Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Vapor Space Accident: Ability to	Tier	1		
determine and interpret the following as they apply to the Pressurizer Vapor Space Accident: Criteria for	Group	1		
throttling high-pressure injection after a small LOCA	K/A	(008 AA2.2	3
	IR	3.6		

Given the following conditions:

- Unit 1 was tripped from 100% power due to a Pressurizer Safety lifting and sticking open
- The RCS is 20°F subcooled and stable
- Indicated Pressurizer level is 90% and slowly rising
- Both SG levels are 15% NR and slowly rising, being fed from AFB-P01
- QSPDS shows two HJTCs are uncovered in the vessel head (41% level in the head)
- Containment temperature is 150°F and slowly rising
- Containment High Range Area Radiation Monitors, RU-148 and RU-149, indicate 6.5 x 10² mrR/hr and slowly rising
- SPTAs have just been completed

Based on the listed conditions, the CRS should transition to ____(1)___ and HPSI Throttle Criteria is NOT met due to ____(2)___ .

- A. (1) 40EP-9EO03, Loss of Coolant Accident
 - (2) voiding in the vessel head
- B. (1) 40EP-9EO03, Loss of Coolant Accident
 - (2) insufficient RCS subcooling
- C. (1) 40EP-9EO09, Functional Recovery(2) voiding in the vessel head
- D. (1) 40EP-9EO09, Functional Recovery
 - (2) insufficient RCS subcooling

Pro	posed Answer:	В				
Exp	lanations:					
Α.	A. First part is correct. Second part is plausible given the voiding in the head, which would seem to be a barrier to throttling SI flow, however the void in the head does not exceed the allowable voiding to throttle SI flow.					
В.	3. Correct.					
C.	C. First part is plausible given the voiding in the head and the degraded subcooling, however the LOCA procedure is still the appropriate EOP to transition to as there is only one event in progress Second part is plausible given the voiding in the head, which would seem to be a barrier to throttling SI flow, however the void in the head does not exceed the allowable voiding to throttle S flow.					
D.						

Question Source:		New
		Bank
	x	Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

	Х	Comprehension or Analysis
Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	N	
Learning Objective:		en conditions of safety injection flow following a transient, analyze ether it is permissible to throttle HPSI flow

Technical Reference: Original Question – 2016 NRC Q2 (Answer was A) Proposed Question: RO 2 Given the following conditions: Unit 1 was tripped from 100% power due to a Pressurizer Safety lifting and sticking open. SPTAs have been performed and the CRS has entered 40EP-9E003, LOCA. The RCS is 35°F subcooled and stable. Indicated Pressurizer level is 90% and slowly rising. Both SGs are 15% NR and slowly rising, being fed from AFB-P01. QSPDS shows two HJTCs are uncovered in the vessel head (41% level in the head). Containment temperature is 150°F and slowly rising. Containment High Range Area Radiation Monitors RU-148 and RU-149 indicate 6.5 x 10² mR/hr and slowly rising. The CRS directs you to determine whether or not HPSI throttle criteria is currently satisfied, per Standard Appendix 2, HPSI Throttle Criteria. HPSI throttle criteria... A. IS currently satisfied. B. IS NOT satisfied due to voiding in the vessel head. C. IS NOT satisfied due to insufficient level in the SGs.

D. IS NOT satisfied due to insufficient RCS subcooling.

Tech	nnical R	Reference:	40EP-9EO03, LOCA				
	PA	LO VERDE N	UCLEAR GENERATING STATION	40EP-9EO03	Revision 44		
		1055.0	F COOLANT ACCIDENT	Page 3	of 79		
		2033 0	COOLANT ACCIDENT				
	3.0	INSTRUC	TIONS/CONTINGENCY ACTION	NS			
	INSTRUCTIONS CONTINGENCY ACTIONS						
	<u>NOTE</u>						
	Harsh conditions are containment temperature greater than 170°F or containment						
	radiation level greater than 10 ⁸ mR/hr. Harsh containment values are placed in brackets next to the normal setpoint or band.						

T	echnical Reference: Appendix 2, Figures									
	PALO	VERDE PRO	40EP-9EO10-002 Revision 3							
				Page 4 of 6						
	APPENDIX 2: FIGURES									
	SI THROTTLE CRITERIA									
			CAUTION							
	П п	vottling HDS	I injection valves will cause erosion d	amage to downstream pining						
		irouing HF3	stilligection valves will cause crosion o	amage to downstream piping.						
			HPSI THROTTLE CRITE	ERIA						
	•	At least or	e HPSI Pump is operating							
	•	 RCS is greater than or equal to 24°F [44°F] subcooled 								
	<u> </u>	Pressurize	er level is greater than 10% [15%] and	I NOT lowering						
	 At least one Steam Generator is available for RCS heat removal with level being maintained within or being restored to 45 - 60% NR [45 - 60% NR] 									
	 RVLMS indicates RVUH level is greater than or equal to 16% 									
	 IF the Functional Recovery procedure is in use, THEN <u>ensure</u> HPSI Pump(s) are NOT being used to meet an RC success path 									
			LPSI THROTTLE CRITE	ERIA						
	•	Pressurize	er pressure is greater than 220 psia [2	20 psia] and is being controlled						

Technical Reference: **QSPDS** Tech Manual

The following table demonstrates the range of actual level vs. indicated level on QSPDS. Note that the indicated level is half way between the minimum and the maximum - all you know is that you are above the maximum of the next lower detector.

Detectors Uncovered	QSPDS Indic	ated Level (%)	VOID SIZE (FT)			
	Head	Plenum	Minimum	Indicated	Maximum	
None	100	100	0	0	230	
1	67	100	230	500	810	
1-2	41	100	810	1083	1354	
1-3	16	100	1354	1627	1898	
14	0	100	1898	1967	2039	
1-5	0	73	2039	2100	2161	
1-6	0	47	2161	2222	2284	
1-7	0	21	2284	2345	2406	
1-8	0	0	2406	2441		

Table 3 - 1

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Small Break LOCA: Knowledge of the operational	Tier	1		
implications of the following concepts as they apply to the small break LOCA: Use of steam tables	Group	1		
	K/A		009 EK1.02	2
	IR	3.5		

Given the following conditions:

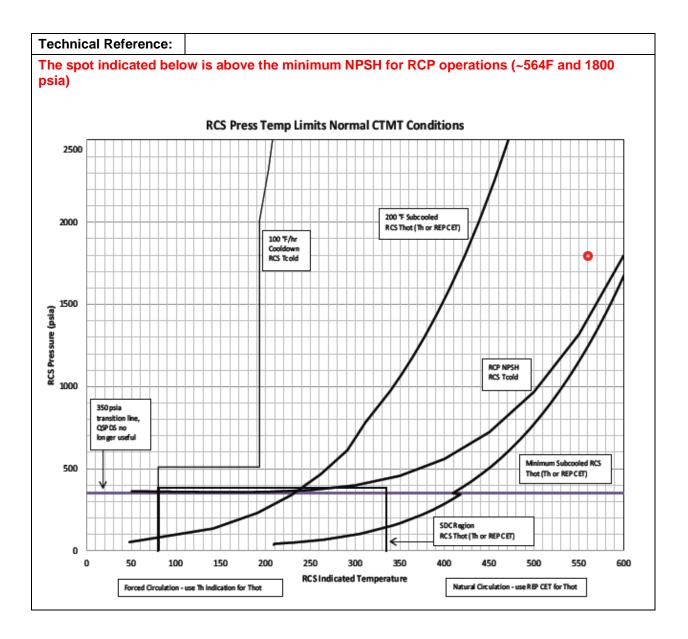
- Unit 2 was tripped from 100% power due to an RCS leak
- SIAS and CIAS were manually initiated following the Reactor trip
- RCS pressure is 1800 psia and slowly lowering
- RCS Thot is 565°F and slowly lowering
- RCS Tcold is 564°F and slowly lowering
- Containment pressure is 1.2 psig and slowly rising
- SPTAs are in progress

Per 40EP-9EO01, Standard Post Trip Actions, the crew should trip ____(1)___ RCPs due to degraded RCS ____(2)___ .

A. (1) ONLY 2

(2) pressure

- B. (1) ONLY 2(2) subcooling
- C. (1) ALL 4
 - (2) pressure
- D. (1) ALL 4
 - (2) subcooling


Pro	posed Answer:	Α					
Explanations: The "use of steam tables" part of the KA is met by requiring the examinee to determine RCS subcooling (using steam tables) in order to determine what the correct action for RCP operation is and what that action is based on. During performance of SPTAs, the operators will evaluate RCS subcooling to determine if RCPs are required to be tripped or if they can remain running (<24°F subcooling requires stopping all RCPs). The RCS Press Temp Limits curve listed below is NOT required to be memorized to answer the question, however the RCP NPSH curve is plotted at ~ 24°F subcooling, so the point corresponding to the conditions in the stem was plotted to indicate that sufficient subcooling does exist for RCP operation.							
Α.	Correct.						
В.	3. First part is correct. Second part is plausible since RCS subcooling is used to determine RCP operation and RCS subcooling is degraded, however in this case the two RCPs are required to be tripped due to RCS pressure.						
C.	C. First part is plausible since there are multiple conditions during a LOCA which would require all RCPs to be stopped, however in this case, only 2 RCPs are required to be stopped. Second part is correct.						
D.							

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3		
10CFR55.41:	10		
Reference Provided:	Y	Steam Tables	
Learning Objective:	ana	Given RCS pressure and temperature during performance of an EOP, analyze these conditions to decide if the RCPs can be operated per the applicable EOP.	

Technical Reference:	40EP-9EO01, SPTAs					
RCPs must be stopped	states that if RCP NPSH d . This NPSH curve corres be memorized, however t licensed operators).	ponds ⊧	to ~ 24°F RCS s	subcooling (the NPSH		
PALO VERDE NUCLEAR GENERATING STATION 40EP-9E001 Revision STANDARD POST TRIP ACTIONS Page 8 of 16						
 5. <u>Determine</u> the acceptance of the following: Pressur 1837 - 2 Pressur 	RUCTIONS at RCS Pressure Control riteria are met by BOTH of izer pressure is 285 psia izer pressure is trending cted to 2225 - 2275 psia	<mark>5.3</mark>	Restore and ma pressure to the ANY of the follo Operation Manual op heaters an IF pressurizer p SIAS setpoint, THEN ensure the SIAS setpoint THEN stop ON IF pressurizer p RCP NPSH lim THEN stop all F	of PPCS peration of pressurizer nd spray valves pressure drops to the hat SIAS is actuated. pressure remains below int, E RCP in each loop. ressure drops below the its,		
acceptance of the following: • At least • Loop Δ	at Core Heat Removal riteria are met by ALL of one RCP is operating is less than 10°F 24°F or more subcooled					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Large Break LOCA: Ability to operate and monitor	Tier	1		
the following as they apply to a Large Break LOCA: Core flood tank initiation	Group	1		
	K/A	(011 EA1.09	9
	IR	4.3		

Given the following conditions:

- Unit 2 was just manually tripped from 100% power due to a Large Break LOCA
- RCS pressure is 2000 psia and lowering
- Containment pressure is 2.0 psig and rising
- NO additional manual actions have been taken by the crew

SIT Outlet MOVs are currently ____(1)___ and the SITs will BEGIN injecting into the RCS when RCS pressure lowers to approximately ____(2)___ psia.

- A. (1) open
 - (2) 410
- B. (1) open
 - (2) 600
- C. (1) closed
 - (2) 410
- D. (1) closed
 - (2) 600

Pro	posed Answer:	В		
Exp	lanations:			
Α.	First part is correct. Second part is plausible since the SIT outlet valves do get an open signal at 410 psia (when pressure is rising), however injection starts at ~ 600 psia.			
В.	Correct.			
C.	First part is plausible since SIAS has not yet actuated and SIT outlet valves get an open signal when SIAS actuates, however the SIT outlet valves are maintained open when in MODE 1 so they would already be open. Second part is plausible since the SIT outlet valves do get an open signal at 410 psia (when pressure is rising), however injection starts at ~ 600 psia.			
D.	when SIAS actua	tes, h	ince SIAS has not yet actuated and SIT outlet valves get an open signal nowever the SIT outlet valves are maintained open when in MODE 1 so open. Second part is correct.	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	7	
Reference Provided:	Ν	
Learning Objective:	Des	scribe the design characteristics of the Safety Injection Tanks.

Technical Reference: Safety Injection System Lesson Plan

EO: 1.16 Describe the design characteristics of the Safety Injection Tanks.

Introduction

The Safety Injection tanks are necessary to mitigate the consequences of a LOCA by providing a rapid source of recovery inventory.

Main Idea

- There are four Safety Injection Tanks provided for the mitigation of a LOCA, one for each cold leg.
- Each SIT contains approximately 14,000 gallons of borated water under approximately 600 psig of nitrogen pressure.
- Each SIT has a motor operated outlet valve that is open and deenergized at NOT/NOP so
 that a rapid RCS depressurization will result in a discharge of water from the SIT into the
 RCS without the need for actuation of any supporting system or auxiliary equipment.

The SITs are therefore referred to as a "passive" protection system.

- The SIT outlet valves receive an open signal on a SIAS actuation or if RCS pressure exceeds 410 psia and a permissive to close at 405 psia.
- · They are required by TS to be open and deenergized in higher modes.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Coolant Pump Malfunctions: Ability to	Tier	1		
determine and interpret the following as they apply to the Reactor Coolant Pump Malfunctions (Loss of RC	Group	1		
Flow): When to secure RCPs on loss of cooling or seal	K/A	()15 AA2.10)
injection	IR	3.7		

Per 40AO9-ZZ03, Loss of Cooling Water, what is the MAXIMUM amount of time available to restore cooling flow to the RCPs prior to being procedurally required to trip the Reactor following a complete loss of...

- (1) Nuclear Cooling Water ONLY
- (2) Nuclear Cooling Water AND Seal Injection flow
- A. (1) 10 minutes
 - (2) 10 minutes
- B. (1) 10 minutes
 - (2) 3 minutes
- C. (1) 30 minutes (2) 10 minutes
- D. (1) 30 minutes(2) 3 minutes

Pro	posed Answer:	В	
Exp	lanations:		
Α.	A. First part is correct. Second part is plausible since RCPs can be operated indefinitely on a loss of Seal Injection only, so it is reasonable that there would be no additional time constraints on a loss of Seal Injection concurrent with a loss of NC, however when both a lost simultaneously, the limit is 3 minutes.		
В.	Correct.		
C.	RCP seals will bro since RCPs can b there would be no	eakth be op b add	ince 30 minutes is the maximum time RCPs can operate without NC before rough, however the procedural limit is 10 minutes. Second part is plausible erated indefinitely on a loss of Seal Injection only, so it is reasonable that itional time constraints on a loss of Seal Injection concurrent with a loss of h a lost simultaneously, the limit is 3 minutes.
D.	First part is plausible since 30 minutes is the maximum time RCPs can operate without NC before RCP seals will breakthrough, however the procedural limit is 10 minutes. Second part is correct.		

Question Source:		New
	Х	Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	3
Reference Provided:	N
Learning Objective:	Given the status of NC and RCP seal injection, describe the limitations on RCP operation without NC in accordance with 40AO-9ZZ03.

Т	echnical Re	eference:	40AO-9ZZ03, Loss of Coolin	g W	/ater	
	PALO		LEAR GENERATING STATION		40AO-9ZZ03 Page 10	Revision 13 of 44
		LOSS OF	COOLING WATER		1 490 10	
	4.0 NU		OOLING WATER		I	
		INSTR	UCTIONS	<u>C</u>	CONTINGENCY AC	TIONS
	1.	Enter AOP	Entry Time and Date:			
	2.		ention in NOT in convice			
	2.	AND coolin to ANY op minutes o	ction is NOT in service, ng water is NOT restored erating RCP within three f the initial loss, orm the following:			
		a. <u>Ensu</u>	re the reactor is tripped.			
		b. Stop	all of the RCPs.			
		c. <u>Isolat</u>	e controlled bleedoff.			
	<mark>3.</mark>	AND coolin to ANY op 10 minute	ection is in service, ng water is NOT restored erating RCP within s of the initial loss, orm the following:			
		a. <mark>Ensu</mark>	re the reactor is tripped.			
		b. Stop	all of the RCPs.			
		c. <u>Isolat</u>	e controlled bleedoff.			

Technical Reference: LOIT Loss of Cooling Water Lesson Plan

Main Idea

Upon a loss of NC (cooling water) to the RCP(s), operators have thirty (30) minutes to reduce power or isolate cooling water and shutdown the RCP(s). If an RCP is allowed to operate more than 30 minutes without cooling water, possible pump motor assembly bearing seizure may occur.

Explanation

This objective is linked to other lessons.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Reactor Coolant Makeup: Knowledge of	Tier	1		
the interrelations between the Loss of Reactor Coolant Makeup and the following: Need to avoid plant	Group	1		
transients	K/A	()22 AK3.0	5
	IR	3.2		

Given the following conditions:

- Unit 1 is operating at 100% power
- Charging Pump Mode Selector, CHN-HS-4, is selected to "1-2-3"
- The 'E' Charging Pump is aligned to Train 'B'

In which of the following situations, INDIVIDUALLY, would Prompt and Prudent action be permitted per 40DP-9OP02, Conduct of Operations, in order to prevent a loss of letdown?

- 1. A loss of Train 'A' 4kV Bus, PBA-S03
- 2. Gas Binding of the 'A' Charging Pump
- 3. Tave1 input to RRS fails LOW
- A. 1 ONLY
- B. 2 ONLY
- C. 1 and 3 ONLY
- D. 2 and 3 ONLY

Pro	posed Answer:	С	
Exp	lanations:		
Α.			an allowable condition, however condition 3 is also an allowable condition the loss of letdown
В.	determination of t	he ex	np to be started is NOT the one which was gas bound, but because the ttent of gas binding (whether it is limited to one pump or if it affects all three de without in-field observation, P&P cannot be used in this situation.
C.	Correct.		
D.	Plausible since co	onditi	on 3 does allow for P&P, however condition 2 does not.

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	
10CFR55.41:	0
Reference Provided:	1
Learning Objective:	As a licensed operator, perform shift duties and activities in accordance vith 40DP-9OP02, Conduct of Operations.

Technical Reference: Operations Mentor Guidance

Prompt and Prudent

Prompt and Prudent actions are actions per Conduct of Operations that can be taken with CRS concurrence without first referring to the appropriate procedure. Operations has moved towards the expectation that RO's should announce RK windows by the plate nomenclature and add in RJ information if applicable. The ROs should then move towards the applicable ARP. This is all communicated to CRS. The CRS with the alarm report will determine **if plant needs preclude** the RO reaching the point in the ARP that directs action, and if so, will direct the RO to perform those actions. The ARP guidance should be followed up after the successful performance of the action.

For the purpose of the LOIT 2020 class, minimal instances will be allowed to utilize this allowance.

The allowed actions are:

1. Starting the standby stator cooling water pump when the 1st pump trips and 2nd pump fails to start automatically. This is to avoid the 70 second main turbine trip.

2. Starting a second charging pump on obvious instrumentation failures that cause the normally running charging pump to stop. This is to avoid isolating letdown on this failure. This will be accomplished by red-flagging (restarting) the previously running charging pump.

3. Following a Loss of Power to a class bus (LOP), a loss of charging may occur. It is permissible to "green flag" a charging pump that was stopped as a result of the LOP in order to restore charging pump(s) to operation, primarily to prevent letdown from isolating (if it hasn't already) and to restore/maintain charging/seal injection.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Residual Heat Removal System:	Tier	1		
Knowledge of the interrelations between the Loss of Residual Heat Removal System and the following:	Group	1		
Service water or closed cooling water pumps	K/A	(025 AK2.03	3
	IR	2.7		

Given the following conditions:

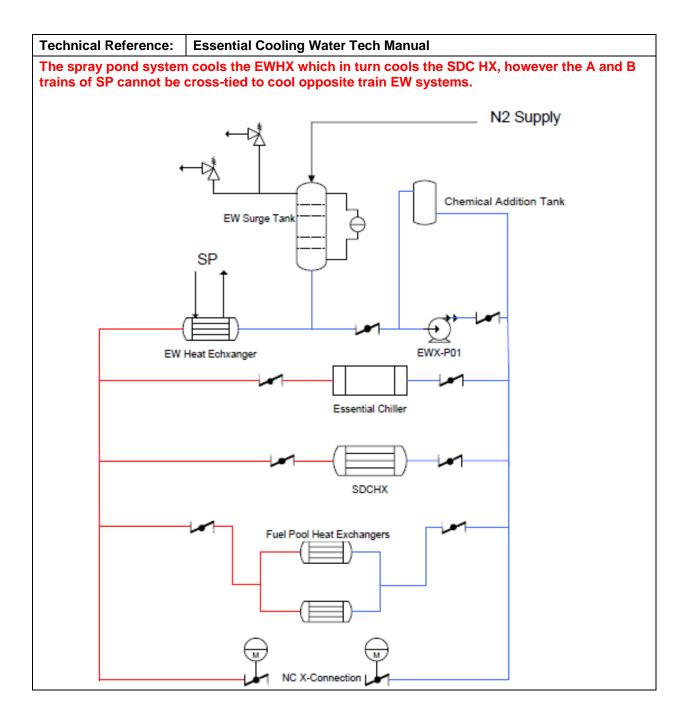
- Unit 1 is in MODE 4
- SDC is in service on Train 'B' using the 'B' LPSI Pump

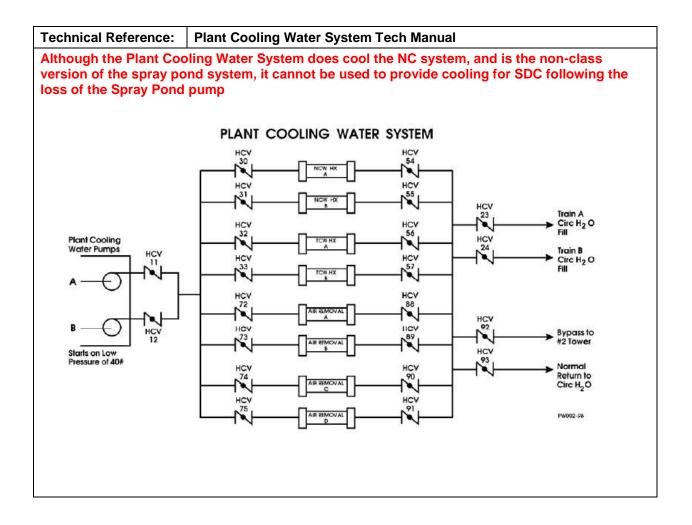
Subsequently:

• The 'B' Spray Pond Pump tripped

In order to restore SDC flow using the 'B' LPSI Pump, the crew should FIRST attempt to...

- A. cross-tie Plant Cooling Water to 'B' Spray Pond Cooling Water to restore cooling to the 'B' EW Heat Exchanger
- B. cross-tie 'B' Nuclear Cooling Water to 'B' Essential Cooling Water to restore cooling to the 'B' SDC Heat Exchanger
- C. start and align the 'A' Spray Pond Pump to the 'B' EW Heat Exchanger to restore cooling to the 'B' EW Heat Exchanger
- D. place Train 'A' Spray Pond / Essential Cooling / Essential Chill Water in service and align the 'B' LPSI Pump to the 'A' SDC Heat Exchanger


Pro	posed Answer:	D	
inte cori	ntionally did not r	efere nd to	prevent cueing the correct answer to the second part of question 30, I nce the procedure which directs this action. There is only one this event procedurally so I don't believe it is necessary to include s question.
Α.			ss cooling systems can be cross-tied with class cooling systems to restore), however Plant Cooling cannot be aligned to supply Spray Pond Cooling
В.	Plausible as NC c class auxiliaries a		e used to supply EW flow, however this is only an option is both trains of t available.
C.			ray Pond Pump can be used to supply cooling flow to the 'B' EW heat NC pump can be used to supply EW flow, however Spray Pond is train
D.	Correct.		


Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Χ	Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	8	
Reference Provided:	N	
Learning Objective:	the	en that the LMFRP is being performed and HR is in progress, outline major steps used to control Core and RCS Heat Removal in the HR cess paths per 40EP-9EO11.

P-9EO11 Revision 34 Page 273 of 370 2 Page 5 of 13 INGENCY ACTIONS
INGENCY ACTIONS

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Component Cooling Water: Knowledge of	Tier	1		
the reasons for the following responses as they apply to the Loss of Component Cooling Water: Effect on the	Group	1		
CCW flow header of a loss of CCW	K/A	026 AK3.04		
	IR	3.5		

Which of the following reasons explain why Train 'A' EW is used instead of Train 'B' when cross-tying NC and EW following a loss of NC while at power?

- 1. Because Train 'A' EW takes less time to cross-tie to NC than Train 'B' EW
- 2. To ensure cooling will be maintained to the RCPs in the event of a SIAS
- 3. Because Train 'A' EW cross-tie valves will auto close on an 'A' EW Surge Tank Low Level signal
- A. 1 and 2 ONLY
- B. 1 and 3 ONLY
- C. 2 ONLY
- D. 3 ONLY

Pro	posed Answer:	В				
Exp	lanations:	•				
Α.	A. 1 is correct. 2 is plausible since it is highly desired to maintain forced circ during a SGTR, which would result in a SIAS, however if Train 'A' EW is cross-tied with NC, RCPs will have to be stopped if SIAS occurs since the cross-tie valves will auto close.					
В.	Correct.					
C.	in a SIAS, however occurs since the o all systems with the	er if T cross- wo tra Train	s highly desired to maintain forced circ during a SGTR, which would result Frain 'A' EW is cross-tied with NC, RCPs will have to be stopped if SIAS -tie valves will auto close. Plausible that 1 would not be true since almost ains of equipment in the control room would take the same amount of time 'B' EW cross-tie valves are manually actuated valves which can only be			
D.	with two trains of	equip	is also correct. Plausible that 1 would not be true since almost all systems oment in the control room would take the same amount of time to align, cross-tie valves are manually actuated valves which can only be operated			

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	4	
Reference Provided:	N	
Learning Objective:	From memory, describe the interlocks associated with the Train 'A' EW to NC cross tie valves (EWA-UV-145 and EWA-UV-65)	

Technical Reference: LOIT Loss of Cooling Water Lesson Plan

Because the crew has a limited amount of time to complete the cross-tie and restore cooling to the RCPs, Train A is generally used instead of Train B due to the cross-tie valves being able to be operated from the control room (MOVs) as opposed to Train B cross-tie valves which are large manual valves which must be operated in the field. Because the Train B valves are manually operated, they do not close on a SIAS actuation (which would maintain cooling to the RCPs following a SIAS), however that is not a desired condition if SIAS actuates since the cooling flow is needed for more important loads. Additionally, the Train A cross-tie valves close on a low level signal, automatically preventing the complete loss of a train of essential cooling water due to a leak.

UFSAR 18.II.K.3.25

The reactor coolant pump normal cooling water system (nuclear cooling water system (NCWS) is backed up by the essential cooling water system (ECWS) to supply cooling water to the seals during a loss of offsite power. In the event of a loss of offsite power, the operator can open the train A-NCWS crosstie valves from the control room, permitting the ECWS train A to supply cooling water to the reactor coolant pump seals. If train A fails, the operator must manually open the train B-NCWS crosstie valves and shut the train A crosstie valves to permit the same function. The crosstie of the ECWS to supply the NCWS priority heat loads is described in a PVNGS Station Manual procedure which allows 10 minutes for the operator to align the ECWS.

Main Idea

If cooling water is lost to the RCPs due to a LOOP, the operator has ten (10) minutes to supply cooling water to the RCP seals from the essential cooling water system.

If this time is not met and seal injection is in service, 40AO-9ZZ03 directs the operator to trip the Reactor, stop all RCPs, isolate controlled bleedoff, and perform the appropriate procedure for plan conditions. Also, operation of the RCPs without cooling water may result in damage to pump thrust bearings and possible bearing seizure.

Explanation

This objective is linked to other lessons.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Pressure Control System Malfunction:	Tier	1		
Knowledge of the interrelations between the Pressurizer Pressure Control Malfunctions and the following:	Group	1		
Controllers and positioners	K/A	027 AK2.03		3
	IR	2.6		

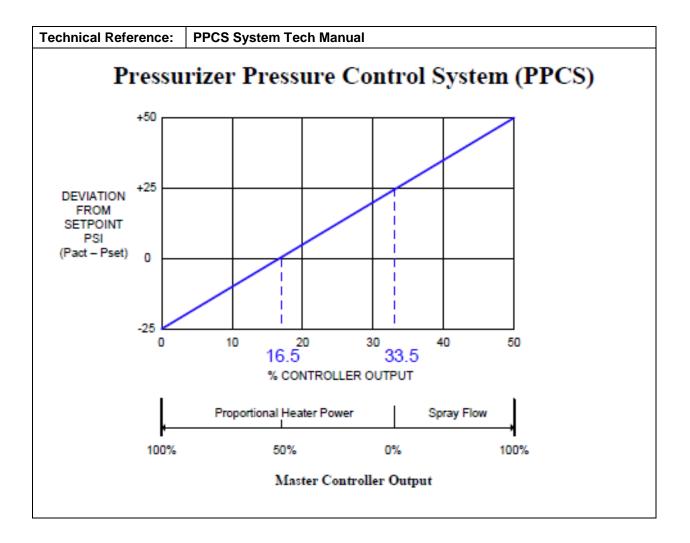
Given the following conditions:

- Unit 3 is operating at 100% power
- RCS Pressure is stable at the current setpoint of 2250 psia
- All Pressurizer Backup Heaters are OFF
- Both Pressurizer Proportional Heaters are ON
- RCN-HS-100, Pressure Control Channel X/Y Selector, is selected to Channel 'Y'

Subsequently:

• RCN-PT-100Y, Pressurizer Control Channel 'Y', failed to 1500 psia

With NO operator action, RCN-PIC-100, Pressurizer Pressure Control, OUTPUT will go from an INITIAL value of approximately ____(1)___ to a FINAL value of ___(2)___.


- A. (1) 16.5% (2) 0%
- B. (1) 16.5%
 - (2) 100%
- C. (1) 33%
 - (2) 0%
- D. (1) 33%
 - (2) 100%

Pro	posed Answer:	Α		
Exp	lanations:			
Α.	Correct.			
В.			econd part is plausible since proportional heater output will go to 100%, verse acting, so PIC-100 output goes to 0%.	
C.	C. First part is plausible since at NOP, PIC-100 output is ~ 1/3 of the useable range, however even though controller output does go from 0-100%, the useable range is 0-50%, making the normal operating output of PIC-100 ~16.5%. Second part is correct.			
D.				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	X	Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	N	
Learning Objective:	Describe the manual/automatic functions associated with the Pressurize Pressure Control System.	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Anticipated Transient Without Scram: Ability to	Tier	1		
determine or interpret the following as they apply to a ATWS: System component valve position indications	Group	1		
	K/A	029 EA2.05		5
	IR	3.4		

Given the following conditions:

- Unit 3 is operating at 100% power
- RPCB is OOS for corrective maintenance

Subsequently:

- The Main Turbine tripped
- All RPS trips failed to trip the Reactor
- The Reactor automatically tripped via the Supplemental Protection System

10 seconds after the Supplemental Protection System actuates, assuming NO operator actions have been taken, the Pressurizer Safety Valves should be (1) and the MSIVs should be (2).

- A. (1) open
 - (2) open
- B. (1) open
 - (2) closed
- C. (1) closed
 - (2) open
- D. (1) closed
 - (2) closed

Pro	posed Answer:	Proposed Answer: C					
Exp	lanations:						
Α.	A. First part is plausible since the SPS actuation and the lifting of PSVs are both triggered on high RCS pressure, however the SPS actuates at 2409 psia and the PSVs don't lift until 2450 psia. Second part is correct.						
В.	B. First part is plausible since the SPS actuation and the lifting of PSVs are both triggered on high RCS pressure, however the SPS actuates at 2409 psia and the PSVs don't lift until 2450 psia. Second part is plausible since power follows steam demand and the closure of MSIVs on receipt of an SPS trip would limit the positive reactivity addition from the ongoing steam demand from steam driven components, however the SPS does not send a close signal to the MSIVs.						
С.	Correct.						
D.	of MSIVs on rece	ipt of	econd part is plausible since power follows steam demand and the closure an SPS trip would limit the positive reactivity addition from the ongoing eam driven components, however the SPS does not send a close signal to				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	6	
Reference Provided:	N	
Learning Objective:		cribe the Supplementary Protection System including its function, rumentation, bases, and setpoint

Technical Reference: Plant Protection Tech Manual

SPS setpoint (ATWS trip high pressure) is 2409 psia

PARAMETER				FUNCTI	ON		RANGE/ SETPOINTS	FUNCTION
MONITORED	INST #	LOC	CR	ALAR M	COMP	CONT		
Low PZR Pressure	Bistable 6 PPS CH D		х	х	x	х	Pre-trip 1880 psia Trip 1837 psia	Reactor Trip/SIAS/CIAS
PZR Pressure	RCA-PT- 0199A	х					1500 - 2500 psia	SPS PZR Pressure Transmitter
PZR Pressure	RCB-PT- 0199B	х					1500 - 2500 psia	SPS PZR Pressure Transmitter
PZR Pressure	RCC-PT- 0199C	х					1500 - 2500 psia	SPS PZR Pressure Transmitter
PZR Pressure	RCD-PT- 0199D	х					1500 - 2500 psia	SPS PZR Pressure Transmitter
Hi PZR Pressure	SPS CH A		x	x	x	x	2409 PSIA	Reactor Trip
Hi PZR Pressure	SPS CH B		X	X	X	x	2409 PSIA	Reactor Trip
Hi PZR Pressure	SPS CH C		X	x	X	x	2409 PSIA	Reactor Trip
Hi PZR Pressure	SPS CH D		x	x	x	x	2409 PSIA	Reactor Trip
SG #1 Pressure	SGA-PT- 1013A	х					0 - 1524 psia	PPS SG #1 Pressure

Technical Reference: RCS Tech Manual

The pressurizer safety values are set to open at 2475 +/- 25 psia, therefore would open at 2450 psia at the earliest, which is ~ 40 psia higher than the SPS trip would occur, therefore the safeties would NOT be open.

Figure 2 - 38 Pressurizer

Primary Safety Valves (PSV-200, 201, 202, 203)

The function of the safety valves (PSV-200, 201, 202 and 203) is to limit the RCS pressure to less than the RCS safety limit pressure of 2750 psia. The pressurizer is equipped with four safety valves. Each safety valve is on a separate line connected to the top of the pressurizer. The safety valves are totally enclosed, backpressure compensated, spring loaded, self-activated, pop-type valves. The valves are set to open at 2475 psia, \pm 25 psia with a 3% accumulation. The blowdown factor is 5%. The combined

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Generator Tube Rupture: Ability to operate	Tier	1		
and monitor the following as they apply to a SGTR: S/G sample isolation valve indicators	Group	1		
sample isolation valve indicators	K/A	(038 EA1.17	7
	IR	3.2		

Given the following conditions:

- Unit 1 was manually tripped due to a SGTR on SG #1
- The crew manually actuated SIAS and CIAS following the trip

The SG Sample Valves should close due to the (1) actuation, and following entry into 40EP-9EO04, SGTR, the SG Sample Valves should be overridden and opened on (2).

- A. (1) SIAS
 - (2) SG #1 ONLY
- B. (1) SIAS(2) SG #1 AND SG #2
- C. (1) CIAS (2) SG #1 ONLY
- D. (1) CIAS
 - (2) SG #1 AND SG #2

Pro	posed Answer:	В	
Exp	planations:		
Α.			econd part is plausible since SG #1 is the only SG with a tube rupture, y into the SGTR EOP, both SG sample valves are overridden and opened.
В.	Correct.		
C.	lines, not SG sam	nple li	ince the CIAS does isolate sample lines, however it isolates RCS sample nes. Second part is plausible since SG #1 is the only SG with a tube wing entry into the SGTR EOP, both SG sample valves are overridden and
D.			ince the CIAS does isolate sample lines, however it isolates RCS sample nes. Second part is correct.

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	10
Reference Provided:	N
Learning Objective:	Given that the SGTR EOP is being implemented, describe the SGTR EOP mitigation strategy in accordance with 40EP-9EO04.

2.2.10 Downcomer Blowdown Sample Containment Isolation Valves

Downcomer blowdown sample containment isolation valves (see figure 2-17).

Upstream, inside containment isolation valves:

- SGA-UV-220 (SG-1)
- SGB-UV-226 (SG-2)

Downstream, outside containment isolation valves:

- SGB-UV-221 (SG-1)
- SGA-UV-227 (SG-2)

The blowdown sample containment isolation valves are solenoid operated, normally closed, 1/2" globe valves.

Sample Valve Controls

One, three position (OPEN/CLOSE), spring return-to-normal control switch is provided in the control room for each of the blowdown sample isolation valves. The blowdown sample isolation valves all fail closed on loss of power and close upon receipt of AFAS-1, AFAS-2, MSIS, or SIAS. Following automatic closure, the control room operator can override the auto close signal and open the valves by momentarily placing the control switch in CLOSE, and then in OPEN. When moved to CLOSE, a white OVERRIDE light illuminates, indicating the valve can be overridden.

2.2.11 MSIV Bypass Valves (UV-169, UV-183)

The main steam isolation valve bypass valves are 4 inch electro-pneumatic gate valves. (figure 2-18.)

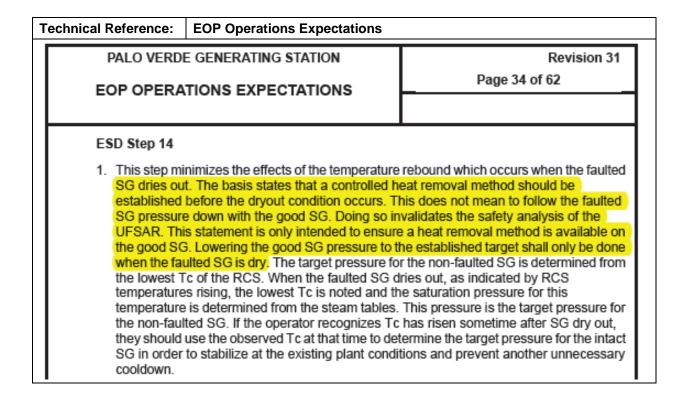
Technical Reference:	40DP-9AP09, SGTR Technical Guide	line					
PVNGS NUCLEAR	ADMINISTRATIVE AND TECHNICAL	MANUAL Page 7	of 57				
SG Tube Rupture Technical Guideline 40DP-9AP09 25							
-							
4.5 Instruction	s/Contingency Actions						
4.5.1 Step 1	- Monitor the SFSCs						
	is step directs actions that will ensure that plemented for the event in progress.	t the correct procedure is	s				
	The diagnosis of a SGTR is confirmed by meeting all acceptance criteria in the Safety Function Status Check. This action ensures that the proper procedure is being used to mitigate the event. In particular, the CRS should note the status of RCS subcooling, containment radiation level and steam plant activity. These parameters provide a means of discriminating between SGTRs, LOCAs and ESDs.						
	 For a SGTR, steam plant activity monitors may be alarming, but containment activity monitors should not be alarming. 						
	 For a LOCA, the RCS may reach se containment activity monitors may a activity monitors should not be alar 	be alarming but steam pl	ant				
	 For an ESD, neither steam plant no should be alarming. For units which however, steam plant or containme during ESDs. 	n exhibit SG tube leakage	e,				
	LOCAs, ESDs, and SGTRs have simila confused early in the event. Sampling for appropriate samples are drawn, includin which will assist the CRS in confirming	or SGTR will ensure that ng sampling both SGs fo	the r activity,				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Line Rupture-Excessive Heat Transfer:	Tier	1		
Ability to operate and / or monitor the following as they apply to the (Excess Steam Demand): Desired operating	Group	1		
results during abnormal and emergency situations		C	E E05 EA1	.3
	IR	3.4		

Given the following conditions:

- Unit 1 was tripped due to an ESD outside of Containment
- MSIS was manually actuated
- All Thot and Tcold indications are lowering

The crew should commence depressurizing the intact SG as soon as the most affected SG (1) and the intact SG should be stabilized at saturation pressure for the lowest observed RCS (2) in the loop of the most affected SG.


- A. (1) is identified
 - (2) Thot
- B. (1) is identified
 - (2) Tcold
- C. (1) reaches rebound
 - (2) Thot
- D. (1) reaches rebound
 - (2) Tcold

Pro	posed Answer:	D				
Exp	Explanations:					
Α.	A. First part is plausible since the sooner the intact SG is depressurized, the less impactful the repressurization of the RCS will be following dryout of the affected SG, however at PNVGS, depressurization of the intact SG is not commenced until the affected SG reaches rebound (dryout). Second part is plausible since stabilizing to the lowest RCS Thot would stabilize RCS temperature and would minimize the amount of the additional RCS cooldown, however Tcold is used for stabilization of RCS temperature following an ESD at PVNGS.					
В.	First part is plausible since the sooner the intact SG is depressurized, the less impactful the repressurization of the RCS will be following dryout of the affected SG, however at PNVGS, depressurization of the intact SG is not commenced until the affected SG reaches rebound (dryout). Second part is correct.					
C.	stabilize RCS tem	npera	econd part is plausible since stabilizing to the lowest RCS Thot would ture and would minimize the amount of the additional RCS cooldown, for stabilization of RCS temperature following an ESD at PVNGS.			
D.	Correct.					

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	N	
Learning Objective:		en a set of plant parameters, determine when and how RCS perature is stabilized during an ESD per 40EP-9EO05.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Main Feedwater: Knowledge of the	Tier	1		
operational implications of EOP warnings, cautions, and notes	Group	1		
	K/A	054 G 2.4.20		0
	IR	3.8		

Given the following conditions:

- Unit 1 tripped from 100% power due to a loss of both Main Feedwater Pumps
- The CRS has directed the BOP to perform Appendix 44, Feeding With the Condensate Pumps, to restore feedwater
- Both SG levels are 10% WR
- Both SG pressures are 1170 psia
- SG #1 has been selected for the restoration of feedwater
- (1) Per 40DP-9AP17, Standard Appendices Technical Guideline, during the depressurization of SG #1, the 100°F/hr cooldown rate...
- (2) If SG #1 WR level reaches 0% WR prior to SG #1 pressure lowering to less than Condensate Pump discharge pressure, the BOP should...
- A. (1) MAY be exceeded
 - (2) continue depressurizing SG #1 until pressure is less than Condensate Pump discharge pressure
- B. (1) MAY be exceeded
 - (2) stop depressurizing SG #1 and commence depressurizing SG #2 to establish Condensate feed on SG #2
- C. (1) may NOT be exceeded
 - (2) continue depressurizing SG #1 until pressure is less than Condensate Pump discharge pressure
- D. (1) may NOT be exceeded
 - (2) stop depressurizing SG #1 and commence depressurizing SG #2 to establish Condensate feed on SG #2

Pro	posed Answer:	Α				
Exp	Explanations:					
Α.	Correct.					
В.	First part is correct. Second part is plausible since the technical guidelines state that if one SG is dry and the other contains water, that feedwater should not be added to the dry SG and rather the SG with inventory should be fed, however simply lowering below 0% WR does not mean the SG is dry and lowering from 10% WR to < 0% WR is likely during a rapid depressurization in order to feed with Condensate Pumps.					
C.	First part is plausible as 100°F/hr is the cooldown rate limit at PVNGS and is not generally allowed to be exceeded, however since core heat removal is lost, restoring this capability promptly takes precedence over maintaining the 100°F/hr cooldown rate. Second part is correct.					
D.	to be exceeded, h precedence over technical guidelin not be added to th lowering below 09	nowey maint es sta ne dry % WF	s 100°F/hr is the cooldown rate limit at PVNGS and is not generally allowed ver since core heat removal is lost, restoring this capability promptly takes aining the 100°F/hr cooldown rate. Second part is plausible since the ate that if one SG is dry and the other contains water, that feedwater should v SG and rather the SG with inventory should be fed, however simply a does not mean the SG is dry and lowering from 10% WR to < 0% WR is expressurization in order to feed with Condensate Pumps.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	N	
Learning Objective:		en conditions of a LOAF and the status of plant equipment, determine m where feed can be established per 40EP-9EO06.

Technical Reference:	Appendix 44, Feeding With t	the Co	ndensate Pumps					
Once a SG is selected for use, that SG is depressurized until it is being fed unless conditions cannot be established. Even if level drops below 0% WR, the SG is not "dry" as there is ~ 30 minutes of steaming inventory below 0% WR. Additionally, even if the selected SG does go dry, there are still allowances to feed the dry SG, albeit at a reduced feed rate.								
	EAR GENERATING STATION	P-9EO10-044 Page 11 of	Revision 0 15					
	NSATE PUMPS	Continuous Use						
INSTRU	ICTIONS (CONTI	NGENCY ACTION	ONS				
14. IF Steam Ge selected, THEN <u>perfor</u>	enerator #1 was <u>m</u> the following:							
	ose Steam Generator#1 by using the following uttons:							
• s	GA-HS-251							
• s	GB-HS-253							
pressu	Steam Generator #1 re below the condensate lischarge pressure using \DVs.	b.1	PERFORM Appen ADV Operation.	dix 18, <u>Local</u>				
	<u>in</u> Steam Generator #2 re less than 1200 psia.							
THEN of less	am Generator #1 is dry, <u>maintain</u> feed flow rate than or equal to pm (0.5x10 ⁶ lbm/hr).							
Control THEN	g SG 1 Downcomer I valve, t <u>hrottle open</u> V-1113.							
Bypass THEN 1	g SG 1 Downcomer s valve, t <u>hrottle open</u> IV-1143.							
g. <u>GO TO</u>	<u>)</u> Step 16.							

chnical Refe	erence:	40DP-9AP17, Standard Appendices Technical Guideline
4.1.44 Ap	pendix 4	4 - Feeding with the Condensate Pumps
Α.	the SG. still avai which st	pendix will provide guidance to align a Condensate Pump to supply This procedure assumes the normal flow path for supplying the SG is lable. Operator should evaluate each Steam Generator to determine eam generator could successfully provide heat removal capabilities be fed and steamed).
	• SG	Press - SG with lowest pressure will take less time to depressurize.
	• SG	Level - SG with lowest level will take less time to depressurize.
	acc	ity to be fed from the condensate system - Unit can successfully omplish a lineup that would provide condensate flow to the SG and SG can be steamed.
	of M41 operator or by ob Downco Valve(s) flow to t atmospl pressuri The mai steam g Reestab	bendix aligns a flow path to the downcomer region of the SG. If a loss SGA-UV-172/175) or M42 (SGB-UV-130/135) had occurred the may have to verify the position of the Downcomer Isolations locally serving indicated feed flow once the pump is started and the mer Control Valve is opened. Placing the Downcomer Control in manual will provide the operator with the ability to control the feed he steam generators. The cooldown should be performed using the heric dump valves (ADVs), this gives the operator the ability to de- ze one of the SGs and conserve inventory in the non-selected SG. kimum allowed cooldown rate of 100°F/hr may be exceeded during enerator depressurization and subsequent refill with condensate.
	RCS ha	consequences of over cooling. PTS should be a concern anytime the s undergone a rapid cooldown and depressurization, care should be not allow the RCS to heat up or re-pressurize.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Offsite Power: Knowledge of the	Tier	1		
operational implications of the following concepts as they apply to Loss of Offsite Power: Principle of cooling	Group	1		
by natural convection	K/A	()56 AK1.0 ⁻	1
	IR	3.7		

Given the following conditions:

- Unit 1 tripped from 100% power due to a loss of offsite power
- The crew is verifying that natural circulation has been established

As natural circulation flow develops, the crew should expect to see Loop ΔT indicating ____(1)____ 65°F and should expect a delay of approximately ____(2)___ minutes before the RCS temperature response to feeding and steaming adjustments can be verified.

- A. (1) LESS than
 - (2) 1 to 2
- B. (1) LESS than
 - (2) 5 to 15
- C. (1) GREATER than (2) 1 to 2
- D. (1) GREATER than(2) 5 to 15

Pro							
Exp	Explanations:						
Α.	steaming and fee order to maintain	First part is correct. First part is correct. Second part is plausible since frequent adjustments of steaming and feeding are needed when controlling in manual (as is the case in a LOOP/LOFC) in order to maintain parameters within post-trip control bands, however in natural circulation conditions, the plant response to these adjustments will not be seen for ~ 5 to 15 minutes.					
В.	Correct.						
C.	First part is plausible since the driving head in natural circulation is developed by the difference in density between the hot and cold legs, therefore a higher delta-T than with forced circulation is plausible, however delta-T must be < 65°F (full power delta-T) in natural circulation conditions. Second part is plausible since frequent adjustments of steaming and feeding are needed when controlling in manual (as is the case in a LOOP/LOFC) in order to maintain parameters within post-trip control bands, however in natural circulation conditions, the plant response to these adjustments will not be seen for ~ 5 to 15 minutes.						
D.	density between t	he ho er del	ince the driving head in natural circulation is developed by the difference in of and cold legs, therefore a higher delta-T than with forced circulation is ta-T must be < 65°F (full power delta-T) in natural circulation conditions.				

Question Source:		New	
	Х	Bank	
		Modified	
	Χ	Previous NRC Exam	2020 RO Exam Q57

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	14	
Reference Provided:	N	
Learning Objective:		en a loss of forced circulation, identify the parameters used to ermine Natural Circulation flow per 40EP-9EO07.

Technical Reference:	Fechnical Reference: 40DP-9AP13, Blackout Technical Guideline								
PALO VERDE PRO	PALO VERDE PROCEDURE Page 18 of 42								
Blacko	out Technical Guideline	40DP-9AP13	Revision 25						
A. The and from pre gen by a incl tran suc utili stea sec sing	2 - Ensure Natural Circulation a intent of this step is to check that natural d is supporting RCS heat removal. After F sulation flow should develop within 5 - 15 m in a low power). Natural circulation flow w ssure and inventory control are maintained the a combination of factors. The factors which ude decay heat, component elevations, p insfer, loop flow restrictions, and voiding. the that satisfactory natural circulation dec zing density differences between the bott am generator tube sheet. These density of condary heat removal through the steam gle phase natural circulation flow is estable S should indicate the following conditions Loop Delta-T less than normal full power design that the Power/Flow ratio remain of less than 1 ensures that heat can be r establishment of natural circulation. Initi- loop Delta-T to rise but once natural circu- Delta-T will drop.	RCPs are tripped, natura minutes (longer if the plat vill continue as long as R ed and at least one steat ural circulation flow is de chaffect natural circulation orimary to secondary he The component elevation ay heat removal is obtait tom of the core and the f differences occur when p generator tubes is utilized lished in at least one loo s: r Delta-T. This ensures to s less than 1. A Power/f removed from the RCS of ally T _h may increase cau	I nt tripped CCS m termined ion at ns are ned top of the orimary to ed. When op, the op, the low ratio during the using the						

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Vital AC Instrument Bus: Knowledge of	Tier	1		
annunciator alarms, indications, or response procedures	Group	1		
	K/A	0	57 G 2.4.3	1
	IR	4.2		

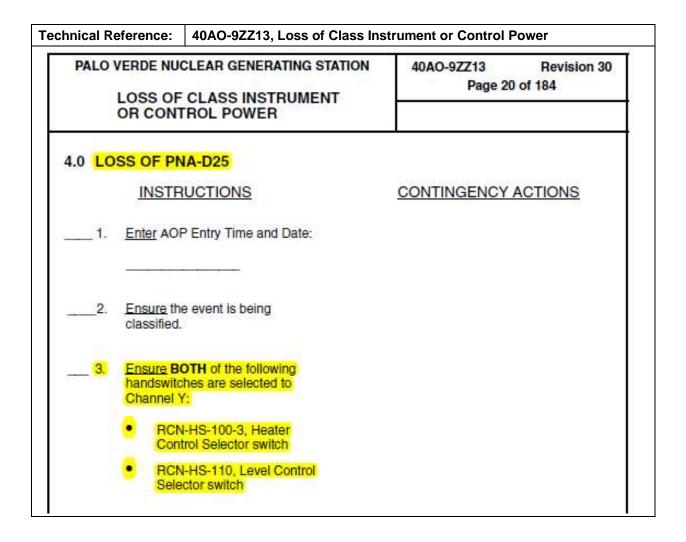
Given the following conditions:

- Unit 3 is operating at 100% power
- RCN-HS-110, Level Control Selector switch, is selected to 'X'
- RCN-HS-100, Pressure Control Selector switch, is selected to 'X'
- RCN-HS-100-3, Heater Control Selector switch, is selected to 'BOTH'

Subsequently:

• A fault caused a loss of Train 'A' Class Instrument Bus, PNA-D25

Per 40AO-9ZZ13, Loss of Class Instrument or Control Power, which of the following switches must be placed in Channel 'Y'?


- 1. RCN-HS-110, Level Control Selector switch
- 2. RCN-HS-100, Pressure Control Selector switch
- 3. RCN-HS-100-3, Heater Control Selector switch
- A. 1 ONLY
- B. 2 ONLY
- C. 1 and 3 ONLY
- D. 2 and 3 ONLY

Pro	posed Answer:	С	
Exp	lanations:		
Α.	Plausible since R placed in Y.	CN-H	IS-100 must be placed in Channel Y, however HS-100-3 must also be
В.	however this input would be unaffect example non-class	it is n ted si ss ins	HS-100 to Channel Y would be required if the X pressure input was lost, on-class and is therefore unaffected. Also plausible that HS-110 and 100-3 nce some instrument power sources are "counter-intuitively" aligned – for trument buses NNN-D11 and NNN-D12. NNN-D11 powers the Channel Y uput and NNN-D12 powers the Channel X input.
C.	Correct.		
D.	Plausible since 1 selector.	00-3 i	s correct, however the level selector is also affected, not the pressure

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:		en a loss of PKA or PKB, describe how PZR pressure is controlled in ordance with 40AO-9ZZ13.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of DC Power: Knowledge of the operational	Tier	1		
implications of the following concepts as they apply to Loss of DC Power: Battery charger equipment and	Group	1		
instrumentation	K/A	(058 AK1.0 ²	1
	IR	2.8		

Given the following conditions:

- Unit 1 is operating at 100% power
- 125 VDC Bus, PKC-M43, is being powered from the 'C' Battery Charger
- 125 VDC Bus, PKA-M41, is being powered from the 'A' Battery Charger
- 120 VAC Bus, PNC-D27, is being powered from Inverter N13

Subsequently:

• The DC Output Breaker from the 'C' Battery Charger to PKC-M43, was inadvertently opened by an instructor conducting a JPM

With NO operator action, 125 VDC Bus, PKC-M43, should be powered from ____(1)____, and 120 VAC Bus, PNC-D27, should be powered from ____(2)____.

- A. (1) the 'C' Battery(2) Inverter PNC-N13
- B. (1) the 'C' Battery(2) Voltage Regulator PNC-V27
- C. (1) the 'AC' Swing Battery Charger(2) Inverter PNC-N13
- D. (1) the 'AC' Swing Battery Charger(2) Voltage Regulator PNC-V27

Pro	posed Answer:	Α		
Ехр	lanations:			
Α.	Correct.			
В.			econd part is plausible as this would be case if power was lost to the 125 or since power is maintained to the DC bus, PNC remains aligned to the	
C.	C. First part is plausible since the AC charger can be aligned to the PKC bus, and this is a more desired alignment than having the bus being powered from the battery, however alignment of swing charger is a manual alignment and does not happen automatically. Second part is correctly a second part is correctly a second part is correctly a second part is correctly and the second part is corre			
D.	desired alignmen swing charger is a plausible as this v	t thar a mar vould	ince the AC charger can be aligned to the PKC bus, and this is a more having the bus being powered from the battery, however alignment of the hual alignment and does not happen automatically. Second part is be case if power was lost to the 125 VDC bus PKC, however since power C bus, PNC remains aligned to the inverter.	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:		
10CFR55.41:		
Reference Provided:		
Learning Objective:	plain the operation of the Class 1E 125 VDC Batteries unde erating conditions.	r normal

Technical Reference:	LOIT 120 VAC Power Lesson Plan

Main Idea

The PN System consists of four independent ungrounded subsystems (Channels A, B, C and D) each containing a DC to AC inverter, a backup AC voltage regulator (i.e., a regulating step down transformer), a static (automatic) transfer switch, a distribution panel and associated connected loads. The inverters are fed from the Class 1E 125V DC Power (PK) System MCCs while the voltage regulators are fed from the Class 1E 480V AC Power (PH) System MCCs. Each of the four subsystems is dedicated to and provides 120V AC instrumentation and control power to one of the four redundant and independent channels of the Reactor Protection (SB) System and the Engineered Safety Features Actuation (SA) System.

Under normal operation of the system, the inverters receive 125V DC power from the PK System. As an alternate (standby or bypass) source of power for operation of the system on loss of an inverter, the voltage regulators receive 480V AC power from the PH System and provide 120V AC, single phase, ungrounded, 60 Hz power (via transfer switches) to the distribution panels and their connected loads.

Transfer from normal to alternate power operation on loss of an inverter is done automatically for all three units. On return of the inverter (normal) power, manual operation is required.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Nuclear Service Water: Knowledge of the	Tier	1		
reasons for the following responses as they apply to the Loss of Nuclear Service Water: The automatic actions	Group	1		
(alignments) within the nuclear service water resulting	K/A	C)62 AK3.02	2
from the actuation of the ESFAS	IR	3.6		

- (1) Nuclear Cooling Water Containment Isolation Valves receive an automatic close signal on a...
- (2) The basis for the actuation in Part 1 is to mitigate the effects of...
- A. (1) CIAS
 - (2) a high energy release inside Containment
- B. (1) CIAS
 - (2) an RCS to NC intersystem Loss of Coolant Accident
- C. (1) CSAS
 - (2) a high energy release inside Containment
- D. (1) CSAS
 - (2) an RCS to NC intersystem Loss of Coolant Accident

Pro	posed Answer:	С				
Exp	Explanations:					
Α.	First part is plausible since CIAS does close CIVs, however the NC CIVs close on a CSAS actuation. Second part is correct.					
В.	First part is plausible since CIAS does close CIVs, however the NC CIVs close on a CSAS actuation. Second part is plausible since the NC CIVs are closed during an intersystem LOCA to minimize the amount of reactor coolant which escapes containment, however a CSAS actuates on high containment pressure which would not occur on an intersystem LOCA.					
C.	Correct.					
D.	LOCA to minimiz	e the	econd part is plausible since the NC CIVs are closed during an intersystem amount of reactor coolant which escapes containment, however a CSAS inment pressure which would not occur on an intersystem LOCA.			

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	8	
Reference Provided:	N	
Learning Objective:		scribe what automatically initiates the Containment Spray Actuation stem (CSAS) and its function.

						-	
Att	tachr	ment C-7	<mark>CSAS Train A</mark>		Page 1 of 1		
Actuation Leg		Component	Handswitch	Actuated Condition	In Actuated Condition (Circle one)	As Left Condition (Circle one)	
1-3		Diesel Generator A	DGA-HS-1	Running	Y/N	Run / Stop	
1-3		Control Room Essential AHU Fan A	HJA-HS-28	Running	Y/N	Run / Stop	
1-3		Essential Chiller / Chilled Water Pump A	ECA-HS-1A	Running	Y / N	Run / Stop	
1-3		Essential Cooling Water Pump A	EWA-HS-1	Running	Y / N	Run / Stop	
1-3		Essential Spray Pond Pump A	SPA-HS-1	Running	Y/N	Run / Stop	
	2-4	Containment Spray A Discharge to Spray Header 1 Valve	SIA-HS-672	Open	Y / N	Open / Closed	
1-3		HPSI Pump A	SIA-HS-1	Running	Y / N	Run / Stop	
1-3		Containment Spray Pump A	SIA-HS-5	Running	Y/N	Run / Stop	
1-3		LPSI Pump A	SIA-HS-3	Running	Y/N	Run / Stop	
1-3		RCP Control Bleed-Off Header to VC Isolation Valve	CHA-HS-506	Closed	Y / N	Open / Closed	
1-3		NCW Containment Downstream Return Isolation Valve	NCA-HS-402	Closed	Y/N	Open / Closed	
1-3		Instrument Air Outside Containment Isolation Valve	IAA-HS-2	Closed	Y / N	Open / Closed	

				••		-			
Attachment C-8 CSAS Train B Page 1									
Actuation Leg		Component	Handswitch	Actuated Condition	In Actuated Condition (Circle one)	As Left Condition (Circle one)			
1-3		Diesel Generator B	DGB-HS-2	Running	Y/N	Run / Stop			
1-3		Control Room Essential AHU Fan B	HJB-HS-29	Running	Y / N	Run / Stop			
1-3		Essential Chiller / Chilled Water Pump B	ECB-HS-2A	Running	Y / N	Run / Stop			
1-3		Essential Cooling Water Pump B	EWB-HS-2	Running	Y / N	Run / Stop			
1-3		Essential Spray Pond Pump B	SPB-HS-2	Running	Y / N	Run / Stop			
	2-4	Containment Spray B Discharge to Spray Header 2 Valve	SIB-HS-671	Open	Y / N	Open / Closed			
1-3		HPSI Pump B	SIB-HS-2	Running	Y / N	Run / Stop			
1-3		Containment Spray Pump B	SIB-HS-6	Running	Y / N	Run / Stop			
1-3		LPSI Pump B	SIB-HS-4	Running	Y / N	Run / Stop			
1-3		Essential Electric Auxiliary Feed Pump	AFB-HS-10	Running	Y / N	Run / Stop			
1-3		RCP Control Bleed-Off Header to VCT Isolation Valve	CHB-HS-505	Closed	Y / N	Open / Closed			
1-3 NCW Containment Upstream Return Isolation Valve			NCB-HS-403	Closed	<mark>Y/N</mark>	Open / Closed			
<mark>1-3</mark>		NCW Containment Upstream Supply Isolation Valve	NCB-HS-401	Closed	Y/N	Open / Closed			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Instrument Air: Ability to evaluate plant	Tier	1		
performance and make operational judgments based on operating characteristics, reactor behavior, and	Group	1		
instrument interpretation	K/A	065 G 2.1.7		
	IR	4.4		

Per 40AO-9ZZ06, Loss of Instrument Air, as IA pressure degrades, power production stability BEGINS to be affected when pressure drops below ____(1)___ psig, and the MOST unstable IA pressure plateau affecting Reactor operation occurs at an IA header pressure of approximately ____(2)___ psig.

- A. (1) 90
 - (2) 50
- B. (1) 90
 - (2) 40
- C. (1) 70 (2) 50
- D. (1) 70 (2) 40

Pro	posed Answer:	D			
Exp	lanations:				
Α.	A. First part is plausible since this is the pressure at which the first IA component fails, however th will only bypass the Demins and will not impact power production. Second part is plausible as is the pressure at which MSIVs and FW Economizer valves fail, however those valves all fail as is.				
В.	First part is plausible since this is the pressure at which the first IA component fails, however this will only bypass the Demins and will not impact power production. Second part is correct.				
C.			econd part is plausible as this is the pressure at which MSIVs and FW , however those valves all fail as-is.		
D.	Correct.				

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	4
10CFR55.41:	4
Reference Provided:	N
Learning Objective:	Determine the major effects on plant operation as instrument air pressure degrades.

Technical Reference: LOIT Loss of Instrument Air Lesson Plan

EO: 1.2 Identify who decides when a reactor trip is required.

Introduction

The Loss of Instrument Air procedure provides guidance on when to consider action, in the form of a note that informs the CRS that IA pressure of less than 70 psig will affect plant power production stability and that the most unstable IA pressure plateau affecting reactor operation will be 40 psig where Letdown, Reactor makeup water, Charging, Pressurizer Spray and Reactor Drain Tank are impacted.

