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PREFACE 

 
This is Volume I of a two-volume report written by Analysis and Measurement Services 

Corporation (AMS) for the U.S. Department of Energy (DOE) to present the results of a 

comprehensive research and development (R&D) project aimed at development, validation and 

implementation of On-Line Monitoring (OLM) technologies for equipment and plant health 

assessment. This volume describes the project objectives and discusses the main results, and 

Volume II includes the supporting information and data. For simplicity, the table of contents for 

both Volume I and Volume II are included in each volume.  

This project began in 2006 with a Phase I effort and continued on from 2007 to 2011 in Phase II 

and subsequently as a Phase II+ (Phase two plus). The report herein concludes the work of the 

Phase II+ project.  
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EXECUTIVE SUMMARY 
 

This report concludes a three phase project that was performed over a period between June 

2006 and June 2011. The project was broken up into three phases called Phase I (June 2006 to 

March 2007), Phase II (August 2007 to August 2009) and Phase II+ (August 2009 to June 

2011). Collectively, this project involved development, validation, and implementation of On-Line 

Monitoring (OLM) technology for equipment and process health monitoring in nuclear power 

plants. The project focused on Instrumentation and Control (I&C) Systems of nuclear power 

plants, although other plant equipment can also benefit from the OLM development presented 

here. The OLM development on I&C Systems performed under the three phases here included 

static and dynamic performance verification of process instrumentation and systems as well as 

detection of anomalies in the process using signals from existing I&C equipment. For 

implementation, four U.S. nuclear power plants were used as the test bed. These were the two 

units at Farley Nuclear Power Plant in Alabama which are Westinghouse 3-loop PWRs and the 

two units at North Anna Nuclear Power Plant in Virginia which are also Westinghouse 3-loop 

PWRs.  

 

  



DOE/ER84626 vi  Volume I of II 
 

 

  



DOE/ER84626 vii  Volume I of II 
 

TABLE OF CONTENTS 
 

VOLUME I 
 
 
ACKNOWLEDGEMENT ................................................................................................... i 

DISCLAIMER ................................................................................................................... i 

SBIR/STTR RIGHTS NOTICE ......................................................................................... i 

PREFACE ........................................................................................................................ii 

NUCLEAR INDUSTRY CONTRIBUTORS ...................................................................... iii 

EXECUTIVE SUMMARY ................................................................................................. v 

TABLE OF CONTENTS VOLUME I  .............................................................................. vii 

TABLE OF CONTENTS VOLUME II ...............................................................................ix 

LIST OF FIGURES .......................................................................................................... x 

LIST OF TABLES .......................................................................................................... xiii 

ABBREVIATIONS/ACRONYMS .................................................................................... xiv 

1.  INTRODUCTION ..................................................................................................... 1-1 

1.1 Background ..................................................................................................... 1-1 

1.2 Description of the SBIR Program .................................................................... 1-2 

1.3 Project Objective ............................................................................................. 1-3 

1.4 Project Summaries .......................................................................................... 1-4 

1.4.1      Phase I Summary ..................................................................................... 1-4 

1.4.2      Phase II Summary .................................................................................... 1-5 

1.4.3      Phase II+ Summary .................................................................................. 1-7 

1.5 Plant Participation ......................................................................................... 1-10 

1.6 Project Personnel .......................................................................................... 1-10 

1.7 Organization of this Report............................................................................ 1-10 

2. OLM DATA AND ANALYSIS METHODOLOGY ....................................................... 2-1 

2.1 Background ....................................................................................................... 2-1 

2.2 OLM Data for the Phase II+ Project .................................................................. 2-4 

2.3 OLM Data Analysis Methodology ...................................................................... 2-4 

2.4 OLM Data Analysis Methodology ...................................................................... 2-9 

3. OLM ANALYSIS SUMMARIES ................................................................................ 3-1 



DOE/ER84626 viii  Volume I of II 
 

3.1 Farley Unit 1 Cycle 22 ....................................................................................... 3-1 

3.2 Farley Unit 1 Cycle 23 ....................................................................................... 3-5 

3.3 Farley Unit 1 Cycle 24 ....................................................................................... 3-5 

3.4 Farley Unit 2 Cycle 20 ..................................................................................... 3-12 

3.5 Farley Unit 2 Cycle 21 ..................................................................................... 3-18 

3.6 North Anna Unit 1 Cycle 20 ............................................................................ 3-23 

3.7 North Anna Unit 1 Cycle 21 ............................................................................ 3-23 

3.8 North Anna Unit 1 Cycle 22 ............................................................................ 3-23 

3.9 North Anna Unit 2 Cycle 21 ............................................................................ 3-33 

4. LESSONS LEARNED DURING THE PROJECT ..................................................... 4-1 

4.1 OLM Data Acquisition ....................................................................................... 4-1 

4.2 Analytical Modeling Experience ........................................................................ 4-3 

4.3 Differential Pressure to Flow Conversion .......................................................... 4-6 

5. COMMERCIALIZATION OF OLM ............................................................................ 5-1 

5.1 International Exposure and Publications ........................................................... 5-1 

5.2 Impact on the U.S. Nuclear Industry ................................................................. 5-3 

6. CONCLUSIONS AND FUTURE WORK ................................................................... 6-1 

7. REFERENCES ......................................................................................................... 7-1 

 

Appendix A – On-Line Monitoring Implementation in Nuclear Power Plants  

Appendix B – Redundant Sensor Averaging Methods for On-Line Monitoring  

Appendix C – Kernel Regression Theory  

Appendix D – Tutorial on the Noise Analysis Technique  

Appendix E – An Integrated System for Static and Dynamic On-Line Monitoring of Nuclear  

  Power Plant Systems and Components  

 

  



DOE/ER84626 ix  Volume I of II 
 

TABLE OF CONTENTS 
 

VOLUME II 
 
 

1. PRESENTATION OF OLM RESULTS 

 1.1 OLM Data for the Phase II+ Project 

 1.2 OLM Data Analysis Plots 

 
Appendix A – Farley Unit 1 OLM Results (Cycle 22)  

Appendix B – Farley Unit 1 OLM Results (Cycle 23)  

Appendix C – Farley Unit 1 OLM Results (Cycle 24) 

Appendix D – Farley Unit 2 OLM Results (Cycle 20)  

Appendix E – Farley Unit 2 OLM Results (Cycle 21)  

Appendix F – North Anna Unit 1 OLM Results (Cycle 20) 

Appendix G – North Anna Unit 1 OLM Results (Cycle 21)  

Appendix H – North Anna Unit 1 OLM Results (Cycle 22)  

Appendix I – North Anna Unit 2 OLM Results (Cycle 21)  

 
 

  



DOE/ER84626 x  Volume I of II 
 

LIST OF FIGURES 
 

Figure 2.1 OLM Concept ..........................................................................................................2-2 

Figure 2.2 OLM System Developed in Phase II ........................................................................2-3 

Figure 2.3 Steady-State Deviation Example ........................................................................... 2-10 

Figure 2.4 Steady-State Drift Example ................................................................................... 2-11 

Figure 2.5 Steady-State Residual Example ............................................................................ 2-12 

Figure 2.6 Transient Deviation Example................................................................................. 2-13 

Figure 2.7 Data Quality Statistics Plots and Table .................................................................. 2-14 

Figure 2.8 Dynamic Narrow Band PSD Window Selection Example ...................................... 2-18 

Figure 2.9 Dynamic Autoregressive Fit of Narrow Band PSD Example .................................. 2-19 

Figure 2.10 Dynamic Comparison of Narrow Band PSDs Example ........................................ 2-20 

Figure 3.1 Steady-State Deviation SG A Level (Cycle 22) ........................................................3-3 

Figure 3.2  Model Analysis SG A Level (Cycle 22) ...................................................................3-3 

Figure 3.3 Steady-State Deviation SG B Outlet Pressure (Cycle 22) ........................................3-4 

Figure 3.4 Steady-State Drift Pressurizer Level (Cycle 22) ......................................................3-4 

Figure 3.5 SG A LEVEL Steady-State Deviation at Farley Unit 1 (Cycle 23) ............................3-7 

Figure 3.6 SG A LEVEL Model Analysis at Farley Unit 1 (Cycle 23) .........................................3-7 

Figure 3.7 PRESSURIZER PRESSURE Steady-State Deviation at Farley Unit 1 (Cycle 

23) ....................................................................................................................................3-8 

Figure 3.8 RCS LOOP C FLOW Steady-State Deviation at Farley Unit 1 (Cycle 23) ................3-8 

Figure 3.9 SG A LEVEL Model Analysis at Farley Unit 1 (Cycle 24) ....................................... 3-10 

Figure 3.10 PRESSURIZER LEVEL Steady-State Drift at Farley Unit 1 (Cycle 24) ................ 3-10 

Figure 3.11 PRESSURIZER PRESSURE Steady-State Deviation at Farley Unit 1 (Cycle 

24) .................................................................................................................................. 3-11 

Figure 3.12 RCS LOOP A FLOW Steady-State Deviation at Farley Unit 1 (Cycle 24) ............ 3-11 

Figure 3.13 SG A LEVEL Model Analysis at Farley Unit 2 (Cycle 20) ..................................... 3-14 

Figure 3.14 SG A OUTLET PRESSURE Steady-State Deviation at Farley Unit 2 (Cycle 

20) .................................................................................................................................. 3-14 



DOE/ER84626 xi  Volume I of II 
 

Figure 3.15 SG B LEVEL Transient Deviation at Farley Unit 2 (Cycle 20) .............................. 3-15 

Figure 3.16 SG C LEVEL Model Analysis at Farley Unit 2 (Cycle 20) .................................... 3-15 

Figure 3.17 PRESSURIZER LEVEL Transient Deviation at Farley Unit 2 (Cycle 20) ............. 3-16 

Figure 3.18 PRESSURIZER PRESSURE Steady-State Deviation at Farley Unit 2 (Cycle 

20) .................................................................................................................................. 3-16 

Figure 3.19 PRESSURIZER PRESSURE Transient Deviation at Farley Unit 2 (Cycle 20) ..... 3-17 

Figure 3.20 RCS LOOP A FLOW Steady-State Deviation at Farley Unit 2 (Cycle 20) ............ 3-17 

Figure 3.21 SG A LEVEL Steady-State Drift at Farley Unit 2 (Cycle 21)................................. 3-20 

Figure 3.22 SG C STEAM FLOW Model Analysis at Farley Unit 2 (Cycle 21) ........................ 3-20 

Figure 3.23 SG C LEVEL Transient Deviation at Farley Unit 2 (Cycle 21) .............................. 3-21 

Figure 3.24 PRESSURIZER LEVEL Steady-State Deviation at Farley Unit 2 (Cycle 21) ........ 3-21 

Figure 3.25 PRESSURIZER PRESSURE Steady-State Drift at Farley Unit 2 (Cycle 21) ....... 3-22 

Figure 3.26 RCS LOOP C FLOW Steady-State Deviation at Farley Unit 2 (Cycle 21) ............ 3-22 

Figure 3.27 TURBINE FS PRESSURE Model Analysis At North Anna Unit 1 (Cycle 20) ....... 3-25 

Figure 3.28 TURBINE FS PRESSURE Mean Values At North Anna Unit 1 (Cycle 20) .......... 3-25 

Figure 3.29 SG A STEAM FLOW Model Analysis at North Anna Unit 1 (Cycle 21) ................ 3-27 

Figure 3.30 SG A FW FLOW Model Analysis at North Anna Unit 1 (Cycle 21) ....................... 3-27 

Figure 3.31 SG A OUTLET PRESSURE Model Analysis at North Anna Unit 1 (Cycle 21) ..... 3-28 

Figure 3.32 SG B STEAM FLOW Model Analysis at North Anna Unit 1 (Cycle 21) ................ 3-28 

Figure 3.33 SG B OUTLET PRESSURE Model Analysis at North Anna Unit 1 (Cycle 21) ..... 3-29 

Figure 3.34 SG C STEAM FLOW Model Analysis at North Anna Unit 1 (Cycle 21) ................ 3-29 

Figure 3.35 SG C OUTLET PRESSURE Model Analysis at North Anna Unit 1 (Cycle 21) ..... 3-30 

Figure 3.36 TURBINE FS PRESSURE Model Analysis at North Anna Unit 1 (Cycle 21) ........ 3-30 

Figure 3.37 SG C OUTLET PRESSURE Model Analysis at North Anna Unit 1 (Cycle 22) ..... 3-32 

Figure 3.38 SB B LEVEL Steady-State Deviation at North Anna Unit 2 (Cycle 21) ................. 3-35 

Figure 3.39 SG C STEAM FLOW Steady-State Deviation at North Anna Unit 2 (Cycle 

21) .................................................................................................................................. 3-35 

Figure 3.40 RCS LOOP C FLOW Steady-State Deviation at North Anna Unit 2 (Cycle 

21) .................................................................................................................................. 3-36 



DOE/ER84626 xii  Volume I of II 
 

Figure 3.41 SG A STEAM FLOW Model Analysis at North Anna Unit 2 (Cycle 21) ................ 3-36 

Figure 3.42 FW FLOW TO SG C Model Analysis at North Anna Unit 2 (Cycle 21) ................. 3-37 

Figure 4.1:  Sensor data flow to the plant computer and data historian ....................................4-2 

Figure 4.2 SG A STEAM FLOW Steady-State Residual at North Anna Unit 1 (Cycle 21) .........4-4 

Figure 4.3 SG A STEAM FLOW Static Mean at North Anna Unit 1 (Cycle 21) .........................4-4 

Figure 4.4 SG A FW FLOW Steady-State Residual at North Anna Unit 1 (Cycle 21) ...............4-5 

Figure 4.5 SG A FW FLOW Static Mean at North Anna Unit 1 (Cycle 21) ................................4-5 

Figure 4.6 Main Steam Flow Transmitters Analyzed with OLM and Theoretical Limits .............4-7 

 
 
 
 



DOE/ER84626 xiii  Volume I of II 
 

LIST OF TABLES 
 
 
 
Table 1.1 SBIR Project Summaries .............................................................................. 1-1 

Table 1.2 Summary of Phase I Accomplishments ........................................................ 1-6 

Table 1.3 Summary of Phase II Accomplishments ....................................................... 1-7 

Table 1.4 Summary of Phase II+ Accomplishments ..................................................... 1-9 

Table 1.5 AMS Participants in the SBIR Project ......................................................... 1-11 

Table 2.1 Transmitters Analyzed in Phase II+ Project Per Reactor .............................. 2-5 

Table 2.2 OLM Data Analyzed for Phase II+ ................................................................ 2-6 

Table 2.3 Redundant Services Analyzed for Farley and North Anna ........................... 2-7 

Table 2.4 AAKR Models Developed for Farley and North Anna ................................... 2-8 

