sensitivity studies 11 

Determining the set of uncertain assumptions. The complexity of PFM computational 12 
frameworks results in a large set of assumptions, some of which may be uncertain and thus 13 
candidates for sensitivity studies. Assumption uncertainties can often be categorized as model 14 
uncertainty or input uncertainty. Further, uncertain assumptions can often be categorized by the 15 
degree of uncertainty in the assumption. Section 4.4.1.4 contains more information on model 16 
versus input uncertainty and classifying the degree of uncertainty to determine whether a 17 
sensitivity study is needed. 18 
 19 
Designing and running sensitivity studies. When setting up a sensitivity study, the settings in 20 
the model and inputs are changed to reflect the plausible alternative assumption(s) under study. 21 
The analyst has a choice to conduct deterministic model realizations at a single value of the 22 
model inputs or to conduct probabilistic analyses over the range of the model inputs. The 23 
analyst will select either probabilistic or deterministic analysis for the sensitivity studies based 24 
on the change in the assumptions and the specific question being asked.  25 
 26 
The sensitivity studies are designed to evaluate how changing an assumption impacts the 27 
results of the analysis. This requires knowledge gained throughout the PFM process as well as 28 
subject matter expertise. For example, the inputs whose assumptions are natural candidates for 29 
sensitivity studies are those considered important in SAs. Subject matter experts can help 30 
determine the credibility of the models and input parameters and identify plausible alternatives.  31 

4.4.1.3 When/Why? 32 

A typical PFM analysis relies on a complex model that consists of many submodels with many 33 
inputs and outputs joined together in an overall model framework. The complexity of these 34 
models results in a large set of assumptions, some of which may be uncertain. Each submodel 35 
and parameter input relies on assumptions that represents a decision to set up the problem and 36 
model in a specific way. Since the results of the PFM analysis depend on these uncertain 37 
assumptions, the effect of the assumptions should be studied with the goal of understanding 38 
whether plausible alternative assumptions will significantly change the results. 39 
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4.4.1.4 Technical Details 1 

Determining a set of uncertain assumptions to study. PFM analyses contain many uncertain 2 
assumptions, but sensitivity studies should not be conducted for all such assumptions. Two 3 
primary factors should drive whether sensitivity studies are conducted (Reference 4-87):  4 

(1) plausibility of assumption violation 5 
(2) impact on analysis results 6 

In general, sensitivity studies should be considered for more plausible assumptions that can 7 
impact the QoI. If subject matter experts or SAs cannot determine the plausibility or impact of a 8 
particular assumption a priori, a sensitivity study should generally be considered.  9 
 10 
Types of uncertain assumptions. To determine a set of plausible alternative assumptions, 11 
Reference 4-87 distinguishes between two types of assumptions:  12 

(1) Modeling assumptions refer to the types of submodels used in the PFM code, the 13 
assumptions made to develop each of the submodels, and any approximations made 14 
during calculations performed within each of the submodels. Modeling assumptions also 15 
include context assumptions that pertain to the context of the PFM analysis. Changes in 16 
analysis context are related to completeness uncertainty, defined as “uncertainty caused 17 
by the limitations in the scope of the model, such as whether all applicable physical 18 
phenomena have been adequately represented, and all accident scenarios that could 19 
significantly affect the determination of risk have been identified” (Reference 4-88). 20 
Examples of context assumptions for PFM applications include alternate scenarios, such 21 
as worst case scenarios and different intervention scenarios (discussed more below). 22 

(2) Input parameter specification assumptions refer to any assumptions made when 23 
specifying the values of the input parameters to propagate through the PFM code. These 24 
include the choice to explicitly separate aleatory and epistemic uncertainties and the 25 
classification of each variable into these categories, the choice of fixed probability 26 
distributions for the inputs, the choice of correlation structure between the inputs, and 27 
the choice to treat certain inputs as deterministic (i.e., fixed).  28 

Degree of assumption uncertainty. Reference 4-87 provides a useful set of categories for 29 
models and input parameter assumptions that helps to identify and rank sensitivity studies in 30 
terms of their plausibility and impact, as summarized below. The summary describes a list of 31 
categories for both models and input parameters, with a corresponding suggestion for whether a 32 
sensitivity study is needed:  33 