Main Idea

Considering the information provided by the procedure and the actual conditions in the plant, the CRS will decide if either a trip of the Reactor or a downpower to a more stable condition is needed, or if maintaining current conditions is the right thing to do.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Generator Voltage and Electric Grid Disturbances:	Tier	1		
Knowledge of the interrelations between Generator Voltage and Electric Grid Disturbances and the	Group	1		
following: Turbine / Generator control	K/A	077 AK2.07		
	IR	3.6		

Given the following conditions:

- Unit 1 is operating at 100% power
- The Main Generator is bucking 150 MVAR

Subsequently:

- A grid disturbance has resulted in the Main Generator now bucking only 100 MVAR
- The ECC has directed Unit 1 to take action to resume bucking 150 MVAR

In order to accomplish this, the crew will need to ____(1)___ Main Generator ____(2)___ .

- A. (1) raise
 - (2) voltage
- B. (1) raise
 - (2) frequency
- C. (1) lower
 - (2) voltage
- D. (1) lower
 - (2) frequency

Proposed Answer: C					
Exp	Explanations:				
Α.	A. First part is plausible since a load adjustment is required in order to resume initial loading, however in this case, load must be lowered. Second part is correct.				
В.	First part is plausible since a load adjustment is required in order to resume initial loading, however in this case, load must be lowered. Second part is plausible since adjusting frequency will change load, however that would change real load, not reactive load.				
C.	Correct.				
D.			econd part is plausible since adjusting frequency will change load, however load, not reactive load.		

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	x	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	4	
Reference Provided:	Ν	
		scribe how the Main Generator Excitation and Voltage Regulation stem (EX2100e and MarkVIe) supports the operation of the following stems: Main Generator

Technical Reference:	LOIT Main Generator Excitation and Regulation Lesson Plan			
REACTIVE POWER				
	power EXCHANGED between the source and load due to the expansion etic (inductive) and electrostatic (capacitive) fields.			
Units of reactive powe	r are: Vars (Volt Amperes Reactive), K Vars (KiloVars), MVars (MegaVars).			

Technical Reference:	LOIT Main Generator Excitation and Regulation Lesson Plan						
	e meanings of VARs out, VARS in, +Vars, -Vars, boost VARs, buck agging VARs, and leading VARS.						
	Several different terms/designators are used to identify the type of and magnitude of reactive power that a generator is carrying. The terms presented here are used by personnel in the control						
	COMMON TERMS USED WHEN REFERRING TO REACTIVE POWER (VARS).						
 VARS when current is actually lagging the voltage. VARS out. Positive VARS (+VARS). Lagging VARS. Boost. 							
VARS when current is actually leading the voltage.							
 VARS in. Negative VAR Leading VARS Buck. 							

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Dropped Control Rod: Ability to determine and	Tier	1		
interpret the following as they apply to the Dropped Control Rod: Rod position indication to actual rod	Group	2		
position	K/A	003 AA2.01		
	IR	3.7		

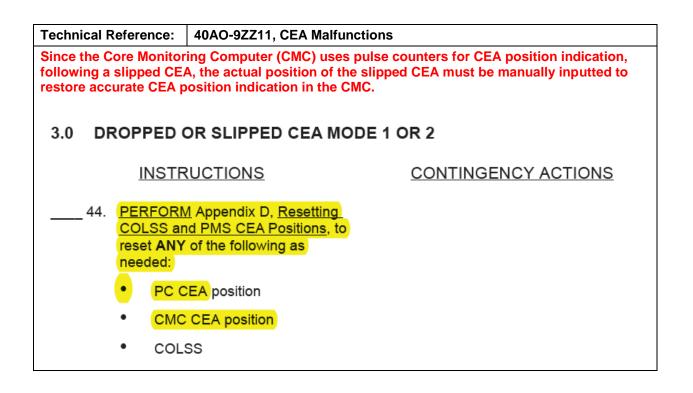
Given the following condition:

 Unit 1 was operating at 100% power when CEA 15, a Group 5 CEA, slipped 50" into the core

Prior to any operator actions being taken, which of the following will provide an ACCURATE CURRENT POSITION of the slipped CEA?

- 1. Core Monitoring Computer
- 2. Core Protection Calculators
- 3. Selected CEA Position indication on B04 (if selected to CEA 15)
- A. 1 ONLY
- B. 2 ONLY
- C. 1 and 3 ONLY
- D. 2 and 3 ONLY

Proposed Answer: B					
Exp	Explanations:				
Α.	Plausible since ro indication is not a		sition is tracked in the CMC, however following a slipped CEA, this ate		
В.	Correct.				
C.	Plausible since rod position is tracked in the CMC and by Selected CEA Position indication, however following a slipped CEA, these indications are not accurate				
D.	Plausible since rod position can be displayed using the Selected CEA Position indication on B04, however following a slipped CEA, this indication is not accurate				


Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	x	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	6
Reference Provided:	N
Learning Objective:	Describe the function of the CEA Position inputs to the Core Protection Calculators.

Technical Reference:	LOIT CEDMCS Lesson Plan				
Since CPCs identify rod height using reed switches, it will still indicate correctly following a slipped CEA					
Core Protection Calc	ulators (CPCs)				
Provides CWP signal	(CEA Withdrawal Prohibit) to CEDMCS				
CEDMCS provides RS	SPT (target CEAs) input to the CPCs				

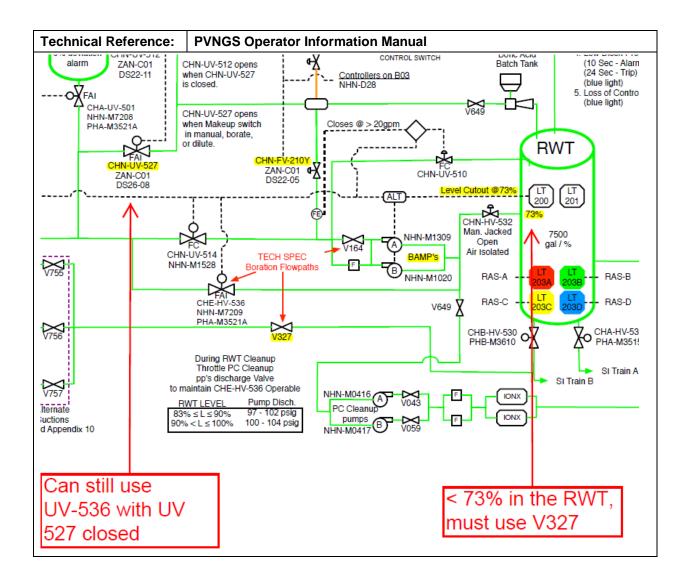
Technical Reference:	LOIT CEDMCS Lesson Plan
command	Is the selected CEA or Group of CEAs to move in the appropriate direction
 Individual CEA S 	Selection switches
of a selec	witches, one labeled TENS and one labeled UNITS; any one individual CEA ted group can be designated for motion with the joystick; also selects which e position is used by the "Selected CEA Position" digital display

Examination Outline Cross-Reference:		RO		SRO
K/A: Emergency Boration: Knowledge of the interrelations between Emergency Boration and the following: When use of manual boration valve is needed	Tier	1		
	Group	2		
	K/A	024 AA2.02		
	IR	3.9		

Given the following conditions:

- Unit 2 has tripped from 100% power
- A boration is required to meet Reactivity Control acceptance criteria in SPTAs

Using ONLY CVCS components, which of the following conditions or failures would require the use of local-manual valve operation in order to borate the RCS?


- A. Refueling Water Tank level of 65%
- B. A loss of BOTH Boric Acid Makeup Pumps
- C. Boric Acid Flow Controller, CHN-FIC-210Y, fails to zero output
- D. Makeup to CHRG PMPS (VCT Bypass), CHN-UV-527, is seized closed

Pro	posed Answer:	Α				
Exp	Explanations:					
Α.	Correct.					
В.	however in this co	onditio	mal boration flowpath utilizes at least one Boric Acid Makeup Pump, on a boration may still be performed using Appendix 103-D using CHE-HV- n be taken from the Control Room			
C.	FIC-210Y), howe	Plausible since the normal boration flowpath goes through CHN-FV-210Y (controlled by CHN-FIC-210Y), however if this controller is not available, the boration may still be achieved from the Control Room using Appendix 103-D using CHE-HV-536.				
D.		borat	mal boration flowpath goes through CHN-UV-527, however if this valve is tion may still be achieved from the Control Room using Appendix 103-D			

Question Source:		New	
	Х	Bank	
		Modified	
	Χ	Previous NRC Exam	2016 NRC Q20

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	Ν	
Learning Objective:		scribe the Control Room controls and indications associated with the ric Acid Makeup Pumps

Т	Fechnical Reference: Appendix 103, RCS Makeup / Emergency Boration						
A	I options to borate from the control room require RWT level > 65%						
	APPENDIX 103: RCS MAKEUP / EMERGENCY BORATION						
	INSTRUCTIONS CONTINGENCY ACTIONS						
	KEY OPERATOR ACTION - Perfect performance of this Appendix will significantly reduce plant risk.						
	1. <u>PERFORM</u> ANY of the following Attachments based on current plant conditions:						
I	Normal Boration Path						
	Attachment 103-A						
	CHN-UV-514						
	Attachment 103-B						
	• (RWT > 73%)						
	BAMP available						
	Attachment 103-C						
	• (RWT > 73%)						
	BAMP NOT available						
	(continue)						

٦	Fechnical R	eference:	Appendix 103, RCS Makeu	nergency Boration	
	All options (to borate fr	om the control room require	e RWT	level > 65%
	APPEND		CS MAKEUP / EMERGE BORATION	Page 3 of 20	
		INSTR	UCTIONS	CONTINGENCY ACTIONS	
	1.	(continued)		
		CHE-HV-5	36		
		Attac	hment 103-D		
		•	RWT > 73%		
			PC Cleanup Pump NOT aligned to RWT		
		Attac	hment 103-E		
		• •	RWT > 92%		
		•	PC Cleanup Pump Recircing RWT		
		 Attac 	hment 103-F		
		• •	83%< RWT <92%		
			PC Cleanup Pump Recircing RWT		
			End of App	endix	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Intermediate Range Nuclear	Tier	1		
Instrumentation: Ability to locate and operate components, including local controls	Group	2		
	K/A	0	33 G 2.1.3	0
	IR	4.4		

During a Reactor startup, the Startup Channel NIs are procedurally directed to be removed from service AS SOON AS ___(1)___ CPS is exceeded

Per 40OP-9ZZ03, Reactor Startup, Turning Off Startup Channel NIs requires component manipulation at the ____(2)____.

- A. (1) 2,000
 - (2) Startup and Control Channel Drawer ONLY
- B. (1) 2,000
 - (2) Startup and Control Channel Drawer AND Board 4
- C. (1) 10,000
 - (2) Startup and Control Channel Drawer ONLY
- D. (1) 10,000
 - (2) Startup and Control Channel Drawer AND Board 4

Proposed Answer:		D				
Ехр	Explanations:					
Α.	First part is plausible as this was the value at which SU channel NIs were removed from service until a few years ago, however now they are left in service until 10,000 cps. Second part is plausible since the Startup Channel NI controls are located at the NI Cabinet, however the process for taking startup channels out of service also ensures that Control Channel NIs are energized and indicated in the control room which is done at Board 4.					
В.	First part is plausible as this was the value at which SU channel NIs were removed from service until a few years ago, however now they are left in service until 10,000 cps. Second part is correct.					
C.	C. First part is correct. Second part is plausible since the Startup Channel NI controls are located at the NI Cabinet, however the process for taking startup channels out of service also ensures that Control Channel NIs are energized and indicated in the control room which is done at Board 4.					
D.	Correct.					

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	N	
Learning Objective:	nor	blain the operation of the Boron Dilution Alarm System (BDAS) under mal operating additions.

Technical Reference: B04A Alarm Response Procedure								
Pa	nel B04A Alarm Responses	40AL-9RK4	4A Revision 56					
		Page	e 1 of 3					
Response	Section		4A12A					
Startup and Contr	ol Channel Trouble		SU AND NTRL CH TRBL					
Point ID Desci	ription		Setpoint					
SEJS1 Start-	Up Control Channel 1 Hi Counts Per Secon	<mark>d</mark>	1x10 ⁴ CPS					
SEJS2 Start-	Up Control Channel 2 Hi Counts Per Secon	<mark>d</mark>	1x10 ⁴ CPS					
None	• None							
MANUAL ACTION								
THEN <u>R</u>	 IF this alarm is received during performance of a Reactor startup, THEN <u>REFER TO</u> the appendix for checking NI overlap and Turning off Startup Channels in ONE of the following procedures: 							
• 40O	P-9ZZ02, Initial Reactor Startup Following F	Refuelings						
• 400	P-9ZZ03, Reactor Startup							

Technical Reference:	40OP-9ZZ03, Reactor Startup		
-	Reactor Startup	400P-9ZZ03	Revision 64
D. <u>Per</u>	form the following to withdraw CEAs:		
1.	Monitor ALL of the following closely due	ring withdrawal:	
	Startup/Control Channel Recorders	3	
	CEAPDS Video Display		
	Log Power Recorders		
	Log Power Meters		
2.	Withdraw CEAs in Manual Sequential, Manager, to the Target CEA Position.	as directed by the React	livity
3.	IF the High CPS alarm is received, THEN perform the following:		
	a) Complete the CEA withdrawal.		
	b) <u>Perform</u> Appendix D - Checking NI Channels.	Overlap and Turning Of	f Startup
	c) Direct Reactor Engineering to re-no	ormalize the 1/M plot.	
-			I

Technical Reference:	40OP-9ZZ03, Reactor Startup					
The initial steps (section 2.2) are performed at B04 in the control room, the following steps (section 2.3, 2.4) are performed at the NI cabinet						
Reactor Startup 400P-9ZZ03 Revision 64						
		Appendix D	Page 3	of 4		
2.2 Perform the	e following in preparation for de-energizi	ng the Startup C	Channels:			
2.2.1 (Position CHAN)	1 SEN-HS-5A, CONTROL/STARTUP CH 1.	HANNEL 1 SEL	ECTOR, t	to CONT		
2.2.2 Position CHAN 2	<u>1</u> SEN-HS-6A, CONTROL/STARTUP CH 2.	HANNEL 2 SEL	ECTOR, t	to CONT		
	EN-JR-5, to display the Control Channels r on the face.	s, using the arro	ows on the	<mark>e circular</mark>		
2.3 <u>Perform</u> the Voltage:	e following at the Startup and Control Ch	annel Drawer, t	o tum off	High		
2.3.1 Press to	he H.V. PERMIT push-button on Startup	Channel 1.				
2.3.2 Observ	e the amber H.V. PERMIT light is off, at	Startup Channe	el 1.			
2.3.3 Press ti	he H.V. PERMIT push-button on Startup	Channel 2.				
2.3.4 Observ	e the amber H.V. PERMIT light is off, at	Startup Channe	el 2.			
2.4 Perform the the Control	e following at the Startup and Control Cha Channels:	annel Drawer, to	o shift indi	cation to		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Fuel Handling Incidents: Knowledge of the	Tier	1		
interrelations between the Fuel Handling Incidents and the following: Radiation monitoring equipment (portable	Group	2		
and installed)	K/A	(036 AK2.02	2
	IR	3.4		

Given the following conditions:

- Unit 2 is in MODE 6
- Fuel off-load is in progress
- An irradiated fuel assembly has been dropped in the vessel resulting in rising radiation levels inside Containment

If Containment radiation levels continue to rise, a CPIAS actuation will be initiated by ____(1)___ and CRVIAS ___(2)___ actuate via an automatic cross-trip.

- A. (1) RU-34, Containment Building Refueling Purge Exhaust Monitor(2) WILL
- B. (1) RU-34, Containment Building Refueling Purge Exhaust Monitor(2) will NOT
- C. (1) RU-37, Power Access Purge Area Monitor(2) WILL
- D. (1) RU-37, Power Access Purge Area Monitor(2) will NOT

Pro	posed Answer:	D			
Exp	lanations:				
Α.	A. First part is plausible since it is a Containment Building Purge RM, however the CPIAS signal is actuated from RU-37. Second part is plausible since multiple ventilation actuations are actuated via cross-trips (ie FBEVAS will cross-trip a CREFAS), however CRVIAS is not actuated from a CPIAS.				
В.	First part is plausible since it is a Containment Building Purge RM, however the CPIAS signal is actuated from RU-37. Second part is correct.				
C.			econd part is plausible since multiple ventilation actuations are actuated via will cross-trip a CREFAS), however CRVIAS is not actuated from a		
D.	Correct.				

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	x	Comprehension or Analysis]

Level of Difficultly:	3	
10CFR55.41:	11	
Reference Provided:	N	
Learning Objective:		scribe controls, actuations and interlocks associated with the diation Monitoring System.

2.30 Containment Building Refueling Purge Exhaust Monitor, (CBPB) SQB-RU-34

The CBPB radiation monitor continuously monitors noble gas radioactivity levels in the containment building purge exhaust. The primary function of this monitor is to provide a high activity alarm associated with abnormal radioactivity levels in the purge exhaust. Although this monitor is included as part of the SRMS, it is not required to meet IE qualification requirements as described in IEEE standard 323-1974 as it has no safety function. The monitor is equipped with a RIC module to provide monitor control and indication in the event of DCU failure. The RIC is mounted in the SRMS panel in the control room with the balance of the safety related monitor RIC units. Because it does not meet the separation requirements from the qualified RIC units, the CBB RIC must meet the requirements for "associated equipment" in accordance with IEEE standard 384-1977 (see drawing 13-M-CPP-001).

The actual engineered safety feature actuation function of isolating the containment purge exhaust (CPIAS initiation) is provided by the power access purge area monitors (PAPA and PAPB) SQA-RU-37 and SQB-RU-38.

This monitor has no operability requirements per the technical specifications and the actual effluent radiation monitor is the plant vent monitor.

2.31 Power Access Purge Area Monitors, SQA-RU-37 (PAPA) and SQB-RU-38 (PAPB)

The PAPA and PAPB are located outside the containment between the power access purge exhaust and refueling purge exhaust ducts. These channels monitor the ducts for purged airborne radioactivity concentrations that could potentially result in an offsite dose exceeding 10CFR100 limits. The primary function of these monitors is to provide a engineered safety feature actuation on a high-high alarm initiating containment building purge supply and exhaust isolation (CPIAS). These monitors are included as part of the SRMS, and meet IE qualification requirements as described in IEEE standard 323-1974. These monitors are equipped with a RIC module to provide monitor control and indication in the event of DCU failure. The RIC is mounted in the SRMS panel in the control room with the balance of the safety related monitor RIC units (see drawing 13-M-CPP-001). Technical specifications apply. Required monitor features for operability are the area monitor itself, its associated ESF actuation capability, and control room indication and annunciation.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Accidental Liquid Radwaste Release: Knowledge	Tier	1		
of the reasons for the following responses as they apply to the Accidental Liquid Radwaste Release: Actions contained in EOP for accidental liquid radioactive-waste	Group	2		
	K/A	()59 AK3.04	1
release	IR	3.8		

Given the following conditions:

- Unit 1 was tripped due to a SGTR on SG #1
- On the trip, a MSSV lifted on SG #1 and would not reseat
- The CRS has transitioned to 40EP-9EO09, Functional Recovery
- SG #1 level is currently 10% WR and slowly lowering

Per 40EP-9EO09, Functional Recovery and 40DP-9AP14, Functional Recovery Technical Guideline, SG #1 should be fed at a MAXIMUM feedrate of ____(1)___ until the U-tubes are covered in order to minimize ____(2)___.

- A. (1) 1000 gpm
 - (2) the thermal stresses on the SG U-tubes
- B. (1) 1000 gpm
 - (2) the magnitude of the radioactive release
- C. (1) 1600 gpm
 - (2) the thermal stresses on the SG U-tubes
- D. (1) 1600 gpm
 - (2) the magnitude of the radioactive release

Pro	posed Answer:	D	
Ехр	lanations:		
Α.	A. First part is plausible as this is the maximum allowable feedrate when feeding a dry SG, however when feeding a faulted/ruptured SG, the maximum allowable feedrate is 1600 gpm. Second part is plausible since the uncovery and recovering of the SG u-tubes would put additional thermal stresses on the tubes and doing so could further degrade the tubes, however the primary reason for covering the tubes is to dilute the reactor coolant which is entering the SG to reduce the magnitude of the radioactive release.		
В.	First part is plausible as this is the maximum allowable feedrate when feeding a dry SG, however when feeding a faulted/ruptured SG, the maximum allowable feedrate is 1600 gpm. Second part is correct.		
C.	would put addition however the prime	hal th ary re	econd part is plausible since the uncovery and recovering of the SG u-tubes ermal stresses on the tubes and doing so could further degrade the tubes, eason for covering the tubes is to dilute the reactor coolant which is entering hagnitude of the radioactive release.
D.	Correct.		

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	x	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3		
10CFR55.41:	12		
Reference Provided:	Ν		
Learning Objective:	and	Given that a SGTR is in progress with a coincident ESD and specific SG and RCS temperatures, levels and pressures, determine which SG will be used to maintain RCS heat removal in accordance with 40EP-9EO09.	

•	Technical Reference:	40EP-9EO09, Functional Reco	ove	ery				
	PALO VERDE NUCL	EAR GENERATING STATION	Τ	40EP-9EO09	Revision 64			
	FUNCTIO	NAL RECOVERY		Page 187 of 246				
				HR-2	Page 9 of 39			
	INSTR	RUCTIONS	(CONTINGENCY	ACTIONS			
		Generator with the tube IY of the following an ESD:						
	 Abnorma pressures 	l steam generator s						
	 Abnorma 	l steam generator levels						
	 Abnorma temperati 	I RCS cold leg ures						
	atmosphere,	ntrollably steaming to at least ONE of the itions is met:						
	has level feedwate	ted Steam Generator being restored by r flow 1360 - 1600 gpm 2X10 ⁵ lbm/hr)						
	has level	ted Steam Generator 45 - 60% [45 - 60%] NR water available to level						

Technical R	Refere	nce:	Appendix 44, Feeding	with the C	ond	ensate Pumps	
	IF St selec	eam Ge ted, N <u>perfo</u> <u>Fast cl</u> MSIVs pushbi	enerator #1 was <u>orm</u> the following: <u>lose</u> Steam Generator #1 by using the following uttons: SGA-HS-251 SGB-HS-253		ona		
	b.	pressu	Steam Generator #1 Ire below the condensate discharge pressure using ADVs.		b.1	PERFORM Appendix 18, Local ADV Operation.	
	C.		<u>ain</u> Steam Generator #2 ire less than 1200 psia.				
	d.	THEN of less	am Generator #1 is dry, <u>maintain</u> feed flow rate than or equal to gpm (0.5x10 ⁶ lbm/hr).				

Technical Reference: 40DP-9AP14, Functional Recovery Technical Guideline							
PALO VERDE PROCEDURE Page 161 of 217							
Functional	Recovery Technical Guideline	40DP-9AP14	Revision 37				
A. In atr AE op Th the atr	15 - If Ruptured SG Is Steaming to Atm the event a SG with a tube rupture is unconsphere, UFSAR section 15.6.3.2 (SGTI V event) assumes that within 16.7 minute erator overrides the delta-p lockout and so is action is needed to fill the SG to above a SG tubes reduces the amount of leaking mosphere, and is instead mixed with the v site dose.	ontrollably steaming to R with a LOOP and a st s from the start of the ru upplies feed to the affect the level of the tubes. O RCS fluid directly goin	uck open ipture, the cted SG. Covering g to				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: High Reactor Coolant Activity: Ability to operate	Tier	1		
and / or monitor the following as they apply to the High Reactor Coolant Activity: Failed fuel-monitoring	Group	2		
equipment	K/A	()76 AA1.04	4
	IR	3.2		

While operating at power, high reactor coolant activity indicative of potential fuel cladding failure is primarily monitored by (1), and a high alarm on this(these) radiation monitor(s) (2) automatically isolate letdown.

- A. (1) Primary Coolant Activity Monitors, RU-150/151(2) WILL
- B. (1) Primary Coolant Activity Monitors, RU-150/151(2) will NOT
- C. (1) Reactor Coolant Letdown Line Radiation Monitor, RU-155D(2) WILL
- D. (1) Reactor Coolant Letdown Line Radiation Monitor, RU-155D(2) will NOT

Pro	posed Answer:	D				
Ехр	Explanations:					
Α.	A. First part is plausible since RU-150/151 do monitor the activity levels of the RCS, however their primary function is to do so during post-accident conditions. Second part is plausible since high activity in the RCS would cause high radiation levels in the aux building, which would be mitigated by letdown isolating, however letdown does not auto isolate due to high RCS activity.					
В.	B. First part is plausible since RU-150/151 do monitor the activity levels of the RCS, however thei primary function is to do so during post-accident conditions. Second part is correct.					
C.	C. First part is correct. Second part is plausible since high activity in the RCS would cause high radiation levels in the aux building, which would be mitigated by letdown isolating, however letdown does not auto isolate due to high RCS activity.					
D.	Correct.					

Question Source:		New	
	Х	Bank	
		Modified	
	x	Previous NRC Exam	2019 NRC Q51

Cognitive Level:	Χ	Memory or Fundamental Knowledge]
		Comprehension or Analysis	

Level of Difficultly:	2	
10CFR55.41:	11	
Reference Provided:	N	
Learning Objective:	RE-	Dlain the operation of the Letdown Process Radiation Monitor (SQN- 155D) under mal operating conditions.

2.42 Primary Coolant Activity Monitors, (PCMA) SQA-RU-150 and (PCMB) SQB-RU-151

The primary coolant activity monitors consist of two independent ionization chamber channels. These monitors meet the monitoring requirements of NUREG-0737 and regulatory guide 1.97. Rev 2 for the circulating coolant activity monitors. The purpose of these monitors is to assess activity levels in the primary coolant under post accident conditions. The detectors are physically located next to a cold leg of each of the steam generators. These monitors are included as part of the SRMS, and meet IE qualification requirements as described in IEEE standard 323- 1974. These monitors are equipped with a RIC module to provide monitor control and indication in the event of DCU failure. The RIC is mounted in the SRMS panel in the control room with the balance of the safety related monitor RIC units. The micro-computers for these monitors are located in the control building to take advantage of the low radiation fields afforded by this category I structure (see drawings 13-J-ZCF-006, 13-J-ZCF-005 and 13-J-ZCF-009).

Although these monitors are part of the SRMS, they have no operability requirements per the technical specifications.

2.43 Personnel Access Monitors, SQN-RU-152, RU-153, and RU-154

These monitors provide radiation exposure rate information for various plant areas under post accident conditions. These monitors meet the monitoring requirements of NUREG-0737 and regulatory guide 1.97, Rev 2 for monitoring areas that may require access post accident. The detectors are physically located as described on the referenced drawings. These monitors are included as part of the PAMS with their micro-computers located in the PAMU. Each channel is equipped with an RIA to provide local indication and alarm in the monitored area near the detector for each channel.

These monitors have no operability requirements per the technical specifications.

2.44 Reactor Coolant Letdown Line Radiation Monitor SQN-RE-155D

This monitor is also referred to as an area monitor (ARM). The fourth available channel of penetration leakage monitor (SQN-RU-155) is used to trend the letdown primary coolant activity. This area radiation monitor provides a continuous recording in the control room of reactor coolant gross gamma activity thus providing a measure of fuel cladding integrity. A high alarm is provided in the control room. Local and remote samples in the CVCS provide the primary means for determining RCS activity. The reactor coolant letdown line monitor serves only as a trending device to warn the operator of possible fuel cladding failure. Verification of the ARM is done by grab sample measurement.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Natural Circulation: Knowledge of the operational	Tier	1		
implications of the following concepts as they apply to the (Natural Circulation Operations): Normal, abnormal	Group	2		
and emergency operating procedures associated with	K/A	CI	E A13 AK1	.2
(Natural Circulation Operations)	IR	3.2		

Given the following conditions:

- Unit 3 is operating at 100% power
- Fast bus transfer was blocked on NAN-S01 and NAN-S02 due to low grid voltage

Subsequently:

- The reactor was tripped due to a SGTR on SG #1
- SPTAs have been completed and the CRS has entered 40EP-9EO04, SGTR
- The crew is preparing to conduct a cooldown and isolate SG #1

Procedurally, the cooldown rate limit (averaged over one hour) PRIOR to isolating SG #1 is ____(1)____, and the cooldown rate limit AFTER SG #1 is isolated is ____(2)____.

- A. (1) 30°F/hr (2) 30°F/hr
- B. (1) 30°F/hr
 - (2) 100°F/hr
- C. (1) 100°F/hr (2) 30°F/hr
- D. (1) 100°F/hr (2) 100°F/hr

Pro	posed Answer:	С				
Exp	Explanations:					
Α.	could potentially	uncou	would be the cooldown rate for the entire cooldown since a rapid cooldown uple the primary and secondary during natural circulation, however the en one SG is isolated.			
В.	both SGs for the the tube break we isolate the rupture	initial orsen ed SC	down rate would be limited prior to isolating the ruptured SG since we use cooldown and a 100° F/hr cooldown rate using the ruptured SG could make , however the strategy is to cooldown as quick as possible to < 540° F to G and then continue at 30° F/hr to ensure the primary and secondary do not h asymmetrical steaming following the SG isolation.			
C.	C. Correct.					
D. Plausible that the cooldown rate would be unaffected following the SG isolation as this is true forced circulation.						

Question Source:		New	
	Х	Bank	
		Modified	
	x	Previous NRC Exam	2016 NRC Q26

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	N	
Learning Objective:	Given that the SGTR EOP is being implemented, describe the SGTR EC mitigation strategy in accordance with 40EP-9EO04.	

8.0 STEAM GENERATOR TUBE RUPTURE (SGTR)

SGTR Step 2

 It is expected that the CRS will periodically review the event with the SM to update information pertaining to the Emergency Plan which might result in changing the event classification.

SGTR Step 5

 If SI throttle criteria is met, then SI flow should not be maximized. The contingency action to restore electrical power to valves and pumps is intended to encompass resetting thermals, relays, or manually closing breakers. It is not intended to include complicated evolutions such as the cross connection buses.

SGTR Step 10

1. The CRS should log REP CET with no RCPs running or Tc with RCPs running in the placekeeper. The secondary operator should commence a rapid cooldown to reduce Th to less than 540°F to get the ruptured SG isolated as rapidly as possible. The cooldown should not stop when 540°F is reached but should continue to SDC entry conditions at a rate not to exceed 100°F in a 1 hour period. Analysis for this event has shown that reactor vessel stresses are acceptable for a 70°F cooldown in 5 minutes followed by a 55 minute soak. So the initial cooldown may be done as rapidly as can be controlled. Logging REP CET or Tc in the placekeeper will give the operator the initial temperature reading to base the cooldown on once the cooldown rate log is begun. During all phases of the cooldown, RCS temperature and pressure should be monitored to avoid exceeding a maximum cooldown rate greater than Technical Specification Limitations. The motor driven auxiliary or main feedwater pumps should be used to reduce the release of potentially radioactive steam from turbine driven pump exhausts. If the motor driven pumps are not available, steam from the intact SG should be used to drive the turbine driven aux feed pump.

Technical Reference: 40EP-9EO04, Steam Generator Tube Rupture									
FBT, the	At this point in the procedure, the most affected SG is already isolated, and due to the failure of FBT, the unit is in natural circulation, therefore the subsequent cooldown rate should be limited to 30°F/hr								
PALO VERDE NUCLEAR GENERATING STATION 40EP-9E004 Revision 33									
ST			ATOR TUBE	RUPTURE		Pag	ge 17 o	f 48	
		INSTR	UCTIONS			CONTINGEN	CY AC	TIONS	
29. <u>Direct</u> the STA to determine that the RCS boron concentration is sufficient to maintain the reactor 1% or more shutdown during the entire cooldown.									
30.	 IF the RCS boron concentration is sufficient to maintain the reactor 1% or more shutdown during the entire cooldown, THEN perform the following: 								
	a.		MAppendix 5, j down Log.	RCS and					
	<mark>b.</mark>	will be pe THEN <u>lin</u>	ral circulation co erformed, <u>hit</u> the cooldown hately 30°F / hr.	rate to					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Generator Tube Leak: Knowledge of the	Tier	1		
operational implications of the following concepts as they apply to Steam Generator Tube Leak: Leak rate vs.	Group	2		
pressure drop	K/A	(037 AK1.02	2
	IR	3.9		

Per 40DP-9AP09, SG Tube Rupture Technical Guidelines, after the most affected SG has been isolated during a SGTR...

- (1) Why is the isolated SG pressure maintained less than 1135 psia?
- (2) Why is D/P between the RCS and the isolated SG maintained at +/- 50 psid?
- A. (1) To minimize the likelihood of lifting a MSSV on the isolated SG
 - (2) To minimize the leak rate to and from the affected SG
- B. (1) To minimize the likelihood of lifting a MSSV on the isolated SG
 - (2) To minimize the pressure stress across the degraded SG U-tube(s) to prevent further degradation
- C. (1) To ensure SBCS remains available by minimizing D/P across the MSIV Bypass Valve
 - (2) To minimize the leak rate to and from the affected SG
- D. (1) To ensure SBCS remains available by minimizing D/P across the MSIV Bypass Valve
 - (2) To minimize the pressure stress across the degraded SG U-tube(s) to prevent further degradation

Pro	posed Answer:	Α			
Exp	lanations:				
Α.	Correct.				
В.	B. First part is correct. Second part is plausible since lower D/P across the degraded U-tubes will lower the likelihood for further degradation, however the reason for maintaining +/- 50 psid is to minimize leak rate.				
C.	First part is plausible since reopening the MSIV bypass to reduce pressure in the isolated SG is preferred over using ADVs, however the reason for maintaining pressure < 1135 psia is to preven lifting a MSSV on the affected SG. Second part is correct.				
D.	preferred over usi lifting a MSSV on	ing A the a the l	ince reopening the MSIV bypass to reduce pressure in the isolated SG is DVs, however the reason for maintaining pressure < 1135 psia is to prevent iffected SG. Second part is plausible since lower D/P across the degraded ikelihood for further degradation, however the reason for maintaining +/- 50 k rate.		

Question Source:		New	
	x	Bank	
		Modified	
	x	Previous NRC Exam	2018 NRC Q23

Cognitive Level:	X	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3		
10CFR55.41:	10		
Reference Provided:	N		
Learning Objective:	Given the SGTR EOP is being used and given plant conditions, determine an appropriate pressure target for depressurization and state the basis for this value in accordance with 40EP-9EO04.		

Technical Reference:	LOIT SGTR Lesson Plan					
Licensed Operator In Title: Steam Ger	itial Training nerator Tube Rupture	Lesson Plan #:	Page: 30 of 53 NKASMC040408			
The critical steps for this HRA are the reduction of RCS temperature to <540F and RCS pressure to <1135psia. These conditions bring reactor coolant pressure less than the lift setpoints of the MSSVs and RCS temperature to a saturation pressure less than the MSSV setpoint. This minimizes the loss of coolant to the secondary side and reduces the possibility of lifting the MSSVs and maximizes the ability to isolate the ruptured SG to stop loss of primary inventory and the release of radioactivity. Subcooling is not expected to be lost with a single tube rupture, so two RCPs will be operating. RCP operation enhances the ability to cool down the plant. Natural circulation causes cooldown to take a much longer time, but this is not critical to ultimate success if the leak rate is minimized.						
Licensed Operator Ini Title: Steam Gen	tial Training erator Tube Rupture	Lesson Plan #:	Page: 42 of 53 NKASMC040408			
ambient cooling cou conditions. Therefor operator should ma tubes covered is de secondary side of th maintained approxim	wed to cool to ambient temper ild take up to 27 hours to cool re, it may not be the most prac- intain level in the indicating ran sirable to minimize the transfe ne Steam Generator through p mately equal (+/- 50 psi) to the y leakage and SG level.	the isolated Steam tical choice. During nge and above the t r of radionuclides fr re-existing cracks. I	Generator to SDC entry the cooldown, the tubes. Maintaining the om the primary to the RCS pressure should be			
Explanation As each method is disc Consider in the discuss Spread of Conta Effectiveness		the advantages and	disadvantages of each.			

Technical Reference:	40DP-9AP09, SGTR Technical Guide	line	
PVNGS NUCLEAR	ADMINISTRATIVE AND TECHNICAL	MANUAL Page 20	of 57
SG Tube	Rupture Technical Guideline	40DP-9AP09	Revision 25
4.5.17 Step	17 - Maintain Isolated Steam Generator	Pressure	
G	he intent of this step is to ensure that high enerator does not cause a Main Steam Sa ncontrolled release.		
	The cooldown that was begun to isolate until SDC entry conditions are met. The sufficient to prevent the isolated SG from the MSSVs.	plant cooldown should b	be
•	The MSIV Bypass Valve and the SBCS condenser. The effectiveness of the byp is, however more desirable to steam the than to steam directly to the environment some of the activity will be retained in the released to the environment and this will path via the off gas monitor.	bass valve is limited by it e isolated SG to the cond nt. By steaming to the co ne condenser rather than	s size. It lenser ndenser i being
•	However, should the pressure in an isol the lift setpoint for the associated MSSV perspective of positive operator control an MSSV sticking open, that the ADV of manually opening the ADV on increasin steam generator from exceeding 1135 p To minimize the unmonitored release of atmospheric steam dump valves on the be minimized.	/s, it is desirable from the and minimizing the poss pen first. This is accompl g pressure to prevent the osia, or locally opening the f radioactivity, use of the	e ibility of ished by isolated he ADV.

Technical Reference	e: 40DP-9AP09, SGTR Technical Guide	eline				
PVNGS NUCLEA	AR ADMINISTRATIVE AND TECHNICA	MANUAL Page 41	of 57			
SG Tube Rupture Technical Guideline 40DP-9AP09 25						
4.5.48 Ste	p 48 - If SIAS, Restore Systems					
A.	Re-energizing SIAS load shed panels is red the non-safety auxiliary feed pump, essenti and other needed loads. Essential lighting a safely restored in a controlled manner after	al lighting, Containment of and other needed loads of	cooling			
	If containment level is not indicated, then no be established in order to maximize recircul atmosphere. This recirculation will minimize accumulations of hydrogen developing. This from the containment in order to stop contai If containment level is indicated, normal con restored. This is due to the potential for sub the inside containment isolation valve moto	lation of the containment e the possibility of local s will also help in removir inment spray as soon as intainment cooling shall no omergence and eventual	ng heat possible. ot be failure of			
4.5.49 Ste	p 49 - Cooldown and Depressurize the Is	olated Steam Generator	r			
A.	This step directs actions necessary to allow SDC entry conditions. The pressure in an is remain high during the cooldown due to the water. Without boiling and recirculation flow secondary side fluid is not well mixed. This SGTR strategy maintains RCS pressure ap the isolated Steam Generators pressure. The minimize the flow of reactor coolant through secondary side of the SG. Thus, RCS inver- of the secondary is minimized and overfilling	solated Steam Generator mal stratification of the se is in the Steam Generato pressure is a concern as proximately equal (+/- 50 his strategy is intended to the ruptured tube(s) to t itory is conserved, contai	will econdary r, the the psi) to psi) to the mination			
	is avoided.					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Functional Recovery: Knowledge of EOP	Tier	1		
mitigation strategies	Group	2		
	K/A	CI	E E09 G 2.	4.6
	IR	3.7		

Which of the following situations would REQUIRE the use of 40EP-9EO09, Functional Recovery?

- 1. Depressurizing a SG to restore feed with Condensate Pumps during a LOAF
- 2. Depressurizing the RCS to inject with LPSI Pumps during a small break LOCA with no HPSI Pumps available
- 3. Aligning NBN-X03 to PBB-S04 during an ESD inside Containment following a failure of NBN-X04 and 'B' EDG with the 'A' CS Pump OOS
- A. 1 ONLY
- B. 2 ONLY
- C. 1 and 3 ONLY
- D. 2 and 3 ONLY

Pro	posed Answer:	D			
Ехр	lanations:				
Α.	A. Plausible since use of Condensate Pumps for restoration of feedwater required use of the Functional Recovery procedure until 3-4 years ago, however now this option is contained in 40EP-9EO06, LOAF				
В.	Plausible since 2 is correct, however 3 is also correct. Plausible that 3 would not require use of the FR since there is at least one train of power and CS available, however if "bus-plus" criteria is not met, the FR must be used to have a required piece of safety equipment which can be powered from its associated bus.				
C.	Plausible since 3 longer the case.	is co	rrect, and 1 did require use of the FR until 3-4 years ago, however that is no		
D.	Correct.				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	Ν	
Learning Objective:		en plant conditions, determine if entry into the FRP is appropriate in cordance with 40EP-9EO09.

Technical Reference:	40EP-9EO06, Loss of Al	l Feed	lwater
PALO VERDE NUC	LEAR GENERATING STAT	40EP-9EO06 Revision 22	
LOSS OF	ALL FEEDWATER	Page 5 of 35	
INST	RUCTIONS		CONTINGENCY ACTIONS
	to at least one Steam ng ANY of the following:	6.1	Perform the following to establish a low pressure feedwater source:
AUXILARY F	EEDWATER		a. IF ALL of the following:
 Appendi 	x 38, <u>Resetting AFA-P01</u>		Auxiliary or Main Feedwater
 Appendi <u>AFB-P0</u> 	x 39, <u>Local Operation of</u> L		Can NOT be restored Offsite power is available
	x 40, <u>Local Operation of</u> I Using Main Steam		Feeding a Steam Generator with a condensate pump is
 Appendi <u>AFN-P0</u> 	x 41, <u>Local Operation of</u> 1		desired THEN <u>PERFORM</u> Appendix 44, Feeding with the Condensate
 Appendi <u>Feedwat</u> RMWT 	x 42, <u>Aligning Aux.</u> er Pumps Suction to		b. IF feeding a Steam Generator with
Appendi	x 112, <u>Manual Operation</u> 201 During a Security		a fire pump is desired, THEN <u>PERFORM</u> Appendix 118, <u>Cross-connect FP to AF</u> .
MAIN FEEDW	ATER	6.2	IF feed to at least one Steam Generator can NOT be restored,
 Appendi 	x 43, <u>Restarting MFPs</u>		THEN GO TO 40EP-9EO09, <u>Functional</u> <u>Recovery</u> to perform ANY of the following:
			 Cross tie electrical buses to restore an Auxiliary Feedwater Pump
			 Align a Condensate Pump to feed the Steam Generator(s)

Technica	al Ref	erence:	40EP-9EO09, Function	al Rec	ove	r y	
PALO VERDE NUCLEAR GENERATING STATION 40EP-9E009 Revision						P-9EO09 Revision 64	
	FUNCTIONAL RECOVERY						Page 100 of 246
		onena				IC-2	Page 2 of 25
		INSTR	RUCTIONS		<u>C</u>	ONTI	NGENCY ACTIONS
3.		i <u>mize</u> SI flo wing:	w by performing the				
	a.	Check th started.	at the SI Pumps have		a.1	<u>Sta</u>	rt idle SI Pumps as necessary.
	b.		at makeup/safety flow is adequate.		b.1	Per	form the following:
			TO Appendix 2, Figures.			1)	Ensure electrical power to valves and pumps.
						2)	Ensure correct control board valve lineup.
	Whi	le in the L	OCA EOP, with no HPSI	_		3)	Ensure operation of ESF auxiliary systems.
	pun lowe	nps and the er pressure	e break size not sufficient t e below LPSI Pump shutof	F 🛛		4)	Start idle Charging Pumps as needed.
	is re	quired to i	n to the Functional Recove ntentionally depressurize t PSI injection			5)	Depressurize the RCS by controlling ANY of the following:
							 RCS Heat Removal (<u>REFER TO</u> the HR success path currently in use)
							 Pressurizer heaters and main or auxiliary spray
							 Charging, letdown, and HPSI flow
							 RCGVS using Success Path PC-2, <u>RCGVS</u>

•	Technical Reference:				
	PALO VERDE NUCI	LEAR GENERATING STATION	40EP-9EO09	Revision 64	
	FUNCTIO	NAL RECOVERY	Page	52 of 246	
	(Une inc		MVAC-1	Page 1 of 10	
	9.0 MAINTENAN	CE OF VITAL AUXILIARIES	AC		
	SUCCESS PATH:	MVAC-1; Offsite Power			
	INSTR	RUCTIONS		Y ACTIONS	
	1. <u>Open</u> the Plac	ekeeper.			
		<u>NOTE</u>			
	Appendix 51, E restoring the ele	lectric Plant Single Line Diagram, ectric plant.	is available as a ref	erence when	
	 IF at least one vital 4.16 kV AC bus is energized from a SBOG, THEN GO TO step 8. 				
	from offsite po AND the equip Safety Functio the energized THEN <u>perform</u> offsite power to a. IF PBB-S THEN <u>G</u> b. IF PBA-S	ment needed to maintain ons is NOT available on bus, the following to cross-tie o the de-energized bus: 604 is to be energized, <u>O TO</u> step 10. 603 is to be energized, <u>O TO</u> step 11.	This concept is referred to as "bus plus" when one bus is energized but the required equipment to mitigate the event is on the opposite train bus. This cross-tie of power is only performed in the Functional Recovery		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Coolant Pump: Ability to monitor	Tier	2		
automatic operation of the RCPS, including: Seal Injection flow	Group	1		
	K/A		003 A3.01	
	IR	3.3		

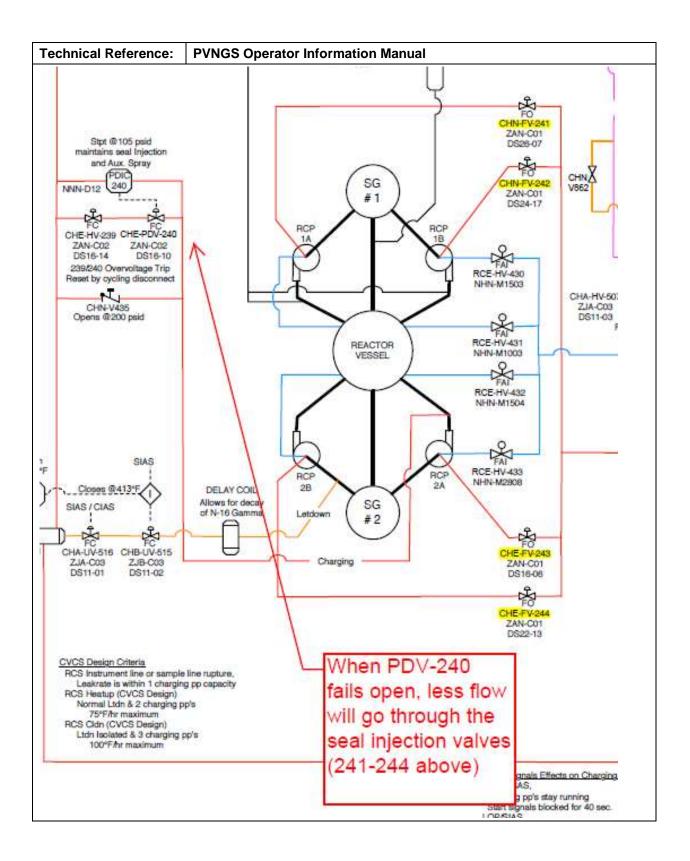
Given the following conditions:

- Unit 3 is operating at 100% power
- All Seal Injection Flow Controllers are in AUTO

Subsequently:

• A failure causes CHN-PDV-240, Charging Line to RC Loop 2A Valve, to fail FULL OPEN

In response to this failure, the OUTPUT on the Seal Injection Flow Controllers will ____(1)___ in an effort to ____(2)___ Seal Injection flow.


- A. (1) rise
 - (2) raise
- B. (1) rise
 - (2) lower
- C. (1) lower
 - (2) raise
- D. (1) lower
 - (2) lower

Pro	roposed Answer: C					
Exp	lanations:					
Α.			eeds to be raised following the failure, however in order to achieve this, seal out needs to lower.			
В.	Plausible since the seal injection flow controllers are reverse acting, however the initial failure will cause seal injection flow to lower, not rise.					
C.	Correct.					
D.	Plausible since the flow controller output will lower, however this is in an effort to raise flow.					

Question Source:	х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	4
10CFR55.41:	3
Reference Provided:	N
Learning Objective:	Describe the automatic functions associated with the RCP Seal Injection Isolation Valve

Technical Reference:	Fechnical Reference: 400P-9CH03, Reactor Coolant Pump Seal Injection System								
PALO VERDE PROCEDURE Page 12 of 108									
Reactor Coolant Pump Seal Injection System 400P-9CH03 31									
CHN-PDI	<u>NOTE</u> With RCS pressure less than normal operating pressure, adjustment of CHN-PDIC-240, Charging Header Backpressure Controller, may be necessary to establish the desired flowrate.								
lowerin	6.1.8 Slowly <u>open</u> the seal injection to reactor coolant pump flow control valves by lowering the manual output on ALL of the following individual flow control valves. (desired flow rate is 6.0 to 7.5 gpm per pump)								
_• CH	 CHN-FIC-241, Seal Injection to RCP 1A 								
_• сн	 CHN-FIC-242, Seal Injection to RCP 1B 								
_• сн	 CHN-FIC-243, Seal Injection to RCP 2A 								
CHN-FIC-244, Seal Injection to RCP 2B									

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Chemical and Volume Control: Ability to monitor	Tier	2		
automatic operation of the CVCS, including: Letdown and charging flows	Group	1		
	K/A		004 A3.14	
	IR	3.4		

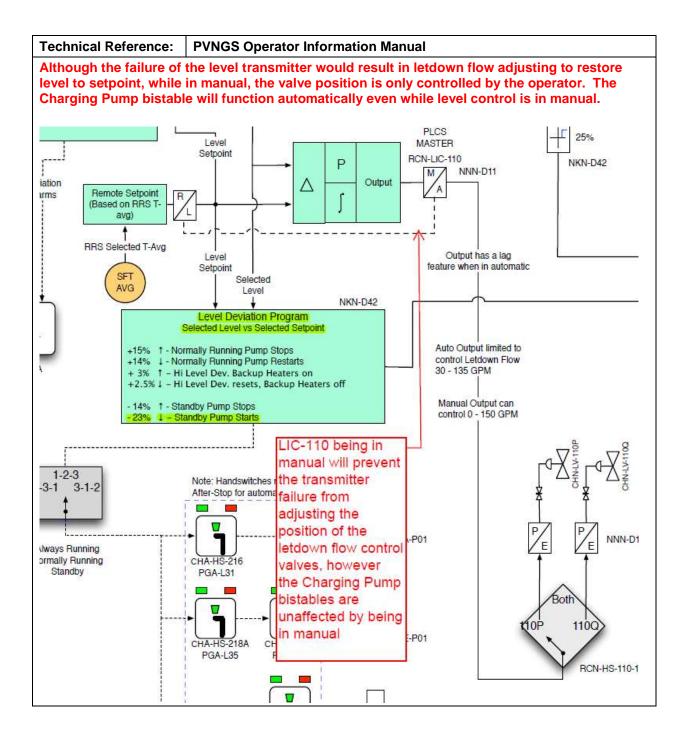
Given the following conditions:

- Unit 2 is operating at 15% Reactor power
- RCN-LIC-110, Level Setpoint Control, is in LOCAL-MANUAL, with a setpoint of 40%
- RCN-HS-110, Level Control Channel X/Y Selector, is selected to 'X'

Subsequently:

• RCA-LI-110X, Level Control Channel X, failed to 0%

With NO operator action, the Backup Charging Pump should ____(1)___ and letdown flow should ____(2)___ .


- A. (1) start
 - (2) rise
- B. (1) start
 - (2) remain constant
- C. (1) remain off
 - (2) rise
- D. (1) remain off
 - (2) remain constant

Pro	posed Answer:	В		
Exp	planations:			
Α.			econd part is plausible since selected pressurizer level is now 40% below LIC-110 in manual, letdown flow will not change.	
В.	Correct.			
C.	First part is plausible since the LIC-110 is in manual, however the charging pump auto start/stop bistables are not depended on the auto/manual selection on LIC-110. Second part is plausible since selected pressurizer level is now 40% below setpoint, however with LIC-110 in manual, letdown flow will not change.			
D.			ince the LIC-110 is in manual, however the charging pump auto start/stop nded on the auto/manual selection on LIC-110. Second part is correct.	

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	x	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	N	
Learning Objective:	Describe the automatic features associated with the Pressurizer Level Control System Bistables.	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Residual Heat Removal: Knowledge of the effect of	Tier	2		
a loss or malfunction on the following will have on the RHRS: RHR heat exchanger	Group	1		
Kinko. Kink heat exchanger	K/A	005 K6.03		
	IR	2.5		

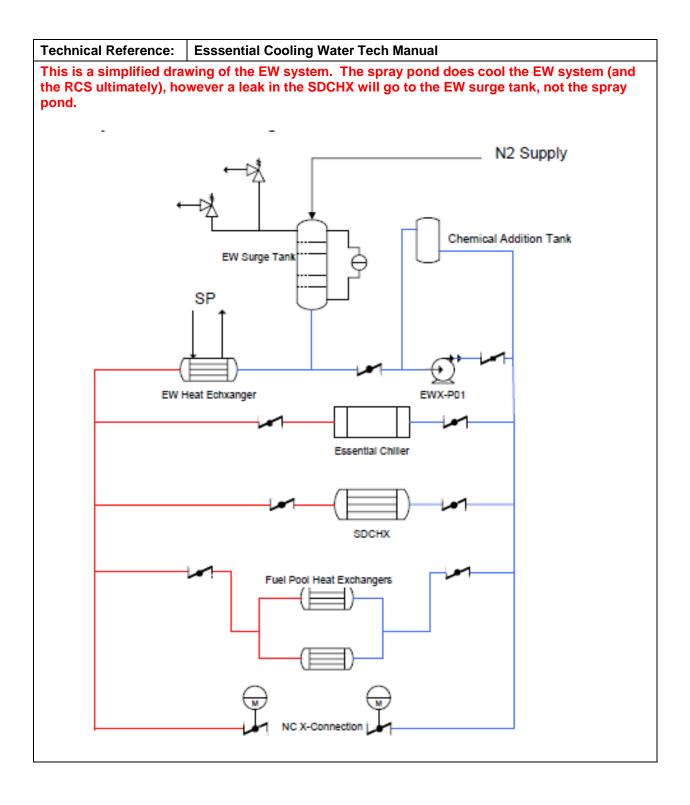
Given the following conditions:

- Unit 2 is in MODE 4
- SDC is in service using Train 'A' LPSI Pump and Train 'A' Auxiliaries

Subsequently:

• A tube leak occurred in the 'A' SDCHX

The tube leak will cause level to change in the Train 'A' (1), and the crew should place the Train 'B' SDCHX in service per (2).


- A. (1) Spray Pond
 - (2) 40EP-9EO09, Functional Recovery
- B. (1) Spray Pond(2) 40EP-9EO11, Lower Mode Functional Recovery
- C. (1) EW Surge Tank(2) 40EP-9EO09, Functional Recovery
- D. (1) EW Surge Tank
 - (2) 40EP-9EO11, Lower Mode Functional Recovery

Pro	Proposed Answer: D				
Ехр	lanations:				
Α.	A. First part is plausible since the Spray Pond is the ultimate cooling source for the SDCHX, however the Spray Pond is used to cool the EW system which is then used to cool the SDCHX. Second part is plausible since the functional recovery procedure is used to mitigate events which initiate in MODE 3 or 4, however that is only true if LTOP is not in service and with SDC in service, LTOP is also in service.				
В.	First part is plausible since the Spray Pond is the ultimate cooling source for the SDCHX, however the Spray Pond is used to cool the EW system which is then used to cool the SDCHX. Second part is correct.				
C.					
D.	Correct.				

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	Ν	
Learning Objective:	Describe the design characteristics of the Shut Down Cooling Heat Exchangers.	

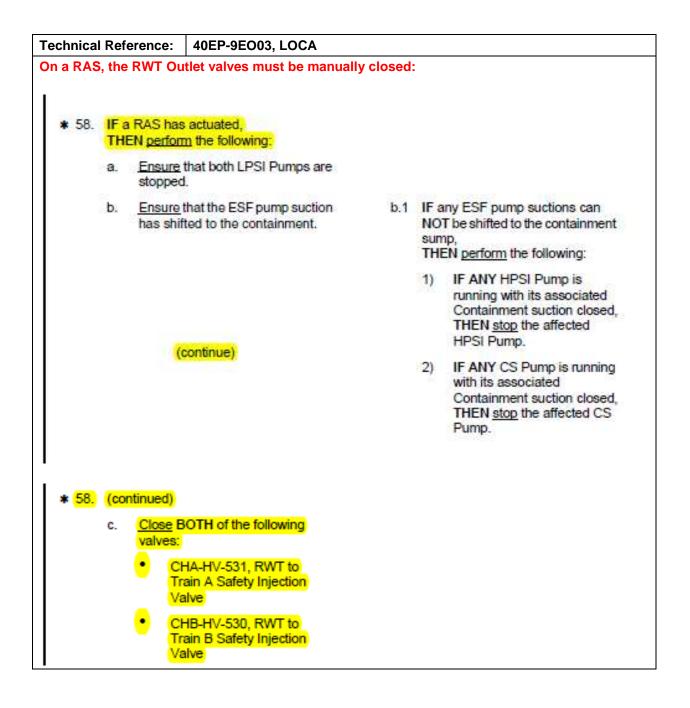
Technic	cal Ref	ference:	40EP-9EO09, Functional Recove	ry					
PA	LO VE	RDE NUC	LEAR GENERATING STATION	40EP-9EO09	Revision 64				
		FUNCTIO	ONAL RECOVERY	Page 2	of 246				
1.0	ENT		DITIONS						
	1.	An Exter	nded Loss Of All AC Power (ELAP) is	NOT in progress					
	and								
	2.	The Star	ndard Post Trip Actions have been pe	erformed.					
		or							
		BOTH of	f the following conditions exist:						
	Event initiated from Mode 3 or Mode 4								
	LTOP is NOT in service								

echni	cal Re	eference:	40EP-9EO11, Lower Mode Funct	ional Recovery					
			LEAR GENERATING STATION	40EP-9EO11 Revision Page 2 of 370					
				Entry	Page 1 of 7				
1.0	EN.		DITIONS						
The Lower Mode Functional Recovery Procedure may be entered when ALL of t following conditions exist:									
	1. The unit is in Mode 4, 5, or 6 with LTOP in service.								
		and							
	2.	An Eme	rgency Operating Procedure is NOT						
		and							
	3.	ANY of t	he following conditions exist:						
		• T	he CRS directs entering the LMFR						
			ny Lower Mode Safety Function Stat OT met	us Check Acceptan	ce Criteria are				
		• A	n Abnormal Operating Procedure dir	ects entering the LN	//FR				
		• A	n Alarm Response Procedure directs	s entering the LMFR	2				
			ny condition, or pattern of symptoms rocedure(s) in use (Abnormal, Alarm	ms that are not being mitigated by the rm or Normal)					
			ny condition, or pattern of symptoms e identified	for which no proced	lural guidance can				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Emergency Core Cooling: Knowledge of ECCS	Tier	2		
design feature(s) and/or interlock(s) which provide for the following: Recirculation of minimum flow through	Group	1		
pumps	K/A		006 K4.06	
	IR	2.7		

- (1) Per 73ST-9SI11, Low Pressure Safety Injection Pumps Miniflow Inservice Test, the MAXIMUM amount of time a LPSI Pump may be run on miniflow recirculation is...
- (2) In the event of a valid RAS actuation, the LPSI Pump miniflow valves...
- A. (1) 30 minutes(2) will automatically close
- B. (1) 30 minutes(2) must be manually closed
- C. (1) 60 minutes
 - (2) will automatically close
- D. (1) 60 minutes(2) must be manually closed

Proposed Answer: C							
Exp	lanations:						
Α.	First part is plausible since there are pumps which will be damaged due to overheating in 30 minutes (like RCPs on a loss of cooling), however LPSI Pumps may run for up to 60 minutes on miniflow prior to damage occurring. Second part is correct.						
В.	First part is plausible since there are pumps which will be damaged due to overheating in 30 minutes (like RCPs on a loss of cooling), however LPSI Pumps may run for up to 60 minutes on miniflow prior to damage occurring. Second part is plausible since the RWT outlet valves must be manually closed following a RAS, however the LPSI Pump miniflow valves will automatically close.						
C.	Correct.						
D.			econd part is plausible since the RWT outlet valves must be manually 6, however the LPSI Pump miniflow valves will automatically close.				


Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	x	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	8
Reference Provided:	Ν
Learning Objective:	Describe what will automatically initiate a Recirculation Actuation Signal (RAS) and its function.

Technical Reference: 73ST-9SI11, LPSI Pumps Miniflow - IST								
PALO VERDE PROCEDURE Page 10 of 105								
Low Pressure Saf	ety Injection Pumps Miniflow - Inservice Test	73ST-9SI11	Revision 39					
3.2.2 Pum 3.2.3 Free Safe	ons Flevel must be greater than 5% at all times poperations shall NOT exceed 1 hour on uent starting may result in serious damage ty Injection (LPSI) Pump. Anytime the mot titutes a start. All of the following limitation	miniflow recirculation. to the motor on a Low F or windings are energized						

Fech	echnical Reference: 40AO-9ZZ11, Inadvertent PPS-ESFAS Actuations										
At	tachr	ment C-11	<mark>RAS Train A</mark>)		Page 1 of 1					
	ation eg	Component	Handswitch	Actuated Condition	In Actuated Condition (Circle one)	As Left Condition (Circle one)					
1-3		HPSI Pump A Recirc Valve	SIA-HS-666	Closed	Y / N	Open / Closed					
1-3		Containment Spray Pump A Recirc Valve	SIA-HS-664	Closed	Y / N	Open / Closed					
1-3		LPSI Pump A Recirc Valve	SIA-HS-669	Closed	Y/N	Open / Closed					
	2-4	LPSI Pump A	SIA-HS-3	Stopped	Y/N	Run / Stop					
1-3		Train A Pumps Combined Recirc to RWT Valve	SIA-HS-660	Closed	Y / N	Open / Closed					
1-3		Containment Sump to Safety Injection Train A Valve	SIA-HS-673	Open	Y / N	Open / Closed					
1-3		Containment Sump to Safety Injection Train A Valve	SIA-HS-674	Open	Y / N	Open / Closed					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Relief/Quench Tank: Ability to	Tier	2		
manually operate and/or monitor in the control room: Recognition of leaking PORV/code safety	Group	1		
	K/A		007 A4.10	
	IR	3.6		

When a Pressurizer Safety Valve opens, the two RED PSV Indicating Lights on B04 will illuminate when the valve is \sim ___(1)___ open as sensed by installed ____(2)___ monitors.

- A. (1) 5% and 50%
 - (2) acoustic
- B. (1) 5% and 50%
 - (2) temperature
- C. (1) 9% and 90% (2) acoustic
- D. (1) 9% and 90%
 - (2) temperature

Pro	posed Answer:	С					
Exp	lanations:						
Α.	First part is plausible since there are two indications of valve status and 50% open on most valves equates to 90% flow, however the actual lights indicate at 9% and 90% open. Second part is correct.						
В.	First part is plausible since there are two indications of valve status and 50% open on most valves equates to 90% flow, however the actual lights indicate at 9% and 90% open. Second part is plausible since temperature sensors are used in the tailpipe to indicate valve leakby, however those sensors trigger the PZR TRBL alarm, but are not used for VPI for the PSVs.						
С.	Correct.						
D.		kby, I	econd part is plausible since temperature sensors are used in the tailpipe to nowever those sensors trigger the PZR TRBL alarm, but are not used for				

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	3		
10CFR55.41:	3		
Reference Provided:	Ν		
Learning Objective:		plain the operation of the Pressurizer under normal operating aditions.	