Table 2.5 Summary Table Sample Results ................................................................ 2-15 

Table 2.6 Dynamic Parameter Table Example ........................................................... 2-17 

Table 3.1 Farley Unit 1 Transmitters with Potential Problems (Cycle 22) .................... 3-2 

Table 3.2 Farley Unit 1 Transmitters with Potential Problems (Cycle 23) .................... 3-6 

Table 3.3 Farley Unit 1 Transmitters with Potential Problems (Cycle 24) .................... 3-9 

Table 3.4 Farley Unit 2 Transmitters with Potential Problems (Cycle 20) .................. 3-13 

Table 3.5 Farley Unit 2 Transmitters with Potential Problems (Cycle 21) .................. 3-19 

Table 3.6 North Anna Unit 1 Transmitters with Potential Problems (Cycle 20) .......... 3-24 

Table 3.7 North Anna Unit 1 Transmitters Exceeding Modeling Limits (Cycle 21) ..... 3-26 

Table 3.8 North Anna Unit 1 Transmitters Exceeding Modeling Limits (Cycle 22) ..... 3-31 

Table 3.9 North Anna Unit 2 Transmitters With Potential Problems (Cycle 21) .......... 3-34 

Table 5.1 Examples of Commercialization Activities .................................................... 5-2 

Table 5.2 Publications by the Authors Related to this Project ...................................... 5-4 

 

  



DOE/ER84626 xiv  Volume I of II 
 

ABBREVIATIONS/ACRONYMS 
 

 

AAKR Auto Associative Kernel Regression 

AC Alternating Current 

A/D Analog-to-Digital 

APD Amplitude Probability Density 

AMS   Analysis and Measurement Services Corporation 

ANL   Argonne National Laboratory 

AR Autoregressive 

ARMA Autoregressive Moving Average 

BE British Energy 

BOP Balance-of-Plant 

BWR Boiling Water Reactor 

C-E Combustion Engineering 

CDs Compact Discs 

CIP Critical Infrastructure Protection 

CRP Coordinated Research Project 

CRS Calibration Reduction System 

DC Direct Current 

DOE Department of Energy 

DS&S Data Systems and Solutions 

EPRI Electric Power Research Institute  

FPGA Field Programmable Gate Array 

FTP File Transfer Protocol 

Hz Hertz 

HRP Halden Reactor Project 

I&C Instrumentation and Control 

IAEA  International Atomic Energy Agency 

ICA Independent Component Analysis 

ICMP Instrument Calibration and Monitoring Program 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

INL Idaho National Laboratory 

IT Information Technology 



DOE/ER84626 xv  Volume I of II 
 

LAN Local Area Network 

MDL Minimum Descriptive Length 

MSET Multivariate State Estimation Technique 

NERC North American Electric Reliability Corporation 

NI National Instruments 

NNPLS Neural Network Partial Least Squares 

NPPs Nuclear Power Plants 

NRC U.S. Nuclear Regulatory Commission 

OLM On-Line Monitoring 

PC Personal Computer 

PCA Principal Component Analysis 

PEANO Process Evaluation and Analysis by Neural Operators 

PEM Process and Equipment Monitoring 

PLS Partial Least Squares 

PMAX Performance Maximization 

PNNL Pacific Northwest National Laboratory 

PRA Probabilistic Risk Analysis  

PSD Power Spectral Density 

PWR Pressurized Water Reactor 

PWROG Pressurized Water Reactors Owners Group  

QA Quality Assurance 

R&D Research and Development 

RCS Reactor Coolant System 

RIO Reconfigurable Input/Output 

RTD Resistance Temperature Detector 

SAIC Science Applications International Corporation 

SBIR Small Business Innovation Research 

SDP Surveillance, Diagnostics, and Prognostics 

SER Safety Evaluation Report 

SG Steam Generator 

SNOC Southern Nuclear Operating Company 

TCP/IP Transmission Control Protocol/Internet Protocol 

TEMPO Thermal Performance Monitoring and Optimization 

UT University of Tennessee 



DOE/ER84626 xvi  Volume I of II 
 

  



DOE/ER84626 1-1 Volume I of II 

1.  INTRODUCTION 
 

 
1.1    Background 

 
This report describes the work performed by Analysis and Measurement Services Corporation 

(AMS) under a multi-phase Small Business Innovation Research (SBIR) grant entitled ‘On-Line 

Monitoring of Accuracy and Reliability of Instrumentation and Health of Nuclear Power Plants’ 

that was awarded by the U.S. Department of Energy (DOE).  The primary goal of the work was 

to design and develop an integrated on-line monitoring (OLM) system and demonstrate its use 

in operating nuclear power plants.  The project spanned over 5 years, beginning with the award 

of the Phase I project in 2006, followed by the Phase II project in 2007, and the Phase II+ 

project in August 2009.  Table 1.1 below provides a summary of each of these projects, along 

with a description of the primary goals of each one. Detailed descriptions of the 

accomplishments of each of the projects listed in Table 1.1 are provided in Section 1.4 of this 

report. 

Table 1.1 SBIR Project Summaries 

 

Item Project Time Period Primary Goal 

1 Phase I June 2006 – March 2007 

Establish the feasibility of 

implementing OLM for accuracy and 

reliability of instrumentation and health 

of nuclear power plants. 

2 Phase II August 2007 – August 2009 

Design and develop an OLM system 

and demonstrate its use in a nuclear 

power plant. 

3 Phase II+ August 2009 – June 2011 

Expand the work of the Phase II effort 

to apply OLM techniques to four U.S. 

nuclear power plants. 

 

As shown in Table 1.1, the primary goal of the Phase II+ project was to expand the work 

performed during the Phase II project to include OLM analysis for a total of 4 U.S. nuclear 

reactors, namely Farley Units 1 and 2 (owned by Southern Nuclear Operating Company) and 

North Anna Units 1 and 2 (owned by Dominion).  All four reactors are three-loop Westinghouse 

Pressurized Water Reactors (PWRs).  
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The work described herein builds upon the research and development (R&D) performed during 

the previous Phase I and Phase II projects that are documented in Phase I [1] and Phase II [2] 

reports, respectively.  This report focuses instead on presenting the OLM results for the four 

reactors evaluated during this project.  However, the appendices of this report provide 

background information on the concept of OLM (Appendix A), details of various OLM analysis 

techniques (Appendices B, C, and D), and a description of the OLM system used to produce the 

results for this report (Appendix E).   Where appropriate, sections of the Phase I and Phase II 

reports are included in this report for simplicity. 

 

1.2  Description of the SBIR Program 

 

The SBIR program is designed by the U.S. government to stimulate innovation in the private 

sector and is provided to small businesses (for example, companies that have less than 500 

employees or meet other qualifying criteria as determined by the U.S. Small Business 

Administration) on a competitive basis.  To obtain an SBIR grant from the DOE, a proposal must 

be submitted for a Phase I project in response to a solicitation that the DOE publishes annually.  

If approved, the proposing firm is provided with up to $100,000 in funds and must demonstrate 

the feasibility of its proposed innovation over a 9-month period.  Upon successful completion of 

the Phase I project, proposing firms are encouraged to submit a Phase II proposal, which is also 

evaluated on a competitive basis.  If successful, a Phase II grant is awarded to the proposing 

firm with funds of up to $750,000 and two years to complete the Phase II project.  Depending on 

the success of the Phase II project and the availability of resources from the DOE, Phase II 

projects may qualify for supplemental funding of up to $250,000 to extend the Phase II project 

for a period of one year.  To qualify for Phase II+ funding, grantees must have satisfactorily 

completed at least 1 year of their Phase II research project, and must be formally invited by their 

DOE Project Officer to submit a request for supplemental funds.  There are two types of Phase 

II+ funding requests that are acceptable to the DOE: 

 

1. Type 1 – If the grantee is requesting financial support for a new task or activity to be 
added to the original Phase II grant 
 

2. Type 2 – If the grantee needs additional funds to increase the level of effort with no 
change to the Phase II project description  

 

Analysis and Measurement Services Corporation (AMS) was successful in winning a Phase I 

grant in 2006, a Phase II grant in 2007, and a Type 2 Phase II+ grant in 2009 for this project.  
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This report provides the details of the work that AMS performed under the Phase II+ project. 

Additional information regarding the Phase I and Phase II projects are provided in separate 

reports that were produced by AMS for the DOE at the conclusion of each project. 

 

1.3  Project Objective  

 

The primary objective of the Phase II project was to design and develop an integrated on-line 

monitoring (OLM) system and demonstrate its use in an operating nuclear power plant. To this 

end, AMS developed a system which combined new software and hardware designs to provide 

a comprehensive framework for performing both static and dynamic OLM analysis. In addition, 

the system was demonstrated using operating nuclear power plant data [2].  Although several 

U.S. utilities expressed interest in becoming a test bed for the OLM system developed under the 

Phase II effort, the original project scope provided time and resources for demonstrating OLM 

analysis for only one U.S. reactor (the Farley Nuclear Power Station Unit 1, a Westinghouse 

three-loop PWR in Alabama owned by Southern Nuclear Operating Company).  

The project reported herein (reported as Phase II+) increased the level of effort of the Phase II 

project to demonstrate OLM analysis for transmitter health monitoring in three additional nuclear 

reactors, namely, Farley Unit 2, and North Anna Units 1 & 2.  Demonstrating OLM analysis for 

Farley Units 1 and 2 and North Anna Units 1 and 2 involved the following technical tasks: 

 Acquiring suitable OLM data 

 Developing OLM models 

 Performing OLM analysis 

 Documenting the OLM results 
 

The OLM analysis for the four reactors involved data from over 500 sensors (combined) for a 

period of time including 9 operating cycles.  The OLM data acquired for this project represents 

one of the largest repositories of nuclear power plant OLM data that has been analyzed to date. 

The results of the OLM analysis performed for this project demonstrate that the majority of 

transmitters do not exhibit drift over a typical fuel cycle. The results also demonstrate that OLM 

is an effective tool for performance monitoring of nuclear power plant instrumentation during 

plant operation. Details of the OLM analysis for each of the four reactors are provided in this 

report in the main body and in the appendices of Volume II of this report. 

 

In addition to completing the above technical tasks for each reactor, the Phase II+ effort also 

involved using the OLM analysis results to support the Pressurized Water Reactor Owner’s 
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Group (PWROG) effort to compile the technical bases and methods to justify transmitter 

calibration interval extension.  Details regarding the PWROG effort and AMS’ participation in the 

project are also provided in this report. 

AMS has worked over the last three years (using its own funds) to commercialize the product of 

this project.  This effort has been successful in bringing commercial revenue to AMS from the 

nuclear industry.  Furthermore, AMS has shared the results of this R&D with the worldwide 

nuclear community through participation, sponsorship, and hosting of several national and 

international meetings with nuclear industry personnel to explain the capabilities and benefits of 

the OLM system developed as part of this project. 

 

1.4    Project Summaries 

 

This section provides a detailed summary of the accomplishments of the Phase I, Phase II, and 

Phase II+ projects that were performed under DOE Grant Number DE-FG02-06ER84626 from 

June 2006 to June 2011. 

 

1.4.1      Phase I Summary 

 
As previously stated, the goal of the Phase I project was to establish the feasibility of an OLM 

system that can be readily implemented in nuclear power plants to reduce hands-on 

maintenance of process instrumentation, assess the accuracy and reliability of critical 

measurements, and provide plant-wide diagnostics.   

The goal of the Phase I project was successfully reached by execution of the following 

objectives over a nine-month period from June 2006 to March 2007: 

1. Identify Sources of Plant Data 

2. Evaluate Means for Data Acquisition 

3. Identify Data Qualification Means 

4. Identify Data Analysis Techniques 

5. Create a Conceptual OLM System Design 

Table 1.2 summarizes the key accomplishments of the Phase I project in terms of the objectives 

listed above.  Details on how these objectives were met can be found in the sections that follow.  
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A more comprehensive overview of the Phase I accomplishments can be found in the Phase I 

final report [1]. 

 

1.4.2      Phase II Summary 

 

The primary goal of the Phase II project was to construct an OLM system and demonstrate its 

use in a nuclear power plant.  This primary objective was to be realized by completing seven 

technical objectives as listed below: 

 

1. Develop an Integrated OLM System Architecture from the Conceptual Phase I Design 

2. Develop Software/Hardware Modules for the OLM System 

3. Develop Analytical Models and Other Parameters for Selected Plant Processes 

4. Validate the OLM System with a Test Loop 

5. Implement and Demonstrate the OLM System in an NPP 

6. Design the Commercial Prototype 

7. Provide the Design of an Embedded OLM System for Next Generation Reactors 

 

Table 1.3 summarizes the key accomplishments of the Phase II project in terms of the seven 

technical objectives.  More detailed information about the OLM system design and other Phase 

II technical objectives are found in the Phase II report [2]. 

  



DOE/ER84626 1-6  Volume I of II 

Table 1.2 Summary of Phase I Accomplishments 

Technical Objectives of Phase I Project Phase I Accomplishments 
     
1.  Identify Sources of Plant Data Nuclear power plant data was obtained and used for 

evaluation of analysis techniques in Phase I. 
 
 In addition, contacts were made with eighteen 

nuclear power plants (seventeen domestic and one 
foreign) to determine the means and procedures that 
must be established for OLM data acquisition from 
nuclear power plants. 

 
2. Evaluate Means for Data Acquisition A data acquisition system was designed to take data 

at sampling rates sufficient for dynamic analysis. 
 
3.  Identify Data Qualification Means A number of existing statistical algorithms were 

identified and tested using nuclear power plant data 
to establish their feasibility for screening, cleanup, 
and preprocessing of OLM data. 

 
4.  Identify Data Analysis Techniques For static data analysis, the Kernel Regression 

algorithm was identified from a variety of available 
methods that were evaluated for process modeling 
of nuclear plant data. 

  
 For dynamic data analysis, several Autoregressive 

(AR) modeling algorithms were evaluated including 
Yule-Walker, Burg, Covariance, and Modified 
Covariance.  Also, several AR optimum model order 
methods were evaluated.  It was determined that no 
one method is best for every case; therefore, all of 
these methods should be implemented in the OLM 
system.     

 
5.  Create a Conceptual OLM System Design A conceptual OLM system was designed to integrate 

the techniques evaluated in this project.  The OLM 
system integrates two sets of existing techniques 
into one system.  That is, the noise analysis 
technique for dynamic data analysis and the process 
modeling technique for static analysis. 
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Table 1.3 Summary of Phase II Accomplishments 

 
 Technical Objectives of Phase II Project Phase II Accomplishments 

1. 
Develop Integrated OLM System Architecture 
from Phase I Design  

Created a modular system design with 
interfaces that can be controlled remotely and a 
software architecture that facilitates seamless 
inclusion of additional analysis modules. 

