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A large-volume, UO, HALEU transportation package concept

« Background and Goals
« HALEU composition and packaging selection
» Concept overview
 Feasibility evaluations

» Conclusions and path forward
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Background

* No large-volume packages for HALEU have been certified by NRC or DOE
— Criticality appears to be the most pressing evaluation
— Availability of criticality benchmark data had been identified as potential issue

« HALEU workshop 2018:
— NEI/INL sponsored, participated by NRC, DOE, national lab complex, and Industry
— NEI recommended development of a high-capacity transportation concept (= 1600 kg of UO, HALEU)

- DOE-NE initiated project shortly after NEl recommendation (INL, PNNL, and ORNL)

* Goals:
— Definition of anticipated HALEU composition, including impurities
— Investigate potential of existing package designs for HALEU transportation
— Design a feasible HALEU transportation concept and demonstrate potential for licensing
— Evaluate criticality benchmark data availability
— Develop Functions and Requirements (F&Rs) for HALEU transportation concept

Beginning of 2020: Funding cut
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HALEU Composition and Packaging Selection

« Two potential sources for timely HALEU production (recovery not enrichment)
— Aluminum or zirconium-clad HEU fuels
— EBR-ll = Assumed DOE HALEU feedstock for concept development
* Range of possible isotopic compositions (e.g., wt. % 233U, )
- Evaluated pre-recast compositions (significant margin in dose)
» Type B package required for quantities greater than 3.4 kg (due to activity)
* VERY Low heat generation ~5.33e-04 W/kg

+ Evaluated current package candidates (RAMPAC Database)

— TN Americas TN-LC
* Heavy
» Good Shielding

— NAC International OPTIMUS™ Selected Candidate:
« OPTIMUS™-L/H
- Lightweight
* Multiple packages on a single legal-weight Truck (LWT)

NAC International
OPTIMUS™.
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SCALE Model
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Criticality Evaluations — Using SCALE CSAS6

* Novel flux trap design reduces reactivity in flooded CCV:
— Pipes with hexagonal cross sections
— 70% aluminum / 30% B,C

+ Worst case = Hypothetical accident condition (HAC)
— ke = 0.917

— 2 X 7 array of damaged packages, reflective boundary conditions
(water/steel), dry space between packages and in packaging cavity,
15% UO, and 85% H,0 in canister

BORTEC™ Flux Trap Design

Corres
10 CFR 71.55 ° Most reactive, credible package configuration, and
- ° Most reactive credible water moderation, and
e  Close full reflection by water or surrounding packaging material.
10 CFR 71.59 e 5 x N undamaged packages with nothing in-between, or
e 2 x N packages damaged by HAC remain subcritical and optimum interspersed hydrogenous
moderation.
Further:
e  Close full reflection by water of the 5 x N or 2 x N array, and
o N = 0.5, and
e >CSI=<50.
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Applicable Criticality Benchmarks — using SCALE TSUNAMI
* Most reactive NCT and HAC package configuration

+ International Criticality Safety Benchmark Evaluation Lo
Project (ICSBEP) and ORNL'’s VALID library data
- Total: 1584 available benchmarks . SR AL
* NCT model — k= 0.8: 26 . . : Fi
— ¢, 2 0.9 for 34 benchmarks (similar) :0 s : " i
— ¢, 2 0.8 for 566 benchmarks (marginally similar) | ¢ . o
- HAC model — k ¢ = 0.92: i :
— ¢, 2 0.9 for 55 benchmarks (similar) °° (
— ¢, 2 0.8 for 1104 benchmarks (marginally similar) | ..

NCT Model
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Dose Evaluations — using SCALE MAVERIC

* Dose rates (mrem/hr

Undamaged Sing e, Maximum HALEU Composition

30 (limit 200)
6 (limit 10)

le Package, Maximum HALEU Composition

101
12 (limit 1000

Transportation Array, Maximum HALEU Composition

60
17 (limit 50)

* Nonexclusive use conveyance possible
— Common carrier and open transport

* Actual doses expected to be lower

10 CFR 71.47 e Dose rate =2 mSv/hr (200 mrem/hr) at any point on the external surface of the package, and,
- e Transport index (TI) £ 10, which is a limit equivalent to 0.1 mSv/hr (10 mrem/hr) at 1 m from the external
surface of the package.
e HAC dose rate < 10 mSv/hr (1 rem/hr) at 1 m from the external surface of the package.