Technical Reference:	Reactor Coolant System Lesson Plan
	provided with position indication on B04. This position indication is driven by hich sense steam flow through the valve. On B04, the operator has the
GREEN 0% L	ED - Indicates valve is closed.
RED 9% LED	- Indicates the valve is open greater than 9%.
RED 100% LE	ED - Indicates the valve is fully open.
For greater accuracy powered from NNN-	r, indication is also provided in a panel behind B05. These indicators are D11.

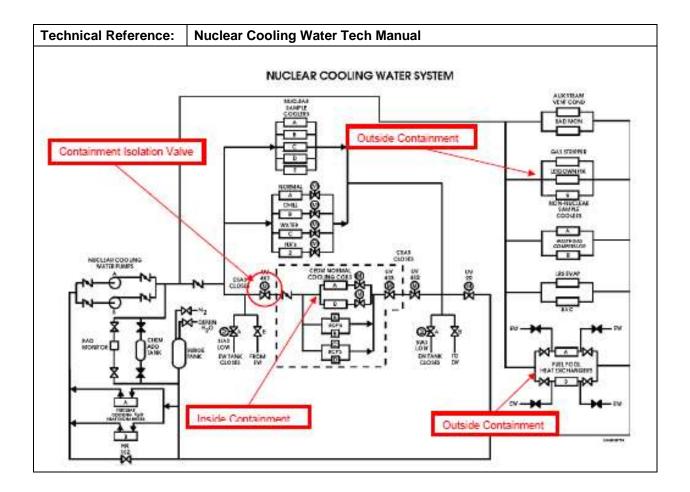
echnical Re	erence: 4A01A Alarm Response Procedure	9			
PALO VER	PALO VERDE PROCEDURE Page 6 of 420				
	Panel B04A Alarm Responses	40AL-9RK4A	Revision 56		
		Page 1 of 5			
Respo Pressurize	nse Section	<mark>4A0</mark> PZ TR	R		
Point ID	Description	Setp	oint		
RCTS106	Pressurizer Relief to Reactor Drain Tank Temp I	Hi (150°	F		
RCTS107 Pressurizer Relief to Reactor Drain Tank Temp Hi 150°F					
RCTS108 Pressurizer Relief to Reactor Drain Tank Temp Hi 150°F					
RCTS109	Pressurizer Relief to Reactor Drain Tank Temp I	Hi 150°	F		
	(Allowable alarm setpoint is between 150°F and	1 205°F)			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Component Cooling Water: Knowledge of the	Tier	2		
effect that a loss or malfunction of the CCWS will have on the following: Loads cooled by CCWS	Group	1	-	
on the following. Loads cooled by CCWS	K/A		008 K3.01	
	IR	3.4		

Given the following conditions:

- Unit 2 is operating at 100% power
- NCW Containment Upstream Supply Isolation Valve, NCB-UV-401, has spuriously closed and cannot be reopened

Which of the following describe the effect of this valve closure?


- 1. CEDM ACU outlet air temperature will rise
- 2. NCW temperature from the Letdown Heat Exchanger will rise
- 3. NCW temperature from the Nuclear Sample Coolers will rise
- A. 1 ONLY
- B. 2 ONLY
- C. 1 and 3 ONLY
- D. 2 and 3 ONLY

Pro	Proposed Answer: A				
Exp	lanations:				
Α.	Correct.				
В.	B. Plausible since the LDHX is cooled by NC and portions of the letdown and NC systems are located inside containment, however the LDHX and associated NC piping are located upstream of NCB-UV-401.				
C.	CEDM ACU air temp is correct. Plausible since the NC sample coolers are a priority load cooled by NC, and all loads inside containment are priority loads, however the sample coolers are still cooled following the closure of UV-401.				
D.	systems are loc are located upsi priority load coo	ated trean led b	nce the LDHX is cooled by NC and portions of the letdown and NC inside containment, however the LDHX and associated NC piping of NCB-UV-401. Plausible since the NC sample coolers are a by NC, and all loads inside containment are priority loads, however are still cooled following the closure of UV-401.		

Question Source:		New	
	x	Bank	
		Modified	
	x	Previous NRC Exam	2016 NRC Q35

Cognitive Level:		Memory or Fundamental Knowledge
	х	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	4
Reference Provided:	N
Learning Objective:	Describe the Control Room indications associated with the Nuclear Cooling Water system.

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Pressurizer Pressure Control: Knowledge of bus	Tier	2	
power supplies to the following: Controller for PZR spray valve	Group	1	
Spray varve	K/A	010 K2.02	2
	IR	2.5	

Which of the following is the source of power to Pressurizer Spray Controller, RCN-PIK-100?

- A. Class 120 VAC power
- B. Class 125 VDC power
- C. Non-Class 120 VAC power
- D. Non-Class 125 VDC power

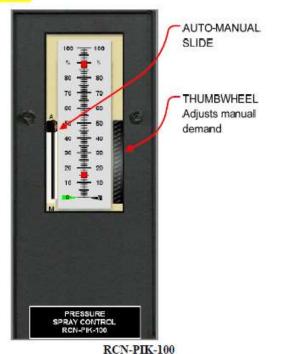
Pro	posed Answer:	С				
Exp	Explanations:					
Α.	Plausible since P	IK-10	0 is powered by 120 VAC, however it is non-class, not class powered.			
В.	Plausible since Aux Spray Valves are powered by class 125 VDC power, however the PIK-100 is powered by non-class 120 VAC power					
C.	Correct.					
D.	Plausible since PIK-100 is non-class, and power to the Aux Spray Valves is DC, however PIK-100 is powered from 120 VAC non-class power					

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	x	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	N	
Learning Objective:	Describe the various other operating systems the Non-Class IE Instrument AC System (NN) supports.	

Technical Reference: PPCS Tech Manual


RCN-PIK-100 is powered from NNN-D12, which is a non-class 120 VAC bus

2.12 Spray Valve Controller RCN-PIK-100

RCN-PIK-100, located on B04, provides the modulation signal to position the selected spray valve(s). An "A"-"M" (auto-manual) slide switch allows the operator to select the controller mode of operation. The spray valve controller has a 0-100% vertical meter that displays dual indications. A green needle indicates the auto demand signal to the spray valves. This signal is generated by RCN-PIK-100 in response to input from RCN-PIC-100. A 33% to 50% input from RCN-PIC-100 yields a 0% to 100% auto demand signal. The black needle indicates the manual demand setting. A thumbwheel allows adjustment of the manual demand.

In automatic, the auto demand signal developed from RCN-PIC-100 input is fed to the electropneumatic converter(s) to position the spray valve(s). In manual, the auto demand remains indicated on the vertical meter but is blocked from the spray valves. A signal based on thumbwheel position is then fed to the electro-pneumatic converter(s). There is no indication of actual controller output in the manual mode.

RCN-PIK-100 receives power from NNN-D12. A loss of power to this controller wil result in the controller failing to zero output (0 ma). This will result in the closure of both spray valves.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Protection: Knowledge of the operational	Tier	2		
implications of the following concepts as the apply to the RPS: Power Density	Group	1		
	K/A		012 K5.02	
	IR	3.1		

Given the following conditions:

- Unit 2 is preparing to commence a Reactor Startup
- DNBR and LPD trips are bypassed at the CPCs

During the startup, the LPD trip bypasses (1) removed, and after the bypasses have been removed, the Reactor will trip if LPD rises to a MINIMUM of (2).

- A. (1) must be manually
 - (2) 13.1 kw/ft
- B. (1) must be manually(2) 21 kw/ft
- C. (1) will be automatically (2) 13.1 kw/ft
- D. (1) will be automatically(2) 21 kw/ft

Pro	posed Answer:	D	
Exp	lanations:		
Α.	automatically con	ne ou	nce the LPD trips must be manually bypassed, however they will t of bypass as power rises. Second part is plausible since 13.1 kw/ft is the however the LPD trip is 21 kw/ft.
В.	First part is plausible since the LPD trips must be manually bypassed, however they will automatically come out of bypass as power rises. Second part is correct.		
C.	First part is correct. Second part is plausible since 13.1 kw/ft is the LHR limit in the COLR, however the LPD trip is 21 kw/ft.		
D.	Correct.		

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	x	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	7
Reference Provided:	N
Learning Objective:	List the parameters and setpoints that will cause PPS actuation.

Fechnical Reference:	LOIT Plant Protection System Lesson Plan
DNBR/LPD Bypass	
reactor startup, since DNBR and LPD trips. may be bypassed sim must be manually inse safety channel NI pow	ss defeats both the DNBR and LPD trips from the CPCs. It allows a normal an abnormal CEA configuration, such as shutdown CEAs inserted, will cause Each protection channel must be bypassed individually. All four channels ultaneously. In accordance with 400P-9ZZ03 (Outage GOP) the bypass erted from key switches at the remote CPC modules on B05 when ex-core ver is less than 1x10-5% power. The bypass will be automatically removed ver increase above 10-4%. It may also be manually removed.

Technical Refe	erence:	B05A Alarm Response Procedure			
	Panel I	305A Alarm Responses	40AL-9RK5A	Revision 2	
			Page 1 of 5		
Respor	ıse S	ection	5A140	:	
High Local P	ower Der	nsity Channel Trip	HI LPD CH TRIP		
Point ID	Descri	ption	Setpoint		
SBTA03 SBTB03 SBTC03 SBTD03	Hi Loc Hi Loc	al Power Density Channel A Trip al Power Density Channel B Trip al Power Density Channel C Trip al Power Density Channel D Trip	21.0 kw/ft 21.0 kw/ft 21.0 kw/ft 21.0 kw/ft		

Technical Reference:	PVNGS Core Operating Limits Report	
3.2.1 - Linear Heat Rate (LHR)		
The linear heat rate limit of 13.1 kW/ft shall be maintained.		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Engineered Safety Features Actuation: Ability to	Tier	2		
(a) predict the impacts of the following malfunctions or operations on the ESFAS; and (b) based Ability on those	Group	1		
predictions, use procedures to correct, control, or	K/A		013 A2.01	
mitigate the consequences of those malfunctions or operations; LOCA	IR	4.6		

Given the following conditions:

- Unit 3 is operating at 2% power
- Both SGs are being fed from AFN-P01

Subsequently:

- The Reactor was tripped due to a LOCA
- Pressurizer level is 15% and lowering
- Pressurizer pressure is 1800 psia and lowering
- SG levels are both 20% NR and slowly lowering
- SG pressures are 1150 psia and slowly lowering
- Containment pressure is 2.0 psig and slowly rising

With NO operator action, which of the following describes the current status of the Auxiliary Feedwater Pumps and feed to the SGs?

Auxiliary Feedwater Pump(s) ____(1) ____ is(are) running and the SGs are ____(2) ____.

- A. (1) AFB-P01 ONLY
 - (2) being fed
- B. (1) AFB-P01 ONLY(2) NOT being fed
- C. (1) AFN-P01 AND AFB-P01(2) being fed
- D. (1) AFN-P01 AND AFB-P01(2) NOT being fed

Pro	posed Answer:	В	
Exp	lanations:		
Α.	First part is correct (AFN-P01 trips on SIAS). Second part is plausible since the SGs were being fed before the LOCA and there is still an AFW Pump running, however the feed paths are different and no actuation at this point would reinitiate feed to the SGs.		
В.	Correct.		
C.	(actuates at 1837 part is plausible s	psia ince t	ince AFN-P01 was running and AFB-P01 starts on the SIAS actuation – RCS pressure), however the SIAS actuation also trips AFN-P01. Second the SGs were being fed before the LOCA and there is still an AFW Pump eed paths are different and no actuation at this point would reinitiate feed to
D.			nce AFN-P01 was running and AFB-P01 starts on the SIAS actuation – RCS pressure), however the SIAS actuation also trips AFN-P01. Second

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	Ν	
Learning Objective:	Des	scribe the automatic functions / interlocks associated with AFN-P01.

Technical Reference: 40AO-9ZZ17, Inadvertent PPS-ESFAS Actuations

The SIAS, which actuates when RCS pressure is < 1837 psia, will trip AFN-P01 and start AFB-P01

Attachment C-13		SIAS Train A		Page 3 of 4			
Actuation Leg		Component	Handswitch	Actuated Condition	In Actuated Condition (Circle one)	As Left Condition (Circle one)	
1-3		SIT 1A Outlet to RC Loop 1A Valve	SIA-HS-634	Open	Y/N	Open / Close	
1-3		SIT 1B Outlet to RC Loop 1B Valve	SIA-HS-644	Open	Y/N	Open / Close	
1-3		Misc Drain Header To RWT Valve	SIA-HS-682	Closed	Y/N	Open / Close	
1-3		Letdown to Regen Hx Isolation Valve	CHA-HS-516	Closed	Y/N	Open / Close	
	2-4	Backup Heaters Bank	RCA-HS-100-4	Tripped	Y/N	Tripped / Closed	
	2-4	S/U Aux Feed Pump	AFA-HS-11	Stopped	Y/N	Run / Stop	
	2-4	Condensate Transfer Pump A	CTA-HS-15	Running	Y/N	Run / Stop	

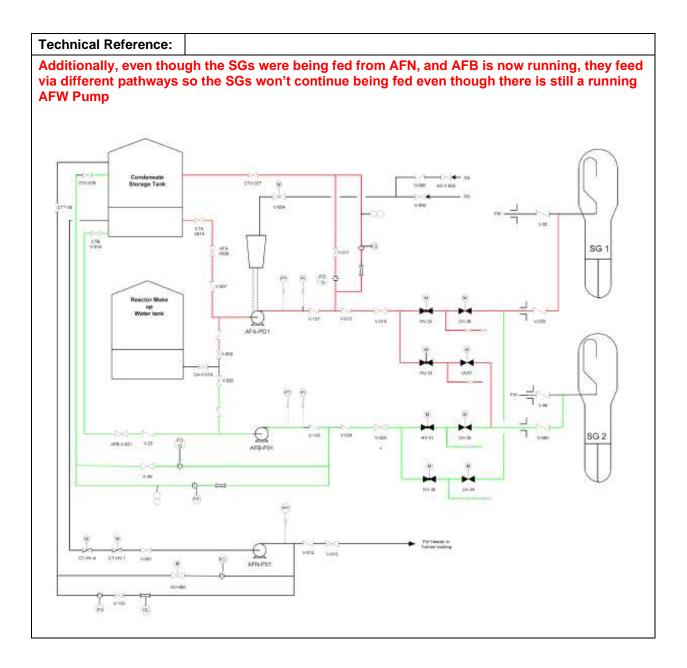
Attachment C-14			<mark>AS Train B</mark>	Page 3 of 3		
1-3		SI Line to RC Loop 1A Drain Valve	SIB-HS-638	Closed	Y/N	Open / Closed
1-3		SI Line to RC Loop 1B Drain Valve	SIB-HS-648	Closed	Y/N	Open / Closed
1-3		SI Line to RC Loop 2A Drain Valve	SIB-HS-618	Closed	Y/N	Open / Closed
1-3		SI Line to RC Loop 2B Drain Valve	SIB-HS-628	Closed	Y/N	Open / Closed
1-3		Letdown To Regen Hx Isolation Valve	CHB-HS-515	Closed	Y/N	Open / Closed
	2-4	Backup Heaters Bank	RCB-HS-100-5	Tripped	Y/N	Tripped / Closed
	2-4	Condensate Transfer Pump B	CTB-HS-16	Running	Y/N	Run / Stop
	2-4	Essential Electric Auxiliary Feed Pump	AFB-HS-10	Running	Y/N	Run / Stop
	2-4	Containment Normal ACU Fan B	HCB-HS-12	Stopped	Y/N	Run / Stop

Technical Reference:

Although an Aux Feed Pump is running, the feed valves have no signal to open. If AFAS had actuated at this point, which is plausible since it actuates when SG levels lower to 25.8%, however that is WR, not NR

AFW Regulating and Isolating Valve Controls

These regulating valves can be operated by separate switches on panel B06 and also at the remote shutdown panels (figure A-3). The flow regulating globe valves are equipped with JOG OPEN/JOG CLOSED handswitches. The valves may be throttled assuming an AFAS signal is not present which fully opens the valve.


The isolation gate valves have two position OPEN/CLOSE handswitches, and are also opened on the associated AFAS. An override pushbutton for each valve is provided on B06 and at the remote shutdown panels. When depressed, with an AFAS present, the valve is placed in an "override" condition. This allows the valves to be repositioned with an AFAS signal present. When override has been selected, automatic system response for steam generator level control is prevented.

An AFAS 1 or 2 signal will provide full AFW flow to the associated steam generator when its water level decreases to 25.8% WR (wide range) on two out of four class WR level instruments. When generator level increases 40.8% WR, the low level signal is removed and the valves will close. They will not reverse direction during travel unless the AFAS level setpoint (25.8% WR) is again reached. The valves will automatically cycle on the SG level signal until placed in override or the AFAS initiation signal is cleared and reset. The position of the valves can then be changed by the operator.

Limit switches stop valve motion in the open direction and torque protection stops closing motion when the predetermined torque value has been reached.

If an AFAS-1 signal is activated (SG #1 low level), UV-30, UV-32 and UV-34, UV-36 will all open to align AFW flow to the #1 generator. The valves will then cycle as previously described.

If an AFAS-2 signal is activated (SG #2 low level), UV-31, UV-33 and UV-35, UV-37 will all open to align AFW flow to the #2 generator. The valves will then cycle as previously described.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment Cooling: Ability to locate control	Tier	2		
room switches, controls, and indications, and to determine that they correctly reflect the desired plant	Group	1	-	
lineup.	K/A	0	22 G 2.1.31	1
	IR	4.6		

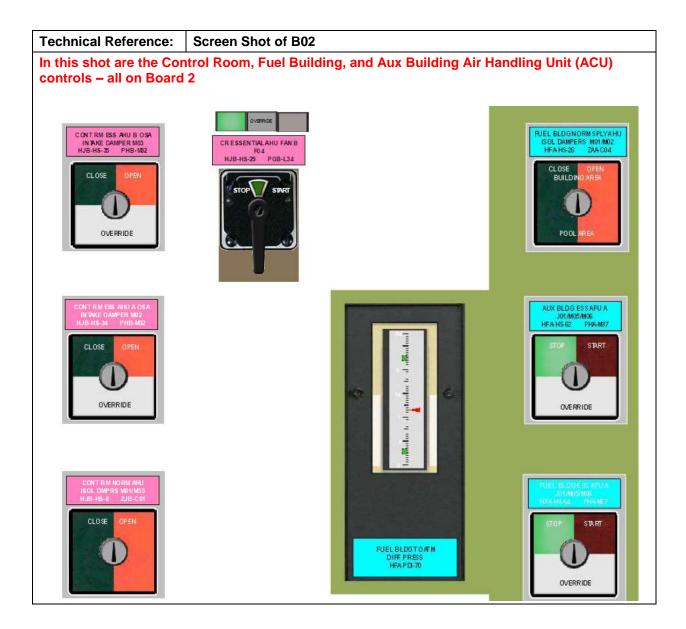
Given the following conditions:

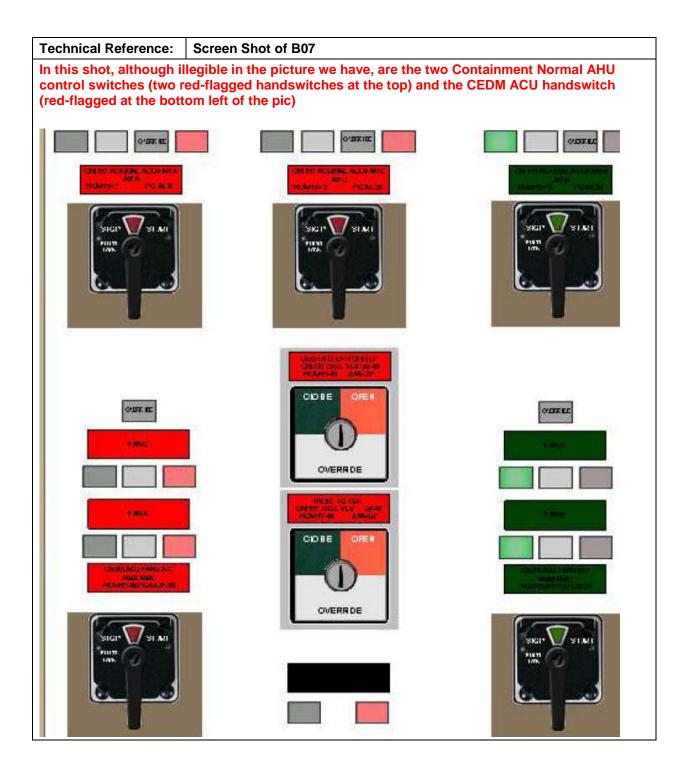
- Unit 1 is operating at 100% power
- The 'A' and 'C' Containment Normal ACU Fans are running
- The 'B' and 'D' Containment Normal ACU Fans are in standby

Subsequently:

- An inadvertent Train 'A' SIAS occurred
- 5 minutes after the Train 'A' SIAS, the CRS directs one of the ROs to verify the status of the Containment Normal ACU Fans

The RO should verify the status of the Containment Normal ACU Fans on ____(1)____ and should expect to see a total of ____(2)___ Containment Normal ACU fans running.


- A. (1) Board 2 (2) 2
- B. (1) Board 2(2) 4
- C. (1) Board 7 (2) 2
- D. (1) Board 7
 - (2) 4


Pro	Proposed Answer: C					
Exp	Explanations:					
Α.	First part is plausible since Control Room and Aux Building HVAC components are located on Board 2 (as well as all SI pumps and valves), however Containment HVAC components are on Board 7. Second part is correct.					
В.	First part is plausible since Control Room and Aux Building HVAC components are located on Board 2 (as well as all SI pumps and valves), however Containment HVAC components are on Board 7. Second part is plausible since a SIAS is often generated due to a high energy break inside containment and it would be desired to have additional containment cooling in service, however on a SIAS, containment ACUs trip and containment cooling is provided by containment spray (if CSAS actuates).					
С.	Correct.					
D.	First part is correct. Second part is plausible since a SIAS is often generated due to a high energy break inside containment and it would be desired to have additional containment cooling in service, however on a SIAS, containment					

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:		scribe the automatic functions associated with the Containment Iding Normal ACU Fans (HCNA01A, B, C, D).

Technical Reference: Containment Building HVAC Tech Manual

The 'A' SIAS will trip the A/C Containment Normal ACUs, B/D will start on low diff pressure, and A/C won't auto restart after the load shed sequence is complete

Normal Cooling System ACU Controls (HS-11, 12, 13, and 14)

A four position (START/STOP/PULL TO LOCK/AUTO) spring return to AUTO control switch is provided on B07 in the Control Room for each ACU. When momentarily placed in the START position, the associated breaker closes starting the ACU fan and the associated discharge damper and cooling water supply valve opens. When momentarily placed in the STOP position, the associated breaker opens, stopping the fan and closing the discharge damper and cooling water supply valve. The switches spring return to the AUTO position. When in the PULL TO LOCK position, the ACU control circuit is deenergized, preventing operation.

When in the AUTO (after stop) position, the standby ACU automatically starts if low differential pressure is sensed on the associated operating fan. ACUs in AUTO (after stop) will automatically start in accordance with diesel generator load sequencing following a loss of off-site power. Operating ACUs will trip upon receipt of a Safety Injection Actuation Signal (SIAS) or load shed signal. Following receipt of a SIAS, the operator can return the ACU to service by momentarily positioning the control switch to STOP and then to START. When moved to STOP, a white OVERRIDE indicator illuminates indicating the trip can be overridden. When placed in override the ACU will start and will continue to run even if the SIAS is reset.

The Normal ACU is equipped with a SIAS stop interlock which prevents it from auto starting when the SIAS is reset. Upon the receipt of a SIAS, the interlock causes a latching relay to change state, blocking the ACUs auto start feature. In order to restore the auto start feature, the hand switch must be taken to stop. This action energizes the latching relay, returning it to the pre-SIAS condition.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment Spray: Knowledge of bus power	Tier	2		
supplies to the following: MOVs	Group	1	-	
	K/A		026 K2.02	
	IR	3.4		

Containment Spray Discharge to Spray Header Valve, SIB-UV-671, is powered by...

- A. PGA-L31
- B. PGB-L32
- C. PHA-M35
- D. PHB-M36

Proposed Answer: D					
Exp	Explanations:				
Α.	A. Plausible since UV-671 is powered by 480 VAC class power, and generally speaking, odd numbered valves are powered by Train 'A', however UV-671 is powered from PHB-M36				
В.	Plausible since UV-671 is powered by 480 VAC class power, and is powered from Train 'B', however UV-671 is powered from PHB-M36				
C.	Plausible since UV-671 is powered by 480 VAC class power, and generally speaking, odd numbered valves are powered by Train 'A', however UV-671 is powered from PHB-M36				
D.	Correct.				

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	x	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	6	
Reference Provided:	N	
Learning Objective:	 Describe how the Class IE Electrical Distribution System supports th operation of the following systems: Safety Injection and Shutdown Cooling System 	

Technical Reference: Safety Injection Tech Manual						
VTIIIT.						
LPSI B Flow Cont	rol to RC2B Vlv SIB-UV-625	PHB-M3621				
SIT 2 B Isol Vlv	SIB-UV-624	PHB-M3618				
SIT 2A Isol Vlv	SIB-UV-614	PHB-M3619				
Ind. Lights and	Space Heater for Valve SIB-UV-614	PHB-D3601				
Ind. Lights and	Space Heater for Valve SIB-UV-264	PHB-D3602				
Ctmt Sump Isol T	Ctmt Sump Isol Train B Vlv SIB-UV-676					
Ctmt Spray Isol	Ctmt Spray Isol Train B Valve SIB-UV-671					
Ctmt Sump Isol T	rain B Vlv SIB-UV-675	PHB-M3613				
HPSI Pump B to R	WT Isol Vlv SIB-UV-667	PHB-M3608				
LPSI Flow Contro	l to RC2A Vlv SIB-UV-615	PHB-M3606				
SDC Control Isol	Loop B Vlv SIB-UV-656	PHB-M3605				
Ctmt Spray Pump	B to RWT Isol Vlv SIB-UV-665	PHB-M3607				
HPSI B Flow Cont	rol to RC 1B Vlv SIB-UV-646	PHB-M3603				
SDC Isol Loop B Vlv SIB-UV-652 PHB-M3604						

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Main and Reheat Steam: Knowledge of MRSS	Tier	2		
design feature(s) and/or interlock(s) which provide for the following: Automatic isolation of steam line	Group	1		
the following. Automatic isolation of steam line	K/A		039 K4.05	
	IR	3.7		

A Main Steam Isolation Signal will actuate on (1) SG level, and if the condition in Part 1 occurs in SG #1 ONLY, the MSIVs will close on (2).

- A. (1) low
 - (2) SG #1 ONLY
- B. (1) low
 - (2) BOTH SGs
- C. (1) high (2) SG #1 ONLY
- D. (1) high
 - (2) BOTH SGs

Pro	posed Answer:	D				
Exp	Explanations:					
Α.	First part is plausible since low SG level is indicative of either insufficient feed or a steam line break, and in either case, stopping steam flow would be desired, however an MSIS is automatically actuated due to low SG pressure in those cases and only actuates due to level when it is high. Second part is plausible since most ESFAS actuations are train specific (i.e. SIAS, CSAS), MSIS is selectively SG specific (i.e. SG blowdown valves), however MSIVs are all closed on both SGs regardless of which SG reached the actuation setpoint.					
В.	First part is plausible since low SG level is indicative of either insufficient feed or a steam line break, and in either case, stopping steam flow would be desired, however an MSIS is automatically actuated due to low SG pressure in those cases and only actuates due to level when it is high. Second part is correct.					
C.	 First part is correct. Second part is plausible since most ESFAS actuations are train specific (i.e. SIAS, CSAS), MSIS is selectively SG specific (i.e. SG blowdown valves), however MSIVs are all closed on both SGs regardless of which SG reached the actuation setpoint. 					
D.	Correct.					

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	2		
10CFR55.41:	7		
Reference Provided:	Ν		
Learning Objective:		Describe the automatic functions associated with the Main Steam System.	

Technical Reference: | Plant Protection System Tech Manual

• Main steam (SG)

Each steam generator provides two water level signals to the PPS to be used as PPS bistable inputs. The SG wide range (WR) signals are used for the low steam generator water level reactor trip and auxiliary feedwater actuation system (AFAS) actuations. The SG narrow range (NR) signals are used for the high steam generator water level reactor trip and main steam isolation system (MSIS) actuations.

Pressure signals from each SG are also provided as inputs. These signals are used for the low steam generator pressure reactor trip, AFAS SG rupture logic and main steam isolation system (MSIS) actuations.

Technical Reference: 40AO-9ZZ17, Inadvertent PPS-ESFAS Actuations

MSIV 170 and 180 are the Line 1 and Line 2 MSIVs for SG1, MSIV 171 and 181 are the Line 1 and Line 2 MSIVs for SG2. MSIS doesn't only close MSIVs on the SG which sensed the low pressure or high level, but it closes all MSIVs regardless of which SG actuated it.

Att	achn	nent C-10	MSIS Train B			Page 1 of 2	
	ation eg	Component	Handswitch	Actuated Condition	In Actuated Condition (Circle one)	As Left Condition (Circle one)	
	2-4	SG 1 Chemical Injection	SGB-HS-200	Closed	Y/N	Open / Closed	
1-3		MSIV Bypass Isolation Valve	SGB-HS-169B	Closed	Y/N	Open / Closed	
1-3		Line 1 MSIV	SGB-HS-170B	Closed	Y/N	Open / Closed	
1-3		Line 2 MSIV	SGB-HS-180B	Closed	Y/N	Open / Closed	
1-3		Economizer FWIV	SGB-HS-132A	Closed	Y/N	Open / Closed	
1-3		Downcomer Isolation Valve	SGB-HS-130	Closed	Y/N	Open / Closed	
1-3		Economizer FWIV	SGB-HS-137A	Closed	Y/N	Open / Closed	
1-3		Downcomer Isolation Valve	SGB-HS-135	Closed	Y/N	Open / Closed	
1-3		MSIV Bypass isolation Valve	SGB-HS-183B	Closed	Y/N	Open / Closed	
1-3		Line 1 MSIV	SGB-HS-171B	Closed	Y/N	Open / Closed	
1-3		Line 2 MSIV	SGB-HS-181B	Closed	Y/N	Open / Closed	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Main Feedwater: Ability to monitor automatic	Tier	2		
operation of the MFW, including: Programmed levels of the S/G	Group	1		
	K/A	059 A3.02		
	IR	2.9		

During a power ascension, DFWCS swapover will occur when selected power is > 15% and ____(1)___ of the downcomer valves is(are) at least 80% open, OR when selected power reaches a MINIMUM of ___(2)___ , regardless of downcomer valve positions.

- A. (1) BOTH
 - (2) 16.5%
- B. (1) BOTH
 - (2) 18%
- C. (1) EITHER
 - (2) 16.5%
- D. (1) EITHER
 - (2) 18%

Pro	posed Answer:	С				
Exp	lanations:					
Α.	First part is plausible since it makes sense that both downcomer valves would need to be > 80% open in order for swapover to occur since maintaining SG levels approximately equal is desired for balanced heat removal, however at greater than 15% power, swapover will occur when the first valve is 80% open. Second part is correct.					
B.	First part is plausible since it makes sense that both downcomer valves would need to be > 80% open in order for swapover to occur since maintaining SG levels approximately equal is desired for balanced heat removal, however at greater than 15% power, swapover will occur when the first valve is 80% open. Second part is plausible since at 18% power, the downcomer valves should be ~ 85% open (based on downcomer program), however at 16.5% power swapover will occur regardless of downcomer valve position.					
C.	Correct.					
D.	be ~ 85% open (b	asec	econd part is plausible since at 18% power, the downcomer valves should on downcomer program), however at 16.5% power swapover will occur ner valve position.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	3		
10CFR55.41:	4		
Reference Provided:	N		
Learning Objective:		Describe the response of the DFWCS to an increase in reactor power to include the following: Swapover	

Technical Reference: LOIT DFWCS Lesson Plan

The control channels are used for:

- System response adjustment: The DFWCS uses reactor power as one of the inputs that will tune the responsiveness of the system by adjusting the proportional band and integration rate based on the reactor power level. The system is more responsive at higher power levels.
- Changing total feedwater flow indication from downcomer flow to total feedwater flow at 13% and increasing reactor power.
- Transition from single element control to 3 element control: at 14% and increasing reactor power the DFWCS transitions from single element control to 3 element control.
- Transition from 3 element control to single element control: at below 13.5% and decreasing reactor power the DFWCS transitions from 3 element control to single element control.
- Swapover: the shifting of feedwater flow from through the Downcomer control valves to through the Economizer control valves (during a increase in reactor power) or from through the Economizer control valves to through the Downcomer control valves (during a decrease) in reactor power) is known as swapover. Swapover during an increase in reactor power will occur if reactor power is above 16.5% or if reactor power is between 15 and 16.5% and either Downcomer control valve reaches 80% open. Swapover during a decrease in reactor power will occur if reactor power is below 15%.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Auxiliary/Emergency Feedwater: Knowledge of	Tier	2		
bus power supplies to the following: AFW system MOVs	Group	1		
	K/A	061 K2.01		
	IR	4.0		

- (1) AFW Regulating Valve from AFA-P01 to SG1, AFA-HV-32, is powered from...
- (2) AFW Regulating Valve from AFB-P01 to SG1, AFB-UV-30, is powered from...
- A. (1) Class 125 VDC power(2) Class 125 VDC power
- B. (1) Class 125 VDC power(2) Class 480 VAC power
- C. (1) Class 480 VAC power(2) Class 125 VDC power
- D. (1) Class 480 VAC power(2) Class 480 VAC power

Pro	posed Answer:	В			
Ехр	lanations:				
Α.	A. First part is correct. Second part is plausible as some AF MOVs are DC powered, however the Train B AFW MOVs are 480 VAC powered.				
В.	Correct.				
C.	First part is plausible as some AF MOVs are AC powered, however the Train A AFW MOVs are 125VDC powered. Second part is plausible as some AF MOVs are DC powered, however the Train B AFW MOVs are 480 VAC powered.				
D.		First part is plausible as some AF MOVs are AC powered, however the Train A AFW MOVs are 125VDC powered. Second part is correct.			

Question Source:		New		
	Х	Bank		
	Modified			
	x	Previous NRC Exam	2018 NRC Q44	

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	4	
Reference Provided:	N	
Learning Objective:	Des	 Class 1E 125 VDC System Class 1E 480 VAC System

Technical Reference: Aux Feedwater System Tech Manual

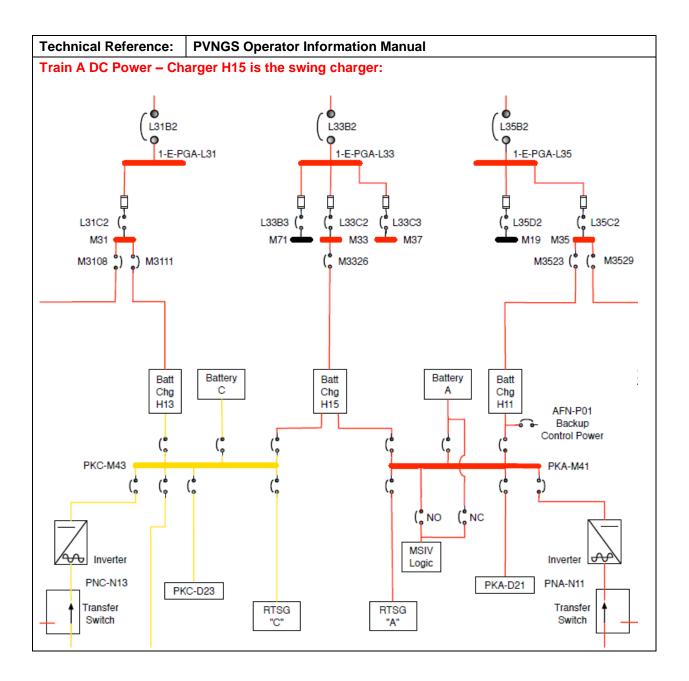
PKA is a 125 VDC Control Power Bus, and PHB is a 480VAC Loadcenter

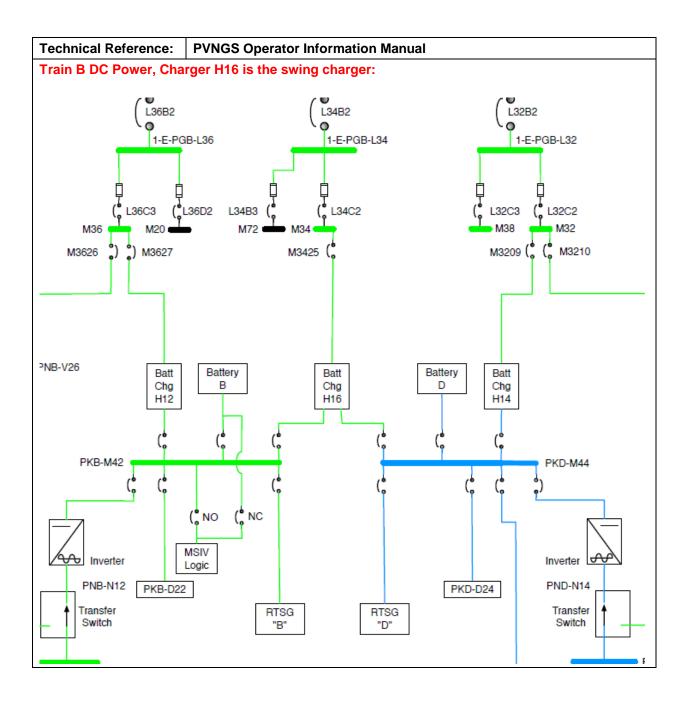
	L ADIC C	- 1	
AF System	Electrical	Power	Supplies

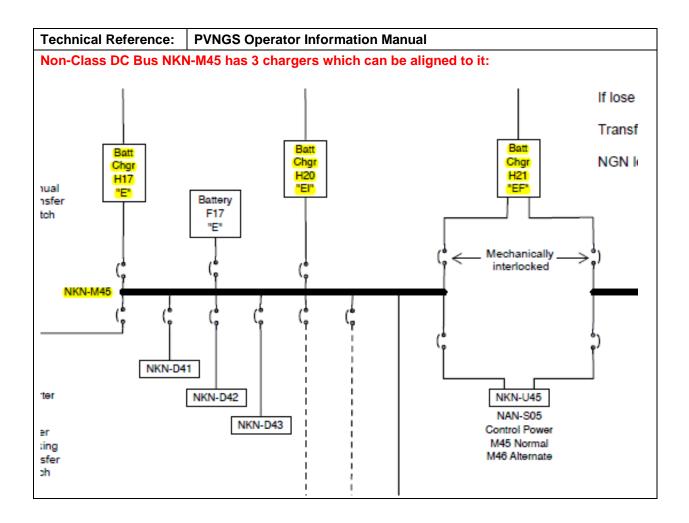
COMPONENT	POWER SUPPLY
Aux. Feedwater Pump B	PBB-S04S
MOV POSIT Indicators at Aux Relay Cab ZAA-C01 (AFC-UV-32 Psn Indication)	PNA-D2517
MOV POSIT Ind at Aux Relay Cab ZAA-C01 (AFA-UV-33 Psn Indication)	PNA-D2519
BOP Analog Inst Cabinet & Indicators ZJA-C02A & B (Aux FW to SG1 AF FI-40)	PNA-D2524
Distribution Panel PKA-4121	PKA-M4121
Auxiliary Feedwater Turbine Gov Control	PKA-D2118
Auxiliary Feedwater Reg Valve AFA-HV-32	PKA-M4112
Auxiliary Feedwater Isolation Valve AFA-UV-37	PKA-M4113
Auxiliary Feedwater Turbine Trip & Throttle Valve AFA-HV-54	PKA-M4114
BOP Analog Instr Cabinet & Indicators ZJB-C02A (Aux FW to SG2 AF FI-41)	PNB-D2624
Auxiliary Feedwater Isolation Valve AFC-UV-36	PKC-M4314
Auxiliary Feedwater Reg Valve AFC-UV-33	PKC-M4315
Aux Feedwater Reg Valve Pump B to SG1 AFB-UV-30	PHB-M3420
Aux Feedwater Reg Valve Pump B to SG2 AFB-UV-31	PHB-M3421
Aux Feedwater Isol Valve Pump B to SG1 AFB-UV-34	PHB-M3814
Aux Feedwater Isol Valve Pump B to SG2 AFB-UV-35	PHB-M3815

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: AC Electrical Distribution: Knowledge of the	Tier	2		
physical connections and/or cause effect relationships between the ac distribution system and the following	Group	1		
systems: DC distribution	K/A		062 K1.03	
	IR	3.5		

Regarding the interface between Class AC and DC power sources...


- (1) Each Class Swing Battery Charger has a total of _____ 480V Motor Control Center(s) available to supply power to the AC Input of the charger
- (2) Each Class 125 VDC Bus has a total of _____ Battery Chargers which are available to be aligned to the bus
- A. (1) 1
 - (2) 2
- B. (1) 1 (2) 3
- C. (1) 2 (2) 2
- D. (1) 2 (2) 3


Pro	posed Answer:	Α	
Exp	lanations:		
Α.	Correct.		
В.	First part is correct. Second part is plausible as Non-Class 125 DC Bus, NKN-M45 has three chargers which can each be aligned to the bus, however the class DC buses each only have two.		
C.	can only receive from a Class 4kV	AC po Bus,	ince each swing charger can output to one of two DC buses, however they ower from one loadcenter. Additionally, each Class 480 MCC is powered which each have multiple sources of power, but the Battery Charger only ce of AC power. Second part is correct.
D.	can only receive / from a Class 4kV has one available	AC po Bus, sour	ince each swing charger can output to one of two DC buses, however they ower from one loadcenter. Additionally, each Class 480 MCC is powered which each have multiple sources of power, but the Battery Charger only ce of AC power. Second part is plausible as Non-Class 125 DC Bus, NKN- is which can each be aligned to the bus, however the class DC buses each


Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:		w a simplified diagram of the Class 120 VAC Electrical Distribution stem with Ametek inverters

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: DC Electrical Distribution: Ability to (a) predict the	Tier	2		
impacts of the following malfunctions or operations on the DC electrical systems; and (b) based on those	Group	1		
predictions, use procedures to correct, control, or	K/A		063 A2.01	
mitigate the consequences of those malfunctions or operations: Grounds	IR	2.5		

Given the following conditions:

• Unit 3 is operating at 100% power

Subsequently:

- The Reactor was tripped due to a complete loss of condenser vacuum
- On the Trip, a ground on PKA-M41 resulted in PKA-M41 being de-energized

Prior to ANY operator action being taken in the Control Room or in the field, which of the following describes the impact of the loss of PKA-M41 on the availability of AFN-P01?

The suction valves for AFN-P01, CTA-HV-1 and CTA-HV-4, ___(1)___ and the feeder breaker for AFN-P01 ___(2)___ .

- A. (1) can be opened from the Control Room
 - (2) can be closed from the Control Room
- B. (1) can be opened from the Control Room(2) must be closed locally at the breaker
- C. (1) must be opened locally at the valves(2) can be closed from the Control Room
- D. (1) must be opened locally at the valves(2) must be closed locally at the breaker

Pro	posed Answer:	В		
Ехр	lanations:			
Α.	First part is correct. Second part is plausible since AFN-P01 has an alternate control power source which will allow for breaker operation from the control room with PKA de-energized, however the control power shift must be taken in the field			
В.	Correct.			
C.	however they are control power sou	First part is plausible since this would be true if the suction valves for AFN were powered from PK, however they are powered from PH. Second part is plausible since AFN-P01 has an alternate control power source which will allow for breaker operation from the control room with PKA de- energized, however the control power shift must be taken in the field		
D.			ince this would be true if the suction valves for AFN were powered from PK, ered from PH. Second part is correct.	

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	x	Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	4	
Reference Provided:	N	
Learning Objective:		scribe the Control Room controls associated with the Non Essential kiliary Feedwater Pump AFN-P01 including its indications.

chnical Reference: 400P-9PH01, Train A 480V Class 1E MCC										
	Appendix C - PHA-M33, 480V Class 1E MCC									
Number	Name	Locati	on Drawing	Required Position	Positioned By Initials & Date	Verified By Initials & Date				
PHA-M3302	Ckt Brk for Spr Pond Po Hse Exhst Fan Motor	Imp Aux Bldg, 120 Elect Pen Rm		On						
PHA-M3303	FLEX Feed to RCS Ma Pump	keup Aux Bldg, 120 Elect Pen Rm		Locked Off per 40AC-0ZZ06						
PHA-M3304	Ckt Brk for HPSI Flow Control Valve SIA-UV-6	Aux Bldg, 120 47 Elect Pen Rm		On						
PHA-M3305	SIA-HV-604 Ckt Brk "A HPSI Pmp Long Trm C			On						
PHA-M3306	Radiation Ckt Brk for SQN-D01 Dist Panel	Aux Bldg, 120 Elect Pen Rm	' E_PHA_003	On						
PHA-M3306 50G	Relay Ground Fault for Distribution Panel	Aux Bldg, 120 Elect Pen Rm		Reset						
PHA-M3307	Ckt Brk Backup for E-PHA-M3306	Aux Bldg, 120 Elect Pen Rm		On						
PHA-M3307 50G	Relay Ground Fault Ba for E-PHA-M3306	kup Aux Bldg, 120 Elect Pen Rm	PEPHA-UUS	Reset						
PHA-M3308	CTA-P01 "A" Cond Xfe Pump	Aux Bldg, 120 Elect Pen Rm	E DHA 003	On						
PHA-M3309	Ckt Brk for AFN-P01 Su Isol Valve CTA-HV-1	ction Aux Bldg, 120 Elect Pen Rm		On						

Fechnical R	leference:	400P-9F	PH01, Train A 480	V Class 1	E MCC					
	Appendix E - PHA-M35, 480V Class 1E MCC									
Number	Name		Location	Drawing	Required Position	Positioned By Initials & Date	Verified By Initials & Date			
PHA-M3503	Ckt Brk for Shutdn Clg Iso Loop 1 VIv SIA-UV-651		Aux Bidg, 120', West Elect Pen Rm	E-PHA-005	On					
PHA-M3504	SIA-UV-655 S/D Cing Cntmt Isol Viv		Aux Bldg, 120', West Elect Pen Rm	E-PHA-005	On					
PHA-M3505	Ckt Brk for AFN-P01 Suction Isol Valve CTA-HV-4		Aux Bldg, 120', West Elect Pen Rm	E-PHA-005	On					
PHA-M3506	SIA-UV-664 Ckt Brk "A" CS Pump Recirc VIv		Aux Bldg, 120', West Elect Pen Rm	E-PHA-005	On					

echnical Reference:	LOIT Aux Feedwater Lesson Plan				
Main Idea					
Loss of Class 125VD	C bus PKA-M41/PKA-D21.				
AFA-P01					
 Results in a los 	s of governor control power.				
The turbine trips on overspeed if running.					
Steam Supplies Fail as is.					
 AF isolation value 	ves Fail as is.				
AFN-P01 Loss of DC	control power				
Alternate contro Train "A" 4KV s	ol power supply from battery charger "A" via 3 position switch E-PBA-U01 or switchgear				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Emergency Diesel Generator: Knowledge of the	Tier	2		
effect of a loss or malfunction of the following will have on the ED/G system: Fuel oil storage tanks	Group	1		
on the ED/O system. I der on storage tanks	K/A	064 K6.08		
	IR	3.2		

Given the following conditions:

- The 'B' EDG is operating at rated load
- An auto makeup to the 'B' Fuel Oil Day Tank is in progress

Subsequently:

- The associated Fuel Oil Transfer Pump tripped
- The 'B' EDG Fuel Oil Day Tank level is currently 650 gallons

Approximately how much longer can the 'B' EDG continue to operate at rated load?

- A. ~ 25 minutes
- B. ~ 50 minutes
- C. ~ 100 minutes
- D. ~ 200 minutes

Pro	Proposed Answer: C						
Exp	lanations:						
Α.	A. Plausible if thought that the EDG consumes 25 gpm at rated load (650 gallons / 25 gpm = 26 minutes), however 25 gpm is the capacity of the Fuel Oil Transfer Pump, not fuel consumption at rated load						
В.	B. Plausible if thought that 650 gallons in the day tank could provide 100 minutes of total run time for both EDGs, thus could only provide 50 minutes of operation for each EDG						
С.	C. Correct. At rated load, the EDG consumes ~ 6.5 gpm, therefore 650 gallons = 100 minutes						
D.	 Plausible if thought that 650 gallons could provide for each EDG to run for 100 minutes, thus could provide a single EDG at rated load for 200 minutes. 						

Question Source:		New	
		Bank	
	x	Modified	
	x	Previous NRC Exam	2019 Q41 (modified tank level to change answer)

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:		cuss the purpose and conditions under which the Diesel Generator stem is designed to function.

Examination Outline Cross-Reference:	Level	RO		SRO			
K/A: Emergency Diesel Generator: Knowledge of the	Tier	2					
effect of a loss or malfunction of the following will have on the EDG system: Fuel oil storage tanks	Group	1					
	K/A		064 K6.08				
	IR	3.2					
Question 41							
Given the following conditions:							
 The 'A' EDG is operating at rated load An auto makeup to the 'A' Fuel Oil Day Tank is i 	n progress						
Subsequently:							
 The associated Fuel Oil Transfer Pump tripped The 'A' EDG Fuel Oil Day Tank level is currently 	800 gallor	IS					
Approximately how much longer can the 'A' EDG co	ontinue to c	perate	at rated lo	ad?			
A. ~ 0.5 hours							
B. ~1 hour							
C. ~ 2 hours							
D. ~4 hours							

Technical Reference:	LOIT Emergency Diesel Generators Lesson Plan							
650 gallons / 6.5 gpm = ~ 100 minutes								
Fuel Oil Day Tanks								
Each DG has it	ts own Day Tank.							
 Each day tank 	has a usable capacity of about 1055 gallons.							
	is 2.75' (~550 gals) by Technical Specification 3.8.1, which exceeds the a sixty minute fuel supply with 10% margin assuming full rated load on the 38 gallons.							
approximately	Imp will automatically start to refill the day tank when level decreases to 3.2 ft. (63%). At that time there are 728 gals of fuel oil, which can sustain the eration for about 1.9 hours. The pump stops at approximately 4.6 ft (93%).							
The DG uses a	approximately 6.55 GPM at full rated load.							
Each tank is each	quipped with an overflow and drain connection routed to the storage tank.							

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Process Radiation Monitoring: Ability to verify	Tier	2		
system alarm setpoints and operate controls identified in the alarm response manual.	Group	1		
in the alarm response manual.	K/A	073 G 2.4.50		0
	IR	4.1		

Given the following conditions:

- Unit 2 is operating at 99% power
- AFA-P01 is running to support performance of 73ST-9AF02, Auxiliary Feedwater A Inservice Test, Section 6.2, Inservice Test using SG 2 Steam Supply

Subsequently, the following RMS alarms annunciate:

- RU-139, Main Steam Line SG #1 (HIGH ALARM)
- RU-141, Condenser Vacuum / Gland Seal Exhaust (HIGH ALARM)
- Both alarms have been confirmed to be valid

Per 74AL-9SQ01, Radiation Monitoring System Alarm Validation and Response, the crew should secure ____(1)___ in response to the high alarm on RU-139, and should ensure ____(2)___ in response to the high alarm on RU-141.

- A. (1) blowdown from SG #1
 (2) Steam Generator Overboard Discharge Valve, SCN-HV-1283, is closed
- B. (1) blowdown from SG #1(2) the Post Filter Mode Select Switch is in the THRU FILTER MODE
- C. (1) Steam Driven Aux Feedwater Pump, AFA-P01
 (2) Steam Generator Overboard Discharge Valve, SCN-HV-1283, is closed
- D. (1) Steam Driven Aux Feedwater Pump, AFA-P01(2) the Post Filter Mode Select Switch is in the THRU FILTER MODE

Pro	posed Answer:	В				
Exp	Explanations:					
Α.	First part is correct. Second part is plausible since this action is directed for a high radiation alarm on SG blowdown (RU-200), however not for a high alarm on RU-141.					
В.	Correct.					
C.	First part is plausible since indication of SG tube leakage would justify stopping an unnecessary release to the environment, and closing AFA steam supply valves is directed in the AOP, however only closing the AFA steam supply valve from the affected SG is directed in 40AO-9ZZ02, Excessive RCS Leakrate. Additionally, this action is not directed in the RM ARP. Second part is plausible since this action is directed for a high radiation alarm on SG blowdown (RU-200), however not for a high alarm on RU-141.					
D.	release to the env only closing the A	/ironr .FA st	ince indication of SG tube leakage would justify stopping an unnecessary nent, and closing AFA steam supply valves is directed in the AOP, however team supply valve from the affected SG is directed in 40AO-9ZZ02, ate. Additionally, this action is not directed in the RM ARP. Second part is			

Question Source:		New	
	x	Bank	
		Modified	
	x	Previous NRC Exam	2016 NRC Q11 (modified but not enough to make this a modified question)

Cognitive Level:	x	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	11	
Reference Provided:	N	
Learning Objective:	Des	cribe Operation's responsibilities for RMS alarms

Technical R	leference:	74AL-9SQ01, Radiation Monitoring System Alarm Validation and Response
1.	Verify the al	larm is valid.
	IF the alarm THEN <u>perfo</u>	n is valid, orm the following:
_	2.1 <u>Perfo</u>	orm actions per 40AO-9ZZ02, Excessive RCS Leakrate.
	THE	J-139 is currently in alarm, N <u>secure</u> blowdown to Steam Generator #1 per 40OP-9SG03, Operating steam Generator Blowdown System.

Technical Reference:		74AL-9SQ01, Radiation Monitoring System Alarm Validation and Response		
<mark>1.</mark>	IF ANY of th	e following:		
	THEN ensur	Halarm is received on Channel 2 of RU-141 <u>re</u> ARN-HS-19, Post Filter Mode Selector Switch, is in the "THRU FILTER		
	MODE."			

Technical Reference:	echnical Reference: 74AL-9SQ01, Radiation Monitoring System Alarm Validation and Response				
Response S	OF RU-3				
Monitor Name:					
STEAM GENERATOR	OVERBOARD DISCHARGE	HIG	SH		
Location: Detector - T	urbine Building North Yard by Blowd	wn HX			
Microcompu	t dent Itoring ALE //U)	RT			
Point ID Descriptio	n	Sets	oint		
N/A Channel 1		N/A			
HIGH alarm closes Steam Generator Overboard Discharge Valve SCN-HV-1283					
OPERATOR ACTION	<mark>8.</mark>				
	larm on RU-200 is received, rm the following:				
	eam Generator Overboard Discharge I <u>close</u> Steam Generator Overboard				

Technical Reference:	73ST-9AF02, Auxiliary Feedwater A – Inservice Test
From Section 6.2, Inser	vice Test using SG 2 Steam Supply:
6.2.40. First DO	
6.2.19 First RO Determin	e SGA-UV-138A, S/G 2 Bypass Steam Supply to AFA-P01 Bypass
	ben stroke time by performing the following:
A. Perfo	orm the following steps simultaneously:
	Take SGA-HS-138A, SG 2 Stm Sply to Pmp UV-138, to OPEN to open SGA-UV-138A and SGA-UV-138.
2. §	Start the stopwatch.
SGA	N the green indicating light is off at the light indication located above -HS-138A, SG 2 Stm Sply to Pmp UV-138, N <u>stop</u> the stopwatch.
	<u>k</u> only the red light is on at the light indication located above -HS-138A, SG 2 Stm Sply to Pmp UV-138.
6.2.20 Second	RO
	ne SGA-UV-138, S/G 2 Steam Supply to Aux Feed Pump AFA-P01, open ne by performing the following:
Pmp	N the red indication light comes on at SGA-HS-138A, SG 2 Stm Sply to UV-138, N <u>start</u> the stopwatch.
Pmp	N the green indication light goes off at SGA-HS-138A, SG 2 Stm Sply to UV-138, N stop the stopwatch.
6.2.21 Check A	LL of the following:
	-UV-138A opens and AFA-SI-52A, Ess Stm Driven AFW Pmp Turbine ed, indication goes to 1000-2000 RPM
	ernor takes control and reduces pump speed on AFA-SI-52A, Ess Stm en AFW Pmp Turbine Speed, indication, to 800-1200 RPM
	-UV-138, S/G 2 Steam Supply to Aux Feed Pump AFA-P01, opens and ernor accelerates pump to rated speed

Technical Reference: 40AO-9ZZ02, Excessive RCS Leakrate						
The section below is from Appendix C, Minimize Release to the Environment, which is directed from the SGTL section of the AOP:						
	EXCESSI	VE RCS LEAKRATE	Page 38 of 61			
				Appendix C	Page 1 of 7	
	Арр	endix C, Minimize Rel	ease to	the Environmen	t	
	INSTR	UCTIONS	<u>C</u>	ONTINGENCY A	CTIONS	
1.	<u>Enter</u> Appe Date:	endix Entry Time and				
2.		N-HS-19, Post Filter tot Switch, is in the "THRU ODE."				
3.		ed Pump A is being used, form the following:				
	Stear	e the Aux Feed Pump A m Supply Valve from the ted Steam Generator.				
	the R Feed	Radiation Protection and MS Technician that Aux Pump A is steaming to sphere.				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Service Water: Knowledge of the effect that a loss		2		
or malfunction of the SWS will have on the following: ESF loads	Group	1		
	K/A		076 K3.07	
	IR	3.7		

Per 40OP-9DG01, Emergency Diesel Generator A, the MAXIMUM safe operating time for the 'A' EDG following a loss of Spray Pond water is ____(1)___ if operating at FULL load, and ____(2)___ if operating at NO load.

- A. (1) 1.5 minutes
 - (2) 15 minutes
- B. (1) 1.5 minutes
 - (2) 30 minutes
- C. (1) 2.6 minutes (2) 15 minutes
- D. (1) 2.6 minutes(2) 30 minutes

Pro	posed Answer:	С		
Exp	lanations:			
Α.			thought that the time limit at full load would be 10% of the time limit at no al full load time limit is 2.6 minutes. Second part is correct.	
В.	First part is plausible if thought that the time limit at full load would be 5% of the time limit at no load (if assuming the no load limit was 30 minutes), however the full load time limit is 2.6 minutes. Second part is plausible as the time limit until damage occurs for an RCP with no cooling flow is 30 minutes, however for the EDG it is 15 minutes.			
C.	Correct.			
D.	First part is correct. Second part is plausible as the time limit until damage occurs for an RCP with no cooling flow is 30 minutes, however for the EDG it is 15 minutes.			

Question Source:	Х	New		
		Bank		
		Modified		
		Previous NRC Exam		

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	7
Reference Provided:	N
Learning Objective:	Discuss the purpose and conditions under which the Essential Spray Pond System 'SP' is designed to function.

Techi	Technical Reference: 40OP-9DG01, Emergency Diesel Generator A									
PAL	.0 VERD	E PROCEDURE	Page 8	of 185						
	Emergency Diesel Generator A 400P-9DG01 Revision 80									
3.0	3.0 PRECAUTIONS AND LIMITATIONS									
	3.1 Precautions									
	3.1.1	Transferring the voltage regulator control mode operating will cause a current surge resulting in		tor is						
	3.1.2 If either control power supply (DC Power On circuit 1 & 2 control power lights on DGA-B01) to the DG is lost, the DG output breaker may NOT trip if the Diesel Generator should trip during parallel operation. Under these circumstances, PBA-S03B, A DG Output Breaker, must be tripped manually to prevent motorizing Train A Diesel Generator.									
	3.2 Lir	nitations								
	3.2.1 DGA-HS-7, DG "A" Mode Control, shall NOT be placed to OFF except for maintenance. Placing DGA-HS-7, DG "A" Mode Control, to OFF will prevent Train A Diesel Generator from starting in either automatic or manual modes.									
	3.2.2 When Bus PBA-S03 is being supplied from the alternate ESF Transformer (NBN-X04), electrical interlocks prevent paralleling with the Emergency Diesel Generator PEA-G01.									
	3.2.3 NO smoking or open flames are permitted in the vicinity of the Fuel Oil System.									
	3.2.4 Safe operating time periods following a loss of Spray Pond water:									
		Full load - 2.6 minutes								
		Zero load - 15 minutes								

Technical Reference:	LOIT Loss of Cooling Water Lesson Plan
Main Idea	
power or isolate coolin	oling water) to the RCP(s), operators have thirty (30) minutes to reduce of water and shutdown the RCP(s). If an RCP is allowed to operate more ut cooling water, possible pump motor assembly bearing seizure may occur.
Explanation	
This objective is linked	to other lessons.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Instrument Air: Knowledge of the physical	Tier	2		
connections and/or cause-effect relationships between the IAS and the following systems: MSIV air	Group	1		
	K/A		078 K1.05	
	IR	3.4		

Given the following conditions:

- Unit 2 is operating at 100% power
- An Instrument Air rupture has occurred just downstream of the IA compressors
- IA pressure is at atmospheric pressure throughout the system
- The nitrogen backup supply valve has failed closed

Based on these conditions, the Main Steam Isolation Valves will...

- A. slow close due to the loss of IA
- B. fast close due to the loss of IA
- C. remain open and can ONLY be slow closed
- D. remain open and can ONLY be fast closed

Pro	posed Answer:	D		
Ехр	lanations:			
Α.		low s	/s would fail closed as this is the fail safe position, and the valves are peed and can be closed in slow speed, however the MSIVs remain open on	
В.	B. Plausible that the MSIVs would fail closed as this is the fail safe position, and the valves are normally closed in fast speed, however the MSIVs remain open on a loss of instrument air.			
C.	C. Plausible since the MSIVs will remain open, however slow close is not available on a loss of instrument air.			
D.	Correct.			

Question Source:		New	
	x	Bank	
		Modified	
	Х	Previous NRC Exam	2019 NRC Q44

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:		
10CFR55.41:		
Reference Provided:	1	
Learning Objective:	Determine th legrades.	e major effects on plant operation as instrument air pressure

	E NUCLEAR GENE		40AO-9ZZ06 Page 31	Revision 45 I of 163		
			Appendix A	Page 9 of 49		
Append	ix A, Expected C	omponent Failure	as System Press	sure Drops		
PRESS	COMPONENT		ACTION			
60 - 50 psig ED	EDN-BTV-3 / 4 / 13 / 14 / 23 / 24 / 59 / 60 / 61 / 69 / 70 / 71 / 73 / 74 / 75, Bleeder Trip Valves (FC)	Relay Dump Valve a Bleeder Trip valves. valves in the open po	NOTE ne Front Standard Tur ctuates EDNPSL76 cl Extraction steam flow osition until pressure of reventing any backflor e.	osing the will maintain the decays, allowing		
NC	NCN-LV-75, Nuclear Cooling Water Surge Tank Demin Water Makeup Valve (FC)	oling Tank, e Tank THEN <u>PERFORM</u> 40OP-9NC01, <u>Nuclear</u> er <u>Cooling Water (NC)</u> , <u>Alternate Makeup to NO</u>				
SG	SGE-UV-170 / 171 / 180 / 181, MSIV		NOTE on is available via the eration will not be avai			
	(FAIL AS IS)		IVs will be closed, t close the MSIVs usi	ng ANY of the		
		SG #1				
		• SGA	-HS-251			
		• SGE	-HS-253			
		SG #2				
		• SGA	-HS-250			
		• SGE	-HS-252			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment: Ability to predict and/or monitor	Tier	2		
changes in parameters (to prevent exceeding design limits) associated with operating the containment	Group	1	-	
system controls including: Containment pressure,	K/A		103 A1.01	
temperature, and humidity	IR	3.7		

The Containment Spray System is designed such that a single train of Containment Spray will reduce the peak Containment pressure following a design basis accident by a MINIMUM of ____(1)____ % of peak Containment pressure within a MAXIMUM of ____(2)____ hours.