        

2. 
Develop Software/Hardware Modules for the 
Integrated OLM System 

Developed data acquisition, data qualification 
and cleaning, data analysis, and database 
software modules.  Developed a 24-bit data 
acquisition system for high-speed data 
collection. 

   

3. 
Develop Analytical Model and Other Parameters 
for Selected Plant Processes 

Developed kernel regression models for 
Reactor Coolant System, Pressurizer, and 
Steam Generator for a 3-loop PWR.  Developed 
optimal dynamic analysis parameters for several 
pressure, level, and flow transmitters. 

   

4. 
Validate the Prototype OLM System with a Test 
Loop and Plant Data 

Validated the OLM system hardware and 
software modules with data taken from the AMS 
test loop and with data taken in operating NPPs. 

   

5. 
Implement and Demonstrate the Prototype OLM 
System in an NPP 

Implemented and demonstrated the prototype 
OLM system at the Farley Unit 1 NPP.   

   

6. Design the Commercial Prototype 
Produced the design of the commercial OLM 
system based on the prototype developed in 
Phase II. 

   

7. 
Provide the Design of an Embedded OLM 
System for Next Generation Reactors 

Reviewed the available Instrumentation and 
Control (I&C) designs of next generation 
reactors and established the parameters for 
embedding an OLM system in the design. 
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1.4.3      Phase II+ Summary 

 

The purpose of the Phase II+ project was to extend the work of the Phase II effort to include 

OLM analysis of four U.S. nuclear reactors and provide support to the Pressurized Water 

Reactor Owners Group (PWROG) in establishing a generic licensing path for using OLM tools 

to help extend transmitter calibration intervals.  These goals were to be realized by completing 

four technical objectives as listed below: 

 

1. Develop Analytical Models for OLM  

2. Demonstrate OLM Analysis in four NPPs 

3. Document the OLM Analysis Results 

4. Support PWROG Efforts on Generic Licensing of OLM 

 

Table 1.4 summarizes the key accomplishments of the Phase II+ project in terms of the four 

technical objectives.  More detailed information about the OLM results and the PWROG generic 

licensing effort can be found in later sections of this report. 
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Table 1.4 Summary of Phase II+ Accomplishments 

 
 
Technical Objectives of Phase II+ Project Phase II+ Accomplishments 
     
1.  Develop Analytical Models for OLM Developed analytical models for each of the four 

reactors evaluated during this project.   
 
 Analytical models were developed for Steam 

Generator Loops, Pressurizer, and Reactor Coolant 
System Loops which encompass 50+ transmitters in 
each reactor.   

 
2. Demonstrate OLM Analysis in four NPPs Performed OLM analysis for each of the four 

reactors spanning over 9 operating cycles 
combined. 

 
 OLM analysis included data qualification, redundant 

sensor analysis, analytical modeling analysis, and 
dynamic analysis. 

 
3.  Document the OLM Analysis Results Summaries of the OLM analysis for each reactor are 

documented in this report.  Detailed analysis plots 
for each reactor are provided in the appendices of 
this report. 

 
4.  Support PWROG Efforts on Generic Licensing Provided results of OLM data analysis and research, 

to the PWROG to help establish the path for the 
generic licensing effort.  Participated in meetings 
and teleconferences and provided technical advice 
regarding OLM implementation and benefits. 
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1.5    Plant Participation 

 
The success of this SBIR project is due in large part to the active participation of NPPs during 

the course of the Phase I, Phase II, and Phase II+ efforts.  The plants each participated in the 

project by providing plant data, engineering resources, and/or technical services to AMS.  For 

the Phase I project, the operating plant data used for evaluating OLM algorithms was provided 

by EDF Energy’s (formerly British Energy) Sizewell B plant.  For the Phase II project, Unit 1 of 

the Southern Nuclear Operating Company’s (SNOC) Farley plant was chosen as the site for the 

full demonstration of the OLM system.  In the Phase II+ project, data from Farley Units 1 and 2 

as well as Units 1 and 2 of Dominion’s North Anna plant were evaluated.   

 

1.6    Project Personnel 

 
The work for this project was performed under the guidance of the principal investigator, Dr. 

H.M. Hashemian, who led the group of AMS engineers in the research and development of this 

project until its completion in June 2011.  Dr. Hashemian provided the DOE project manager, 

Dr. M.A. Feltus, with quarterly status reports throughout the course of the Phase I, Phase II, and 

Phase II+ projects, and Dr. Feltus in turn provided constructive criticism and guidance as 

necessary.  Table 1.5 lists the primary project participants from AMS and their respective roles 

during the Phase I, Phase II, and Phase II+ projects. 

 

1.7    Organization of this Report 

 
Section 2 of this report provides descriptions of the OLM data and analysis methods that were 

used to generate the results for this report. 

Section 3 presents summaries of the OLM analysis for each of the four reactors evaluated in 

this project as well as interesting observations made during the analysis.  

Section 4 describes some of the lessons learned over the course of the project including 

experiences with OLM data acquisition, common OLM analysis pitfalls, and evaluations of the 

analytical modeling technique used during the project. 
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Table 1.5 AMS Participants in the SBIR Project 
 

NAME AND CREDENTIALS ROLE IN THIS PROJECT PHOTO 

H.M. Hashemian 
 

Ph,D., Engineering Sciences 

 

Ph.D., Nuclear Engineering 

 

D.E., Electrical Engineering 

 

AMS President and CEO. 

 

Principal Investigator (PI).  Responsible for overall technical management 

of the Phase I, Phase II, and Phase II+ projects and the commercialization 

effort.   

 

B.D. Shumaker 

 

M.S., Computer Science 

 

Senior Software 

Development 

Engineer  

 

Served as the project manager for the Phase II and Phase II+ projects. 

Mr. Shumaker was also responsible for development of OLM static 

models, software modules, and OLM analysis.  He also assisted the PI in 

the writing of the quarterly progress reports and the Phase I, Phase II, and 

Phase II+ final reports.  

 

G.W. Morton 

 

M.S., Electrical Engineering 

 

Software Development 

Manager 

 

 

Assisted in the development of the OLM dynamic modeling software and 

the development of the OLM system hardware.  Mr. Morton was also 

involved in developing the static OLM software, and writing the Phase I, 

Phase II, and Phase II+ final reports. He also served as the project 

manager for the Phase I project.  

 

R.J. Wunderlich 

 

M.S., Electrical Engineering 

 

Systems Engineer 

 

 

Assisted in the development of OLM static models and software, and 

contributed in the writing of the Phase II report.  

 

S.D. Caylor  

 

M.S., Electrical Engineering 

 

Systems Engineer 

 

 

Assisted in the development of OLM dynamic auto-regressive models and 

the development of the OLM system hardware.  Mr. Caylor also assisted 

in writing the Phase II and Phase II+ final reports. 

 

 

D. W. Mitchell 

 

B.S., Mechanical and 

Aerospace  Engineering 

 

Technical Services Manager 

 

 

Worked as the technical and administrative assistant to the PI.  He 

coordinated the manpower allotments for the project team, and the 

administrative personnel, in addition to being responsible for all financial 

matters.  Mr. Mitchell also served as the plant contact for the 

commercialization effort. 

 

 

C. D. Sexton 

 

B.A.S., Electronics Engineering 

Technology 

 

Data Analyst; System 

Implementation 

 

Assisted in the development and testing of the OLM system hardware. 
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Section 5 provides descriptions of the commercialization activities that have been performed 

during the course of the project as well as a description of the PWROG generic licensing effort 

currently underway. 

This report also provides several Appendices that include background information on the 

concept of OLM (Appendix A), details of various OLM analysis techniques (Appendices B, C, 

and D), and a description of the OLM system used to produce the results for this report 

(Appendix E).  Detailed OLM result summaries and plots for Farley Units 1 and 2 and North 

Anna Units 1 and 2 are provided in Volume II. 
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2. OLM DATA AND ANALYSIS METHODOLOGY 

 
 

2.1 Background 

 

The concept of OLM, illustrated in Figure 2.1 and explained in more detail in Appendix A, is 

centered around utilizing the information available from existing plant sensors to quantify the 

health status of sensors and systems in nuclear power plants.  In general, the data that provides 

the health information can be classified as static or dynamic, with each type of data providing 

different information about the sensor or system from which it originates. 

Static data, typically retrieved from the plant computer or data historian at rates of up to 1 Hz, 

can be used to recognize slow moving changes in sensors or plant processes that are a result 

of drift, degradation, or gradual equipment failure.  OLM applications that take advantage of the 

information contained in static data include on-line calibration monitoring, RTD cross-calibration, 

thermocouple cross-calibration, and equipment condition assessment.  The static data analysis 

techniques of redundant sensor averaging and kernel regression are described in Appendices B 

and C of this report, respectively. 

Dynamic data requisition, which typically requires sampling at higher frequencies than available 

from the plant computer (100 Hz to 1 kHz) requires a dedicated data acquisition system for 

retrieval.  OLM applications that use dynamic data include dynamic response of pressure 

transmitters, predictive maintenance of reactor internals (including core barrel vibration), 

detection of core flow anomalies, and life extension of neutron detectors.  Dynamic data is 

analyzed using the noise analysis technique, which is described in detail in Appendix D. 

The purpose of the Phase II project was to develop an OLM system that integrates both static 

and dynamic data retrieval and analysis into one common software/hardware framework and 

demonstrate its use on data from an operating nuclear power plant.  The OLM system 

developed during Phase II (Figure 2.2) incorporates both static and dynamic data analysis 

modules and data retrieval capabilities, and was demonstrated in Phase II on data from Unit 1 

of the Farley Nuclear Power Plant [2].  A description of the OLM system developed during 

Phase II and subsequently used for the analysis provided in this report is provided in Appendix 

E. 
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Figure 2.1 OLM Concept 
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Figure 2.2 OLM System Developed in Phase II 
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2.2 OLM Data for the Phase II+ Project 

 

As previously discussed, the purpose of the Phase II+ project was to expand the OLM analysis 

demonstration to include data from a total of four nuclear reactors.  Engineers from Southern 

Nuclear Operating Company (SNOC) and Dominion participated in the project by providing OLM 

data from the Farley nuclear power plant (Units 1 and 2) and the North Anna nuclear power 

plant (Units 1 and 2).  The SNOC and Dominion personnel were primarily interested in applying 

on-line calibration monitoring for the purpose of transmitter calibration interval extension, 

because of the potential cost-benefits that have been realized by its implementation at the 

Sizewell B plant in the United Kingdom [3].  The OLM analysis for the Phase II+ project, 

therefore, was focused on the transmitters in each plant that would benefit the most from having 

their calibration intervals extended. Table 2.1 provides a listing of the services and number of 

transmitters in each service that were analyzed for the Farley and North Anna plants.  Over the 

course of the project, plant personnel retrieved a 12-hour window of transmitter data each 

month from the plant computer and sent it to AMS via FTP for analysis.  The static data for each 

plant was sampled at a rate of 1 sample every ten seconds. Overall, static data for 9 operating 

cycles were included in the analysis.  In addition to the static OLM data, AMS acquired dynamic 

data from Farley Unit 1 and 2 transmitters to evaluate their dynamic response characteristics. 

Table 2.2 provides a summary of the OLM data from each reactor that was analyzed for this 

project. 

 

2.3 OLM Data Analysis Methodology 

 

Static OLM analysis was performed on each of the transmitters by evaluating sensor data with 

both redundant sensor averaging and empirical modeling analysis techniques.  With the 

exception of the Wide Range Steam Generator Level and RCS Pressure transmitters, each 

reactor analyzed has at least 2 redundant transmitters in each service.  Table 2.3 lists the 

number of redundant sensors for the services at Farley and North Anna that were analyzed. 

Empirical modeling analysis was used both to analyze the sensor health for those transmitters 

that are not redundant as well as providing another diverse method for evaluating the redundant 

sensors.  As described in the Phase II report [2], AMS employed the Auto Associative Kernel 

Regression (AAKR) methodology to perform empirical modeling analysis.  Table 2.4 lists the 

AAKR models that were created for each reactor as well as the type of diverse sensors used in 

each model. 
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Table 2.1 Transmitters Analyzed in Phase II+ Project Per Reactor 

 

Item Service Number of Transmitters 

1 Steam Flow 6 

2 Feedwater Flow 6 

3 Steam Generator Level Narrow Range 9 

4 Steam Generator Level Wide Range 3 

5 Steam Pressure 9 

6 Pressurizer Level 3 

7 Pressurizer Pressure1 3 

8 RCS Flow 9 

9 RCS Pressure 2 

10 Turbine First Stage Pressure 2 

11 RWST Level2 2 

12 Containment Pressure2 5 
 

1 Farley Units 1 and 2 include 2 additional Pressurizer Pressure transmitters for a total of 5. 

2 Only included in Farley Units 1 and 2 
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Table 2.2 OLM Data Analyzed for Phase II+ 

 
 

Item Reactor 
Fuel 

Cycle 
Date(s) 

OLM Data 
Type 

1 Farley Unit 1 22 April 2008 – April 2009 Static 

2 Farley Unit 1 22 March 2009 Dynamic 

3 Farley Unit 1 23 April 2009 – October 2010 Static 

4 Farley Unit 1 23 June 2009 Dynamic 

5 Farley Unit 1 24 November 2010 – July 2011 Static 

6 Farley Unit 2 20 August 2009 – April 2010 Static 

7 Farley Unit 2 20 March 2010 Dynamic 

8 Farley Unit 2 21 May 2010 – July 2011 Static 

9 Farley Unit 2 21 July 2010 Dynamic 

10 North Anna Unit 1 20 January 2008 – March 2009 Static 

11 North Anna Unit 1 21 April 2009 – August 2010 Static 

12 North Anna Unit 1 22 November 2010 – April 2011 Static 

13 North Anna Unit 2 21 April 2010 – April 2011 Static 
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Table 2.3 Redundant Services Analyzed for Farley and North Anna 

 
 

Service Redundancy 

Reactor Coolant System Loop A Flow 3 

Reactor Coolant System Loop B Flow 3 

Reactor Coolant System Loop C Flow 3 

Pressurizer Level 3 

Steam Generator A Narrow Range Level 3 

Steam Generator B Narrow Range Level 3 

Steam Generator C Narrow Range Level 3 

Pressurizer Pressure 3 

Steam Generator A Outlet Pressure 3 

Steam Generator B Outlet Pressure 3 

Steam Generator C Outlet Pressure 3 

Containment Pressure 3 

Steam Generator A Steam Flow 2 

Steam Generator B Steam Flow 2 

Steam Generator C Steam Flow 2 

Feedwater Flow To Steam Generator A 2 

Feedwater Flow To Steam Generator B 2 

Feedwater Flow To Steam Generator C 2 

Refueling Water Storage Tank Level 2 

Turbine First Stage Pressure 2 
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Table 2.4 AAKR Models Developed for Farley and North Anna 

 
 

AAKR Model # of Sensors Sensor Types 

Steam Generator 
(A,B,and C) 

20 

1. Steam Flow (2) 
2. Feedwater Flow (2) 
3. SG NR Level (3) 
4. SG WR Level (1) 
5. SG Outlet Pressure (3) 
6. TBIN FS Pressure (2) 
7. NI Power Range (4) 
8. RCS Hot Leg Temp.WR (1) 
9. Feedwater Inlet Temp. (2) 

Pressurizer 15 

1. PZR Level (3) 
2. PZR Pressure (3) 
3. NI Power Range (4) 
4. RCS Hot Leg Temp.WR (3) 
5. PZR Water Temp. (1) 
6. PZR Steam Temp. (1) 

RCS Loop  
(A,B, and C) 

7 

1. RCS Flow (3) 
2. RCS WR Pressure (1) 
3. RCS Cold Leg Temp. WR (1) 
4. RCS Cold Leg Temp. NR (1) 
5. RCS Hot Leg Temp. WR (1) 
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2.4 OLM Data Analysis Methodology 

 

A number of plots and tables are produced by the OLM system software to aid in analysis and 

present the results.  Descriptions of these plots and tables as well as examples of each are 

provided below: 

1. Steady State Deviation Plot.  This plot (Figure 2.3) presents the average deviation of 
each sensor from the average of its redundant peers (excluding any outliers) for each 
time period (typically one month) that is provided during the steady state operation.  
Deviations that exceed the OLM acceptance criteria (shown in Figure 2.3 as red dashed 
lines), are indicative of a potential problem with the sensor. 

