

MIT NUCLEAR REACTOR LABORATORY

AN MIT INTERDEPARTMENTAL CENTER

Edward S. Lau Assistant Director Reactor Operations Mail Stop: NW12-122 138 Albany Street Cambridge, MA 02139 Phone: 617 253-4211 Fax: 617 324-0042 Email: eslau@mit.edu

17 May 2021

U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Attn.: Document Control Desk

Subject: Supplement to MIT Response to the Request for Additional Information for Battery Upgrade License Amendment Request (EPID: L-2021-NFA-0000)

The Massachusetts Institute of Technology (MIT) hereby submits a supplement to its March 24, 2021, response to the Request for Additional Information (RAI) on the License Amendment Request (LAR) to upgrade the Emergency Electrical Power System batteries at the MIT Reactor (MITR).

Accordingly, MIT provides supplemental information in the following format: the NRC RAI discussion item summary in italics, followed by the MIT answer in normal font. Wherever necessary, MIT's responses will reference supporting documents in various Enclosures.

1. Short circuit evaluation required by Std 1187 (Section 5.8.1) – Figure 8-1 of the SAR (and application) shows the connection of the new battery and charger to the existing wiring. This includes fused and unfused overcurrent protection devices. The NRC staff do not find information on any MIT-provided evaluation that there was a short circuit evaluation (given the larger battery and new charger) to confirm the acceptability of the existing protection devices.

Response to Topic #1:

Figure 8-1 of the MIT SAR shows the connection of the new battery and charger to the existing wiring. It includes an existing 2-pole, 200-amp fused switch directly downstream of the battery and charger. The new batteries have a maximum short-circuit current of 6,038 amps (first item on page 5 of the 24 March 2021 RAI Response submittal Enclosure 2, the C&D Technologies battery calculation report), compared to 7,407 amps for the existing C&D model KCR-15 battery cells. The new charger is a HindlePower Model AT30. The exact model specification is provided in the manufacturer's Production Test Data Sheet and AT30 Specification Table (Enclosures S1 and S2). The data sheet includes a current limit test, and lists 1) an AC Input Protection provided by a standard AC circuit breaker for maximum designed current of 9 amps and trip current of 18.75 amps, and 2) a DC Output Protection provided by a standard DC circuit breaker for designed current of 30 amps and trip current of 50 amps. Both these breakers

ADLO

provide overcurrent protection well before the 200-amp fuse design of the existing circuitry. Therefore, the overall system overcurrent protection for short circuits is satisfactory.

2. Technical basis of service life & replacement -

- a. NRC staff do not find any discussion of the point in the performance test information as to when the battery would require replacement (e.g., battery no longer passes performance test); see IEEE 1188, Section 8.
- b. MIT provided a manufacturer data table on battery testing. However, the NRC staff do not find any explanation on how to interpret the information in the table and any conclusions on reliability from the testing.

Response to **Topic #2**:

MIT will apply the Std. IEEE 1188 Section 8 recommendation to replace the battery when its capacity falls below 80% of the manufacturer's rating. On their IEEE 1188-2005 test report, the manufacturer calculates the percentage of capacity using a temperature correction factor based on a time-adjustment method (as per Section 7.4 capacity test methods in IEEE 1188). The table lists the parameters that are used to produce the percentage capacity for each of MIT's 60 new battery cells, as factory-tested prior to shipment to MIT. Once the batteries are installed, MIT will track their performance closely using the battery monitoring system.

Std. IEEE 1188 Section 8 also suggests other factors and indicators for battery replacement. It lists abnormally high cell operating temperatures, unsatisfactory performance test results, and a low cell voltage that fails to respond to corrective action; all these would also be taken into consideration for battery or cell replacement.

Additionally, as listed in MIT's 24 March 2021 Response to RAI #3, a Phoenix Broadband Technologies SC4 battery monitoring unit will be installed, capable of monitoring battery voltages, internal resistance, and operating temperatures, and capable of providing data storage and alarms. This monitoring unit provides convenience in the measurement, recording, and tracking of many battery parameters. However, if it is not operable, all required parameters will be measured using handheld instruments. The continuous monitoring of battery parameters will provide early warning if the battery bank or any individual cells are developing a problem and require corrective action or replacement.

The manufacturer's IEEE 1188 test report shows the test results for each of the 60 battery cells fabricated for MIT. All 60 cells met product specifications and proved to be in excellent condition. Enclosure S3 is an updated copy of the IEEE 1188 test report, which now contains the manufacturer's associated conclusion statement. Additionally, the manufacturer provides a "Service Life – Reliability" statement for the msEndur II series VRLA battery on page 4 of C&D Technologies cut sheet #12-1016 (Enclosure S4). There is also a similar, abbreviated statement on page 1 of the cut sheet under "Features & Benefits / Advanced Service Life". The conclusion statement in the test report and the reliability statement in the cut sheet by the manufacturer provide assurance that the AT-15P battery cells will be reliable for their application at the MIT Reactor. Furthermore, with close monitoring and adherence to the manufacturer's maintenance guidelines to ensure that the battery is operating in favorable conditions per IEEE 1188, the batteries are expected to deliver their performance in a reliable manner.

- 3. Battery monitoring system what alarms are provided with the battery monitoring system? *Further, please discuss the following:*
 - a. Std. 1188 says the battery should have ground fault detection, but NRC staff do not find MIT discussion on monitoring for ground faults.
 - b. Std. 1188 also recommends H_2 monitoring. If monitoring is not required, please indicate so and why.

