Recent Developments in Codes and Standards for New and Advanced Reactors

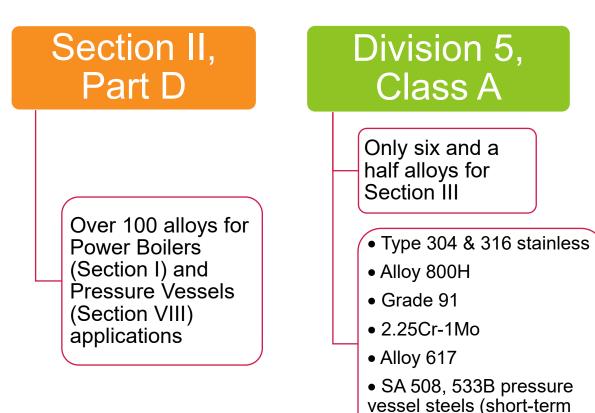
Moderator: Alexander Chereskin, Materials Engineer, NRR/DANU/UTB1

Panelists/Speakers:

- Sam Sham (INL) and Richard Wright (Structural Alloys LLC)
- Amit Varma (Purdue University)
- Augi Cardillo and Tom Ruggiero (ASME)
- Samuel Johnson, Hasan Charkas, and Salvador Villalobos (EPRI)
- Andrew Whittaker and George Abbat (ASCE), and Jim Xu (NRC)
- Adeola Adediran (ACI)

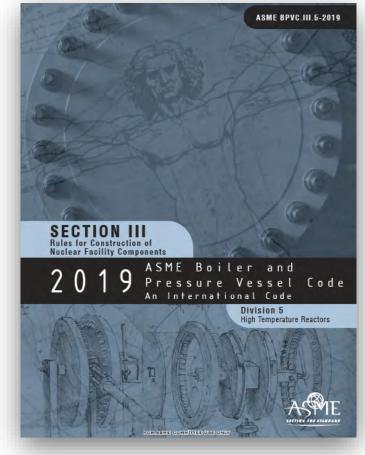
September 15, 2021 Sam Sham, NST Directorate Fellow, INL Richard Wright, President, Structural Alloys LLC

Qualification of High Temperature Materials and Their Incorporation into ASME Section III, Division 5


NRC Standards Forum

Qualification of High Temperature Materials for Section III, Division 5, Class A Construction

elevated temperature


excursions)

- Why there is such a large discrepancy
- What can be done to increase the availability of high temperature alloys for advanced reactors
 - To provide design flexibility
 - To accelerate advanced reactor deployment schedule
- Why not just use non-nuclear codes
- What is the inside scoop

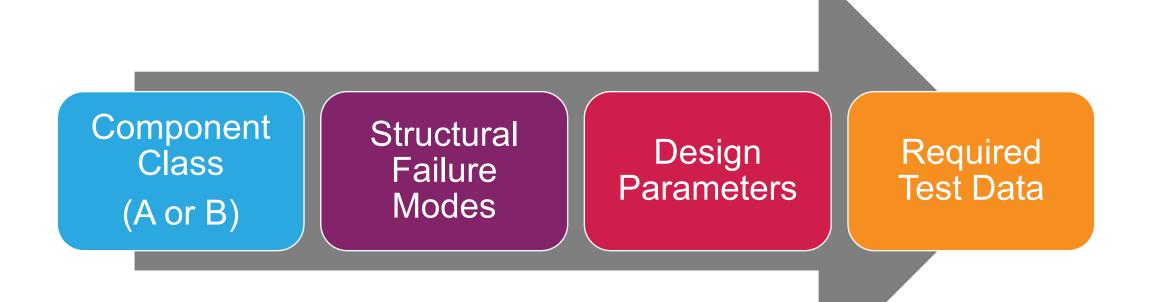
ASME Section III, Rules for Construction of Nuclear Facility Components - Division 5, High Temperature Reactors

- ASME Section III Division 5 Scope
 - Division 5 rules govern the construction of vessels, piping, pumps, valves, supports, core support structures and nonmetallic core components for use in high temperature reactor systems and their supporting systems
 - Construction, as used here, is an all-inclusive term that includes material, design, fabrication, installation, examination, testing, overpressure protection, inspection, stamping, and certification
- High temperature reactors include
 - Gas-cooled reactors (HTGR, VHTR, GFR)
 - Liquid metal reactors (SFR, LFR)
 - Molten salt reactors, liquid fuel (MSR) or solid fuel (FHR)

Division 5 - A Component Code

- Division 5 is organized by Code Classes:
 - Class A and Class B* for metallic coolant boundary components
 - Class SM for metallic core support structures
 - Class SN for nonmetallic components
- The Code Classes allow a choice of rules that provide a reasonable assurance of structural integrity and quality commensurate with the relative importance assigned to the individual components of the advanced reactor plant

* Class B rules are similar to the Section VIII, Division 1, design-by-rules approach


Section III, Division 5 Organization

Code Class Sub-section		Subpart	ID	Title	Scope							
General Requirements												
Class A, B, & SM	НА	А	HAA	Metallic Materials	Metallic							
Class SN	ПА	В	HAB	Graphite and Composite Materials	Nonmetallic							
Class A Metallic Coolant Boundary Components												
Class A		А	HBA	Low Temperature Service	Metallic							
Class A	HB	В	B HBB Elevated Temperature Service		Metallic							
Class B Metallic C	oolant Boundar	y Componer	its									
Class B	ЦС	HC A HCA		Low Temperature Service	Metallic							
Class B	ПС	В	HCB	Elevated Temperature Service	Metallic							
Class A and Class	B Metallic Supp	oorts										
Class A & B	HF	А	HFA	Low Temperature Service	Metallic							
Class SM Metallic	Core Support S	Structures	-									
Class SM	HG	А	HGA	Low Temperature Service	Metallic							
Class SM	по	В	HGB	Elevated Temperature Service	Metallic							
Class SN Nonmeta	allic Core Comp	onents										
Class SN	НН	А	HHA	Graphite Materials	Graphite							
Class SN	пп	В	HHB	Composite Materials	Composite							

Advanced Reactors Under Development Have Drastically Different Characteristics

Different design and operational characteristics	Section III, Division 5 covers construction	Additional topics to support licensing & plant operations	ASME Construction Code
 Inlet/outlet temperatures Thermal transients Coolants Solid fuel vs liquid fuel Neutron spectrum and dose Design lifetimes Safety characteristics 	 Metallic High temperature design methodology Alloy qualification Fabrication & examination Graphite Qualification and codification 	 Corrosion effects Gases (He, N, CO2), liquid metals, molten salts Irradiation effects Materials degradation management Flaw evaluations 	Advanced Nuclear Irradiation Effects Coolant Effects Coolant Effects Reliability and Integrity Management (RIM) Program

Materials Data Requirements for Section III, Division 5 Components

Structural Failure Modes for Division 5 Class A Components

- Class A design rules are based on design-by-analysis approach
 - Sought to provide a reasonable assurance of adequate protection of structural integrity
 - Based on design against structural failure modes; four design evaluation checks

Time Independent Failure Mode	Category	Design Evaluation Procedure	Time Dependent Failure Mode	Category	Design Evaluation Procedure		
Ductile rupture from short- term loading	Load-controlled	Primary load check	Creep rupture from long- term loading	Load-controlled	Primary load check		
Gross distortion due to incremental collapse and ratcheting (low temperatures)	Deformation- controlled	Strain limits check	Creep ratcheting due to cyclic service	Deformation- controlled	Strain limits check		
Loss of function due to excessive deformation	Deformation- controlled	Strain limits check	Creep-fatigue failure due to cyclic service	Deformation- controlled	Creep-fatigue check		
Buckling due to short-term loading	Deformation- controlled	Buckling Check	Creep-buckling due to long-term loading	Deformation- controlled	Buckling Check		

Design Parameters Required to Address Failure Modes for Class A Components

Design Parameters	Required Test Data									
Allowable Stresses										
• <i>S_m</i> : based on yield and ultimate strengths at temperature	Tensile data at temperature (time- independent)									
 <i>S_t</i>: based on time to 1% total strain, time to onset of tertiary creep, time to rupture <i>S_r</i>: based on stress to rupture 	Creep rupture data with full creep curves (time- dependent)									
 <i>S_{mt}</i>: lesser of (<i>S_m</i>, <i>S_t</i>) <i>S</i>₀: lesser of (<i>S</i>, <i>S_{mt}</i>@300,000<i>h</i>) 	Derived design parameters									
• <i>R</i> : Stress rupture factor - based on rupture strengths of base metal and weldment	Stress rupture data from base metal and weldment (time dependent)									
Thermal aging factors on yield and ultimate	Tensile data of aged material (time-dependent)									
Isochronous stress-strain curves constructed based on creep tests	Tensile stress-strain curves (time- independent), and creep strain data up to 3% (time- dependent)									

Design Parameters	Required Test Data					
Fatigue design curves	Strain-controlled continuous cycling tests					
Creep-fatigue interaction diagram	Strain-controlled cyclic tests with hold times					
EPP design parameters	Two-bar and SMT tests; cyclic stress-strain curves					
Inelastic material model parameters	Test data for other design parameters; and strain rate change and thermomechanical cycling					
Huddleston effective stress parameters	Multiaxial creep rupture data					
External pressure charts	Tensile stress-strain curves (time-independent)					
Time-temperature limits for external pressure charts	Isochronous strain-strain curves					

Design Parameters Required to Address Failure Modes for Class A Components

Design Parameters	Required Test Data	Design Parameters	Required Test Data			
Allowable Stresses		Fatigue design curves	Strain-controlled continuous cycling tests			
 <i>S_m</i>: based on yield and ultimate strengths at temperature 	Strain-controlled cyclic tests with hold times					
• S_t : based on time to 1% total strain, time to onset of tertiary croop	independent) Creep rupture bi	oters are for	Two-bar and SMT tests; cyclic stress-strain curves			
 S_t: based on time to 1% total strain, time to onset of tertiany creen time. S_r: based on strice Source So	some are for	Test data for other design parameters; and strain rate change and thermomechanical cycling				
Bu Stress runture providing	benaviorar	trends to support	Multiaxial creep rupture data Tensile stress-strain curves (time-independent)			
Thermal aging factor	material (time-dependent)	Time-temperature limits for external pressure charts	Isochronous strain-strain curves			
Isochronous stress-strain curves constructed based on creep tests	Tensile stress-strain curves (time- independent), and creep strain data up to 3% (time- dependent)					

Required Testing to Support Design Parameters Development for Class A Components

- Refer to Section II Materials and Section III, Division 5 "Nonmandatory Appendix HBB-Y, Guidelines for design data needs for new materials"
- Required Tests
 - Tensile, creep rupture, fatigue, creep-fatigue, constitutive, multiaxial creep rupture, EPP
- Time dependent data (creep rupture) dominates the test times for data generation
 - Allow limited extrapolation of time for creep properties
 - Well-behaved, solid-solution alloys may extrapolate in time of no more that a factor of 5 to reach **intended life**
 - Metastable alloys, such as the creep strength enhanced ferritic/martensitic steels may extrapolate with a factor of 3
 - Require metallurgical justification for 3 < extrapolation factor ≤ 5

Design Life (hours)	Minimum Time to Complete Creep Rupture Testing (years)								
	Solid Solution Alloys	Ferritic- Martensitic Steels							
100,000	2.3	3.8							
300,000	6.8	11.4							
500,000	11.4	19.0							

A long and arduous process!