In the analysis performed for Phase II+, the OLM acceptance criteria for deviation, drift, 
and empirical modeling analysis were set to 0.75% of the sensors’ calibrated ranges 
after discussions with plant personnel from Farley and North Anna.  

2. Steady State Drift Analysis.  This plot (Figure 2.4) provides a visualization of how the 
deviation for a given sensor changes over time.  Drift is calculated from the steady state 
deviation analysis by subtracting the first month’s deviation from each signal (i.e. zeroing 
the first month). The OLM acceptance criteria limits for drift are shown with red dashed 
lines. 

3. Steady State Residual Analysis (Empirical Modeling). This plot (Figure 2.5) presents 
the average difference between the model estimate and the measured data (also known 
as the residual) by subtracting the model process estimate from each signal for each 
month of steady state data. This will identify drift from the training data that is due to 
sensor drift, process drift, or a common mode drift. Similar to the deviation and drift plots 
the OLM acceptance criteria limits are shown with red dashed lines. 

4. Transient Deviation Analysis (if available). This plot (Figure 2.6) presents the 
deviation of each transmitter from the average of its peers plotted as a function of the 
transmitter’s operating range as the process experiences a transient such as startup or 
shutdown.  Some services do not transition through much of their range during a cycle, 
and in this case a transient deviation plot is not produced.  On the other hand, some 
services experienced multiple transients during the observation period, resulting in 
multiple transient deviation plots for some services. Transient deviation analysis plots 
also incorporate OLM acceptance criteria limits that are denoted by red dashed lines. 

5. Data Quality Statistics. Data quality statistics are presented by four plots and a table 
(Figure 2.7).  The four plots consist of the mean, standard deviation, skewness, and 
kurtosis calculated for each month of steady state data.  The table contains the average 
value of each statistic for each sensor in the four plots. 

6. Static Summary Table.  This table (Table 2.5) list the sensor tag name, service, the 
result of the steady state data analysis each month, the drift result, the final pass or fail 
result, and a comment for each sensor.  An ‘R’ indicates the Redundant sensor analysis 
acceptance limits were exceeded.  An ‘M’ indicates the empirical model analysis 
acceptance limits were exceeded.  A ‘D’ indicates the drift limits were exceeded. 

 



DOE/ER84626 2-10 Volume I of II 

 

 
 
 
 
 
 
 

 

Figure 2.3 Steady-State Deviation Example 
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Figure 2.4 Steady-State Drift Example 
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Figure 2.5 Steady-State Residual Example 
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Figure 2.6 Transient Deviation Example 
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Data Quality Statistics Plots 

 
 
 
 
 

Data Quality Summary Table Example 
 

Result 
Type 

Tag Names 

PT0474 PT0475 PT0476 

Mean 764.31 767.73 769.82 

Std. Dev. 0.46 0.35 0.25 

Skewness 0.03 -0.30 -0.18 

Kurtosis 1.15 1.02 0.92 

 

 

Figure 2.7 Data Quality Statistics Plots and Table 
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Table 2.5 Summary Table Sample Results 

Item Tagname Service 
11 

Nov 
2008 

9 
Dec 
2008 

13 
Jan 
2009 

10 
Feb 
2009 

11 
Mar 
2009 

2 
Apr 
2009 

Drift Final Comment 

1 FE0474B SG A STEAM FLOW 
     

R 
 

PASS 
 

2 FE0475B SG A STEAM FLOW 
     

R 
 

PASS 
 

            

3 FE0476B FW FLOW TO SG A 
       

PASS 
 

4 FE0477B FW FLOW TO SG A 
       

PASS 
 

            

5 LT0474 SG A NR LEVEL 
     

R 
 

FAIL 
 

6 LT0475 SG A NR LEVEL R R R R R R 
 

FAIL Low bias 

7 LT0476 SG A NR LEVEL 
     

R 
 

FAIL 
 

8 LT0477 SG A WR LEVEL M M M M M 
  

FAIL Drift out (AAKR) 

            

9 PT0474 SG A PRESSURE 
       

PASS 
 

10 PT0475 SG PRESSURE 
       

PASS 
 

11 PT0476 SG A PRESSURE 
       

PASS 
 

            

12 FE0484B SG B STEAM FLOW 
       

PASS 
 

13 FE0485B SG B STEAM FLOW 
       

PASS 
 

            

14 FE0486B FW FLOW TO SG B 
       

PASS 
 

15 FE0487B FW FLOW TO SG B 
       

PASS 
 

R = Exceeded Redundant Sensor Analysis Limits     M = Exceeded Model Analysis Limits     D = Exceeded Drift Limits 
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7. Dynamic Parameter Table.  This table (Table 2.6) presents the tag name, service, 
narrow band PSD window low and high frequency that was trimmed from the wide band 
PSD, the Auto-Regressive (AR) modeling method, and AR order.  Once selected, these 
parameters are stored in the OLM database and become the basis for future analysis. 

The reader is referred to the Phase II report [2] for more information on AR modeling and 
parameter selection. 

8. Dynamic Narrow Band PSD Window Selection.  This plot (Figure 2.8) presents a wide 
band PSD and shows the low and high frequency selection that are used to create the 
narrow band PSD.  The selected parameters are displayed in the table above the plot.  
This plot is only included if this is the first analysis for this sensor because it will be the 
same for subsequent analysis. 

9. Dynamic Autoregressive Fit of Narrow Band PSD.  This plot (Figure 2.9) displays the 
narrow band PSD and the AR PSD.  The difference between the PSDs is displayed in an 
Error plot at the bottom with the RMS error displayed.  Above the plot is a table with the 
AR parameters. 

10. Dynamic Comparison of Narrow Band PSDs.  This plot (Figure 2.10) presents the 
current narrow band PSD and the previous narrow band PSD for comparison.  The 
difference between the PSDs is displayed in an Error plot at the bottom with the RMS 
error displayed.  Above the table are the current PSD parameters.  This is only included 
if there is a previous analysis for comparison. 

 

The appendices in Volume 2 of this report contain the OLM results for Farley Units 1 and 2 

and North Anna Units 1 and 2 presented in these previously described plots and tables. 

 

 

 

 

 

 

 

 

 

 

 

 

  



DOE/ER84626 2-17 Volume I of II 

Table 2.6 Dynamic Parameter Table Example 

 

Item 
Tag 

Name 
Service Filename 

WB PSD Range 
(Hz) 

Decimator 
Trim 
Block 
Size 

Trim 
Low 
Freq. 

Trim 
High 
Freq. 

AR Method 
AR 

Order 

1 FT0476 FW FLOW FU2_2010-07_0004 0.0305 : 1000 364 512 0.0107 2.7472 
Forward-
Backward 

11 

2 FT0477 FW FLOW FU2_2010-07_0003 0.0305 : 1000 364 512 0.0107 2.7472 Least-Squares 17 

3 FT0486 FW FLOW FU2_2010-07_0004 0.0305 : 1000 364 512 0.0107 2.7472 
Forward-
Backward 

11 

4 FT0487 FW FLOW FU2_2010-07_0003 0.0305 : 1000 364 512 0.0107 2.7472 Least-Squares 21 

5 FT0496 FW FLOW FU2_2010-07_0004 0.0305 : 1000 364 512 0.0107 2.7474 
Forward-
Backward 

11 

6 FT0497 FW FLOW FU2_2010-07_0003 0.0305 : 1000 364 512 0.0107 2.7472 Least-Squares 21 

 
7 LT0474 SG LEVEL FU2_2010-07_0001 0.0305 : 1000 85 256 0.0919 11.7643 

Forward-
Backward 

11 

8 LT0475 SG LEVEL FU2_2010-07_0002 0.0305 : 1000 81 256 0.0964 12.3453 Least-Squares 18 

9 LT0476 SG LEVEL FU2_2010-07_0003 0.0305 : 1000 81 256 0.0964 12.3453 Least-Squares 11 

10 LT0484 SG LEVEL FU2_2010-07_0001 0.0305 : 1000 80 128 0.1953 12.4996 
Forward-
Backward 

11 

11 LT0485 SG LEVEL FU2_2010-07_0002 0.0305 : 1000 80 256 0.0977 12.4996 Least-Squares 18 

12 LT0486 SG LEVEL FU2_2010-07_0003 0.0305 : 1000 85 128 0.1838 11.7643 Least-Squares 20 

13 LT0494 SG LEVEL FU2_2010-07_0001 0.0305 : 1000 83 256 0.0941 12.0478 
Forward-
Backward 

11 

14 LT0495 SG LEVEL FU2_2010-07_0002 0.0305 : 1000 78 256 0.1002 12.8201 Least-Squares 18 

15 LT0496 SG LEVEL FU2_2010-07_0003 0.0305 : 1000 83 256 0.0941 12.0478 Least-Squares 20 

 
16 FT0474 STM FLOW FU2_2010-07_0003 0.0305 : 1000 29 128 0.5388 34.4817 Least-Squares 20 

17 FT0475 STM FLOW FU2_2010-07_0004 0.0305 : 1000 29 128 0.5388 34.4817 
Forward-
Backward 

11 

18 FT0484 STM FLOW FU2_2010-07_0003 0.0305 : 1000 29 128 0.5388 34.4817 Least-Squares 18 

19 FT0485 STM FLOW FU2_2010-07_0004 0.0305 : 1000 29 128 0.5388 34.4817 
Forward-
Backward 

11 

20 FT0494 STM FLOW FU2_2010-07_0003 0.0305 : 1000 29 128 0.5388 34.4817 Least-Squares 19 

21 FT0495 STM FLOW FU2_2010-07_0004 0.0305 : 1000 29 128 0.5388 34.4817 
Forward-
Backward 

11 
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Figure 2.8 Dynamic Narrow Band PSD Window Selection Example 

    

  



DOE/ER84626 2-19 Volume I of II 

 

Figure 2.9 Dynamic Autoregressive Fit of Narrow Band PSD Example  
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Figure 2.10 Dynamic Comparison of Narrow Band PSDs Example 
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3. OLM ANALYSIS SUMMARIES 
 
This section summarizes the results of the OLM analysis performed on Farley Units 1 and 2 and 

North Anna Units 1 and 2 during the project.  Also included in this section are examples of 

transmitters that exhibited problems during the observed period.  It should be noted that the 

majority of transmitters evaluated during this project did not exhibit drift or show problems of any 

kind during their fuel cycles.  This is to be expected as one of the core reasons for employing 

OLM for transmitter calibration extension is to demonstrate that typical nuclear power plant 

transmitters do not drift from cycle to cycle.  The appendices in Volume 2 of this report provide a 

full set of OLM analysis plots and tables for all the transmitters analyzed for this project. 

 

3.1 Farley Unit 1 Cycle 22   

 

The OLM analysis for Farley Unit 1 Cycle 22 covers a period between April 2008 and April 2009 

and includes 10 months of steady-state data, transient data from plant shutdown, and dynamic 

data just before shutdown in March 2009.   Of the 59 transmitters that were analyzed during this 

cycle, 7 were identified with potential problems.  These transmitters are listed in Table 3.1. 

SG A NARROW RANGE LEVEL and SG A WIDE RANGE LEVEL transmitters with potential 

problems are shown in Figures 3.1 and 3.2, respectively. As shown on the steady-state 

deviation results in Figure 3.1, narrow range level transmitter LT0475 exhibits a low bias 

throughout the cycle which causes it to exceed the lower OLM acceptance criteria. Wide range 

level transmitter LT0477, on the other hand exhibits a gradual drift over Cycle 22 detected from 

the modeling analysis results, which results in it exceeding its lower OLM acceptance criteria 

from October 2008 to March 2008 (Figure 3.2).   

SG B OUTLET PRESSURE transmitter PT0484 also exhibits a low bias throughout the cycle 

which causes it to exceed its OLM acceptance limits (Figure 3.3).  

PRESSURIZER LEVEL transmitter LT460 drifts above the upper OLM acceptance criteria limits 

during the cycle as shown in Figure 3.4.  