Response to **Topic #3**:

The battery monitoring system monitors the string voltage, float current, ripple current, battery voltage delta, discharge status, and discharge/load current. MIT has 60 battery cells arranged in series as a single string. The battery monitoring system also monitors, for each cell, the terminal post DC voltage, terminal post temperature, battery and cell admittance. Up to four user-defined alarm thresholds can be set for each analog parameter: "High-High", "Low-High", "High-Low", and "Low-Low". (This information is under "General Specifications" on page 2 of the 24 March 2021 RAI Response submittal Enclosure 3c, the "Site Controller Unit PBT-PA-BMS-SC4" brochure.)

Additionally, the battery charger itself provides several built-in alarms: AC Input Failure, DC Output Failure, High $Volts_{dc}$, Low $Volts_{dc}$, and Positive(+) and Negative(-) Ground Faults (per "Standard Features" on page 3 of the 24 March 2021 RAI Response submittal Enclosure 4, the "AT30 Series Microprocessor Controlled Float Battery Charger" brochure.) Therefore, battery ground fault detection is monitored by the battery charger rather than by the battery monitor.

MIT determined that hydrogen monitoring is not necessary, because as described in the 24 March 2021 RAI Response submittal, the batteries are installed within the NW12-100D Utility Room, which has adequate ventilation with a continuously-operating exhaust fan on the ceiling above the batteries. The manufacturer specifies the amount of hydrogen produced during charging, based on a worst-case boost/equalize charge mode in accordance with Std. IEEE 1635-2012 Table 2, is 0.066578 ft.³ of H₂ per hour for all 60 battery cells together (per page 4 of the 24 March 2021 RAI Response submittal Enclosure 2, the C&D Technologies battery calculation report). By comparison, the existing C&D KCR-15 batteries produce up to 0.0594 ft.³ of H₂ per hour.

Additionally, VRLA batteries are sealed. Any hydrogen produced re-combines under pressure with oxygen inside the battery. Hydrogen gas escapes only if internal pressure exceeds the rating of the pressure relief valve, in which case 0.066578 ft.³ of H₂ per hour is the maximum amount emitted. The manufacturer confirms that the amount of hydrogen produced during discharge is less than the amount produced during charging. Therefore, the amount of hydrogen produced remains small in all cases. The room is well-ventilated, so hydrogen measurement is not required. The space is inspected on a daily procedure whenever the building is open. If the room ventilation fan fails, keeping the room's main door open will promote adequate air circulation.

4. Surveillance Requirements – MIT provides a list of monthly surveillance requirements for the battery charger system that ends in "etc." The list does not include recommended surveillance requirements listed in Section 5.2.1 of Std. 1188. The NRC staff did not find information regarding performance of subparagraph e, f, and g to Section 5.2.1 of Std. 1188.

Response to **Topic #4**:

In the 24 March 2021 RAI Response letter, MIT mentioned four items as an example of elements for monthly inspection. These four items match the Std. IEEE 1188 Section 5.2.1 "Monthly" items (a) through (d). Items (e) through (g) will also be inspected.

Items (e) and (f) are monthly visual inspections that are recommended by the manufacturer (per Part 9 "Maintenance" in 24 March 2021 RAI Response submittal Enclosure 3a, the "Installation and Operating Manual" for C&D Technologies msEndur II batteries). Specifically, under Part 9.1, item 1 states, "Visual inspection of the battery for general appearance and connector conditions. Check for bulging jars, corrosion build up or any signs of heat damage to the jars/covers and connectors. Visually check cell spacing and cell side restraint plate gap as noted in Appendix C, Table 2." As stated in MIT's 24 March 2021 Response to RAI #5, where surveillance and performance test recommendations are in the manufacturer's "Installation and Operating Manual", we intend to follow those recommendations according to the manual. Therefore, these items will be performed monthly.

Std. IEEE 1188 Section 5.2.1 "Monthly" item (g) recommends a check and recording of the DC float current (per string). Because the battery is arranged as a single string, this was judged to be covered by the "Installation and Operating Manual" Part 9.1, item 3, which states, "Measure and record the total system float current." Therefore, likewise per MIT's 24 March 2021 Response to RAI #5, this item will be performed monthly.

5. Charger customization – MIT provided manufacturer information (brochure) on the battery charger that includes a list of numerous options for the battery charger. NRC staff did not find any explanation of which options were purchased/included in the MIT battery charger.

Response to **Topic #5**:

The battery charger is a HindlePower Model AT30, with the specific model number being AT30-130-030-F. Details of the options selected for MIT's application are indicated in the Enclosure S1 Production Test Data Sheet (checkboxes showing charger functions tested satisfactorily, inspection items, and order completion) and Enclosure S2, the AT30 Specification Table (selected options highlighted by red boxes marked by the manufacturer).

6. Charger Load information – MIT provide a manufacturer data sheet that includes an (MIT) added calculation of load information in a red text box. The NRC staff did not find any explanation of the factors used in the calculation, specifically the "1.1" multiplier and the "0" addition.

Response to **Topic #6**:

The manufacturer data sheet was delivered to MIT with a red text box already in place, containing a formula used to size the battery charger for MIT's application:

(456Ahr*1.1)/24hrs + 0A = 21Amp min output

The 456 amp-hours is MIT's requested battery load capacity, the product of 57 amps for 8 hours. The 1.1 factor is the design margin based on 90% charger efficiency.