• Model categories:2 Models can be categorized according to the uncertainty in the 34 
modeling assumptions. Potential categorizations include the following: 35 
 36 
– The model/submodel is a correct and credible representation of the underlying 37 

physical process. Sensitivity studies are typically not needed. There is little 38 
benefit in subjecting a correct model to a sensitivity study. This category implies 39 

                                                 
2  “Model” and “submodel” are used interchangeably here and should not cause confusion. Typically, it is the 

individual submodels that are categorized before the categorization of the overall model.  
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that there are either no other plausible models or any other plausible model is 1 
similar to the current model and would have low impact on the QoI.  2 

– The applicability of this model to all conditions of interest cannot be assessed 3 
reliably with the current state of knowledge. Sensitivity studies should be 4 
considered. The correctness of the model is unknown. It is possible that there is 5 
no known plausible alternative model on which to develop a sensitivity study. In 6 
such cases, sensitivity studies scrutinizing the engineering decisions made in 7 
developing the model can help determine whether these decisions have 8 
unforeseen significant effects on the results. That is, there are potentially other 9 
plausible engineering decisions that could have been made and that would 10 
impact the QoI.  11 

– Plausible alternatives to the model adopted exist for a given physical process, 12 
and these alternatives have roughly equal justification to the model adopted. 13 
Sensitivity studies should be considered. The alternative plausible models with 14 
roughly equal justification are usually candidates for sensitivity studies, especially 15 
if the model affects the QoI. The alternatives may include context assumptions 16 
such as worst case scenarios and intervention scenarios.  17 

– A model provides a conservative representation of the underlying physical 18 
process. Sensitivity studies might be conducted. Conservative models are often 19 
adopted because of a lack of information. It may be necessary to set up studies 20 
to quantify the impact of the conservative choices.  21 

• Input parameter categories: Inputs can also be categorized according to uncertainty in 22 
their assumptions. Potential categorizations include the following: 23 

– The uncertainty distribution for the input parameter accurately represents the 24 
input for the conditions of interest. Additionally, the choice to classify the input as 25 
aleatory or epistemic is unambiguous. A sensitivity study is not needed. This 26 
category implies there are no alternatives worth considering for the input 27 
parameter specification.  28 

– The value or the uncertainty distribution was developed using limited prior 29 
information or data. Alternatively (or in addition), the choice to classify the 30 
parameter as aleatory or epistemic is ambiguous. A sensitivity study should be 31 
considered. Given the limited information used to specify the input, plausible 32 
alternatives likely exist and are candidates for sensitivity studies. The analyst 33 
considers the impact the input has on the QoI when determining whether a study 34 
is needed. If the distribution/value is highly uncertain, but SA results and expert 35 
judgment agree that the input does not drive variability in the QoI, then a 36 
sensitivity study is typically not necessary. Alternatively, if the variable does drive 37 
variability in the QoI, a sensitivity study should be conducted. 38 

– The distribution for the input parameter is considered a conservative 39 
representation of the parameter for the conditions of interest. A sensitivity study 40 
might be conducted. Conservative input parameters are often used out of 41 
necessity due to a lack of information. As plausible alternative and potentially 42 
less conservative input specifications exist, quantifying the impact of these 43 
conservatisms could be helpful in building credibility.  44 
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Designing sensitivity studies. Sensitivity studies are designed based on the question of 1 
interest. Typical questions asked in sensitivity studies include the following: 2 

• Do the results change significantly if a plausible alternative model is used? (Step 1: 3 
Action 3) 4 

If assumptions about the underlying code or physics model may be violated for the 5 
specific application, then sensitivity studies can address how the QoI changes under 6 
different model form assumptions (e.g., geometric fidelity, material model selection, new 7 
submodels). Sensitivity studies can demonstrate that the overall behavior of the PFM 8 
code is consistent with expert understanding of the expected system behavior, including 9 
demonstrating expected trends and correlations between inputs and outputs of interest. 10 
Benchmarking against other comparable codes may be used to increase confidence in 11 
the PFM code by demonstrating that the results produced by the PFM code are 12 
reasonable and can be predicted by similar codes (Reference 4-89). 13 