New Materials Data Generation Strategy for Class A Components

- Should we qualify new Class A materials for 500,000-hour design life from the get-go?
 - An emphatic NO
 - We have never done that historically
 - No reason to do so now
- Instead, a "staged" or "phased" new materials qualification strategy is employed
- For example, the current code qualification effort undertaken by the DOE Advanced Reactor Technologies (ART) Program for an advanced austenitic stainless steel, Alloy 709, follows such a strategy

A "Staged" Qualification Approach for Alloy 709

Time from initiation of long-term testing (years)

	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10	10.5	11	11.5
	Concept Design Class B CC 100,000 hr CC										Creep tests												
time	Creep tests for 300,000 hr CC																						
same time	Creep tests for 500,000 hr CC (Determination of mechanisms giving rise to time dependent properties through simulation validated by experiment could allow larger extrapolation factors)																						
	Other CCs	mecha	nical pr	opertie	s testing	g comn	non to a	all															
	A four-year testing program, without resource constraints, would generate data package to support:								5,			al cre desig	1 A A A A A A A A A A A A A A A A A A A	ita at	7-yea	r mar	k fron	n star	t:				

300,000-hour Class A code case _

Additional arean data a	t 12 year mark from start

- Additional creep data at 12-year mark from start: Nth-of-a-kind •
 - 500,000-hour Class A code case

IDAHO NATIONAL LABORATORY

Conceptual design

• Preliminary design

Conceptual Design Guide for 500,000-hour lifetime

- 100,000-hour Class A code case

Class B material code case

Incorporate Class A Material Code Cases into Section III, Division 5

• Once the design parameters are developed, the code case together with supporting data package can be submitted for approval using a balloting plan similar to that established for the Alloy 617 code case

RC #	Topics		ASME Code Committees											
16-994	Permissible base and weld materials, allowable stress values	WG-ASC	SG-ETD	SG-HTR	SG-MFE	II-SG-NFA	II-SG-SW	BPV-II						
16-995	Physical properties and extension of modulus values to higher temperatures	WG-ASC	SG-ETD	SG-HTR	SG-MFE	II-SG-NFA	II-SG-PP	BPV-II						
16-996	Temperature-time limits for NB buckling charts	WG-AM	SG-ETD	SG-HTR	SG-MFE	II-SG-EP	II SG- NFA	BPV-II	SC-D					
16-997	Huddleston parameters, ISSCs	WG-ASC	SG-ETD	SG-HTR	II-SG-NFA	BPV-II	SC-D							
16-998	Negligible creep, Creep-Fatigue: D- diagram and EPP	WG-CFNC	SG-ETD	SG-HTR	SC-D									
16-999	EPP strain limits	WG-AM	SG-ETD	SG-HTR	SC-D									
16-1000	Fatigue design curves	WG-CFNC	WG-FS	SG-ETD	SG-HTR	SG-DM	SC-D							
16-1001	Alloy 617 Overall Code Case	WG-ASC	WG-AM	WG-CFNC	WG-FS	SG-ETD	SG-HTR	SG-MFE	SC-D	BPV-II	BPV-III			

Contacts for Questions on Class A Materials Qualification and Incorporation into Division 5

- Working Group Allowable Stress Criteria
 - Richard Wright (structural.alloys@gmail.com)
- Working Group Analysis Methods
 - Mark Messner (messner@anl.gov)
- Working Group Creep-Fatigue and Negligible Creep
 - Yanli Wang (wangy3@ornl.gov)
- Special Working Group High Temperature Reactor Stakeholders
 - Mike Cohen (micohen@terrapower.com)
- Subgroup High Temperature Reactors
 - Sam Sham (tingleung.sham@inl.gov)

Presenters Contact Information

- Sam Sham
 - Idaho National Laboratory
 - Email: <u>TingLeung.Sham@inl.gov</u>
- Richard Wright
 - Structural Alloys LLC
 - Email: structural.alloys@gmail.com

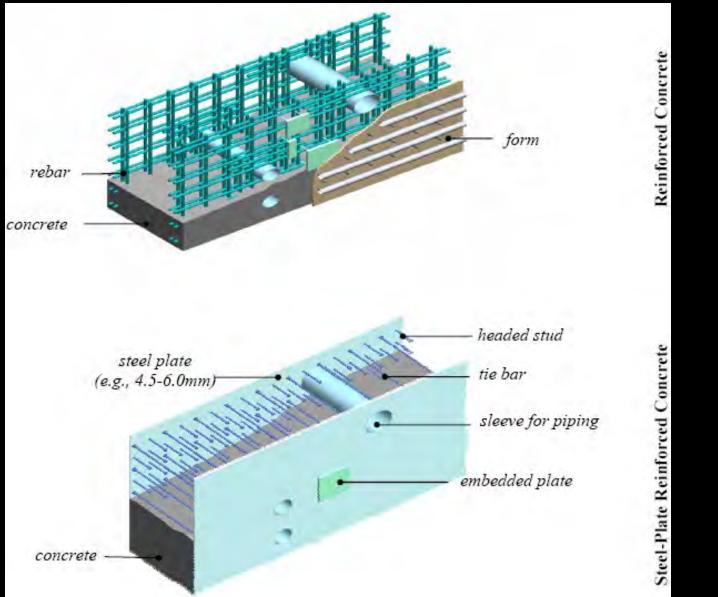
ASME CODE CASE: STEEL PLATE COMPOSITE CONTAINMENT VESSEL (SCCV)

Amit H. Varma Karl H. Kettelhut Professor of Civil Eng. Purdue University

OUTLINE

- INTRODUCTION & BACKGROUND
- ASME CODE CASE FOR SCCV
 - Overall Layout / Structure
 - Highlights / Details
 - Design Example

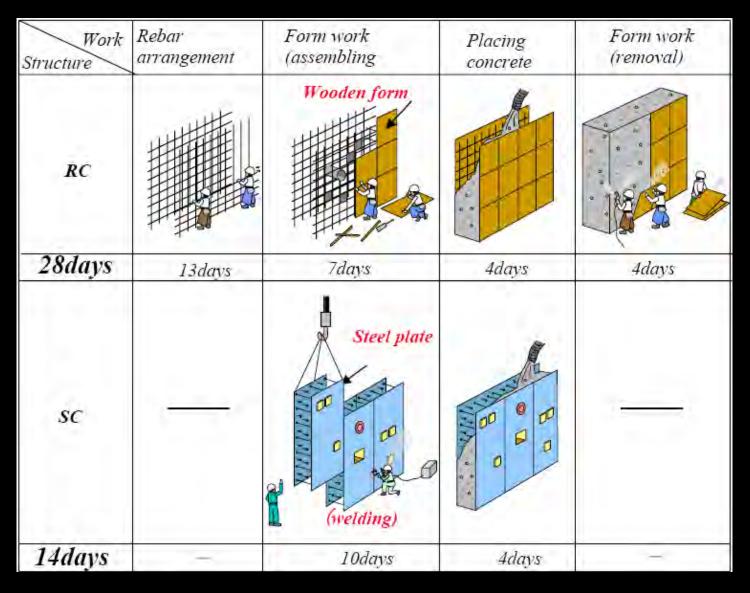
STEEL-PLATE COMPOSITE WALLS


PURDUE UNIVERSITY

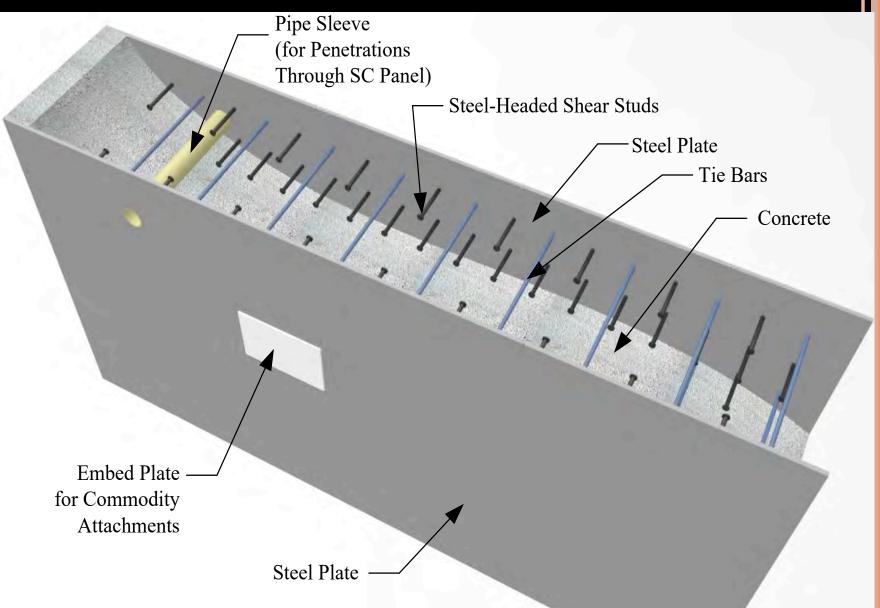
Modular vs. Conventional RC Construction

- Eliminates Rebar cages, assembly, formwork, removal
- Eliminates rebar congestion
- Shop fabrication of steel modules
- Concrete flowability –self-consolidating concrete
- Missile / Aircraft Impact

PURDUE UNIVERSITY


STEEL-PLATE COMPOSITE WALLS

21


STEEL-PLATE COMPOSITE WALLS

PURDUE

STEEL-PLATE COMPOSITE WALLS

23

E

SC WALLS: STRUCTURAL PERFORMANCE

- Excellent seismic strength and ductility
 - Basis: Testing and Analysis
- Better than conventional RC Walls...
 - Primarily shear wall structures with excellent stiffness, strength, and deformation capacity
- Excellent strength for impact and blast loads
 - Basis: Testing and Analysis