The second term is allowance for momentary loads; 0 amps represents a constant current load.

The resulting charger capacity calculation of 21 amps is the minimum capacity required to refill the batteries within 24 hours following a full-load discharge of 8-hour duration. The actual charger is rated for 30 amps DC output.

In summary, the above supplements to our RAI response, and the referenced enclosures, represent additional information identified in a telephone call on March 26, 2021, a followup NRC email message dated April 1, 2021, and an additional telephone call on April 9, 2021. The supplement letter and enclosures submitted herewith do not contain any proprietary information.

This RAI response supplement submittal contains the following four Enclosures:

Enclosure S1 "AT Series Battery Charger Production Test Data Sheet" (two pages).

Enclosure S2 "AT30 Specification Table" (one page).

Enclosure S3 IEEE 1188 Test – Order 2516069 (Rev. 2 as updated 17 May 2021) (two pages). This replaces Enclosure 1 from MIT's 24 March 2021 RAI Response submittal.

Enclosure S4 C&D Technologies, Inc. cut sheet #12-1016 for the msEndur II series VRLA battery (4 pages).

Sincerely,

Signature

Edward S. Lau, NE Assistant Director of Reactor Operations MIT Research Reactor

I declare under penalty of perjury that the foregoing is true and correct.

05/17/2021 Executed on

Enclosures: As stated.

cc: USNRC – Senior Project Manager Research and Test Reactors Licensing Branch Division of Licensing Projects Office of Nuclear Reactor Regulation USNRC – Senior Reactor Inspector Research and Test Reactors Oversight Branch Division of Licensing Projects Office of Nuclear Reactor Regulation

TECHNOLOGIES SERIAL No 20150/268880

AC input to chassis

MODEL No

AT SERIES BATTERY CHARGER

PRODUCTION TEST DATA SHEET

PRESIDENT POWER

CUSTOMER

DIEL ECTRIC

Refer to test procedure (CD5008-00) for test conditions and instrumentation required.

Disconnect PC Boards. See test procedure for other preparations.

WITHSTAND TEST	AC	input to output f	DC output			2500 Vm 2500 Vm	ns			
(Section 3.1)	Reconnect all c power supply ju	ompone mper P	ents. If the A 4 is correctl	uxiliary y place	Related Re Related Related Rel	ay Board is voltage rat	installed, ens ting of charger	ure		
PROGRAM VERSION (Section 3.2) <u>6.58</u>	FRONT PANEL FUNCTIONS (Sections 3.4 and 3.5)		 AC ON indicator Lamp & relay test CHRG MODE key EQLZ METH key Voltmeter is ±1% (see below) Ammeter is ±1% (see below) 			Edit mode UP ar DOW Current lin HVDC shi Set to Voltmeter Front pane	rrow N arrow mit edit mode utdown select OFF calibration el disable (3.5)	AMMETER ACCURACY (Section 3.4.6) Calibrated to 1% (see table below)		
CURRENT LIMIT	FLOAT VOLTAGE	CL	JRRENT LIMI	T E	M/ C	X. INPUT URRENT	⊠ Current lin ⊠ Properly s	mit set to 110% sized AC input wire		
(Section 3.6)	135 Vdc	33 A	dc at 105 \	/dc	8	2 Aac	AC breake maximum	er rated 125% of input current		
RIPPLE TEST	OUTPUT VOLT	OUTPUT	CURREI	NT	(WITH RIPPLE	BATTERY) AT BATTERY	(NO BATTERY) RIPPLE AT CHARGER			
(Section 3.7)	136.2	Vdc	30			17.4	4 mV _{rms}	113	mV _{rms}	
	Vac	Loa	d Current		Vdc		Adc	Percent Reg	ulation	
REGULATION	110%		5%		39.93	3	1.50	0.0286		
(Section 3.8)	100%		50%		39.90		15.00			
1	88%		100%	1	39.8	5	30.00	<u></u>	<u></u>	
BUILT-IN ALARM FUNCTIONS (Sections 4.1.1 through 4.1.6)	 ➢ HVDC ➢ LVDC ➢ AC INPUT ➢ POS GND ➢ NEG GND ➢ GND DET ➢ COMMON ➢ HVDC SHI ➢ LOW LEVE 	RE LE (P5) I RELAY N ECT	AUXILIARY ALARM RELAY PC BOARD Board and cable are QC stamped Jumper P4 correctly placed Low DC Voltage							
FINAL SETTINGS (Section 5.1)	 Parameters factory defa Parameters customer-s 	are set ult valu are set pecified	to es. to values.							

AT30-130-030-F

2500 Vm

DI5008-00

(Revised 02/21/07)

AC INPUT VOLTAGE

PASSED

480

AT SERIES BATTERY CHARGER

DI5008-00 (Revised 02/21/07)

PRODUCTION TEST DATA SHEET

CALIBRATION (Section 5.2)	⊠ Volt	tmeter read	s within 1% (See ta	able below).		
	C	V	OLTMETER	AI	MMETER	
	E S	Vdc	TOLERANCE	Adc	TOLERANCE	
	I L M	12	± 0.2 V	6 - 25	± 0.3 A	
	RANE	24	± 0.4 V	30 - 100	± 1.5 A	
	OLE	48	± 0.8 V	125 - 400	±5A	
	NON	130	± 2.0 V	500 - 800	± 10 A	
	Ë	1.		1,000	± 12 A	
MECHANICAL INSPECTION (Section 5.3)	 ☑ Unit is ☑ Namep ☑ Solder ☑ Crimpe ☑ Harnes ☑ Jumpe ☑ Labels 	free of dirt, blate agrees joints are in ed and bolte sses are run rs and conn are affixed	oil, handling marks s with order. htact. ed connections are n correctly and are nectors are fully sea in their proper loca	s. secure. secured. ated. itions.		
	DERED		ITEM	DERED	ITEM	