• Do the results change significantly if a different distribution is used for an important input 14 
variable? (Step 2: Action 2) 15 

Sensitivity studies that vary the type of input distribution or distribution parameters can 16 
be conducted to determine the impact of the chosen distribution. The analyst should 17 
consider changing the characteristics of input distributions (e.g., shifting the mean, 18 
variance, or other distribution moments, such as skewness and kurtosis) as well as 19 
changing the distribution itself to highlight the uncertainty in specifying the distribution 20 
correctly.  21 

• Do the results change significantly if a variable is considered aleatory rather than 22 
epistemic or vice versa? (Step 2: Action 1) 23 

If the analysis maintains the separation of aleatory and epistemic uncertainty and the 24 
uncertainty of an input cannot be clearly defined as aleatory or epistemic, then sensitivity 25 
studies can address how the analysis results change depending on the classification of 26 
this uncertainty type.  27 

• Do the results change significantly under different context assumptions used to set up 28 
the problem (Step 1: Action 1)  29 

Examples of alternate scenarios could include the following:  30 

– Worst case scenarios or any adverse condition (such as accidents) are often 31 
considered for sensitivity studies in support of defense in depth. They are either 32 
designed by experts or found in benchmarking studies. 33 

– Intervention scenarios study the impact of some (usually positive) changes in the 34 
system, such as inspection or mitigation. 35 

– Defense-in-depth scenarios involve changes to nominal assumptions to 36 
represent adverse conditions or beyond-design-basis conditions. Such studies 37 
can be combined with different intervention scenarios to assess the benefit of the 38 
interventions under extreme conditions.  39 
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Sensitivity studies are important for both deterministic and probabilistic fracture analyses. For 1 
example, Reference 4-90 describes sensitivity studies conducted to understand the effects of 2 
potential changes to selected inputs and mechanisms in calculating failure probabilities under 3 
different inservice inspections programs. Sensitivity studies have also been used in support of 4 
defense in depth by considering beyond-design-basis accidents (see Reference 4-88 for some 5 
examples). Sensitivity studies seek to assess the credibility of the PFM model and analysis 6 
within the domain of the application. This is different from credibility in the context of V&V or 7 
statistical and numerical stability, where the goal is to build trust that the results are computed 8 
correctly and accurately enough to represent the phenomenon under study. Rather, sensitivity 9 
studies seek to inform what may happen under alternative assumptions made when defining the 10 
problem under consideration by quantifying the effects of the alternative assumptions.  11 
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5 SUMMARY AND CONCLUSIONS 1 

The guidance provided in this document outlines a framework for conducting PFM analyses that 2 
recognizes the fact that each regulatory application may have unique characteristics. To 3 
address the unique characteristics of diverse PFM applications, this NUREG presents the 4 
elements of a graded approach for PFM analyses and the corresponding expectations for 5 
supporting documentation. These elements are aligned with the documentation elements 6 
previously given in the NRC’s technical letter report, “Important Aspects of Probabilistic Fracture 7 
Mechanics Analyses,” and the outcomes from the NRC public meeting to discuss a graded 8 
approach for PFM codes and analyses for regulatory applications.  9 
 10 
The three technical sections (Sections 2, 3, and 4) develop the concept of PFM analysis 11 
methodology and outline important considerations for a high-quality and high-confidence PFM 12 
analysis. The sections are linked together and progressively dive into more detailed elements of 13 
PFM applications, but each may have different audiences: 14 

• Section 2 is intended for applicants of all experience levels. Each subsection introduces 15 
an element of content expected in a PFM submittal. It identifies representative 16 
circumstances for a submittal to guide the applicant through a graded approach for the 17 
specific information to provide to the NRC. 18 

 19 
• Section 3 could be used by applicants who are familiar with PFM submittals but are 20 

seeking some guidance on the development of an analysis structure or on formalism. 21 
Each subsection presents an analytical step that may exist in a PFM submittal. The 22 
analysis steps are linked to the expected documentation presented in Section 2. 23 