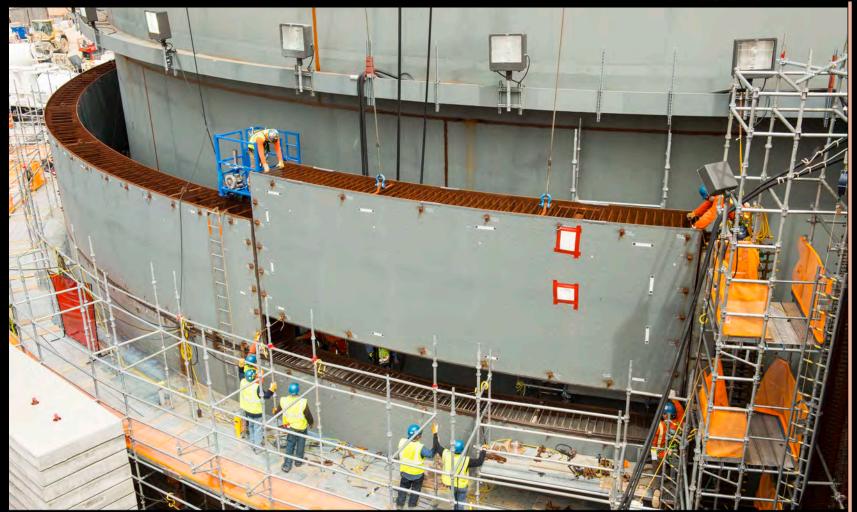
Excellent behavior for accident thermal loading
 Basis: Testing and Analysis

SC WALLS: USED IN NUCLEAR INDUSTRY

- GE Hitachi- Toshiba (ABWR) Kashiwazaki-Kariwa 6 and 7 (1996)
- Extensive use in AP1000(R) plants being built in China, South Carolina, and Atlanta
- US-APWR plant designed by the Japanese, MHI
- APR+ designed by the Koreans
- All use SC construction because of modularity, strength, construction schedule, and impact resistance

SC WALLS AND DESIGNS IN NUCLEAR STRUCTURES

Vogtle Unit 3 CA20 Module


June 2014 © Georgia Power Company

Sub-module inside the Module Assembly Building May 2015 © Georgia Power Company

Accessed from: https://vogtlegallery.georgiapower.com

Workers placed all six of the third course shield building panels for Unit 3

April 2016 © Georgia Power Company

Accessed From: https://vogtlegallery.georgiapower.com

STEEL-PLATE COMPOSITE (SC) WALLS : EVOLUTION

- Extensive research, testing, and development
- AISC N690 Nuclear Specification, Appendix N9
- AISC Design Guide 32
- NUREG coming soon !
- □ Under consideration for SMRs e.g., BWRX-300

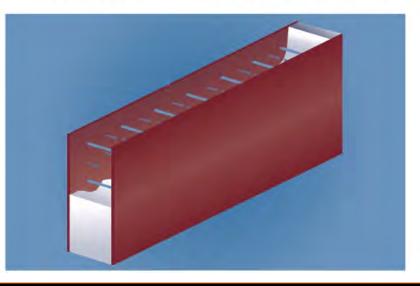
Significant interest in using SC design for containment vessel / structure

ANSI/AISC N690-18 An American National Standard

Specification for Safety-Related Steel Structures for Nuclear Facilities

June 28, 2018

Supersedes the Specification for Safety-Related Steel Structures for Nuclear Facilities dated January 31, 2012 including Supplement No. 1 dated August 11, 2015 and all previous versions


Approved by the Committee on Specifications

Design of Modular Steel-Plate Composite Walls for Safety-Related Nuclear Facilities

MOTIVATION

Steel liner plates already needed !

Expedite construction and reduce time spent in the pit by leveraging factory pre-fabrication, modularity

Two steel plates

- Double leak tight barriers
- Pressure boundary
- Excellent structural performance for impulsive loading

No governing or applicable design code or standard
 ASME Code Case needed

MOTIVATION

 Preliminary design and cost benefit analysis conducted by GEH team for their own BWRX-300 application

 Construction schedule and economic benefits justify the pursuit of an ASME Code Case

Can help the industry and profession at the same time

 ♦ Vendor, Utility, Regulator → all eyes on the Code Case and the potential for innovation, economy of scale, and the next step in evolution for the Containment Vessel

CHALLENGE

Several considerations for SCCV

- Design, design checks, fabrication, material, examination...
- Not all information available
- Need to rely on what is available
- Leverage existing knowledge and information
 AISC N690
 AISC Design Guide 32
 ASME Division 2 Code for Concrete Containment
 - ASME Division 1 Subsection NE Class MC Components

ASME CODE CASE FOR SCCV

- Existing knowledge:
 - AISC N690 and Design Guide 32
 - Overall design, available strength, analysis approach, penetration
 - ASME Division 2 Code for Concrete Containment
 Allowable stress examination materials
 - Allowable stress, examination, materials
 - ASME Division 1 Subsection NE Class MC Components
 Examination, materials

33

ASME CODE CASE FOR SCCV OVERALL STRUCTURE

- 8 Articles
 - Article 1000 Introduction
 - Article 2000 Material
 - Article 3000 Design
 - Article 4000 Fabrication and Construction
 - Article 5000 Construction Testing and Examination
 - Article 6000 Testing
 - Article 7000 Overpressure Protection
 - Article 8000 Nameplates, Stamping with Certification Mark, and Report

PURDUE UNIVERSITY

ASME CODE CASE FOR SCCV OVERALL STRUCTURE

CASE N-XXX USE OF STEEL PLATE COMPOSITE STRUCTURES FOR NUCLEAR CONTAINMENT

Inquiry: What provisions are required to make a nuclear containment using steel plate composite structures?

Response: It is the opinion of this committee that this Code Case provides for alternative requirements to use a steel plate and concrete composite containment in lieu of a traditional reinforced or prestressed concrete containment. Sections CC-1000 through CC-8000 and the Division 2 Appendices were reviewed for changes or additions that need to be made to allow and provide appropriate requirements for the use of a steel plate and concrete composite containment in lieu of a concrete containment. The proposed modified sections are included in the attachment to this Code Case as Sections -1000 to -8000. All Division 2 Appendices shall be followed to the extent they apply to a steel plate and concrete composite containment without reinforcing steel or tendons.

The containment would still be considered a Division 2 containment. The applicable sections of the remaining ASME B&PV Code, such as Section II; Section III, Subsection NCA; Section V: and Section IX would be followed to the extent they apply to a steel plate and concrete composite containment without reinforcing steel or tendons. ASME Section XI, Section IWE would be followed considering the faceplates are acting as the liner.

ASME CODE CASE FOR SCCV OVERALL STRUCTURE

CASE N-XXX _____ -2300 MATERIAL FOR REINFORCING SYTEMS..... -2400 MATERIAL FOR PRESTRESSING SYSTEMS -2500 MATERIAL FOR LINERS..... -2600 WELDING MATERIAL..... -2700 MATERIAL FOR EMBEDMENT ANCHORS -2800 MATERIAL MANUFACTURER'S QUALITY SYSTEM PROGRAMS -3110 SC CONTAINMENT..... -3120 SC STEEL PLATES -3130 DEFINITION OF TERMS -3140 TOLERANCES..... -3300 SC CONTAINMENT DESIGN ANALYSIS PROCEDURES 12 -3600 DESIGN CRITERIA FOR IMPULSE LOADINGS AND MISSILE IMPACT -3800 BRACKETS AND ATTACHMENTS...... -6100 GENERAL REQUIREMENTS..... -6300 PNFUMATIC TESTS.....

PURDUE UNIVERSITY

/13/21

 Analysis Procedure
 -3320 Effective Stiffness for analysis (flexural and in-plane shear)

$$EI_{eff} = \left(E_s I_s + c_2 E_c I_c\right) \left(1 - \frac{\Delta T_{savg}}{150}\right) \geq E_s I_s$$

$$GA_{eff} = GA_{uncr} - \frac{GA_{uncr} - GA_{cr}}{S_{cr}} \left(S_{rxy} - S_{cr} \right)$$

-3320 Geometric and material properties for finite element analysis

-3350 Analysis involving accidental thermal conditions

- Available Strength
 - -3520 Design for individual loads
 - Axial compression
 - Axial tension
 - Flexure load
 - Out-of-plane shear
 - In-plane shear

$$\phi P_n = (F_y A_s + 0.85f')$$

$$\phi P_n = \phi (F_y A_s)$$

$$\phi M_n = \phi (F_y A_s^F T_{sc})$$

$$\phi V_n = \phi (V_c + V_s)$$

$$\phi V_n = \phi \kappa f_v A_s$$

- -3530 Design for combined loads
 - Interaction of out-of-plane shear demands

$$\left[\left(\frac{V_u - V_c \text{ conc}}{V_c - V_c \text{ conc}}\right)_x + \left(\frac{V_u - V_c \text{ conc}}{V_c - V_c \text{ conc}}\right)_y\right]^2 + \left[\frac{\frac{\sqrt{V_{ux}^2 + V_{uy}^2}}{0.9T_{sc}}}{\left(\frac{lQ_{cy}^{avg}}{s^2}\right)}\right]^2 \le 1.0$$

Copyright, Amit H. Varma, Purd

Steel and Concrete Stresses

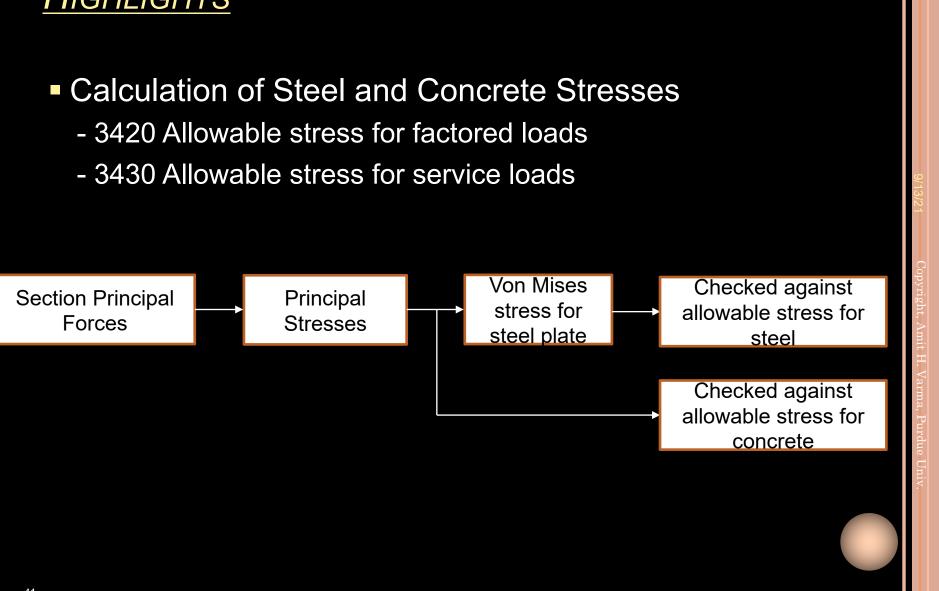
39

-3422 Allowable stress for factored loads

Table -3422-1 Allowable Stresses for Factored Loads							
	Force Classification	Type of Force Action	Criteria for Factored Loads				
Material			Stress Limit	Strain Limit, if any			
Concrete	Primary	Membrane	0.60fc'	.72			
		Membrane + Bending	0.75fc'	-			
	Primary + Secondary	Membrane	0.75fc'	<u>1</u> 8			
		Membrane + Bending	0.85fc'	0.002			
Steel Plates	Primary	Membrane <u>or</u> Membrane + Bending	0.90 <i>Fy</i>	-			
	Primary + Secondary	Membrane <u>or</u> Membrane + Bending	2	2ε _y *			