	ORDEF	SHIPPI	ITEM	ORDEF	IddiHS	ITEM			
			Wired for this ac input voltage			Options (cont'd)			
			120 Vac 60 Hz	\boxtimes	\boxtimes	AC input lightning arrestor			
			208 Vac 60 Hz			Fungus proofing			
			240 Vac 60 Hz			Static proofing			
		\boxtimes	480 Vac 60 Hz			Cabinet heater			
			550 Vac 60 Hz (covers 525 - 600 Vac)			Barrier type terminal block for alarms			
			220 Vac 50/60 Hz			Documentation			
			380 Vac 50/60 Hz		\boxtimes	User's manual			
			416 Vac 50/60 Hz			Custom drawings Flash Drive			
000000			Custom: Vac 60 Hz			Record drawings Certified			
ORDER COMPLETION			Custom: Vac 50/60 Hz			Certificate of Conformance			
(Section 5.2)			AC Input Protection			Declaration of Conformance (CE)			
(Section 5.5)		\boxtimes	Standard ac circuit breakers			Accessories			
			Medium AIC ac circuit breakers			External Tempco probe (A10)			
			High AIC ac circuit breakers			Communications PC board (A12)			
			Standard AC fuses			Forced load sharing (A13)			
			DC Output Protection			Drip shields			
		\boxtimes	Standard dc circuit breakers			Floor/ Rack/ Wall mtg. brackets			
			Medium AIC dc circuit breakers			Front door lock			
			High AIC dc circuit breakers			other			
			Standard DC fuses			other			
			Options			other			
		\boxtimes	Standard dc output filtering			other			
			Battery eliminator filtering			other			
			Auxiliary alarm relay PC board			other			
1			Ground bus bar/pad			other			
			TES	ST MPI	LET	ED 12/2/2020 TB			

AT30 Specification Table

Sample																			
А		В			С		D		Е	1 - UNE	F	G	Н	J	К	L	M	N	Р
AT30	1	3	0	0	5	0	F	4	8	0	S	×	S	×	A	×	×	×	×
Your Code																			
AT30	1	3	0	0	3	0	F	4	8	0	S	x	S	x	A	x	L	x	x

	DESCRIPTION	CODE	FEATURE	DESCRIPTION COD		CODE	FEATURE				
А		AT30	AT30 SERIES		and the second second	S	Standard AIC				
		012	12Vdc	_	AC Input	M	Medium AIC				
	Nominal DC	024	24Vdc	F	Rating***	H	High AIC				
в	Output Voltage	048	48Vdc			0	No Breaker				
		130	130Vdc	6		F	Installed				
		025	25Adc	G	AC input ruses	X	Not Supplied				
		030	30Adc			S	Standard AIC				
		040	40Adc		DC Output	М	Medium AIC				
		050	50Adc	п	Rating***	Н	High AIC				
		075	75Adc		, , , , , , , , , , , , , , , , , , ,	0	No Breaker				
		100	100Adc		DC Output Europa	F	Installed				
		125	125Adc	1	DC Output Fuses	X	Not Supplied				
C	Nominal DC	150	150Adc	r	Auxiliary Alarm	A	Installed				
U	C Output Current	200	200Adc	N	Relay Board	X	Not Supplied				
		250	250Adc		Copper	G	Installed				
		300	300Adc	L	Ground Bus	X	Not Supplied				
		400	400Adc	M	AC Lightning	L	Installed				
		500	500Adc	IVI	Arrestor	X	Not Supplied				
		600	600Adc	N	Eunque Proofing	F	Applied				
		800	800Adc	IN	Fullyus Frooling	X	Not Supplied				
		1K0	1000Adc	D	Statio Proofing	S	Applied				
		U	Unfiltered	Г	Static Frooling	X	Not Supplied				
D	DC Output Filtering	F	Filtered								
	Thicking	E	Eliminator								
		208	208V 60Hz								
		240	240V 60Hz	* (Contact factory for oth	ner AC input	voltages not listed				
		480	480V 60Hz	**	* If you do not order a	an AC input	or DC output circuit				
Е	AC Input Voltage*	550**	550V 60Hz		breaker, fuses will b	e provided.					
	(3~)	220	220V 50/60Hz								
		380	380V 50/60Hz								
		416	416V 50/60Hz								

Circuit Breaker AC & DC Ratings

STANDARD	MEDIUM	HIGH
Input: 5kAIC - 120/208/240/480Vac	Input: 25kAIC - 120/208/240/480Vac	Input: 65kAIC - 120/208/240/480Vac
14kAIC - 600Vac	18kAIC - 600Vac	N/A - 600Vac
Output: 5kAIC - 125Vdc	Output: 10kAIC - 250Vdc	Output: 20kAIC - 250Vdc

Γ

Page 1 of 2

TECHNOLOGIES Reynosa

Standby Power Division

Date: December 9, 2020 Reynosa Facility

ATP-15 IEEE-1188-2005 test Cut-off 1.75 V.P.C. @ 100%, 225.3 Amp at 3hrs discharge rate For order Number: 2516069