 24 
• Section 4 could be used by applicants who are seeking explicit guidance on the 25 

theoretical underpinnings of the processes used to establish the credibility of a PFM 26 
analysis. Each subsection presents the fundamental background for the concepts and 27 
methods used in a PFM analysis. Examples give details for analysts on (nonprescriptive) 28 
approaches for PFM analyses. The concepts and methods are linked directly to the 29 
analysis steps presented in Section 3. 30 

The NRC does not require PFM submittals to follow the process outlined in this NUREG, but 31 
rather the submittals should be structured to address the specific features of the application 32 
under investigation. The staff recommends that applicants identify deviations from the 33 
framework presented in this document to enhance the efficiency of NRC reviews of PFM 34 
submittals.  35 
 36 
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GLOSSARY 1 

Acceptance Criteria 2 
Set of conditions that must be met to achieve success for the desired application.  3 
 4 
Accuracy and Precision 5 
“Accuracy” is the degree to which the result of a measurement, calculation, or specification 6 
conforms to the correct value (i.e., reality or a standard accepted value). “Precision” is a 7 
description of random errors and a measure of statistical variability for a given quantity. In other 8 
words, “accuracy” is the proximity of measurement results to the true value; “precision” is the 9 
repeatability or reproducibility of the measurement. 10 
 11 
Aleatory Uncertainty 12 
Uncertainty based on the randomness of the nature of the events or phenomena that cannot be 13 
reduced by increasing the analyst’s knowledge of the systems being modeled (Reference 0-1). 14 
 15 
Assumption 16 
A decision or judgment made in the development of a model or analysis (Reference 0-1). 17 
 18 
Bayesian Inference 19 
Type of data analysis in which an initial estimate about a parameter value is combined with 20 
evidence to arrive at a more informed estimate (Reference 0-1). 21 
 22 
Benchmark (in the context of PFM computational analyses) 23 
An established point of reference against which computers or programs can be measured in 24 
tests comparing their performance, reliability, output, etc. A standard against which similar 25 
analyses must be measured or judged. Benchmarks are often a part of validation for scientific 26 
analysis software. 27 
 28 
Best Estimate 29 
Approximation of a quantity based on the best available information (Reference 0-1). Models 30 
that attempt to fit data or phenomena as best as possible. That is, models that do not 31 
intentionally bound data for a given phenomenon or are not intentionally conservative or 32 
optimistic. 33 
 34 
Calibration 35 
The process of adjusting physical modeling parameters in the computational model to improve 36 
agreement with experimental data (Reference 0-2). 37 
 38 
Code 39 
The computer implementation of algorithms developed to facilitate the formulation and 40 
approximation solution of a class of problems. (Reference 0-2). 41 
 42 
Code Verification 43 
The process of determining and documenting the extent to which a computer program (“code”) 44 
correctly solves the equations of the mathematical model (Reference 0-3). 45 
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Completeness Uncertainty 1 
Caused by the limitations in the scope of the model, such as whether all applicable physical 2 
phenomena have been adequately represented and all accident scenarios that could 3 
significantly affect the determination of risk have been identified (Reference 0-1). 4 
 5 
Component 6 
A part of a system in a nuclear power plant (Reference 0-1). 7 
 8 
Conditional Probability 9 
Probability of occurrence of an event, given that a prior event has occurred (Reference 0-1). 10 
 11 
Confidence Interval 12 
A range of values that has a specified likelihood of including the true value of a random variable 13 
(Reference 0-1). 14 
 15 
Consequence 16 
In the context of nuclear regulatory submittals, the health effects or the economic costs resulting 17 
from a nuclear power plant accident (Reference 0-1). 18 