Copyright, Amit H. Varma, Purdue Un

9/13/Z


Ð

Steel and Concrete Stresses

-3430 Allowable stress for service loads

Table -3422-2								
Allowable Stresses for Service Loads								
Material	Force Classification	Type of Force Action	Criteria for Service Loads					
			Stress Limit	Strain Limit				
Concrete	Primary	Membrane	0.30fc'	-				
		Membrane + Bending	0.45 <i>fc</i> ′					
	Primary + Secondary	Membrane	0.45fc'	<u>-</u> `				
		Membrane + Bending	0.60fc′	2				
Steel Plates	Primary	Membrane <u>or</u> Membrane + Bending	0.50 <i>Fy</i>	-				
	Primary + Secondary	Membrane <u>or</u> Membrane + Bending	0.67 <i>F</i> y	2				

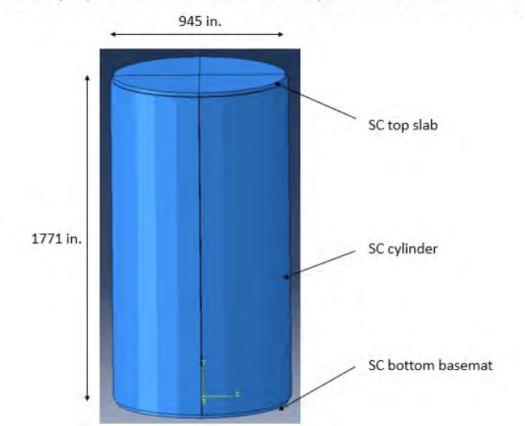
E

E

ASME CODE CASE FOR SCCV <u>HIGHLIGHTS</u>

Miscellaneous

-3630 Missile impact design for local failure


- -3510 General provisions for SC containment design
- Article-6000 Testing
 - NE Article-6000 adopted

ASME CODE CASE : DESIGN EXAMPLE

Supplementary Documents

OBJECTIVE

The objective of this calculation is to provide insights into the design of steel-plate compsite containement structures described in the ASME code case. The design of a sample SC containment structure is provided in this calculations based on the requirements of the code case. For the purpose of this calculation, a simplified SC containment structure is assumed.

ASME CODE CASE : DESIGN EXAMPLE

The calculation can be categorized into the following steps:

Step 0: Preliminary details of SC containment

Step 1: Minimum requirements per SCC-3511

Step 2: Faceplate slenderness requirement per SCC-3512

Step 3: Shear connector and tie detailing per SCC-3513 and SCC-3514

Step 4: Stiffness and other parameters for modeling per SCC-3300

Step 5: Analysis results and demand summary

Step 6: Individual design available strengths per SCC-3520

Step 7: Interaction design available strengths per SCC-3530

Step 8: Demand to capacity ratios (DCR)

Step 9: Stress checks per SCC-3400

Step 10: Impactive and impulsive loading design per SCC-3600

ACKNOWLEDGMENTS

◆GE Hitachi Technical and Management Team

AISC, ACI, ASME Teams and Committees

Neb Orbovic, CNSC

Sanj Malushte, Bechtel

◆John McLean, SGH

ASME Working Group Modernization

OM-2 Inservice Testing for Gen-4 and Beyond

A. Cardillo Chairman ASME O&M SC New Reactors T. Ruggiero, PE Member ASME O&M, ASME Fellow

Current OM Code for IST Background

- Current O&M is a "Mature" code.
- The code is "fully developed" additional requirements have been driven by adverse industry events
- The code is written to Water Cooled Reactor Plants.
- There is currently no consideration of Small Modular Reactors (SMR) in the current code.
- Several sections of OM Code require verification of component design basis.
 - This is beyond the original charter for OM.

A Component Code

- The original concept of OM was to ensure operational readiness and be able to monitor and detect degradation.
- OM is not to ensure operability
- Purpose is to ensure operational readiness.
 - detect degradation
- Trend so that the component(s) can be reworked before they fail

Accommodations due to Plant Design

- Current OM Code is directed squarely at Light Water Reactor Plants.
- System design issues caused several accommodations.
 - Plants were designed before the need for In Service Testing was understood, or the requirements written down.
 - PWRs had pumping systems that did nor have full flow test loops, while BWR did.
 - Valve exercise testing interval based on when the system can be made available for testing.

Accommodations due to Plant Design

- Nothing in a code to verify operational readiness can correct poor system design, incorrect equipment sizing, or use of a type of component that is inappropriate for its required function.
- Verification that the component type is appropriate for the service and that it provides the functions and parameters for which were specified is in QME, not in O&M.

IST Scope of Components

- Scoping Issues continue to arise
 - Components that are not ASME 1, 2 & 3
 - Emergency power
 - Significant number of new SMR designs
- A scope statement that encompasses all of the components that are important to safety is virtually impossible.
- Designs of the Light Water Reactors are well understood by both the writers of the Code, and the regulators, that is not the case for the SMR.
- OM is a component code.
 - The question of importance to safety need not rest with the code writers.
 - Instead, it should be with the plant designer and their regulator.

A New OM Code

- Start with a clean slate.
- Consider what the function of a component is..
- Determine what needs to be done to periodically verify that the component is not degrading in service to a point where it cannot provide that function.

A New OM Code

- OM-2 structured so that it is directly usable for any type of Small Modular Reactor Plant.
 - Avoid scoping based on any particular system
 - IST based only on the function of the component and not the system function in any particular NSSS.

Questions?

EPRI Project Updates

Sam Johnson Sr. Technical Leader

Hasan Charkas Principal Technical Leader

Sal Villalobos Sr. Technical Leader

NRC Standards Forum September 15th, 2021

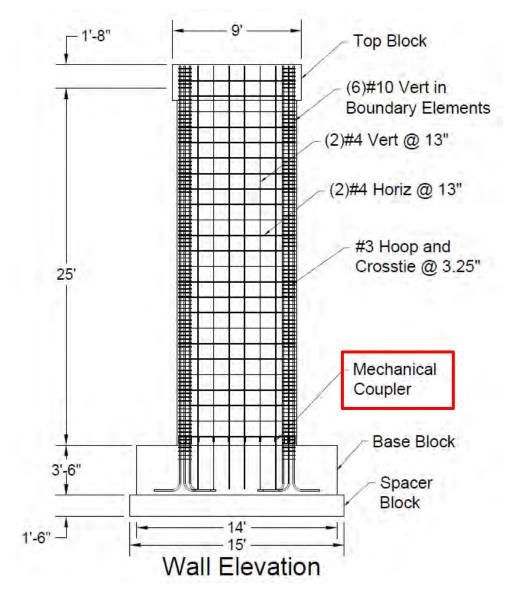
Large High Strength Rebar – Lap Splices and Mechanical Couplers

Objectives

- Phase 1: Explore lap splice behavior of large high strength rebars (No. 14 and No. 18) for use in earthquake-resistant structures
- Phase 2: Investigate mechanical couplers use in anchoring high strength rebars at base of structural walls subjected to cyclic loading
- Phase 3: Examine the anchorage capacity of groups of large high strength rebars at column and wall foundation connections subjected to cyclic loading
- Propose design requirements based on experimental results and work to integrate them into design standards

57

Phase 1: Experimental Setup...(4-point bending)


www.epri.com

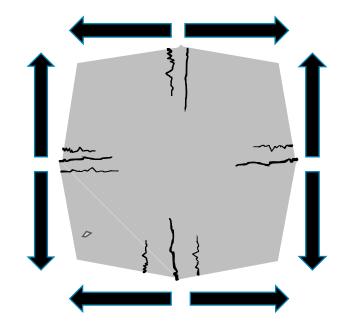
- □ Full series of 11 tests are complete
 - 7 No. 14 bar specimens
 - 4 No. 18 bar specimens
- Generally, the measured stress in the bars are less than the calculated stress based on the current ACI equation
- □ Research is on-going.

Phase 2 (Mechanical Splices of High-Strength Bars)

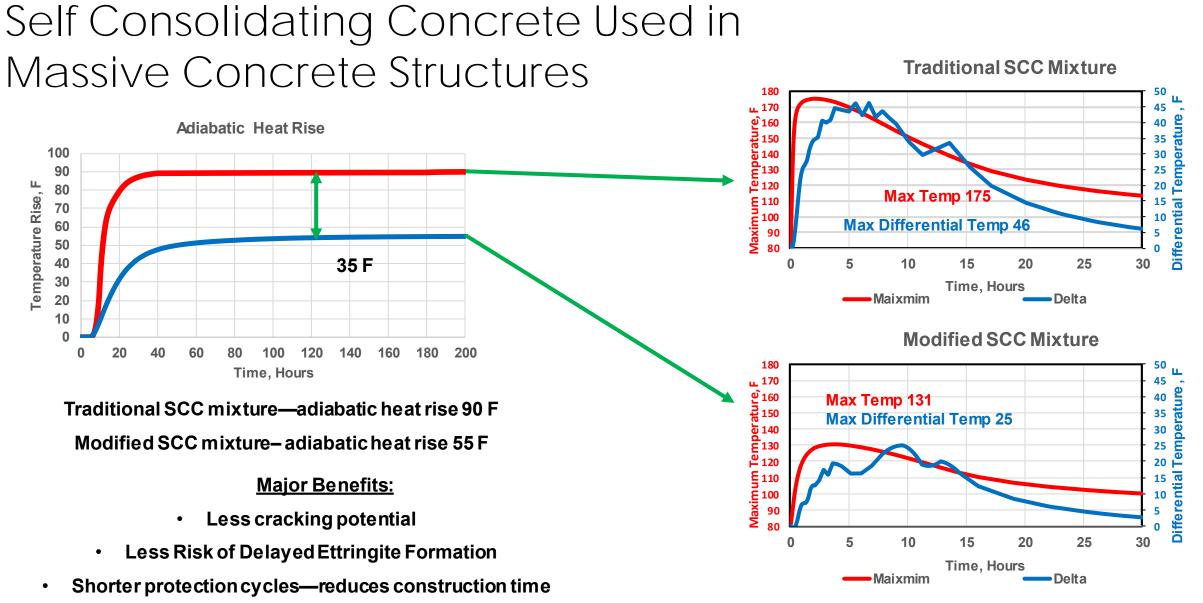
- Investigate the mechanical splices of high-strength bars
- Specimen construction is underway

www.epri.com

Best Practices for Self-Consolidating Concrete as Mass-Concrete Proportioning and Testing