Dynamic OLM data taken on the steam flow, narrow range SG levels and feedwater flow 

transmitters during this cycle did not reveal any problems with the dynamic characteristics of the 

transmitters.   
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Table 3.1 Farley Unit 1 Transmitters with Potential Problems (Cycle 22) 

Item Tagname Service Comment 

1 LT0474 SG A NARROW RANGE LEVEL Out in low and high calibrated range. 

2 LT0475 SG A NARROW RANGE LEVEL Low bias. 

3 LT0476 SG A NARROW RANGE LEVEL Out in low and high calibrated range. 

4 LT0477 SG A WIDE RANGE LEVEL Drift over cycle. 

5 PT0484 SG B OUTLET PRESSURE Low bias. 

6 LT0460 PRESSURIZER LEVEL High bias and drift. 

7 PT0952 CONTAINMENT PRESSURE High bias and span shift. 
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Figure 3.1 Steady-State Deviation SG A Level (Cycle 22) 

 

Figure 3.2 Model Analysis SG A Level (Cycle 22) 

-1.50

-0.75

0.00

0.75

1.50

%
 L

V
L

Date

LT0474 LT0475 LT0476

KDL335A-01

-4.00

-2.00

0.00

2.00

4.00

%
 L

V
L

Date

LT0474 LT0475 LT0476 LT0477

KDL335A-04



DOE/ER84626 3-4 Volume I of II 

 

Figure 3.3 Steady-State Deviation SG B Outlet Pressure (Cycle 22) 

 

Figure 3.4 Steady-State Drift Pressurizer Level (Cycle 22) 

-18.00

-9.00

0.00

9.00

18.00

P
S

I

Date

PT0484 PT0485 PT0486

KDL340A-01

-3.00

-2.25

-1.50

-0.75

0.00

0.75

1.50

2.25

3.00

%
 L

V
L

Date

LT0459 LT0460 LT0461

KDL345A-01



DOE/ER84626 3-5 Volume I of II 

3.2 Farley Unit 1 Cycle 23   

 
The OLM analysis for Farley Unit 1 Cycle 23 covers a period between startup in April/May 2009, 

17 months of steady-state data, transient data from plant shutdown in October 2010, and 

dynamic data taken shortly after startup in June 2009.   Of the 59 transmitters that were 

analyzed during this cycle, 6 were identified with potential problems.  These transmitters are 

listed in Table 3.2. 

SG A LEVEL NARROW RANGE transmitters exhibit a bias between them throughout the cycle, 

which causes LT0475 and LT0474 to exceed the OLM acceptance criteria for deviation (Figure 

3.5).   

SG A WIDE RANGE LEVEL transmitter LT0477 is shown to drift low during the cycle by the 

model analysis (Figure 3.6).  

PRESSURIZER PRESSURE transmitter PT0455 exhibits a low bias throughout the cycle as 

shown in Figure 3.7.  

RCS LOOP C FLOW transmitter FE0434 exhibits a low bias throughout the cycle which causes 

it to exceed its lower OLM acceptance criteria limit (Figure 3.8).  

Dynamic OLM data taken on the steam flow, narrow range SG levels and feedwater flow 

transmitters during this cycle did not reveal any problems with the dynamic characteristics of the 

transmitters. 

3.3 Farley Unit 1 Cycle 24   

 
The OLM analysis for Farley Unit 1 Cycle 24 covers a period between startup in November 

2010 and 9 months of steady-state data through July 2011.   Of the 61 transmitters that were 

analyzed during this cycle (2 Containment Pressure transmitters were added in Cycle 24), 4 

were identified with potential problems.  These transmitters are listed in Table 3.3. 

SG A WIDE RANGE LEVEL transmitter LT0477 exhibits a low bias which causes it to exceed its 

lower OLM acceptance limits throughout the cycle (Figure 3.9).  

PRESSURIZER LEVEL transmitter LT0459 drifts low relative to the 2 other pressurizer level 

transmitters during the cycle and exceeds it lower OLM acceptance criteria (Figure 3.10). 

PRESSURIZER PRESSURE transmitter PT0459 exhibits a high bias throughout the cycle 

(Figure 3.11). 

RCS LOOP A FLOW transmitter FE0416 exhibits a low bias throughout the cycle (Figure 3.12). 
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Table 3.2 Farley Unit 1 Transmitters with Potential Problems (Cycle 23) 

Item Tagname Service Comment 

1 LT0474 SG A NARROW RANGE LEVEL Significant dev. between transmitters 

2 LT0475 SG A NARROW RANGE LEVEL Significant dev. between transmitters 

3 LT0476 SG A NARROW RANGE LEVEL Significant dev. between transmitters 

4 LT0477 SG A WIDE RANGE LEVEL Drift over cycle. 

5 PT0455 PRESSURIZER PRESSURE Low bias. 

6 FE0434 RCS LOOP C FLOW Low bias. 
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Figure 3.5 SG A LEVEL Steady-State Deviation at Farley Unit 1 (Cycle 23) 

 

 

Figure 3.6 SG A LEVEL Model Analysis at Farley Unit 1 (Cycle 23) 
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Figure 3.7 PRESSURIZER PRESSURE Steady-State Deviation at Farley Unit 1 (Cycle 23) 

 

 

Figure 3.8 RCS LOOP C FLOW Steady-State Deviation at Farley Unit 1 (Cycle 23) 
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Table 3.3 Farley Unit 1 Transmitters with Potential Problems (Cycle 24) 

Item Tagname Service Comment 

1 LT0477 SG A WIDE RANGE LEVEL Low bias. 

2 LT0459 PRESSURIZER LEVEL Low drift. 

3 PT0456 PRESSURIZER PRESSURE High bias. 

4 FE0416 RCS LOOP A FLOW Low bias. 
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Figure 3.9 SG A LEVEL Model Analysis at Farley Unit 1 (Cycle 24) 

 

 

Figure 3.10 PRESSURIZER LEVEL Steady-State Drift at Farley Unit 1 (Cycle 24) 
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Figure 3.11 PRESSURIZER PRESSURE Steady-State Deviation at Farley Unit 1 (Cycle 24) 

 

 

Figure 3.12 RCS LOOP A FLOW Steady-State Deviation at Farley Unit 1 (Cycle 24) 
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3.4 Farley Unit 2 Cycle 20   

 
The OLM analysis for Farley Unit 2 Cycle 20 includes 8 months of steady-state data between 

August 2009 and March 2010, shutdown transients in April 2010 and dynamic OLM data taken 

prior to shutdown in March 2010. Of the 61 transmitters that were analyzed during this cycle, 6 

were identified with potential problems.  These transmitters are listed in Table 3.4. 

SG A WIDE RANGE LEVEL transmitter LT0477 exhibits low drift over the cycle as shown in the 

model analysis results in Figure 3.13.  

SG A OUTLET PRESSURE transmitter PT0476 shows a low bias in both the steady-state data 

(Figure 3.14) and the shutdown data (not shown).  

SG B NARROW RANGE LEVEL transmitter LT0485 exhibits a high bias in the shutdown data 

as shown in Figure 3.15.  

Similarly to SG A Wide Range Level transmitter LT0477, SG C WIDE RANGE LEVEL 

transmitter LT0497 shows a low drift over the cycle which causes it to exceed its lower OLM 

acceptance criteria (Figure 3.16).  

PRESSURIZER LEVEL transmitter LT0461 shows a low bias in the shutdown data (Figure 

3.17). 

Although PRESSURIZER PRESSURE transmitters PT0455 and PT0457 show a low drift during 

the middle of the cycle (Figure 3.18), they are both within their OLM acceptance limits in the 

shutdown data (Figure 3.19) and are considered to pass.  As will be shown in the next section, 

these two transmitters also exhibit this low drift during the next cycle, which has prompted 

SNOC engineers to postulate that these transmitters are showing signs of environmental 

effects.  

RCS LOOP A FLOW transmitter FE0416 exhibits a low bias throughout the cycle (Figure 3.20).  

Dynamic OLM data taken on the steam flow, narrow range SG levels and feedwater flow 

transmitters in Unit 2 during this cycle did not reveal any problems with the dynamic 

characteristics of the transmitters. 
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Table 3.4 Farley Unit 2 Transmitters with Potential Problems (Cycle 20) 

Item Tagname Service Comment 

1 LT0477 SG A WIDE RANGE LEVEL Drift over cycle. 

2 PT0476 SG A OUTLET PRESSURE Low bias. 

3 LT0485 SG B NARROW RANGE LEVEL High bias in shutdown data. 

4 LT0497 SG C WIDE RANGE LEVEL Drift over cycle. 

5 LT0461 PRESSURIZER LEVEL Low bias in shutdown data. 

6 FE0416 RCS LOOP A FLOW Low bias. 

 

 

 

  



DOE/ER84626 3-14 Volume I of II 

 

Figure 3.13 SG A LEVEL Model Analysis at Farley Unit 2 (Cycle 20) 

 

Figure 3.14 SG A OUTLET PRESSURE Steady-State Deviation at Farley Unit 2 (Cycle 20) 
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Figure 3.15 SG B LEVEL Transient Deviation at Farley Unit 2 (Cycle 20) 

 

Figure 3.16 SG C LEVEL Model Analysis at Farley Unit 2 (Cycle 20) 
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Figure 3.17 PRESSURIZER LEVEL Transient Deviation at Farley Unit 2 (Cycle 20)

 

Figure 3.18 PRESSURIZER PRESSURE Steady-State Deviation at Farley Unit 2 (Cycle 20) 
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Figure 3.19 PRESSURIZER PRESSURE Transient Deviation at Farley Unit 2 (Cycle 20) 

 

Figure 3.20 RCS LOOP A FLOW Steady-State Deviation at Farley Unit 2 (Cycle 20) 
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3.5 Farley Unit 2 Cycle 21  

 
The OLM analysis for Farley Unit 2 Cycle 21 includes startup data in May 2010, 18 points of 

steady-state data between June 2010 and July 2010, and dynamic OLM data taken just after 

startup in July 2010.   Of the 61 transmitters that were analyzed during this cycle, 6 were 

identified with potential problems.  These transmitters are listed in Table 3.5. 

SG A LEVEL NARROW RANGE transmitter LT0476 drifts high in the middle of the cycle but 

drifts back to normal later in the cycle (Figure 3.21).  Although this transmitter is currently 

passing, it should be watched carefully.  

SG C STEAM FLOW transmitter FE0495B drifts low during the cycle and exceeds its OLM 

acceptance criteria limits (Figure 3.22).  

SG C NARROW RANGE LEVEL transmitter LT0496 exhibits a low bias during the startup 

transient (Figure 3.23).  

PRESSURIZER LEVEL transmitter LT0459 exhibits a high bias during the cycle (Figure 3.24).  

PRESSURIZER PRESSURE transmitter PT0455 exhibits high drift in the cycle until late 

January 2011, at which time, plant personnel indicated that it was re-calibrated.  Since the 

calibration between January and March 2011, this transmitter has drifted slightly and should still 

be watched.  Similar to the previous cycle, transmitters PT0455 and PT0457 exhibit low drift 

during the cycle until they come back in with the rest of the transmitters, indicating a potential 

environmental effect on these two transmitters (Figure 3.25). 

RCS LOOP C FLOW transmitter FE0434 exhibits a low bias throughout the cycle (Figure 3.26).  

Dynamic OLM data taken on the steam flow, narrow range SG levels and feedwater flow 

transmitters in Unit 2 during this cycle did not reveal any problems with the dynamic 

characteristics of the transmitters. 
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Table 3.5 Farley Unit 2 Transmitters with Potential Problems (Cycle 21) 

Item Tagname Service Comment 

1 LT0476 SG A NARROW RANGE LEVEL Drift high over cycle. 

2 FE0495B SG C STEAM FLOW Low drift during cycle. 

3 LT0496 SG C NARROW RANGE LEVEL Low bias in startup transient. 

4 LT0459 PRESSURIZER LEVEL High bias. 

5 PT0455 PRESSURIZER PRESSURE Drift High. 

6 FE0434 RCS LOOP C FLOW Low bias. 
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Figure 3.21 SG A LEVEL Steady-State Drift at Farley Unit 2 (Cycle 21) 

 

Figure 3.22 SG C STEAM FLOW Model Analysis at Farley Unit 2 (Cycle 21) 
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Figure 3.23 SG C LEVEL Transient Deviation at Farley Unit 2 (Cycle 21) 

 

Figure 3.24 PRESSURIZER LEVEL Steady-State Deviation at Farley Unit 2 (Cycle 21) 
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Figure 3.25 PRESSURIZER PRESSURE Steady-State Drift at Farley Unit 2 (Cycle 21) 

 

 

Figure 3.26 RCS LOOP C FLOW Steady-State Deviation at Farley Unit 2 (Cycle 21) 
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3.6 North Anna Unit 1 Cycle 20 

 
The OLM analysis for North Anna Unit 1 Cycle 20 includes 13 months of steady-state data from 

January 2008 to March 2009. Of the 52 transmitters that were analyzed during this cycle, 2 

were identified with potential problems.  These transmitters are listed in Table 3.6. 

TURBINE FIRST STAGE PRESSURE transmitters P0398A and P0399A appear to drift high 

during the cycle in the analytical modeling results as shown in Figure 3.27.  However, the 

apparent drift in the modeling results may be the result of differences in the training data at the 

start of the cycle and changes in the mean process value over the cycle (Figure 3.28) instead of 

sensor drift. 

 

3.7 North Anna Unit 1 Cycle 21 

 
The OLM analysis for North Anna Unit 1 Cycle 21 includes startup data from April 2009 and 15 

months of steady-state data from May 2009 to August 2010. Of the 52 transmitters that were 

analyzed during this cycle, none of the transmitters exceeded their OLM acceptance criteria in 

the redundant sensor analysis results (using averaging techniques).  However, 16 of the 

transmitters exceeded their OLM acceptance criteria in the modeling analysis (Table 3.7).  

These transmitters are believed to have exceeded their OLM acceptance criteria in the 

modeling analysis as a result of process changes from the beginning of the cycle (when the 

models were trained) to the end of the cycle.  Figures 3.29 through 3.36 show results from the 

modeling analysis of these transmitters over Cycle 21. 

