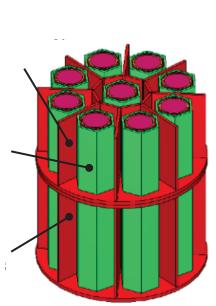
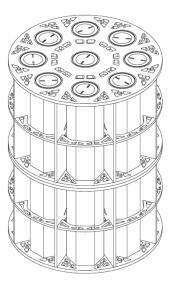
From:	Giacinto, Joseph
Sent:	Tuesday, May 25, 2021 2:05 PM
То:	AdvancedReactors-GEISDocsPEm Resource
Subject:	INL - DOE's Initial Approach for Large Volume UO2 Transport
Attachments:	Jarrell, Transportation, Rev12020. pdf

DOE's Initial Approach for Large-Volume UO₂ Transport


Josh Jarrell and Elmar Eidelpes


GAIN/EPRI/NEI HALEU Webinar April 29, 2020

A large-volume, UO₂ HALEU transportation package concept

- Background and Goals
- HALEU composition and packaging selection
- Concept overview
- Feasibility evaluations
- Conclusions and path forward

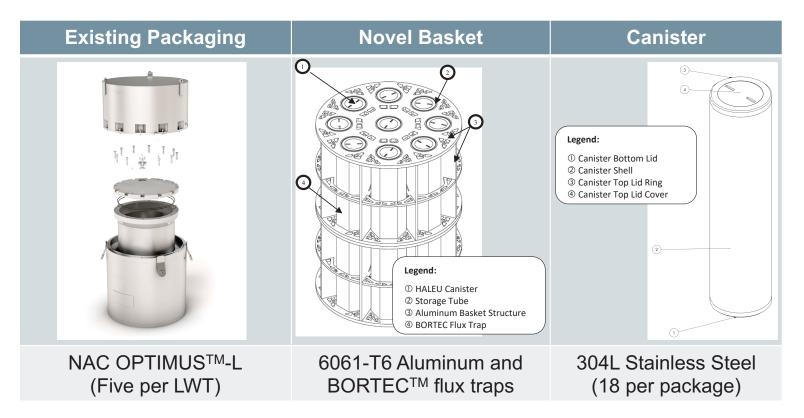
Background

- No large-volume packages for HALEU have been certified by NRC or DOE
 - Criticality appears to be the most pressing evaluation
 - Availability of criticality benchmark data had been identified as potential issue
- HALEU workshop 2018:
 - NEI/INL sponsored, participated by NRC, DOE, national lab complex, and Industry
 - NEI recommended development of a high-capacity transportation concept (\geq 1600 kg of UO₂ HALEU)
- DOE-NE initiated project shortly after NEI recommendation (INL, PNNL, and ORNL)
- Goals:
 - Definition of anticipated HALEU composition, including impurities
 - Investigate potential of existing package designs for HALEU transportation
 - Design a feasible HALEU transportation concept and demonstrate potential for licensing
 - Evaluate criticality benchmark data availability
 - Develop Functions and Requirements (F&Rs) for HALEU transportation concept

Beginning of 2020: Funding cut

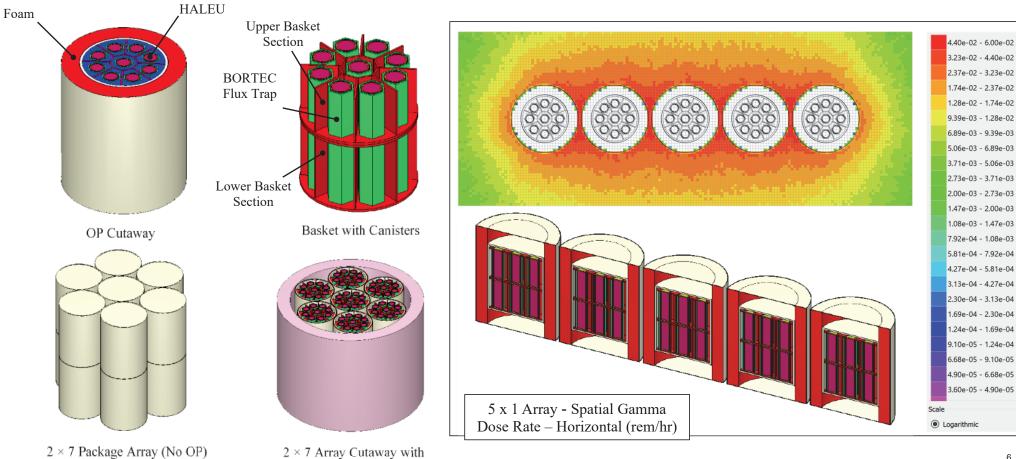
HALEU Composition and Packaging Selection