60

Self Consolidating Concrete Used in Mass Concrete Structures


SCC is necessary for heavily congested concrete placements

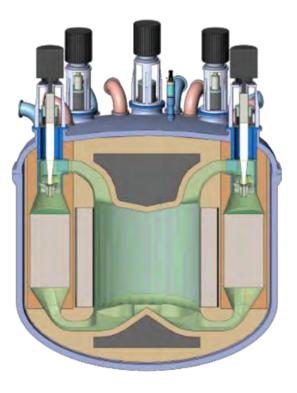
NPPs are notorious for heavily congested concrete placements

- Traditional self consolidating concrete mixture generates excessive heat
- High quantities of cementitious materials means hotter concrete mixtures
- More cracking
- Potential loss of durability

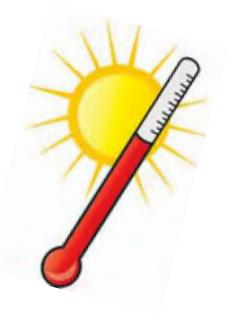
Permits larger concrete placements

Temperature profile chart for an 8 foot thick wall cast with concrete at temperature of 80 degrees

٠


62

Concrete Strength at Elevated Temperatures



63

Concrete Temperature Limitations

Maximum concrete temperature are limited by ACI 349: Concrete surface temperature to 150 F Localized areas to 200 F Higher temperatures are permitted if supported by test data

Challenge:

Advanced Reactors need to Operate at Higher Temperatures

Evaluate Different Concrete Mixtures at Different Temperatures

Six different concrete mixtures are currently being tested

Four more to be batched and tested

The Process Begins

Making Test Specimens

Water Cured for 28 Days

Record Temperatures

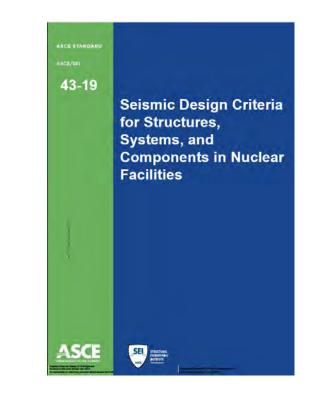
Concrete Heated to 400 to 800 F

Air Dried for an Additional 28 Days

Together...Shaping the Future of Energy™

66

ASCE 1, 4, and 43 Risk-informed, Performance-based Standards


F George Abatt, Ph.D., P.E., F.ASCE Andrew Whittaker, Ph.D., P.E., S.E., F.ASCE, F.SEI

September 15, 2021

TODAY

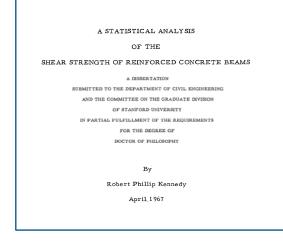
- ASCE nuclear standards
- Early days of RIPB design
- Related nuclear standards and opportunities
- ASCE 43 big ideas and added scope
- Seismic design categories, target performance goals, and limit states
- ASCE 43 and ANS 2.26 disconnects
- Design response spectrum
- Achieving limit states, inelastic action
- Seismic isolation
- Acknowledgments



ASCE STANDARDS

ASCE STANDARD

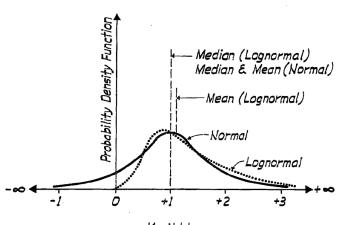
1-XX


Standard for Geotechnical Analysis, Design, Construction, Inspection and Monitoring of Nuclear Safety-Related Structures

Seismic Design Criteria for Structures, Systems, and **Components in Nuclear Facilities** SEL STRUCTURAL ENDINEERING INSTITUTE

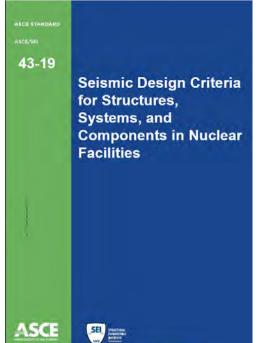
SEL STRUCTURAL ENGINEERING INSTITUTE

EARLY DAYS


Bulletin of the Seismological Society of America. Vol. 58, No. 5, pp. 1583-1606. October, 1968

ENGINEERING SEISMIC RISK ANALYSIS

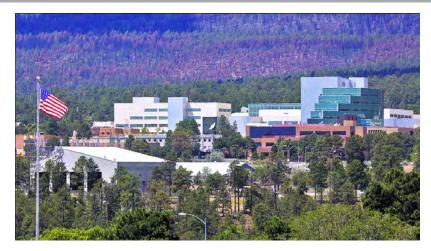
By C. Allin Cornell


ABSTRACT

This paper introduces a method for the evaluation of the seismic risk at the site of an engineering project. The results are in terms of a ground motion parameter (such as peak acceleration) versus average return period. The method incorporates the influence of all potential sources of earthquarkes and the average activity rates assigned to them. Arbitrary geographical relationships between the site and potential point, line, or areal sources con be modeled with computational ease. In the range of interest, the derived distributions of maximum annual ground motions are in the form of Type I or Type II extreme value distributions, if the more commonly assumed magnitude distribution and attenuation laws are used.

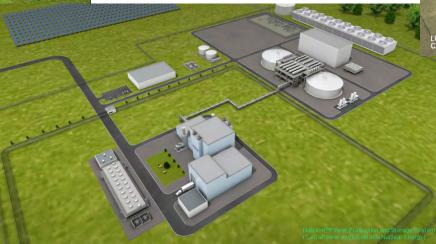
Voriable

FIGURE 3.2: TYPICAL NORMAL AND LOGNORMAL PROBABILITY DENSITY FUNCTIONS



RELATED NUCLEAR STANDARDS

ORIGINAL TARGET- DOE FACILITIES



FUTURE APPLICATIONS

BIG IDEAS IN ASCE 43-19

- **Performance oriented**, graded according to tolerable risk
- Seismic design category (SDC) defines target performance goals
 - Function of material at risk
 - Gigawatt large light water reactor = SDC-5 ($P_f = 1 \times 10^{-5} \text{ AFE}$)
 - Defines starting point for establishing design basis shaking: the design response spectrum (DRS)
- Limit state (LS) defines system-level response
 - Gigawatt large light water reactor = LS-D (essentially elastic, limit state D)
- Seismic design basis (SDB) = SDC plus LS
 - Gigawatt large light water reactor = SDC-5D
- Deterministic procedures used to achieve probabilistic performance goals
 - Design seismic demand at 80%-ile, *design* strength at 98%-ile

ASCE 43 - ADDED SCOPE

American National Standard ANSI/ANS-2.26-2004

Table 1 – SDCs based on the	unmitigated c	consequences of	SSC failure
-----------------------------	---------------	-----------------	-------------

	Unmitigated	l Consequence of SSC Fa	ilure
Category	Worker	Public	Environment
SDC-1 ^{a)}	No radiological/ toxicological release consequences but fail- ure of SSCs may place facility workers at risk of physical injury	No radiological/ toxicological release consequences.	No radiological/ toxicological release consequences.
SDC-2 ^{a)}	Radiological/ toxicological exposures to workers will have no permanent health ef- fects, may place more facility workers at risk of physical injury, or may place emergency facility operations at risk.	Radiological/ toxicological exposures of public areas are small enough to re- quire no public warn- ings concerning health effects.	No radiological or chemical environmental consequences.
SDC-0	Radiological/	Radiological/	No long-term environ-
	toxicological exposures that may place facility workers' long-term health in question.	toxicological exposures of public areas would not be expected to cause health consequences but may require emer- gency plans to assure public protection.	mental consequences are expected, but envi- ronmental monitoring may be required for a period of time.
SDC-4	Radiological/ toxicological exposures that may cause long- term health problems and possible loss of life for a worker in proxim- ity of the source of hazardous material, or place workers in nearby on-site facilities at risk.	Radiological/ toxicological exposures that may cause long- term health problems to an individual at the exclusion area bound- ary for 2 hours.	Environmental moni- toring required and potential temporary exclusion from selected areas for contamina- tion removal.
SDC-5	Radiological/ toxicological exposures that may cause loss of life of workers in the facility.	Radiological/ toxicological exposures that may possibly cause loss of life to an individual at the exclu- sion area boundary for an exposure of 2 hours.	Environmental moni- toring required and potentially permanent exclusion from selected areas of contamination.

^{a)} "No radiological/toxicological releases" or "no radiological/toxicological consequences" means that material releases that cause health or environment concerns are not expected to occur from failures of SSCs assigned to this category.

- SDC-1 per ASCE/SEI Standard 7
 - System-level response
- SDC-3, -4 and -5 included in ASCE/SEI Standard 43-05
- SDC-2 added to scope in ASCE 43-19

SDC-2 ^{nj} Radiological/ toxicological exposures to workers will have no permanent health ef- fects, may place more facility workers at risk of physical injury, or may place emergency facility operations at risk.	Radiological/ toxicological exposures of public areas are small enough to re- quire no public warn- ings concerning health effects.	No radiological or chemical environmental consequences.
---	---	---

75

SDC, P_F, AND LS

Table 1-1. Summary of Earthquake Design Provisions.