 
3.8 North Anna Unit 1 Cycle 22 

 
The OLM analysis for North Anna Unit 1 Cycle 22 includes 6 months of steady-state data from 

November 2010 to April 2011. Of the 52 transmitters that were analyzed during this cycle, none 

of the transmitters exceeded their OLM acceptance criteria in the redundant sensor analysis 

results (using averaging techniques).  However, 2 of the SG C OUTLET PRESSURE 

transmitters exceeded their OLM acceptance criteria in the modeling analysis (Table 3.8).  As in 

previous cycles, these transmitters are believed to have exceeded their OLM acceptance 

criteria in the modeling analysis as a result of process changes throughout the cycle.  Figure 

3.37 shows the results from the modeling analysis of the SG C OUTLET PRESSURE 

transmitters in Cycle 22. 
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Table 3.6 North Anna Unit 1 Transmitters with Potential Problems (Cycle 20) 

Item Tagname Service Comment 

1 P0398A TURBINE FS PRESSURE Drift high over cycle. 

2 P0399A TURBINE FS PRESSURE Drift high over cycle 
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Figure 3.27 TURBINE FS PRESSURE Model Analysis At North Anna Unit 1 (Cycle 20) 

 
 

 
 

Figure 3.28 TURBINE FS PRESSURE Mean Values At North Anna Unit 1 (Cycle 20) 
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Table 3.7 North Anna Unit 1 Transmitters Exceeding Modeling Limits (Cycle 21) 

Item Tagname Service Comment 

1 F1MS001A SG A STEAM FLOW Process change 

2 F1MS002A SG A STEAM FLOW Process change 

3 F1FW004A FW FLOW TO SG A Process change 

4 F1FW005A FW FLOW TO SG A Process change 

5 P1MS001A SG A OUTLET PRESSURE Process change 

6 P1MS002A SG A OUTLET PRESSURE Process change 

7 P1MS003A SG A OUTLET PRESSURE Process change 

8 F1MS004A SG B STEAM FLOW Process change 

9 P1MS004A SG B OUTLET PRESSURE Process change 

10 P1MS005A SG B OUTLET PRESSURE Process change 

11 P1MS006A SG B OUTLET PRESSURE Process change 

12 F1MS005A SG C STEAM FLOW Process change 

13 F1MS006A SG C STEAM FLOW Process change 

14 P1MS007A SG C OUTLET PRESSURE Process change 

15 P0398A TURBINE FS PRESSURE Process change 

16 P0399A TURBINE FS PRESSURE Process change 
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Figure 3.29 SG A STEAM FLOW Model Analysis at North Anna Unit 1 (Cycle 21) 

 

 
 

Figure 3.30 SG A FW FLOW Model Analysis at North Anna Unit 1 (Cycle 21) 
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Figure 3.31 SG A OUTLET PRESSURE Model Analysis at North Anna Unit 1 (Cycle 21) 

 

Figure 3.32 SG B STEAM FLOW Model Analysis at North Anna Unit 1 (Cycle 21) 
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Figure 3.33 SG B OUTLET PRESSURE Model Analysis at North Anna Unit 1 (Cycle 21) 

 

 

Figure 3.34 SG C STEAM FLOW Model Analysis at North Anna Unit 1 (Cycle 21) 
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Figure 3.35 SG C OUTLET PRESSURE Model Analysis at North Anna Unit 1 (Cycle 21) 

 

Figure 3.36 TURBINE FS PRESSURE Model Analysis at North Anna Unit 1 (Cycle 21) 
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Table 3.8 North Anna Unit 1 Transmitters Exceeding Modeling Limits (Cycle 22) 

Item Tagname Service Comment 

1 P1MS008A SG C OUTLET PRESSURE Process change 

2 P1MS009A SG C OUTLET PRESSURE Process change 
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Figure 3.37 SG C OUTLET PRESSURE Model Analysis at North Anna Unit 1 (Cycle 22) 
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3.9 North Anna Unit 2 Cycle 21 

 
The OLM analysis for North Anna Unit 2 Cycle 21 includes startup data from April and May 

2010 (two separate startup transients) and 8 months of steady-state data from July 2010 to April 

2011. Of the 52 transmitters that were analyzed during this cycle, 5 were identified with potential 

problems.  These transmitters are listed in Table 3.9. 

SG B NARROW RANGE LEVEL transmitters L2FW005A and L2FW007A appear to have 

significant deviations from the average that cause them to exceed their OLM acceptance criteria 

in the steady-state data (Figure 3.38). 

Similarly, SG C STEAM FLOW transmitters F2MS005A and F2MS006A exhibit significant 

deviations in the steady-state data that exceed the OLM acceptance limits (Figure 3.39). 

RCS LOOP C FLOW transmitter F2RC008A exhibits a high bias through the cycle that exceeds 

its upper OLM acceptance limit (Figure 3.40). 

SG A STEAM FLOW transmitters F2MS001A and F2MS002A appear to drift low during the 

cycle, which is most likely the result of a process change throughout the cycle (Figure 3.41).   

FW FLOW TO SG C transmitters F2FW008A and F2FW009A exhibit similar behavior (Figure 

3.42). 
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Table 3.9 North Anna Unit 2 Transmitters With Potential Problems (Cycle 21) 

Item Tagname Service Comment 

1 L2FW005A SG B NARROW RANGE LEVEL Deviation from average 

2 L2FW007A SG B NARROW RANGE LEVEL Deviation from average 

3 F2MS005A SG C STEAM FLOW Deviation from average 

4 F2MS006A SG C STEAM FLOW Deviation from average 

5 F2RC008A RCS LOOP C FLOW High bias 
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Figure 3.38 SB B LEVEL Steady-State Deviation at North Anna Unit 2 (Cycle 21) 

 

 

Figure 3.39 SG C STEAM FLOW Steady-State Deviation at North Anna Unit 2 (Cycle 21) 
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Figure 3.40 RCS LOOP C FLOW Steady-State Deviation at North Anna Unit 2 (Cycle 21) 

 

Figure 3.41 SG A STEAM FLOW Model Analysis at North Anna Unit 2 (Cycle 21) 
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Figure 3.42 FW FLOW TO SG C Model Analysis at North Anna Unit 2 (Cycle 21) 
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4. LESSONS LEARNED DURING THE PROJECT 
 
One of the most important aspects of the Phase II+ was the accumulation of experience and 

knowledge that came as a part of analyzing multiple cycles of data for 4 nuclear reactors.  In 

this section, lessons learned during this project are presented that may benefit the industry or 

others who are planning to implement OLM in their plants. 

 

4.1 OLM Data Acquisition 

 

The typical path for static data acquisition is shown in Figure 4.1.  Signals from the sensors of 

interest are terminated in instrumentation cabinets and eventually are acquired and stored by 

the plant computer.  Downstream of the plant computer is a data historian which greatly 

simplifies the storage and retrieval of data (see explanation in Appendix A). However, the data 

compression that is often applied by data historians can be a problem for OLM algorithms, 

especially empirical modeling algorithms which rely on correlations between related sensors.  

Ideally, the plant could turn off the compression settings so that the data from the plant historian 

could be retrieved without compression.  However, as experienced during this project, the 

information technology (IT) departments in charge of the historians are often reluctant to change 

compression settings because of limitations with data storage capacities. 

At both Farley and North Anna, the compression settings of the data historians could not be 

turned off in order to collect sufficient data for the OLM analysis.  In both cases, plant personnel 

involved with the project retrieved data from the plant computer itself in order to avoid problems 

with compression settings.  However, as discovered during this project, retrieving data directly 

from the plant computer may not be straightforward, and is often cumbersome on plant 

personnel. 

For the Farley plant, AMS developed a special program that periodically retrieved plant 

computer data that was being sent in real-time to an Excel spreadsheet.  This solution worked 

adequately; however, when Excel was upgraded during the course of the project, it often 

caused the data acquisition code to stop working temporarily until the problem could be 

resolved.  North Anna, on the other hand, was able to generate ‘log’ files from the plant 

computer, which provided a much easier way to obtain data than Farley.      
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Figure 4.1:  Sensor data flow to the plant computer and data historian 
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4.2 Analytical Modeling Experience 

 

For the most part, the analytical models worked well throughout the project.  As AMS learned 

over the course of the project, it is very important at the beginning of the project to meet with 

plant personnel when determining the model groupings.  Automated tools such as cross-

correlation analysis to determine model groupings are a good first step, but often relationships 

between diverse parameters are not necessarily linear, and thus some critical model 

parameters may be overlooked.  Fortunately during the course of the Phase II project AMS 

engineers met and discussed model groupings with personnel from both Farley and North Anna 

and came to a consensus on what should be included in each model. 

Although the models provided valuable information for most of the plant services, sometimes 

they would produce false alarms because of the nature of the way in which they were trained.  

As discussed in the Phase II report [2], the models for Farley and North Anna were trained at 

the start of each cycle using data from the startup and one month after startup.  After much trial 

and error, AMS decided to include the month after startup in the model so that the monthly data 

would not leave the training space shortly after startup.  This worked well in most cases, 

however, if the process being monitored changed during the cycle and exceeded the training 

data space, false alarms could be generated. 

Figures 4.2 – 4.5 provide an example of what can happen when the process changes for a 

given model.  Figure 4.2 shows the residual analysis of STEAM A FLOW transmitters at North 

Anna Unit 1 from Cycle 21.  At first glance, it appears that both transmitters have drifted high 

during the cycle.  However, closer inspection of the data reveals that what is actually happening 

is that the process itself is changing to a state that has not been learned by the model, which 

makes it appear that there is something wrong with the transmitters. 

As shown in Figure 4.3, the mean value of the STEAM A FLOW transmitters correlates with the 

residual shown in Figure 4.2.  In addition, the residual and mean of SG A FEED FLOW 

transmitters follows a similar increase over the same period of time.  As it is unlikely that both 

steam flow and feed flow transmitters can both be experiencing the same exact sort of 

degradation, the alternative explanation for the apparent high residuals is that the process has 

changed.  Because the models were trained with data from startup and one month after startup, 

if the process changes to some other state during the cycle, this could make the transmitters 

appear to drift. 
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Figure 4.2 SG A STEAM FLOW Steady-State Residual at North Anna Unit 1 (Cycle 21) 

 

Figure 4.3 SG A STEAM FLOW Static Mean at North Anna Unit 1 (Cycle 21) 
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Figure 4.4 SG A FW FLOW Steady-State Residual at North Anna Unit 1 (Cycle 21) 

 

Figure 4.5 SG A FW FLOW Static Mean at North Anna Unit 1 (Cycle 21) 
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4.3 Differential Pressure to Flow Conversion 

 
Flow transmitters measure a differential pressure, typically across some type of orifice plate. 

When these transmitters are calibrated, a differential pressure is used along with limits that are 

derived for the flow at operating conditions converted to differential pressure. The differential 

pressure data from the transmitter is converted to flow in the instrument channel on the way to 

the plant computer. Thus, when the flow transmitters are analyzed, the units are in terms of the 

flow rate. 

In order to better understand the problem with this issue, consider the relationship between the 

mass flow rate and the volumetric flow rate (and the associated differential pressure). An 

equation for the mass flow rate for an incompressible fluid (with constant density) through an 

orifice is given by 

 ̇       √  (     ) 

where 

 ̇  mass flow rate 
  fluid density 
  volumetric flow rate 
  orifice flow coefficient 
  cross sectional area of orifice hole 
   upstream pressure 
   downstream pressure. 

To clarify the relationship, the constants are removed and the equation becomes 

 ̇  √(     ) 

This equation shows that the mass flow rate is proportional to the square root of the differential 

pressure. Therefore, when looking at the flow in terms of mass flow rate, any constant bias in 

the differential pressure signal will show up as the square root of that bias in the mass flow rate. 

This also implies that for flows, the limits should change along the transmitter’s span (due to the 

square root). Because the limits used for the OLM analysis are calculated at the transmitter’s 

operating point in terms of flow, they should not be applied to other areas of the transmitter’s 

range. However, in practice, a constant flow deviation limit is used. 

Figure 4.6 provides an example of how flow signals are analyzed with constant operating point 

deviation limits. The figure shows the deviation of the transmitters growing exponentially toward 

the lower end of the range. This separation of the flow signals at the low end of the range is the 
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result of the square root of a bias in the differential pressure of the signals. The figure also 

demonstrates how the theoretical limits would flare out at the low end of the range, bounding the 

transmitter deviations, if they were adjusted to account for the square root of the differential 

pressure to flow conversion. 

 

 

Figure 4.6 Main Steam Flow Transmitters Analyzed with OLM and Theoretical Limits 

 

Note that the upper and lower theoretical limits are not symmetric, which adds to the complexity 

of the OLM analysis in terms of flow. If the flow measurements were converted back into 

differential pressures, they could be analyzed in terms of a constant limit, similar to manual 

calibrations. This would make the analysis simpler and easier for the analyst to understand at a 

glance. 

In the analysis for Farley and North Anna, these types of deviations were considered in the final 

analysis and noted. 
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5. COMMERCIALIZATION OF OLM 
 
As the ultimate goal of the DOE SBIR program is to develop commercial products and 

technologies that can be sold to existing or new customers, AMS spent considerable effort over 

the course of the project (using its own funds), to educate and inform potential customers of the 

capabilities and benefits that the OLM system can provide.  These commercial activities took 

several forms, including meetings and conferences held at AMS headquarters, plant/corporate 

site visits, teleconferences, and participation in nuclear industry users groups (Table 5.1).   

AMS is also marketing the products of this project on its website (www.ams-corp.com) and in 

other promotional materials.  In particular, the OLM data acquisition system, which was 

developed during this project, is currently featured on the AMS website, and has been provided 

to the nuclear industry.  For example, Sizewell B plant engineers are currently using the OLM 

data acquisition system to acquire I&C dynamic data on a quarterly basis, and have a 

commercial contract with AMS to analyze the dynamic response of the transmitters. In addition, 

AMS is now using the OLM system to provide the data acquisition for its normal transmitter 

response time service contracts for nuclear plants both in the U.S. and abroad.  

In October 2010, AMS was awarded a three year Phase III grant to commercialize the OLM 

technology developed in Phase II and extend its applications from PWRs to BWRs.  

 

5.1 International Exposure and Publications 

 

The product of this project has been showcased by AMS (at its own cost) in a number of 

international venues to promote the use of OLM technologies in nuclear plants outside of the 

U.S.  In addition, AMS was a key contributor to the publication of two technical documents 

published by the International Atomic Energy Agency (IAEA) in 2008.  Referred to as ‘IAEA 

Nuclear Energy Series’ documents, the titles of these publications are ‘On-line Monitoring for 

Improving Performance of Nuclear Power Plants Part 1: Instrument Channel Monitoring’, and 

‘On-line Monitoring for Improving Performance of Nuclear Power Plants Part 2: Process and 

Component Condition Monitoring and Diagnostics’ [4-5]. 

 

 

 

 

http://www.ams-corp.com/
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Table 5.1 Examples of Commercialization Activities 

 

Date of 
Meeting 

Customer 
Meeting 

Type 
Potential Nuclear 

Power Plants 

March 2008 Dominion Marketing North Anna, Surrey 

June 2008 
Southern Nuclear Operating 

Company (SNOC) 
Marketing Farley, Vogtle, Hatch 

June 2008 
Rod Control Reliability Committee 

(RCRC) 
Users Group 

Nuclear Power 
Industry 

June 2008 
51st Annual ISA POWID 

Symposium, Scottsdale, AZ 
Conference 

Nuclear Power 
Industry 

July 2008 
Pressurized Water Reactor 
Owner’s Group (PWROG) 

Users Group PWR Plants 

September 
2008 

SNOC, Dominion, Westinghouse Technical Westinghouse Plants 

December 
2008 

Luminant Marketing Comanche Peak 

December 
2008 

TVA Marketing 
Sequoyah, Watts Bar, 

Browns Ferry 

August 2009 
Southern Nuclear Operating 

Company (SNOC) 
Technical Farley, Vogtle, Hatch 

Mar. 2010 
Pressurized Water Reactor 
Owner’s Group (PWROG) 

Technical PWR Plants 

 

 

 

 

 

 

 

  



DOE/ER84626 5-3 Volume I of II 

In April 2009, AMS hosted a meeting for an IAEA-sponsored Coordinated Research Project 

(CRP) entitled ‘Advanced Surveillance, Diagnostics and Prognostics (SDP) Techniques Used 

for Health Monitoring of Systems, Structures, and Components in Nuclear Power Plants’ at AMS 

headquarters in Knoxville, Tennessee.  The purpose of this CRP is to: 

 Develop and demonstrate the use of advanced SDP techniques that can be installed 

and used for health monitoring of systems, structures and components in nuclear power 

plants 

 Strengthen Member States’ capabilities for optimization of nuclear power plant 

performance and service life by means of improved understanding of the related 

engineering and management areas 

 

The results of this CRP will be a new document to be published by the IAEA when the work is 

completed. The meeting held at AMS involved over 50 participants from 15 countries.  AMS 

continues to be a key contributor to this project, which is scheduled to be published in the fall of 

2011. 