Test date:Nov 2020

Cell temperature at the beginning of the discharge (average): 24 °C

Discharge time (Temp corrected) :

Uncorrected test time = 180 minutes

	Serial No.	Temp. of the cell before discharge (°C)	Correction Factor	Conductance readings (Ω)	Float voltage before discharge (V)	Cell voltage at the beginning of the discharge (V)	End voltage at 3 hours (180 min)	Time to reach 1.750V (H:MM)	% of cap at 1.750V	Final Float voltage
1	H0904104	21	0.954	4064	2 221	1,988	1.824	03:06:00	108.32%	2.158
2	H0904072	21	0.954	3971	2 221	1.989	1 800	03.00.00	104.82%	2.156
3	H0904069	21	0.954	3977	2 224	1 989	1 817	03.04.30	107.44%	2,159
4	H0604338	21	0.954	4056	2 236	1 988	1 848	03:15:00	113 56%	2 157
5	H0702033	21	0.954	4023	2 227	1 978	1.822	03:08:30	109.77%	2.151
6	H0907031	21	0.954	3974	2 221	1 986	1 796	02:58:30	103 95%	2.145
7	H1023297	23	0.977	3719	2 258	1.987	1,780	03:00:00	102.35%	2.166
8	H0914045	21	0.954	3955	2 215	1.985	1.800	03:00:00	104.82%	2.162
	H0608202	21	0.954	4086	2 239	1 993	1 854	03:18:00	115 30%	2 161
10	H1023257	21	0.954	3053	2 215	1 991	1.831	03-09-30	110.35%	2 157
11	H1023011	23	0.977	3895	2 264	1 982	1 785	03:00:00	102 35%	2 150
12	H1023240	25	1 000	3938	2 209	1 988	1 776	03:03:30	101 94%	2 166
13	H0814180	21	0.954	4003	2 215	1 984	1 807	03:00:00	104.82%	2.156
14	H1118511	21	0.954	3886	2 215	1 981	1 811	03:01:00	105 40%	2 140
15	H0608113	21	0.954	4112	2 236	1 984	1 840	03:13:00	112.39%	2.157
16	H1023333	25	1 000	3907	2 221	1.988	1.794	03:07:00	103.89%	2.161
17	H0904067	21	0.954	3958	2 227	1 986	1.815	03.02.30	106.28%	2.154
18	H1023374	25	1 000	3915	2 221	1.982	1.783	03:05:00	102.78%	2.160
19	H1023247	25	1 000	3399	2 258	2 017	1.836	03-19-00	110.56%	2,196
20	H1023304	21	0.954	3867	2.209	1.980	1,799	02:58:30	103.95%	2.156
21	H1023254	25	1 000	3861	2 215	1.984	1.766	03:01:30	100.83%	2.159
22	H1023248	25	1 000	3909	2 215	1 989	1 779	03:04:00	102.22%	2.165
23	H1023315	25	1 000	3879	2 209	1,983	1,762	03:01:30	100.83%	2.155
24	H1023381	25	1.000	3977	2.226	1,988	1,798	03:07:30	104.17%	2.159
25	H0914035	21	0.954	3949	2.221	1.987	1.819	03:04:30	107.44%	2.149
26	H1023320	25	1.000	3965	2.221	1,980	1,759	03:00:30	100.28%	2.153
27	H1023313	25	1 000	3902	2 215	1.981	1,766	03:01:30	100.83%	2.154
28	H1023101	25	1 000	3937	2 212	1 987	1 784	03-04-30	102 50%	2 155
20	H1023131	25	1.000	3831	2 210	1 987	1 784	03:04:30	102 50%	2 162
20	H1023242	25	1.000	2822	2.213	1.985	1.756	03:00:30	100.28%	2 164
30	H1023375	20	1.000	3033	2.221	1.905	1.750	03.00.30	103 1196	2.156
31	H1023249	24	0.900	3915	2.215	1.900	1.101	03.03.00	105.11%	2.150
32	H1023332	24	0.986	3989	2.210	1.907	1.010	03:00:30	100.21%	2.160
33	H1023193	25	1.000	3927	2.215	1.983	1.769	03:02:30	101.39%	2.150
34	H1023251	24	0.986	3868	2.216	1.992	1.795	03:04:30	103.96%	2.169
35	H1023253	24	0.986	3901	2.215	1.986	1.781	03:01:30	102.27%	2.162
36	H1023335	24	0.986	3980	2.215	1.985	1.799	03:05:00	104.24%	2.153
37	H1023331	24	0.986	4016	2.215	1.986	1.816	03:10:00	107.05%	2.157
38	H0702065	23	0.977	4036	2.269	1.982	1.823	03:09:30	107.76%	2.148
39	H0702076	23	0.977	3997	2.282	1.983	1.833	03:13:30	110.03%	2.159
40	H1023334	24	0.986	4001	2.221	1.986	1.815	03:09:30	106.77%	2.162
41	H1023182	23	0.977	3862	2.267	1.984	1.803	03:04:00	104.63%	2.152
42	H1023337	24	0.986	3989	2.215	1.982	1.770	03:00:00	101.42%	2.157
43	H0702077	23	0.977	4060	2.282	1.986	1.834	03:13:30	110.03%	2.148
44	H0604335	21	0.954	4056	2.239	1,982	1.838	03:12:30	112.10%	2.158
45	H1022348	23	0 977	3973	2 269	1.989	1.822	03-08-30	107.19%	2,152
46	H1023302	23	0.977	3797	2 258	1.988	1 795	03.02.30	103.78%	2,160
40	H1023370	23	0.977	3883	2 277	1 996	1 834	03:12:30	109 46%	2 165
41	LI0702156	23	0.954	3082	2 233	1.074	1.814	03-04-30	107 44%	2 149
48	H0702020	21	0.954	3902	2.200	1.074	1 942	03-10-00	113 16%	2.143
49	HU/U2U29	23	0.977	3030	2.302	1.390	1.043	03.19.00	102 700/	2.172
50	H1023224	23	0.977	3820	2.253	1.983	1./91	03:02:30	103.78%	2.100

afs.