- Two potential sources for timely HALEU production (recovery not enrichment)
 - Aluminum or zirconium-clad HEU fuels
 - - Range of possible isotopic compositions (e.g., wt. % ²³³U,)
 - Evaluated **pre-recast** compositions (significant margin in dose)
 - Type B package required for quantities greater than 3.4 kg (due to activity)
 - VERY Low heat generation ~5.33e-04 W/kg
- Evaluated current package candidates (RAMPAC Database)
 - TN Americas TN-LC
 - Heavy
 - Good Shielding
 - NAC International OPTIMUS[™]
 - OPTIMUS[™]-L/H
 - Lightweight


Multiple packages on a single legal-weight Truck (LWT)

Selected Candidate:

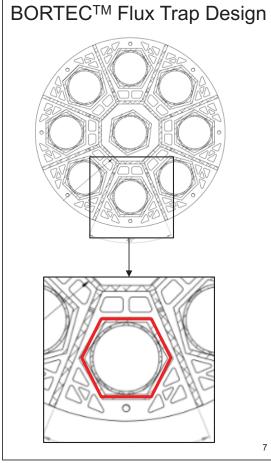
NAC International OPTIMUS[™]-L



Concept Overview

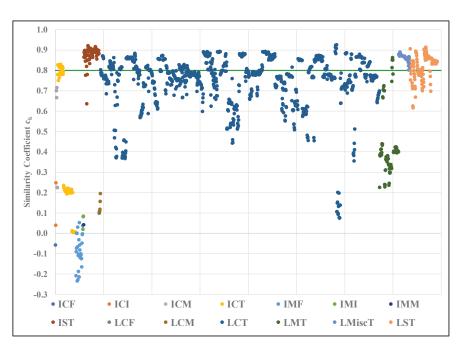
SCALE Model

Water Reflector


6

Criticality Evaluations – Using SCALE CSAS6

- Novel flux trap design reduces reactivity in flooded CCV:
 - Pipes with hexagonal cross sections
 - 70% aluminum / 30% B_4C
- Worst case = Hypothetical accident condition (HAC)
 - $k_{eff} = 0.917$
 - 2 × 7 array of damaged packages, reflective boundary conditions (water/steel), dry space between packages and in packaging cavity, 15% UO₂ and 85% H₂O in canister


Regulation	Corresponding Package Configurations and Boundary Conditions
10 CFR 71.55	 Most reactive, credible package configuration, and Most reactive credible water moderation, and Close full reflection by water or surrounding packaging material.
10 CFR 71.59	 5 × N undamaged packages with nothing in-between, or 2 × N packages damaged by HAC remain subcritical and optimum interspersed hydrogenous moderation.
	Further:• Close full reflection by water of the 5 × N or 2 × N array, and• N \ge 0.5, and• Σ CSI \le 50.

Idaho National Laboratory

Applicable Criticality Benchmarks – using SCALE TSUNAMI

- Most reactive NCT and HAC package configuration
- International Criticality Safety Benchmark Evaluation Project (ICSBEP) and ORNL's VALID library data
- Total: 1584 available benchmarks
- NCT model k_{eff} ≈ 0.8:
 - $-c_k \ge 0.9$ for 34 benchmarks (similar)
 - $-c_k \ge 0.8$ for 566 benchmarks (marginally similar)
- HAC model k_{eff} ≈ 0.92:
 - $-c_k \ge 0.9$ for 55 benchmarks (similar)
 - $-c_k \ge 0.8$ for 1104 benchmarks (marginally similar)

NCT Model

Dose Evaluations – using SCALE MAVERIC

Dose rates (mrem/hr)

Undamaged Single Package, Maximum HALEU Composition		
Surface	30 (limit 200)	
1 m from surface	6 (limit 10)	
Damaged Single Package, Maximum HALEU Composition		
Surface	101	
1 m from surface	12 (limit 1000)	
Transportation Array, Maximum HALEU Composition		
Surface	60	
1 m from surface	17 (limit 50)	

- Nonexclusive use conveyance possible
 - Common carrier and open transport
- Actual doses expected to be lower

Regulation	Corresponding Dose Rate Limits
10 CFR 71.47	 Dose rate ≤ 2 mSv/hr (200 mrem/hr) at any point on the external surface of the package, and, Transport index (TI) ≤ 10, which is a limit equivalent to 0.1 mSv/hr (10 mrem/hr) at 1 m from the external surface of the package.
10 CFR 71.51	 HAC dose rate ≤ 10 mSv/hr (1 rem/hr) at 1 m from the external surface of the package.
49 CFR 177.842	 ∑TI ≤ 50.