- A. (1) 25
 - (2) 24
- B. (1) 25
 - (2) 48
- C. (1) 50 (2) 24
- D. (1) 50 (2) 48

Pro	posed Answer:	С	
Exp	lanations:		
Α.			thought that two trains will reduce pressure 50% in 24 hours, however ently able to reduce pressure 50% in 24 hours. Second part is correct.
В.	First part is plausible if thought that two trains will reduce pressure 50% in 24 hours, however each train is independently able to reduce pressure 50% in 24 hours. Second part is plausible if thought that with only one train available pressure would be reduced by half and it would take double the time.		
С.	Correct.		
D.	First part is correct. Second part is plausible if thought that with only one train available, 50% reduction would take double the time.		

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	x	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	8
Reference Provided:	Ν
Learning Objective:	Describe the design basis associated with the Containment Spray system.

Main Idea							
The Containment Sp	ray System is designed to provide for the following:						
 Prevent exceed 300°F). 	 Prevent exceeding containment design pressure and temperature limits (60 psig and 300°F). 						
 Mitigate the cor 	sequences of any size break. (See introduction)						
	ment pressure and temperature and maintain them at acceptable levels tion operations.						
	ment design basis accident, the containment spray system is designed to nent pressure from peak value to one-half peak value in less than 24 hours.						
	redundant and independent trains each of which provides 100% of the emoval capability and 100% of the required iodine removal capability.						
 The portions of the post accide 	the system located inside containment are designed to remain operable in nt environment.						
	he Shutdown Cooling System at a head which is compatible with the ing System to augment LPSI pump flow.						
	CS temperature is below 200°F and pressurizer pressure less than 250 psia s may be realigned and started to provide additional flow through SDC heat						

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Coolant Pump: Knowledge of the	Tier	2		
operational implications of the following concepts as they apply to the RCPS: Effects of RCP shutdown on	Group	1		
secondary parameters, such as steam pressure, steam	K/A		003 K5.04	
flow, and feed flow	IR	3.2		

Given the following condition:

• Unit 3 was operating at 100% when RCP 1A tripped

During SPTAs, as a result of the tripped RCP, the feed rates to SG #1 and SG #2 should be (1) to ensure SG levels rise at the same rate, and SG pressures on SG #1 and SG #2 will (2).

- A. (1) manually adjusted by the BOP
 - (2) continuously diverge
- B. (1) manually adjusted by the BOP
 - (2) remain approximately equal
- C. (1) automatically adjusted by DFWCS(2) continuously diverge
- D. (1) automatically adjusted by DFWCS(2) remain approximately equal

Pro	posed Answer:	В	
Ехр	lanations:		
Α.	A. First part is correct. Second part is plausible since the heat input to SG #1 is lower than SG #2 (due to the stopped RCP), however since the SGs are connected via a steam header cross-tie pipe and SBCS will modulate based on RRS Tave so the SG pressures should remain approximately equal.		
В.	Correct.		
C.	First part is plausible since DFWCS does feed SGs post-trip in Reactor Trip Override (RTO) which controls flow based on RCS temp, however it is based on Tave and throttles both SG downcomer valves at the same rate, regardless of what Tave is in each loop. Second part is plausible since the heat input to SG #1 is lower than SG #2 (due to the stopped RCP), however since the SGs are connected via a steam header cross-tie pipe and SBCS will modulate based on RRS Tave so the SG pressures should remain approximately equal.		
D.	First part is plausible since DFWCS does feed SGs post-trip in Reactor Trip Override (RTO) which controls flow based on RCS temp, however it is based on Tave and throttles both SG downcomer valves at the same rate, regardless of what Tave is in each loop. Second part is correct.		

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	Ν	
Learning Objective:	Des	scribe the response of the DFWCS to a reactor trip condition

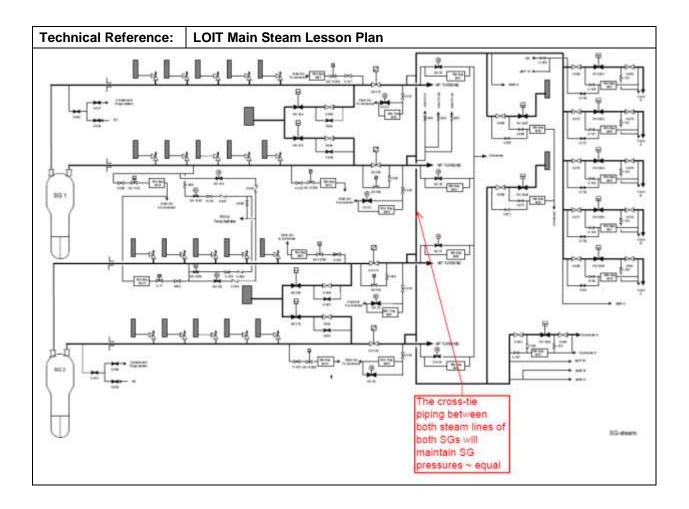
Technical Reference: LOIT DFWCS Lesson Plan

EO: 1.22 Describe the response of the DFWCS to a reactor trip condition.

Introduction

There is a large shrink in SG level following a reactor trip.

Main Idea

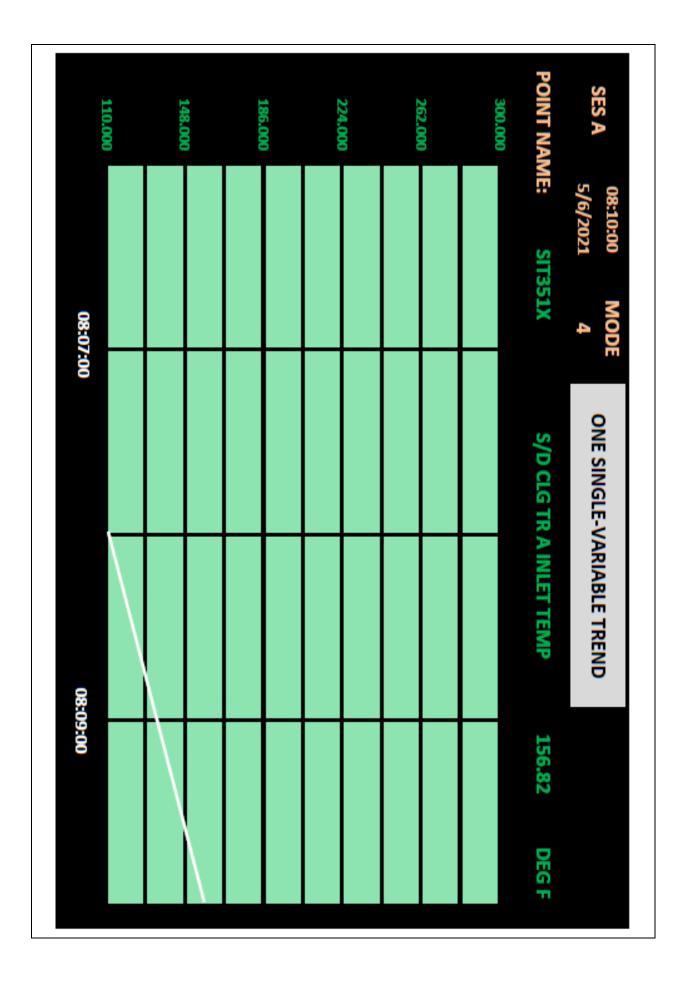

Following a reactor trip the Reactor Trip Override (RTO) logic places a special controller in service that controls feedwater flow to the SGs based on a T-avg error.

The system will remain in RTO (as indicated by an RTO flag on the display screens) until SG level exceeds a value of 51.9% (NR). When that level is reached, control will be returned to the master controller which will control in single element control. If SG level decreases to 26% (NR), control will return to RTO. This return to RTO at 26% (NR) will occur until the undervoltage relays are reset.

The maximum output of the RTO controller is 9% of the master controller output.

The RTO controller will modulate the Downcomer control valve position based on the T-avg difference from a 564°F setpoint.

Fechnical Re	ference:	LOIT SPTAs Lesson Plan
EO: 1.28	Describe reactor tri	SG response when unbalanced RCS flow is established following a ip.
Introductio	n	
Not underst	tanding the	SG response to unbalanced RCP flows can really confuse the crew.
Main Idea		
than the oth	ner one. Its	flow (one pump secured), the SG with two RCPs will transfer more heat pressure will be higher and it will steam more. Based on this, its level will equal feed flow to both SGs.
Explanatio	n	
	Ithough tha	this divergent SG levels and could make the assumption that a SGTR is t is not out of the question, other indications would need to be used to
communa	-	


Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Residual Heat Removal: Ability to predict and/or	Tier	2		
monitor changes in parameters (to prevent exceeding design limits) associated with operating the RHRS	Group	1		
controls including: Closed cooling water flow rate and	K/A		005 A1.03	
temperature	IR	2.5		

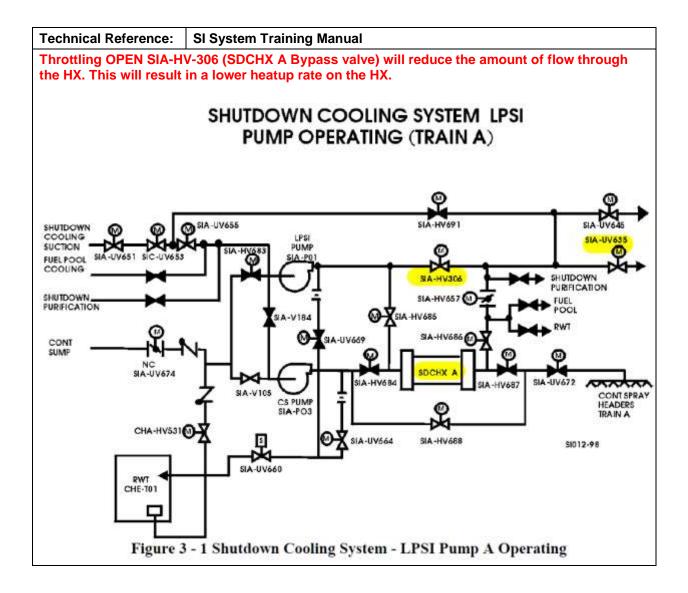
Given the following conditions:

- Unit 1 is in MODE 4
- The crew is placing SDC in service using the Train 'A' LPSI Pump
- The CRS directs the OATC to ensure they are warming up the Train 'A' SDCHX at the MAXIMUM allowable heat up rate per 40OP-9SI01, Shutdown Cooling Initiation
- Currently:
 - The 'A' LPSI Pump is running
 - SIA-UV-635, LPSI Header A to RC Loop 1A, is 10% open
 - o SIA-HV-306, LPSI S/D Cooling HX A Bypass Valve, is 20% open

Based on the provided trend on the following page, in order to comply with the CRS direction, the 'A' SDCHX heat up rate should be ___(1)___ and the crew can accomplish this by throttling ___(2)___ on SIA-HV-306, LPSI S/D Cooling HX A Bypass Valve.

- A. (1) raised
 - (2) open
- B. (1) raised
 - (2) closed
- C. (1) lowered
 - (2) open
- D. (1) lowered
 - (2) closed

Pro	posed Answer:	С		
Exp	lanations:			
Α.	First part is plausible if either the maximum heat up rate is unknown to the examinee (19°/min) or if the either the X or Y-axis is misinterpolated, however the graph shows a current heat up rate of 23°F/min so the rate needs to be lowered. Second part is correct.			
В.	First part is plausible if either the maximum heat up rate is unknown to the examinee (19°/min) or if the either the X or Y-axis is misinterpolated, however the graph shows a current heat up rate of 23°F/min so the rate needs to be lowered. Second part is plausible since closing 306 would raise the heatup rate, however in this case the heatup rate needs to be lowered.			
C.	Correct.			
D.			econd part is plausible since HV-306 is throttled closed to raise the CS, however to lower the heatup rate of the SDCHX, HV-306 must be	


Question Source:		New
		Bank
	Х	Modified – From 2020 NRC Exam
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	Y	Attached picture of the SDC Train 'A' Inlet Temperature
Learning Objective:	Describe the Control Room indications associated with the SDC system	

Original Question:	Original question had picture with heatup rate of 13°F/min so the answer was different.						
Given the following conditions:							
 The crew is place The CRS directs rate allowed by a SIA-HV-306, LP The 'A' LPSI Pu 	 The crew is placing SDC in service using the Train 'A' LPSI Pump The CRS directs warming up the Train 'A' SDCHX at the MAXIMUM heat up rate allowed by 40OP-9SI01, Shutdown Cooling Initiation SIA-HV-306, LPSI S/D Cooling HX A Bypass Valve, is 20% open The 'A' LPSI Pump has been started 						
the 'A' SDCHX heat	Based on the trend on the following page, in order to comply with the CRS direction, the 'A' SDCHX heat up rate should be(1) and the crew can accomplish this by throttling(2) on SIA-HV-306, LPSI S/D Cooling HX A Bypass Valve.						
A. (1) raised (2) open							
B. (1) raised (2) closed							
C. (1) lowered (2) open							
D. (1) lowered (2) closed							

Technical Reference:	400P-9SI01 Shutdown Cooling In	itiation			
PALO VERDE PROCEDURE Page 74 of 246					
Shutdo	wn Cooling Initiation	400P-9SI01	Revision 58		
Step 6.15.23, Continued					
	<u>tle</u> SIA-HV-306 to achieve ALL of the fo IS-306, LPSI S/D Cooling HX A Bypas		<mark>ch</mark>		
• T	he flow rate determined in Step 6.15.2	3.G			
· F	RCS cooldown rate determined in Step	6.15.23.D.1			
	BIA-E01, Shutdown Cooling Heat Excha 9°F/ minute	anger 1, heatup rate les	<mark>s than</mark>		
		1			
3.0 PRECAUTIONS A	AND LIMITATIONS				
	ng a 19°F per minute heatup or cooldo amage to the SDC heat exchanger.	wn rate on the SDC loop	o may		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Pressure Control: Ability to predict	Tier	2		
and/or monitor changes in parameters (to prevent exceeding design limits) associated with operating the	Group	1		
PZR PCS controls including: RCS pressure	K/A		010 A1.07	
	IR	3.7		

Given the following conditions:

- Unit 3 is operating at 100% power
- The Pressurizer is in Boron Equalization with all Non-Class Backup Heaters in service
- RCN-PIC-100, Pressure Master Control, is in AUTO with a setpoint of 2220 psia

Subsequently:

• A transient occurred causing RCS pressure to RISE

Assuming the PPCS system is functioning normally and that RCS pressure continues to rise, the Main Spray Valves should be FULL OPEN...

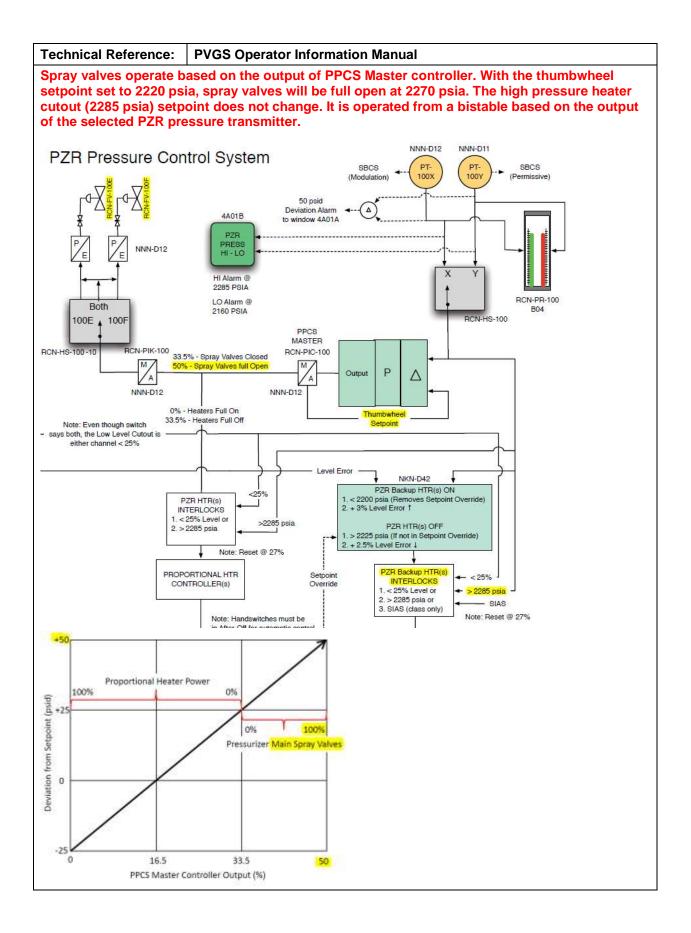
____(1)____ the Backup Heaters receive a trip signal,

AND

(2) the high Pressurizer pressure TS limit is exceeded.

- A. (1) BEFORE(2) BEFORE
- B. (1) BEFORE(2) AFTER
- C. (1) AFTER (2) BEFORE
- D. (1) AFTER
 - (2) AFTER

Pro	posed Answer:	Α			
Exp	Explanations:				
Α.	Correct.				
В.	First part is correct. Second part is plausible since during normal operations (non-boron equalization) the spray valves are full open at 2300 psia, however the pressure at which the spray valves are full open is dependent on the setpoint of PIC-100, so in this condition, the spray valves will be full open prior to exceeding the TS limit of 2295 psia.				
C.	First part is plausible since during normal operations, the heaters trip at 2285 psia and the main spray valves are full open at 2300 psia, however the heater trip is a firm setpoint and not dependent on the setpoint of PIC-100 so with the setpoint at 2220 psia, the spray valves will be full open prior to the heaters receiving a trip signal. Second part is correct.				
D.	spray valves are t dependent on the full open prior to t operations (non-b pressure at which	full op setp he he oron the s	ince during normal operations, the heaters trip at 2285 psia and the main ben at 2300 psia, however the heater trip is a firm setpoint and not oint of PIC-100 so with the setpoint at 2220 psia, the spray valves will be eaters receiving a trip signal. Second part is plausible since during normal equalization) the spray valves are full open at 2300 psia, however the spray valves are full open is dependent on the setpoint of PIC-100, so in y valves will be full open prior to exceeding the TS limit of 2295 psia.		


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	5	
Reference Provided:	N	
Learning Objective:		scribe the automatic features associated with the Pressurizer Pressure ntrol System Bistables.

Technical Reference	: 40OP-9CH01 CVCS Normal Operations					
PZR master pressure controller is set to 30 psi below NOP (~2220 psia) during boron equilization.						
Appendix N - Equalizing Pressurizer Boron Concentration						
1.0 STARTING PRESSURIZER BORON EQUALIZATION						
1.5 <u>Lower</u> F	CN-PIC-100, Pressure Master Control, <mark>setpoint 30 psi</mark> less than current RCS e.					

Technical Reference:	Tecl	nnical Specifications		
Upper pressure limit for	r LCO S	3.4.1 is 2295 psia.		
LCO 3.4.1	RCS DNB parameters for pressurizer pressure, cold leg temperature, and RCS total flow rate shall be within the limits specified below:			
	a.	Pressurizer pressure ≥ 2130 psia and <mark>≤ 2295 psia</mark> ; and		
	b.	RCS cold leg temperature (T $_{\rm c}$) shall be within the area of acceptable operation shown in Figure 3.4.1-1; and		
	c.	RCS total flow rate ≥ 155.8 E6 lbm/hour.		
APPLICABILITY:	MO	DE 1 for RCS total flow rate,		
	MO	DES 1 and 2 for pressurizer pressure,		

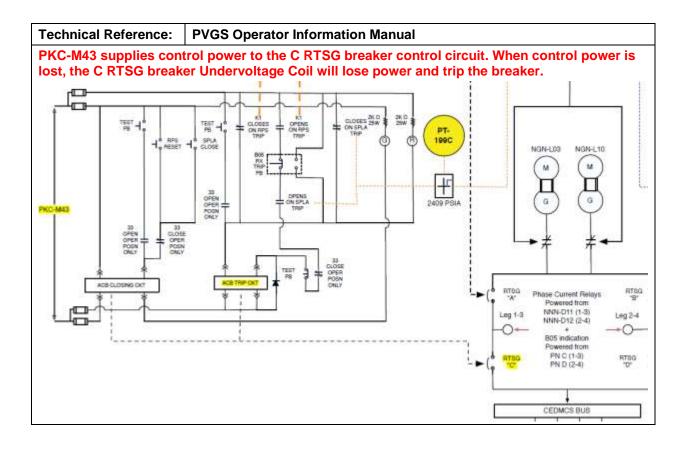
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Protection: Ability to (a) predict the	Tier	2		
impacts of the following malfunctions or operations on the RPS; and (b) based on those predictions, use	Group	1		
procedures to correct, control, or mitigate the	K/A	012 A2.07		
consequences of those malfunctions or operations: Loss of dc control power	IR	3.2		

Given the following conditions:

- Unit 2 is operating at 100% power
- A loss of PKC-M43 has just occurred

Per 40AO-9ZZ13, Loss of Class Instrument or Control Power, the crew should...

- A. manually open ONLY the 'C' RTCB
- B. manually open the 'A' AND the 'C' RTCBs
- C. verify that ONLY the 'C' RTCB automatically opened
- D. verify that the 'A' AND the 'C' RTCBs automatically opened


Pro	posed Answer:	С			
Exp	planations:	•			
Α.		to be	e 'C' RTCB should be open, and on a loss of control power breakers are manually operated, however on a loss of PKC-M43, the 'C' RTCB will		
В.	Plausible since on a loss of PNC-D27 both the 'A' and 'C' RTCBs will open, and normally a loss of control power requires local manual breaker operation, however on a loss of DC control power, only the 'C' breaker will open.				
C.	Correct.				
D.	Plausible since this is the case on a loss of PNC-D27, however on a loss of PKC-M43, only the 'C' RTCB will open.				

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	3				
10CFR55.41:	10				
Reference Provided:	N				
Learning Objective:		Given a loss of PK and/or PN, describe how the RPS responds to the power loss in accordance with 40AO-9ZZ13.			

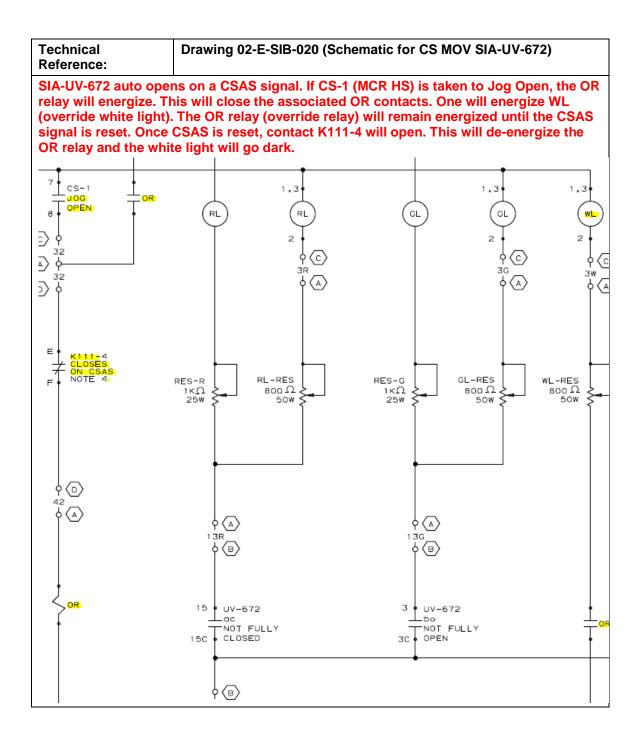
	Technical Reference: 40AO-9ZZ13 Loss of Class Instrument or Control Power						
The AOP will direct the crew to review appendix E for impacts of the loss of PKC-M43. The crew will then verify that the plant responded as expected (i.e. verify C RTSG breaker open).							
7.0 LOSS OF PKC-M43 OR PKC-D23							
INSTRUCTIONS CONTINGENCY ACTIONS							
 5. Determine the effects of the de-energized bus. REFER TO Appendix E, Effects of the Loss of Channel C. Loss of PKC-M43 (125Vdc) causes only C RTSG breaker to open automatically. Loss of PNC-D27 (120Vac) causes both A and C RTSG breakers to open automatically. 							
Appendix E, Effects of the Loss of Channel C							
		Арр	pendix	E, Effects of the Loss of Channel C			
System	PKC M43	App PKC D23	PNC D27	E, Effects of the Loss of Channel C Response			
System		РКС	PNC				
System		РКС	PNC				

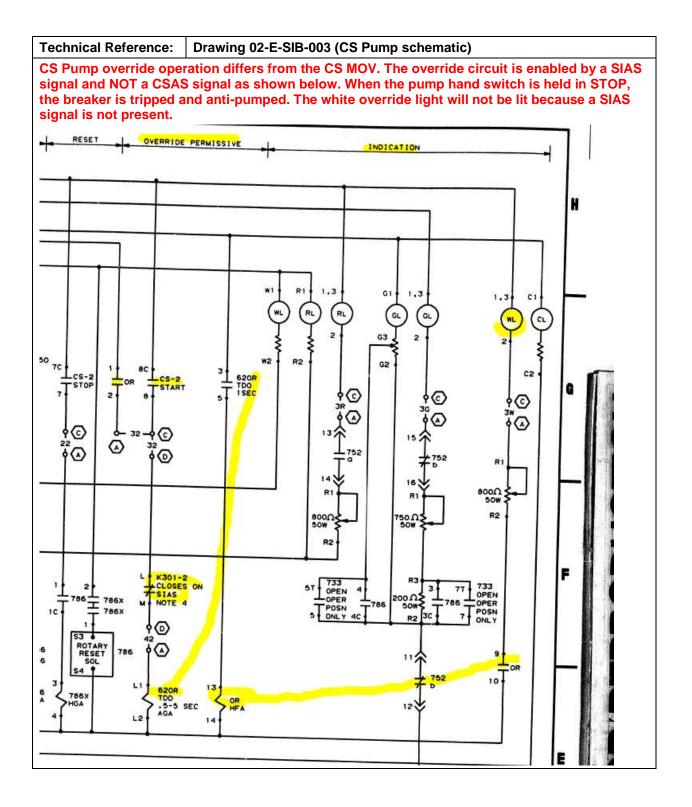
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment Spray: Ability to manually operate	Tier	2		
and/or monitor in the control room: Containment spray reset switches	Group	1		
16561 SWILLIES	K/A		026 A4.05	
	IR	3.5		

Given the following conditions:

- Unit 2 is operating at 100% power
- An inadvertent Train 'A' CSAS has occurred
- The CRS has entered 40AO-9ZZ17, Inadvertent PPS-ESFAS Actuations
- The crew has closed the 'A' CS Header Isolation Valve, SIA-UV-672, and stopped 'A' CS Pump, SIA-P03, per the AOP

Following the listed manipulations, the OVERRIDE light should be illuminated on 'A' CS Header Isolation Valve ____(1)____, and AFTER the crew has reset the CSAS signal (but taken no further action) the OVERRIDE light(s) should ____(2)____.


- A. (1) ONLY
 - (2) be extinguished
- B. (1) ONLY(2) remain illuminated
- C. (1) AND 'A' CS Pump(2) be extinguished
- D. (1) AND 'A' CS Pump
 - (2) remain illuminated


Pro	posed Answer:	Α					
Ехр	lanations:						
Α.	Correct.						
В.	First part is correct. Second part is plausible since there are components which must have control power cycled in order to restore normal functionality following an inadvertent CSAS (i.e. the CS Pump), however that is only necessary prior to resetting the CSAS signal.						
C.	First part is plausible since this would be true if a SIAS had occurred, however the OVERRIDE light for the CS Pump is not enabled if the pump was started as a result of a CSAS with no SIAS signal. Second part is correct.						
D.	light for the CS P signal. Second p cycled in order to	ump i art is resto	ince this would be true if a SIAS had occurred, however the OVERRIDE s not enabled if the pump was started as a result of a CSAS with no SIAS plausible since there are components which must have control power ore normal functionality following an inadvertent CSAS (i.e. the CS Pump), ecessary prior to resetting the CSAS signal.				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Χ	Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:	Determine the impact of an inadvertent CSAS actuation and the actions needed to restore Plant stability.	

Technical Reference:		40AO-9ZZ17 Inadve	rtent PPS-ESFAS Actuations				
5.0 CSAS							
	INS	TRU	<u>CTIONS</u>	CONTINGENCY ACTIONS			
3.	IF BOT	'H of t	the following:	i i			
		ny Co runni	ntainment Spray Pump				
	S		nning Containment Pump is NOT being used C				
	THEN	perfor	m the following:				
	TI Sj "S	 a. IF SIAS has NOT actuated, THEN <u>place</u> the Containment Spray Pump hand switch in "STOP" to anti-pump the CS Pump. 					
	TI	HEN <u>(</u>	S has actuated, <u>override</u> and <u>stop</u> the nment Spray Pump.				
4.		ment	l <u>close</u> all open Spray Header Isolation	 4.1 IF BOTH of the following: Train A CSAS has actuated SIA-UV-672, CS A Discharge 			
14		IF a CS Pump needs to be started, THEN perform the following:					
			S has NOT actuated, perform the following:				
	1)	 <u>Inform</u> an operator that the CS Pump breaker close upon restoration control power. 					
	2)	C)	<u>irect</u> the operator to <mark>ycle control power</mark> to the S Pump breaker(s).				
	P	umps	S actuated while the CS were stopped, perform the following:				
	1)	ha	lace the CS Pump andswitch to "START" nd release the switch.				
	2)		lace the CS Pump andswitch to "START".				
				-			

	Appendix C, PPS	S-ESFAS Check					
	INSTRUCTIONS CONTINGENCY ACTIONS						
	If the BOP ESFAS Load Sequencer is in mode 4, override lights for sequenced loads will not clear until the DG is shutdown.						
T a c a b	 HEN <u>perform</u> the following in the ppropriate attachment(s) of this ppendix to ensure actuated omponents are aligned as desired: <u>Ensure</u> that component status is appropriate for current plant conditions. <u>Circle</u> the as left condition of all components. <u>Check</u> that all components have power available. <u>Check</u> that the white override light is extinguished for all components. <u>Check</u> that all SESS alarms are clear for all components. 	 4.1 IF the actuation will NOT be reset, THEN perform the following: a. IF BOTH of the following: Any DG(s) is running due to AFAS or SIAS DG operation is NOT needed THEN <u>PERFORM</u> ANY of the following to shutdown the Diesel Generator(s): 400P-9DG01, <u>Emergency Diesel</u> <u>Generator A</u> 400P-9DG02, <u>Emergency Diesel</u> <u>Generator B</u> Dverride and <u>align</u> equipment as directed by the CRS. 					
hite override lights should be extinguished after the CSAS actuation has been reset.							

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Main and Reheat Steam: Ability to manually	Tier	2		
operate and/or monitor in the control room: Main steam supply valves	Group	1		
Supply valves	K/A	039 A4.01		
	IR	2.9		

Given the following conditions:

• Unit 1 is preparing to place the Main Steam Lines in service with Condenser vacuum established per 40OP-9SG01, Main Steam

To open SGE-UV-169, SG 1 MSIV Bypass Valve, the BOP should place ____(1)____ of the two MSIV Bypass Valve handswitch(s) in OPEN.

After D/P across Line 1 MSIV UV-170 has been equalized, the BOP should place ____(2)____ of the two MSIV handswitches in SLOW OPEN.

- A. (1) BOTH
 - (2) BOTH
- B. (1) BOTH(2) ONLY one
- C. (1) ONLY one (2) BOTH
- D. (1) ONLY one (2) ONLY one

Proposed Answer: B		В	
Exp	planations:		
Α.			econd part is plausible since the MSIV Bypass Valves are opened using wever the MSIVs are opened using only one handswitch.
В.	Correct.		
C.	First part is plausible since MSIVs are opened using only one handswitch, however MSIV Bypass Valves are opened using both handswitches. Second part is plausible since the MSIV Bypass Valves are opened using both handswitches, however the MSIVs are opened using only one handswitch.		
D.			ince MSIVs are opened using only one handswitch, however MSIV Bypass ng both handswitches. Second part is correct.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

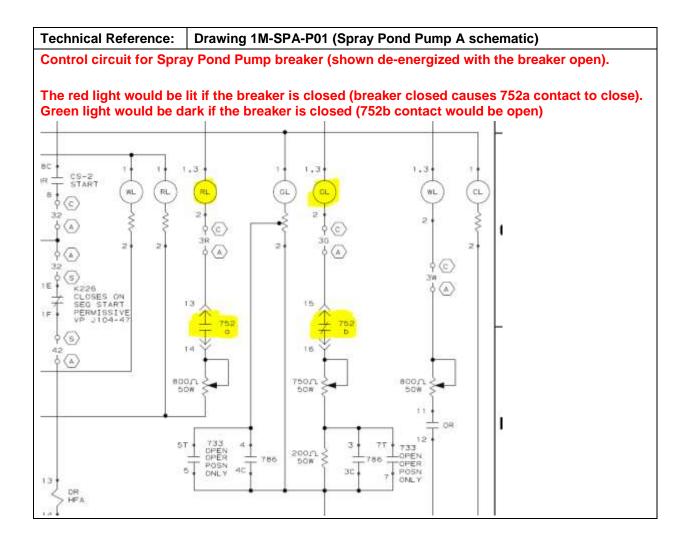
Level of Difficultly:	3	
10CFR55.41:	4	
Reference Provided:	N	
Learning Objective:	Explain the operation of the Main Steam Isolation Valves under normal operating conditions.	

Technical Reference:	40OP-9SG01 Main Steam				
Both handswitches must be placed in OPEN to open a MSIV Bypass (equalizing) valve. However, if either handswitch is taken to CLOSE, the MSIV Bypass valve will close.					
Only one handswitch h	as to be placed in SLOW OPEN to open an MSIV.				
6.1 Placing the Main Ste Vacuum Established	am Lines in Service With MSIVs Closed and Condenser				
	n Steam Equalizing Valve, is CLOSED, the following handswitches to OPEN:				
• SGA-HS-169A, I	ISIV BYPASS ISOL VLV UY-169A				
• SGB-HS-169B, I	MSIV BYPASS ISOL VLV UY-169B				
	NOTE				
	rangement, stroking an MSIV with one hydraulic train e indication on the inactive hydraulic system indicators.				
6.1.28 Perform the followi	ng to OPEN all of the MSIVs:				
A. IF SGE-UV-170 THEN perform	 SG1 Line 1 Main Steam Isolation Valve, is to be OPENED, the following: 				
the second se	I of the following SG1 handswitches to SLOW CLOSE, valve logic:				
• SGA-H	IS-170A, LINE 1 MSIV UV-170				
- SGB-HS-170B, LINE 1 MSIV UV-170					
2. Take ONE	of the following handswitches to SLOW OPEN:				
• SGA-H	IS-170A, LINE 1 MSIV UV-170				
• SGB-H	IS-170B, LINE 1 MSIV UV-170				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Service Water: Ability to determine operability	Tier	2		
and/or availability of safety related equipment	Group	1		
	K/A	0	76 G 2.2.3	7
	IR	3.6		

Regarding the 'A' Spray Pond Pump:

- (1) If the pump is running due to an AUTO-start, the Control Board indication will show a...
- (2) If the pump failed to AUTO-start and CANNOT be manually started, the Control Room indication will show...
- A. (1) green light with a red-flagged handswitch (2) white SESS alarm ONLY
- B. (1) green light with a red-flagged handswitch (2) blue AND white SESS alarms
- C. (1) red light with a green-flagged handswitch (2) white SESS alarm ONLY
- D. (1) red light with a green-flagged handswitch
 - (2) blue AND white SESS alarms


Pro	posed Answer:	D		
Exp	lanations:			
Α.	A. First part is plausible since there will be differing light and handswitch indications, however the reverse is correct. Second part is correct since the white SESS light is indicative of an overcurrent trip on the pump breaker, however the blue alarm is indicative of a failure to go to it's actuated position.			
В.	First part is plausible since there will be differing light and handswitch indications, however the reverse is correct. Second part is correct.			
C.		n the	econd part is correct since the white SESS light is indicative of an pump breaker, however the blue alarm is indicative of a failure to go to its	
D.	Correct.			

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

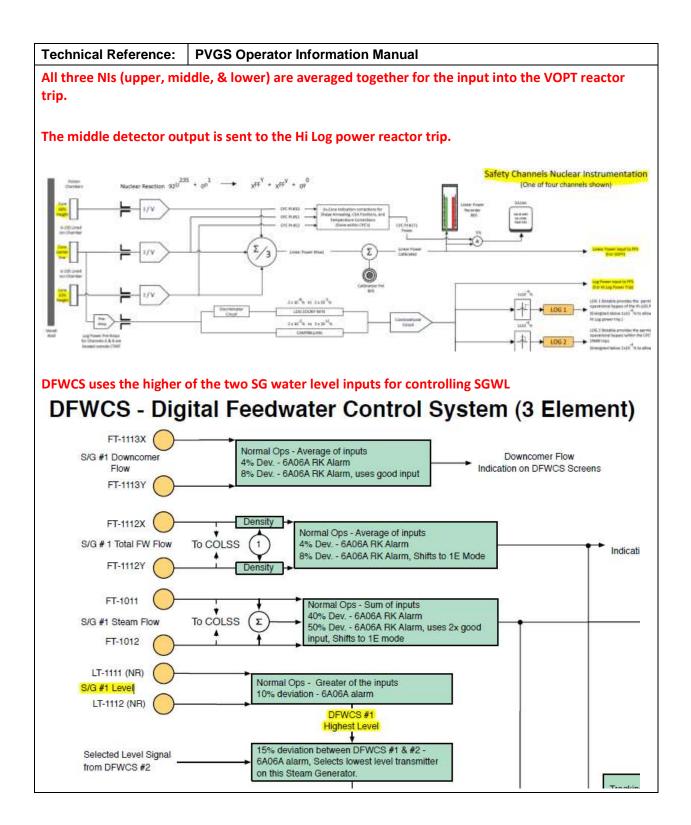
Cognitive Level:		Memory or Fundamental Knowledge
	x	Comprehension or Analysis

Level of Difficultly:	3		
10CFR55.41:	7		
Reference Provided:	Ν		
Learning Objective:	leve	blain the operation of the Safety Equipment Status System system el windows and component level windows under normal operating aditions.	

ight	Purpose
ed	Breaker CLOSED
	Continuity through breaker trip coil. If the red light is not lit, the trip circuit may not function. (CRAI 3154411).
	Note: The current through the red light is limited by a resistor. This resistor keeps the current to a value that will illuminate the light but not generate enough magnetic field to activate the breaker's trip coil.
<mark>Freen</mark>	Breaker OPEN
	Note: Controlled by breaker auxiliary contacts with a current limiting resistor is in series with the light.

Technical Reference:		40AL-9ES2A Safety Equip Responses	ment Status System F	Panel ESA-UA-2A A
Blue SESS liç	jht lit if ar	auto start signal exists and	I the pump didn't star	t.
Response	Sectio	n	SEAS 10J	
			ESS SPRAY POND	
Essential Spray F	Pond Pump A	SPA-P01	PMP A P01	
Point ID	Description		Setpoint	
PBA-S03C-752 contact	Ckt Bkr for S	SPA-P01 "A" Spray Pond Pump	SPA-P01 NOT running	
pump from st	arting (au	failure in the breaker contro tomatically or manually fror		d that will prevent
Response	Sectio	n		-
F		224 224	ESS SPRAY POND	
Essential Spray Pond Pump A SPA-P01			PMP A P01	
Point ID	Descriptio	n	Setpoint	ĺ
PBA-S03C-786 Relay	Lock-Out R	elay for ESS Spray Pond Pump A	786 Relay tripped	
OR PBA-S03C-762C Relay contact	Agastat TE (762C)) Relay for ESS Spray Pond Pump A	PBA-S03C Control power loss, NOT racked to the operate position, closing springs NOT charged	
OR			aprings non charges	
PBA-S03C-762T Relay contact	Agastat TD (762T)	Relay for ESS Spray Pond Pump A	PBA-S03C Control power loss, NOT racked to the operate position	
		NOTE		
			S, or CRVIAS signal	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Control Rod Drive: Knowledge of the physical	Tier	2		
connections and/or cause-effect relationships between the CRDS and the following systems: NIS and RPS	Group	2		
	K/A		001 K1.05	
	IR	4.5		


- (1) The input signal for the HI LOG POWER trip comes from the...
- (2) The input signal for the VOPT trip comes from the...
- A. (1) the middle safety channel NI ONLY(2) the average of all 3 safety channel NIs
- B. (1) the middle safety channel NI ONLY(2) the highest indicated power of the 3 safety channel NIs
- C. (1) the average of all 3 safety channel NIs(2) the average of all 3 safety channel NIs
- D. (1) the average of all 3 safety channel NIs(2) the highest indicated power of the 3 safety channel NIs

Pro	posed Answer: A				
Exp	Explanations:				
Α.	Correct.				
В.					
C.	First part is plausible since VOPT uses the average of all 3 safety channel NIs, however only the middle detector is used for log power and thus only the middle detector is used for the hi log power trip. Second part is correct.				
D.	First part is plausible since VOPT uses the average of all 3 safety channel NIs, however only the middle detector is used for log power and thus only the middle detector is used for the hi log power trip. Second part is plausible since there are other systems with multiple inputs which use a "high select" such as DFWCS, and using the highest indicated power would be the most conservative assessment of power, however VOPT is triggered from the average of all 3 safety channel NIs.				

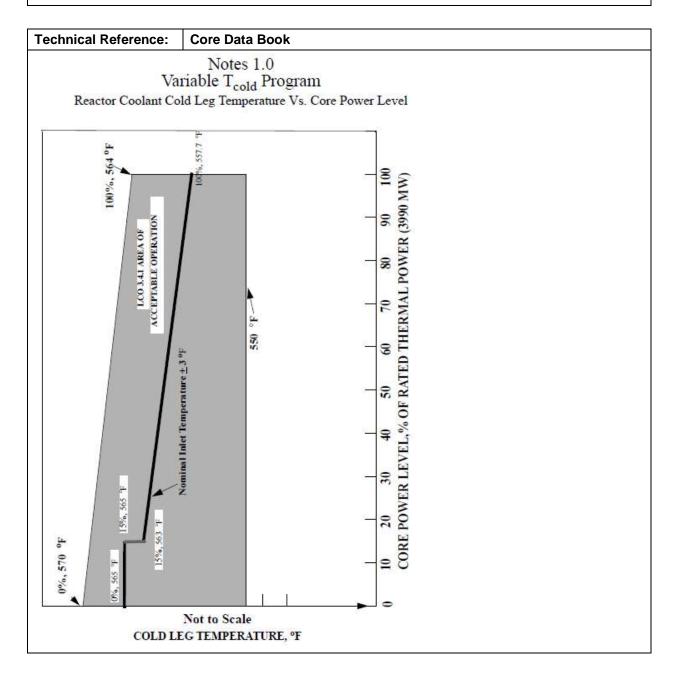
Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

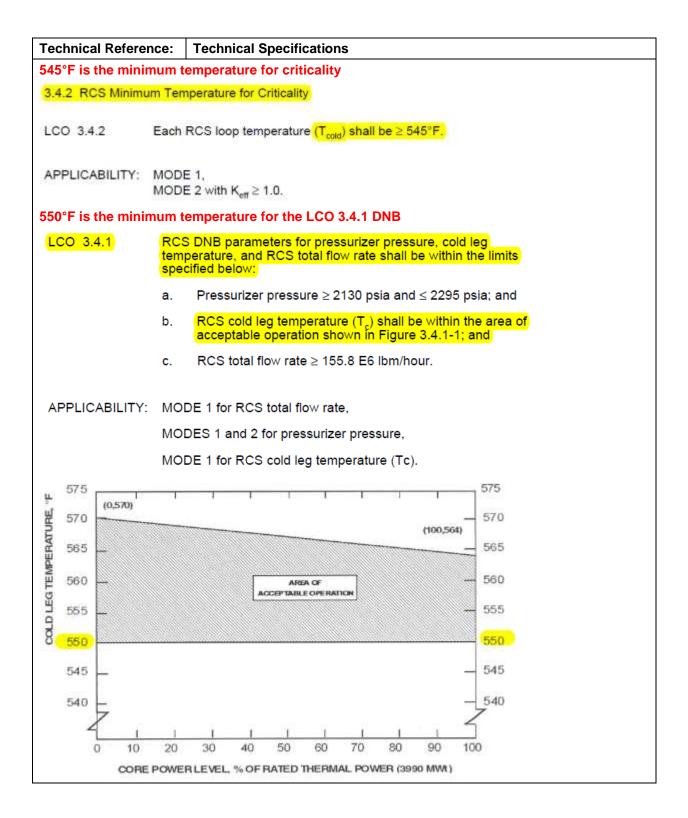
Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

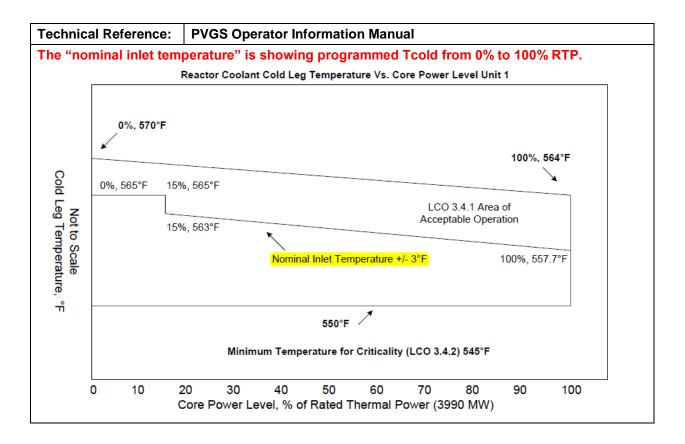
Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	N	
Learning Objective:	Describe the circuitry associated with the Safety Channel Nuclear Instruments.	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Coolant: Ability to predict and/or monitor	Tier	2		
changes in parameters (to prevent exceeding design limits) associated with operating the RCS controls	Group	2		
including: Temperature	K/A		002 A1.03	
	IR	3.7		

- (1) During a power ascension from 20% to 100% power, if RCS Tcold is kept on program, Tcold will _____ during the power ascension
- (2) To ensure LCO 3.4.2, RCS Minimum Temperature for Criticality, remains met, RCS Tcold must remain greater than or equal to a MINIMUM of _____ .
- A. (1) rise
 - (2) 545°F
- B. (1) rise
 - (2) 550°F
- C. (1) lower
 - (2) 545°F
- D. (1) lower (2) 550°F


Pro	posed Answer:	С		
Exp	lanations:			
Α.	First part is plausible since Thot and Tavg will both rise, however Tcold will lower during a power ascension. Second part is correct.			
В.	First part is plausible since Thot and Tavg will both rise, however Tcold will lower during a power ascension. Second part is plausible as 550°F is the minimum Tcold to remain in the "acceptable area of operation" per LCO 3.4.1, however the minimum RCS Tcold for criticality is 545°F.			
C.	Correct.			
D.	First part is correct. Second part is plausible as 550°F is the minimum Tcold to remain in the "acceptable area of operation" per LCO 3.4.1, however the minimum RCS Tcold for criticality is 545°F.			


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam


Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:		
10CFR55.41:		
Reference Provided:		
Learning Objective:	escribe LCO 3.4.2, sis.	Minimum Temperature for Criticality, including the

Technical Reference:	40OP-9ZZ05 Power Operations				
The GOPs direct maintaining RCS temps on program per the CDB.					
6.2.23 (<u>Maintain</u>	BOTH of the following RCS parameters;				
• RCS	$\rm T_{cold}$ at or near the $\rm T_{cold}$ program found in the Core Data Book				
• RCS	T _{avg} within 3°F of T _{ref} by adjusting RCS boron concentration				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Hydrogen Recombiner and Purge Control:	Tier	2		
Knowledge of the operational implications of the following concepts as they apply to the HRPS: Sources	Group	2		
of hydrogen within containment	K/A		028 K5.03	
	IR	2.9		

During a LOCA, the PRIMARY source of hydrogen production during core uncovery comes from the (1).

Per 40DP-9ZZ04, Time Critical Action Program, the Hydrogen Analyzers must be placed in service within a MAXIMUM of ____(2)___ from the start of the LOCA.

- A. (1) radiolysis of water
 - (2) 15 minutes
- B. (1) radiolysis of water(2) 30 minutes
- C. (1) zirconium-steam reaction(2) 15 minutes
- D. (1) zirconium-steam reaction(2) 30 minutes

Pro	posed Answer:	D	
Ехр	lanations:		
Α.	however the prima safety function sta	ary so atus c	s this is a contributor to the hydrogen generated following a LOCA, burce is from the zirc-steam reaction. Second part is plausible since the checks are required to be performed every 15 minutes while operating in a time limit to get a hydrogen analyzer in service is 30 minutes.
В.	First part is plausible as this is a contributor to the hydrogen generated following a LOCA, however the primary source is from the zirc-steam reaction. Second part is correct.		
C.	to be performed e	very	econd part is plausible since the safety function status checks are required 15 minutes while operating in the EOPs, however the time limit to get a ervice is 30 minutes.
D.	Correct.		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3		
10CFR55.41:	7		
Reference Provided:	N		
Learning Objective:	pla	Given conditions of a LOCA, state the time limitation associated with placing the Hydrogen Analyzers in service in accordance with 40EP-9EO03.	

Zirconium

The Zirconium-Steam reaction is the primary hydrogen production method inside the vessel during core uncovery conditions. It can generate large amounts of hydrogen due to large quantity of zirconium in the core. The reaction is exothermic (generates heat) and is temperature dependent. At increased temperature levels, the reaction can become self sustaining and heat produced can be more than from decay heat.

Per 10 CFR 50:

50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

(b)(1) Peak cladding temperature. The calculated maximum fuel element cladding temperature shall not exceed 2200° F.

3) *Maximum hydrogen generation*. The calculated total amount of hydrogen generated from the chemical reaction of the cladding with water or steam shall not exceed 0.01 times the hypothetical amount that would be generated if all of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react.

Radiolysis

This is the separation of water into its constituent components under the influence of a radiation field. Radiation involved includes alpha, beta, gamma and neutrons. Hydrogen production by this method is of concern for extended periods after significant core damage has occurred and fuel and coolant are mixed together.

Technical	Reference:	40DP-9ZZ04 Time Critical Action (TCA) Program					
TCA	Action	Time Limit	Time Zero	Validation Method	Procedure	Org	Source Document (other info)
TCA-55	Place H2 Analyzers in service following LOCA	30 minutes	LOCA event	Simulator	40EP-9EO03 40EP-9EO05 40EP-9EO09	Ops	UFSAR 6.2.5.2.1

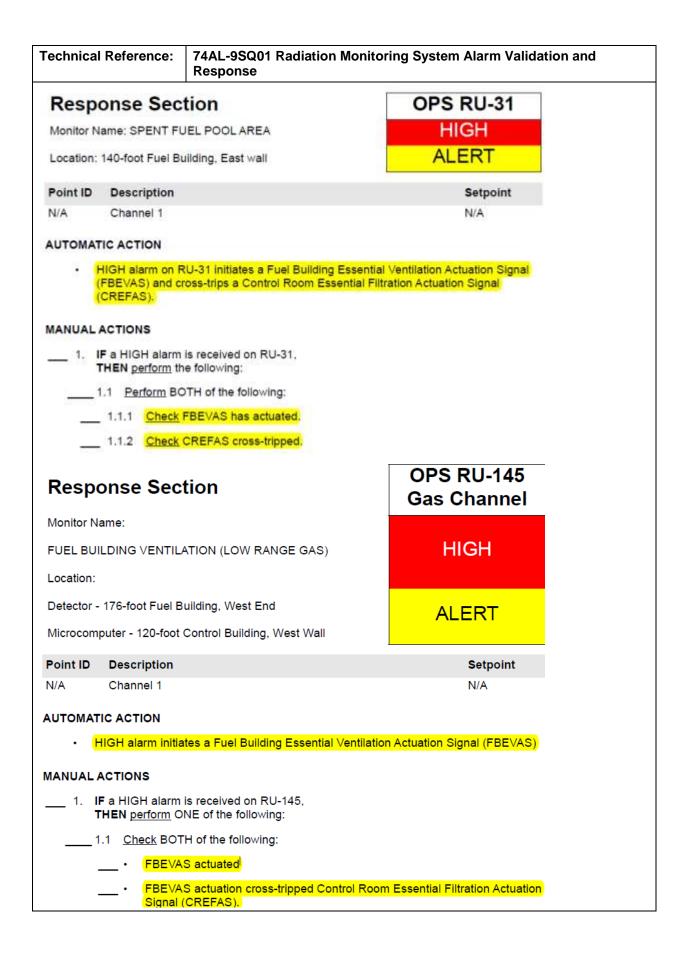
Technical Reference:	40DP-9AP16 Emergency Operating Procedure Users Guide			
4.18.3 Safety Function	n Status Checks			
	and assessment of the SFSC is the responsibility of the CRS. This y be assigned to the STA.			
	ction Status should be checked approximately every 15 minutes RP, FRP, or LMFR is in use.			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Spent Fuel Pool Cooling: Knowledge of the effect	Tier	2		
that a loss or malfunction of the Spent Fuel Pool Cooling System will have on the following: Area and ventilation		2		
radiation monitoring systems	K/A	033 K3.02		
	IR	2.8		

Given the following conditions:

- A leak has occurred in the Spent Fuel Pool
- Radiation levels are rising in the area
- RU-31, Spent Fuel Pool Area monitor is in HIGH alarm
- RU-145, Fuel Building Ventilation Low Range Gas monitor is in ALERT alarm

With NO operator action, which of the following ESFAS actuations will occur as a result of the listed conditions?


- 1. CPIAS
- 2. FBEVAS
- 3. CREFAS
- A. 1 ONLY
- B. 2 ONLY
- C. 1 and 3 ONLY
- D. 2 and 3 ONLY

Pro	posed Answer:	D				
Exp	Explanations:					
Α.			vould actuate given the radiation levels rising from apparent fuel damage, n on RU-31 will actually actuate a FBEVAS which will cross-trip CREFAS			
В.	Plausible since FBEBAS will actuate, however CREFAS will also be actuated via a cross-trip from FBEVAS					
C.	Plausible since C conditions.	REF	AS will be actuated, however CPIAS will not actuate based on the listed			
D.	Correct,					

Question Source:		New			
	x	Bank (modified but still	Bank (modified but still considered bank)		
		Modified	Modified		
	X	Previous NRC Exam	2018 NRC Q65		

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	11
Reference Provided:	N
Learning Objective:	Explain the operation of the FBEVAS Module.

Technical	Reference:	40AL-9RK5A Panel B05A Alar	m Respons	ses			
Respo	onse Sec	tion		5A04A			
Control Ro	om Essential F	iltration Actuation Signal Train A		CREFAS A			
Point ID	Descriptio	on		Setpoint			
SAYS5	Control Ro	oom Ess Filtration Actuation Signal A	(RU-29)	equal to or less than 2 X 10 ⁻⁵ μci/cm ³ or FBEVAS or CPIAS			
PROBAB	LE CAUSES	i					
•	 Manual actuation from panel B05, SAA-HS-27 or A BOP-ESFAS panel test pushbutton 						
•	SQA-RU-29, Control Room Ventilation Intake - Train A air monitor reading above setpoint						
•	FBEVAS Tra	ain A or B actuated					
•	CPIAS Trair	n A or B actuated					
•	CREFAS Tr	ain B actuated					
	SQA-RU-29	∂, Control Room Ventilation Inta	ke - Train /	A air monitor failure	•		

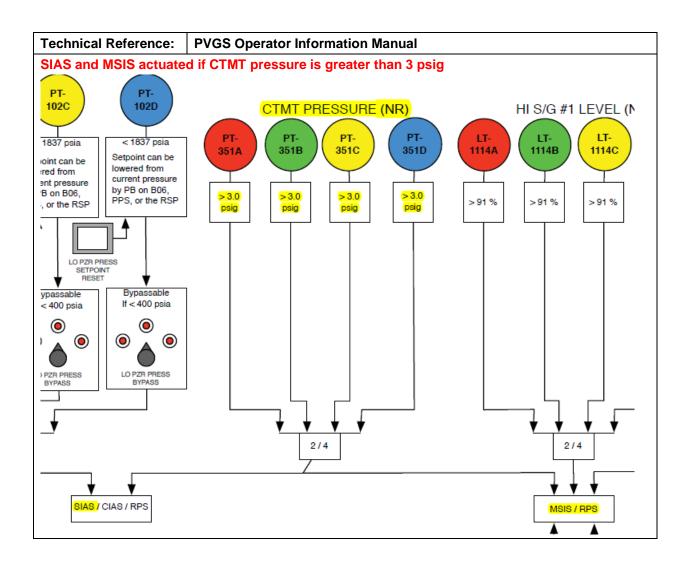
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Generator: Ability to (a) predict the impacts	Tier	2		
of the following malfunctions or operations on the SG; and (b) based on those predictions, use procedures to	Group	2		
correct, control, or mitigate the consequences of those	K/A		035 A2.06	
malfunctions or operations: Small break LOCA	IR	4.5		

Given the following conditions:

- Unit 2 was tripped from 100% power due to a small break LOCA inside Containment
- SIAS and CIAS were manually actuated after the Reactor trip
- Current plant conditions are as follows:
 - Pressurizer level is 10% and slowly lowering
 - Pressurizer pressure is 1950 psia and slowly lowering
 - SG levels are both 40% NR and slowly lowering
 - SG pressures are both 1050 psia and slowly rising
 - Containment pressure is 3.2 psig and slowly rising
- The BOP is preparing to report the status of RCS Heat Removal

Assuming NO operator actions have been taken on Board 6, which of the following describes what the BOP should do per 40EP-9EO01, Standard Post Trip Actions and PVNGS EOP Operations Expectations?

Inform the CRS that they are going to (1) to control SG pressure and transition to (2) to control SG levels.


- A. (1) transition to ADVs(2) AFB-P01
- B. (1) transition to ADVs(2) AFN-P01
- C. (1) take manual control of SBCS Valves 1007 and 1008(2) AFB-P01
- D. (1) take manual control of SBCS Valves 1007 and 1008(2) AFN-P01

Pro	posed Answer:	Α			
Exp	lanations:				
Α.	Correct.				
В.	B. First part is correct. Second part is plausible since AFN-P01 is normally preferred, however since SIAS actuated, AFB-P01 is already running and if an AFW Pump has received an auto start signa and is already running, it becomes the preferred pump to transition to.				
C.	First part is plausible since ADVs are a last resort and 1007 and 1008 do not relieve to the Main Condenser, however since Containment pressure is > 3.0 psig, MSIS has actuated rendering 1007 and 1008 unavailable. Second part is correct.				
D.	Condenser, howe 1007 and 1008 ur however since SI	ver s navai AS ac	ince ADVs are a last resort and 1007 and 1008 do not relieve to the Main ince Containment pressure is > 3.0 psig, MSIS has actuated rendering able. Second part is plausible since AFN-P01 is normally preferred, ctuated, AFB-P01 is already running and if an AFW Pump has received an already running, it becomes the preferred pump to transition to.		

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	x	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	8	
Reference Provided:	N	
Learning Objective:	Given plant conditions following a reactor trip, analyze whether the Heat Removal Safety Function is met and what contingency actions required if it is not in accordance with 40EP-9EO01.	

Technical Reference:		
	e SIAS signal. AFB is the least S EXPECTATIONS	complex pump to use to start feeding. raye ຂບັບເບັຂ
4. The g <mark>eneral priorit</mark> i	ies for restoration of feedwater	to the steam generators are as follows:
be operational.	Examples includes feed sourc manual or in reactor trip overri	are the <mark>least complex and most likely to es that are already in operation, such as de mode, and the use of AFB after it has been been as the mode, and the use of AFB after it has been been been been been been been bee</mark>
AFB-P01, or AF Control Room. overriding AFA	A-P01 (listed in order of prefe The operator must exercise ca	d, then attempt to start AFN-P01, ence except for LOOP events) from the aution when manually initiating feed or I a steam generator with a DP lockout
	steam lines by closing the MS ed to control SG pressure.	Vs, therefore SBCS is not available and
7. <mark>(If available, the SB) should be used</mark> .	CS should be used to control T	c. If the SBCS is not available, the ADVs

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Dump/Turbine Bypass Control: Knowledge	Tier	2		
of the effect of a loss or malfunction on the following will have on the SDS: Controller and positioners, including	Group	2		
ICS, S/G, CRDS	K/A		041 K6.03	
	IR	2.7		

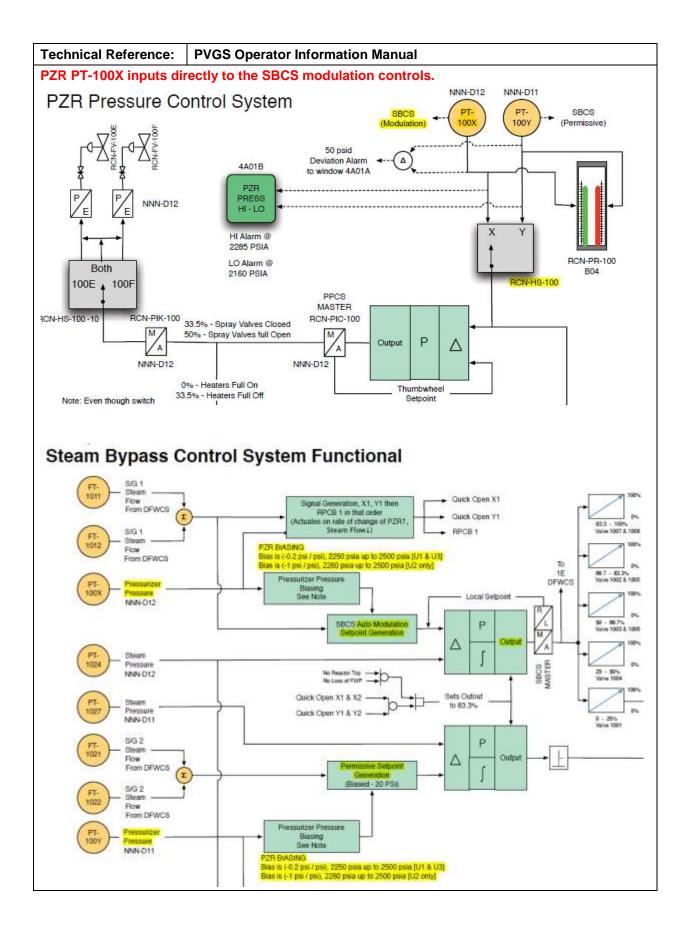
Given the following conditions:

- Unit 2 is operating at 100% power
- RCN-HS-100, Pressure Control Channel X/Y Selector, is selected to Channel 'X'

Subsequently:

• RCN-PT-100X, Pressurizer Control Channel 'X', failed to 2500 psia

With NO operator action, the SBCS Auto Modulation Setpoint will ____(1)___ and the SBCS Auto Modulate Permissive light will be ____(2)___ .