Name and Signature of quality Manager

TECHNOLOGIES Reynosa **Standby Power Division**

Date: December 9, 2020 Reynosa Facility

ATP-15 IEEE-1188-2005 test

Cut-off 1.75 V.P.C. @ 100%, 225.3 Amp at 3hrs discharge rate

For order Number: 2516069

Test date:Nov 2020

Cell temperature at the beginning of the discharge (average): 24 °C

Discharge time (Temp corrected) : Uncorrected test time = 180 minutes

	Serial No.	Temp. of the cell before discharge	Correction Factor	Conductance readings	Float voltage before discharge	Cell voltage at the beginning of the discharge	End voltage at 3 hours (180 min)	Time to reach 1.750V (H:MM)	% of cap at 1.750V	Final Float voltage
51	H0702163	21	0.954	3967	2.227	1.975	1.816	03:06:00	108.32%	2.148
52	H1023176	23	0.977	3816	2.268	1.985	1.790	03:02:00	103.49%	2.159
53	H1023373	21	0.954	3897	2.215	1.984	1.820	03:04:30	107.44%	2.162
54	H1022362	23	0.977	3949	2.270	1.988	1.834	03:14:30	110.60%	2.160
55	H0702216	23	0.977	4086	2.255	1.981	1.802	03:04:00	104.63%	2.140
56	H1023314	23	0.977	3832	2.251	1.985	1.798	03:03:00	104.06%	2.160
57	H1023171	23	0.977	3871	2.258	1.987	1.798	03:03:00	104.06%	2.158
58	H0702079	23	0.977	4025	2.267	1.988	1.830	03:12:00	109.18%	2.151
59	H1023183	23	0.977	3898	2.258	1.991	1.813	03:06:00	105.77%	2.155
60	H1109324	23	0.977	3939	2.281	2.001	1.824	03:09:30	107.76%	2.159

This IEEE-1188-2005 Test Report confirms the (60) cells of model AT-15P meets and exceeds C&D Technologies' published rate of 225.3A for 3 hours.

Enclosure S4

SG&C

For SwitchGear and Control CAPACITIES FROM 345 TO 2180 Ampere-Hours

EXAMPLES TECHNOLOGIES, INC.

The msEndur II is the latest advancement in battery technology with enhanced features for Utility applications.

12-1016

By combining the service life reliability of a flooded battery with the performance energy density of a valve-regulated battery, C&D has created the msEndur II — The True Long-Life Battery™.

The msEndur II series of batteries are unmatched in power density with space saving modular designs and have a 20-year design life to reduce the total cost of ownership.

With its much lower float current, the msEndur II yields significant electrical costs savings over its life making it more environmentally friendly than other 2V VRLA batteries.

APPLICATIONS

- Electric Utility Substations
- Telephone Backup
- Microwave Sites

12-1016/1015/CD

- Signaling Sites
- Offshore Platforms
- Mines

FEATURES & BENEFITS

- ADVANCED SYSTEM FEATURES
- Modular design for ease of installation and stacking flexibility
- Space saving design for the greatest
 amount of power in a small footprint
- Exceeds 1997 UBC Zone 4 seismic requirements for at or below grade installations
- Certified as NEBS Level 3 and compliant to Earthquake Risk Zone 4 in various system configurations
- Exceeds 2006 IBC requirements up to 300% g level and 2007 CBC compliant
- Tin-plated copper alloy connectors minimize maintenance
- New C&D Ohmic Ring® for ease of maintenance readings. With specially adapted probes only one technician is required to take readings.

ADVANCED MATERIALS

- Advanced micro-porous Absorbed Glass Mat separators for ultra-low float current — reduces grid corrosion for a long, usable service life
- Proprietary calcium alloys to minimize positive grid corrosion and growth maximizes battery life
- Robust polypropylene container and cover — enhances product quality and improves strength of materials for safe operation with flammability rating UL94 VO, LOI>28%

 Highly efficient, proprietary plate processing for high utilization of active material — results in high energy density and low float current

ADVANCED PROCESSES

UL-Recognized Component

- Advanced formation process results in a narrow float voltage window making on-site float matching unnecessary
- Highly controlled manufacturing Highly processes for exceptional and consistent plate quality

ADVANCED SERVICE LIFE & WARRANTY

- Proprietary cell design and manufacturing process provides for 20 year design life and documented long-lasting service life
- Best 2V VRLA Warranty in the Market: 7 years full warranty for float service applications

ADVANCED EXPERIENCE

- Over 100 years of experience in the battery industry
- The only producer and marketer of complete battery and electronics systems for total power solutions
- Fully backed by a worldwide network for local service