49 CFR 177.842 e >TI=50. 0
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Non-nuclear evaluations

Finite Element (FE) Simulations (LS-DYNA)
« Evaluation of cask containment vessel (CCV) internals only (basket and canister)
* NCT and HAC package drops

* Negligible plastic strains (<2% under NCT, and <4% under HAC) in basket and
canister structure

Confinement

+ Confinement barrier is CCV of OPTIMUS™-L

+ UO, confinement in canister for operational safety with two O-rings at threated lid
* Negligible plastic strains in canister lid for HAC drops

Thermal Evaluations

« Critical component is O-ring of OPTIMUS™-L CCV (evaluated for license
application)

Operations
« A variety of different package loading operations procedures possible

FE Model -
Basket

10
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Conclusions

- Payload:
— Assumption: UO, powder density of 3 g/cm3 — Typically between 2 and 4 g/cm3
— 21 kg of HALEU per canister — 18 canisters per package
— 376 kg of HALEU per package — Five packages per LWT
— 1,881 kg of HALEU per LWT

- Nonexclusive use conveyance configuration possible
- Sufficient criticality benchmarks available

- Criticality safety given — Flux trap design works

- Sufficient shielding provided

- Structural integrity achievable

- Confinement evaluated

- Thermal evaluations promising

- Safe package operations possible

 Potential to meet regulatory framework demonstrated

1"
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Next Steps

 Authoring of two journal paper manuscripts in progress:

— E. Eidelpes et al. “A High-Assay Low-Enriched Uranium Fuel Transportation
Concept”

—R. Hall et al. “Assessment of Critical Experiment Benchmark Applicability to a
Large Capacity HALEU Transportation Package Concept”

» The design of the presented concept shows significant potential to be used as a
basis for the development of a licensable package design.

* The know-how gained during this project could be used to develop F&Rs for a
HALEU transportation concept.
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13



Y

m Idaho National Laborator

References

NAC International, “Introducing OPTIMUS™-H and OPTIMUS™-L OPTImal Modular Universal Shipping Cask”
hitps://www.nacintl.com/images/pdf/NAC OPTIMUS 2018.pdf (current as of April 17, 2020).

NAC International, “OPTIMUS™ Transport Packages” https://www.nacintl.com/images/pdf/NAC-Product%20Flyer-
Optimus-Transformer-101619.pdf (current as of April 17, 2020).

S. SISLEY, J. ENGLAND, J. SUBIRY, “NAC’s OPTIMUS™ PACKAGING for Research and Test Reactor Fuels and
Wastes,” Proc. Int. Mtg. on Reduced Enrichment for Research and Test Reactors, Zagreb, Croatia, October 6-9, 2019.

U. S. DOE, “Radioactive Material Packaging Database” htips://rampac.energy.gov/ (current as of April 17, 2020).

D. VADEN, “Isotopic Characterization of HALEU from EBR-II Drive Fuel Processing,” INL/EXT-18- 51906, Rev. 0, INL
(Nov. 2018).

J. JARRELL, “A Proposed Path Forward for Transportation of High-Assay Low-Enriched Uranium,” INL/EXT-18-51518,
Rev. 0, INL (Sept. 2018).

M. TSCHILTZ, “Addressing the Challenges with Establishing the Infrastructure for the Front-end of the Fuel Cycle for
Advanced Reactors,” NEI, Washington D. C., January, 2018.

CERADYNE CANADA, “Neutron Absorber Materials for Fresh and Spent Fuel Applications”.

L. WANG, “Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear
Fuel,” NEUP 10-603, University of Michigan (Dec. 2015).

J. C. CLAYTON and S. ARONSON, “Some Preparation Methods and Physical Characteristics of UO, Powders,” WAPD-
178, Bettis Plant (Dec. 1958).