- A. (1) lower
 - (2) illuminated
- B. (1) lower(2) extinguished
- C. (1) remain constant (2) illuminated
- D. (1) remain constant
 - (2) extinguished

Pro	posed Answer:	В			
Exp	lanations:				
Α.	 First part is correct. Second part is plausible as this would be the case if PT-100Y failed high, however the permissive light will not illuminate if Channel X fails high. 				
Β.	Correct.				
C.	First part is plausible since this would be the result of PT-100X failing low, however when it fails high, the modulation setpoint lowers. Second part is plausible as this would be the case if PT-100Y failed high, however the permissive light will not illuminate if Channel X fails high.				
D.	First part is plausible since this would be the result of PT-100X failing low, however when it fails high, the modulation setpoint lowers. Second part is correct.				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Х	Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	4	
Reference Provided:	N	
Learning Objective:	Describe the response of the SBCS to a failure of the following: Pressurizer Pressure	

echnical Re			formation Manual
RCN-PT-100X	Pressurizer Pressure Transmitter 100X is used to BIAS(downward) the Auto Modulation Setpoint and also used in the Quick Open X1, Y1, and RPCB 1 generation.	HIGH	 Effect on Quick Open The failure HIGH will transiently cause the Quick Open or RPCB bistables to actuate. The failure HIGH will prevent the system from seeing the PZR Pressure increase on a real Load Rejection. (delay Quick Opens) Effect on Auto Modulation Setpoint The failure HIGH will BIAS the SBCS Auto Modulation Setpoint lower by up to 220 psia maximum, (Units 2 & 3, 50 psia for Unit 1) The SBCS system may generate a Auto Modulation Signal due to real Steam Pressure being above setpoint. (100% modulation signal). Elevated Tave condition (CEA drop) should be addressed in Local / Auto
		LOW	 Effect on Quick Open The failure LOW will not cause the Quick Open or RPCB bistables to actuate. (wrong direction) The failure LOW will prevent the system from seeing the PZR Pressure increase on a real Load Rejection. (delay Quick Opens) Effect on Auto Modulation Setpoint The failure LOW will not BLAS the SBCS Auto Modulation Setpoint lower. (wrong direction) The SBCS system can still generate a Auto Modulation Signal when real Steam Pressure goes above setpoint.
RCN-PT <mark>-100Y</mark>	Pressurizer Pressure Transmitter 100Y is used to BIAS(downward) the Auto Permissive Setpoint and also used in the Quick Open X2, Y2, and RPCB 2 generation.	HIGH	 Effect on Quick Open 1. The failure HIGH will transiently cause the Quick Open or RPCB bistables to actnate. 2. The failure HIGH will prevent the system from seeing the PZR Pressure increase on a real Load Rejection. (delay Quick Opens) Effect on Auto Permissive Setpoint 1. The failure HIGH will BIAS the SBCS Auto Permissive Setpoint lower by up to 220 psia maximum. (Units 2 & 3, 50 psia for Unit 1) 2. The SBCS system may generate a Auto Permissive Signal due to real Steam Pressure being above setpoint.
		LOW	 Effect on Quick Open The failure LOW will not cause the Quick Open or RPCB bistables to actuate. The failure LOW will prevent the system from seeing the PZR Pressure increase on a real Load Rejection. (delay Quick Opens) Effect on Auto Permissive Setpoint The failure LOW will not BIAS the SBCS Auto Permissive Setpoint lower. (wrong direction) The SBCS system can still generate a Auto Permissive Signal when real Steam Pressure goes above setpoint.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Main Turbine Generator: Knowledge of MT/G	Tier	2		
system design feature(s) and/or interlock(s) which provide for the following: Programmed controller for	Group	2		
relationship between steam pressure at T/G inlet	K/A		045 K4.01	
(impulse, first stage) and plant power level	IR	2.7		

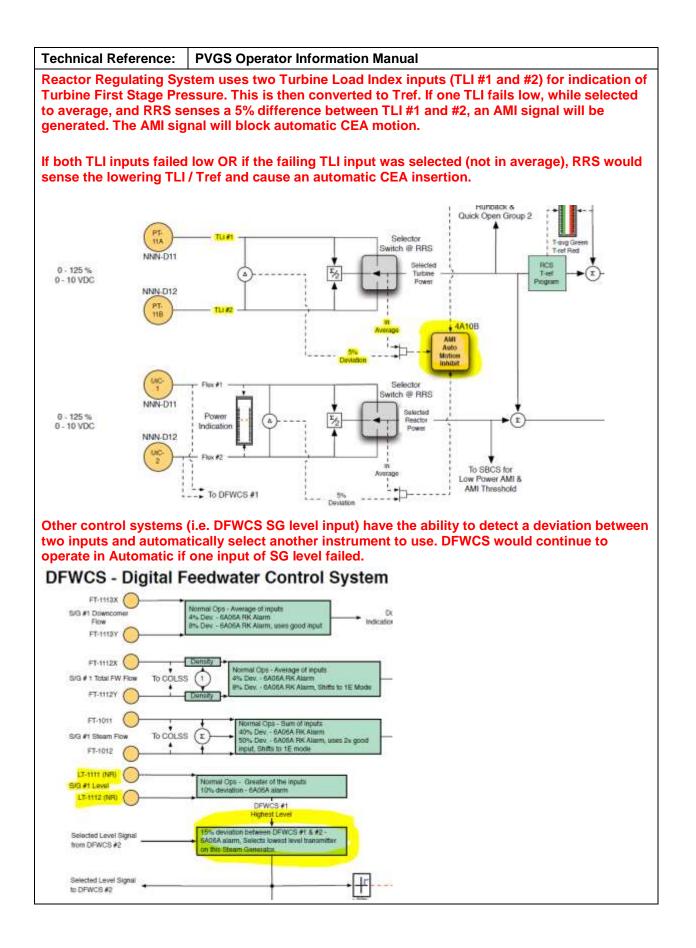
Given the following conditions:

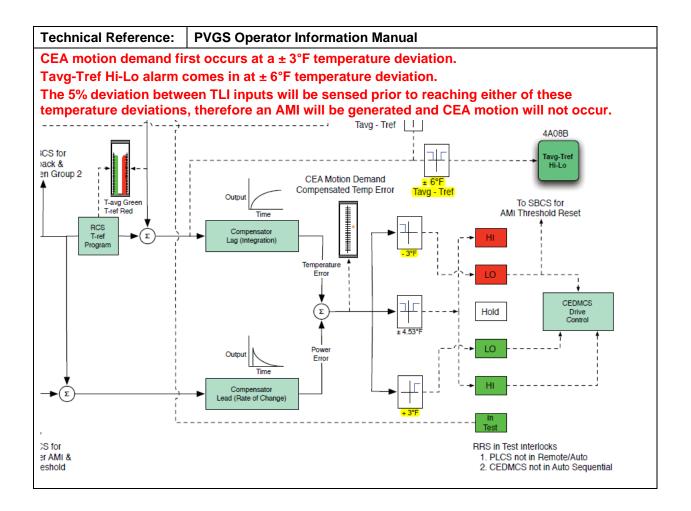
- Unit 2 is operating at 100% power
- All inputs at the RRS Cabinet are selected to AVERAGE
- CEDMCS Mode Selector Switch is in AUTO

Subsequently:

 ONE of the two Turbine First Stage Pressure inputs to the RRS system begins to fail LOW resulting in Tref lowering at a rate of 1°F/min

Over the next 10 minutes, with NO operator action, how will the RRS system respond to this failure?


- A. CEAs will remain ARO due to an AMI signal being generated prior to any CEA movement
- B. CEAs will start inserting when Tavg-Tref difference reaches 3°F and continue inserting until operator action is taken
- C. CEAs will start inserting when Tavg-Tref difference reaches 3°F, then stop inserting when the Tavg-Tref HI-LO alarm annunciates
- D. CEAs will remain ARO due to the failed First Stage Pressure instrument being automatically removed from the comparison circuit prior to any CEA movement


Pro	posed Answer:	Α				
Exp	Explanations:					
Α.	Correct. AMI is generated when TLI signals (which are linearly proportional to TFSP signals) deviate by 5% and by the time CEA auto demand occurs, TLI signals would be deviating by ~ 13%.					
В.	Plausible since this would occur if both TLIs were failing low, however since only one TFST pressure is failing low, CEAs will not insert.					
C.	Plausible since CEAs would normally insert if TLI is failing low, however only if both TLIs were failing, and the Tavg-Tref HI-LO alarm generates an AWP which stops CEA movement, but only in the outward direction.					
D.			he case in other systems, such as DFWCS, however the RRS does not for failing inputs such as TFSP.			

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Χ	Comprehension or Analysis	

Level of Difficultly:	4	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:		scribe the response of the Reactor Regulating System to a failure of a bine Load Index (TLI) input.

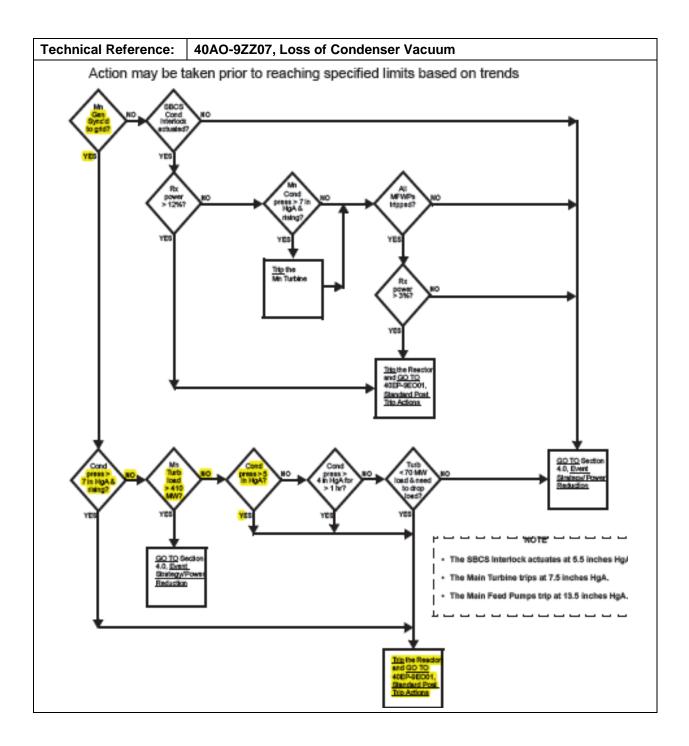
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Condenser Air Removal: Ability to perform	Tier	2		
specific system and integrated plant procedures during all modes of plant operation	Group	2		
	K/A	055 G 2.1.23		
	IR	4.3		

Given the following conditions:

- Unit 2 is operating at 20% power
- Vacuum is degrading in all 3 Main Condenser shells
- Current Condenser vacuum:
 - $\circ~$ 'A' Shell: 5.1 in HgA
 - o 'B' Shell: 5.3 in HgA
 - o 'C' Shell: 5.5 in HgA

If NO operator actions has been taken, the 'D' Air Removal Pump should be running and aligned to (1), and per 40AO-9ZZ07, Loss of Condenser Vacuum, the CRS should direct the crew to trip the (2).

- A. (1) the 'C' Shell ONLY
 - (2) Reactor
- B. (1) the 'C' Shell ONLY(2) Main Turbine ONLY
- C. (1) ALL 3 condenser shells(2) Reactor
- D. (1) ALL 3 condenser shells(2) Main Turbine ONLY


Pro	posed Answer:	С	
Ехр	lanations:		
Α.	Pump automatica	lly ali	ince the 'C' shell is the most degraded, however each shell has the 'D' AR gned at different backpressures and at the listed backpressures, the pump 3 shells. Second part is correct.
В.	Pump automatica would be aligned	lly ali to all prrect	ince the 'C' shell is the most degraded, however each shell has the 'D' AR gned at different backpressures and at the listed backpressures, the pump 3 shells. Second part is plausible since at low powers, degraded vacuum ive action being to tripping the Main Turbine, however at less than 410 MW a Reactor trip.
C.	Correct.		
D.		ion be	econd part is plausible since at low powers, degraded vacuum can lead to eing to tripping the Main Turbine, however at less than 410 MW the eactor trip.

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:		
10CFR55.41:		
Reference Provided:		
Learning Objective:	escribe what comp	onents are impacted as backpressure rises.

Technical Refe	rence: 40AL-9RK7A Panel B0	7A Alarm Responses		
Respons	se Section		7A01	Α
			AIR	
			REM	1
Condenser Air Removal System Trouble			SYS	3
			TRBL	
Point ID Description Setpoint				
ARYS14	Condenser A Suction Valve A		NA	
ARYS15 ARYS16	Condenser B Suction Valve A Condenser C Suction Valve A		NA NA	
MANUAL ACT	IONS			
1. <u>Ensu</u>	re BOTH of the following:			
• A	ARN-P01D, D Air Removal Vacuu	m Pump, is running		
• 1	he condenser suction valve in al	arm is open		
2. <u>Chec</u>	<u>k</u> individual condenser pressure i	ndications:		
Co	ondenser Pressure Indicator ID	Suction Valve Auto Open Setpoint	Location	
	N-PI-47 - Condenser A Vacuum	4.2 in H _g A	<mark>- 807</mark>	
	N-PI-48 - Condenser B Vacuum	4.8 in H _g A	B07	
CE	N-PI-49 - Condenser C Vacuum	5.3 in H _g A	B07	

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Circulating Water: Knowledge of bus power	Tier	2	
supplies to the following: Emergency/essential SWS pumps	Group	2	
hamba	K/A	075 K2.03	3
	IR	2.6	

- (1) The feeder breaker for the 'A' Spray Pond Cooling Pump, SPA-P01, is located on...
- (2) The feeder breaker for the 'A' Plant Cooling Water Pump, PWN-P01A, is located on...
- A. (1) PBA-S03
 - (2) NAN-S01
- B. (1) PBA-S03(2) NBN-S01
- C. (1) PGA-L31 (2) NAN-S01
- D. (1) PGA-L31(2) NBN-S01

Pro	Proposed Answer: B						
Ехр	lanations:						
Α.	First part is correct. Second part is plausible as the Circulating Water Pumps are powered from NAN buses, however the Plant Cooling Water Pumps are powered from NBN.						
В.	Correct.						
C.	First part is plausible since there are class pumps powered from PGA-L31 such as the 'A' Charging Pump and the 'A' Fuel Pool Cooling Pump, however the 'A' Spray Pond Pump is powered from PBA-S03. Second part is plausible as the Circulating Water Pumps are powered from NAN buses, however the Plant Cooling Water Pumps are powered from NBN.						
D.	Charging Pump a	nd th	nce there are class pumps powered from PGA-L31 such as the 'A' e 'A' Fuel Pool Cooling Pump, however the 'A' Spray Pond Pump is 3. Second part is correct.				

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:		scribe how the Class IE Electrical Distribution System supports the eration of the following systems: Essential Spray Pond System

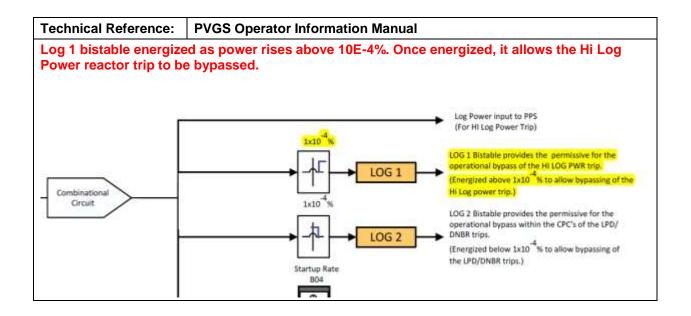
Technical Re	eference:	40OP-9SP01 Essential Spray Pond (SP) Train A							
		Appendix A - Spray Pond A Electrical Lineup							
Number	N	ame	Location	Electrical Drawing	Position	First Verif	Sec Verif		
PBA-S03C	Essential Pump, SP	Spray Pond A-P01	Control Building 100 ft PBA-S03	PBA-001	Racked In				

Technical Refe	erence:	400P-9PW0 ²	1 Plant Cooling Water			
Number I		Name	Location	Drawing	Required Pos	Verified By Initial
NBN-S01H	4.16 KV Cubicle 1 PWN-P0	for	NBN-S01 in Switchgear Room	PWB-001	Racked In & Open	

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Nuclear Instrumentation: Ability to manually	Tier	2	
operate and/or monitor in the control room: Trip Bypasses	Group	2	
Dypasses	K/A	015 A4.0	3
	IR	3.5	

Question 65

During a Reactor startup, the High Log Power Trips ____(1)___ bypassed as soon as power reaches ____(2)____.


- A. (1) are automatically (2) 1 x 10⁻²
- B. (1) are automatically (2) 1 x 10⁻⁴
- C. (1) may be manually (2) 1 x 10⁻²
- D. (1) may be manually (2) 1 x 10⁻⁴

Pro	posed Answer:	D				
Exp	lanations:					
Α.	A. First part is plausible since the bypass is automatically removed during a shutdown, however it must be manually bypassed on a startup. Second part is plausible since 1x10-2 is the trip setpoint for the high log power trip.					
В.	First part is plausible since the bypass is automatically removed during a shutdown, however it must be manually bypassed on a startup. Second part is correct.					
C.	First part is correct. Second part is plausible since 1x10-2 is the trip setpoint for the high log power trip.					
D.	Correct.					

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	Ν	
Learning Objective:	Describe the approach to the POAH, including what actions are performed once this power level is reached.	

Technical Reference: 400P-9ZZ03 Reactor Startup										
Manual bypass of the hi log power trip is performed once the permissive alarm comes in.										
6.5 Post Criticality Actions										
6.5.11 WHEN the High Les Dewer Trip Pypese permissives are received										
6.5.11 WHEN the High Log Power Trip Bypass permissives are received, THEN perform Appendix F - Bypassing High Log Power Trips.										
Appendix F - Bypassing High Log Power Trips										
	NOTE									
	ow <mark>HI LOG PWR LVL BYF</mark> gh Log Power Bypass Pe			llarm)						
	gh Log Power Bypass Per									
THEN <mark>bypass</mark>	the High Log Power Trips	for each Log Sa	fety Channel on	B05:						
Log Safety Channel	High Log Power Trip Position	Positioned By Initials	Ind. Verified By Initials							
A	Bypassed			-						
B Bypassed										
C Bypassed										
D Bypassed										
	End of Appe	endix F		-						

Technical Reference: 40AL-9RK5A Panel B05A Alarm Responses									
Response Section 5A15B									
HI LOG									
	PWR LVL								
High Log Power Level Bypass Permissive BYP									
	PERM								
Point ID	Description	Setpoint							
SBJS10A SBJS10B SBJS10C SBJS10D	Hi Log Power Level Bypass Permissive Channel A Hi Log Power Level Bypass Permissive Channel B Hi Log Power Level Bypass Permissive Channel C Hi Log Power Level Bypass Permissive Channel D	10 ⁻⁴ Percent Power 10 ⁻⁴ Percent Power 10 ⁻⁴ Percent Power 10 ⁻⁴ Percent Power							
AUTOMATIC	ACTION								
	NOTE								
	The Hi Log Power trip and pre-trip bypasses automatically removed when logarithmic pow decreases below 10 ⁻⁴ percent neutron rated th	er level							
• Ac wh	tuates circuitry to allow manual bypassing of the Hi Lo en reactor power level is greater than 10 ⁻⁴ percent neu	og Power trips and pre-trips Itron rated thermal power.							
Respo	nse Section	5A15C							
		HI LOG							
		PWR LVL							
High Log Po	ower Level Channel Trip	СН							
		TRIP							
Point ID	Description	Setpoint							
SBTA02Hi Log Power Level Channel A Trip 10^{-2} variableSBTB02Hi Log Power Level Channel B Trip 10^{-2} variableSBTC02Hi Log Power Level Channel C Trip 10^{-2} variableSBTD02Hi Log Power Level Channel D Trip 10^{-2} variable									
AUTOMATI	CACTION								
• R	Reactor Trip on two or more channels								

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of the purpose and function of major system components and controls	Tier	3		
	Group		-	
	K/A		G 2.1.28	
	IR	4.1		

Per Appendix 58(59), Cross-Tie DG B(A) to PBA-S03(PBB-S04), prior to restoring power to a Class 4.16 kV Bus from the opposite Train Emergency Diesel Generator, all pumps on the bus to be energized should have ___(1)___ in order to prevent ___(2)____.

- A. (1) their handswitches placed in Pull-to-Lock
 - (2) overloading the EDG
- B. (1) their handswitches place in Pull-to-Lock
 - (2) an uncontrolled restoration of flow to each associated system
- C. (1) an 86 lockout relay actuated on the pump breaker
 - (2) overloading the EDG
- D. (1) an 86 lockout relay actuated on the pump breaker
 - (2) an uncontrolled restoration of flow to each associated system

Pro	roposed Answer: C					
Exp	Explanations:					
Α.	First part is plausible as this is done on some loads, such as ventilation ACUs, however the pumps have an 86 lockout actuated at the breaker. Second part is correct.					
В.	First part is plausible as this is done on some loads, such as ventilation ACUs, however the pumps have an 86 lockout actuated at the breaker. Second part is plausible as this is done in some instances, i.e. to prevent an uncontrolled restoration of Seal Injection when power is restored to Charging Pumps, however the basis for this situation is to prevent overloading an EDG.					
C.	Correct.					
D.	uncontrolled resto	oratio	econd part is plausible as this is done in some instances, i.e. to prevent an n of Seal Injection when power is restored to Charging Pumps, however the is to prevent overloading an EDG.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	2		
10CFR55.41:	7		
Reference Provided:	Ν		
Learning Objective:	From memory, describe the use of cautions and notes in the EOPs in accordance with 40DP-9AP15.		

Prior to energizing the bus from an opposite train DG, the large loads on the bus will be disabled from auto starting by actuating their associated 86 lockout relay. INSTRUCTIONS CONTINGENCY ACTIONS 1. Direct an operator to PERFORM Attachment 59-A Disable PBB-S04 Breakers. Disable PBB-S04 Breakers. INSTRUCTIONS CONTING	Technical Reference:	c 59: Cross-tie DG A to PBB-S04							
1. Direct an operator to PERFORM Attachment 59-A. Disable PBB-S04. Breakers. Attachment 59-A Disable PBB-S04 Breakers. INSTRUCTIONS CONTING									
Attachment 59-A. Disable PBB-S04 Breakers. INSTRUCTIONS CONTING	INSTRUCTIONS CONTINGENCY ACTIONS								
INSTRUCTIONS CONTING	1. <u>Direct</u> an operator to <u>PERFORM</u> Attachment 59-A, <u>Disable PBB-S04</u>								
 9. Manually tip the 56 relay for ALL of the following breakers on bus PBB-S04 (REFER TO Attachment SS-B, Manual Trip of 82 Relay:): 9. PBB-S04 (REFER TO Attachment SS-B, Manual Trip of 82 Relay:): 9. PBB-S04 (. TESSENTIAL STRAY PUMP M-SIB-P01" 9. PBB-S04 (. TH.P. SAFETY INUECT PUMP M-SIB-P01" 9. PBB-S04 (. TESSENTIAL CHILLER M-ECB-E01" 9. PBB-S04 (. TESSENTIAL COU WATER PUMP M-AFB-P01" 9. PBB-S04 (. TESSENTIAL COO WATER PUMP M-AFB-P01" 9. PBB-S04 (. TESSENTIAL COO WATER PUMP M-AFB-P01" 6. WHEN Informed by the area operator for the the PBB-S04 (. THEN perform the following to energize PBB-S04, PBB-S04 (. THEN perform the following to conserve the PBB-S04 (. the top of the the supply). to "ON". b. Close breaker PBB-S04L, 4.16 KV Bus SO4 Alternate Supply. to "ON". b. Close breaker PBB-S04L, 4.16 KV Bus SO4 Alternate Supply. to "ON". c. Place synchronizing switch PBB-S05 ALL to "OFF". Smaller 480V loads that may auto start are placed in PTL with the MCR hand switch. 4. Place ALL of the following in "PULLT O LOCK": • Train B Containment Normal 	Attachment 59-A Disable PBB-S04 Breakers								
 the following breakers on bus PBB-Sode (FEEE TO Attachment SS-B. Manual Tip of 56 Relay): PBB-Sode (TERE TO Attachment SS-B. Manual Tip of 56 Relay): PBB-Sode (TERE TO Attachment SPRAY POID PUMP M-SPB-P01" PBB-Sode (THP, SAFETY INJECT PUMP M-SIB-P03" PBB-Sode (THP, SAFETY INJECT PUMP M-SIB-P01" PBB-Sode (TERE PUMP M-EWB-P01" PBB-Sode (TERE PUMP M-EWB-P01") Close preaker PBB-SOL A. IF the local closing spring indicator for PBB-SOL does NOT indicate "CHGD", THEN perform the following: (1) Obtain a ratchet, extension and 5/8 inch socket from FPN-C02, "EMERGENCY" 	INSTRUCTION	NS C	ONTING						
 SPRAY POND PUMP M-SPB-P01* PBB-S04E, "H.P. SAFETY INJECT PUMP M-SIB-P02* PBB-S04F, "L.P. SAFETY INJECT PUMP M-SIB-P01* PBB-S04G, "ESSENTIAL CHILLER M-ECE-E01* PBB-S04G, "ESSENTIAL CHILLER M-ECE-E01* PBB-S04G, "ESSENTIAL CHILLER M-ECE-E01* PBB-S04G, "ESSENTIAL CHILLER M-ECE-E01* PBB-S04G, "ESSENTIAL COOL WATER PUMP M-EWB-P01* PBB-S04G, "ESSENTIAL COOL WATER PUMP M-EWB-P01* PBB-S04G, "ESSENTIAL COOL WATER PUMP M-AFB-P01* WHEN Informed by the area operator that the PBB-S04 breakers are disabled, THEN perform the following to close PBB-S04L from the Control Room: a. Place synchronizing switch PBB-S3S-S04L, 4.16 KV Bus S04 Alternate Supply. b. Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. c. Place synchronizing switch PBB-S3S-S04L to "OFF". Smaller 480V loads that may auto start are placed in PTL with the MCR hand switch. 4. Place ALL of the following in "PULL TO LOCK": Train B Containment Normal 	the following breake PBB-S04 (REFER 1	ers on bus TO Attachment							
 SRAAT PUMP M-SIB-P03* PBB-S04E, "H.P. SAFETY INJECT PUMP M-SIB-P02* PBB-S04G, "ESSENTIAL CHILLER M-ECB-E01* PBB-S04M, "ESSENTIAL COU WATER PUMP M-EWB-P01* PBB-S04M, "ESSENTIAL COU WATER PUMP M-EWB-P01* PBB-S04L, THEN perform the following to energize PBB-S04L, PKB-M42 and PBB-S04L from the Control Room: PBB-S04L from the following to Close PBB-S04L, from the following to Close PBB-S04L, from the following to Close PBB-S04L, from the Control Room: I F DC control power is NOT available to PBB-S04, THEN perform the following to Close PBB-S04L from the Control Room: I F the local closing spring indicator for PBB-S04L, 4.16 kV Bus S04 Alternate Supply. Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. Eliace synchronizing switch PBB-SS-S04L to "OFF". I F the local closing spring indicator for PBB-S04L does NOT indicate "CHGD". THEN locally perform the following: Obtain a ratchet, extension and 5/8 inch socket from FPN-C02, "EMERGENCY 	SPRAY PONE								
 INJECT PUMP M-SIB-P02* PBB-S04F, "L.P. SAFETY INJECT PUMP M-SIB-P01* PBB-S04G, "ESSENTIAL CHILLER M-ECB-E01* PBB-S04M, "ESSENTIAL COOL WATER PUMP M-EWB-P01* PBB-S04M, "ESSENTIAL COOL WATER PUMP M-EWB-P01* PBB-S04M, "ESSENTIAL COOL WATER PUMP M-EWB-P01* PBB-S04L, THEN perform the following to close PBB-S04L from the Control Room: a. <u>Place</u> synchronizing switch PBB-SS-S04L, 4.16 KV Bus S04 Alternate Supply. to "ON". b. <u>Close</u> breaker PBB-S04L, 4.16 KV Bus S04 Alternate Supply. c. <u>Place</u> synchronizing switch PBB-SS-S04L to "OFF". c. <u>Place</u> ALL of the following in "PULL TO LOCK": Train B Containment Normal 	F00-0040, 0								
INJECT PUMP M-SIB-P01" PBB-S04G, "ESSENTIAL CHILLER M-ECB-E01" PBB-S04M, "ESSENTIAL COOL WATER PUMP M-EWB-P01" PBB-S04S, "AUX FEED WATER PUMP M-AFB-P01" PBB-S04 breakers are disabled, THEN perform the following to close PBB-S04L from the Control Room: PBB-S04L from the Control Room: A. Piace synchronizing switch PBB-S04L, 4.16 KV Bus S04 Alternate Supply, to "ON". C. Place synchronizing switch PBB-SS-S04L to "OFF". B. Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. C. Place synchronizing switch PBB-SS-S04L to "OFF". C. Place ALL of the following in "PULL TO LOCK": • Train B Containment Normal	100-0046.11								
 CHILLER M-EOB-E01" PBB-S04M, "ESSENTIAL COOL WATER PUMP M-EWB-P01" PBB-S04S, "AUX FEED WATER PUMP M-AFB-P01" MHEN informed by the area operator that the PBB-S04 breakers are disabled. THEN perform the following to close PBB-S04L from the Control Room: PIBE-S04L from the Control Room: PIBE-SS-S04L, 4.16 KV Bus S04 Alternate Supply, to "ON". Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. PIBE-SS-S04L to "OFF". Close synchronizing switch PBB-SS-S04L to "OFF". PIBE-SS-S04L to "OFF". PIBE-SS-S04L to "OFF". Close treaker PBB-S04L to "OFF". PIBE-SS-S04L to "OFF". PIBE-SS-S04L to "OFF". PIBE-SS-S04L to "OFF". Train B Containment Normal 									
 COOL WATER PUMP M-EWB-P01" PBB-S04S, "AUX FEED WATER PUMP M-AFB-P01" WHEN informed by the area operator that the PBB-S04 breakers are disabled, THEN perform the following to close PBB-S04L from the Control Room: a. Place synchronizing switch PBB-SS-S04L, 4.16 KV Bus S04 Alternate Supply, to "ON". b. Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. c. Place synchronizing switch PBB-SS-S04L to "OFF". Smaller 480V loads that may auto start are placed in PTL with the MCR hand switch. 4. Place ALL of the following in "PULL TO LOCK": Train B Containment Normal 	100-0040, 6								
 WATER PUMP M-AFB-PO1" 6. WHEN informed by the area operator that the PBB-S04 breakers are disabled. THEN perform the following to close PBB-S04L from the Control Room: a. Place synchronizing switch PBB-SS-S04L, 4.16 KV Bus S04 Alternate Supply. b. Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. c. Place synchronizing switch PBB-SS-S04L to "OFF". 5. Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. c. Place synchronizing switch PBB-SS-S04L to "OFF". 5. Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. c. Place synchronizing switch PBB-SS-S04L to "OFF". 5. Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. c. Place ALL of the following in "PULL TO LOCK": Train B Containment Normal 	COOL WATER								
that the PBB-S04 breakers are disabled, to PBB-S04. THEN perform the following to close PBB-S04L from the Control Room: THEN perform the following to energize PBB-S04, PKB-M42 and PNB-D26: a. Place synchronizing switch PBB-SS-S04L, 4.16 KV Bus S04 Alternate Supply, to "ON". a. IF the local closing spring indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: b. <u>Close</u> breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. a. IF the local closing spring indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: c. <u>Place</u> synchronizing switch PBB-SS-S04L to "OFF". a. IF the local closing spring indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: c. <u>Place</u> synchronizing switch PBB-SS-S04L to "OFF". a. IF the local closing spring indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: c. <u>Place</u> synchronizing switch PBB-SS-S04L to "OFF". a. IF the local closing spring indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: c. <u>Place</u> synchronizing switch PBB-SS-S04L to "OFF". a. IF the local closing spring indicator for PBB-S04L socket from FPN-C02, "EMERGENCY Smaller 480V loads that may auto start are placed in PTL with the MCR hand switch. a. 4. <u>Place</u> ALL of the following in "PULL TO LOCK": a.	1 00-00401 11								
THEN perform the following to close PBB-S04L from the Control Room: energize PBB-S04, PKB-M42 and PNB-D26: a. Place synchronizing switch PBB-SS-S04L, 4.16 KV Bus S04 Alternate Supply, to "ON". a. IF the local closing spring indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: b. <u>Close</u> breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. a. IF the local closing spring indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: c. <u>Place</u> synchronizing switch PBB-SS-S04L to "OFF". a. IF the local closing spring indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: c. <u>Place</u> synchronizing switch PBB-SS-S04L to "OFF". a. IF the local closing spring indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: swapply. 1) <u>Obtain</u> a ratchet, extension and 5/8 inch socket from FPN-C02, "EMERGENCY Smaller 480V loads that may auto start are placed in PTL with the MCR hand switch. 4. <u>Place</u> ALL of the following in "PULL TO LOCK": • Train B Containment Normal	that the PBB-S04 brea	kers are	to PBB-	S04,					
PBB-SS-S04L, 4,16 KV Bus S04 Alternate Supply, to "ON". Indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: b. Close breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. Indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: c. Place synchronizing switch PBB-SS-S04L to "OFF". Indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: c. Place synchronizing switch PBB-SS-S04L to "OFF". Indicator for PBB-S04L does NOT indicate "CHGD", THEN locally perform the following: Smaller 480V loads that may auto start are placed in PTL with the MCR hand switch. Image: March and switch and switch. 4. Place ALL of the following in "PULL TO LOCK": Image: March and switch and switch. • Train B Containment Normal Image: March and switch	THEN perform the folio	owing to close	energize	e PBB-S04, PKB-M42 and					
 b. <u>Close</u> breaker PBB-S04L, 4.16 kV Bus S04 Alternate Supply. c. <u>Place</u> synchronizing switch PBB-SS-S04L to "OFF". following: 1) <u>Obtain</u> a ratchet, extension and 5/8 inch socket from FPN-C02, "EMERGENCY Smaller 480V loads that may auto start are placed in PTL with the MCR hand switch. 4. <u>Place</u> ALL of the following in "PULL TO LOCK": Train B Containment Normal 	PBB-SS-S04L, 4. S04 Alternate Su	.16 KV Bus pply, to "ON".	Inc	dicator for PBB-S04L does OT indicate "CHGD",					
 c. <u>Place synchronizing switch</u> PBB-SS-S04L to "OFF". extension and 5/8 inch socket from FPN-C02, "EMERGENCY" Smaller 480V loads that may auto start are placed in PTL with the MCR hand switch. 4. <u>Place ALL of the following in</u> "PULL TO LOCK": Train B Containment Normal 	4.16 kV Bus S04		fol	lowing:					
 Smaller 480V loads that may auto start are placed in PTL with the MCR hand switch. Place ALL of the following in "PULL TO LOCK": Train B Containment Normal 	c. <u>Place</u> synchroniz		a1)	extension and 5/8 inch socket from FPN-C02,					
"PULL TO LOCK": • Train B Containment Normal	Smaller 480V loads that	t may auto start are p	olaced i	in PTL with the MCR hand switch.					
		wing in							
ACUs		nent Normal							
Train B CEDM ACUs	• Train B CEDM A	CUs							

Technical Reference: 40DP-9AP17 Standard Appendices Technical Guideline

The reason for tripping the 86 lockouts is to prevent overloading the DG, since it will be supplying two 4160V busses. Prior to starting loads, the operators will ensure that DG will not be overloaded.

4.1.59 Appendix 59 - Cross-Tie DG A to PBB-S04

A. This appendix is used during a loss of offsite power event when Diesel Generator B fails to start and load its 4.16 KV bus. The appendix will align the Train A DG to PBB-S04 for the purpose of energizing class battery chargers. Breaker(s) may need to be operated locally if control power is not available which could occur from a loss of offsite power during an outage when battery maintenance is taking place and one battery is disconnected from its bus. Additional loads may be started if needed and if they are within the capability of the DG. The appendix can also be used if the Maintenance of Vital Auxiliaries Safety Function is lost because Train B equipment needed to maintain the Safety Function is not energized.

Attachment 59-A directs the actions that will be taken by an operator in the field to prepare the Train B vital 4.16 KV bus to be energized from DG A. These actions include placing the B Diesel Generator in off, checking for tripped protective relays and manually tripping the 86 lockout relays for the major loads on PBB-S04. Tripping the lockout relays allows this equipment to be reset and started from the Control Room.

Techr	nical	Reference:	40EP-9EO07 Loss of	of Offsite I	Power / Loss of Forced Circulation	EOP			
the se	als.	-	-		nust be controlled to prevent dam PB loads prior to energizing a bus				
			CAUT	ON					
Starting a Charging Pump without first isolating seal injection will likely cause seal damage due to rapid cooldown of the seals.									
* 5.		a LOOP has oc EN <u>perform</u> the							
	a.		ng pumps are running, e seal injection.						
	b.		tion is isolated, <u>e</u> controlled bleedoff.						
	C.	the always ri	ti pump condition on unning Charging cing the handswitch	c.1	<u>Select</u> a new always runnin Charging Pump.				
		in the "STOP		c.2	IF the new always running Charging Pump was the po-				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of the station's requirements for verbal	Tier	3		
communications when implementing procedures	Group		-	
	K/A		G 2.1.38	
	IR	3.7		

Per 40DP-9OP02, Conduct of Operations, the "A" in which of the following plant components is REQUIRED to be verbally communicated as "ALPHA"?

- 1. RCP 1A
- 2. AFB-P01
- 3. PBA-S03
- A. 1 ONLY
- B. 2 ONLY
- C. 1 and 3 ONLY
- D. 2 and 3 ONLY

Pro	posed Answer: C
for	lanations: All three are plausible if the reason for the letter A is unknown, or if the reasons using the phonetic pronunciation are unknown, however only 1 and 3 require the use of the netic alphabet when spoken.
Α.	Plausible since 1 is correct and it is the only component with the component designator as the la character in the component ID, however 3 is also required.
В.	Plausible if thought that the A at the beginning was the component designator, and it is the only one with the designator at the beginning of the component ID, however this is not the character which requires phonetic pronunciation.
C.	Correct.
D.	Plausible since 2 and 3 are the only class pieces of equipment on the list, however the characte in AFB-P01 which would be required to be spoken using the phonetic alphabet is the B.

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	10
Reference Provided:	N
Learning Objective:	Describe operations expectations when it comes to Communications in accordance with 40DP-90P02, Conduct of Operations.

echnical Reference:	40DP-90P02, C	Conduct of Opera	tions		
PVNGS NUCLEAR	ADMINISTRATI	VE AND TECHN	ICAL MANUAL Page 4	1 of 165	
Conduct of Operations 40DP-9OP02 Revision 72					
4.3.2.7	train references of alpha) or when co letter of the comp alphabet is used	with the sole use o omponent, channe oonent ID (class el when part of the r	in referring to component, ch of the letter designation (e.g., el or train are referenced with lectrical bus PB Alpha). The message contains a single le phonetic alphabet is as follow	train the last phonetic tter of the	
	A-Alpha B - Bravo C -Charlie D - Delta E - Echo F - Foxtrot G - Golf H - Hotel I - India	L - Lima M - Mike N - November	W - Whiskey X - X-ray Y - Yankee		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Ability to manipulate the console controls as	Tier	3		
required to operate the facility between shutdown and designated power levels	Group			
	K/A		G 2.2.2	
	IR	4.6		

Per 40OP-9ZZ04, Plant Startup Mode 2 to Mode 1, the FIRST Main Feedwater Pump is placed in service ____(1)___ MODE 1 is entered, and the Main Turbine is synchronized to the grid ____(2)___ DFCWS goes through swapover.

- A. (1) after
 - (2) after
- B. (1) after
 - (2) before
- C. (1) before
 - (2) after
- D. (1) before
 - (2) before

Pro	posed Answer:	D				
Exp	Explanations:					
Α.	First part is plausible since the first MFP is placed in service prior to placing the Main Turbine online, which occurs at 12% power, and MODE 1 is entered at 5% power, however the capacity of the Startup AFW Pump is only sufficient to ~3% power so the MFP must be placed in service prior to MODE 1 being entered. Second part is plausible since going through swapover is required in order to be in 3 element feed control and it would make sense to have more responsive feedwater control prior to placing the Main Turbine online, however the Main Turbine is synched to the grid at 12% power and swapover doesn't occur until ~15% power.					
В.	First part is plausible since the first MFP is placed in service prior to placing the Main Turbine online, which occurs at 12% power, and MODE 1 is entered at 5% power, however the capacity of the Startup AFW Pump is only sufficient to ~3% power so the MFP must be placed in service prior to MODE 1 being entered. Second part is correct.					
C.	be in 3 element fe prior to placing th	ed co e Mai	econd part is plausible since going through swapover is required in order to ontrol and it would make sense to have more responsive feedwater control n Turbine online, however the Main Turbine is synched to the grid at 12% oesn't occur until ~15% power.			
D.	Correct.					

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Χ	Comprehension or Analysis	

Level of Difficultly:	2	
10CFR55.41:	10	
Reference Provided:	Ν	
Learning Objective:	Given key parameter indications and various plant conditions, predict plant operations during a plant startup in accordance with 40OP-9ZZ04 Mode 2 to Mode 1.	

Technical Reference: 40OP-9ZZ04 Plant Startup Mode 2 To Mode 1
Overall sequence shown below (start 1 st MFP in Mode 2 (< 5% RTP), place turbine / generator in- service at ~12%, then raise power through feedwater control swapover which occurs between 15-16.5%.)
6.20 <u>Commence</u> raising reactor power to 2%.
6.28 Start a Main Feedwater Pump (MFWP) per ONE of the following:
400P-9FT01, Feedwater Pump Turbine A
• 400P-9FT02, Feedwater Pump Turbine B
6.39 <u>Raise</u> reactor power to 5%.
CAUTION
Failure to maintain reactor power less than 14% as indicated on Control Channel NIs could result in premature feedwater swapover.
6.57 <u>Commence</u> raising reactor power to 11.5% to 12.5%.
6.61 <u>Complete</u> Main Turbine startup per 40OP-9MT02, Main Turbine.
6.70.4 <u>Place</u> the Main Generator in service per 40OP-9MB01, Main Generator and Excitation.
NOTE
Swapover will occur when the Control Channel NIs indicate reactor power is greater than 16.5% or between 15% and 16.5% with either downcomer feed regulating valve greater than 80% open.
6.83 <u>Perform</u> ONE of the following appendices to control the plant during feedwater swapover:
Appendix A - Guidelines For Downcomer To Economizer Swapover In Auto

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of tagging and clearance procedures	Tier	3		
	Group		-	
	K/A		G 2.2.13	
	IR	4.1		

Per 40DP-9OP29, Power Block Clearance and Tagging, which of the following evolutions are performed using CONCURRENT verification?

- 1. Replacement of a danger tag which has become damaged
- 2. Moving a danger tag from a breaker hasp to the cubicle door
- 3. Initial hanging of a danger tag on a 480V breaker for corrective maintenance
- A. 1 and 2 ONLY
- B. 1 and 3 ONLY
- C. 2 ONLY
- D. 3 ONLY

Pro	posed Answer:	Α	
Exp	lanations:		
Α.	Correct.		
В.	Plausible since replacing a tag is done using CV, and it is plausible that initial tag hanging would be done using CV to ensure it is done correctly the first time, and for operators who have been qualified less than one year, a peer check is required for initial tag hanging, however this is still done using IV.		
C.	Plausible since moving a tag is done using CV, however replacement of a tag is also done using CV.		
D.	time, and for ope	rators	hanging would be done using CV to ensure it is done correctly the first who have been qualified less than one year, a peer check is required for vever this is still done using IV.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge]
		Comprehension or Analysis	

Level of Difficultly:	2	
10CFR55.41:	10	
Reference Provided:	Ν	
Learning Objective:	det	en a need for personnel or equipment protection, the operator will ermine the Clearance and Tagging requirements per Palo Verde cedures.

Techni	cal F	Refer	ence: 40DP-9OP29 Power Block Clearance and Tagging
Concu	rrent	t Ver	ification is used for replacing a damaged tag.
4.11.3	Rep	placi	ng Tags
			clearance tag is worn or illegible, then Operations shall perform the wing:
			Create a duplicate tag with the same clearance and tag number as the worn tag.
			If the tag is a credited tag, then print the new tag from the original clearance from the WMPTHIST or WMPTMAIN screen.
		3.	Reattach the tag using concurrent verification
Concu	rrent	t Ver	ification is used for moving a tag to a different location on the same component.
4.11.5	5 Mo	oving	g Tags
;			ag removal and tag attachment is verified with concurrent cation.
Indepe	nder	nt ve	rification is used for establishing a clearance for maintenance.
4.7	Verif	ying	a Clearance
4.7.2			ependent Verifier shall check the tag(s) are hanging on the right ent per 02DP-9OP01, Site Wide Status Control Procedure.

Techr	nica	al Reference:	40DP-9OP02 Conduct of Operations
		· · · · · · · · · · · · · · · · · · ·	quired for operating breakers, however, the IV for the clearance is still the peer check.
4.7.8	Br	eaker Manipulatio	n Peer Check Practices
	Α.	All the following br otherwise describe	eakers require peer checks during manipulations unless ed below:
		Class Power 8	Breakers
		Non Class 13.	8KV and 4160V Breakers
		Non Class DC	M45 and M46 Breakers
		Non Class 120	0 AC breakers in ANY of the following:
		- NNN-D11	
		- NNN-D12	
		- NNN-D15	
		- NNN-D16	
	В.		ed in STEP 4.7.8.A are peer checked at the discretion of the . The determination is based on their knowledge and BOTH teria:
		Proficiency of	the performers.
		 Integrated risk 	to the unit.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Ability to analyze the effect of maintenance	Tier	3		
activities, such as degraded power sources, on the status of limiting conditions for operations	Group			
status of miniting conditions for operations	K/A		G 2.2.36	
	IR	3.1		

Given the following conditions:

- Maintenance is about to perform preventive maintenance on a Technical Specification piece of equipment
- The equipment will be inoperable during the duration of the maintenance
- The configuration of the equipment during the maintenance will NOT automatically bring in any alarms on the SESS panel
- At time = 1200: The SM declared the associated equipment inoperable

Per 40DP-9OP02, Conduct of Operations, the crew is required to insert a manual SESS alarm NO LATER THAN ___(1)___ and when the manual SESS is inserted, the affected equipment will have ___(2)___ light illuminated on the SESS panel.

- A. (1) 1800
 - (2) ONLY a white
- B. (1) 1800(2) a white AND blue
- C. (1) 2400
 - (2) ONLY a white
- D. (1) 2400
 - (2) a white AND blue

Pro	posed Answer:	Α	
Exp	lanations:		
Α.	Correct.		
В.		SES	ausible that manual insertion of a SESS alarm would illuminate both halves S alarm window, however when inserting a manual SESS alarm, only the ed.
C.	a shift, however th	he re	ince 2400 is 12 hours from the time of inoperability, which is the duration of quirement is to install a manual SESS alarm prior to the end of the current econd part is correct.
D.	a shift, however the shift, which is 180 illuminate both ha	he re)0. S Ilves	ince 2400 is 12 hours from the time of inoperability, which is the duration of quirement is to install a manual SESS alarm prior to the end of the current econd part is plausible that manual insertion of a SESS alarm would of the component SESS alarm window, however when inserting a manual white alarm is illuminated.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Х	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	10
Reference Provided:	N
Learning Objective:	Describe when a manual Safety Equipment Safety System (SESS) alarm is required to be inserted.

Technical Reference	e: 40DP-9OP02 Conduct of Operations
V. <mark>Manual Safety</mark>	Equipment Status System (SESS) Inputs
	SESS alarm input shall be initiated when any ES annunciator itored component or system is ONE of the following:
	ed and unable to perform the intended function by any method NOT alarmed; or
	ered incapable of performing the intended design function by ethod that is NOT alarmed.
	NOTE
The impairment may component failure.	be the result of a Permit, T-mod., procedural alignment, or
	manual SESS alarm is required if the impairment or failure is ipated to last longer than the current shift.
	he manual SESS alarm should be initiated at the time of the ccurrence but in all cases shall be in place prior to shift turnover.
	ument initiation and removal of all SESS manual inputs in the Unit stating why the input is required or removed.
	te a Technical Specification Component Condition Record (TSCCR) plicable.
5. The	CRS shall be informed of all SESS panel changes.

Technical Reference:	40OP-9SI02 Recovery From Shutdown Cooling To Normal Operating Lineup
	neader makes CS inoperable, but an automatic SESS alarm would not be re directs a manual SESS input.
	A Containment Spray Header for Evaporation Losses or during ing from the Penetration Room
made inoperabl	2, 3, or 4, //CRS that Containment Spray System Train A is about to be le per LCO 3.6.6, <mark>Containment Spray System, by installing a hose</mark> IE-V502, Isolation Valve for CS Header Fill Line A.
6.26.10 IF in MODE 1, THEN <u>insert</u> a r (SESS) alarm.	2, 3, or 4, nanual Containment Spray A Safety Equipment Status System

Technie	cal Ref	ference: 40AL-9ES2A Safety Equip Responses	ment Status System Panel ESA-UA-2
		e, if a manual Train A Containment S below would be illuminated.	pray SESS alarm was inserted, the wl
Alar	m In	dex	ES2A03B
Contain	ment Sp	oray	CNTMT SPRAY
Point I	D	Description	Page
SEAS	16J	CS PMP A P03	439
SEIS	16J	CS PMP A P03	455
-		hite light). e Section	SEAS 16J CS
Contain	ment Sp	oray Pump A P03	PMP A P03
PBA-S0 contact		² SIA-P03 Ckt Brk "A" Cntmt Spray Pump	SIA-P03
			NOT running
Resp	ons	e Section	SEIS 16J
		e Section	NOT running
Containr PBA-S03	nent Sp		SEIS 16J CS PMP A
Containr PBA-S03 OR	ment Sp D-786	ray Pump A P03 SIA-P03 Ckt Brk "A" Cntmt Spray Pump Lockout	SEIS 16J CS PMP A P03
Containr PBA-S03 OR	ment Sp D-786	ray Pump A P03 SIA-P03 Ckt Brk "A" Cntmt Spray Pump Lockout Relay	SEIS 16J CS PMP A P03 786 Relay tripped, SIA-P03 Inoperable 762T Relay de-energized SIA-P03

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of radiation exposure limits under	Tier	3		
normal or emergency conditions	Group		-	
	K/A		G 2.3.4	
	IR	3.2		

Per 10CFR20.1201, Occupational Dose Limits, the annual limit for TEDE for adults is (1).

Per 75DP-9RP01, Radiation Exposure and Access Control, the INITIAL administrative exposure hold point for TEDE at PVNGS is ____(2)____.

- A. (1) 5 rem
 - (2) 1.5 rem
- B. (1) 5 rem (2) 2.5 rem
- C. (1) 15 rem
 - (2) 1.5 rem
- D. (1) 15 rem
 - (2) 2.5 rem

Pro	posed Answer:	Α	
Exp	lanations:		
Α.	Correct.		
В.			econd part is plausible since 2.5 rem is the limit for dose at both PV and I, however an increase to that level requires additional management
C.			ince 15 rem is a limit in 10CFR20, however that is the limit for exposure to econd part is correct.
D.			

Question Source:		New	
	Х	Bank	
		Modified	
	X	Previous NRC Exam	2019 NRC Q71

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	12	
Reference Provided:	Ν	
Learning Objective:	Sta	te the plant administrative limits and guidelines for radiation dose

Technic	cal Reference:	75DP-9RP01 Radiation Exposure and Access Control
4.10 Ra	adiation Exposu	re Limitations and Controls
4.10.1	1 <mark>10 CFR 20.120</mark>	1 Occupational Dose Limits
	A. Annual Oco following:	cupational radiation dose to adults shall be limited to all of the
		<mark>otal effective dose equivalent (TEDE)</mark> or 50 rem total organ dose ent (TODE), whichever is more limiting.
	2. <mark>15 rem</mark>	lens dose equivalent (lens of the eye).
	3. 50 rem	shallow-dose equivalent (skin or any extremity).
	old point is 1.5	-
4.10.4	Administrative	Exposure Hold Points
		maintain exposures ALARA, individuals are assigned an <mark>initial</mark> tive exposure hold point of 1.5 rem/year TEDE.
		ure exposures are kept ALARA, management must approve sts for assignment of higher administrative hold points.
Higher	admin hold limi	s require additional approvals.
B. App	provals required	per new limit request.
1.	The Radiation \	Vorker approval is required.
2.	For a hold point required.	up to 2000 mrem/year, RP Superintendent approval
3.	For a <mark>hold point</mark> approval require	up to 2500 mrem/year <mark>,</mark> Radiation Protection Manager ed.
4.	ALARA Commit	higher than 2500 mrem/year up to 4000 mrem/year, the tee review and approval is required (as signified by the ALARA Committee Chairman).
5.	worker's cumula	ministrative exposure hold point which would allow a ative lifetime exposure (in rem) to exceed the worker's age eviewed and approved by the ALARA Committee
6.	rem cumulative	int that would cause an individual's exposure to exceed 10 site exposure within a 5 year period, approval of the Sr Site Operations is required.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Ability to control radiation releases	Tier	3		
	Group			
	K/A		G 2.3.11	
	IR	3.8		

In order to control magnitude of radioactive release during a SGTL, which of the following actions are directed per 40AO-9ZZ02, Excessive RCS Leakrate, Appendix C, Minimize Release to the Environment?

- 1. Ensure all available Cooling Tower Fans are in operation
- 2. Ensure closed then de-energize both Steam Supply Valves to AFA-P01
- 3. Place Steam Bypass Control Valves 1007 and 1008 Mode Select Switches to OFF
- A. 1 and 2 ONLY
- B. 1 and 3 ONLY
- C. 2 ONLY
- D. 3 ONLY

Pro	Proposed Answer: D					
Exp	lanations:					
Α.	Condenser and w however maximiz Closing and de-er	ould ing va nergiz vever	er fans in operation is plausible as this would maximize vacuum in the Main aid in keeping any radioactivity inside the feed and condensate system, acuum would be done by placing all Air Removal Pumps in service. zing the steam supply valves to AFA-P01 would aid in limiting release to the ensuring AFA-P01 is done by closing only the steam supply valve from the			
В.	Placing all cooling tower fans in operation is plausible as this would maximize vacuum in the Main Condenser and would aid in keeping any radioactivity inside the feed and condensate system, however maximizing vacuum would be done by placing all Air Removal Pumps in service. Choice 3 is correct.					
C.		vever	zing the steam supply valves to AFA-P01 would aid in limiting release to the ensuring AFA-P01 is done by closing only the steam supply valve from the			
D.	. Correct.					

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	x	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	12	
Reference Provided:	Ν	
Learning Objective:	Given indications of a Steam Generator Tube Leak, describe the possible adverse effects of SBCS and Aux. Steam operation, and the operator action to minimize these consequences.	

Тес	chni	cal Reference:	40AO-9ZZ02 Excessive RCS Leakrate				
	Appendix C, Minimize Release to the Environment						
		INSTRUCTION	S CONTINGENCY ACTIONS				
3.		Aux Feed Pump A is bei					
	a. <u>Close</u> the Aux Feed Pump A Steam Supply Valve from the affected Steam Generator.						
	b.	<u>Notify</u> Radiation Prote the RMS Technician f Feed Pump A is stear atmosphere.	that Aux				
<u>,</u> 4.	4. <u>Select</u> "OFF" on BOTH of the following switches:						
	SGN-HS-1007, Valve 7 Mode Select						
	SGN-HS-1008, Valve 8 Mode Select						

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of radiation monitoring systems, such as fixed radiation monitors and alarms, portable survey instruments, personnel monitoring equipment, etc.	Tier	3		
	Group			
	K/A	G 2.3.15		
	IR	2.9		

Given the following condition:

- An operator needs to exit the Aux Building to the yard to hang a clearance on the Refueling Water Tank
- He is carrying a clipboard with the associated paperwork for the clearance

The operator ____(1)___ required to use a frisker to ensure they are free of contamination prior to entering the Aux Building Yard, and the clipboard and paperwork ____(2)___ required to be checked using a SAM-12 tool monitor prior to entering the yard.

- A. (1) IS
 - (2) IS
- B. (1) IS(2) is NOT
- C. (1) is NOT (2) IS
- D. (1) is NOT (2) is NOT

Pro	posed Answer:	В	
Exp	lanations:		
Α.	control point), how	vever	econd part is plausible since this is required prior to leaving the RCA (at the since the yard is still part of the RCA, the paperwork is not required to be prior to entering the yard.
В.	Correct.		
C.	of the frisker is reprior to leaving the	quire e RC	ince the Aux Building and the yard are part of the same RCA, however use d prior to entering the yard. Second part is plausible since this is required A (at the control point), however since the yard is still part of the RCA, the red to be put through a SAM-12 prior to entering the yard.
D.			ince the Aux Building and the yard are part of the same RCA, however use d prior to entering the yard. Second part is correct.

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	x	Memory or Fundamental Knowledge]
		Comprehension or Analysis	

Level of Difficultly:	2	
10CFR55.41:	12	
Reference Provided:	N	
Learning Objective:		blain how to monitor personnel and personal items for contamination, luding the use of friskers and personnel contamination monitors.

Techn	ical Ref	erence:	75DP-0RP02, Radioactive Contamin	nation Control	
		the Aux	Building to the yard is one of the loc	ations in which a frisk	er is required
to be i	used.				
		Radioacti	ve Contamination Control	75DP-0RP02	Revision 26
			NOTE		
			control software will allow RCA access L Rad Worker Training and Dress Out T		
	4.1.1	All pers	onnel comply with the following contami	nation control measures	c
		• Wea	ar protective clothing per the Radiation \	Nork Permit (RWP)	
			ition dosimetry to prevent impairment of ible alarms	f self-monitoring or obsc	ure
		 Avo 	id leaning, kneeling, sitting, or lying dow	n in an RCA	
		• Min	imize the generation and spread of cont	amination while perform	ing work
		 Rep 	ort any identified spills or leaks to RP		
		rem	fy the Boric Acid Corrosion Control Prog oval of any boric acid deposits per 73Di trol Program		
		Not	fy RP of any open wounds prior to ente	ring the RCA	
		brol	ify RP immediately of any puncture wou ken or cut while in the RCA so the injury tamination		kin is
		Per	form minimum of a hand and foot frisk u	pon leaving a Contamin	ated Area
		Pre	sent tools, material, and equipment to R	P for monitoring	
	4.1.2		onnel exiting buildings perform a hand a e located within an RCA with the followir		ng any
		• Sec	urity personnel performing time depend	ent responses	
		• Per	sonnel responding to an emergency		

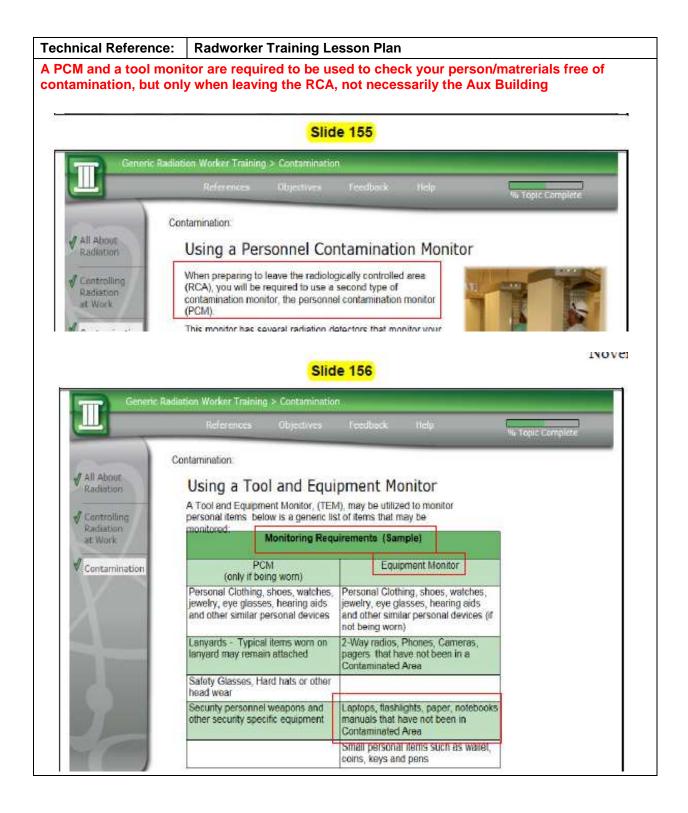
Technical Reference: Radworker Training Lesson Plan

The door from the Aux Building to the yard is one of the locations in which a frisker is required to be used.

Contamination:

Using a Frisker

You will use two main types of <u>contamination monitors</u> at any plant: a frisker and a personnel contamination monitor (PCM).


Friskers are the first line of defense. They are very easily set up anywhere frisking is needed. RP personnel place these in the plant in strategic locations to make sure contamination is not spread through the plant.

When exiting, personnel will use an automated personnel contamination monitor. Obey the signs and use the equipment provided as you walk around the plant.

Friskers use a hand-held probe coupled with a meter that you use to check yourself for contamination. Before you pick up the probe, check to ensure the frisker is turned on, set to the X1 scale and the display is less than 200 counts per minute (cpm). Monitor your hands by passing them, one at a time, about one half inch above the frisker probe at a speed of about 2 inches per second. Monitor the front and back of each hand.

Check the count rate on the meter. If it increases by more than 100 cpm and stays above that level, or if the monitor alarms, stay in the area and contact RP.

1

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Ability to recognize abnormal indications for	Tier	3		
system operating parameters that are entry-level conditions for emergency and abnormal operating	Group			
procedures	K/A		G 2.4.4	
	IR	4.5		

While operating at 100% power, which of the following equipment failures would warrant immediate entry into an Abnormal Operating Procedure (as opposed to an Alarm Response Procedure)?

- A. Control Channel NI #1 fails to 50%
- B. SG #2 Feed Flow transmitter, SGN-FT-1122, fails off-scale low
- C. Letdown HX Outlet Temp Control, CHN-TIC-223, output fails to 100%
- D. Containment NR Pressure transmitter, HCA-PI-351A, fails off-scale high

Pro	posed Answer:	Α	
Exp	lanations:		
Α.	Correct. This me	ets th	e entry conditions for 40AO-9ZZ16, RRS Malfunctions
В.			are AOPs for feed malfunctions such as 40AO-9ZZ09, RPCB (Loss of ailures that impact DFWCS are mitigated using the ARP.
C.			s of LDHX temp can result in a loss of letdown which would warrant entry with output failing high, this would be addressed using the ARP.
D.			an input to PPS and would warrant a TS call, however this failure on it's ed using the ARP.

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	10
Reference Provided:	N
Learning Objective:	Describe operations expectations when it comes to Procedure Use in accordance with 40DP-9OP02, Conduct of Operations.

Technical Reference: 40AO-	-9ZZ16 RRS Malfunctions
----------------------------	-------------------------


ENTRY CONDITIONS

The RRS Malfunctions procedure may be entered when ANY of the following conditions exist:

- 3. Section 5.0, <u>Control Channel NI Failures</u>
 - "AMI (AUTOMATIC MOTION INHIBIT)" annunciator (4A10B)
 - "SU AND CONT CH TRBL" annunciator (4A12A)
 - Channel Deviation Alarm on RRS Test Panel
 - Comparison of indications on SEN-JR-5 or SEN-JI-7 indicates that one channel is failed

Technical F	Reference: 40AL-9RK6A Panel B	06A Alarm Responses
Failed Feed	I Flow transmitter will be addresse	d using the ARP
Respon	se Section	6A06A
Feedwater Co	ontrol System Process Trouble	FWCS PROCESS TRBL
Point ID	Description	Setpoint
(x)FWCS1:B1	2 SG 1 Total Feedwater Flow 8% Deviation	8%
(x)FWCS2:B1	2 SG 2 Total Feedwater Flow 8% Deviation	8%
(x)FWCS1:B1	D SG 1 Steam Flow 50% Deviation	50%
(x)FWCS2:B1	D SG 2 Steam Flow 50% Deviation	50%
5. IF ANY of	the following are at fault:	
FT111	2X, Transmitter for Total FW Flow to S/G 1	
. FT111	2Y, Transmitter for Total FW Flow to S/G 1	
• FT112	2X, Transmitter for Total FW Flow to S/G 2	
• FT112	22Y, Transmitter for Total FW Flow to S/G 2	
. FT101	11, S/G 1 Line 1 Flow Transmttr	
. FT101	12, S/G 1 Line 2 Flow Transmttr	
FT102	21, S/G 2 Line 1 Flow Transmttr	
FT102	22, S/G 2 Line 2 Flow Transmttr	
THEN per	form the following at the DFWCS:	
5.1 Plac	e the faulty transmitter in Maintenance.	
	st the affected Steam Generator level setpoint t m Generator level.	o match the actual affected
5.3 <u>Rem</u>	ove the DFWCS Three Element lockout.	
5.4 Rese	at the DFWCS alarm at the Process Alarm page	a.