CONSTANT CURRENT DISCHARGE RATINGS

FV/Cell	Model	1 min	1 hr	2 hr	3 hr	4 hr	5 hr	6 hr	8 hr	10 hr	12 hr	24 hr
	AT-07P	396.6	189.3	122.7	92.5	74.8	63.0	54.5	43.1	35.6	30.4	16.2
	AT-09P	529.7	259.3	170.2	128.7	104.2	87.8	75.9	60.0	49.6	42.3	22.6
	AT-11P	662.1	324.1	212.7	160.9	130.2	109.7	94.9	74.9	62.0	52.9	28.2
	AT-13P	737.1	352.1	228.2	172.1	139.2	117.2	101.4	80.1	66.3	56.6	30.2
	AT-15P	927.0	453.7	297.8	225.3	182.3	153.6	132.9	104.9	86.3	74.1	39.5
	AT-17P	1057.6	504.8	327.2	246.8	199.6	168.1	145.4	114.8	95.0	81.1	43.3
1.67	AT-19P	1191.9	583.4	382.8	289.6	234.4	197.5	170.9	134.9	111.6	95.2	50.8
1.07	AT-21P	1322.0	631.1	409.0	308.5	249.5	201.1	181.9	143.5	118.8	101.4	54.1
	AT-23P	1456.7	713.0	467.9	354.0	286.5	241.4	208.9	164.9	136.4	116.4	62.1
	AT-25P	1586.4	757.3	490.8	370.2	299.3	252.1	218.1	172.2	142.5	121.6	64.9
	AT-27P	1721.6	842.6	553.0	4 18.4	338.6	285.3	246.8	194.9	161.2	137.6	73.4
	AT-29P	1850.8	883.5	572.7	431.9	349.2	294.1	254.5	200.9	166.3	141.9	75.8
	AT-35P		1101.9	723.3	547.1	442.8	373.0	322.8	254.8	210.8	179.9	96.0
	AT-39P		1199.0	777.2	586.1	474.0	399.2	345.4	272.7	225.6	192.9	102.8
FV/Cell	Model	1 min	1 hr	2 hr	3 hr	4 hr	5 hr	6 hr	8 hr	10 hr	12 hr	24 hr
	AT-07P	357.6	181.0	118.1	89.5	72.7	61.4	53.3	42.3	35.1	30.0	16.2
	AT-09P	477.5	247.6	163.8	124.6	101.2	85.6	74.3	58.9	48.9	41.8	22.5
	AT-11P	596.8	309.5	204.6	155.7	126.6	107.0	92.8	73.6	61.1	52.3	28.1
	AT-13P	665.2	336.6	219.7	166.5	135.2	114.3	99.2	78.7	65.3	55.9	30.1
	AT-15P	835.6	433.3	286.6	218.0	177.2	149.8	130.0	103.1	85.5	73.2	39.3
	AT-17P	953.7	482.6	314.9	238.8	193.9	163.9	142.2	112.8	93.6	80.1	43.1
1,78	AT-19P	1074.3	557.2	368.5	280.2	227.8	192.6	167.1	132.5	110.0	94.1	50.6
	AT-21P	1192.1	603.3	393.7	298.4	242.4	204.8	177.7	141.0	117.0	100.1	53.9
	AT-23P	1313.0	681.0	450.4	342.5	278.4	235.4	204.2	161.9	134.4	115.0	61.8
	AT-25P	1430.5	723.9	472.4	358.1	290.8	245.8	213.3	169.2	140.4	120.2	64.6
	AT-27P	1551.8	804.8	532.3	404.8	329.1	278.2	241.4	191.4	158.8	135.9	73.0
	AT-29P	1669.0	844.6	551.1	417.8	339.3	286.8	248.8	197.4	163.8	140.2	75.4
	AT-35P		1052.4	696.0	529.4	430.3	363.8	315.6	250.3	207.7	177.7	95.5
										40.1	101	
FV/Gell	Model	1 min	101	2 nr	3 nr	4 nr	5 nr	6 nr	8 nr	10 nr	12 nr	24 nr
	AT-OP	442.0	240.4	110.0	101.7	00.2	00.4	72.0	41.0	34.7	41.5	22.4
	AT 14D	552.7	240.4	100.5	152.2	124.0	105.1	01.4	60.5	60.5	51.0	28.0
	AT.13D	617.4	326.8	214.0	162.2	132.5	112.3	97.6	64.6	64.6	55.4	30.0
	AT-15P	775.1	420.6	279.3	213.1	173.7	147.2	127.9	84.7	84.7	72.6	39.2
	AT.17P	885.1	468.6	306.8	233.3	190.0	160.9	130.0	92.7	92.7	79.4	43.0
	AT-10D	005.1	540.9	350.0	273.0	223.3	180.0	164.5	108.0	108.0	03.3	50.4
1.80	AT-13P	1106.4	585.7	383.5	201.6	223.5	201.2	174.9	115.8	115.8	99.5	53.7
	AT-21P	1218.1	661.0	438.9	334.8	272.9	231.2	201.1	133.0	133.0	114.0	61.6
	AT-25P	1327.6	702.8	460.2	349.9	285.0	241.4	209.9	139.0	139.0	119.1	64.5
	AT-27P	1439.6	781.2	518.7	395.7	322.5	273.3	237.6	157.2	157.2	134.7	72.8
	AT-29P	1548.9	820.0	536.9	408.3	332.5	281.7	244.9	162.2	162.2	139.0	75.2
	AT-35P		1021.6	678.3	517.4	421.8	357.4	310.7	205.6	205.6	176.2	95.3
	AT-39P		1112.8	728.6	554.1	451.8	382.2	332.4	220.1	220.1	188.7	102.1
[[]	Madel	4	4.6-	0.1-	24-	4.6-	P. 1	C 1-2	0.6-	40.1-	40	24 hz
FV/Cell	Model	1 min	1 hr	2 hr	3 hr	4 nr	5 07	6 hr	8 nr	10 nr	12 nr	24 nr
	AT-00D	319.5	1/2./	113.7	86.5	70.4	59.7	51.9	41.3	34.3	29.4	15.9
	ATVAD	420.0	230.8	107.0	120.3	90.1	402.0	12.0	74.0	47.0 50.0	41.0	22.1
	AI-TIP	533.1	294.7	196.9	150.4	122.0	103.9	90.3	71.9	0.90	51.2	21.1
	AI-13P	594.3	321.2	211.4	160.9	131.0	111.0	96.5	76.8	63.9	54.8	29.6
	AT-15P	746.3	412.6	2/5./	210.5	1/1./	145.0	120.0	100.6	03.7	71.7	38.8
	AI-1/P	852.0	460.5	303.1	230.6	187.8	109.1	138.4	110.1	91.6	78.5	42.5
1.81	AT-19P	959.6	530.5	354.4	270.7	220.7	187.0	102.0	129.3	107.6	92.2	49.8
	AI-ZIP	1065.0	575.6	378.9	288.3	234.8	198.9	1/2.9	137.6	114.5	98.1	53.1
	AT-23P	11/2.8	048.4	433.2	330.8	209.8	228.0	198.8	108.1	131.5	112.7	60.9
	AT-25P	12/8.0	960.7	404.7	346.0	261.8	238.7	207.5	100,1	157.4	111.1	72.0
	AT 200	1404.0	205.0	520.4	391.0	318.6	270.2	234.9	100.0	100.4	133.2	74.2
	AT-25P	1491.0	1002.4	030.4 660 F	403.0	320.7	210.0	307.2	244.2	202.2	17/4	04.4
	AT-30P		1002.1	710.0	547.9	410.9	377.0	329.6	244.3	203.2	186 4	100.0
	WI-Dak		1093.0	/18.9	047.0	440.1	317.9	320.0	201.4	217.0	100.4	100.9