 19 
Conservative Analysis 20 
An analysis that uses assumptions such that the assessed outcome is meant or found to be less 21 
favorable than the expected outcome (Reference 0-1). 22 
 23 
Convergence Analysis 24 
An analysis with the purpose of assessing the approximation error in the quantity of interest 25 
estimates to establish that conclusions of the analysis would not change solely due to sampling 26 
uncertainty. 27 
 28 
Correlation 29 
A general term for interdependence between pairs of variables (Reference 0-4). 30 
 31 
Credibility 32 
The quality to elicit belief or trust in modeling and simulation results (Reference 0-5). 33 
 34 
Cumulative Distribution Function 35 
A function that provides the probability that a parameter is less than or equal to a given value 36 
(Reference 0-1). 37 
 38 
Continuous variable 39 
See “Discrete versus Continuous Variables.” 40 
 41 
Dependent 42 
Not independent. 43 
 44 
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Deterministic 1 
A characteristic of decisionmaking in which results from engineering analyses not involving 2 
probabilistic considerations are used to support a decision (Reference 0-1). Consistent with the 3 
principles of determinism, which hold that specific causes completely and certainly determine 4 
effects of all sorts (Reference 0-6). Also refers to fixed model inputs. 5 
 6 
Deterministic Fracture Mechanics 7 
An analysis that uses fixed values of input parameters to a fracture mechanics model to 8 
estimate a fixed model output or quantity of interest computed from the output. 9 
 10 
Discrete versus Continuous Variables 11 
A discrete random variable is a variable that has a nonzero probability for only a finite, or 12 
countably infinite, set of values. A continuous random variable is a variable that has an 13 
absolutely continuous cumulative distribution function (Reference 0-3). 14 
 15 
Distribution 16 
A function specifying the values that the random variable can take and the likelihood they will 17 
occur. 18 
 19 
Engineering Judgment 20 
The scientific process by which a design, installation, operation/maintenance, or safety problem 21 
is systematically evaluated. The decision made by an engineer based on the available data to 22 
propose a design or a line of action. 23 
 24 
Epistemic Uncertainty 25 
The uncertainty related to the lack of knowledge or confidence about the system or model; also 26 
known as “state-of-knowledge uncertainty.” As defined by the American Society of Mechanical 27 
Engineers (ASME)/American Nuclear Society (ANS) probabilistic risk assessment (PRA) 28 
standard (Reference 0-1), “the uncertainty attributable to incomplete knowledge about a 29 
phenomenon that affects our ability to model it. Epistemic uncertainty is reflected in ranges of 30 
values for parameters, a range of viable models, the level of model detail, multiple expert 31 
interpretations, and statistical confidence. In principle, epistemic uncertainty can be reduced by 32 
the accumulation of additional information. (Epistemic uncertainty is sometimes also called 33 
‘modeling uncertainty.’)” (Reference 0-1) 34 
 35 
Expert Elicitation 36 
A formal, structured, and documented process to obtain judgments from expert(s). May be used 37 
to obtain information from technical experts on topics that are uncertain. A process in which 38 
experts are assembled and their judgment is sought and aggregated in a formal way. 39 
(Reference 0-1) 40 
 41 
Expert Judgment 42 
Information (or opinion) provided by one or more technical experts based on their experience 43 
and knowledge. Used when there is a lack of information, for example, if certain parameter 44 
values are unknown, or there are questions about phenomenology in accident progression. May 45 
be part of a structured approach, such as expert elicitation, but is not necessarily as formal. May 46 
be the opinion of one or more experts, whereas expert elicitation is a highly structured process 47 
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in which the opinions of several experts are sought, collected, and aggregated in a very formal 1 
way. (Reference 0-1) 2 