Technical	Reference: 40AL-9RK5A Panel B05A	Alarm Responses
		sed by the ARP. It will direct placing the failed
	t in bypass to comply with Tech Specs.	
Respo	nse Section	5A06C
		HI
		CNTMT
High Contai	inment Pressure Channel Trip	PRESS
		CH
		TRIP
Point ID	Description	Setpoint
SBTA13 SBTB13	Hi Containment Pressure Ch A Trip Hi Containment Pressure Ch B Trip	3 psig 3 psig
SBTC13 SBTD13	Hi Containment Pressure Ch C Trip Hi Containment Pressure Ch D Trip	3 psig 3 psig
(B05)	are ALL of the following Containment Pressu	
_ · +	HCB-PI-351B, Containment Pressure	
_ · ·	HCC-PI-351C, Containment Pressure	
· ·	HCD-PI-351D, Containment Pressure	
	alarm is confirmed to be valid (pressure risin perform the following:	g),
4.1	Trip the Reactor	
4.2	GO TO 40EP-9EO01, Standard Post Trip Ad	ctions.
	alarm is confirmed to be invalid, I <u>place</u> ANY affected channel in BYPASS at tl	he associated Plant Protection
	m (PPS) cabinet:	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of the emergency plan	Tier	3		
	Group			
	K/A		G 2.4.29	
	IR	3.1		

Per EP-0905, Protective Actions:

- (1) The LOWEST EAL level at which Accountability is REQUIRED inside the Protected Area is a(n) ______.
- (2) Accountability within the Protected Area must be completed within a MAXIMUM of _____ minutes of declaration of the EAL level listed in Part 1.
- A. (1) Alert
 - (2) 15
- B. (1) Alert (2) 30
- C. (1) Site Area Emergency (2) 15
- D. (1) Site Area Emergency(2) 30

Proposed Answer: D			
Exp	lanations:		
Α.	A. First part is plausible since the Alert level is the lowest EAL level at which the ERO is activatied, however accountability is not required until the SAE level. Second part is plausible since 15 minutes is the time limit to make notifications to state and local agencies, however accountability is not required for 30 minutes.		
В.	First part is plausible since the Alert level is the lowest EAL level at which the ERO is activatied, however accountability is not required until the SAE level. Second part is correct.		
C.	C. First part is correct. Second part is plausible since 15 minutes is the time limit to make notifications to state and local agencies, however accountability is not required for 30 minutes.		
D.	Correct.		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	N	
Learning Objective:	ldei	ntify the requirements for initiating Assembly and Accountability

٦	echnical Reference:	EP-0905, Protective Actions		
	PALO VERDE PRO	CEDURE	Page 7	of 41
		Protective Actions	EP-0905	Revision 10
	• Ot	her similar events as deemed appropriat	e by the Emergency Coo	ordinator.
	classif accom Assem persor	ably is mandatory at the Site Area Emerge ication. Assembly of site personnel outsic plished by all personnel reporting to desi ably may be initiated at any time site man anel safety reasons. Assembly may also b an Rule during Security events.	le the Protected Area is gnated assembly areas, agement deems it appro	priate for
	Emerg Emerg within Site Ar	ntability within the Protected Area is man ency. Accountability may be initiated at o ency Coordinator to support worker safe the Protected Area is accomplished withi ea Emergency or higher, and maintained ted Area(s) boundary access control as c	ther times at the discretion ty. Accountability of personn 30 minutes of the declar I continuously thereafter,	onnel aration of using

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Small Break LOCA: Knowledge of the purpose and	Tier			1
function of major system components and controls	Group			1
	K/A	0	09 G 2.1.2	8
	IR			4.1

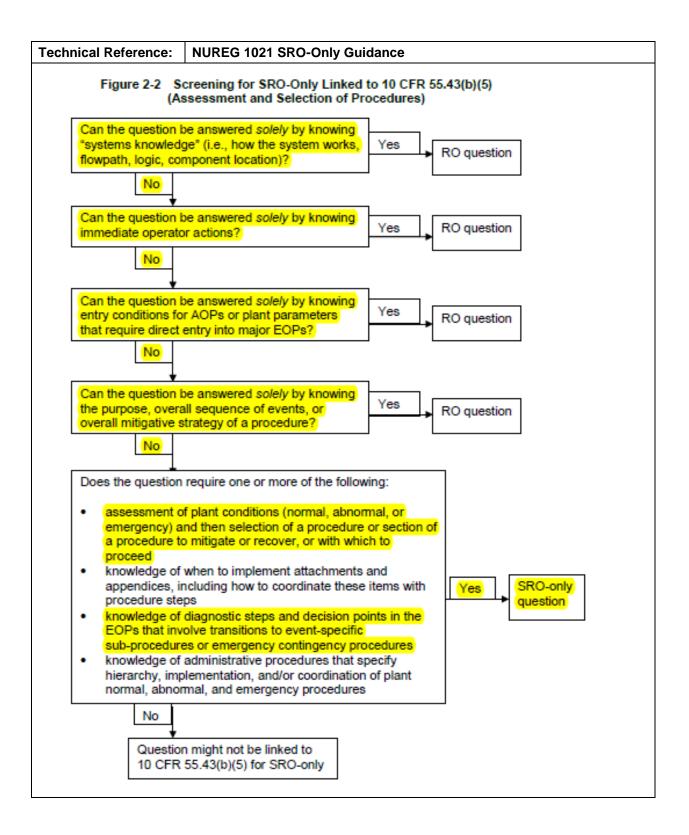
Given the following conditions:

- Unit 1 is operating at 100% power
- The Train 'A' HPSI Pump and the Train 'B' LPSI Pump are inoperable
- Both pumps are tagged out for emergent corrective maintenance

Subsequently:

- The Reactor was manually tripped due to a small break LOCA
- SIAS and CIAS were manually actuated

Based on the listed conditions, this accident ____(1)___ within the analyzed conditions in the PVNGS UFSAR, and following SPTAs, the CRS should transition to ____(2)___.


- A. (1) IS(2) 40EP-9EO03, LOCA
- B. (1) IS
 - (2) 40EP-9EO09, Functional Recovery
- C. (1) is NOT(2) 40EP-9EO03, LOCA
- D. (1) is NOT(2) 40EP-9EO09, Functional Recovery

Pro	posed Answer:	Α		
Exp	Explanations:			
Α.	Correct.			
В.	3. First part is correct. Second part is plausible given that neither Train A nor Train B has a complete train of SI available, however since there is one full train of flow available, the correct action would be to mitigate the event using the LOCA EOP.			
C.	First part is plausible since the FSAR analyzes for events with corresponding equipment failures (i.e. loss of offsite power), and in this case BOTH trains of SI are degraded, however with one effective full train of SI available, this would still be considered an analyzed event. Second part is correct.			
D.	(i.e. loss of offsite effective full train plausible given th	of SI at ne full t	ince the FSAR analyzes for events with corresponding equipment failures er), and in this case BOTH trains of SI are degraded, however with one available, this would still be considered an analyzed event. Second part is ither Train A nor Train B has a complete train of SI available, however rain of flow available, the correct action would be to mitigate the event	

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	N	
Learning Objective:	Given conditions of LOCA, analyze RCS Inventory Control to determine the SFSC acceptance criteria is satisfied per 40EP-9EO03.	

Technical Reference:	Technical Specifications (LCO 3.5.3.B bases)
<u>B.1</u>	
than Condition A (one LPSI the ECCS flow equivalent to available, the inoperable co status within 72 hours. Alte determined in accordance v Program. The 72 hour Con	are inoperable, except for reasons other subsystem inoperable), and at least 100% of a single OPERABLE ECCS train is imponents must be returned to OPERABLE ernatively, a Completion Time can be with the Risk Informed Completion Time npletion Time is based on an NRC study valuation and is a reasonable amount of time
flow to the RCS. The indivi	e if it is not capable of delivering the design dual components are inoperable if they are heir design function, or if supporting systems
subsystems. Due to the red subsystems, the inoperabili render the ECCS incapable inoperability of two different necessarily result in a loss of Condition is to maintain a c that 100% of the ECCS flow train remains available. The operations when componer	RABILITY of a number of independent dundancy of trains and the diversity of ty of one component in a train does not of performing its function. Neither does the t components, each in a different train, of function for the ECCS. The intent of this ombination of OPERABLE equipment such v equivalent to 100% of a single OPERABLE is allows increased flexibility in plant nts in opposite trains are inoperable.
emergency DG can disable reliability analysis (Ref. 4) h	a loss of offsite power and the failure of an one ECCS train until power is restored. A has shown that the impact with one full ECCS thy small to justify continued operation for
equivalent flow to a single C	nts inoperable, such that 100% of the DPERABLE ECCS train is not available, the ide the accident analyses. Therefore, ately entered

Technical Reference:	UFSAR
	EMERGENCY CORE COOLING SYSTEM
6.3.2.5.4 Capaci Failur	ty to Maintain Cooling Following a Single e.
Minimum operability	requirements for components of the ECCS are
as delineated in PVN	GS Technical Specifications, Section 3.5.
Consistent with thes	e operability requirements and system
failure modes, the m	inimum ECCS equipment that will operate
during postulated ac	cidents is as discussed in Section 6.3.3.
This complement of e	quipment is required to mitigate the
consequences of a LO	CA initiated when the reactor is anywhere
from hot shutdown to	full power operation, and this complement
will result in conse	rvative results for other incidents where
ECCS is required.	

		Ica	Referen	ice:	40EP	-9EO03		JA			
										adequate SI flow during an accident. LOCA	
EO	PS	FS	Cs will b	e met	and er	ntry int	o the	FF	RD W	vill not be required.	
1.		onito Ilowi	o <mark>r the SFSC</mark>	<mark>s</mark> by pe	erforming	the	1.1	Perf	orm ti	he following:	
			-		t. Functi		-	a.	Red	liagnose the event.	
	a.		<u>Check</u> that th Status Chec				I	b.	<u>GO</u>	TO ONE of the following:	
		а	re satisfied						•	Appropriate Optimal	
	b.		<u>Ensure</u> that f Sample Valv			rator				Recovery Procedure	
					•				•	40EP-9EO09, <u>Functional</u> Recovery	
	C.		<u>)irect</u> Chem 4DP-9ZZ05								
		<u>c</u>	Occurrence	Checkl	ist						
* 5.			AS has actu N perform th		wing:						
		a.	Check that Pumps hav			PSI		a.1		t idle HPSI and LPSI Pumps necessary.	
	9	b.	Check that			low is		b.1	Perf	form the following:	
			adequate. Appendix 2						1)	Ensure electrical power to valves and pumps.	
									2)	Ensure correct control board valve lineup.	
									3)	Ensure operation of ESF auxiliary systems.	
									4)	Start idle charging pumps as	
										needed.	
										needed.	
RCS	Inve	entor	y Control							needed.	
										needed.	
Me	eting	g the	-	f Condit						needed.	
Me Co	etiną ntrol	g the I Safe	provisions of ety Function.	f Condit						needed.	
Me Co	etiną ntrol	g the I Safe	provisions of	f Condit						needed.	
Me Co ACC	etino ntrol	g the Safe	provisions of ety Function.	f Condit						needed.	
Me Co ACC	eting ntrol EP1 ditic	g the I Safe TANC	provisions of ty Function.	f Condit	ion 1 or Co	ondition 2				needed.	
Me Co ACC	eting ntrol EP1 ditic	g the I Safe TANC	provisions of ety Function.	f Condit	ion 1 or Co	ondition 2				needed.	
Me Co ACC Con	etino ntrol EP1 ditic	g the Safe TANC	provisions of ty Function.	f Condit	ion 1 or Co	ondition 2				needed.	
Me Co ACC Con a. b.	etino ntrol EP1 ditic Pre	g the I Safe TANC Dn 1	provisions of ety Function. CE CRITERIA izer level gre 24°F [44°F] c	f Condit	ion 1 or Co n 10% [15 subcooled	%].	wil			needed.	
Me Co ACC Con a. b.	etino ntrol EP1 ditic Pre	g the I Safe TANC Dn 1	provisions of ety Function. CE CRITERIA	f Condit	ion 1 or Co n 10% [15 subcooled	%].	wil			needed.	
Me Co ACC Con a. b.	etino ntrol EP1 ditic Pre	g the I Safe TANC Dn 1	provisions of ety Function. CE CRITERIA izer level gre 24°F [44°F] c	f Condit	ion 1 or Co n 10% [15 subcooled	%].	wil			needed.	
Me Co ACC Con a. b.	etino ntrol EP1 ditic Pre RC	g the Safe TANC Don 1 SS is :	provisions of ety Function. CE CRITERIA izer level gre 24°F [44°F] c	f Condit	ion 1 or Co n 10% [15 subcooled	%].	wil			needed.	
Me Co ACC Con a. b.	etino ntrol EP1 ditic Pre RC	g the Safe TANC Don 1 SS is :	provisions of ety Function. CE CRITERIA izer level gre 24°F [44°F] c	f Condit	ion 1 or Co n 10% [15 subcooled	%].	wil			needed.	
ACC Con a. b. c.	etino ntroi EP1 ditic Pre RC RV	g the I Safe TANC On 1 S is : LMS	provisions of ty Function. CE CRITERIA izer level gre 24°F [44°F] of indicates that	f Condit	ion 1 or Co n 10% [15 subcooled I level is 10	%]. 6% or mor	wil			needed.	
Me Co ACC	etino ntroi EP1 ditic Pre RC RV ditic	g the I Safe TANC Don 1 SS is : CLMS Don 2	provisions of ety Function. CE CRITERIA izer level gre 24°F [44°F] c	f Condit	ion 1 or Co n 10% [15 subcooled I level is 10	%]. 6% or mor	wil			needed.	
ACC Con a. b. c. Con	etino ntrol EP1 ditic Pre RC RV ditic	g the Safe TANC on 1 SS is : LMS on 2 fety I pend	provisions of ety Function. CE CRITERIA izer level gre 24°F [44°F] of indicates that njection flow ix 2, Figures.	f Condit	ion 1 or Co n 10% [15 subcooled I level is 10	%]. 6% or mor	wil			needed.	
ACC Con a. b. c.	etinon ntrol etino etino ditic Pre RC RV ditic App CE	g the Safe TANC on 1 essur SS is : LMS on 2 fety I pend	provisions of the function. CE CRITERIA izer level gre 24°F [44°F] of indicates that njection flow	f Condit A: ater tha or more at RVUH	ion 1 or Co n 10% [15 subcooled I level is 10	%]. 6% or mor	wil			needed.	
ACC Con a. b. c. Con	etinon ntrol etino etino ditic Pre RC RV ditic App CE	g the Safe TANC on 1 essur SS is : LMS on 2 fety I pend	provisions of ety Function. CE CRITERIA izer level gre 24°F [44°F] of indicates that njection flow ix 2, Figures.	f Condit A: ater tha or more at RVUH	ion 1 or Co n 10% [15 subcooled I level is 10	%]. 6% or mor	wil			needed.	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Large Break LOCA: Ability to determine or	Tier			1
interpret the following as they apply to a Large Break LOCA: Difference between overcooling and LOCA	Group			1
indications	K/A	(011 EA2.13	3
	IR			3.7

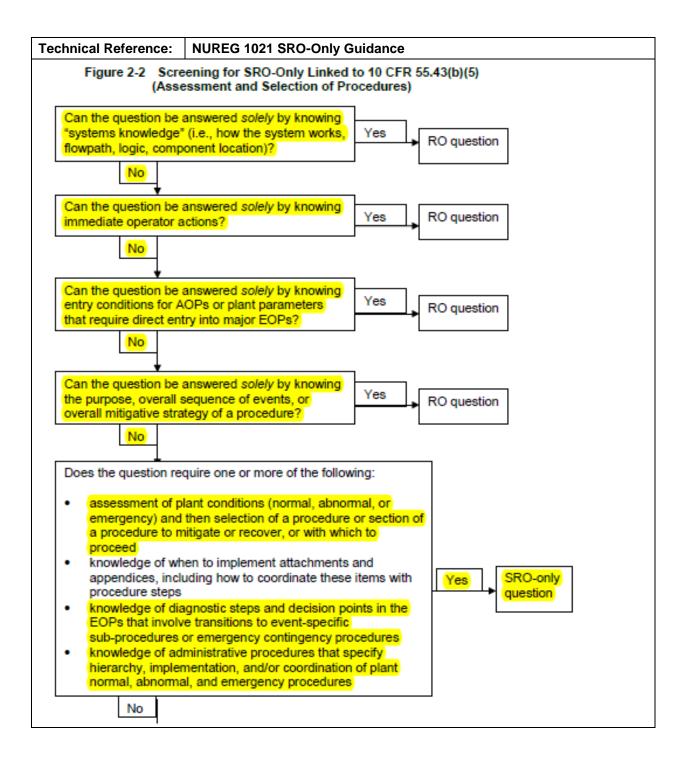
Given the following conditions:

- Unit 2 was tripped due to a high energy release inside Containment
- SPTAs have been completed and the CRS has entered the optimal EOP
- Current plant conditions are as follows:
 - SIAS/CIAS/MSIS/CSAS have all actuated
 - All RCPs are secured
 - Thot is 545°F and slowly lowering
 - Tcold is 540°F and slowly lowering
 - REPCET is 550°F and slowly lowering
 - RCS pressure is 1050 psia and slowly lowering
 - o Containment Radiation Monitor readings are slowly rising
 - Steam Plant Radiation Monitor readings are stable
 - Containment pressure is 12 psig and slowly lowering

Per the appropriate EOP for this condition, the Core Heat Removal Safety Function is currently ____(1)___ and the Containment Isolation Safety Function is currently ____(2)___.

A. (1) MET

(2) MET


- B. (1) MET(2) NOT met
- C. (1) NOT met (2) MET
- D. (1) NOT met (2) NOT met

Pro	posed Answer:	Α	
Exp	lanations:		
Α.			OP for this condition is LOCA (based on the loss of subcooling and the s) and both safety functions are currently met.
В.			econd part is plausible since Condition 1 is not met due to containment ent RM trends, however condition 2 is met for the LOCA EOP.
C.			nce subcooling is lost (RCS is ~ 0°F subcooled), however for the LOCA on is met if CET subcooling indicates less than 44°F superheated. Second
D.	EOP, the safety for part is plausible s	unctic ince (ince subcooling is lost (RCS is $\sim 0^{\circ}$ F subcooled), however for the LOCA on is met if CET subcooling indicates less than 44°F superheated. Second Condition 1 is not met due to containment pressure and containment RM ion 2 is met for the LOCA EOP.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	Y	Steam Tables (to determine subcooling)
Learning Objective:		en conditions of LOCA, analyze Core Heat Removal to determine if the SC acceptance criteria is satisfied per 40EP-9EO03.

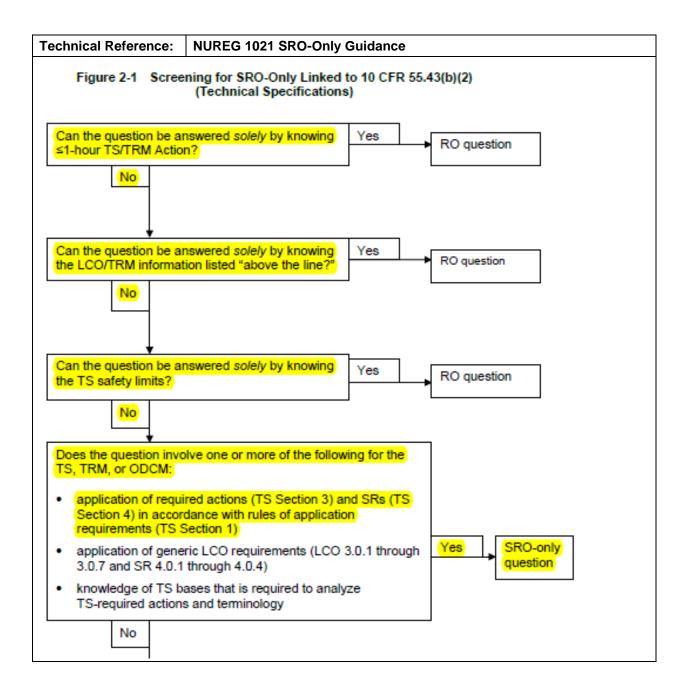
Technical Reference:	40EP-9EO	03, LOCA	
PALO VERDE NUCLEAR GENERAT	TING STATION	40EP-9EO03	Revision 44
LOSS OF COOLANT ACC		Page 66	of 79
SAFETY FUNCTION:	I		
5. Core Heat Removal			
ACCEPTANCE CRITERIA:		CRITER	IA SATISFIED
 CET Subcooling indicates le superheat and NOT rising. 			
 BCS Subcooling indicates le superheat and NOT rising. 	ess than 44°F [60°F]		

Те	chn	ical Reference: 40EP-9E0	003, LOCA
I		VERDE NUCLEAR GENERATING STATION	40EP-9EO03 Revision 44 Page 67 of 79
s/	FETY	FUNCTION:	
7		ntainment Isolation	
	Me	eeting the provisions of Condition 1 or Condition 2 olation Safety Function.	
	AC	CEPTANCE CRITERIA:	CRITERIA SATISFIED
	Cor	ndition 1	
	a.	No valid steam plant activity radiation monitor alarms or unexplained rise in activity.	
	b.	Containment pressure is less than 3 psig.	
	C.	No valid containment area radiation monitor ala or unexplained rise in activity.	rms
	Cor	ndition 2	
	a.	No valid steam plant activity radiation monitor alarms or unexplained rise in activity.	
	b.	CIAS actuated.	

Tech	nical Reference	e: 40EP-9EC	005, ESD	
PALC	VERDE NUCLEAR GEN	ERATING STATION	40EP-9EO05	Revision 33
	EXCESS STEAM	DEMAND	Page 3	8 of 46
SAFET	Y FUNCTION:			
5 0	ore Heat Removal			
0. 0.	oromota			
A	CCEPTANCE CRITERIA:		CRITE	RIA SATISFIED
a.	. T _h is less than 650°F [(350°F].		
b.	Maximum quadrant CET temperature is less than 650°F [650°F].			
C.	The RCS is 24°F [44°F] or more subcooled.		

Techn	nical Reference:	005, ESD	
PALO	VERDE NUCLEAR GENERAT		40EP-9EO05 Revision 33 Page 39 of 46
SAFETY	Y FUNCTION:		
7. Co	ontainment Isolation		
AC	CCEPTANCE CRITERIA:		CRITERIA SATISFIED
a.	Containment pressure is less OR CIAS actuated.	than 3 psig.	
b.	No valid containment area ra or unexplained rise in activity	rms	
с.	No valid steam plant activity alarms or unexplained rise in OR		
	IF radiation monitors and stea are NOT available, THEN radiation and contamin Generator release points sho in steam plant activity.	ation surveys of Ste	eam

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Coolant Pump Malfunctions: Knowledge	Tier			1
of limiting conditions for operations and safety limits	Group			1
	K/A	0	15 G 2.2.2	2
	IR			4.7


- (1) Per the PVNGS Technical Specification Bases, the RPS function which is designed to protect the core in the event of an RCP SEIZED shaft is...
- (2) Per Technical Specifications, during a Reactor startup, the EARLIEST time that the function described in Part 1 is required to be OPERABLE is when...
- A. (1) Reactor Coolant Flow (SG D/P) Low
 - (2) MODE 2 is entered
- B. (1) Reactor Coolant Flow (SG D/P) Low
 (2) any RTCBs are closed and any CEA is capable of being withdrawn
- C. (1) Departure From Nucleate Boiling Ratio Low(2) MODE 2 is entered
- D. (1) Departure From Nucleate Boiling Ratio Low
 - (2) any RTCBs are closed and any CEA is capable of being withdrawn

Pro	posed Answer:	С						
Exp	lanations:							
Α.	A. First part is plausible since SG D/P Low is the RPS trip which will trip the Reactor during some lost of RC Flow events (i.e. sheared shaft), however since the DNBR trip is generated from RCP motor speed, it will be the trip which actuates on a seized shaft event. Second part is correct.							
В.	3. First part is plausible since SG D/P Low is the RPS trip which will trip the Reactor during some lost of RC Flow events (i.e. sheared shaft), however since the DNBR trip is generated from RCP motor speed, it will be the trip which actuates on a seized shaft event. Second part is plausible since this is earliest time in a startup that any RPS trip is required to be operable, however RC Flow Low is not required to be operable until MODE 2 is entered.							
C.	Correct.							
D.	of RC Flow event detect a sheared	s, ho [.] shaft	Ince DNBR Low is the RPS trip which will trip the Reactor during most lost wever since the DNBR trip is generated from RCP motor speed, it will not Second part is plausible since this is earliest time in a startup that any be operable, however DNBR is not required to be operable until MODE 2 is					

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3			
10CFR55.43:	2			
Reference Provided:	Ν			
Learning Objective:	Given a set of plant conditions, determine whether or not the LCOs and TLCOs of 3.3 are satisfied in accordance with Tech Spec 3.3.			

Technical Refer	ence:	Tech Spec Bases
		RPS Instrumentation - Operating B 3.3.1
BASES		
APPLICABLE	Desig	n Basis Definition (continued)
SAFETY ANALYSES	8, 9.	Steam Generator Level - Low
		The Steam Generator #1 Level - Low and Steam Generator #2 Level - Low trips ensure that a reactor trip signal is generated for the following events to help prevent exceeding the design pressure of the RCS due to the loss of the heat sink:
		 Inadvertent Opening of a Steam Generator Atmospheric Dump Valve (AOO);
		Loss of Condenser Vacuum (AOO);
		 Loss of Normal Feedwater Event (AOO);
		 Feedwater System Pipe Break (Accident); and
		Single RCP Rotor Seizure (AOO)
	10, 11	. <u>Steam Generator Level - High</u>
		The Steam Generator #1 Level - High and Steam Generator #2 Level - High trips are provided to protect the turbine from excessive moisture carryover in case of a steam generator overfill event. A Main Steam Isolation Signal (MSIS) is initiated simultaneously.
	12, 13	3. <u>Reactor Coolant Flow - Low</u>
		The Reactor Coolant Flow Steam Generator #1-Low and Reactor Coolant Flow Steam Generator #2-Low trips provide protection against an RCP Sheared Shaft Event. A trip is initiated when the pressure differential across the primary side of either steam generator decreases below a variable setpoint. This variable setpoint stays below the pressure differential by a preset value called the step function, unless limited by a preset maximum decreasing rate determined by the Ramp Function, or a set minimum value determined by the Floor Function. The setpoints ensure that a reactor trip occurs to limit fuel failure and ensure offsite doses are within 10 CFR 100 guidelines.

Technical Refere	ence:	Tech Spec Bases
		RPS Instrumentation - Operating B 3.3.1
BASES		
APPLICABLE SAFETY	Desig	n Basis Definition (continued)
ANALYSES	15.	Departure from Nucleate Boiling Ratio (DNBR) - Low
		The CPCs perform the calculations required to derive the DNBR and LPD parameters and their associated RPS trips. The DNBR - Low and LPD - High trips provide plant protection during the following AOOs and assist the ESF systems in the mitigation of the following accidents.
		The DNBR - Low trip provides protection against core damage due to the occurrence of locally saturated conditions in the limiting (hot) channel during the following events and is the primary reactor trip (trips the reactor first) for these events:
		Decrease in Feedwater Temperature;
		Increase in Feedwater Flow;
		 Increased Main Steam Flow (not due to steam line rupture) Without Turbine Trip;
		 Increased Main Steam Flow (not due to steam line rupture) With a Concurrent Single Failure of an Active Component;
		 Steam Line Break With Concurrent Loss of Offsite AC Power;
		Loss of Normal AC Power;
		 Partial Loss of Forced Reactor Coolant Flow;
		 Total Loss of Forced Reactor Coolant Flow;
		 Single Reactor Coolant Pump (RCP) Shaft Seizure;
		 Uncontrolled CEA Withdrawal From Low Power;
		 Uncontrolled CEA Withdrawal at Power;
		 CEA Misoperation, except for dropped 4-finger CEA event;
		 Primary Sample or Instrument Line Break; and
		Steam Generator Tube Rupture.

Techn	Technical Reference: Tech Specs						
				RPS Instru	mentation - Operating 3.3.1		
		Reacto	Table 3.3.1-1 (page 2 o r Protective System Inst	of 3) rumentation			
	FUNCTION		APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS	SURVEILLANCE REQUIREMENTS	ALLOWABLE VALUE		
8. S	Steam Generator #1 Level	- Low	1,2	SR 3.3.1.1 SR 3.3.1.7 SR 3.3.1.9 SR 3.3.1.13	≥ 43.7%		
9. S	Steam Generator #2 Level	-Low	1,2	SR 3.3.1.1 SR 3.3.1.7 SR 3.3.1.9 SR 3.3.1.13	≥43.7%		
10. S	Steam Generator #1 Level	- High	1,2	SR 3.3.1.1 SR 3.3.1.7 SR 3.3.1.9 SR 3.3.1.13	≤ 91.5%		
11. S	Steam Generator #2 Level	- High	1,2	SR 3.3.1.1 SR 3.3.1.7 SR 3.3.1.9 SR 3.3.1.13	≤91.5%		
12. <mark>F</mark>	Reactor Coolant Flow, Ste Generator #1-Low	am)	1.2	SR 3.3.1.1 SR 3.3.1.7 SR 3.3.1.9 SR 3.3.1.13	Ramp: ≤ 0.115 psid/sec. Floor: ≥ 12.49 psid Step: ≤ 17.2 psid		
13. <mark>6</mark>	Reactor Coolant Flow, Ste Senerator #2-Low	am	1.2	SR 3.3.1.1 SR 3.3.1.7 SR 3.3.1.9 SR 3.3.1.13	Ramp: ≤ 0.115 psid/sec. Floor: ≥ 12.49 psid Step: ≤ 17.2 psid		

Tech	nical Reference:	Tech S	pecs			
				RPS Instrum	nentation - Operating 3.3.1	
		Read	Table 3.3.1-1 (page 3 o tor Protective System Inst	of 3) rumentation		
	FUNCTION		APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS	SURVEILLANCE REQUIREMENTS	ALLOWABLE VALUE	-
14.	Local Power Density - Hig	h(b)	1,2	SR 3.3.1.1 SR 3.3.1.2 SR 3.3.1.3 SR 3.3.1.4 SR 3.3.1.5 SR 3.3.1.5 SR 3.3.1.7 SR 3.3.1.10 SR 3.3.1.10 SR 3.3.1.11 SR 3.3.1.12 SR 3.3.1.13	≤ 21.0 kW/ft	
15.	Departure From Nucleate Ratio (DNBR) - Low(b)	Boiling	1.2	SR 3.3.1.1 SR 3.3.1.2 SR 3.3.1.3 SR 3.3.1.4 SR 3.3.1.5 SR 3.3.1.7 SR 3.3.1.7 SR 3.3.1.10 SR 3.3.1.11 SR 3.3.1.12 SR 3.3.1.13	≥ 1.34	

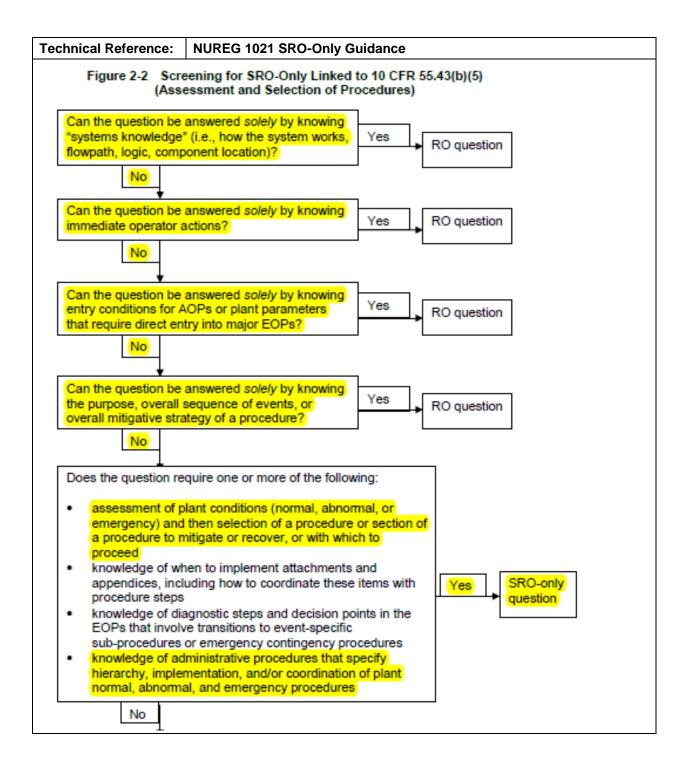
chnical Reference:	Technical Reference: Tech Specs					
FUNCTION		APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS	SURVEILLANCE REQUIREMENTS	ALLOWABLE VALVE		
1. Logarithmic Power Level-H	gh ^(đ)	(a) (a) (a) 3 ,4 ,5	SR 3.3.2.1 SR 3.3.2.2 SR 3.3.2.3 SR 3.3.2.4 SR 3.3.2.5	≤ 0.011% NRTP		
2. Steam Generator #1 Press	ire-Low ^(b)	(a) 3	SR 3.3.2.1 SR 3.3.2.2 SR 3.3.2.4 SR 3.3.2.5	≥ 955 psia ^(e)		
3. Steam Generator #2 Press	ire-Low ^(b)	3 ^(a)	SR 3.3.2.1 SR 3.3.2.2 SR 3.3.2.4 SR 3.3.2.5	≥ 955 psia ^(e)		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Reactor Coolant Makeup: Ability to	Tier			1
interpret control room indications to verify the status and operation of a system, and understand how operator	Group			1
actions and directives affect plant and system	K/A	0	22 G 2.2.4	4
conditions	IR			4.4

Given the following conditions:

- Unit 1 is operating at 100% power
- The 'A' and 'B' Charging Pumps are running
- VCT level is 40%
- The following alarms have just annunciated on B03:
 - 3A08Å CHG HDR SYS TRBL
 - 3A11B RCP SEAL INJ FLOW HI-HI OR LO
- CHB-FI-212, Charging Pumps Discharge Header Flow, is indicating 25 gpm
- The CRS has entered 40AO-9ZZ05, Loss of Charging or Letdown, Appendix G, Responding to Gas Binding of Charging Pumps

Per 40AO-9ZZ05, Loss of Charging or Letdown, the CRS should direct...


- (1) the OATC to place _____ in Pull to Lock
- (2) an AO to perform _____ to vent the affected Charging Pumps
- A. (1) ONLY the 'A' and 'B' Charging Pumps
 - (2) Appendix H, Venting Charging Pumps and Header to the Vent Receiver
- B. (1) ONLY the 'A' and 'B' Charging Pumps
 - (2) Appendix I, Venting Charging Pumps and Header to the Recycle Drain Header
- C. (1) ALL three Charging Pumps(2) Appendix H, Venting Charging Pumps and Header to the Vent Receiver
- D. (1) ALL three Charging Pumps
 - (2) Appendix I, Venting Charging Pumps and Header to the Recycle Drain Header

Pro	posed Answer:	D	
Ехр	lanations:		
Α.	'E' Charging Pum Charging discharg part is plausible s	p ava ge flo ince /	ince only the 'A' and 'B' Charging Pumps were running, and maintaining the illable leaves the option to restore letdown and seal injection, however if w is < 40 gpm, placing all three pumps in pull to lock is required. Second Appendix H is used to vent the charging pumps and header following a gas r only when VCT level is 0%.
В.	'E' Charging Pum	p ava	ince only the 'A' and 'B' Charging Pumps were running, and maintaining the illable leaves the option to restore letdown and seal injection, however if w is < 40 gpm, placing all three pumps in pull to lock is required. Second
C.			econd part is plausible since Appendix H is used to vent the charging owing a gas binding event, however only when VCT level is 0%.
D.	Correct.		

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	х	Comprehension or Analysis

Level of Difficultly:	4	
10CFR55.43:	5	
Reference Provided:	Ν	
Learning Objective:	Explain how gas binding of the charging pumps is mitigated in 40AO- 9ZZ05, Loss of Charging or Letdown	

Тес	chnical Reference:	40AO-9ZZ05 Loss of Charging or Letdown
	INSTRUCTIONS	CONTINGENCY ACTIONS
		RS discretion should be applied to diagnosing
.4.	IF Charging Pump gas bind indicated by ANY of the fol	
	Charging header flow fluctuations	
	Charging header pres fluctuations	ssure
	 Charging header flow expected for running pumps 	
	 Charging suction sou RWT) level lost 	rce (VCT,
	THEN PERFORM Append Responding to Gas Binding Charging Pumps	
Ste	· · · · · · · · · · · · · · · · · · ·	ed because charging flow is < 40 gpm. (PTL all charging pumps)
	INSTRUCTIONS	ing to Gas Binding of Charging Pumps <u>CONTINGENCY ACTIONS</u>
<u> </u> 1.	<u>Enter</u> Appendix Entry Time Date:	and
_2.	IF CHB-FI-212, Charging P Regen HX, indicates greate (40 gpm, THEN <u>GO TO</u> Step 8.	
3.	<u>Close</u> CHB-UV-515, Letdov Regen HX Isolation Valve, 1 letdown flow.	
. <mark>4.</mark>	Place ALL of the following handswitches in "PULL TO	
	 CHA-HS-216, Chargir Pump 1 P01 	ıg
	 CHB-HS-217, Chargir Pump 2 P01 	ıg
	 CHA-HS-218A, Charg Pump 3 P01 	jing
	 CHB-HS-218, Chargir Pump 3 P01 	ıg
5.	IF gas intrusion was due to lowering below 0%, THEN <u>PERFORM</u> Appendi: <u>Venting Charging Pumps ar</u> <u>Header to the Vent Receive</u>	x H, nd z.
	T level is 40%, whick formed.	h makes step 5 not applicable. Venting to the vent receiver will NOT be

Techn	Technical Reference: 40AO-9ZZ05 Loss of Charging or Letdown						
	Step 6 is applicable because VCT did NOT go below 0%. Venting to the Recycle Drain Header will be performed.						
A	Appendix G, Responding to Gas Binding of Charging Pumps						
	INSTRUCTIONS CONTINGENCY ACTIONS						
	6. IF gas intrusion was NOT due to VCT level lowering below 0%, THEN <u>PERFORM</u> Appendix I, <u>Venting Charging Pumps and</u> <u>Header to the Recycle Drain Header</u> .						
	<u>GO TO</u> Section 3.0, S Section 4.0, Step 4.						
With prima is pa pump	NOTE						
Ē h	8. <u>Determine</u> which Charging Pump has been gas bound using local observation.						
- (b	9. <u>Place</u> the handswitch for the gas bound Charging Pump in "PULL TO LOCK":						
•	CHA-HS-216, Charging Pump 1 P01						
•	CHB-HS-217, Charging Pump 2 P01						
•	CHA-HS-218A, Charging Pump 3 P01						
•	CHB-HS-218, Charging Pump 3 P01						
		be performed is charging flow was > 40 gpm (refer to previous step 2) It be performed in this case because we kick out at step 7.	-				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Generator Tube Rupture: Ability to	Tier			1
determine or interpret the following as they apply to a SGTR: Magnitude of atmospheric radioactive release if	Group			1
cooldown must be completed using steam dumps or if	K/A	()38 EA2.14	Ļ
atmospheric reliefs lift	IR			4.6

Given the following conditions:

- Unit 1 was tripped due to a Design Basis Steam Generator Tube Rupture event on SG #1
- On the trip, offsite power was lost
- The crew is commencing a cooldown using ADVs to meet conditions required to isolate SG #1
- (1) Per the PVNGS EAL Hot Chart, the use of ADVs for the INITIAL cooldown _____ considered a loss of the Containment Barrier.
- (2) Per the PVNGS Release Evaluation Flowchart, the release in progress ______ exceeding federally approved limits.
- A. (1) IS (2) IS
- B. (1) IS(2) is NOT
- C. (1) is NOT (2) IS
- D. (1) is NOT (2) is NOT

Proposed Answer: D						
Exp	Explanations:					
Α.	First part is plausible because during the initial RCS cooldown, there will be a release to the environment, however since it is not an unisolable fault (e.g. stuck open MSSV), this is NOT considered a loss of the containment barrier. Second part is plausible because for the initial cooldown, there will be a release to the environment, however per EP-0903, Accident Assessment and the Release Evaluation Flowchart, this is not a release that exceeds federal limits.					
В.	First part is plausible because during the initial RCS cooldown, there will be a release to the environment, however since it is not an unisolable fault (e.g. stuck open MSSV), this is NOT considered a loss of the containment barrier. Second part is correct.					
C.	First part is correct. Second part is plausible because for the initial cooldown, there will be a release to the environment, however per EP-0903, Accident Assessment and the Release Evaluation Flowchart, this is not a release that exceeds federal limits.					
D.	Correct.					

Question Source:		New	
	Χ	Bank	
		Modified	
	Χ	Previous NRC Exam	2020 NRC Q85

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:		
Reference Provided:	N	
Learning Objective:	Determine whether a radioactive release is in progress	

Technical Reference:	NUREG 1021 SRO-Only Guidance					
D. Radiation Hazards That May Arise during Normal and Abnormal Situations, including Maintenance Activities and Various Contamination Conditions [10 CFR 55.43(b)(4)]						
	of SRO exam items for this topic include the following: or gaseous/liquid release approvals (i.e., release permits)					
selection	nd interpretation of radiation and activity readings as they pertain to the of administrative, normal, abnormal, and emergency procedures					
	nd interpretation of coolant activity, including comparison to emergency ia and/or regulatory limits					

Fechnical Reference: EAL Hot Chart (Fission Product Barriers)					
A ruptured SG that is be	eing steamed to atmosphere is ev	aluated for a Loss of CTMT barrier.			
Contair	nment (CTMT) Barrier				
Loss	Potential Loss				
1. A leaking or RUPTURED S FAULTED outside of conta					

Technical Reference: **PVNGS** Emergency Plan

If a ruptured SG is steamed to atmosphere (i.e. manual operation of ADVs), it could potentially meet the loss of CTMT barrier threshold. For the initial cooldown to 540F, use of the ADVs is assumed in the accident analysis and would not meet the threshold. However, if the ruptured SG has to be steamed below 540F it would be a loss of the CTMT barrier.

ATTACHMENT 2

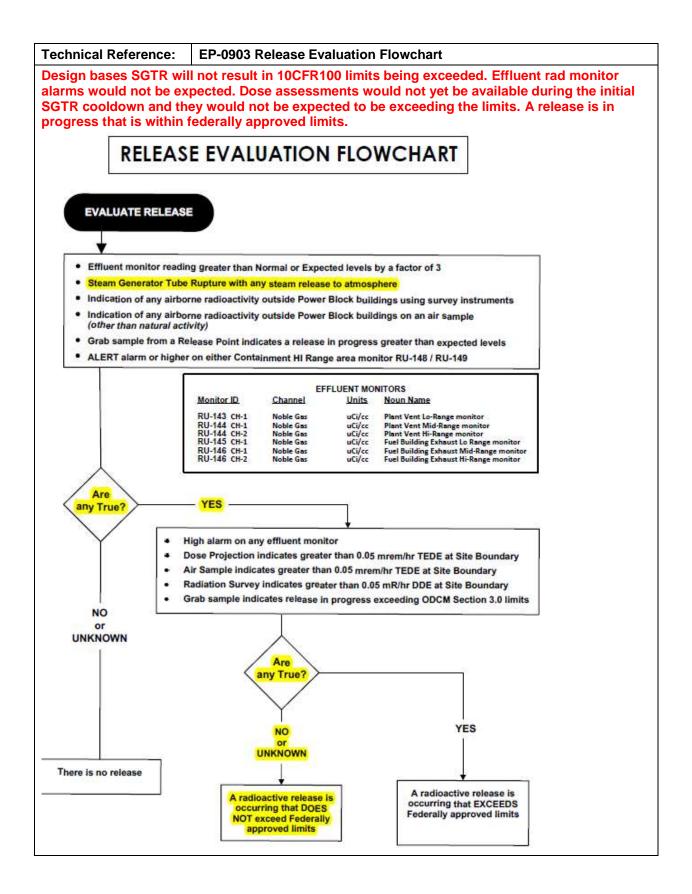
Fission Product Barrier Loss/Potential Loss Matrix and Bases

Barrier:

A. RCS or SG Tube Leakage

Containment

Degradation Threat: Loss


Threshold:

Category:

1. A leaking or RUPTURED SG is FAULTED outside of containment

This threshold also applies to prolonged steam releases necessitated by operational considerations such as the forced steaming of a leaking or RUPTURED steam generator directly to atmosphere to cooldown the plant. These type of condition will result in a significant and sustained release of radioactive steam to the environment (and are thus similar to a FAULTED condition). The inability to isolate the steam flow without an adverse effect on plant cooldown meets the intent of a loss of containment.

Steam releases associated with the expected operation of a SG Atmospheric Dump Valve(s) do not meet the intent of this threshold. Such releases may occur intermittently for a short period of time following a reactor trip as operators process through emergency operating procedures to bring the plant to a stable condition and prepare to initiate a plant cooldown. This includes the initial cooldown to 540°F to isolate the ruptured SG using Atmospheric Dump Valves directed in the SGTR EOP. Steam releases associated with the unexpected operation of a valve (e.g., a stuck-open safety valve) do meet this threshold.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of DC Power: Ability to determine and	Tier			1
interpret the following as they apply to the Loss of DC Power: 125V dc bus voltage, low/critical low, alarm	Group			1
	K/A	C)58 AA2.02	2
	IR			3.6

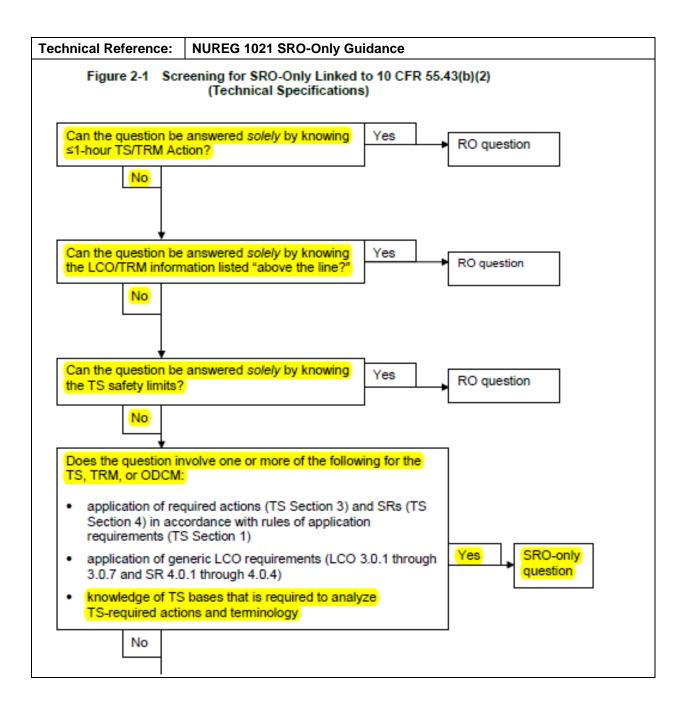
Given the following conditions:

- Unit 3 is operating at 100% power
- All Class 125 VDC components are operable
- Both Swing Chargers are in standby

Subsequently:

- At time = 0100: 'A' Battery Charger, PKA-H11, failed and has no output voltage
- At time = 0115: 'A' Battery, PKA-F11, output voltage dropped below the minimum required voltage for operability
- At time = 0130: 'AC' Swing Charger, PKA-H15, was aligned to PKA-M41
- At time = 0200: 'A' Battery, PKA-F11, output voltage was restored to minimum required voltage for operability

Based on the listed timeline of events, LCO 3.8.4, DC Sources – Operating, was INITIALLY NOT MET at ____(1)____, and was subsequently MET AS SOON AS ____(2)____.


- A. (1) 0100
 - (2) the 'AC' Swing Charger was aligned to PKA-M41
- B. (1) 0100(2) 'A' Battery voltage was restored to minimum required voltage
- C. (1) 0115
 - (2) the 'AC' Swing Charger was aligned to PKA-M41
- D. (1) 0115
 - (2) 'A' Battery voltage was restored to minimum required voltage

Pro	posed Answer:	В		
Exp	lanations:			
Α.		First part is correct. Second part is plausible since power is restored to the bus when the swing charger is aligned, however operability restoration requires battery voltage to be in spec as well.		
В.	Correct.			
C.	First part is plausible since voltage on PKA-M41 is still fine based on being powered by the battery until voltage is too low at 0115, however per LCO 3.8.4, a charger must be aligned to each PK bus to be considered operable. Second part is plausible since power is restored to the bus when the swing charger is aligned, however operability restoration requires battery voltage to be in spec as well.			
D.	battery until voltage	ge is	ince voltage on PKA-M41 is still fine based on being powered by the too low at 0115, however per LCO 3.8.4, a charger must be aligned to each ed operable. Second part is correct.	

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	4
10CFR55.43:	2
Reference Provided:	N
Learning Objective:	Given a set of plant conditions, determine whether or not the LCOs and TLCOs of 3.8 are satisfied in accordance with Tech Spec 3.8.

Technical Reference: Te	chnical Specifications						
terminal voltage results in t	ails, LCO 3.8.4.A is entered (0 the LCO not being met. This i o meet LCO 3.8.4, a charger n	s due to not meeting	ng SR 3.8.4.1.				
LCO 3.8.4 The Train A OPERABLE	and Train B DC electrical power s	ubsystems shall be					
APPLICABILITY: MODES 1, 2	2, 3, and 4.						
ACTIONS	· · · · · ·						
CONDITION	REQUIRED ACTION	COMPLETION TIME					
A. One battery charger on one subsystem inoperable.	A.1 Restore battery terminal voltage to greater than or equal to the minimum established float voltage.	2 hours					
	AND						
	A.2 Verify battery float current ≤ 2 amps.	Once per 12 hours					
	AND						
	charger to OPERABLE status.	72 hours <u>OR</u> In accordance with the Risk Informed Completion Time Program					
B. One DC electrical power subsystem inoperable for reasons other than Condition A.	power subsystem to OPERABLE status.	2 hours <u>OR</u> In accordance with the Risk Informed Completion Time Program	-				
SURVEILLANCE REQUIREME	NTS		-				
	SURVEILLANCE FREQUENCY						
SR 3.8.4.1 Verify battery terminal voltage is greater than or equal to the minimum established float voltage. Surveillance Frequency Control Program							

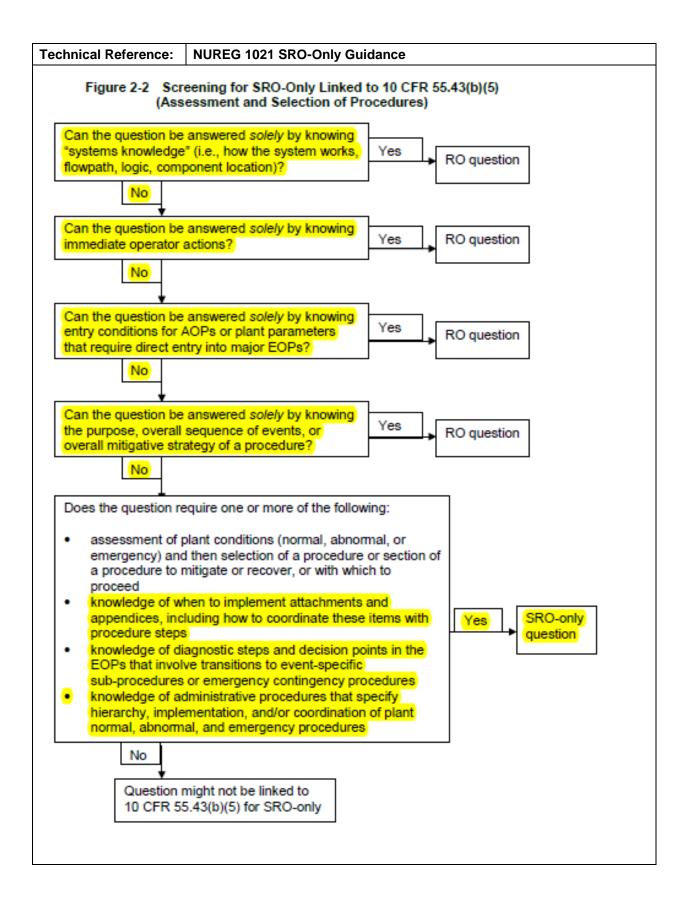
Technical Re	erence: Technical Specifications Bases	
LCO	The DC electrical power subsystems, each subsystem consisting of two batteries, battery charger for each battery (the backup battery charger, one per train, may be used to satisfy this requirement), and the corresponding control equipment and interconnecting cabling supplying power to the associated bus within the subsystem are required to be OPERABLE to ensure the availability of the required power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. Loss of any DC electrical power subsystem does not prevent the minimum safety function from being performed (Ref. 4).	
	Each DC electrical power subsystem (Train A or Train B) is subdivided into channels. Train A consists of Channel A and Channel C. Train B consists of Channel B and Channel D. Channel A includes 125 VDC bus PKA-M41, 125 VDC battery bank PKA-F11, and normal battery charger PKA-H11 or backup battery charger PKA-H15. Channel C includes 125 VDC bus PKC-M43, 125 VDC battery bank PKC-F13, and normal battery charger PKC-H13 or backup battery charger PKA-H15.	
	Channel B includes 125 VDC bus PKB-M42, 125 VDC battery bank PKB-F12, and normal battery charger PKB-H12 or backup battery charger PKB-H16. Channel D includes 125 VDC bus PKD-M44, 125 VDC battery bank PKD-F14, and normal battery charger PKD-H14 or backup battery charger PKB-H16.	
	An OPERABLE DC electrical power subsystem requires all required batteries and respective chargers to be operating and connected to the associated DC bus(es).	
ACTIONS	A.1, A.2, and A.3	
	Condition A represents one subsystem with one battery charger inoperable (e.g., the voltage limit of SR 3.8.4.1 is not maintained). The ACTIONS provide a tiered response that focuses on returning the battery to the fully charged state and restoring a fully qualified charger to OPERABLE status in a reasonable time period. Required Action A.1 requires that the battery terminal voltage be restored to greater than or equal to the minimum established float voltage (2.17 volts per cell (Vpc) times the number of connected cells or 130.2 V for a 60 cell battery at the battery terminals) within 2 hours. This time provides for returning the inoperable charger to OPERABLE status or providing an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage provides good assurance that, within 12 hours, the battery will be restored to its fully charged condition (Required Action A.2) from fully charged condition any discharge that might have occurred due to the charger inoperability.	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Continuous Rod Withdrawal: Ability to determine	Tier			1
and interpret the following as they apply to the Continuous Rod Withdrawal : Proper actions to be taken	Group			2
if automatic safety functions have not taken place	K/A	C	01 AA2.03	3
	IR			4.8

Given the following conditions:

- Unit 2 is operating at 14% power during a power ascension
- Group 5 CEAs are 125" withdrawn
- The OATC is withdrawing Group 5 CEAs to achieve swapover
- The CEA Withdrawal Switch was released when Group 5 CEAs were at 128"
- After releasing the switch, Group 5 CEAs continued to withdraw
- All actions to stop the CEA withdrawal failed
- Prior to attempting to manually trip the Reactor, the OATC observed valid Reactor trip signals on all 4 CPCs
- The OATC depressed all 4 RTCB pushbuttons on B05 and the Reactor did NOT trip

Per 40EP-9EO01, Standard Post Trip Actions...


- (1) the NEXT action the crew should take is to...
- (2) if ALL actions taken to trip the Reactor are unsuccessful, the CRS should direct the crew to borate the RCS using...
- A. (1) dispatch an AO to locally open RTCBs(2) 40AO-9ZZ01, Emergency Boration
- B. (1) dispatch an AO to locally open RTCBs(2) Appendix 103, RCS Makeup / Emergency Boration
- C. (1) open NGN-L03 and NGN-L10 feeder breakers(2) 40AO-9ZZ01, Emergency Boration
- D. (1) open NGN-L03 and NGN-L10 feeder breakers(2) Appendix 103, RCS Makeup / Emergency Boration

Pro	posed Answer:	D				
Ехр	Explanations:					
Α.	First part is plausible since this is a contingency action to trip the Reactor during an ATWS, and it is plausible that it would be preferred to minimize the amount of loads which are de-energized, however local operator of RTCBs is only done if a trip attempt fails at both B05 and B01. Second part is plausible since AOPs may be used in conjunction with EOPs, and an emergency boration would be required, however per SPTAs, Appendix 103 is the procedure to be used.					
В.	First part is plausible since this is a contingency action to trip the Reactor during an ATWS, and it is plausible that it would be preferred to minimize the amount of loads which are de-energized, however local operator of RTCBs is only done if a trip attempt fails at both B05 and B01. Second part is correct.					
C.	First part is correct. Second part is plausible since AOPs may be used in conjunction with EOPs, and an emergency boration would be required, however per SPTAs, Appendix 103 is the procedure to be used.					
D.	automatic or man manual trip action shutting down the think this puts the	ual tr is tak reac m in	econd part is plausible since the alert level EAL for an ATWS states, "An ip fails to shut down the reactor as indicated by reactor power > 5% AND en at the reactor control consoles (B05 or B01) are not successful in tor", and since an auto trip failed and a manual trip at B05 failed they could an alert, however the alert is only declared if action taken outside the d to trip the reactor.			

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	1	
Reference Provided:	N	
Learning Objective:	Det	ermine if an EAL has been met or exceeded

Tecl	nnica	al Reference:	40EP-9EO01 Star	ndard P	Post Trip Actions
sequ the l	Jenc NGN	e is to first ma	nually trip the read	ctor usir	ingency column will be performed. The ing RTSB push buttons (B05). If that fails, open om B01. If that fails, AOs will be dispatched to
2.	acc	ermine that Reacti eptance criteria an wing:			
	a.	Check that react	or power is	a.1	Manually trip the Reactor.
		dropping.		a.2	2 IF the Reactor is NOT tripped, THEN open BOTH of the following supply breakers:
					• NGN-L03B2
					NGN-L10B2
				a.3	IF the Reactor is NOT tripped, THEN <u>direct</u> an operator to open the reactor trip breakers.
				a.4	IF BOTH of the following:
					The Reactor is NOT tripped
					The reactor trip breakers are NOT accessible
					THEN <u>direct</u> an operator to locally open BOTH of the following CEDM MG Set breakers:
					• NGN-L03C4
					• NGN-L10C4
	PAL	O VERDE NUCLE	AR GENERATING ST	ATION	40EP-9EO01 Revision 23
		STANDARD PO	ST TRIP ACTION	s	Page 5 of 16
		INSTRU	CTIONS		CONTINGENCY ACTIONS
	2.	(continued)			
		c. <u>Check</u> that / are inserted	ALL full strength CEAs 1.)	 c.1 Borate the RCS until adequate SDM as required by Tech Specs is established using ANY of the following: Appendix 103, <u>RCS</u> Makeup/Emergency

Тес	hnical Reference:	40DP-9AP06 Standard Post Trip Actions Technical Guideline				
В.	Contingency Action	s				
	If the reactivity control safety function is not met because an automatic RPS actuation was not initiated when plant conditions required a reactor trip, guidance is provided to ensure the Reactor and Main Turbine are tripped. If the reactivity control safety function is not met because any full strength CEA is stuck out, guidance is provided to ensure the Reactor is shutdown.					
	 Using all four manual trip pushbuttons will ensure that power is removed from the undervoltage and shunt trip coils associated with the reactor trip switchgear breakers. 					
		Load Centers L03 and L10 remotely from the control room ernate method to remove power from the CEDMs.				
	breakers locally	ay also be dispatched to open the reactor trip circuit /. This would be a last choice because the reactor trip located outside the control room.				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Inadequate Core Cooling: Ability to recognize	Tier			1
system parameters that are entry-level conditions for Technical Specifications	Group			2
reclinical Specifications	K/A	0	74 G 2.2.4	2
	IR			4.6

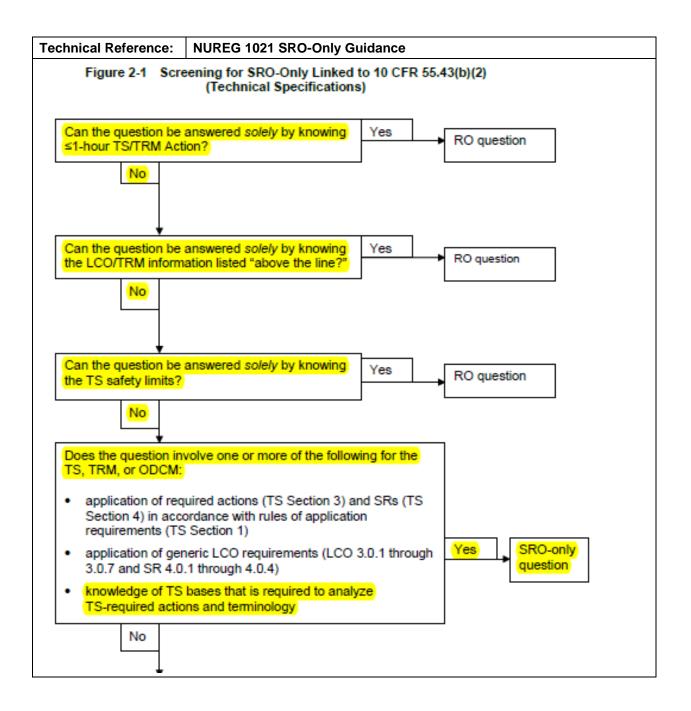
Given the following conditions:

- Unit 3 is in MODE 4, cooling down for a refueling outage
- Train 'A' LPSI Pump is being used for Shutdown Cooling
- Train 'B' LPSI Pump is OOS for emergent corrective maintenance
- All RCPs are stopped but capable of being started

Subsequently:

- The 'A' LPSI Pump tripped on 86 lockout
- Work Control reports that neither LPSI Pump will be available for at least 4 hours

In order to restore compliance with LCO 3.4.6, RCS Loops – MODE 4, the crew must ensure BOTH SGs have at least a MINIMUM level of 25% ___(1)___ and start a MINIMUM of ___(2)___ RCP(s).


- A. (1) narrow range
 - (2) one
- B. (1) narrow range
 - (2) two
- C. (1) wide range
 - (2) one
- D. (1) wide range
 - (2) two

Proposed Answer: C		С			
ther not	Explanations: Tech Spec evaluation during an accident (ICC) is not operationally relevant, therefore we chose to match the K/A by asking a question in which an LCO for RCS Loops is not met (another version of inadequate core cooling – in this case, inadequate RHR to meet the LCO)				
Α.	First part is plausible since the top of the SG U-tubes are ~ 23.5%, therefore the statement in the SR which says, "verify secondary side water level in required SG(s) is ≥ 25%" could be interpreted as 25% NR. 25% referring to WR level is information only found in the TS bases. Second part is correct.				
В.	First part is plausible since the top of the SG U-tubes are ~ 23.5%, therefore the statement in the SR which says, "verify secondary side water level in required SG(s) is ≥ 25%" could be interpreted as 25% NR. 25% referring to WR level is information only found in the TS bases. Second part is plausible since one loop must be in operation and each loop contains two RCPs, however only one RCP must be running for the loop to be considered "operating".				
C.	Correct.				
D.			econd part is plausible since one loop must be in operation and each loop wever only one RCP must be running for the loop to be considered		

Question Source:		New		
	x Bank – modified from 2016 Q78, but not to the point where be considered a "modified" question			
		Modified		
	X	Previous NRC Exam	2016 NRC Q78 (Changed answer order on 2021 exam for SRO answer balancing)	

Cognitive Level:	X	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	2	
Reference Provided:	Ν	
Learning Objective:		ntify the basis of Technical Specification LCOs and TLCOs for section in accordance with Tech Spec 3.4 basis.