234Target performance goal, P_F 2 34DBE response spectrum or acceleration time series Damping for structural evaluation Analysis methods for structures Analysis methods for systems and components Load factorSF × UHRS; Chapter 2 in this standard Section 3.3.3 ASCE 4 and Chapter 3 in this standard In-structure response spectra; ASCE 4 and Chapter 8 in 1.0	\times 10 ⁻⁴ 4 \times 10 ⁻⁵ 1 \times 10 ⁻⁵ n this standard n this standard ectra; ASCE 4 and Chapter 8 in this stand 3-1 in this standard
DBE response spectrum or acceleration time series SF × UHRS; Chapter 2 in this standard Damping for structural evaluation Section 3.3.3 Analysis methods for structures ASCE 4 and Chapter 3 in this standard In-structure response spectra; ASCE 4 and Chapter 8 ir	n this standard n this standard ectra; ASCE 4 and Chapter 8 in this stand 3-1 in this standard
Damping for structural evaluationSection 3.3.3Analysis methods for structuresASCE 4 and Chapter 3 in this standardAnalysis methods for systems and componentsIn-structure response spectra; ASCE 4 and Chapter 8 in	n this standard ectra; ASCE 4 and Chapter 8 in this stand 3-1 in this standard
Damping for structural evaluationSection 3.3.3Analysis methods for structuresASCE 4 and Chapter 3 in this standardAnalysis methods for systems and componentsIn-structure response spectra; ASCE 4 and Chapter 8 in	n this standard ectra; ASCE 4 and Chapter 8 in this stand 3-1 in this standard
Analysis methods for systems and components In-structure response spectra; ASCE 4 and Chapter 8 in	ectra; ASCE 4 and Chapter 8 in this stand 3-1 in this standard
	B-1 in this standard
Load factor 1.0	
Inelastic energy absorption factors Table 5-1 and/or Table 8-1 in this standard	
Material strength Minimum specified value	
Component design strength Design strength according to materials standards unless made in this standard	
QA program Chapter 10 in this standard	ard
Independent peer review Chapter 10 in this standard	

Generally reparable

Minima

Negligible

Building Performance Levels and Ranges

Performance Level: the intended post-earthquake condition of a building; a well-defined point on a scale measuring how much loss is caused by earthquake damage. In addition to casualties, loss may be in terms of property and operational capability.

FEMA 273, 1997

Performance Range: a range or band of performance, rather than a discrete level.

Designations of Performance Levels and Ranges: Performance is separated into descriptions of damage of structural and nonstructural systems; structural designations are S-1 through S-5 and nonstructural designations are N-A through N-D.

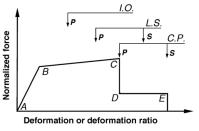
Building Performance Level: The combination of a Structural Performance Level and a Nonstructural Performance Level to form a complete description of an overall damage level.

Rehabilitation Objective: The combination of a Performance Level or Range with Seismic Demand Criteria.

higher performance less loss

lower performance

more loss


Ş

rating; any repairs are minor. (S1+NB)

Life Safety Level Structure remains stable and has significant reserve capacity; hazardous nonstructural damage is controlled. (S3+NC)

Collapse Prevention Level The building remains standing, but only barely; any other damage or loss is acceptable. (S5+NE)

SE

Essentially elastic behavior Source: Adapted from ANS 2.26 (ANS 2017).

Moderate permanent distortion

Limited permanent distortion

В

С

D

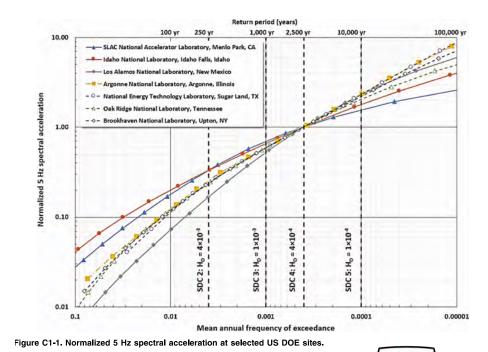
ASCE 43 AND ANS 2.26 DISCONNECTS

Table A.3 - Guidance for SDC Based on Unmitigated Consequences of SSC Failures

	Unmitigated conseque	ence of SSC failure
Category	Worker	Public
SDC-1 ^{a)}	No radiological or chemical release consequences but failure of SSCs may place facility workers at risk of physical injury.	No consequences
SDC-2	Lesser radiological or chemical expo- sures to workers than those in SDC-3 below in this column as well as placing more workers at risk. This corresponds to the criterion in Table 1 that workers will experience no permanent health effects.	Lesser radiological and chemical exposures to the public than those in SDC-3 below in this column, sup- porting that there are essentially no off-site consequences as stated in Table 1.
SDC-3	0.25 Sv (25 rem) < dose < 1 Sv (100 rem) AEGL2, ERPG2 < concen- tration < AEGL3, ERPG3. Concen- trations may place emergency facility operations at risk, or place several hundred workers at risk.	0.05 Sv (5 rem) < dose < 0.25 Sv (25 rem) AEGL2, ERPG2 < concentration < AEGL3, ERPG 3
SDC-4	1 Sv (100 rem) < dose < 5 Sv (500 rem) concentration > AEGL3, ERPG3	0.25 Sv (25 rem) < dose < 1 Sv (100 rem), > 300 mg sol U intake, concentration > AEGL3, ERPG3
SDC-5	Radiological or toxicological effects may be likely to cause loss of facility worker life.	1 Sv (100 rem) < dose, concentra- tion > AEGL3, ERPG3

SEL STRUC UP ASCE

Table 1-1. Summary of Earthquake Design Provisions.


	Seismic Design Category					
	2	3	4	5		
Target performance goal, <i>P_F</i>	4 × 10 ⁻⁴	1×10^{-4}	4×10^{-5}	$1 imes 10^{-5}$		
DBE response spectrum or acceleration time series Damping for structural evaluation	SF × UHRS; Cha Section 3.3.3	apter 2 in this sta	ndard			
Analysis methods for structures	ASCE 4 and Chapter 3 in this standard					
Analysis methods for systems and components	In-structure response spectra; ASCE 4 and Chapter 8 in this standar					
Load factor	1.0	. ,				
Inelastic energy absorption factors	Table 5-1 and/or	Table 8-1 in this	standard			
Material strength	Minimum specifie	ed value				
Component design strength	Design strength according to materials standards unless exceptions a made in this standard					
QA program	Chapter 10 in thi	s standard				
Independent peer review	Chapter 10 in thi	s standard				

DESIGN RESPONSE SPECTRUM

- Goal is to achieve target performance goal (probabilistic) but how?
 - Deterministic (traditional) design using ASCE/SEI 4 and demands at the 80%-ile
 - Conditioned on analysis using a derived seismic input
 - Materials standards, with *design* strengths at 98%-ile
 - Design response spectrum (DRS)
- Closed form solution

78

- Hazard curve locally linearized in log-log space
- Lognormal fragility function
- Start with UHRS at the $P_{\rm F}$
- Back-calculate SF (<1 \cong 0.5) to establish DRS
- Kennedy SMiRT paper (2011) and ASCE 43-19 provide details

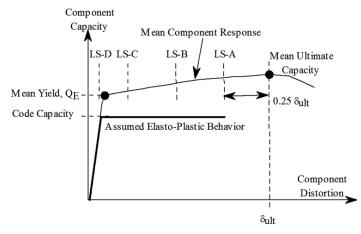
ACHIEVING LIMIT STATES A, B, AND C

5.1.2.1 Seismic Load Combinations for Strength-Based Acceptance Criteria. For elastic analyses, the total demand acting on an element shall be the sum of nonseismic demand, D_{NS} , and seismic demand, D_S , according to the following load combination as appropriate:

1. For bending moment, in-plane shear, and axial load in pairs of diagonal braces, use

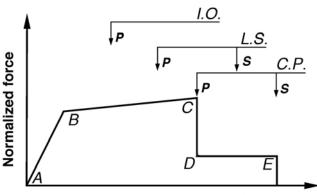
$$D = D_{NS} + \frac{D_S}{F_{\mu}} \tag{5-1a}$$

2. For other axial loads, other shear loads, and torsion, use


$$D = D_{NS} + \frac{D_S}{1.0}$$
 (5-1b)

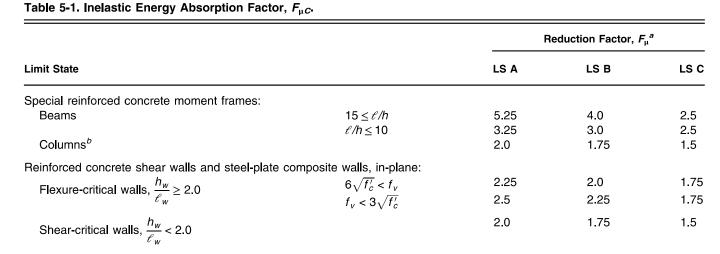
5.1.2.2 Seismic Load Combinations for Deformation-Based Acceptance Criteria. The total demand acting on an element for use with displacement-based acceptance criteria shall be the sum of seismic demand, D_S , and nonseismic demand, D_{NS} , as combined with the following load combination:

$$D = D_{NS} + D_S \tag{5-2}$$


where D, D_{NS} , and D_S are as defined in Section 5.1.2.1.

This load combination is used for nonlinear seismic analyses. Equation (5-2) shall also be used to evaluate deformations in linear analyses.

pical load-deformation curve and limit



Deformation or deformation ratio

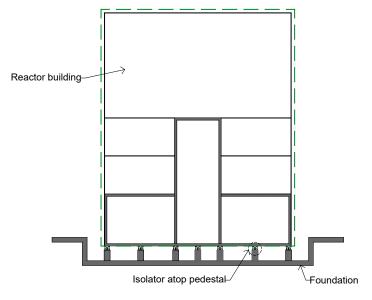
ACHIEVING LIMIT STATES A, B, AND C

- Elastic analysis, using component reduction factors, F_{u,C}
 - Based on 5% failure probability, values back-calculated from $R_{\rm w}$ per UBC
 - Additional adjustments for soft stories, high frequency response, ratcheting
 - Alternate approach to *m* factors in ASCE 41
- Nonlinear static analysis
- Nonlinear dynamic analysis
- Acceptance criteria, function of LS, for story drift, component rotation,

BASIS FOR SEISMIC PROVISIONS OF DOE-STD-1020

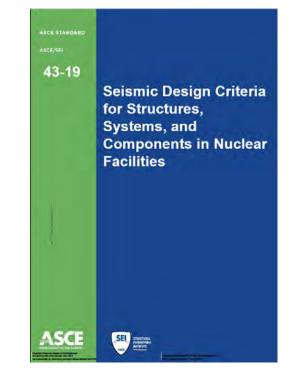
Prepared	by:
----------	-----

Robert C. Kennedy RPK Structural Mechanics Consulting, Inc. and Stephen A. Short EQE International, Inc.