Failure Probability 3 
As defined in the ASME/ANS PRA standard (Reference 0-1), “the likelihood that a system or 4 
component will fail to operate upon demand or fail to operate for a specific mission time” 5 
(Reference 0-1). For components, can also be the likelihood of a component being in a 6 
defective, unacceptable condition (adverse condition or event) (e.g., leakage from reactor 7 
coolant pressure boundary). 8 
 9 
Frequency 10 
The expected number of occurrences of an event or accident condition expressed per unit of 11 
time. Normally expressed in events per plant (or reactor) operating year or events per plant (or 12 
reactor) calendar year (Reference 0-1). 13 
 14 
Global Sensitivity Analysis 15 
The study of how the uncertainty in the output or quantity of interest of a model (numerical or 16 
otherwise) can be apportioned to different sources of uncertainty in the model input. The term 17 
“global” ensures that the analysis considers more than just local or one-factor-at-a-time effects. 18 
Hence, interactions and nonlinearities are important components of a global statistical sensitivity 19 
analysis (Reference 0-3). 20 
 21 
Important Variable 22 
A variable whose uncertainty contributes substantially to the uncertainty in the response 23 
(Reference 0-7).  24 
 25 
Independence 26 
Two events are said to be independent if knowing the outcome of one tells us nothing about the 27 
other (Reference 0-4). 28 
 29 
Input 30 
Data or parameters that users can specify for a model; the output of the model varies as a 31 
function of the inputs, which can consist of physical values (e.g., material properties, tolerances) 32 
and model specifications (e.g., spatial resolution). 33 
 34 
Input Uncertainty 35 
The uncertainty in the values of the inputs to the model represented by probabilistic distributions 36 
(Reference 0-1). 37 
 38 
Interaction Effect 39 
A term applied when two (or more) explanatory variables do not act independently on a 40 
response variable. 41 
 42 
Level of Detail 43 
The degree of resolution or specificity in the analyses performed. Generally refers to the level to 44 
which a system is modeled; dictated by (1) the level of detail to which information is available, 45 
(2) the level of detail required so that dependencies are included, (3) the level of detail so that 46 
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the risk contributors are included, and (4) the level of detail sufficient to support the application 1 
(Reference 0-1). 2 

Local Sensitivity Analysis 3 
A sensitivity analysis that is relative to the location in the input space chosen and not for the 4 
entire input space (Reference 0-7). 5 
 6 
Margin 7 
The distance between the quantity of interest and the acceptance criteria. 8 
 9 
Mean 10 
The average of a set of numerical values; more technically, the expected value of a random 11 
variable (Reference 0-1). 12 
 13 
Median 14 
The value that a random variable is equally likely to be above and below. Also known as the 15 
50th percentile of the distribution of a random variable (Reference 0-1). 16 
 17 
Model 18 
A representation of a physical process that allows for prediction of the process’ behavior 19 
(Reference 0-1). 20 
 21 
Model Uncertainty 22 
Related to an issue for which no consensus approach or model exists and where the choice of 23 
approach or model is known to have an effect on the decision made (Reference 0-1). 24 
 25 
Output 26 
A value calculated by the model given a set of inputs. 27 
 28 
Parameter 29 
A numerical characteristic of a population or probability distribution. More technically, the 30 
variables used to calculate and describe frequencies and probabilities (Reference 0-1). 31 
 32 
Percentile 33 
The set of divisions that produce exactly 100 equal parts in a series of continuous values 34 
(Reference 0-4). 35 
 36 
Point Estimate 37 
An estimate of a parameter in the form of a single value (Reference 0-1). 38 
 39 
Precision 40 
See “Accuracy and Precision.” 41 
 42 



 

120 

Prediction 1 
The use of a model to make statements about quantities of interest in settings (initial conditions, 2 
physical regimes, parameter values, etc.) that are inside (interpolative) or outside (extrapolative) 3 
the conditions for which the model validation effort occurred (Reference 0-3). 4 
 5 
Probabilistic 6 
A characteristic of an evaluation that considers the likelihood of events (Reference 0-1). 7 
 8 
Probabilistic Fracture Mechanics 9 
An analysis that uses probabilistic representations of uncertain input parameters to a fracture 10 
mechanics model to estimate uncertainty in the model outputs or quantities of interest computed 11 
from the outputs (Reference 0-8).  12 
 13 
Probabilistic Risk Assessment 14 

A systematic method for assessing the likelihood of accidents and their potential 15 
consequences (Reference 0-1). 16 
 17 
Probability 18 
A number between 0 and 1 describing the likelihood or chance of an event occurring. There are 19 
two main interpretations of probability: 20 