12-1016/1015/CD

www.cdtechno.com

Please refer to the **msEndur II Performance Specifications Brochure**, **12-1015**, for an expanded list of constant power and constant current ratings and end voltages.

You may also access the product ratings by logging onto the C&D Battery Sizing Program at www.cdstandbypower.net

SPECIFICATIONS AND CHARACTERISTICS

Cells, Voltage per Unit	1 cell, 2 VDC Nominal						
Recommended Operating Temperature	77°F (25°C)						
Recommended Float Charging Voltage	2.25 - 2.27 VPC at 77°F (25°C)						
Charger Compensation Temperature / Voltage	-2mV/cell/°F above 77°F (-3.6mV/cell/°C above 25°C) +2mV/cell/°F below 77°F (+3.6mV/cell/°C below 25°C)						
Connection Torque	Initial: 160 in-lbs (18 N-m) Re-torque: 125 in-lbs (14 N-m)						

12-1016/1015/CD

www.cdtechno.com

MODULES

msEndur II cells are designed to be mounted in stackable modules of either 3, 4, 5, 6, 8 or 10 cells.

The specific system configuration is flexible and can be configured to best match the physical requirements of the customer's site.

Detailed system dimensions and combinations are available in the **msEndur II Module Brochure** 12-1014.

SERVICE LIFE - Reliability

The msEndur II is the latest advancement in battery technology. By combining the service life reliability of a flooded battery with the performance energy density of a valve-regulated battery C&D has created the msEndur II — The True Long-Life BatteryTM. The msEndur II series of batteries are unmatched in power density with space saving modular designs and have a 20-year design life to reduce the total cost of ownership.

The msEndur II VRLA battery is the environmentally friendly battery that saves you money in normal operation.

The same low float current that ensures a twenty year life, is good for the environment and saves money

- . Up to 75% lower float current
- Consumes up to 75% less electricity
- · Lower float current generates less heat
- · Less heat generated reduces required air conditioning
- * Less electricity consumed in float charging and air conditioning = reduce carbon emissions

1400 Union Meeting Road P.O. Box 3053 • Blue Bell, PA 19422-0858 (215) 619-2700 • Fax (215) 619-7899 • (800) 543-8630 customersvc@cdtechno.com www.cdtechno.com Any data, descriptions or specifications presented herein are subject to revision by C&D Technologies, Inc. without notice. While such information is believed to be accurate as indicated herein. C&D Technologies, Inc. makes no warranty and hereby discialims all warranties, express or implied, with regard to the accuracy or completeness of such information. Further, because the product(s) featured herein may be used under conditions beyond its control, C&D Technologies, Inc. hereby disclaims all warranties, either express or implied, concerning the fitness or suitability of such product(s) for any particular uses or in any specific application or arising from any course of dealing or usage of trade. The user is solely responsible for determining the suitability of the product(s) featured herein for user's intended purpose and in user's specific application.

Copyright 2012 C&D TECHNOLOGIES, INC. Printed in U.S.A. 12-1016 1015/CD