SEISMIC ISOLATION

- Chapter 12 of ASCE 4-16
 - Being revised, expanded scope
- Chapter 9 of ASCE/SEI 43-19
 - Underpinned by USNRC research, NUREG/CRs 7253, 7254, 7255
- ARPA-E funded research
- DOE-funded topical report in production
- USNRC project underway to write a Reg Guide

PLANNED (FUTURE) DEVELOPMENTS


- Integration of 4 and 43
- Incorporation of risk-informed methods
- Incorporation of performance-based earthquake engineering
 - Directly achieve target performance goals
 - Reference to ASCE 41 (*m* factors)
- Avoid prescriptiveness that stifles innovation
- Address emerging technical issues with advanced and micro-reactors
- Take advantage of opportunities enabled by high performance computing
- Keep pace with **or ahead of** current best practice
 - Across the DOE complex
 - Non-nuclear sectors, including buildings, bridges, oil and gas
- Support 10 CFR Part 53 licensing

ACKNOWLEDGMENTS

- ASCE Dynamic Analysis of Nuclear Structures (DANS) committee
 - Michael Salmon, P.E., F.ASCE, Chair
 - Brian McDonald, Ph.D., S.E., F.ASCE
- ASCE Nuclear Standards Committee
- Jim Xu, Ph.D., M.ASCE
- Robert Kennedy, Ph.D., P.E., M.ASCE, NAE
- C. Allin Cornell, Ph.D., NAE

FURTHER DISCUSSION

gabatt@becht.com

awhittak@buffalo.edu

Plan for Regulatory Guides on ASCE Standards 1, 4, and 43 for Risk-Informed Applications

Jim Xu, Ph.D. Senior Level Advisor NRC/RES September 15, 2021

Regulatory Guide for RIPB Seismic Safety

- Incorporate RIPB principles in graded seismic design using a combination of seismic design category (SDC) and design limit state (LS)
- Provide regulatory positions and process for how to determine alternate SDCs and LSs for SSCs considering LMP or other framework
- Use Performance standards such as ASCE 1, 4, and 43 to support SDC/LS seismic design
- Provide considerations for applications referencing the RIPB approach under various regulatory environments, e.g., Part 50/52, or Part 53

Timelines

- Preliminary draft guide to be completed by February 2022 which will include regulatory positions, technical bases, and implementation guidance
- RES will coordinate with NRR/DANU to engage with stakeholders, obtain public feedback, and brief ACRS in parallel with technical guidance development
- Issue draft guide for use by applicants by June 2022

Regulatory Guide for Applications of Seismic Isolation Technologies

- Provide high level framework for incorporating seismic isolation (SI) in reactor applications
- Align the safety aspects with RIPB and LMP
- Leverage ASCE 4 and 43 relevant provisions to the extent practicable
- Engage stakeholders, applicants, and practitioners to achieve technical alignment
- Timeline: Issue draft guide for use by applicants by June 2022

Updates on ACI 349 Development of Codes and Standards Part 2

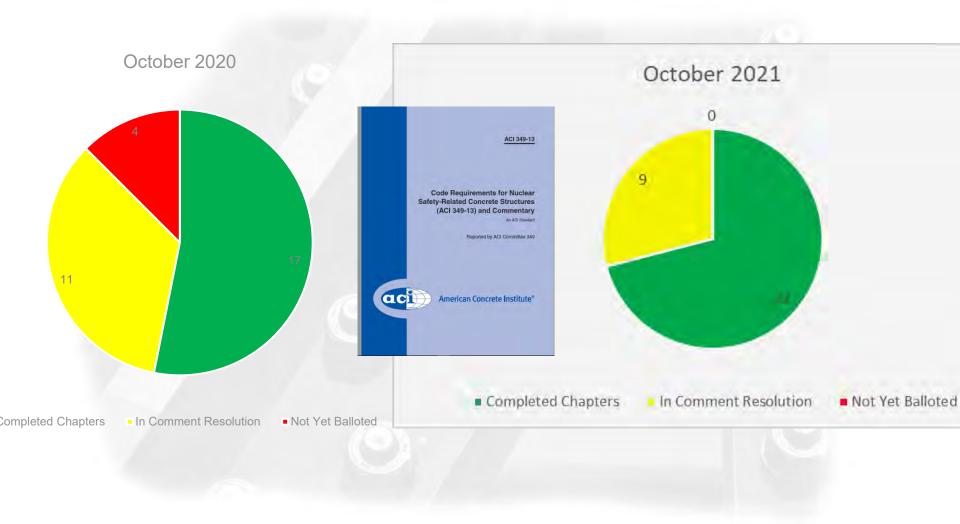
By Adeola K. Adediran (SRR/Bechtel) Chair – ACI 349

NRC Standards Forum

OUTLINE

- ACI 349 Documents in the works and planned
- Update on ACI 349-XX code
- When codes conflict Case Study
- Conclusion & Recommendations for Standards Development

ACI 349 Documents in the works and planned


Technical Activities Committee Approved ACI 349 documents:

- <u>349: Code Requirements for Nuclear Safety-Related Concrete</u> <u>Structures (ACI 349-XX) and Commentary</u>
- <u>349.4R: (349-359-370)R: Report on the Design for Impactive and Impulsive Loads for Nuclear Safety Related Structures</u>
- <u>349.1R: Reinforced Concrete Design for Thermal Effects on</u> <u>Nuclear Power Plant Structures</u>
- <u>349.2R: Guide to the Concrete Capacity Design (CCD) Method--</u> <u>Embedment Design Examples</u>
- <u>349.3R: Report on Evaluation and Repair of Existing Nuclear</u> <u>Safety-Related Concrete Structures</u>
- <u>349.XR (New): Report on Blast Test Simulation Benchmark</u>
- <u>SP XX (New): Use of Advanced Finite Element Methods for</u> <u>Design of RC Nuclear Structures</u>

NRC Standards Forum (SRR

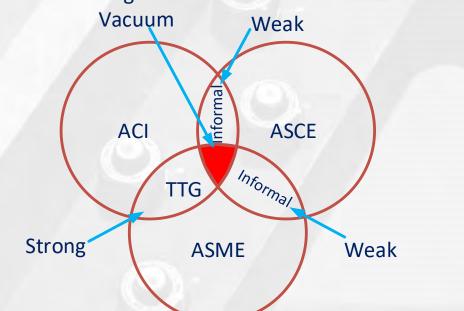
Update on ACI 349-XX

Update on ACI 349-XX October 2020

Chapter Full Title	Prepared by Lead	Checked by Chai	Out for Ballot	Negatives Resolved	Comments Incorporated	Ballot Summary Uploade
Chapter 1 - General	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 2 - Notations and Terminology	Pending Anderson					
Chapter 3 - Referenced Standards	Pending Anderson					
Chapter 4 - Structural Systems Requirements	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 5 - Loads	Complete	Complete	Complete	Pending 4 Negatives	Ballot Closes 10-12-20	
Chapter 6 - Structural Analysis	Complete	Complete	Complete	Pending 13 Negative	Comment from Farhad; possibly discussing next week	
Chapter 7 - One-Way Slabs	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 8 - Two-Way Slabs	Complete	Complete	Complete	Complete	Pending Galunic	
Chapter 9 - Beams	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 10 - Columns	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 11 - Walls	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 12 - Diaphragms	Complete	Complete	Complete	Pending 8 Negatives		
Chapter 13 - Foundations	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 14 - Plain Concrete	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 15 - Beam-Column & Slab-Column Joints	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 16 - Connections Between Members	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 17 - Anchorage to Concrete	Complete	Complete	Complete	Pending 29 Negative	scope language and grouted anchors; shear lugs	
Chapter 18 - Earthquake Resistant Structures	Complete	Complete	Complete	Pending 36 Negative	Ready for Oct (under Sub B mtg); possiby post partial ballot	
Chapter 19 - Concrete Design and Durability	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 20 - Steel Reinforcement Properties, Durabi		Complete	Complete	Pending 4 Negatives		
Chapter 21 - Strength Reduction Factors		Complete	Complete	<u> </u>	Pending phi 0.6 issue; ballot in Oct mtg	
Chapter 22 - Sectional Strength		Complete	Complete	Complete	Complete	Complete
Chapter 23 - Strut and Tie Models	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 24 - Serviceability Requirements	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 25 - Reinforcement Details		Complete	Complete	Complete	Ballot Closes 10-30-20	
Chapter 26 - Construction Documents and Inspection	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 27 - Strength Evaluation of Existing Structure	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 28 - Shells	Complete	Complete	Complete	Complete	Pending Galunic	
Chapter 29 - Special Provisions for Impactive and Im	Pending Adediran			!		
Chapter 30 - Thermal Considerations	Complete	Complete	Complete	Complete	Complete	Complete
Chapter 31 - Alternative Load and Strength-Reductio	Complete	Complete	Complete	Pending 13 Negative	Similar negatives to Ch21; phi 0.6; ballot in Oct mtg	
Commentary References	Pending Anderson					

Update on ACI 349-XX September 2021

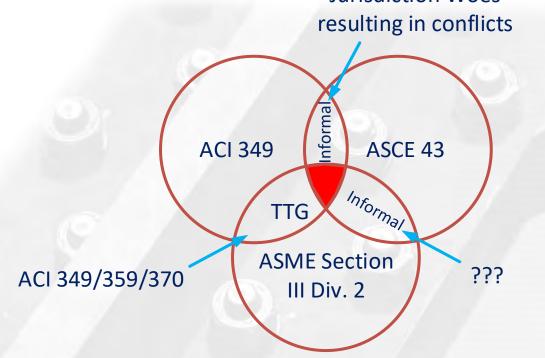
Chanter	Chapter Full Title	Prenared by Lead	Checked by Chair	Out for Ballot	Negatives Resolved	Comments Incorporated	Ballot Summary Uploaded
	Chapter Full Inte		Complete	Complete	Complete	Complete	Complete
	Chapter 2 - Notations and Terminology		Complete	Complete	complete	complete	complete
	Chapter 2 - Notations and Terminology Chapter 3 - Referenced Standards		Complete	Complete			
	Chapter 5 - Kererenced Standards Chapter 4 - Structural Systems Requirements		Complete	Complete	Complete	Complete	Complete
	Chapter 5 - Loads				Complete	Complete	Complete
			Complete	Complete			
	Chapter 6 - Structural Analysis		Complete	Complete	Complete	Complete	Complete
	Chapter 7 - One-Way Slabs		Complete	Complete	Complete	Complete	Complete
	Chapter 8 - Two-Way Slabs		Complete	Complete	Final Ballot pending		
	Chapter 9 - Beams		Complete	Complete	Complete	Complete	Complete
	Chapter 10 - Columns		Complete	Complete	Complete	Complete	Complete
	Chapter 11 - Walls		Complete	Complete	Complete	Complete	Complete
	Chapter 12 - Diaphragms		Complete	Complete	Complete	Complete	Complete
	Chapter 13 - Foundations		Complete	Complete	Complete	Complete	Complete
	Chapter 14 - Plain Concrete		Complete	Complete	Complete	Complete	Complete
15	Chapter 15 - Beam-Column & Slab-Column Joints		Complete	Complete	Complete	Complete	Complete
	Chapter 16 - Connections Between Members	Complete	Complete	Complete	Complete	Complete	Complete
17	Chapter 17 - Anchorage to Concrete	Complete	Complete	Complete	Complete	Pending Silva's final incorporation of comments	
18	Chapter 18 - Earthquake Resistant Structures	Complete	Complete	Complete	Complete	No Negatives pending but pending Cantarero incorporation	1
19	Chapter 19 - Concrete Design and Durability	Complete	Complete	Complete	Complete	Complete	Complete
20	Chapter 20 - Steel Reinforcement Properties, Durabi	Complete	Complete	Complete	Complete	Complete	Complete
21	Chapter 21 - Strength Reduction Factors	Complete	Complete	Complete	Complete	Complete	
22	Chapter 22 - Sectional Strength	Complete	Complete	Complete	Complete	Complete	Complete
23	Chapter 23 - Strut and Tie Models	Complete	Complete	Complete	Complete	Complete	Complete
24	Chapter 24 - Serviceability Requirements	Complete	Complete	Complete	Complete	Complete	Complete
	Chapter 25 - Reinforcement Details		Complete	Complete	Complete	Pending Silva's final incorporation of comments	
26	Chapter 26 - Construction Documents and Inspection		Complete	Complete	Complete	Complete	Complete
	Chapter 27 - Strength Evaluation of Existing Structure		Complete	Complete	Complete	Complete	Complete
	Chapter 28 - Shells		Complete	Complete	Complete	Complete	Complete
	Chapter 29 - Special Provisions for Impactive and Im		Complete	Complete	Final Ballot pending		
	Chapter 30 - Thermal Considerations		Complete	Complete	Complete	Complete	Complete
	Chapter 31 - Alternative Load and Strength-Reductio		Complete	Complete	Final Ballot pending		
	Commentary References		Complete	Complete			
		oonpiece.	complete	compiete			