(1) Frequency interpretation. The probability of an event is the relative frequency of the 21 
occurrence of the event in a long sequence of trials in which the event does or does not 22 
occur. In other words, the likelihood that an event will occur is expressed by the ratio of 23 
the number of actual occurrences to the total number of possible occurrences 24 
(Reference 0-1). 25 

(2) Subjective interpretation. The probability of an event comes from expert judgment about 26 
uncertain events or quantities, in the form of probability statements about future events. 27 
It is not based on any precise computation but is often a reasonable assessment by a 28 
knowledgeable person (Reference 0-3). 29 

Probability Density Function 30 
A function of a continuous random variable whose integral over an interval gives the probability 31 
that its value will fall within the interval (Reference 0-1). Analogous to probability distribution for 32 
continuous random variables. 33 
 34 
Probability Distribution 35 
A function specifying the values that the random variable can take and the likelihood they will 36 
occur (Reference 0-1). 37 
 38 
Quantiles 39 
Divisions of a probability distribution or frequency distribution into equal, ordered subgroups 40 
(Reference 0-4). 41 
 42 
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Quantity of Interest 1 
A numerical characteristic of the system being modeled, the value of which is of interest to 2 
stakeholders, typically because it informs a decision (Reference 0-3). Can refer to either a 3 
physical quantity that is an output from a model or a given feature of the probability distribution 4 
function of the output of a deterministic model with uncertain inputs. (Reference 0-9)  5 
 6 
Random Uncertainty 7 
See “Aleatory Uncertainty.” 8 
 9 
Random Variable 10 
A variable, the values of which occur according to some specified probability distribution 11 
(Reference 0-4). 12 
 13 
Rank 14 
The relative position of the members of a sample with respect to some characteristic 15 
(Reference 0-4). 16 
 17 
Rare 18 
Events that are unlikely to occur. Rare event probabilities are defined as probabilities that are 19 
close enough to 0 that the number of samples needed to estimate the probability is large 20 
relative to the computational budget.  21 
 22 
Realization 23 
The execution of a model for a single set of input parameter values (Reference 0-8).   24 
 25 
Regression 26 
A form of statistical analysis in which observational data are used to statistically fit a 27 
mathematical function that presents the data (i.e., dependent variables) as a function of a set of 28 
parameters and one or more independent variables (Reference 0-3). 29 

Reliability 30 
The likelihood that a system, structure, or component performs its required function(s) for a 31 
specific period of time (Reference 0-1). 32 
 33 
Risk 34 
The combined answer to the three questions that consider (1) what can go wrong, (2) how likely 35 
it is, and (3) what its consequences might be (Reference 0-1). 36 
 37 
Risk-Informed 38 
A characteristic of decisionmaking in which risk results or insights are used together with other 39 
factors to support a decision (Reference 0-1). 40 
 41 
Robustness 42 
The degree to which deviations from a “best” decision provide suboptimal values of the desired 43 
criterion. These deviations can be due to uncertainty in model formulation, assumed parameter 44 
values, etc. (Reference 0-3). 45 
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Sampling 1 
The process of selecting some part of a population to observe, so as to estimate something of 2 
interest about the whole population (Reference 0-4). 3 
 4 
Sampling Uncertainty 5 
The uncertainty in an estimate of a quantity of interest that arises due to finite sampling. 6 
Different sets of model realizations will result in different estimates. This type of uncertainty 7 
contributes to uncertainty in the true value of the quantity of interest and is often summarized 8 
using the sampling variance. 9 
 10 
Sampling Variance 11 
The variance of an estimate of a quantity of interest that arises due to sampling uncertainty 12 
(i.e., finite sampling). An estimate of this variance is often used to summarize sampling 13 
uncertainty.  14 
 15 
Sensitive Variable  16 
A variable that has a significant influence on the response (Reference 0-10). 17 

Sensitivity Analysis 18 
The study of how uncertainty in the output of a model can be apportioned to different sources of 19 
uncertainty in the model input (Reference 0-10). 20 
 21 
Sensitivity Metrics 22 
Quantitative values that characterize the relationship between input and output variables. The 23 
following two metrics can be used: 24 