AMS has also been heavily involved in publishing articles based on the subject of on-line 

monitoring during the course of this project.  Table 5.2 provides a list of publications on OLM 

and brief descriptions of each article published by project team members. 

 

5.2 Impact on the U.S. Nuclear Industry 

 

One of the most significant accomplishments of this project has been the increased level of 

interest in OLM implementation that it has created in the U.S. nuclear industry.  Those familiar 

with the history of OLM development in the nuclear industry will remember a similar effort 

headed by EPRI in the late 1990’s.  This effort resulted in a Safety Evaluation Report (SER) 

issued by the Nuclear Regulatory Commission (NRC) in July 2000 approving the use of OLM to 

extend the calibration intervals of nuclear plant pressure, level, and flow transmitters [6].  In fact, 

this SER was partly based on the results of an R&D project that AMS had performed for the 

NRC in the mid-1990s as documented in NUREG/CR-6343; a report that AMS wrote for the 

NRC [7]. 



*Paper designation corresponds to AMS’ list of publications 
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Table 5.2 Publications by the Authors Related to this Project 

AMS 
Paper 
Desig* 

Paper Title Author(s) 
Journal/ 

Publication Info 
Month/Year of 

Publication 
Description of Paper 

J7 Pressure 
Transmitter 
Accuracy 

Hashemian, 
H.M. and 
Jiang, J. 

ISA Transactions, 
Vol. 48, No. 4, Pages 
383-388 

October  
2009 

Key causes of calibration drift 
in pressure transmitters and 
procedures for calibrating 
pressure transmitters to 
ensure their accuracy. 

J8 The State of the 
Art in Nuclear 
Power Plant 
Instrumentation 
and Control 

Hashemian, 
H.M. 

Int. J. Nuclear Energy 
Science and 
Technology, Volume 
4, No. 4, pages 330-
354 

September 
2009 

Advances over the past 
decade in process 
instrumentation and control 
for nuclear power plants. 

J10 Regulations and 
Standards for the 
Measurement of 
Performance and 
Management of 
Ageing of I&C 
Systems of 
Nuclear Power 
Plants 

Hashemian, 
H.M. 

Int. J. Nuclear Law, 
Volume 2, No. 4 

March  
2010 

Regulations, standards and 
guidelines to formulate 
requirements and establish 
maintenance methods to 
verify the performance of 
equipment. 

J11 A Practical 
Review of 
Methods for 
Measuring the 
Dynamic 
Characteristics of 
Industrial 
Pressure 
Transmitters 

Hashemian, 
H.M., and 
Jiang, J. 

ISA Transactions, 
Volume 49, Issue 1 

January  
2010 

Methods for testing the 
response times of pressure 
transmitters in situ:  power 
interrupt, noise analysis and 
pink noise techniques. 

J12 Using The Noise 
Analysis 
Technique to 
Detect Response 
Time Problems in 
the Sensing 
Lines of Nuclear 
Plant Pressure 
Transmitters 

Hashemian, 
H.M., and 
Jiang, J. 

Progress in Nuclear 
Energy, ISSN 0149-
1970, Volume 52, 
Issue 4, pp. 367-373 

May  
2010 

Only the noise analysis 
technique provides an 
effective means for testing 
response times when a 
nuclear plant is operating. 

J13 Implementing 
Online Monitoring 
in Nuclear Power 
Plants 

Hashemian, 
H.M 

IEEE Transactions on 
Nuclear Science 

May  
2010 

On-line monitoring techniques 
make it possible to automate 
and analyze the evaluation of 
instrument accuracy and 
reliability while a plant is 
operating. 

J15 Integrated Online 
Condition 
Monitoring 
System for 
Nuclear Power 
Plants 

Hashemian, 
H.M. 

Kerntechnik, Volume 
75, No. 5, pp. 231-
242 

September 
2010 

Online monitoring uses data 
acquired while a nuclear 
power plant is operating to 
continuously assess the 
health of the plants sensors, 
processes, and equipment. 



*Paper designation corresponds to AMS’ list of publications 
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AMS 
Paper 
Desig* 

Paper Title Author(s) 
Journal/ 

Publication Info 
Month/Year of 

Publication 
Description of Paper 

J16 Applying Online 
Monitoring for 
Nuclear Power 
Plant 
Instrumentation 
and Control 

Hashemian, 
H.M. 

IEEE Transactions on 
Nuclear Science, 
Volume 57, Number 
5, Part III 

October  
2010 

A practical review of the state-
of-the-art means for applying 
OLM data acquisition in 
nuclear power plant 
instrumentation and control, 
qualifying or validating the 
OLM data, and then analyzing 
it for static and dynamic 
performance monitoring 
applications. 

J19 Aging 
Management of 
Instrumentation & 
Control Sensors 
in Nuclear Power 
Plants 

Hashemian, 
H.M. 

Nuclear Engineering 
and Design, Volume 
240, Issue 11, pages 
3781-3790. 

November 
2010 

A review of aging 
management methods, their 
effectiveness, and their 
interrelation provides a 
foundation for understanding 
the next stage in the evolution 
of online monitoring. 

J20 On-Line 
Monitoring 
Applications in 
Nuclear Power 
Plants 

Hashemian, 
H.M. 

Progress in Nuclear 
Energy 53, Issue 2, 
167-181 

March  
2011 

Online monitoring 
technologies with particular 
emphasis on detecting 
sensing line blockages, 
testing the response time of 
pressure transmitters, 
monitoring the calibration of 
pressure transmitters online, 
cross calibrating temperature 
sensors in situ, assessing 
equipment condition, 
performing predictive 
maintenance of reactor 
internals, monitoring fluid flow, 
and extending the life of 
neutron detectors.   

J23 Ensuring Plant 
Safety & 
Reliability 

Hashemian, 
H.M. 

Nuclear Plant 
Journal, Volume 29, 
No. 2, pages 38-40 

March/April 
2011 

A question and answer 
session regarding online 
condition monitoring systems. 

M21 Instrumentation 
and Control in 
Nuclear Power 
Plants 

Hashemian, 
Hash 

SciTopics. Retrieved 
May 25, 2010, from 
http://www.scitopics.c
om/Instrumentation_a
nd_Control_in_Nucle
ar_Power_Plants.htm
l 

May 
2010 

Nuclear power plant 
instrumentation and control 
consists of hardware that 
controls and ensures the 
safety of NPPs by acquiring 
data from sensors monitoring 
the status of process 
variables such as 
temperature, pressure, and 
level; conditions and isolates 
these sensor signals; displays 
and processes the sensor 
data on records, indicators, 
and the plant computer; and 
issues commands to 
controllers, safety logic 
circuitry, or safety actuation 
systems. 



*Paper designation corresponds to AMS’ list of publications 
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AMS 
Paper 
Desig* 

Paper Title Author(s) 
Journal/ 

Publication Info 
Month/Year of 

Publication 
Description of Paper 

M22 Listening in Real 
Time 

Hashemian, 
H.M. 

Nuclear Engineering 
International 
Magazine, pp. 13-20 

April  
2010 

Online monitoring 
technologies and methods to 
anticipate, identify, and 
resolve equipment and 
process problems to ensure 
plant safety and efficiency. 

M26 Predictive 
Maintenance 
Techniques 

Hashemian, 
Hash 

SciTopics. Retrieved 
June 14, 2010, from 
http://www.scitopics.c
om/Predictive_Mainte
nance_ 
Techniques.html 

June  
2010 

Despite advances in 
predictive maintenance 
technologies, time-based and 
hands-on equipment 
maintenance is still the norm 
in many industrial processes. 

M27 The Noise 
Analysis 
Technique for 
Testing Pressure 
Sensor 
Response Time 

Hashemian, 
Hash 

SciTopics. Retrieved 
June 14, 2010, from 
http://www.scitopics.c
om/The_Noise_Analy
sis_Technique_for_T
esting_Pressure_Sen
sor_Response_Time.
html 

June  
2010 

The noise analysis technique 
is normally used for in-situ 
response time testing of 
pressure, level, and flow 
transmitters.   

M30 Process Sensors 
for Nuclear 
Power Plants 

Hashemian, 
H.M. 

SciTopics.  Retrieved 
September 23, 2010, 
from 
http://www.scitopics.c
om/Process_Sensors
_for_Nuclear_Power_
Plants.html 

July  
2010 

The latest advances in 
sensors and transmitters for 
the nuclear power industry in 
the next ten years are fiber-
optic and wireless sensors. 

M31 Data Acquisition 
for Nuclear 
Power Plant 
Instrumentation 
and Control 

Hashemian, 
H.M. 

SciTopics.  Retrieved 
September 23, 2010, 
from 
http://www.scitopics.c
om/Data_Acquisition_
for_Nuclear_Power_
Plant_Instrumentation
_and_Control.html 

July  
2010 

Online monitoring techniques 
make it possible to automate 
and analyze the evaluation of 
instrument accuracy and 
reliability while a nuclear plant 
is operating. 

M34 Data 
Qualification for 
Online Monitoring 
of Nuclear Power 
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Instrumentation 
and Control 

Hashemian, 
H.M. 
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September 23, 2010 
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http://www.scitopics.c
om/Data_Qualificatio
n_for_Online_Monitor
ing_of 
_Nuclear_Power_Pla
nt_Instrumentation_a
nd_Control.html 

July  
2010 

After data for online 
monitoring of nuclear power 
plant instrumentation and 
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must be qualified for use by 
OLM algorithms. 

B7 Nuclear Plant 
Instrumentation 
and Control 
System 
Performance 
Monitoring 

Hashemian, 
H.M. 

Instrument Engineers’ 
Handbook:  Process 
Software and Digital 
Networks, Volume 3, 
Edition 4/Chapter 61 

August  
2011 

OLM technologies and new 
diagnostic and prognostic 
methods to anticipate, 
identify, and resolve 
equipment and process 
problems and ensure plant 
safety, efficiency, and 
immunity to accidents. 
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Although the NRC issued a SER in the year 2000 in favor of OLM, the industry activity slowed 

down as no utility wanted to be the first to implement OLM because of the unproven benefits 

and the uncharted approach to technical specification amendments that are needed.  However, 

with the success of the Phase II project, interest in OLM technologies has risen again as 

evidenced by the support of the participating utilities in this project and the activities recently 

initiated by the Pressurized Water Reactor Owners Group (PWROG). 

In October 2009, the PWROG initiated a multi-year project intended to pursue generic licensing 

of OLM methods to reduce the I&C maintenance burden associated with transmitter calibrations 

in Westinghouse, Babcock & Wilcox (B&W), and Combustion Engineering (C-E) PWR designs.  

Initially, the PWROG planned to approach the generic licensing issue in accordance with the 

recommendations set forth in [6].  In 2006, the V.C. Summer plant prepared a submittal to 

modify their technical specifications to extend transmitter calibrations following the NRC 

approach; however, the effort was ultimately withdrawn from submittal, leaving the U.S. nuclear 

industry with no successful path to follow for getting transmitter calibration extension approved. 

The approach to transmitter calibration extension set out in the SER places the burden of the 

safety case on the particular OLM software algorithms employed by the plants to determine the 

calibration status of their transmitters.  Although the SER does not specifically recommend any 

particular OLM algorithm, each plant is required to submit with their technical specification 

change detailed information about their OLM algorithms, including how the OLM algorithms are 

not sensitive to common-mode drift and how process estimate uncertainties produced by the 

OLM algorithms are calculated.  In fact, one of the primary reasons the V.C. Summer technical 

specification change was not reviewed by the NRC was because it lacked specific information 

about the OLM algorithms that were to be used. 

The Sizewell B plant in the United Kingdom, which is the only plant to date that has received 

approval for transmitter calibration extension from their regulatory authority, took a different 

approach.  In Sizewell’s approach, the burden of the safety case is centered around historical 

evidence from their maintenance records showing that their transmitters do not systematically 

drift, rather than relying solely on OLM algorithms to determine the calibration status of their 

transmitters.  In Sizewell B’s approach, OLM algorithms are used as a performance monitoring 

tool to provide more frequent monitoring of transmitter performance than the traditional manual 

calibration method, which only assess transmitter performance every eighteen months. 

Approaching their technical specification change in this way helped Sizewell B to avoid having 
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to provide detailed explanations of their OLM algorithms, and also gave them the flexibility to not 

be tied to one particular OLM algorithm.  

In March 2010, the PWROG invited representatives from AMS, Westinghouse, the Electric 

Power Research Institute (EPRI), Sizewell B, and the University of Tennessee (UT) to discuss 

how to best approach generic licensing of OLM for transmitter calibration extension.  At the 

conclusion of the meeting, the PWROG decided to change the project scope to follow Sizewell 

B’s approach of basing their safety case on historical transmitter drift and using OLM as a 

performance monitoring tool. This approach adopted by the PWROG will follow the 

methodology found in industry documents NEI 04-10 Rev 1 [8] and TSTF-425 [9] which provide 

NRC-approved guidance for utilities to set up their own programs for surveillance frequencies. 

The new PWROG project scope includes the following technical tasks: 

1. Determine the impact of transmitter calibration extension on probabilistic risk analysis 
(PRA), defense-in-depth, and safety margins. 

2. Performing a generic transmitter drift study using statistical analysis of transmitter 
maintenance records. 

3. Developing guidance to determine OLM acceptance criteria. 

Funding for the new project scope was authorized by PWROG management in October 2010, 

and the project is expected to be completed in November 2012.  The PWROG requested that 

AMS perform the generic transmitter drift study.  As the drift study work falls outside of the 

scope of the Phase II+ project, AMS will perform this work under a commercial contract with the 

PWROG. 
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6. CONCLUSIONS AND FUTURE WORK 
 

The OLM system designed and developed during this project has been demonstrated on 

data from four operating nuclear reactors as part of an SBIR research project conducted 

by AMS under the supervision of the DOE.  As described in this report, the OLM system 

integrates static and dynamic OLM techniques to provide an objective assessment of the 

health and condition of a nuclear power plant and its equipment, and the reliability and 

accuracy of its instrumentation. The OLM results obtained over the course of this report 

indicate that the majority of nuclear power plant transmitters do not exhibit drift over 

typical 18-month fuel cycles.  In fact, out of the 507 individual transmitters analyzed 

during this report, which covered a period including 9 fuel cycles, only 7% (35 

transmitters) exhibited anomalous behavior during the cycle.  This is an encouraging 

result in that it shows that OLM can be used to demonstrate that transmitters do not lose 

their calibrations over fuel cycles, and also that OLM can give operators a tool to detect 

instrumentation problems as they occur. 