Technical Reference:	Original Question – 2016 NRC Q78					
Proposed Question: SRO 78						
Given the following conditions:						
 Unit 3 is in MODE 4, cooling down fr Train 'A' and Train 'B' LPSI Pumps a All RCPs are secured. 						
Subsequently:						
The 'B' LPSI Pump indicates no flow	and lower than normal amps.					
	In order for the unit to be in compliance with LCO 3.4.6, RCS Loops – MODE 4, at least one RCP must be OPERABLE(1) and the associated SG must be at a MINIMUM level of 25%(2)					
A. 1. ONLY 2. wide range						
B. 1. ONLY 2. narrow range						
C. 1. AND running 2. wide range						
D. 1. AND running 2. narrow range						

Technical Refer	ence:	Technical Specifications				
3.4.6 RCS Loops	- Mode	Ξ4				
LCO 3.4.6	shutdo	ops or trains consisting of any combination of RCS loops and wn cooling (SDC) trains shall be OPERABLE and at least op or train shall be in operation.				
		NOTES				
	1. /	All reactor coolant pumps (RCPs) and S de-energized for ≤ 1 hour per 8 hour per	DC pumps may be iod, provided:			
	é	 No operations are permitted that wo of the RCS boron concentration; and 				
	t	 Core outlet temperature is maintaine saturation temperature. 	ed at least 10°F below			
	i i	to RCP shall be started with any RCS cold leg temperature ess than or equal to the LTOP enable temperature specified in the PTLR unless the secondary side water temperature in each Steam Generator (SG) is < 100°F above each of the RCS cold leg temperatures.				
	t	No more than 2 RCPs may be in operation with RCS cold leg temperature ≤ 200°F. No more than 3 RCPs may be in operation with RCS cold leg temperature > 200°F but ≤ 500°F.				
APPLICABILITY:	MODE	E 4.				
SURVEILLANCE	REQUI	REMENTS		_		
	S	URVEILLANCE	FREQUENCY	-		
SR 3.4.6.1	Verify o operati	one RCS loop or SDC train is in on.	In accordance with the Surveillance Frequency Control Program	_		
SR 3.4.6.2		secondary side water level in required s ≥ 25%.	In accordance with the Surveillance Frequency Control Program	-		

Technical Reference	e: Technical Specifications Bases (LCO 3.4.6)
LCO	The purpose of this LCO is to require that at least two loops or trains, RCS or SDC, be OPERABLE in MODE 4 and one of these loops or trains be in operation. The LCO allows the two loops that are required to be OPERABLE to consist of any combination of RCS and SDC System loops. Any one loop or train in operation provides enough flow to remove the decay heat from the core with forced circulation. An additional loop or train is required to be OPERABLE to provide redundancy for heat removal.
LCO (continued)	Note 2 requires secondary side water temperature in each SG is < 100 _i F above each of the RCS cold leg temperatures before an RCP may be started with any RCS cold leg temperature less than or equal to the LTOP enable temperature specified in the PTLR.
	Satisfying the above condition will preclude a large pressure surge in the RCS when the RCP is started.
	Note 3 restricts RCP operation to no more than 2 RCPs with RCS cold leg temperature $\leq 200^{\circ}$ F, and no more than 3 RCPs with RCS cold leg temperature $>200^{\circ}$ F but $\leq 500^{\circ}$ F. Satisfying these conditions will maintain the analysis assumptions of the flow induced pressure correction factors due to RCP operation (Ref. 1)
	An OPERABLE RCS loop consists of at least one OPERABLE RCP and an SG that is OPERABLE and has the minimum water level specified in SR 3.4.6.2.
SURVEILLANCE REQUIREMENTS	<u>SR 3.4.6.2</u>
(continued)	This SR requires verification of secondary side water level in the required $SG(s) \ge 25\%$ wide range. An adequate SG water level is required in order to have a heat sink for removal of the core decay heat from the reactor coolant. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

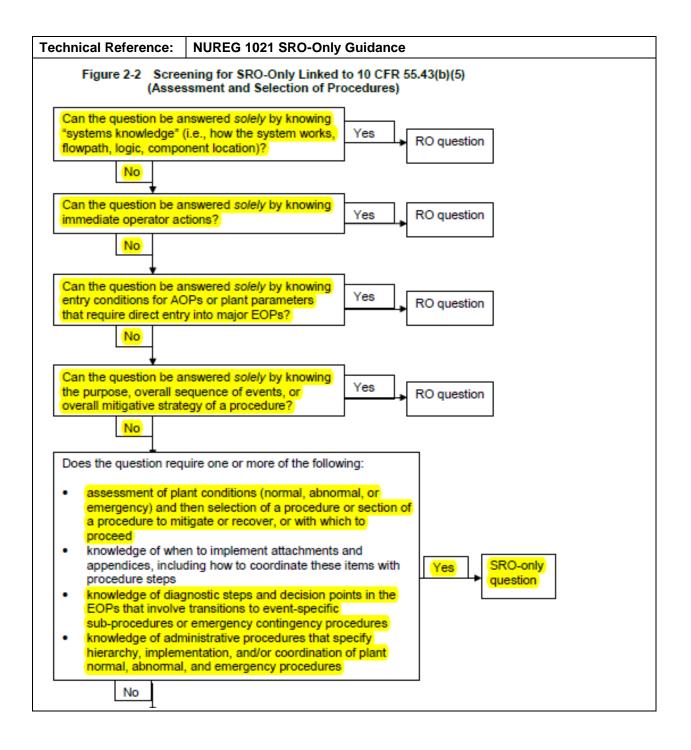
Technical Reference:	Technical Specifications Bases (LCO 3.4.4)					
LCO 3.4.4 does require both RCPs in each loop to be operable. This is not the case for Mode 4, which only requires one RCP in the loop.						
LCO	The purpose of this LCO is to require adequate forced flow for core heat removal. Flow is represented by having both RCS loops with both RCPs in each loop in operation for removal of heat by the two SGs. To meet safety analysis acceptance criteria for DNB, four pumps are required at rated power.					
	Each OPERABLE loop consists of two RCPs providing forced flow for heat transport to an SG that is OPERABLE. SG, and hence RCS loop, OPERABILITY with regard to SG water level is ensured by the Reactor Protective System (RPS) in MODES 1 and 2.					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: RCS Overcooling-Pressurized Thermal Shock:	Tier			1
Ability to determine and interpret the following as they apply to the (RCS Overcooling): Adherence to	Group			2
appropriate procedures and operation within the	K/A	CI	E A11 AA2	.2
limitations in the facility's license and amendments	IR			3.4

Given the following conditions:

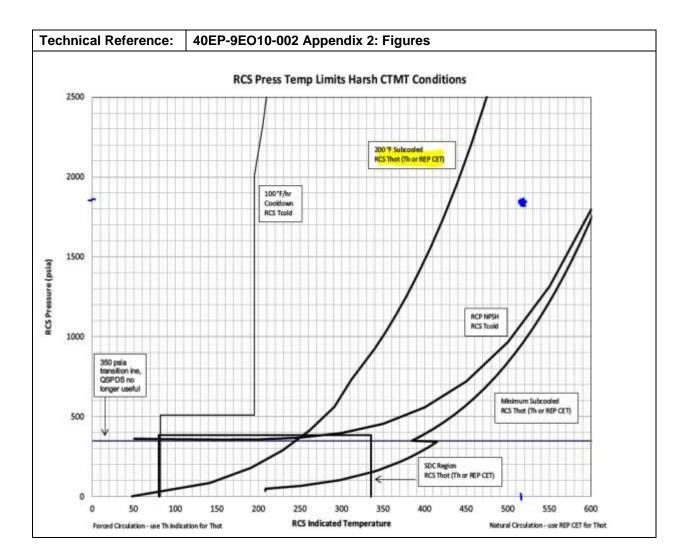
- Unit 1 was tripped due to an ESD inside Containment
- Current plant conditions are as follows:
 - SIAS/CIAS/MSIS/CSAS have all actuated
 - All RCPs have been stopped
 - RCS Tcold is 420°F
 - REPCET is 515°F
 - RCS Pressure is 1850 psia
 - Indicated HPSI flow is 0 gpm
 - Containment temperature is 210°F
 - Containment pressure is 15 psig
 - Containment Spray flow on Train 'A' is 4800 gpm
 - Containment Spray flow on Train 'B' is 0 gpm
 - Hydrogen Analyzers have NOT yet been placed in service

Per 40EP-9EO05, ESD, the RCS Pressure Control Safety Function is ____(1)___ and the Containment Temperature and Pressure Control Safety Function is ____(2)___.


- A. (1) MET
 - (2) MET
- B. (1) MET
 - (2) NOT met
- C. (1) NOT met
 - (2) MET
- D. (1) NOT met(2) NOT met

Proposed Answer: A		Α		
Exp	Explanations:			
Α.	Correct.			
В.	First part is correct. Second part is plausible since Condition 1 is not met due to Containment pressure being > 8.5 psig, and they may believe that since H2 Analyzers are not in service that the SF is not met since hydrogen cannot be verified – which would make both Condition 1 and 2 not met, however hydrogen is not required to be considered until the analyzers are in service, and even though one train of CS is 0 gpm, only one train is required to be above the minimum flow of 4350 gpm.			
C.	(if the applicant u	ses T 10 SI	ince the P/T limits are exceeded based on RCS subcooling being > 200°F cold to determine subcooling) and SI flow being 0 gpm, however at 1850 flow is required, making the RCS pressure control safety function met.	
D.	(if the applicant us psia in the RCS, r Second part is pla psig, and they ma hydrogen cannot hydrogen is not re	ses T no SI ausibl iy bel be ve equire	ince the P/T limits are exceeded based on RCS subcooling being > 200°F cold to determine subcooling) and SI flow being 0 gpm, however at 1850 flow is required, making the RCS pressure control safety function met. e since Condition 1 is not met due to Containment pressure being > 8.5 ieve that since H2 Analyzers are not in service that the SF is not met since erified – which would make both Condition 1 and 2 not met, however ed to be considered until the analyzers are in service, and even though one hly one train is required to be above the minimum flow of 4350 gpm.	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam


Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3						
10CFR55.43:	5						
Reference Provided:	Ν						
Learning Objective:		Given conditions of an ESD, analyze RCS Pressure Control to determine if the SFSC acceptance criteria are satisfied per 40EP-9EO05.					

Те	chn	ical Reference:	40EP-9EO05 Excess Ste	eam Demand	
4.	RCS	S Pressure Control			
			<u>NOTE</u>		
	Co	eeting the provisions of ontrol Safety Function.	sfy the RCS Pressure		
0.000		CEPTANCE CRITERIA		CRITERIA SATISFIED	
	Con	ndition 1			
	a.		is being maintained within the Appendix 2, <u>Figures</u> .		
	Con	ndition 2			
	a.	Safety Injection flow in Appendix 2, Figures.	s adequate. <u>REFER TO</u>		
8.	Con	ntainment Temperature	and Pressure Control		
			<u>NOTE</u>		
	Те	mperature and Pressur	Condition 1 or Condition 2 will satis e Control Safety Function.		
		drogen criterion may be	e omitted until hydrogen monitor is		
	AC	CEPTANCE CRITERIA		CRITERIA SATISFIED	
	Cor	ndition 1			
	a.	Containment tempera	ture is less than 235°F.		
	b.	Containment pressure	e is less than 8.5 psig.		
	c.	Hydrogen concentrati	on is less than 1.1%.		
	Cor	ndition 2			
	a.	At least one Containn greater than 4350 gpr	nent Spray header flow is n.		
	b.	Containment pressure	e is less than 55 psig.		
	C.	Hydrogen concentrati	on is less than 4.9%.		

Tech	Technical Reference:		40DP-9AP10 Excess Steam Demand Technical Guideline					
4.6.4	SF	SC #4 - RCS Pres	sure Control					
	Α.	The intent of the F subcooling exists.	essure Control Safety Function is to ensure that adequate					
		Condition 1						
		the post-accid maintains sub	e control is satisfactory if the RCS can be maintained within lent P/T limits. Maintaining the RCS within the limits iccooling necessary for single phase natural circulation flow s the possibility of PTS.					
		Condition 2						
		limits, then pr Once SI flow	pressure cannot be maintained within the post-accident P/T essure control is satisfied by ensuring adequate SI flow. has been throttled or stopped or a RAS has occurred, the SI es are no longer applicable.					
4.6.8	SF	SC #8 - Containme	ent Temperature and Pressure Control					
	Α.	Function is to che	Containment Temperature and Pressure Control Safety ck that the containment environment is maintained within re and pressure limits.					
	The containment is also monitored for hydrogen once the hydrogen monitors are in service. Hydrogen build up to levels greater than the minimum level of detection is not expected for accidents that are within design basis. However, in the event of a beyond design basis accident with fuel damage, there may be a buildup of hydrogen in containment. Hydrogen monitoring is initiated in the EOPs to support implementation of Severe Accident Management Guideline (SAMG) strategies in the event of a beyond design basis accident, should they ultimately be needed to respond to the event.							
		While it is possible accident, it is not of Condition 1 and the with industry emeri is greater than 1.1 However, if hydrog exited and 40EP-5	1.1% for the hydrogen criteria, while Condition 2 uses 4.9%, a hydrogen may be present in the containment following an axpected. Specifying a lower (less restrictive) limit in he higher (more restrictive) limit in Condition 2 is consistent rgency procedure development past practices. If hydrogen % but below 4.9%, it is acceptable to stay in 40EP-9E005. gen concentration exceeds 4.9%, 40EP-9E005 should be 9E009, Functional Recovery, implemented. In addition, the tified to provide further guidance.					
	Co	ndition 2						
	Containment temperature and pressure may exceed the above limits during inside containment ESD events. If this happens, containment spray should be operating to minimize the temperature and pressure inside containment. At least one containment spray header delivering greater than the minimum acceptable flow will remove 100% of the design basis heat load.							
		The intent of this a burn to avoid exce in the safety analy located in contain possible following are outside the re- service ensures the entry into the Sev provided to inform criteria may be on	tration is less than the lower flammability concentration. application is to prevent a containment-wide hydrogen beding the containment pressure/temperature assumed rsis and minimize damage to safety-related equipment ment. Excessive hydrogen concentrations may be a LOCA if there is fuel damage, but mitigating actions alm of the EOPs. Placing the hydrogen monitors in hey will be available to the TSC for use in the event of ere Accident Management Guidelines. A note is the operator that hydrogen concentration acceptance hitted until the hydrogen monitor is in service. This is ime to place the monitors in service and obtain reliable					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Excess RCS Leakage: Knowledge of the bases in	Tier			1
Technical Specifications for limiting conditions for operations and safety limits	Group			2
	K/A	CE	A16 G 2.2	.25
	IR			4.2

Given the following conditions:

- Unit 1 is in MODE 1
- At time = 0200 on 5/5/2021: The CRS entered 40AO-9ZZ02, Excessive RCS Leakrate, due to indications of an RCS leak inside Containment
 - Containment sump monitors indicate a rising trend
 - The water inventory balance indicates an RCS leak rate of 22 gpm
- At time = 0400 on 5/5/2021: A Containment entry was made and the source of the leak was determined to be from a failed RCS pipe weld

Assuming the leak cannot be isolated, in order to comply with LCO 3.4.14, RCS Operational LEAKAGE, the LATEST time Unit 1 can enter MODE 5 is _____ on 5/6/2021.


- A. 1400
- B. 1600
- C. 1800
- D. 2000

Pro	posed Answer:	В						
Exp	Explanations:							
Α.	Plausible if thought that since the leak started at 0200 on 5/5 that the action for MODE 5 in 36 hours would be effective at the time the leak started, however the MODE 5 in 36 hours doesn't start until the leakage is confirmed to be pressure boundary leakage, which didn't happen until 0400.							
В.	Correct.							
C.	Plausible if though that the full 4 hours allotted in 3.4.14 condition A applies prior to entering condition B, however condition B is applicable as soon as the leakage is confirmed to be pressure boundary leakage.							
D.	Plausible if thought that since the leak started at 0200, and it ended up being pressure boundary leakage that the required actions of condition B applied as of 0200, and if thought that the required action was to be in MODE 3 in 6 hours and then had an additional 36 hours to be in MODE 5.							

Question Source:		New
	Х	Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Χ	Comprehension or Analysis	

Level of Difficultly:	4
10CFR55.43:	2
Reference Provided:	Ν
Learning Objective:	Given plant conditions and Technical Specification action statements that are greater than one hour, apply the action statements that are greater than one hour for LCOs and TLCOs of 3.4 in accordance with Tech Spec 3.4.

	ce: T	echnic	al Sp	ecific	ations			-	
3.4 REA	ACTOR C	COOLANT SYSTEM (RCS)							
3.4.14 F	RCS Ope	perational LEAKAGE							
LCO 3.4	1 14	RCS	operat	ational LEAKAGE shall be limited to:					
200 0.4					boundary LEAKAGE;	a to.			
					entified LEAKAGE;				
			2.		ntified LEAKAGE; and				
					per day primary to seco	ndary LEAKA	GE through		
		ч.	any o	ne stea	am generator (SG).		oc unough	I	
	ABILITY:	MODE	ES 1	23.94	nd 4				
AFFEIG	ODENT.	NICOL	201,1	2, 0, a	nu 1 .				
ACTION	S								
	CONDIT	ION		F	REQUIRED ACTION	COMPLE	TION TIME		
LE lin tha bo pri	CS opera EAKAGE hits for re an pressu oundary L imary to s EAKAGE.	not with asons of Ire EAKAG seconda	in ther E or	A.1	Reduce LEAKAGE to within limits.	0 4 hours			

Technical Reference:	Tech Spec Bases							
The leakage, although pressure boundary, cannot be classified as pressure boundary until visually observed, so the required actions for pressure boundary leakage do not go into effect until 0400, when the leakage is observed to be from a pipe weld.								
	RCS Operational LEAKAGE B 3.4.14							
BASES								
ACTIONS	B.1 and B.2 (continued)							
	4 hours, the reactor must be brought to lower pressure conditions to reduce the severity of the LEAKAGE and its potential consequences. The reactor must be brought to MODE 3 within 6 hours and to MODE 5 within 36 hours. This action reduces the LEAKAGE and also reduces the factors that tend to degrade the pressure boundary.							
	The allowed Completion Times are reasonable, based on operating experience, to reach the required conditions from full power conditions in an orderly manner and without challenging plant systems. In MODE 5, the pressure stresses acting on the RCPB are much lower, and further deterioration is much less likely.							
SURVEILLANCE REQUIREMENTS	<u>SR 3.4.14.1</u>							
	Verifying RCS LEAKAGE to be within the LCO limits ensures the integrity of the RCPB is maintained. Pressure boundary LEAKAGE would at first appear as unidentified LEAKAGE and can only be positively identified by inspection. Unidentified LEAKAGE and identified LEAKAGE are determined by performance of an RCS water inventory balance.							

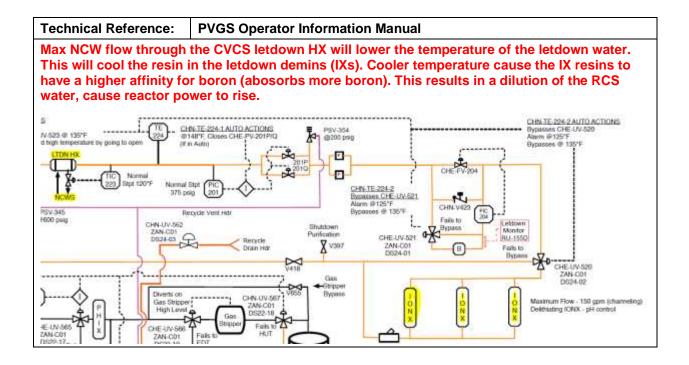
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Component Cooling Water: Ability to (a) predict	Tier			2
the impacts of the following malfunctions or operations on the CCWS, and (b) based on those predictions, use	Group		1	
procedures to correct, control, or mitigate the	K/A		008 A2.03	
consequences of those malfunctions or operations: High/low CCW temperature	IR			3.2

Given the following conditions:

• Unit 2 is operating at 100% power, MOC

Subsequently:

- A failure in CHN-TIC-223, Letdown HX Outlet Temp Control, has resulted in MAXIMUM NC flow through the HX
- (1) With NO operator action, this failure will cause Reactor power to ______.
- (2) Per the PVNGS Event Reporting Manual, a 24-hour notification to the NRC is required AS SOON AS power _____.
- A. (1) lower(2) drops below 95%
- B. (1) lower(2) drops below 98%
- C. (1) rise (2) exceeds 102%
- D. (1) rise
 - (2) exceeds 105%


Pro	posed Answer:	С			
Exp	lanations:				
Α.	absorption in the power to rise. Se	IX, ho cond e PV	ince a change in letdown temperature will change the affinity for boron owever lowering letdown temp will result in a dilution, causing Reactor part is plausible since a 5% unplanned power change does trigger a Event Reporting Manual, however in this case, the event is first reportable be exceeds 2%.		
В.	• First part is plausible since a change in letdown temperature will change the affinity for boron absorption in the IX, however lowering letdown temp will result in a dilution, causing Reactor power to rise. Second part is plausible since a 2% change is what is reportable in this case, however it is a 2% rise in power, not lowering.				
C.	Correct.				
D.		e PV	econd part is plausible since a 5% unplanned power change does trigger a Event Reporting Manual, however in this case the event is first reportable		

Question Source:	x	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level: Memory or Fundamental Knowledge		Memory or Fundamental Knowledge
	x	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	1	
Reference Provided:	Ν	
Learning Objective:	exc	an SRO, describe the reporting requirements associated with seeding licensed thermal power output, per the Event Reporting nual.

Technical Reference:	NUREG 1021 SRO-Only Guidance					
II. Examples of Additional Knowledge and Abilities as They Pertain to an SRO License and the 10 CFR 55.43(b) Topics [ES-401, Section D.1.c]						
A. Conditions and	Limitations in the Facility License [10 CFR 55.43(b)(1)]					
Examples of SF	RO exam items for this topic include the following:					
 reporting requirements when the maximum licensed thermal power output is exceeded 						
	tration of fire protection program requirements, such as compensatory associated with inoperable sprinkler systems and fire doors					
controls	actions necessary when a facility does not meet the administrative listed in Technical Specifications (TS), Section 5 or 6, depending on the e.g., shift staffing requirements)					
Nationa	Pollutant Discharge Elimination System requirements, if applicable					
process	es for TS and final safety analysis report changes					

The boron affinity of a resin bed is affected by the temperature of the coolant passed through the bed. At lower temperatures, the borate ion bonding to the exchange site contains three boron atoms. At higher temperatures, the borate ion contains only one boron atom. The result of this characteristic is that at lower temperatures the resins are more efficient at removing boron from the coolant than at higher temperatures. A saturated resin bed will actually release boron as temperature is increased.

If the coolant going through the ion exchanger is at a low temperature, the affinity of the ion exchange resin bead exchange site is high. A borate ion $(BO_3)^{-3}$ in a low temperature solution passing through the ion exchanger will be adsorbed (exchanged) and removed from the coolant. This reduces the number of boron atoms in coolant.

If the coolant going through the ion exchanger is at a high temperature, the affinity of the ion exchange resin bead exchange site is low. If an ion higher on the affinity list than borate $(BO_3)^{-3}$ passes through the ion exchanger, that ion will be adsorbed by the resin exchange site and a borate ion $(BO_3)^{-3}$ will be released and added to the coolant. This increases the number of boron atoms in coolant.

Technical Reference: 400P-9CH01 CVCS Normal Operations						
2 Adjusting CHN-TIC-223, Letdown Heat Exchanger Outlet						
NOTE						
 Lowering the letdown temperature raises the Nuclear Cooling Water flow rate on the shell side of the CHN-E02, Letdown Heat Exchanger (LDHX). 						
Normal de	esign setpoint for CHN-TIC-223 is 120°F.					
 The CHN-TIC-223 setpoint should be maintained greater than or equal to 112°F whenever conditions allow. 						
Exchange	the letdown temperature causes the resin in the CVCS lon ers to have a slightly more apparent capacity for boron, which elayed effect similar in magnitude to a small dilution.					
	Lowering flow rate of (LDHX). Normal do The CHN to 112°F v Lowering Exchange					

Technical Reference: Event Reporting Manual

Operation >102% is reportable due to being an unanalyzed condition (8 hour report)

<u>Maximum Power Level</u>

The average power level over any 8-hour shift should not exceed the "full steady-state licensed power level" (and similarly worded terms). The exact 8-hour periods defined as "shifts" are up to the plant, but should not be varied from day to day (the easiest definition is a normal shift manned by a particular "crew"). It is permissible to briefly exceed the "full, steady-state licensed power level" by as much as 2% for as long as 15 minutes. In no case should 102% power be exceeded, but lesser power "excursions" for longer periods should be allowed, with the above as guidance. For example, 1% excess for 30 minutes and 1/2% for 1 hour should be allowed. There are no limits on the number of times these "excursions" may occur, or the time interval that must separate such "excursions." The above requirement regarding the 8-hour average power will prevent abuse of this allowance. Operation outside these limits would constitute a reportable violation. [Ref: NRC Inspection Procedure (IP) 61706, *Core Thermal Power Evaluation*, paragraph 3.01(d)]

Maximum Power Level

Some stations do not have a license power limit stated explicitly as a license condition. Although operation above that power level not specifically identified as a reportable event in their license, exceeding the maximum authorized power level is a significant violation of the operating license which should be reported to the NRC within 24 hours followed by an LER within 30 or 60 days.

T.S. Violations

T.S. violations should be reported in accordance with 10 CFR 50.72 and 10 CFR 50.73.

Palo Verde Interpretations

The Palo Verde Facility Operating Licenses were amended (Amendment 158) in March 2006 to remove the requirement in Section 2.F (2.G in Unit 3) to report any violations of the requirements contained in Sections 2.C of the License.

Some violations may still be reportable under some other reporting requirement. For example, operation above 102% of rated thermal power is an unanalyzed condition. On the other hand, operation between 100% and 102%, while still a violation of the license, is not reportable. This, as any other violation of a requirement must be identified and entered into the corrective action program.

373	Rated thermal power level exceeded (>102% power, Violation of a License Condition)	N/A	N/A	XREF: NRRH-070 for unanalyzed condition. Link to detailed discussion
ID	EVENT DESCRIPTION	ENS	WRITTEN	SPECIFIC NOTIFICATION
070	The occurrence of any event or condition that results in the nuclear power plant being in an unanalyzed condition that significantly degrades plant safety.	08 hr.		Follow up call to NRC may be required: NRRH-002 NRRH-005 NRRH-006 NRRH-007 NRRH-008 Source Docs: § 50.72(b)(3)(ii)(B) NUREG-1022, Section 3.2.4 Note: This is a very subjective reporting requirement. Significant additional information is in this link to detailed discussion

Technical Reference:	Event Reporting Manual
----------------------	------------------------

A 5% power reduction also requires internal and external notifications.

INTERNAL OPERATIONS NOTIFICATION REQUIREMENTS

Palo Verde Interpretations

The Unit Shift Manager (USM) is responsible for initiating appropriate notification to applicable Palo Verde Management in order that the following Operations Notification Requirements are met. These same levels of criteria, although no other regulatory reporting requirement may be met, normally warrant a "courtesy" notification to the NRC Resident Inspector. Following notification initiated by the USM or the Operations Department Leaders, the Operations Director, or his designee, is responsible to ensure that plant status and events are communicated to the Sr. Vice President, Nuclear, or designee, in a timely and accurate manner as specified below:

The following events are to be communicated to the Sr. Vice President, Nuclear IMMEDIATELY;

- Unplanned load reduction greater than or equal to 5%
- Unplanned turbine or reactor trip

-		-	
866	UNPLANNED Power Reduction greater than 5 percent for an		*Notify Communications &
	actual or anticipated period greater than 10 hours.		Participant Services

Technical Reference:	ODP-33 Operations Nuclear Regulatory Commission Communications
NRC resident is also re	quired to be notified for a > 5% power change.
II. OVERVIEW	
	er (SM) or Unit Operations Manager (UOM) is responsible to initiate NRC notification , the NRC Senior Resident Inspector or designee as specified below:
A. Unplanned load	changes or plant transients
	issues resulting in unplanned load changes greater than 10% or unplanned Power reater than 5 percent for an actual or anticipated period greater than 10 hours.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment Cooling: Ability to recognize	Tier			2
abnormal indications for system operating parameters that are entry-level conditions for emergency and abnormal operating procedures	Group			1
	K/A	(022 G 2.4.4	ŀ
	IR			4.7

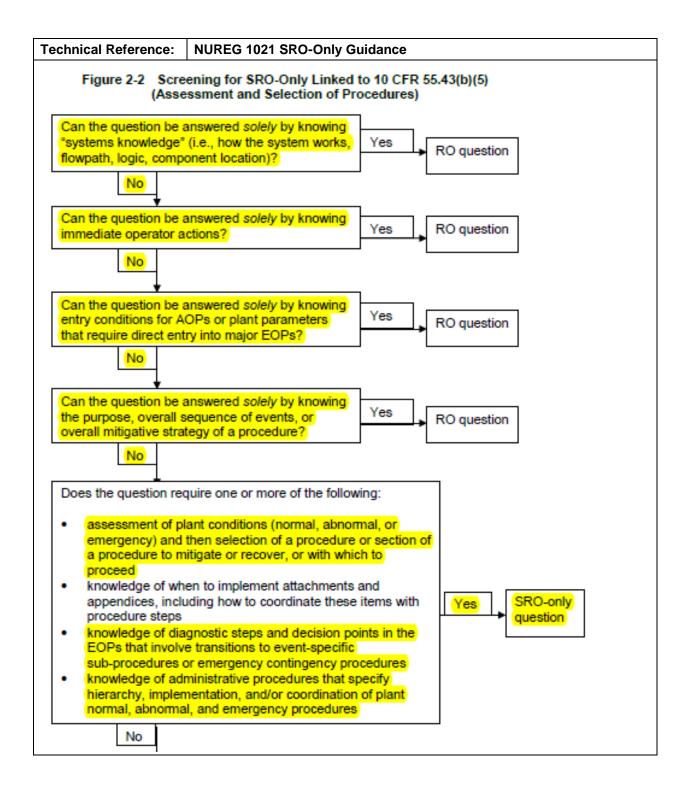
Given the following conditions:

- Unit 3 was tripped from 100% power due to lowering Pressurizer level and pressure
- SIAS and CIAS were manually actuated following the Reactor trip

Assuming the CRS has transitioned to an optimal EOP, in which of the following situations, INDIVIDUALLY, should the CRS direct the crew to perform Appendix 17, Restoration of Containment Cooling?

	Containment Pressure	Containment Temperature	Containment Level	
Situation 1	22 psig - lowering	210°F - lowering	15 feet - rising	
Situation 2	5 psig - rising	150°F - rising	8 feet - rising	
Situation 3	0.8 psig - rising	120°F - rising	Not on scale	

A. Situation 1 ONLY


- B. Situation 1 and 2 ONLY
- C. Situation 2 and 3 ONLY
- D. Situation 3 ONLY

Pro	Proposed Answer: D				
Exp	Explanations:				
Α.	Plausible since situation 1 is the only one in which containment pressure is > the CSAS setpoint and temperature is above the threshold for harsh containment conditions, however while temperature and pressure are used for determining the status of the containment integrity safety function, only containment level is used when determining if containment cooling should be restored.				
В.	Plausible since situations 1 and 2 are both above the containment pressure SIAS and CIAS setpoints, and SIAS does stop normal containment cooling due to the SIAS load shed scheme, however only containment level is used when determining if containment cooling should be restored.				
C.	Plausible that situations 2 and 3 would warrant the restoration of containment cooling since they both have elevated containment temperature and pressure following a SIAS but do not have a CSAS actuation, however condition 2 would not warrant the restoration of containment cooling since level is indicated inside containment.				
D.			set of conditions are the least severe, following a SIAS actuation, the sole g containment cooling is whether or not containment level is on scale or		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

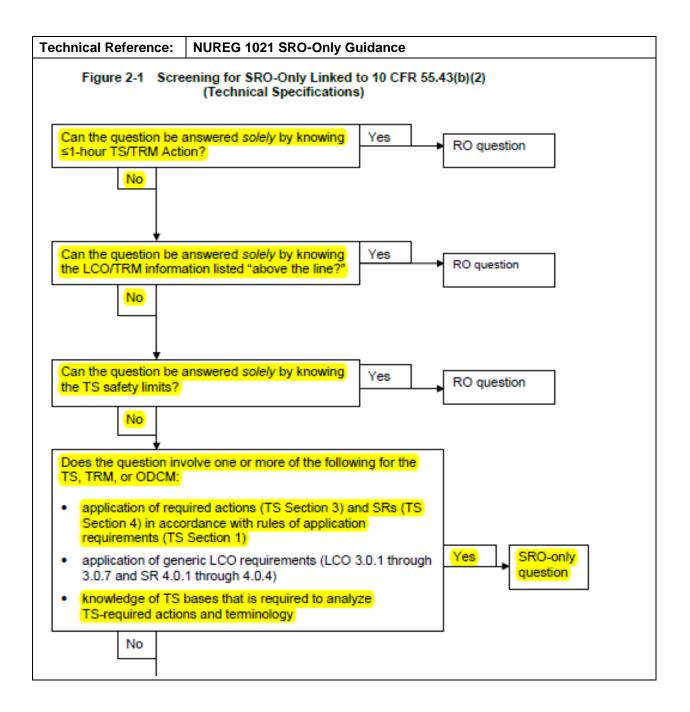
Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	Ν	
Learning Objective:		en conditions of a LOCA, describe why it is beneficial to restore mal containment cooling following a SIAS per 40EP-9EO03.

Technical Reference:			40EP-9EO03 Loss of Coolant Accident			
Norma	cont	ainment co	oling is restored if there is no containment sump level indicated.			
 * 20. IF SIAS has actuated, THEN perform the following: 						
	a.	Panels. <u>R</u>	the SIAS Load Shed <u>EFER TO</u> Appendix 21, IS Load Shed Panels.			
	b.	indicated, THEN <u>PE</u>	ment level is NOT <u>RFORM</u> Appendix 17, on of Containment			

Technical Reference:	40DP-9AP08 Loss of Coolant Accident Technical Guideline
4.5.20 Step 20 - If SIAS	, Restore Systems
the non-safet	g SIAS load shed panels is required to ensure the operability of y auxiliary feed pump, essential lighting, Containment cooling eded loads. Essential lighting and other needed loads can be ed in a controlled manner after a SIAS.
be establishe atmosphere. accumulation from the conta If containmen restored. This	It level is not indicated, then normal containment cooling should d in order to maximize recirculation of the containment This recirculation will minimize the possibility of local is of hydrogen developing. This will also help in removing heat ainment in order to stop containment spray as soon as possible. It level is indicated, normal containment cooling shall not be is is due to the potential for submergence and eventual failure of ntainment isolation valve motor operators for NC and WC.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Emergency Diesel Generator: Ability to (a) predict	Tier			2
the impacts of the following malfunctions or operations on the ED/G system; and (b) based on those predictions,	Group			1
use procedures to correct, control, or mitigate the	K/A		064 A2.02	
consequences of those malfunctions or operations: Load, VARS, pressure on air compressor, speed droop, frequency, voltage, fuel oil level, temperatures	IR			2.9

Given the following conditions:


- Unit 3 is operating at 100% power
- At time = 0800:
 - 'A' EDG Starting Air Receiver A, DGA-X01A, was tagged out for corrective maintenance
- At time = 0900:
 - An AO reports a small air leak in 'A' EDG Starting Air Receiver B, DGA-X01B
 - Pressure in Air Receiver B is lowering faster than the compressor can recharge the receiver
- (1) Assuming Air Receiver B pressure continues to lower, the 'A' EDG will be declared inoperable AS SOON AS receiver pressure lowers to less than...
- (2) 40ST-9ZZ37, Inoperable Power Sources Action Statement, must FIRST be performed within a MAXIMUM of _____ minutes from the time the 'A' EDG is declared inoperable.
- A. (1) 185 psig
 - (2) 60
- B. (1) 185 psig(2) 75
- C. (1) 230 psig (2) 60
- D. (1) 230 psig
 - (2) 75

Pro	posed Answer:	Α	
Exp	lanations:		
Α.	Correct.		
В.	First part is correct. Second part is plausible if thought that 1.25 SR frequency extension is able to be applied, however the first performance of a "once within xxx and once every xxx…" does not allow for the 1.25 time extension.		
C.	First part is plausible if thought that the EDG is inoperable when the second Air Receiver drops below 230 psia, however the action for the second receiver < 230 psia is to restore one receiver within 48 hours, and the EDG is inoperable when the second receiver is < 185 psia. Second part is correct.		
D.	below 230 psia, h within 48 hours, a is correct. Secon	iowev and th d par the fi	thought that the EDG is inoperable when the second Air Receiver drops ver the action for the second receiver < 230 psia is to restore one receiver the EDG is inoperable when the second receiver is < 185 psia. Second part t is plausible if thought that 1.25 SR frequency extension is able to be rst performance of a "once within xxx and once every xxx…" does not allow sion.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	4	
10CFR55.43:	2	
Reference Provided:	Ν	
Learning Objective:	Identify the bases of Technical Specification LCOs and TLCOs for sectio 3.8 in accordance with Tech Spec 3.8 bases.	

Technical R	eference:	Technical Specifications		
25% extension cannot be used for the initial performance of SR 3.8.1.1. It could be used for the subsequent 8 hours performances.				
SR 3.0.2	perform as mea the time For Fre	ecified Frequency for each SR is met if the Surveillance is ned within <mark>1.25 times</mark> the interval specified in the Frequency, asured from the previous performance or as measured from e a specified condition of the Frequency is met. equencies specified as "once," the above interval extension of apply.		
	per"	mpletion Time requires periodic performance on a "once basis, the above Frequency extension applies to each nance after the initial performance.		
		ions to this Specification are stated in the individual cations.		

Example 1.3-7 explains the completion time rules for a similar required action as LCO 3.8.1 required action B.1.

EXAMPLES (continued) EXAMPLE 1.3-7

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. One subsystem inoperable.	A.1 Verify affected subsystem isolated.	1 hour AND
-		Once per 8 hours thereafter
	A.2 Restore subsystem to OPERABLE status.	72 hours
B. Required Action and associated Completion	B.1 Be in MODE 3. AND	6 hours
Time not met.	B.2 Be in MODE 5.	36 hours

Required Action A.1 has two Completion Times. The 1 hour Completion Time begins at the time the Condition is entered and each "Once per 8 hours thereafter" interval begins upon performance of Required Action A.1.

If after Condition A is entered, Required Action A.1 is not met within either the initial 1 hour or any subsequent 8 hour interval from the previous performance (plus the extension allowed by SR 3.0.2), Condition B is entered.

Тес	Technical Reference:		Technical Specifications (LCO 3.8.3)			
Whe	en the air receiver	drops t	rops to < 230 psig (0900), LCO 3.8.3 Condition E is entered.			
(094	With the pressure dropping at 1 psig/min, the air receiver drops to < 185 psig in 45 minutes (0945). When this occurs, LCO 3.8.3 Condition F is entered. Which requires the associated DG to be declared inoperable.					
ACT	IONS (continued)		Diesel Fuel Oil, L	ube Oil, and Starting Air 3.8.3		
ACT	IONS (continued) CONDITION	R	EQUIRED ACTION	COMPLETION TIME		
D.	One or more DGs with new fuel oil properties not within limits.	D.1	Restore stored fuel oil properties to within limits.	30 days		
E.	One or more DGs with a required starting air receiver pressure < 230 psig and ≥ 185 psig.	E.1	Restore starting air receiver pressure to ≥ 230 psig.	48 hours		
F.	Required Action and associated Completion Time not met.	F.1	Declare associated DG inoperable.	(Immediately)		
	OR 					

Technical Reference:	Technical Specificat	tions (LCO 3.8.1 Condition B))		
DG is declared inoperable at 0945. LCO 3.8.1 Condition B is entered. Required Action B.1 must first be performed within 1 hour (by 1045). The 25% surveillance extension cannot be used for the first performance. AC Sources – Operating				
ACTIONS		3.8.1		
CONDITION	REQUIRED ACTION	COMPLETION TIME		
A. (continued)	A.3 Restore required offsite circuit to OPERABLE status.	72 hours OR In accordance with the Risk Informed Completion Time Program		
B. One DG inoperable.	B.1 Perform SR 3.8.1.1 for the OPERABLE required offsite circuit(s).	1 hour AND Once per 8 hours thereafter		
	B.2 Declare required feature(s) supported by the inoperable DG inoperable when its redundant required feature(s) is inoperable.	4 hours from discovery of Condition B concurrent with inoperability of redundant required feature(s)		
	AND			

Technical Reference:			40ST-9ZZ37 Inoperable P	ower Sources Action	n Statement	
40ST-	• 9ZZ37 i	is performe	d to comply with LCO 3.8.1 r	equired actions.		
	Inope	rable Power S	ources Action Statement	40ST-9ZZ37	6	
1.0	PURPO	SE AND SCO	PE			
	1.1 Pu	rpose				
	1.1.1		offic guidance for complying with AC Sources - Operating.	the action statements A t	hrough G	
	1.2 Sc	ope				
	1.2.1	General				
		A. Address	ANY of the following circumstand	ces:		
		• One	required off site circuit inoperable	e.		
		• One	diesel generator inoperable.			
		• Two	required off site circuits inoperab	le.		
		• One	required off site circuit and one of	diesel generator inoperab	le.	
		• Two	diesel generators inoperable.			
		• One	automatic load sequencer inope	rable.		
	1.2.2	Technical S	pecification Requirements			
		A. LCO 3.8	1, AC Sources - Operating.			
		B. SR 3.8.1	1 Verification of required off site	power circuit.		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Process Radiation Monitoring: Ability to (a) predict	Tier			2
the impacts of the following malfunctions or operations on the PRM system; and (b) based on those predictions,	Group			1
use procedures to correct, control, or mitigate the	K/A		073 A2.01	
consequences of those malfunctions or operations: Erratic or failed power supply	IR			2.9

Given the following conditions:

- A Waste Gas Decay Tank release is required
- Gaseous Radwaste Radiation Monitor, RU-12, has just failed due to a short circuit in the power supply
- RMS is indicating a High Voltage Power Supply alarm for RU-12

Which of the following describes the required action(s) in order to perform the release as planned?

In order for the release to be performed, ____(1)___ as required by ____(2)___.

- A. (1) initiate the Preplanned Alternate Sampling Program to monitor the appropriate parameter
 - (2) the Offsite Does Calculation Manual
- B. (1) initiate the Preplanned Alternate Sampling Program to monitor the appropriate parameter
 - (2) 74RM-9EF41, Radiation Monitoring System Alarm Response
- C. (1) at least two technically qualified personnel must independently verify the discharge valve lineup
 - (2) the Offsite Dose Calculation Manual
- D. (1) at least two technically qualified personnel must independently verify the discharge valve lineup
 - (2) 74RM-9EF41, Radiation Monitoring System Alarm Response

Pro	Proposed Answer: C			
Ехр	lanations:			
Α.	First part is plausible since this action is required by the ODCM for a failure of RU-145, Noble Gas Activity Monitor, however this is not required for a failure of RU-12. Second part is correct.			
В.	First part is plausible since this action is required by the ODCM for a failure of RU-145, Noble Gas Activity Monitor, however this is not required for a failure of RU-12. Second part is plausible since the ARP provides contingency actions for alarming or failed RMs, however there are no requirements in the ARP for gaseous releases.			
C.	Correct.			
D.	First part is correct. Second part is plausible since the ARP provides contingency actions for alarming or failed RMs, however there are no requirements in the ARP for gaseous releases.			

Question Source:		New	
	x	Bank	
		Modified	
	x	Previous NRC Exam	2020 NRC Q87 (slightly modified but still bank question)

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.43:	4	
Reference Provided:	N	
Learning Objective:	Given key parameter indications and various plant conditions, predict Gaseous Radwaste System normal, abnormal, and emergency operations including design basis, flowpaths, major components, and controls/interlocks in accordance with approved system specific documentation and/or approved operating procedures.	

Technical Reference:	NUREG 1021 SRO-Only Guidance
Maintenance Activ	That May Arise during Normal and Abnormal Situations, including ities and Various Contamination Conditions [10 CFR 55.43(b)(4)] f SRO exam items for this topic include the following:
process fo	r gaseous/liquid release approvals (i.e., release permits)
	nd interpretation of radiation and activity readings as they pertain to the f administrative, normal, abnormal, and emergency procedures
	nd interpretation of coolant activity, including comparison to emergency a and/or regulatory limits

Technical Reference:	74RM-9EF41 Radiation Monitoring System Alarm Response					
This alarm response is generic to all Rad Monitors. If a Rad Monitor is found non-functional, you go to 74RM-9EF43, which provides further guidance on required actions or other procedures to use.						
6.4.12 IF ANY of the fol	lowing:					
• Monitor malf	unction is indicated					
 Equipment fa 	ailure is indicated					
THEN perform th	ne following:					
	oonse actions can NOT correct the malfunction/failure, a Condition Report (CR).					
74RM-98	 Perform an assessment of monitor operability/functionality per 74RM-9EF43, Actions for Nonfunctional Radiation Monitors: Preplanned Alternate Sampling Program. 					
THEN <mark>pe</mark> monitor p	onitor is INOPERABLE/NONFUNCTIONAL, <u>erform</u> required ACTIONS for an inoperable/nonfunctional per 74RM-9EF43, Actions for Nonfunctional Radiation Monitors: ned Alternate Sampling Program,					

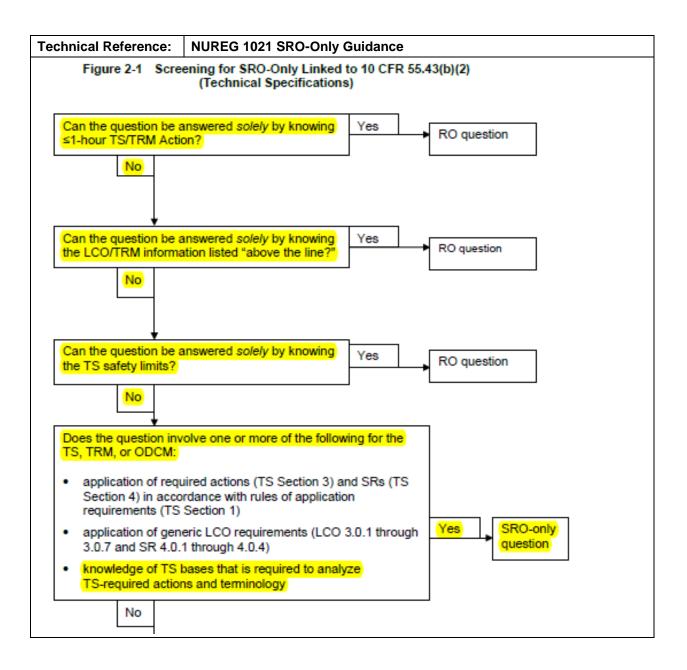
echnica	al Reference:		ons For Non-Functio	nal Radiation Monitors: am
		•	e may occur as long	as 74RM-9EF20 requirements ar
Append	lix A - OPERAB	ILITY/FUNCTION	ALITY Guidelines A	nd Actions For RMS Monitors
	Table	e 1: Technical Spe	cification/TRM/ODCM	1 Channels
Monito	or Channel Description	OPERABILITY / FUNCTIONALITY Guideline #	INOPERABILITY / NON-FUNCTIONALITY Action	Applicable Mode/Reference
RU-12	Noble Gas	A,B,G,H	<mark>2, 11</mark>	During Waste Gas release
pro 741 11 If m day	wided that prior to RM-9EF20, Gased ninimum required o /s, initiate a CR to	initiating the release ous Radioactive Release channels have not be explain in the next A	e tank(s) may be relea e the following actions ease Permits and Offsi een restored to FUNCTI annual Radioactive Efflu corrected within the spe	te Dose Assessment. ONAL status within 30 lent Release Report
				nate sampling program) are an ODCM required Rad Monitor.
	Iodine Sampler	D,F,K	9,10,11 M	odes 1, 2, 3, & 4 or whenever
RU-145	b) Particulate Sampler	D.F.K	9 10 11 irr	adiated fuel is in the Fuel Storage
10000	Process Flow Rate Monitor	A,G,J		DCM Table 2-1
	Sampler Flow Rate Monitor	A,G,K	9,10,11	
gas 8.1 (8.2 1 8.3 ⁻	s grab samples are Compare sample re Notify operations if The associated Hig	obtained every 8 hour sults with monitor ala any setpoint value is o h Range monitor is al		s. nless the High
02233		continuously collected	the effected pathway ma I with auxiliary sampling	equipment as
pro req	uired in ODCM Tab n-functional.	le 3-1 within one hour	after the channel has be	en declared

Technical Refe	erence:	74RM-9EF20 Gaseous Radioactive Release Permits And Offsite Dose Assessment
6.4 Waste Gas	s Decay T	ank Release Permits
6.4.1 Gener	al Instruc	tions
		the Waste Gas Decay Tank (WGDT) Discharge Monitor JNCTIONAL.
1.		2 is NON-FUNCTIONAL, <u>Isure</u> ALL of the following prior to WGDT release;
• Two		independent samples are analyzed
		qualified individuals independently verify the release rate ulations
	• Two	qualified individuals independently verify the valve lineups

Tecł	nnical Reference:	ODCM (Off-site	Dose Calculatio	on Manual)					
2.0 0	GASEOUS EFFLUENT MO	SEOUS EFFLUENT MONITOR SETPOINTS							
2	.1 Requirements: Gaseou	Monitors							
	FUNCTIONAL with the	ir alarm/trip setpoints se darm/trip setpoints of t	t to ensure that the dose hese channels shall be o	hown in Table 2-1 shall be requirements in Section 3.0 letermined and adjusted in)				
	Applicability: As show	vn in Table 2-1.							
	Action:								
	setpoint less conserv release of radioactive	ative than required by gaseous effluents moni	the above Requirement	entation channel alarm/trip , immediately suspend the nnel, or declare the channel					
	channels FUNCTION instrumentation to F	NAL, take the ACTIO UNCTIONAL status wi	N shown in Table 2-1. thin 30 days or, if unsue	monitoring instrumentation Restore the nonfunctional cessful, explain in the next ty was not corrected within	ł				
	RADI	OACTIVE GASEOUS EF	FLUENT MONITORING	INSTRUMENTATION					
	INSTRUMENT		MINIMUM CHANNELS FUNCTIONAL	APPLICABILITY	ACTION				
1. 0	GASEOUS RADWASTE SYST	EM							
,	 Noble Gas Activity Monitor Automatic Termination of R. 		15	#	35				
5	. Flow Rate Monitor		1	#	36				
ACT			e contents of the tan	an required by the M k(s) may be released to					
	a. At leas	t two independent sa	mples of the tanks co	ontents are analyzed, an	d				
	b. At leas	t two technically qu	alified members of t	he facility staff indeper	idently verify the				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Service Water: Knowledge of the bases in	Tier			2
Technical Specifications for limiting conditions for operations and safety limits	Group			1
operations and safety mints	K/A	0	76 G 2.2.2	5
	IR			4.2

Per the Technical Specification Bases for LCO 3.7.8, Essential Spray Pond System (ESPS)...


- (1) If Train 'A' ESPS is isolated from the 'A' EDG Coolers, Train 'A' ESPS...
- (2) If Train 'A' ESPS is isolated from the 'A' EW Heat Exchanger, Train 'A' ESPS ...
- A. (1) is INOPERABLE(2) is INOPERABLE
- B. (1) is INOPERABLE(2) remains OPERABLE
- C. (1) remains OPERABLE (2) is INOPERABLE
- D. (1) remains OPERABLE(2) remains OPERABLE

Pro	posed Answer:	С					
Exp	Explanations:						
Α.	A. First part is plausible since the 'A' EDG is the class backup power source for the 'A' ESPS, and the isolation from the EDG coolers would make the EDG inoperable, however it does not render the ESPS inoperable. Second part is correct.						
В.	the isolation from the ESPS inopera ESPS/EW relation	the E able. nship S, the	Ince the 'A' EDG is the class backup power source for the 'A' ESPS, and DG cooler would make the EDG inoperable, however it does not render Second part is plausible since the ESPS is the supporting system in the however since the cooling done by the EW system is part of the design ESPS cannot perform it's safety function while isolated from the EW e inoperable.				
C.	Correct.						
D.	ESPS/EW relation	nship S, the	econd part is plausible since the ESPS is the supporting system in the , however since the cooling done by the EW system is part of the design ESPS cannot perform it's safety function while isolated from the EW e inoperable.				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

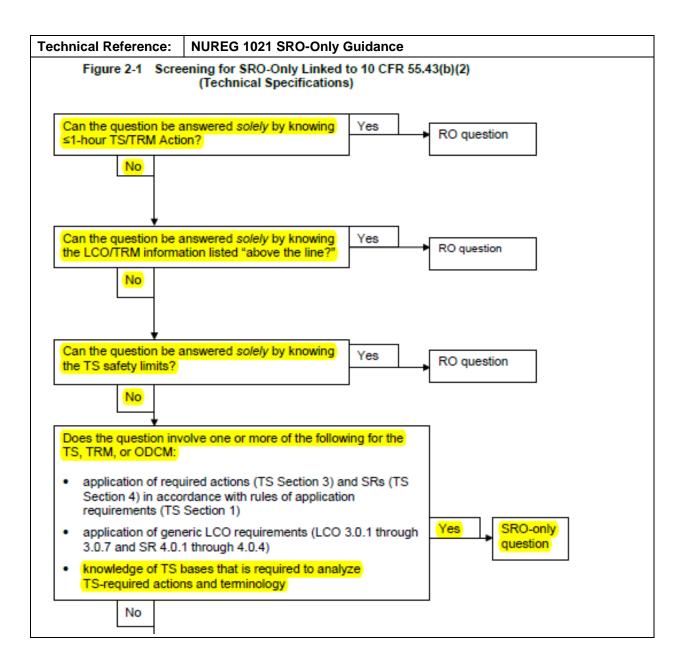
Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	4	
10CFR55.43:	2	
Reference Provided:	N	
		en a set of plant conditions, determine whether or not the LCOs and COs of 3.7 are satisfied in accordance with Tech Spec 3.7.

Technical Reference	ce: Technical Specification Bases (LCO 3.7.8)
	ESPS B 3.7.8
BASES	
APPLICABLE SAFETY ANALYSES (continued)	The ESPS satisfies Criterion 3 of 10 CFR 50.36 (c)(2)(ii).
LCO	Two ESPS trains are required to be OPERABLE to provide the required redundancy to ensure that the system functions to remove post-accident heat loads, assuming the worst single active failure occurs coincident with the loss of offsite power.
	An ESPS train is considered OPERABLE when:
	a. The associated pump is OPERABLE; and
	b. The associated piping, valves, instrumentation, heat exchanger, and instrumentation and controls required to perform the safety related function are OPERABLE.
	The isolation of the ESPS from other components or systems renders those components or systems inoperable, but does not necessarily affect the OPERABILITY of the ESPS. Isolation of the ESPS to required Diesel Generator (DG) cooler(s), while rendering the DG inoperable, is acceptable and does not impact the OPERABILITY of the ESPS. Disassembly, removal of insulation, and other configuration changes to the isolated portions of an OPERABLE system must be explicitly evaluated for operability impact prior to executing any configuration changes of the OPERABLE system. Isolation of the ESPS to the essential cooling water heat exchanger is not acceptable and would render both the Essential Cooling Water System and the ESPS is inoperable (Ref. 3). The ESPS is inoperable in this situation because it is operating outside of the acceptable limits of the system.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Level Control: Knowledge of the bases	Tier			2
in Technical Specifications for limiting conditions for operations and safety limits	Group			2
operations and safety mints	K/A	011 G 2.2.25		5
	IR			4.2

Per the Technical Specification Bases for LCO 3.4.9, Pressurizer, the low end of the Pressurizer level requirement is set to ensure (1) and the high end of the level band is to ensure (2).


- A. (1) the Pressurizer heaters remain covered
 - (2) the proportional heaters can heat the water mass enough to maintain 2250 psia
- B. (1) the Pressurizer heaters remain covered(2) the Main and Auxiliary Spray nozzle is not submerged
- C. (1) Pressurizer pressure does not lower to the SIAS setpoint on an uncomplicated Reactor trip
 - (2) the proportional heaters can heat the water mass enough to maintain 2250 psia
- D. (1) Pressurizer pressure does not lower to the SIAS setpoint on an uncomplicated Reactor trip
 - (2) the Main and Auxiliary Spray nozzle is not submerged

Pro	Proposed Answer: B					
Exp	lanations:					
Α.	A. First part is correct. Second part is plausible since only the proportional heaters are normally used to maintain pressure while at power, and a larger water mass in the pressurizer could require more (or larger) heaters to maintain 2250 psia, however this is not the basis for the high end of the TS level band.					
В.	Correct.					
C.	First part is plausible since maintaining a minimum inventory in the Pressurizer will prevent a SIAS actuation on an uncomplicated Reactor trip, however this is not the basis for the lower TS pressurizer level limit. Second part is plausible since only the proportional heaters are normally used to maintain pressure while at power, and a larger water mass in the pressurizer could require more (or larger) heaters to maintain 2250 psia, however this is not the basis for the high end of the TS level band.					
D.	SIAS actuation or	n an u	nce maintaining a minimum inventory in the Pressurizer will prevent a incomplicated Reactor trip, however this is not the basis for the lower TS Second part is correct.			

Question Source:	New		
	Х	Bank	
		Modified	
	X	Previous NRC Exam	2016 NRC Q56 (modified but not to the point where the question is considered modified)

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.43:	2	
Reference Provided:	N	
Learning Objective:	Identify the basis of Technical Specification LCOs and TLCOs for section 3.4 in accordance with Tech Spec 3.4 basis.	

Technical Reference:		Technical Specification Bases (LCO 3.4.9)					
B 3.4 REACTOR COOLANT SYSTEMS (RCS)							
B 3.4.9 Pressurizer							
BASES							
BACKGROUND	The pressurizer provides a point in the RCS where liquid and vapor are maintained in equilibrium under saturated conditions for pressure control purposes to prevent bulk boiling in the remainder of the RCS. Key functions include maintaining required primary system pressure during steady state operation and limiting the pressure changes caused by reactor coolant thermal expansion and contraction during normal load transients.						
	The pressure control components addressed by this LCO include the pressurizer water level and the required heaters and their backup heater controls. Pressurizer safety valves and pressurizer vents are addressed by LCO 3.4.10 "Pressurizer Safety Valves MODES 1, 2, and 3," LCO 3.4.11 "Pressurizer Safety Valves MODE 4," and LCO 3.4.12 "Pressurizer Vents", respectively.						
	The maximum steady state water level limit has been established to ensure that a liquid to vapor interface exists to permit RCS pressure control, using the sprays and heaters during normal operation and proper pressure response for anticipated design basis transients. The maximum and minimum steady state water level limit serves two purposes:						
	rea	a. Pressure control during normal operation maintains subcooled reactor coolant in the loops and thus in the preferred state for heat transport; and					
	rea	restricting the level to a maximum, expected transient actor coolant volume increases (pressurizer insurge) will not use excessive level changes that could result in degraded ility for pressure control.					
	The max equipme space du operate also pre design b						
BACKGROUND (continued)	(pressurizer safety valves) can control pressure by steam relief rather than water relief. If the level limits were exceeded prior to a transient that creates a large pressurizer insurge volume leading to water relief, the maximum RCS pressure might exceed the Safety Limit of 2750 psia.						
	The minimum steady state water level in the pressurizer assures pressurizer heaters, which are required to achieve and maintain pressure control, remain covered with water to prevent failure, which could occur if the heaters were energized uncovered.						
	ensu press coola natu	requirement to have two groups of pressurizer heaters res that RCS pressure can be maintained. The surizer heaters maintain RCS pressure to keep the reactor ant subcooled. Inability to control RCS pressure during ral circulation flow could result in loss of single phase flow decreased capability to remove core decay heat.					

wate indic exist the esta over	LCO requirement for the pressurizer to be OPERABLE with r level \geq 27% indicated level (425 cubic feet) and \leq 56% ated level (948 cubic feet) ensures that a steam bubble is. Limiting the maximum operating water level preserves steam space for pressure control. The LCO has been blished to minimize the consequences of potential
The heat capa	pressure transients. Requiring the presence of a steam ole is also consistent with analytical assumptions. LCO requires two groups of OPERABLE pressurizer ers, each with a capacity ≥ 125 kW. The minimum heater acity required is sufficient to maintain the RCS near normal rating pressure when accounting for heat losses through the
pres	surizer insulation. By maintaining the pressure near the ating conditions, a wide subcooling margin to saturation can btained in the loops.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: In-Core Temperature Monitor: Knowledge of	Tier			2
system purpose and/or function	Group			2
	K/A	0	17 G 2.1.2	7
	IR			4.0

Per EP-0801, EAL Hot Chart, a POTENTIAL LOSS of the Fuel Cladding Barrier exists when either...

(1) Representative Core Exit Thermocouple temperature exceeded a MINIMUM of...

OR

- (2) Reactor Vessel Level Monitoring System indicates less than a MAXIMUM of...
- A. (1) 700°F
 - (2) 16% in the upper head
- B. (1) 700°F(2) 21% in the outlet plenum
- C. (1) 1200°F(2) 16% in the upper head
- D. (1) 1200°F(2) 21% in the outlet plenum

Pro	posed Answer:	В			
Exp	lanations:				
Α.	First part is correct. Second part is plausible since this is the level in the vessel below which SI throttle is not allowed, however a potential loss of the fuel cladding barrier doesn't occur until level is less than 21% in the plenum.				
В.	Correct.				
C.	considered LOST potential loss. Se	, and cond weve	ince 1200°F is the temperature above which the fuel cladding barrier is is the temperature above which the containment barrier is considered a part is plausible since this is the level in the vessel below which SI throttle r a potential loss of the fuel cladding barrier doesn't occur until level is less n.		
D.		, and	ince 1200°F is the temperature above which the fuel cladding barrier is is the temperature above which the containment barrier is considered a part is correct.		