(1) First-order sensitivity indices measure the proportion of the uncertainty in the output that 25 
is explained by the uncertainty in a single input. 26 

(2) Total-order sensitivity indices measure the proportion of the uncertainty in the output that 27 
is explained by the uncertainty in an input and its interactions with other inputs 28 
(Reference 0-10). 29 

Sensitivity Studies  30 
Probabilistic fracture mechanics analyses that are conducted under credible alternative 31 
assumptions (Reference 0-11). 32 
 33 
Significant  34 
A factor that can have a major or notable influence on the results of a risk analysis 35 
(Reference 0-1). 36 
 37 
Simulation 38 
The execution of a computer code to mimic an actual system (Reference 0-3). Typically 39 
comprises a set of model realizations. 40 
 41 
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Software Quality Assurance 1 
A planned and systematic pattern of all actions necessary to provide adequate confidence that a 2 
software item or product conforms to established technical requirements; a set of activities 3 
designed to evaluate the process by which the software products are developed or 4 
manufactured (Reference 0-12).  5 
 6 
Solution Verification 7 
The process of determining as completely as possible the accuracy with which the algorithms 8 
solve the mathematical-model equations for a specified quantity of interest (Reference 0-3). 9 
 10 
State-of-Knowledge Uncertainty 11 
See “Epistemic Uncertainty” (Reference 0-1). 12 
 13 
Statistic 14 
A numerical characteristic of a sample, such as the sample mean and sample variance 15 
(Reference 0-4). 16 
 17 
Statistical Model 18 
A description of the assumed structure of a set of observations that can range from a fairly 19 
imprecise verbal account to, more usually, a formalized mathematical expression of the process 20 
assumed to have generated the data (Reference 0-4). 21 
 22 
Stochastic Uncertainty 23 
See “Aleatory Uncertainty” (Reference 0-1). 24 
 25 
Subjective Probability 26 
Expert judgment about uncertain events or quantities, in the form of probability statements 27 
about future events. Not based on any precise computation but often a reasonable assessment 28 
by a knowledgeable person (Reference 0-3). 29 
 30 
Surrogate 31 
A function that predicts outputs from a model as a function of the model inputs (Reference 0-3). 32 
Also known as response surface, metamodel, or emulator.  33 
  34 
Uncertainty 35 
Variability in an estimate because of the randomness of the data or the lack of knowledge 36 
(Reference 0-1). 37 
 38 
Uncertainty Analysis 39 
A process for determining the level of imprecision in the results of the probabilistic analysis and 40 
its parameters (Reference 0-1). 41 
 42 
Uncertainty Distribution 43 
See “Probability Distribution” (Reference 0-1). 44 
 45 



 

124 

Uncertainty Interval/Range 1 
A range that bounds the uncertainty value(s) of a parameter or analysis result by establishing 2 
upper and lower limits (see “Confidence Interval,” “Probability Distribution”) (Reference 0-1). 3 
 4 
Uncertainty Propagation  5 
Characterizing the uncertainty of a model’s responses that results from the propagation through 6 
the model of the uncertainty in the model’s inputs (Reference 0-3). 7 
 8 
Uncertainty Quantification 9 
The process of characterizing all relevant uncertainties in a model and quantifying their effect on 10 
a quantity of interest (Reference 0-3). 11 
 12 
Validation 13 
The process of determining the degree to which a model is an accurate representation of the 14 
real world from the perspective of the intended uses of the model (Reference 0-3). 15 
 16 
Variable 17 
Some characteristic that differs from subject to subject or from time to time (Reference 0-4). 18 
 19 
Variance 20 

The second moment of a probability distribution, defined as ( − ) , where  is the first 21 
moment of the random variable . A common measure of variability around the mean of a 22 
distribution (Reference 0-3). 23 
 24 
Verification 25 
The process of determining whether a computer program (“code”) correctly solves the 26 
mathematical-model equations. This includes code verification (determining whether the code 27 
correctly implements the intended algorithms) and solution verification (determining the 28 
accuracy with which the algorithms solve the mathematical-model equations for specified 29 
quantities of interest) (Reference 0-3). 30 
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