Idaho National Laboratory

Non-nuclear evaluations

Finite Element (FE) Simulations (LS-DYNA)

- Evaluation of cask containment vessel (CCV) internals only (basket and canister) •
- NCT and HAC package drops
- Negligible plastic strains (<2% under NCT, and <4% under HAC) in basket and canister structure

Confinement

- Confinement barrier is CCV of OPTIMUS[™]-I
- UO₂ confinement in canister for operational safety with two O-rings at threated lid
- Negligible plastic strains in canister lid for HAC drops

Thermal Evaluations

 Critical component is O-ring of OPTIMUS[™]-L CCV (evaluated for license application)

Operations

A variety of different package loading operations procedures possible

Conclusions

- Payload:
 - Assumption: UO₂ powder density of 3 g/cm³ Typically between 2 and 4 g/cm³
 - 21 kg of HALEU per canister 18 canisters per package
 - 376 kg of HALEU per package Five packages per LWT
 - 1,881 kg of HALEU per LWT
- Nonexclusive use conveyance configuration possible
- Sufficient criticality benchmarks available
- Criticality safety given Flux trap design works
- Sufficient shielding provided
- Structural integrity achievable
- Confinement evaluated
- Thermal evaluations promising
- Safe package operations possible
- Potential to meet regulatory framework demonstrated

Next Steps

- Authoring of two journal paper manuscripts in progress:
 - E. Eidelpes et al. "A High-Assay Low-Enriched Uranium Fuel Transportation Concept"
 - R. Hall et al. "Assessment of Critical Experiment Benchmark Applicability to a Large Capacity HALEU Transportation Package Concept"
- The design of the presented concept shows significant potential to be used as a basis for the development of a licensable package design.
- The know-how gained during this project could be used to develop F&Rs for a HALEU transportation concept.

Questions?

References

- NAC International, "Introducing OPTIMUS[™]-H and OPTIMUS[™]-L OPTImal Modular Universal Shipping Cask" <u>https://www.nacintl.com/images/pdf/NAC_OPTIMUS_2018.pdf</u> (current as of April 17, 2020).
- NAC International, "OPTIMUS[™] Transport Packages" <u>https://www.nacintl.com/images/pdf/NAC-Product%20Flyer-Optimus-Transformer-101619.pdf</u> (current as of April 17, 2020).
- S. SISLEY, J. ENGLAND, J. SUBIRY, "NAC's OPTIMUS[™] PACKAGING for Research and Test Reactor Fuels and Wastes," *Proc. Int. Mtg. on Reduced Enrichment for Research and Test Reactors,* Zagreb, Croatia, October 6-9, 2019.
- U. S. DOE, "Radioactive Material Packaging Database" <u>https://rampac.energy.gov/</u> (current as of April 17, 2020).
- D. VADEN, "Isotopic Characterization of HALEU from EBR-II Drive Fuel Processing," INL/EXT-18- 51906, Rev. 0, INL (Nov. 2018).
- J. JARRELL, "A Proposed Path Forward for Transportation of High-Assay Low-Enriched Uranium," INL/EXT-18-51518, Rev. 0, INL (Sept. 2018).
- M. TSCHILTZ, "Addressing the Challenges with Establishing the Infrastructure for the Front-end of the Fuel Cycle for Advanced Reactors," NEI, Washington D. C., January, 2018.
- CERADYNE CANADA, "Neutron Absorber Materials for Fresh and Spent Fuel Applications".
- L. WANG, "Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel," NEUP 10-603, University of Michigan (Dec. 2015).
- J. C. CLAYTON and S. ARONSON, "Some Preparation Methods and Physical Characteristics of UO₂ Powders," WAPD-178, Bettis Plant (Dec. 1958).