Codes & Standards Gaps

- New Construction processes e.g. Modularization
- Advanced computational tools Element based designs
- Benchmarking Lower Limits that still do not precipitate radiation release.
- Conformity across Standards with Load factors and Load combinations when Hybrid Structures are modeled.
- Jurisdictional conflicts between Standards, lags in coordination between Standards and structures that fall in the cracks between Standards.
- New and Advanced Reactors and their unique set of building constraints. For example SMR are most often buried structures, mega concrete tanks for nuclear waste disposal etc.

Codes & Standards Co-ordinations

- ACI internal coordination is done two ways
 - First at the Technical Activities Committee level with committees with overlay sharing the same TAC rep and TAC forcing reviews by affected committees.
 - Second by task groups set up to facilitate discussions with groups with overlaying areas of jurisdictions.
- External Co-ordination between National SDO in Nuclear & Concrete



No Formal External Co-ordination between International SDOs

NRC Standards Forum (SRR

Codes & Standards Co-ordinations

• External Co-ordination between National SDO in Nuclear contd.

- Three areas of conflicts:
 - invoking ACI 349 for limit states B and C
 - · Contradicting provisions for size effects for concrete shear strength for slabs and walls
 - Disagreement between ASCE and ACI on bi-strength interactions between in-plane and out-of-plane shear

CONFLICT 3

ASCE 43 has introduced a bi-directional shear interaction for walls and slabs that does not exist in ACI and is very difficult to defend

ACI considers bi-directional shear only for beams and columns

Even in the case of beams and columns, ACI states that bi-directional shear may be ignored in 22.5.1.10, as shown below

22.5.1.10 The interaction of shear forces acting along orthogonal axes shall be permitted to be neglected if (a) or (b) is satisfied.

(a) $\frac{V_{u,x}}{\phi V_{n,x}} \le 0.5$	(22.5.1.10a)
(b) $\frac{V_{u,y}}{\phi V_{n,y}} \le 0.5$	(22.5.1.10b)

However, ASCE 43 has a bi-directional shear ratio with 100% applicability for walls and diaphragm, shown on the next slide

Unlike ACI, ASCE 43 does not cite research in their commentary for

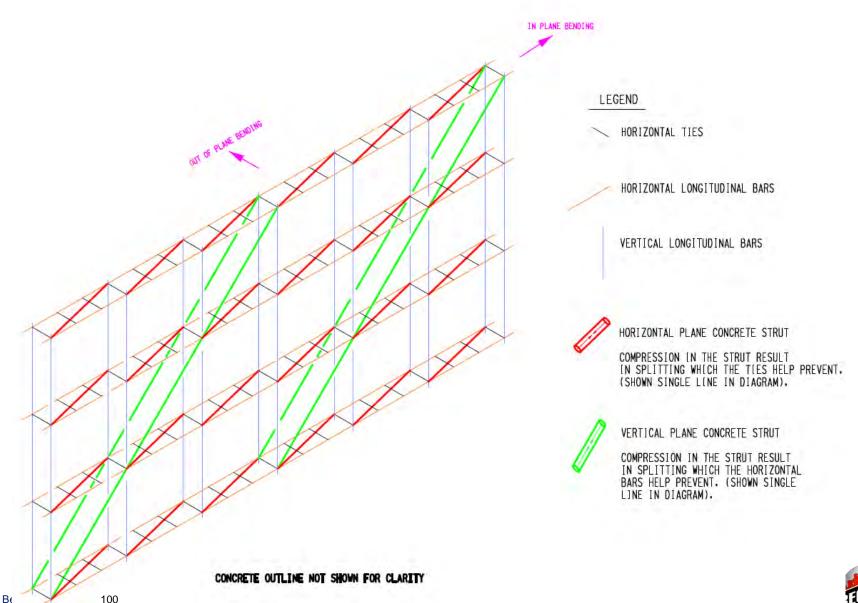
this.

NRC Standards Forum (SRR

CONFLICT 3: ASCE 43 SOLUTION

The shear failure recognized in ACL is actually diagonal tension failure which 4.2.2.2 Combined In-Plane and Out-of-Plane Shear in Slabs, results in a Diaphragms, and Walls. The in-plane and out-of-plane shear The crack c forces in slabs, diaphragms, and walls shall be combined as russ analogy mc follows:

The concre out-of-plane


$$\left(\frac{V_u}{\phi V_n}\right)_{\text{In-plane}}^2 + \left(\frac{V_u}{\phi V_n}\right)_{\text{Out-of-plane}}^2 \le 1.0 \quad (4-2)$$

The trusses are the strongest part of the truss analogy model

the

CONCRETE TRUSS ANALOGY

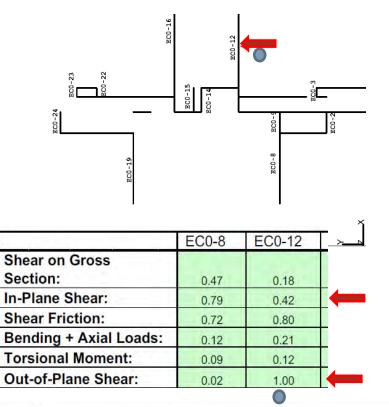
OBJECTIVE: ASCE 43-19

Objective: To review combined in-plane and out-of-plane shear in walls (Section 4.2.2.2)

However, current design codes and standard do not consider the interaction of in-plane and out-of-plane forces on the design and seismic performance of walls, and to-date have considered the separate effects of those two actions

$$\left(\frac{V_u}{\phi V_n}\right)_{\text{In-plane}}^2 + \left(\frac{V_u}{\phi V_n}\right)_{\text{Out-of-plane}}^2 \le 1.0$$
 (4-2)

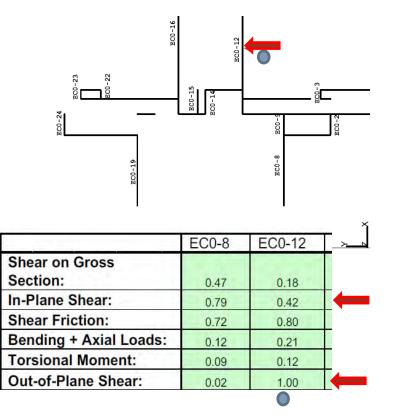
SRS BUILDING

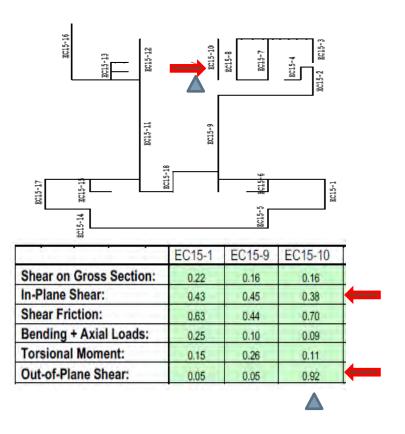

The Building walls range from 7 feet thick at the basemat and grade levels and it reduces to 2.5 feet thick at the upper levels of the tower. The demand loads were taken from Soil-Structure-Interaction (SSI) analysis and capacity D/C ratios were calculated.

The capacity of each structural element is evaluated using ACI 349-06

Then, applied the bi-directional shear from ASCE 43-19 to observe the impact of that new requirement.

SRS BUILDING




2015-16 2015-13 2015-12	TCI5-10	EC15-8 EC15-7	Ec15-4 Ec15-2 Ec15-3
11-5102	EC15-9		
8015-17 2015-14 2015-15		EC15-5 EC15-6	EC15-1
	EC15-1	EC15-9	EC15-10
Shear on Gross Section:	0.22	0.16	0.16
In Diana Chann	0.43	0.45	0.38
In-Plane Shear:	0.40	0.40	0.00
In-Plane Shear: Shear Friction:	0.43	0.43	0.70
Shear Friction:	0.63	0.44	0.70

=	Final Demands								
	P	P-	v	Fz	MB	MT	MZ		
Wall ID	Axial Compression	Axial Tension	In-Plane Shear	Out-of-Plane Shear	Out-of-Plane Moment	Torsional Moment	In-Plane Moment		
EC0- 12	17728 k	7754 k	6709 k	11156 k	64430 k-ft	5667 k-ft	265764 k-ft		

&

SRS BUILDING

 $(0.42)^2 + (1.0)^2 = 1.18 > 1.0 (0.38)^2 + (0.92)^2 = 0.99 < 1.0$ Wall EC0-12 Fails ASCE 43-19 Wall EC15-10 Barely Passes ASCE 43-19

ECO-12 is 7 ft thick

&

EC15-10 is 7ft thick

CONCLUSION & RECOMMENDATION

- Work is ongoing to resolve conflicts between US Codes and Standards.
- Future work being planned for ACI 349 not yet approved by TAC includes:
 - Revised Shell provisions with ACI 318.2
 - Moving some of the Element Based Design recommendations documented in the new SP to be created by ACI 349 to the Chapter 6 of the next code
 - Include the use of precast concrete for Nuclear applications when more damage levels are recognized.
- Recommendations:
 - A task group should be stood up between ACI and ASCE on Nuclear.
 - A task group should be stood up between ASME and ASCE on Nuclear.
 - Or one task group should be stood up between the oversight levels of ACI, ASCE and ASME.

QUESTIONS