Question Source:		New	
	Х	Bank	
		Modified	
	x	Previous NRC Exam	2016 NRC Q91

Cognitive Level:	Х	Memory or Fundamental Knowledge
		Comprehension or Analysis

Comprehension or Analysis Level of Difficultly: 3 10CFR55.43: 1 Reference N Provided: I
10CFR55.43: 1 Reference N Provided:
10CFR55.43: 1 Reference N Provided:
Reference N Provided:
Provided:
Learning Objective: Determine if any EAL within the Fission Product Barrier category has been met

Technical Refe	rence: NUREG	021 SRO-Only	Guidance					
	rgency Plan is a c lance in NUREG 10 on at PVNGS.							
A. Conditions and	Limitations in the Facility	<u>_icense</u> [10 CFR 55.4	3(b)(1)]					
Examples of SR	RO exam items for this top	ic include the following	1					
reporting exceede	g requirements when the r ed	naximum licensed ther	mal power o	utput is				
	tration of fire protection pro associated with inoperable			ensatory				
controls	 required actions necessary when a facility does not meet the administrative controls listed in Technical Specifications (TS), Section 5 or 6, depending on the facility (e.g., shift staffing requirements) 							
National	Pollutant Discharge Elimi	nation System require	ments, if app	licable				
processe	es for TS and final safety	analysis report change	s					
Justification A								
 The question is linked to a learning objective that is specifically labeled in the lesson plan as being SRO-only (e.g., some facility licensee lesson plans have columns in the margin that differentiate auxiliary operator, RO, and SRO learning objectives). [Section D.2.d of this examination standard] 								
AND/OR								
A question is linked to a task that is labeled as an SRO-only task, and the task is NOT listed in the RO task list. From PVNGS SRO-Only Master Task List:								
MASTER TASK LIST								
		NG at 2020/01/29: (18952 All Tasks						
Task#	Task	Selected for Training	r Recurring	How Often	Training Setting			
L392177	Transfer command and on the Emergency Coordinations		No		Classroom			
L392178	Perform the duties of the Emergency Coordinator	Yes	Yes	Yearly	Initial: Classroom & Simulator Continuing: Simulator			

Technical Reference: E-plan EAL Hot Chart				
Fuel Clad	(FC) Barrier			
Loss	Potential Loss			
	1. RVLMS < 21% plenum (Detector #8)			
1. Rep <mark>CETs > 1200⁰F</mark>	 Rep CETs > 700°F RCS heat removal cannot be established AND RCS subcooling < 24°F 			
 Containment radiation RU-148 > 2.1E+05 mR/hr OR RU-149 > 2.4E+05 mR/hr Dose equivalent I-131 coolant activity > 300 μCi/gm 				

Technical Reference:	40EP-9EO10-002 Appendix 2: Figures
----------------------	------------------------------------

16% RVUH level is used for SI throttle criteria and various other checks in the EOPs

SI THROTTLE CRITERIA

CAUTION

Throttling HPSI injection valves will cause erosion damage to downstream piping.

HPSI THROTTLE CRITERIA

- At least one HPSI Pump is operating
- RCS is greater than or equal to 24°F [44°F] subcooled
- Pressurizer level is greater than 10% [15%] and NOT lowering
- At least one Steam Generator is available for RCS heat removal with level being maintained within or being restored to 45 - 60% NR [45 - 60% NR]
- RVLMS indicates RVUH level is greater than or equal to 16%
- IF the Functional Recovery procedure is in use, THEN ensure HPSI Pump(s) are NOT being used to meet an RC success path

LPSI THROTTLE CRITERIA

Pressurizer pressure is greater than 220 psia [220 psia] and is being controlled

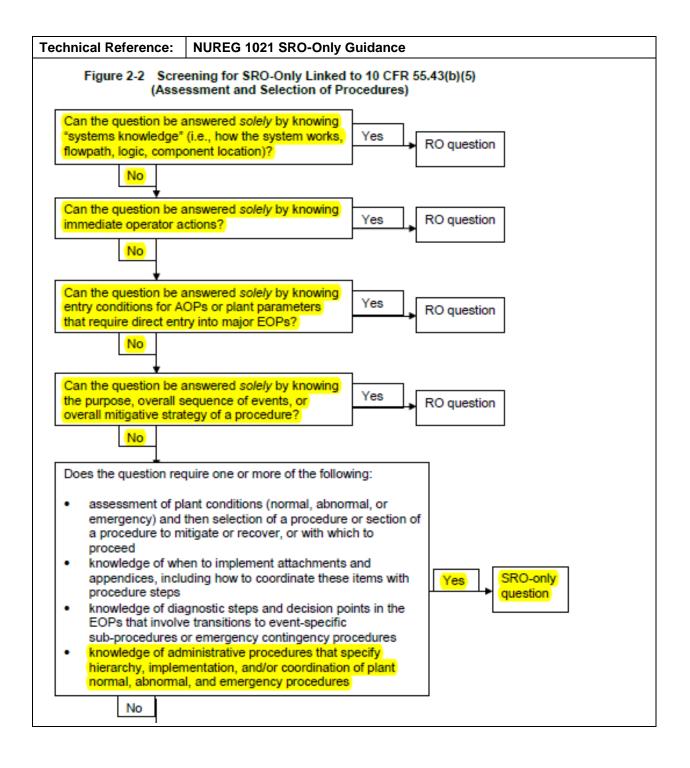
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Fire Protection: Ability to (a) predict the impacts of	Tier			2
the following malfunctions or operations on the Fire Protection System; and (b) based on those predictions,	Group			2
use procedures to correct, control, or mitigate the	K/A		086 A2.04	
consequences of those malfunctions or operations: Failure to actuate the FPS when required, resulting in fire damage	IR			3.9

Given the following conditions:

- Unit 1 was operating at 100% power when a fire occurred in the Satellite Technical Support Center
- The Fire Suppression System failed to actuate and the CRS has entered 40AO-9ZZ19, Control Room Fire
- The Reactor has been tripped and the crew has evacuated to the Remote Shutdown Panel
- The Emergency Coordinator has declared an ALERT due to the Control Room Evacuation

Per 40AO-9ZZ19, Control Room Fire, and 40DP-9ZZ04, Time Critical Action Program, the CRS must ensure that the ____(1)___ within a MAXIMUM of 5 minutes of the Reactor Trip.

The Emergency Coordinator must ensure State and Local Agencies are notified of the event within a MAXIMUM of ____(2)____ from the time of the ALERT declaration.


- A. (1) ADV disconnect switches are placed in LOCAL(2) 1 hour
- B. (1) ADV disconnect switches are placed in LOCAL(2) 15 minutes
- C. (1) Letdown to Regen HX Isolation Valve, CHB-UV-515, is closed(2) 1 hour
- D. (1) Letdown to Regen HX Isolation Valve, CHB-UV-515, is closed(2) 15 minutes

Pro	posed Answer:	В				
Exp	planations:					
Α.	First part is correct. Second part is plausible since the NRC must be notified within a maximum of 1 hour, however state and local agencies must be notified within 15 minutes.					
В.	Correct.					
C.	procedures, howe the NRC must be	First part is plausible since UV-515 is required to be closed in a finite amount of time per the listed procedures, however the time limit for this closure is 20 minutes. Second part is plausible since the NRC must be notified within a maximum of 1 hour, however state and local agencies must be notified within 15 minutes.				
D.			ince UV-515 is required to be closed in a finite amount of time per the listed he time limit for this closure is 20 minutes. Second part is correct.			

Question Source:		New	
	Χ	Bank	
		Modified	
	x	Previous NRC Exam	2018 NRC Q84 (Order of answers changed to balance answer distribution on SRO exam)

Cognitive Level:	x	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:		
10CFR55.43:		
Reference Provided:		
Learning Objective:	r a Control Room Fire, state the Time Critical Actions p	er 40AO-9ZZ19.

echnical Reference:		40DP-9ZZ04 Time Critical Action (TCA) Program						
Appendix D - Time Critical Actions Catalog								
тса	Action	Time Limit	Time Zero	Validation Method	Procedure	Org	Source Document (other info)	
TCA-1	Initiate MSIS	90 seconds	Manual Reactor Trip	Simulator	40AO-9ZZ19	Ops	13-MC-FP-0318 (40A0-9ZZ19, Section 3.0)	
TCA-2	ADV Disconnects to LOCAL	5 minutes	Manual Reactor Trip	Walkdown	40AO-9ZZ19	Ops	13-MC-FP-0318 (40A0-9ZZ19, Section 3.0)	
TCA-3	Close CHB-UV-515	20 minutes	Manual Reactor Trip	Walkdown	40AO-9ZZ19	Ops	13-MC-FP-0318 (40A0-9ZZ19, Section 3.0)	

Technical Reference:		EP-0902 Notifications	
3.2 Li	mitations		
3.2.1		procedure is conducted using individual ERO Checklis y Response Organization (ERO) Position Checklists.	ts
3.2.2	Notification to offsite age	ncies is required within 15 minutes of:	
	Initial Classification o	f the Emergency	
	Change in the Classi	fication	
	Change in Protective	Action Recommendations (PARs)	
	Change in Radiologic	al Release Status	
	Event Termination		
3.2.3	and the second sec	ate communications are not available, cceptable communications methods with outside	
	Commercial phone		
	Cellular phone		
	Satellite phone (Flex)	BDBEE Equipment)	
3.2.4		shall notify the NRC immediately following notification pencies and no later than one hour after the emergence	
		NOTE	1
		d responsibilities transition from the Control Room sfer of Command and Control.	
	the responsibility for	rated or is unable to accept Command and Control, required Notification of Offsite Agencies remain in al Support Center (STSC).	
		site state and local agencies must be notified determining any of the following criteria:	
	Initial Classification Change in the Clas Change in Protecti Change in Radiolog Event Termination	sification ve Action Recommendations (PARs)	
	are BOLDED can be	s listed in Section 8, on the EP-541 NAN Form that contacted 24hrs/day, UNBOLDED agencies may n-business hours.	8

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of individual licensed operator	Tier			3
responsibilities related to shift staffing, such as medical requirements, "no-solo" operation, maintenance of active license status, 10CFR55, etc.	Group			
	K/A		G 2.1.4	
	IR			3.8

Given the following conditions:

- A licensed SRO has stood the following shifts in the past four months:
 - BOP on night shift on 9/8/2020, 9/9/2020, and 9/10/2020
 - OATC on night shift on 9/30/2020, 10/1/2020, and 10/2/2020
 - STA on day shift on 12/1/2020, and 12/2/2020
 - CRS on day shift on 12/21/2020 and 12/22/2020
- Today is 12/23/2020 and the SRO is trying to determine what he needs to do, if anything, to ensure he has stood enough shifts to be qualified on 1/1/2021
- The Ops Scheduler has informed the SRO that he is needed for shift on 1/1/2021

Assuming all non-shift related requirements for the quarter have been met, which of the following correctly describes the current license status of the SRO on 1/1/2021?

- A. The SRO has completed the requisite amount of shift time in the current quarter to stand any RO or SRO position on 1/1/2021
- B. The SRO has completed the requisite amount of shift time in the current quarter to stand any RO position on 1/1/2021 but cannot stand an SRO position on 1/1/2021
- C. The SRO has NOT completed the requisite amount of shift time in the current quarter to stand any position on 1/1/2021, and must complete a minimum of one 12-hour shift ONLY in an SRO position prior to 1/1/2021 to stand shift on 1/1/2021
- D. The SRO has NOT completed the requisite amount of shift time in the current quarter to stand any position on 1/1/2021, and must complete a minimum of one 12-hour shift in EITHER an RO or SRO position prior to 1/1/2021 to stand shift on 1/1/2021

Pro	posed Answer:	D					
Ехр	Explanations:						
Α.	 Plausible since the SRO has stood watch in a licensed position, including at least one in an SRO position, in the current quarter, however since the OATC watch stood on 9/30 was not entirely in the fourth calendar quarter, the SRO needs one additional full 12-hour shift in either an RO or SRO position. 						
В.	Plausible if thought that since the SRO has stood 6 full watches in the fourth quarter that he would be qualified to stand watch on 1/1/2021, but since only 2 (or 4 if thought that the STA watches count as SRO watches) have been stood, that the SRO can stand an RO watch but not an SRO watch, however in order to be active for the following quarter, and SRO must stand a minimum of one 12-hour watch in the CRS or SM position and at least 4 additional watches in either an SRO or RO position.						
C.	to be active in the watchstanding red	next quire	t the SRO must stand a total of 5 12-hour SRO shifts in the current quarter quarter, and that the CRS and STA watches all count towards the SRO nent for the fourth quarter, however the STA watches do not count and vatch will make the SRO active on 1/1/2021.				
D.	Correct.						

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	1	
Reference Provided:	N	
Learning Objective:	Qua	cribe operations expectations when it comes to Training & alification in accordance with ODP-1, Operations Principles and ndards.

Technical Reference	NUREG 1021 SRO-Only Guidance
A. Conditions ar	d Limitations in the Facility License [10 CFR 55.43(b)(1)]
Examples of 3	SRO exam items for this topic include the following:
report excee	ing requirements when the maximum licensed thermal power output is ded
	istration of fire protection program requirements, such as compensatory s associated with inoperable sprinkler systems and fire doors
contro	ed actions necessary when a facility does not meet the administrative Is listed in Technical Specifications (TS), Section 5 or 6, depending on the (e.g., shift staffing requirements)
Nation	al Pollutant Discharge Elimination System requirements, if applicable
proces	sses for TS and final safety analysis report changes

Technical Reference:	40DP-9OP02, Conduct of Operations
PVNGS NUCLE	AR ADMINISTRATIVE AND TECHNICAL MANUAL Page 91 of 165 Conduct of Operations 40DP-90P02 Revision 72
4.8.4.5	 An active NRC Operators License exists when an operator has a valid license and has "actively performed" the functions of an operator or senior operator on a minimum of five 12 hour shifts per calendar quarter. The number of operator watchstanders required by Technical Specifications is mode dependent. For watch standing proficiency, mode dependency can affect the number of operator proficiency watchstanders allowed. 'Actively Performed' means that the operator held a position on the shift crew that required the individual to be licensed as defined in the Technical Specifications and that the operator carried out and was responsible for the duties covered by that position. For maintenance of an active SRO license, any shift spent in either the SM or CRS position will be credited. An SRO must stand at least one complete shift per calendar quarter in an SRO only supervisory position. The remainder of the shifts required in a calendar quarter may be performed in either a credited SRO or RO position. For time to be credited, time must be a continuous shift (that is: 4)
	 For time to be credited, time must be a continuous shift (that is: 4 hours of watch shift responsibilities spent on each of 3 different shifts does not equal one 12 hour shift). Overtime may be credited if the overtime work is in a position appropriately credited for watchstanding proficiency. Overtime as an extra helper after the official watch has been turned over to another watchstander does not count toward proficiency time. Counting a shift that will not be completed in the current calendar quarter does not satisfy the requirements of 10 CFR 55.53(e) or NUREG-1021. The last night shift of a quarter actually bridges 2 calendar quarters and therefore, cannot be used for a credited proficiency watch.

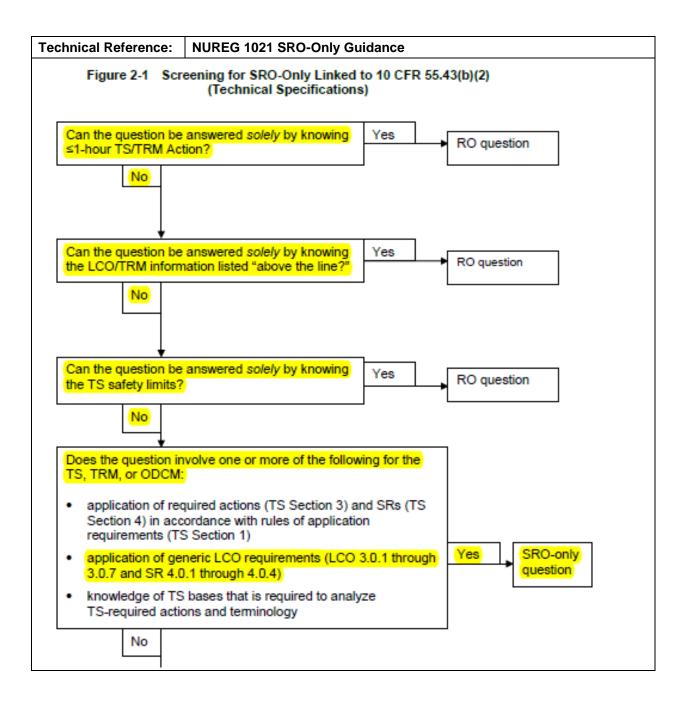
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Ability to manipulate the console controls as required to operate the facility between shutdown and designated power levels	Tier			3
	Group			
	K/A		G 2.2.2	
	IR			4.6

Given the following conditions:

- Unit 2 is commencing a unit startup following a refueling outage
- Preparations are being made to enter MODE 3

Per 40OP-9ZZ11, Mode Change Checklist, entry into MODE 3 should be made within a MAXIMUM of ____(1)___ hours of STARTING the Mode 4 to Mode 3 checklist.

If a piece of TS required equipment was repaired during the refueling outage, is required to be OPERABLE in MODE 3, but retest conditions cannot be established until MODE 3, the MODE change can be performed as allowed by ___(2)___.


- A. (1) 12 (2) SR 3.0.1
- B. (1) 12(2) SR 3.0.3
- C. (1) 24 (2) SR 3.0.1
- D. (1) 24 (2) SR 3.0.3

Pro	posed Answer:	С	
Ехр	lanations:		
Α.	First part is plausible since several STs are performed once per shift, so it would be make sense that in order to change modes all STs must be current, however the requirement is to change modes within a maximum of 24 hours of starting the mode change checklist. Second part is correct.		
В.	First part is plausible since several STs are performed once per shift, so it would be make sense that in order to change modes all STs must be current, however the requirement is to change modes within a maximum of 24 hours of starting the mode change checklist. Second part is plausible since SR 3.0.3 does allow the deference of STs to a later point in time, however the allowance in SR 3.0.3 only pertains to those STs which are missed, and not due to required test conditions not being met.		
C.	Correct.		
D.	later point in time	how	econd part is plausible since SR 3.0.3 does allow the deference of STs to a ever the allowance in SR 3.0.3 only pertains to those STs which are required test conditions not being met.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	2	
Reference Provided:	N	
Learning Objective:		ncerning Technical Specifications, describe the requirements of SR 1 in accordance with the Tech Specs.

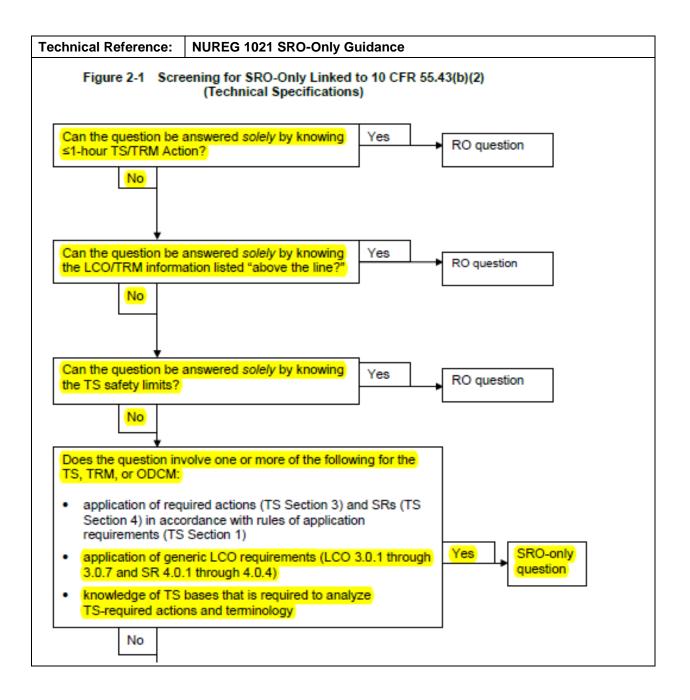
Technical Refe	rence: Technical Specifications Bases
SR 3.0.1	SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO. Surveillances may be performed by means of any series of sequential, overlapping, or total steps provided the entire Surveillance is performed within the specified Frequency. Additionally, the definitions related to instrument testing (e.g., CHANNEL CALIBRATION) specify that these tests are preformed by means of any series of sequential, overlapping, or total steps.
SR 3.0.1 (continued)	Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR. This allowance includes those SRs whose performance is normally precluded in a given MODE or other specified condition. Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status.
	Upon completion of maintenance, appropriate post maintenance testing is required to declare equipment OPERABLE. This includes ensuring applicable Surveillances are not failed and their most recent performance is in accordance with SR 3.0.2. Post maintenance testing may not be possible in the current MODE or other specified conditions in the Applicability due to the necessary unit parameters not having been established. In these situations, the equipment may be considered OPERABLE provided testing has been satisfactorily completed to the extent possible and the equipment is not otherwise believed to be incapable of performing its function. This will allow operation to proceed to a MODE or other specified condition where other necessary post maintenance tests can be completed.
	 Some examples of this process are: a. Auxiliary Feedwater (AFW) pump turbine maintenance during refueling that requires testing at steam pressures > 800 psi. However, if other appropriate testing is satisfactorily completed, the AFW System can be considered OPERABLE. This allows startup and other necessary testing to proceed until the plant reaches the steam pressure required to perform the testing.

Technical Reference:		Technical Specifications
SR 3.0.3 address	es mis	sed surveillance requirements
SR 3.0.3	specifie declare discove Freque allow p applica will be for any	iscovered that a Surveillance was not performed within its ed Frequency, then compliance with the requirement to e the LCO not met may be delayed, from the time of ery, up to 24 hours or up to the limit of the specified ncy, whichever is greater. This delay period is permitted to erformance of the Surveillance. The delay period is only ble when there is a reasonable expectation the surveillance met when performed. A risk evaluation shall be performed Surveillance delayed greater than 24 hours and the risk shall be managed.
	LCO m	urveillance is not performed within the delay period, the ust immediately be declared not met, and the applicable on(s) must be entered.
SR 3.0.3 (continued)	and th	the Surveillance is performed within the delay period e Surveillance is not met, the LCO must immediately be ed not met, and the applicable Condition(s) must be entered.

Technical Reference:			40OP-9ZZ11 Mode Change Checklist
3.0 PF	RECAL	JTIONS ANI	LIMITATIONS
3.	1 Pre	ecautions	
	3.1.1	None	
3.	2 Lin	nitations	
	and	and a Mode	expectation that a Mode/Condition Change checklist be completed /Condition Change accomplished within 24 hours of starting the his ensures BOTH of the following:
		• Proper	coverage of requirements for the Mode/Condition Change
		 Proper departr 	awareness of the Mode/Condition Change by all applicable nents

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of the bases in Technical	Tier			3
Specifications for limiting conditions for operations and safety limits	Group			
	K/A		G 2.2.25	
	IR			4.2

In which of the following situations, INDIVIDUALLY, can LCO 3.0.6 be invoked to avoid having to comply with the required actions of the supported systems?


- 1. Train 'A' Essential Chiller being declared inoperable due to the Train 'A' Spray Pond Pump being out of service for preventive maintenance
- 2. Train 'B' AFW Pump being declared inoperable due to the AFB Pump Room Essential ACU being out of service for preventive maintenance
- 3. Both Trains of Essential Spray Pond being declared inoperable due to the Ultimate Heat Sink being declared inoperable due to high temperature
- A. 2 ONLY
- B. 3 ONLY
- C. 1 and 2 ONLY
- D. 1 and 3 ONLY

Proposed Answer: D			
Exp	lanations:		
Α.	Plausible since the room cooler doesn't directly interface with the AF pump as the inop components do in examples 1 and 3, however the inoperability of the room cooler renders the AF Pump inoperable and 3.0.6 is not able to be invoked to avoid the required actions of LCO 3.7.5/		
В.	Plausible that since example 3 can utilize the conditions of LCO 3.0.6, however example 1 may also utilize LCO 3.0.6.		
C.	Plausible since condition 1 may use LCO 3.0.6, however condition 2 cannot since the support piece of equipment which makes the AF Pump inoperable does not have its own TS, therefore not taking the actions of the AF Pump LCO would essentially be entering no required actions.		
D.	Correct.		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	4
10CFR55.43:	2
Reference Provided:	N
Learning Objective:	Concerning Technical Specifications, describe the requirements of LCO 3.0.6 in accordance with the Tech Specs.

Technical Reference:	Tech Spec Bases
BASES	
LCO 3.0.6	LCO 3.0.6 establishes an exception to LCO 3.0.2 for support systems that have an LCO specified in the Technical Specifications (TS). This exception is provided because LCO 3.0.2 would require that the Conditions and Required Actions of the associated inoperable supported system LCO be entered solely due to the inoperability of the support system. This exception is justified because the actions that are required to ensure the unit is maintained in a safe condition are specified in the support system LCO's Required Actions. These Required Actions may include entering the supported system's Conditions and Required Actions or may specify other Required Actions.
	When a support system is inoperable and there is an LCO specified for it in the TS, the supported system(s) are required to be declared inoperable if determined to be inoperable as a result of the support system inoperability. However, it is not necessary to enter into the supported systems' Conditions and Required Actions unless directed to do so by the support system's Required Actions. The potential confusion and inconsistency of requirements related to the entry into multiple support and supported systems' LCOs' Conditions and Required Actions are eliminated by providing all the actions that are necessary to ensure the unit is maintained in a safe condition in the support system's Required Actions.

Technical R	eferen	nce: Technical Specifications (TS 5.5.15 SFDP)				
<mark>5.5.15</mark>	Safe	ety Function Determination Program (SFDP)				
	This program ensures loss of safety function is detected and appropriate actions taken. Upon entry into LCO 3.0.6, an evaluation shall be made to determine if loss of safety function exists. Additionally, other appropriate limitations and remedial or compensatory actions may be identified to be taken as a result of the support system inoperability and corresponding exception to entering supported system Condition and Required Actions. This program implements the requirements of LCO 3.0.6. The SFDP shall contain the following:					
	a.	Provisions for cross train checks to ensure a loss of the capability to perform the safety function assumed in the accident analysis does not go undetected;				
	b.	Provisions for ensuring the plant is maintained in a safe condition if a loss of function condition exists;				
	C.	Provisions to ensure that an inoperable supported system's Completion Time is not inappropriately extended as a result of multiple support system inoperabilities; and				
	d.	Other appropriate limitations and remedial or compensatory actions.				
	A loss of safety function exists when, assuming no concurrent single failure, no concurrent loss of offsite power, or no concurrent loss of onsite diesel generator(s), a safety function assumed in the accident analysis cannot be performed. For the purpose of this program, a loss of safety function may exist when a support system is inoperable, and:					
	a.	A required system redundant to system(s) supported by the inoperable support system is also inoperable; or				
5.5.15	Safe	ety Function Determination Program (continued)				
	b.	A required system redundant to system(s) in turn supported by the inoperable supported system is also inoperable; or				
	C.	A required system redundant to support system(s) for the supported systems (a) and (b) above is also inoperable.				
	The SFDP identifies where a loss of safety function exists. If a loss of safety function is determined to exist by this program, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered.					
	Tec	en a loss of safety function is caused by the inoperability of a single hnical Specification support system, the appropriate Conditions and juired Actions to enter are those of the support system.				

Technical Reference	Technical Specification Bases			
BASES				
LCO 3.0.6	LCO 3.0.6 establishes an exception to LCO 3.0.2 for support systems that have an LCO specified in the Technical Specifications (TS). This exception is provided because LCO 3.0.2 would require that the Conditions and Required Actions of the associated inoperable supported system LCO be entered solely due to the inoperability of the support system. This exception is justified because the actions that are required to ensure the unit is maintained in a safe condition are specified in the support system LCO's Required Actions. These Required Actions may include entering the supported system's Conditions and Required Actions or may specify other Required Actions.			
	When a support system is inoperable and there is an LCO specified for it in the TS, the supported system(s) are required to be declared inoperable if determined to be inoperable as a result of the support system inoperability. However, it is not necessary to enter into the supported systems' Conditions and Required Actions unless directed to do so by the support system's Required Actions. The potential confusion and inconsistency of requirements related to the entry into multiple support and supported systems' LCOs' Conditions and Required Actions are eliminated by providing all the actions that are necessary to ensure the unit is maintained in a safe condition in the support system's Required Actions.			
	However, there are instances where a support system's Required Action may either direct a supported system to be declared inoperable or direct entry into Conditions and Required Actions for the supported system. This may occur immediately or after some specified delay to perform some other Required Action. Regardless of whether it is immediate or after some delay, when a support system's Required Action directs a supported system to be declared inoperable or directs entry into Conditions and Required Actions for a supported system, the applicable Conditions and Required Actions shall be entered in accordance with LCO 3.0.2.			

Technical Reference:		Technical Specification Bases		
LCO 3.0.6 (continued)	(SFDF approp evalua exists compe system suppo	ication 5.5.15, "Safety Function Determination Program)," ensures loss of safety function is detected and priate actions are taken. Upon entry into LCO 3.0.6, an ation shall be made to determine if loss of safety function . Additionally, other limitations, remedial actions, or ensatory actions may be identified as a result of the support n inoperability and corresponding exception to entering rted system Conditions and Required Actions. The SFDP nents the requirements of LCO 3.0.6.		
	Cross train checks to identify a loss of safety function for those support systems that support multiple and redundant safety systems are required. The cross train check verifies that the supported systems of the redundant OPERABLE support system are OPERABLE, thereby ensuring safety function is retained. A loss of safety function may exist when a support system is inoperable, and:			
	ir	required system redundant to system(s) supported by the noperable support system is also inoperable; or EXAMPLE B3.0.6-1)		
	b	A required system redundant to system(s) in turn supported by the inoperable supported system is also inoperable; or EXAMPLE B3.0.6-2)		
	S	required system redundant to support system(s) for the upported systems (a) and (b) above is also inoperable. EXAMPLE B3.0.6-3)		
	approp	evaluation determines that a loss of safety function exists, the priate Conditions and Required Actions of the LCO in which ss of safety function exists are required to be entered.		
	additic being system protec inoper provid explici source declar emerg	bess of safety function does not require the assumption of onal single failures or loss of offsite power. Since operation is restricted in accordance with the ACTIONS of the support n, any resulting temporary loss of redundancy or single failure tion is taken into account. Similarly, the ACTIONS for able offsite circuit(s) and inoperable diesel generator(s) e the necessary restriction for cross train inoperabilities. This it cross train verification for inoperable AC electrical power es also acknowledges that supported system(s) are not ed inoperable solely as a result of inoperability of a normal or pency electrical power source (refer to the definition of ABILITY).		
LCO 3.0.6 (continued)	SFDF Action consid affect Techn start of source the su adequ relian function	a loss of safety function is determined to exist, and the P requires entry into the appropriate Conditions and Required hs of the LCO in which the loss of safety function exists, deration must be given to the specific type of function ed. Where a loss of function is solely due to a single nical Specification support system (e.g., loss of automatic due to inoperable instrumentation, or loss of pump suction e due to low tank level) the appropriate LCO is the LCO for upport system. The ACTIONS for a support system LCO uately addresses the inoperabilities of that system without ce on entering its supported system LCO. When the loss of on is the result of multiple support systems, the appropriate is the LCO for the supported system.		

Technical Reference:	40DP-90P37 Safety Function Determination Procedure
----------------------	--

One train ESPS (Spray Pond Pump) being inoperable results in the associated train of EC being inoperable. LCO 3.0.6 can be used.

4.1.6 When a loss of safety function is caused by the inoperability of a single Technical Specification support system, the appropriate Conditions and Required Actions to enter are those of the support system.

LCO	SUPPORT FEATURE	SUPPORTED LCO				
3.7.7	EW	3.4.6 RCS Loops - Mode 4 3.7.10 EC (40ST-9EC03)*				
3.7.8	ESPS	3.4.6 RCS Loops - Mode 4 3.7.7 EW* 3.8.1 AC Sources - Operating (40ST-9ZZ37)				
3.7.9	UHS (Note 1)	3.7.8 ESPS*				
Note 1	Loss of the single support systems may render multiple trains of supported systems inoperable, resulting in a loss of safety function. In those situations, the supported equipment should be declared inoperable, but the Conditions and Required Actions only for the support systems (RWT, CST, UHS) are required to be entered.					

Example 2 is for a room cooler being non-functional (similar to an AFW pump room cooler). Since the room cooler is not in Tech Specs, LCO 3.0.6 cannot be used. LCO 3.0.6 can only be used if an LCO support system is inoperable.

Example # 2 - Support Feature that is not specified in Technical Specification

For this example HAA-Z01, HPSI Pump A Room Essential ACU, is considered inoperable due to a bad fan bearing. HAA-Z01 is not specified by an LCO in the Technical Specification, thus the first step in determining if LCO 3.0.6 could be implemented would not be met. Since HPSI Pump A is specified in Technical Specification, the LCO Required Actions would be performed for HPSI Pump A. (3.5.3 ECCS - Operating).

X = Inoperable Support Feature / = Inoperable Supported Feature (support features are on the left)

Example 3 shows how the CST being inoperable makes all three trains of AFW inoperable resulting in a loss of safety function. However, the CST is a single support system and LCO 3.0.6 can be used. UHS is also a single support system that results in a loss of safety function.

Example # 3

Appendix D, SUPPORT & SUPPORTED LCO MATRIX

LCO	SUPPORT FEATURE	SUPPORTED LCO
3.7.6	CST	3.7.5 AFW

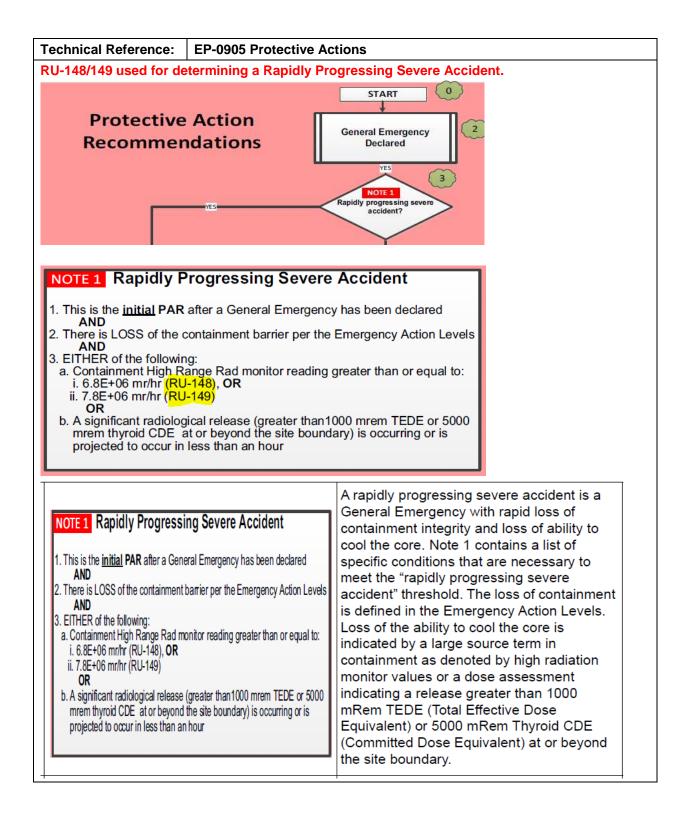
Appendix D indicates that the AFW LCO 3.7.5 is considered a supported LCO of the CST LCO 3.7.6. Since the CST serves all three AFW Pumps, all of the AFW Pumps are considered to be inoperable.

By determining the impact of the inoperable support feature early in the process, a potential loss of safety function associated with the AFW Pumps has been identified. The Required Actions in LCO 3.7.6 for the CST, if completed within the allowed Completion Time for LCO 3.7.6, should remedy the loss of safety function associated with the AFW Pumps. Also, because this loss of safety function would be due to a single support system, then only the Conditions and Required Actions that need to be entered are those of the CST.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of radiation monitoring systems, such	Tier			3
as fixed radiation monitors and alarms, portable survey instruments, personnel monitoring equipment, etc.	Group			
nstruments, personnel monitoring equipment, etc.	K/A		G 2.3.15	
	IR			3.1

While evaluating the PAR Flowchart, which of the following Radiation Monitors are used to determine if a Rapidly Progressing Severe Accident is in progress?

- 1. Containment Radiation Monitors, RU-148 and 149
- 2. Main Steam Line Radiation Monitors, RU-139 and 140
- 3. Plant Vent Radiation Monitors, RU-143 and 144
- 4. Fuel Building Exhaust Radiation Monitors, RU-145 and 146
- A. 1 ONLY
- B. 1 and 2 ONLY
- C. 2, 3, and 4 ONLY
- D. 3 and 4 ONLY


Pro	posed Answer:	Α	
Ехр	lanations:		
Α.	Correct.		
В.	Plausible that since the PAR is based largely on the amount of release to the environment that both releases inside and outside of containment would be evaluated (i.e. LOCA and SGTR), however only the Containment High Range monitors are used when determining if the event is rapidly progressing.		
C.	Plausible that the MSL, PV and FB monitors would all be evaluated since these encompass three areas in which radiation can escape via monitored pathways, however MSL monitors are not used and the other two are used only for the release flowchart as they are the effluent RMs.		
D.		ent RI	RMs are the ones used when determined the status of a release as they are Ms, however they are not used when making protective action

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	4	
Reference Provided:	Ν	
Learning Objective:	Des	scribe terms and requirements associated with Protective Actions

Technical Referen	nce: NUREG 1021 SRO-Only Guidance				
D. Radiation Hazards That May Arise during Normal and Abnormal Situations, including Maintenance Activities and Various Contamination Conditions [10 CFR 55.43(b)(4)]					
Some examples of SRO exam items for this topic include the following:					
• proc	ess for gaseous/liquid release approvals (i.e., release permits)				
	ysis and interpretation of radiation and activity readings as they pertain to the ction of administrative, normal, abnormal, and emergency procedures				
	ysis and interpretation of coolant activity, including comparison to emergency criteria and/or regulatory limits				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of radiological safety procedures	Tier			3
pertaining to licensed operator duties, such as response to radiation monitor alarms, containment entry	Group			
requirements, fuel handling responsibilities, access to	K/A	G 2.3.13		
locked high-radiation areas, aligning filters, etc.	IR			3.8

Per EP-0905, Protective Actions, the EPA guidance for life-saving or protection of large populations allows for a MAXIMUM TEDE exposure of ____(1)___ and authorization for this exposure is required to be given by the ____(2)___.

- A. (1) 10 REM
 - (2) Emergency Coordinator
- B. (1) 10 REM(2) Radiation Protection Coordinator
- C. (1) 25 REM
 - (2) Emergency Coordinator
- D. (1) 25 REM
 - (2) Radiation Protection Coordinator

Pro	posed Answer:	С		
Exp	Explanations:			
Α.	First part is plausible since this is the limit for protection of property, however 25 REM is the limit for lift saving efforts. Second part is correct.			
В.	First part is plausible since this is the limit for protection of property, however 25 REM is the limit for lift saving efforts. Second part is plausible since the Radiation Protection Coordinator is the person who authorizes exposures up to 5 REM, however the EC authorizes exposures from 5 – 25 REM.			
C.	Correct.			
D.			econd part is plausible since the Radiation Protection Coordinator is the sexposures up to 5 REM, however the EC authorizes exposures from $5 -$	

Question Source:		New	
	x	Bank	
		Modified	
	x	Previous NRC Exam	2018 NRC Q98

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	2	
10CFR55.43:	4	
Reference Provided:	N	
Learning Objective:	Identify the EC responsibilities associated with authorizing emergency exposure	

Technical Reference:	NUREG 1021 SRO-Only Guidance				
D. <u>Radiation Hazards That May Arise during Normal and Abnormal Situations, including</u> <u>Maintenance Activities and Various Contamination Conditions</u> [10 CFR 55.43(b)(4)]					
Some examples of	SRO exam items for this topic include the following:				
 process for 	gaseous/liquid release approvals (i.e., release permits)				
-	d interpretation of radiation and activity readings as they pertain to the administrative, normal, abnormal, and emergency procedures				
	d interpretation of coolant activity, including comparison to emergency a and/or regulatory limits				

Technical Reference: EP-0905 Protective Actions

6.8 Emergency Exposure Authorization

6.8.1 <u>Determine</u> the exposure limit for the job assignment based on expected radiological conditions using Table 1.

Dose Limits	TEDE	TEDE & Thyroid CDE	LDE	SDE	Authorization Required By:	
10 CFR 20.1201 Limits (EPA guidance for all workers in emergencies)	≤ 5 REM per Year	≤ 50 REM per Year	≤ 15 REM per Year	≤50 REM per Year	RPM or RPC	
EPA Guidance for Protecting Property*	5 <mark>-10 REM</mark> per Event	50-100 REM per Event	15-30 REM per Event	50-100 REM per Event	EC-STSC or EC-TSC only (when lower limits are not practicable)	
EPA Guidance for Life-Saving or Protection of Large Populations**	<mark>≤ 25 REM</mark> per Event	≤ 250 REM per Event	≤ 75 REM per Event	≤ 250 REM per Event	EC-STSC or EC-TSC only (when lower limits are not practicable)	
EPA Guidance for Life-Saving or Protection of Large Populations** (on a Voluntary Basis Only)	> 25 REM per Event	> 250 REM per Event	>75 REM per Event	>250 REM per Event	EC-STSC or EC-TSC only (and a risk discussion must be conducted)	
"Protecting Valuable Property" includes equipment-saving measures or repair activities that, in the opinion of the EC, constitutes plant protective measures.						
*"Protection of Large Populations" refers to situations where the collective dose avoided by the emergency operation is significantly larger than that incurred by the workers involved.						

Table 1: Exposure Limits

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of the specific bases for EOPs	Tier			3
	Group			
	K/A		G 2.4.18	
	IR			4.0

Question 99

Per 40DP-9AP16, EOP Users Guide...

- (1) Bulleted lists of options to mitigate an event in progress (i.e. potential methods to restore feedwater) are...
- (2) Implementation of an AOP concurrently with the EOP in use may be done...
- A. (1) all equally acceptable to pursue
 - (2) at the discretion of the CRS
- B. (1) all equally acceptable to pursue(2) ONLY with the concurrence of the SM
- C. (1) listed in the order in which they are REQUIRED to be pursued(2) at the discretion of the CRS
- D. (1) listed in the order in which they are REQUIRED to be pursued(2) ONLY with the concurrence of the SM

Proposed Answer: A

Explanations: Given that this is a Tier 3 generic KA, we felt that the best way to match the spirit of the KA while maintaining as a Tier 3 generic question was to ask about the rules of use for the EOPs. Correct. Α. First part is correct. Second part is plausible since the SM is required to concur if steps are going Β. to be performed other than written or if performing actions outside of the EOPs is deemed necessary, however use of alternate procedures during EOP usage can be done at the discretion of the CRS. C. First part is plausible since the methods presented in lists are generally listed in order of preference, however the use of any of the listed methods are all equally acceptable and may be pursued at the discretion of the CRS. Second part is correct. D. First part is plausible since the methods presented in lists are generally listed in order of preference, however the use of any of the listed methods are all equally acceptable and may be pursued at the discretion of the CRS. Second part is plausible since the SM is required to concur if steps are going to be performed other than written or if performing actions outside of the EOPs is deemed necessary, however use of alternate procedures during EOP usage can be done at the discretion of the CRS.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	3					
10CFR55.43:	1					
Reference Provided:	Ν					
Learning Objective:	pro	Given that an ORP is being implemented, describe the order in which procedural steps are performed during the performance of the EOP in accordance with 40DP-9AP16.				

Technical R	eference:	NUREG 10	21 SRC	Only	Guidance		
Directing ac Only Job Fu			Ind ther	efore k	nowledge	of rules of use	for EOPs) is an SRO-
A. Condition	is and Limitatio	<u>ns in the Facilit</u>	<u>/ License</u>	[10 CFF	R 55.43(b)(1)])	
Examples	s of SRO exam	items for this to	pic includ	e the follo	owing:		
	porting require ceeded	ments when the	maximun	n licensed	thermal pov	ver output is	
	dministration of ctions associate						
co	quired actions ontrols listed in icility (e.g., shift	Technical Spec	ifications			ministrative epending on the	
• N	ational Pollutan	t Discharge Elir	nination S	system re	quirements, i	f applicable	
• pr	ocesses for TS	and final safet	y analysis	report ch	anges		
a licensee de licensee can evidence that systematic ap dassified as K/A is "unique the following: The q plan a margi [Secti							
From the P	/NGS SRO-	Only Maste	r Task L	.ist:			
	N	ASTER	R TAS	SK LI	ST		
	Task list for OPTRNG at 2020/01/28: (189524) Senior Reactor Operator All Tasks						
Task#	1	ask	Selected for Training	Recurring	How Often	Training Setting	
	SB: Core Protection Calculator						
1060010402	Direct operation service for low p shutdown	s with CPC out of ower or reactor	Yes	No		Classroom	
	EM	- Emergency	Operatio	ng Proc	edures		
124000379337	Respond to an e entry into the Se Management Gu	vere Accident	Yes	Yes	4 Years	Initial: Classroom Continuing: Classroom	
L498331		om the Emergency	Yes	Yes	Yearly	Initial: Classroom & Simulator Continuing: Simulator	

Technical Referen	Ace: 40DP-9AP16 Emergency Operating Procedure Users Guide							
4.10 STEP	4.10 STEP SEQUENCING							
	4.10.1 Steps are sequenced to provide a systematic path to stabilize the plant. The operators follow the steps as written.							
	ts are provided within a step when any one of several alternative actions are ually acceptable to perform ^l .							
4.18.7 Per	forming Steps in the EOPs							
	If the left column can not be completed, the user shall move to the right column for contingency actions. If the contingency action can not be accomplished or is not provided, then the user proceeds to the next step in the left column.							
	If the contingency action achieves the expected response, the user proceeds to the next sequential step in the left column unless referred to another step or procedure.							
	The operator shall perform the procedure action steps as written and in the order written. However, a Trigger Step may be performed anytime that the trigger condition becomes true.							
	Emergencies may not proceed as expected. Sufficient flexibility must be provided to aid the CRS with steps that can not be performed as written. If a step can not be performed as written, and the CRS wants to perform the step in another manner, then he shall obtain the concurrence of the SM.							

Technical Reference: 40EP-9EO06 Loss of All Feedwater							
This EOI by the C		is an exa	ample of a list of a	ctions	. Th	e best option is to be performed / selected	
INSTRUCTIONS				CONTINGENCY ACTIONS			
			east one Steam Y of the following:	6.1		form the following to establish a low ssure feedwater source:	
AU	XILAR	Y FEEDW	ATER		a.	IF ALL of the following:	
•	Appe	ndix 38, <u>F</u>	Resetting AFA-P01			 Auxiliary or Main Feedwater can NOT be restored 	
•	Appe AFB-		ocal Operation of			Offsite power is available	
•			ocal Operation of gMain Steam			 Feeding a Steam Generator with a condensate pump is 	
•	Appe <u>AFN-</u>		ocal Operation of		desired THEN <u>PERFORM</u> Appendix 44,		
•			Aligning Aux mps Suction to			Feeding with the Condensate Pumps.	
	RMW		nps Sucion to		b.	IF feeding a Steam Generator with a fire pump is desired,	
•		A-P01 D	Manual Operation uring a Security		THEN <u>PERFORM</u> Appendix 118, <u>Cross-connect FP to AF</u> .		
МА		DWATER	ł	6.2	IF feed to at least one Steam Generator can NOT be restored, THEN GO TO 40EP-9EO09, <u>Functional</u> <u>Recovery</u> to perform ANY of the following:		
•	Арре	ndix 43, <u>F</u>	Restarting MFPs				
		-OAF EC		in a bı		ed list. These sub steps are required to be	
* 24.		S has a	tuated, the following:				
	a. <u>(</u>	<u>Close</u> the	LPSI Injection Valv	es.			
	b. <u>s</u>	Stop LPS	I Pumps.				
	с. <u></u>	<u>Stop</u> CS	Pumps.				
	Ī	REFÊR 1	SIAS Load Shed Pa O Appendix 21, <u>Lis</u> Id Shed Panels.				
	I		<u>M</u> Appendix 17, on of Containment				

echnical Refe	erence:	40DP-9AP16 Emergency Operating Procedure Users Guide	
4.12 RE	FERENCI	ES TO OTHER PROCEDURES	
4.12.1	EOPs ind Minimizir provide ti minimizir	Ps are designed to minimize the interface with other procedures. T clude standard appendices that operators may need during recove ng the interface with other procedures and including standard appe he control room staff with an easily located set of instructions whil ng the simultaneous use of other procedures. When other procedur the required procedure will be referenced in the body of the EOP.	ery. Indices e res are
4.12.2		ocedures (ALs, AOs, or OPs) are not normally needed to supplem ut may be used when directed by the CRS.	<mark>ent the</mark>
4.25 US		NORMAL AND OPERATING PROCEDURES	
		NOTE	
Perform		an AOP may be in progress when the reactor trips and EOPs are	
4.25.1	trip, howe	y Control Safety Function shall be addressed immediately after a re ever, some operations in progress will require that additional steps performed prior to addressing additional safety functions (for exam Reactor Coolant Pumps and isolating seal bleedoff).	in an
4.25.2		ed performance of non-EOP activities should be limited to activities I for equipment protection, personnel safety, and placing plant syste andition.	
4.25.3	procedur prevent o	S may direct performance of an AO or OP with an optimal recovery re, the FRP, or the LMFR. Use of an AO or OP may be necessary t compounding of an event, such as degraded electrical conditions o istrument air event.	0

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of the bases for prioritizing emergency	Tier			3
procedure implementation during emergency operations	Group			
	K/A		G 2.4.23	
	IR			4.4

Question 100

Using the Safety Function Tracking Sheet on the following page:

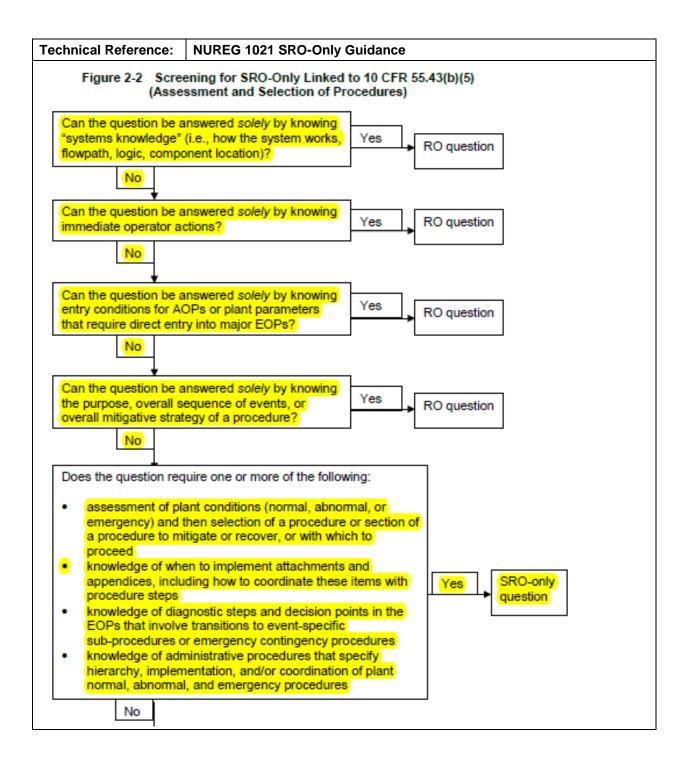
- (1) The FIRST Safety Function performed should be...
- (2) After all Challenged and Jeopardized Safety Functions are performed, the next Success Path in use to be verified should be...
- A. (1) Pressure Control(2) Reactivity Control
- B. (1) Pressure Control(2) MVDC
- C. (1) Heat Removal(2) Reactivity Control
- D. (1) Heat Removal (2) MVDC

PALO VERDE NUCLEAR GENERATING STATION

40EP-9EO09 Revision 64

FUNCTIONAL RECOVERY

4.0 SAFETY FUNCTION TRACKING


			EOP E	ntry Time _	
Safety Function	Success Path	Path in use	Challenged	Jeopardized	Completed
RC	RC-1; CEA Insertion				
	RC-2; CVCS Boration	 ✓ 			
	RC-3; HPSI Boration				
MVDC	MVDC-1; Batt Chargers/Station Batt	√			
MVAC	MVAC-1; Offsite Power				
	MVAC-2; DGs	~			
	MVAC-3; SBOGs				
	MVAC-4; Other Unit DGs				
IC	IC-1; CVCS	✓			
	IC-2; SI				
PC	PC-1; Subcooled Pressure Control		✓		
	PC-2; RCGVS				
	PC-3; Saturated Pressure Control				
HR	HR-1; SG with no SI			\checkmark	
	HR-2; SG with SI				
CI	CI-1; Auto/Man CTMT Isolation	~			
CTPC	CTPC-1; CTMT Fans	√			
	CTPC-2; CS				

Pro	posed Answer:	С					
Exp	lanations:						
Α.	A. First part is plausible since Pressure Control is the highest SF that is challenged or jeopardized, however the highest jeopardized SF is addressed first. Second part is correct.						
В.	B. First part is plausible since Pressure Control is the highest SF that is challenged or jeopardized, however the highest jeopardized SF is addressed first. Second part is plausible since RC is generally not re-addressed if initially met, however this is only true if RC is met due to all CEAs being fully inserted, not when RC is met due to a boration in progress.						
C.	Correct.						
D.	 First part is correct. Second part is plausible since RC is generally not re-addressed if initially met, however this is only true if RC is met due to all CEAs being fully inserted, not when RC is met due to a boration in progress. 						

Question Source:		New	
		Bank	
	x	Modified	
	x	Previous NRC Exam	2020 NRC Q94 (modified)

Cognitive Level:		Memory or Fundamental Knowledge
	x	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	N	
Learning Objective:	pat ord	en the FRP is being performed and various combinations of success hs have been identified and jeopardized (if appropriate), describe the er and the process in which a specific set of success paths will be lressed in accordance with 40EP-9EO9.

iginal	Question:	2020 NR	C Exam	Q94					
uestion	94								
leine the	Sofaty Eurotion Te	acking Choot of	n the followin	00.0000					
Using the Safety Function Tracking Sheet on the following page:									
1) The f	The first Safety Function performed will be								
2) After Succe) After all Challenged and Jeopardized Safety Functions are performed, the next Success Path in use to be verified will be								
	Pressure Control MVDC								
	Pressure Control Reactivity Control								
	Heat Removal								
	Heat Removal Reactivity Control								
				PALO VERDE NUCLEAR GENERATING STATION 40EP-9E009 Revision 62					
PALO	ERDE NUCLEAR GE	ENERATING ST	ATION						
	FUNCTIONAL R	ECOVERY	ATION		9 i ige 8 of 2				
4.0 S/		ECOVERY		EOP E	nge 8 of 2	45			
	FUNCTIONAL R		Path in use	EOP E	nge 8 of 2				
4.0 SA	FUNCTIONAL R		Path	EOP E	nge 8 of 2	45			
4.0 SA Safety Function	FUNCTIONAL R AFETY FUNCTION Succes		Path in use	EOP E	nge 8 of 2	45			
4.0 SA Safety Function	FUNCTIONAL R AFETY FUNCTION Succes RC-1; CEA Insertion		Path in use	EOP E	nge 8 of 2	45			
4.0 S/ Safety Function RC MVDC	FUNCTIONAL R AFETY FUNCTION Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers/	RECOVERY I TRACKING s Path	Path in use	EOP E	nge 8 of 2	45			
4.0 S/ Safety Function RC	FUNCTIONAL R AFETY FUNCTION Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers MVAC-1; Offsite Power	RECOVERY I TRACKING s Path	Path in use X	EOP E	nge 8 of 2	45			
4.0 S/ Safety Function RC MVDC	FUNCTIONAL R AFETY FUNCTION Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers/ MVAC-1; Offsite Power MVAC-2; DGs	RECOVERY I TRACKING s Path	Path in use X	EOP E	nge 8 of 2	45			
4.0 S/ Safety Function RC MVDC	FUNCTIONAL R AFETY FUNCTION Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers MVAC-1; Offsite Power	RECOVERY I TRACKING s Path	Path in use X	EOP E	nge 8 of 2	45			
4.0 S/ Safety Function RC MVDC	FUNCTIONAL R AFETY FUNCTION Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers/ MVAC-1; Offsite Power MVAC-2; DGs	RECOVERY	Path in use X	EOP E	nge 8 of 2	45			
4.0 S/ Safety Function RC MVDC	FUNCTIONAL R AFETY FUNCTION Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers/ MVAC-1; Offsite Power MVAC-2; DGs MVAC-3; SBOGs	RECOVERY	Path in use X	EOP E	nge 8 of 2	45			
4.0 SA Safety Function RC MVDC MVAC	FUNCTIONAL R Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers/ MVAC-1; Offsite Power MVAC-2; DGs MVAC-3; SBOGs MVAC-4; Other Unit DGs	RECOVERY	Dath in use X X X X	EOP E	nge 8 of 2	45			
4.0 SA Safety Function RC MVDC MVAC	FUNCTIONAL R Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers/ MVAC-1; Offsite Power MVAC-2; DGs MVAC-3; SBOGs MVAC-4; Other Unit DG IC-1; CVCS	ECOVERY I TRACKING s Path (Station Batt) s	Dath in use X X X X	EOP E	nge 8 of 2	45			
4.0 S/ Safety Function RC MV/DC MV/AC	FUNCTIONAL R Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration MVDC-1; Batt Chargers/ MVAC-2; DGs MVAC-2; DGs MVAC-2; DGs MVAC-3; SBOGs MVAC-4; Other Unit DGs IC-1; CVCS IC-2; SI	ECOVERY I TRACKING s Path (Station Batt) s	Path in use X X X X X X	EOP E Challenged Challenged I	nge 8 of 2	45			
4.0 S/ Safety Function RC MV/DC MV/AC	FUNCTIONAL R Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers MVAC-1; Offsite Power MVAC-2; DGs MVAC-3; SBOGs MVAC-3; SBOGs MVAC-4; Other Unit DGs IC-1; CVCS IC-2; SI PC-1; Subcooled Pressu	ECOVERY I TRACKING s Path (Station Batt s are Control	Path in use X X X X X X	EOP E Challenged Challenged I	nge 8 of 2	45			
4.0 S/ Safety Function RC MV/DC MV/AC	FUNCTIONAL R Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers/ MVAC-1; Offsite Power MVAC-2; DGs MVAC-3; SBOGs MVAC-4; Other Unit DGs IC-1; CVCS IC-2; SI PC-1; Subcooled Pressu PC-2; RCGVS	ECOVERY I TRACKING s Path (Station Batt s are Control	Path in use X X X X X X	EOP E Challenged Challenged I	nge 8 of 2	45			
4.0 S/ Safety Function RC MVDC MVAC IC PC	FUNCTIONAL R Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration MVDC-1; Batt Chargers/ MVAC-1; Offsite Power MVAC-2; DGs MVAC-3; SBOGs MVAC-3; SBOGs MVAC-4; Other Unit DGs IC-1; CVCS IC-2; 81 PC-1; Subcooled Pressur PC-2; RCGVS PC-2; Saturated Pressur	ECOVERY I TRACKING s Path (Station Batt s are Control	Path in use X X X X X X X X X	EOP E Challenged Challenged I	ntry Time . Jeopardized	45			
4.0 S/ Safety Function RC MVDC MVAC IC PC	FUNCTIONAL R Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers MVAC-2; DGs MVAC-2; DGs MVAC-3; SBOGs MVAC-3; SBOGs MVAC-4; Other Unit DGs IC-1; CVCS IC-2; SI PC-1; Subcooled Pressu PC-2; RCGVS PC-3; Saturated Pressur HR-1; SG with no SI	ECOVERY I TRACKING s Path (Station Batt) (Station Batt) s ure Control re Control	Path in use X X X X X X X X X	EOP E Challenged Challenged I	ntry Time . Jeopardized	45			
4.0 S/ Safety Function RC MVDC MVAC IC IC IC	FUNCTIONAL R Succes RC-1; CEA Insertion RC-2; CVCS Boration RC-2; CVCS Boration RC-2; CVCS Boration RC-3; HPSI Boration MVDC-1; Batt Chargers/ MVAC-1; Offsite Power MVAC-2; DGs MVAC-3; SBOGs MVAC-4; Other Unit DGs IC-1; CVCS IC-2; SI PC-1; Subcooled Pressu PC-2; RCGVS PC-3; Saturated Pressu HR-1; SG with no SI HR-2; SG with SI	ECOVERY I TRACKING s Path (Station Batt) (Station Batt) s ure Control re Control	Dath in use X X X X X X X X X X X X X	EOP E Challenged Challenged I	ntry Time . Jeopardized	45			

Technical Reference	e: 40EP-9EO09 Fu	40EP-9EO09 Functional Recovery				
INSTRU	CTIONS	CONTINGENCY ACTIONS				
9. Perform A the order li	L of the following in ted:					
those	ss path instructions for <mark>safety functions that</mark> jeopardy					
those	ss path instructions for safety functions that allenged					
all ot	ss path instructions for <mark>er non-shaded</mark> ss paths in use					

Technical Reference: 40DP-9AP14 Functional Recovery Technical Guideline

4.2 Procedure Strategy

4.2.1 The basic strategy of the Functional Recovery procedure is to first determine the status of all of the safety functions and then build a procedure using the appropriate success paths that will recover or maintain the acceptance criteria of each safety function.

Once the Functional Recovery procedure has been entered, the operator will use the Safety Function Tracking page and the Resource Assessment Trees (RATs) to determine the acceptance criteria and the equipment needed to satisfy each safety function. The operator must determine whether each safety function is jeopardized (acceptance criteria not met), challenged (acceptance criteria met but action must be taken to ensure that the criteria continue to be met) or satisfied in order to set the priorities for performance of the procedure.

Jeopardized safety functions are addressed first. Challenged safety functions are addressed next, with appropriate actions for satisfied safety functions taken last. All safety functions are addressed in the established hierarchy.

4.5.9 Step 9 - Perform Success Paths

A. The intent of this step is to establish a priority for operator actions as the Functional Recovery is implemented.

In the event any safety function SFSC acceptance criteria are not met, the operator's first priority is to perform the operator actions for those success paths that will restore the safety function.

After the actions have been performed for jeopardized safety functions, the appropriate actions for all other success paths in use must be performed. Challenged safety functions are to be addressed next. Challenged safety functions are those which are currently satisfied but may become jeopardized due to plant trends or equipment conditions.

The operator actions associated with the remaining success paths in use contain guidance to enable those safety functions to continue to satisfy their acceptance criteria.

4.6 Safety Function Tracking

4.6.1 The Safety Function Tracking page organizes and condenses information about the success paths in use. It was created to give the CRS a convenient place to keep track of selected success paths in use and their status. The first two columns identify all the success paths as described in section 5.0, Safety Function Status Check. The third column provides the CRS a place to annotate the success paths in use. Also, the third column provides a place to annotate a new success path in use when conditions warrant selection of a new success path. The fourth column provides the CRS with a place to annotate whether the selected success path is challenged. The fifth column provides the CRS with a place to annotate whether the selected success path is in jeopardy or not. The sixth column provides the CRS with a place to annotate within the selected success path in use have been completed.

The grayed Completed blocks have a special meaning. Performing the instructions/contingencies for these paths is not required when the associated success path acceptance criteria are satisfied. Meeting the acceptance criteria for these paths implies that no further actions are needed.

2021 PVNGS NRC Initial Written Exam Answer Key Rev 14

1.	В	26.	А	51.	A	76.	А
2.	А	27.	D	52.	С	77.	А
3.	В	28.	С	53.	А	78.	С
4.	В	29.	В	54.	В	79.	D
5.	С	30.	D	55.	D	80.	D
6.	D	31.	С	56.	А	81.	В
7.	В	32.	С	57.	С	82.	D
8.	А	33.	А	58.	D	83.	С
9.	С	34.	С	59.	D	84.	А
10.	В	35.	D	60.	А	85.	В
11.	D	36.	В	61.	В	86.	С
12.	А	37.	С	62.	А	87.	D
13.	В	38.	D	63.	С	88.	А
14.	С	39.	D	64.	В	89.	С
15.	А	40.	С	65.	D	90.	С
16.	С	41.	В	66.	С	91.	В
17.	D	42.	А	67.	С	92.	В
18.	С	43.	В	68.	D	93.	В
19.	В	44.	С	69.	А	94.	D
20.	А	45.	В	70.	А	95.	С
21.	D	46.	С	71.	А	96.	D
22.	D	47.	D	72.	D	97.	А
23.	D	48.	С	73.	В	98.	С
24.	D	49.	В	74.	A	99.	A
25.	С	50.	С	75.	D	100.	С
	-		-				-

RO Exam

A:	17	
В:	17	
C:	21	
D:	20	
Bank:	12	
New:	60	
Modified:	3	
Low Cog:	30	
High Cog:	45	

SRO Exam

A:	6
В:	5
C:	8
D:	6
Bank:	8
New:	16
Modified:	1
Low Cog:	9
High Cog:	16