Throughout the course of the project, NPPs in the U.S. and abroad actively participated 

by providing plant computer data, engineering resources, and plant access to test the 

implementation of the OLM system.  In the U.S., interest generated in OLM technologies 

as a result of this project provided the impetus for the formation and authorization of a 

project to be carried out by the PWR Owner’s Group (PWROG).  This PWROG project, 

which began in 2010, is aimed at providing NRC-approved guidance for utilities to set up 

their own surveillance frequency programs which will be used to extend transmitter 

calibration intervals.  The project is expected to be completed in two years.  As the 

scope of this project includes Westinghouse, B&W, and C-E PWRs, it could potentially 

impact 69 out of the 104 NPPs currently operating in the U.S. AMS has been invited by 

the PWROG to participate in this project by performing a generic transmitter drift study 

using statistical analysis of transmitter maintenance records.    

In October 2010, AMS was awarded a Phase III SBIR from the DOE to commercialize 

OLM technologies researched and developed over the course of this project and to 

extend it to Boiling Water Reactor (BWR) applications.  This project is planned to be 

completed in September 2013, and will result in commercial OLM tools and applications 

that will be used to provide enhanced OLM capabilities for both PWRs and BWRs in the 

U.S. and worldwide. 
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On-line monitoring (OLM) implementation in nuclear power plants involve data 

acquisition, data qualification, and data analysis.  These aspects each depend on 

whether the data is used for static condition monitoring applications (e.g. instrument 

calibration monitoring) or dynamic condition monitoring applications (e.g. sensor 

response time testing, core barrel vibration measurements).  This paper covers each of 

the three aspects of the OLM implementation separately. 

1. OLM Data Acquisition 

There are several possibilities for obtaining OLM data.  These are: 

 

 Retrieve the data manually 

 

 Retrieve the data that is already available in the plant computer 

 

 Install a new means to automatically acquire the data 

 

 Use a combination of these options 

 

These requirements depend on whether OLM is being used for static performance 

monitoring or dynamic performance monitoring applications.  These applications are 

discussed in this paper together with their corresponding data acquisition 

requirements.  

1.1 Data acquisition for static performance monitoring 

Static OLM techniques are primarily concerned with recognizing slow moving 

changes in sensors or plant processes due to drift, sensor degradation, or gradual 

equipment failure.  For applications such as equipment performance monitoring, a 

sample rate of at least 1 sample/minute is sufficient for static analysis.  However, for 

applications such as calibration monitoring or cross-calibration where startup or 

shutdown transients will be used, faster rates in the order of 1 to 10 seconds are 

required. 
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1.1.1  Manual data acquisition 

Manual data collection process involves connecting a multimeter to test points in the 

instrumentation cabinets, and manually recording the sensor readings (Figure 1).   

There are a few advantages to acquiring OLM data manually.  For example, 

the measurements are often simple, and plant personnel are often trained and familiar 

with taking voltage measurements from test points.  Also, most plants have a number 

of voltage measurement equipment already, so the cost of equipment is minimal.  

However, there are several drawbacks that can often make the manual method 

impractical for many static OLM techniques, especially those techniques that involve 

comparing several sensors at one time.  These drawbacks are: 

 

 Limited measurement capability 

 

 Significant time required to take measurements 

 

 Increased probability of making errors when recording measurements 

 

 Increased trip risk while sensors are in test 

1.1.2 Data from plant computer 

Nuclear power plants are often equipped with the means to collect and store the 

output of process sensors.  The data can be retrieved either directly from the plant 

computer or through the plant data historian.  Figure 2 shows a simplified data flow 

from the sensors to the plant computer.   Most plants also employ a separate data 

historian to archive data from the plant computer. The historian obtains data from the 

plant computer and provides additional storage and other capabilities.  
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Figure 1:  Manual acquisition of OLM data for RTD cross-calibration 



A-3 

 

Instrument 

Cabinets

Plant 

Computer Data Historian

OLM004-6

Sensors

 

 

Figure 2:  Sensor data flow to the plant computer and data historian 

 

 

 

Typically, the measured sensor values are converted to engineering units 

before they are stored in the plant computer to facilitate easy understanding by plant 

personnel.  In addition to the measured values, each data point is time-stamped when 

the data is acquired.  Figure 3 shows a typical set of data from the plant computer, 

along with the timestamps for the measurement. 

Although the plant computer provides a means for engineers to view plant 

process data, there are often limitations associated with typical nuclear plant 

computers that make OLM difficult or reduce the capabilities of OLM for equipment 

and process condition and health monitoring.  The main limitations of typical plant 

computers for OLM are: 

 

 Storage – Typical plant computers in service in the nuclear industry are 

often limited in their ability to store data.  This stems from the fact that 

plant computers were initially installed for live process monitoring and not 

for long-term trending and/or modeling.  Most plant computers provide 

ways to log real-time data for later analysis, however, as many OLM 

techniques require days or even weeks of data, the process of collecting 

the data can become cumbersome for plant personnel. 

 

 Software Interface – Software access to the plant computer is often 
restricted to proprietary interfaces written by the plant computer 

manufacturer.  This makes it more difficult for plant personnel or third-

party developers to write customized retrieval programs or to format the 

plant data for analysis by another vendor. 

 

Limitations with the plant computer such as those listed above have prompted most 

nuclear power plants to incorporate data historians to provide expanded capabilities to 

their plant computer systems.  Data historians provide several potential advantages 

over basic plant computers that address the limitations listed above, and allow the 

plant computer data to be used for a variety of applications at nuclear power plants.  

These advantages include: 
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Figure 3:  Typical data from the plant computer 

 

 

 Increased Storage Capacity – Data historians typically employ 

‘compression’ algorithms that only store data when a signal has changed 

by some user-defined amount, or if a maximum time has elapsed.  

Historians also employ interpolation algorithms that estimate the value of a 

given sensor if an actual physical measurement does not exist in the 

historian for a requested time. This compression/interpolation scheme 

greatly reduces the number of measurements that are physically stored, 

and thus longer periods of data can be stored and retrieved from the 

historian than with the plant computer alone. 

 

 Software Interface – Many plant historian manufactures provide standard 

software interfaces such as ActiveX,  Open DataBase Connectivity 

(ODBC),  or Object Linking and Embedding for Process Control (OPC) to 

access the archived data.   These standard interfaces make it easier for 

plant personnel to write their own customized retrieval programs without 

having to learn the plant computer manufacturer’s proprietary interface.  

For example, a historian that incorporates an ActiveX interface could 

access the plant data archive with a familiar program such as Microsoft 

Excel.  

 

Data historians have made accessing archived plant computer data relatively easy for 

plant personnel, and as a result, plant engineers are often familiar with the process of 

retrieving data from the plant computer for analysis.  For many applications, such as 

trending sensor values over long periods of time, or comparing snapshots of sensor 

values, the data from the historian is sufficient.  However, features of data historians 

such as compression present some challenges to applications such as OLM that must 

be addressed for OLM to work properly.   

1.1.3 Custom data acquisition 

An alternative to acquiring data manually or from the plant computer for static 

analysis is to provide a dedicated data acquisition system. Figure 4 shows the
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Figure 4:  Custom data acquisition system 

 

components of a dedicated data acquisition system for on-line calibration monitoring, 

including input test signals to verify the calibration and proper operation of the data 

acquisition system itself. Custom OLM data acquisition systems should be designed 

to sample data from numerous instruments and store the data for subsequent analysis. 

1.2 Data acquisition for dynamic performance monitoring 

Dynamic data analysis typically requires data sampled at higher frequencies than 

available in the plant computer data (i.e., 1 Hz to 1 kHz).  For this reason, a dedicated 

data acquisition system is needed to acquire the data.  In addition to acquiring the data 

at a high frequency, the dedicated data acquisition system also provides a means to 

remove the static component of a signal and amplify the fluctuations, which allows 

for more accurate dynamic analysis.  

Figure 5 shows how one may begin with the raw signal, which includes both 

the static and the dynamic components, and then extract the noise from that signal.  

The first step in this process is to remove the static component.  This is accomplished 

by adding a negative bias to the sensor output or by using a high-pass electronic filter.  

Next, the signal is amplified and passed through a low-pass filter.  The low-pass filter 

removes the extraneous noise and provides anti-aliasing before sending the signal 

through an analog-to-digital (A/D) converter to a data acquisition computer.  The data 

acquisition computer samples the data with an appropriate sampling rate and stores it 

for subsequent analysis. 
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Figure 5:  Block diagram of the noise data acquisition sequence 

 

2. OLM Data Qualification 

Once the OLM data has been acquired, either from the plant computer or by a 

dedicated data acquisition system, it must be evaluated and qualified for use by OLM 

algorithms.  This chapter describes how OLM data is qualified. 

2.1 Static data qualification 

Experience has shown that data from the plant computer or data historian is not 

always ready for OLM analysis immediately after it is acquired.  There are several 

common problems with data from the plant computer that must be addressed before 

OLM analysis can begin.  In fact, in developing programs for OLM techniques, one of 

the most difficult challenges is preparing the data for analysis.  This section describes 

some of the problems with the data that is retrieved from a plant computer. 

2.1.1 Compressed data 

The primary purpose of compressing data is to reduce the hardware resources required 

for storing the data.  Rather than expending resources storing the same data values 

over and over, historians typically record data only if it has changed significantly 

from the previously stored value, or if a maximum time between stored data samples 

has elapsed. This method greatly reduces the required amount of stored data points.  

Figure 6 shows an example of compressed data from a nuclear power plant and the 

interpolated data compared to the original un-compressed data.  As the figure shows, 

the higher frequency signals are typically lost by the data compression. This results in 

a loss of correlation between various compressed signals which could reduce the 

effectiveness of some static OLM techniques such as empirical modeling [EPRI, 

2004].  For this reason, it is best to reduce or turn off the data compression when 

collecting data for OLM. 
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Figure 6:  Compressed data from a nuclear plant data historian 

 

 

2.1.2 Missing data 

Often there are gaps in the plant computer data from one or more sensors.   This 

‘missing data’ can occur for various reasons including errors in data acquisition or 

plant maintenance in the sensor channel. An example of missing data is shown in 

Figure 7.   

2.1.3 Outliers and spikes 

Another common problem with plant computer data is the presence of spikes and 

outliers in the data.  These spikes are commonly caused by channel checks or 

calibrations that are performed on the instrumentation when the data was retrieved.  

Figure 8 shows an example of data from a channel calibration check. 

These types of problems may be difficult for software programs to 

automatically remove as the spikes due to channel checks or calibrations typically 

remain within the calibrated range of the sensor.  In these cases, manual removal of 

the bad data values may be required. 

2.1.4 Stuck data 

Another common problem that is frequently encountered with plant computer data is 

the presence of ‘dead’ spots in the data where the value of given sensor or sensors
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Figure 7:  Missing data record in measurements from a nuclear power plant 

 

 

 

 

 

 

Figure 8:  OLM data from a nuclear power plant computer sampled while the 

instrumentation channel was under calibration 



A-9 

 

remains fixed at a value for an unusually long period of time.  Figure 9 shows an 

example of a sensor whose values are stuck, while other redundant sensors measuring 

the same process are shown to fluctuate as expected.  These types of problems are 

also difficult to detect automatically because the sensor values are often within their 

normal operating range.  More sophisticated data cleaning programs must be written 

to catch anomalies such as these. 

2.2 Dynamic analysis data qualification 

Prior to any dynamic OLM analysis, the suitability of the data must be examined by 

scanning and screening the raw data to ensure a reliable analysis.  Because data for 

dynamic analysis is not normally taken from the plant computer, the common data 

problems associated with plant computer data do not apply.  However, it is still 

important to evaluate and qualify dynamic data before analyzing it. Often, 

qualification of dynamic OLM data is accomplished by examining various statistical 

properties of the data such as: 

 

 

 APD Plot – a visualization of a signal’s distribution 

 

 Variance – a measure of signal amplitude 

 

 Skewness – index of signal asymmetry 

 

 Kurtosis – index of the ‘flatness’ of a signal’s distribution 

 

 

 

 

 

Figure 9:  Illustration of 'stuck' data (data from a PWR plant computer) 
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Almost all nuclear plant noise signals from properly operating sensors and 

systems should have Gaussian distributions.  As such, the distributions of signals are 

examined before any rigorous dynamic OLM analysis begins. This is accomplished by 

using data qualification algorithms that check for the stationarity and linearity of the 

data.  This includes plotting the APD of the data for visual inspection of skewness and 

nonlinearity as well as calculating the skewness, flatness, or other descriptors of noise 

data to ensure that the data has a normal distribution and does not contain any 

undesirable characteristics.  Trending these descriptors is also a way of evaluating 

changes in the process sensors which may warrant investigation.   

Figure 10 shows two APDs for a normal and a defective sensor in a nuclear 

power plant.  Note that the APD of the defective sensor deviates significantly from a 

Gaussian (Normal) distribution.  In further examination, this sensor was found to have 

degraded and had become very nonlinear. 

A signal’s similarity to a Gaussian distribution can also be determined by 

calculating the skewness of the signal.  Skewness is an index of the symmetry of the 

signal or the behavior of the signal above and below the mean value.  The skewness is 

computed as: 
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Data which is symmetrical above and below its average value will have a skewness 

value of zero. Figure 11 illustrates the APDs of a normal and a defective sensor. 

There are higher moments of the noise data such as kurtosis that is given by: 
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Kurtosis is a measure of the peakedness or flatness of a distribution.  Figure 12 

illustrates the notion of kurtosis.  The peakier APD has a higher kurtosis than the 

flatter APD.  The kurtosis value for a Gaussian signal is normally equal to 3.0.  Often 

in data qualification algorithms, the kurtosis is divided by 3.0, so that Gaussian 

signals have a kurtosis of 1.0. 

The concept of kurtosis and its values are better understood by examining the 

distributions shown in Figure 12.  The top example shows a distribution with the 

majority of the signal in the tails and uniformly distributed in the middle, giving a low 

kurtosis.  The bottom example shows a distribution with a long tail that yields a high 

kurtosis.  The middle example shows a Gaussian distribution with a kurtosis of 1.0.  

As the kurtosis departs from 1.0, the distribution departs from a Gaussian distribution. 
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Figure 10:  APDs of a normal and a defective sensor 
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Figure 11:  Illustration of noise signal asymmetry in terms of skewness 

 

 

 

3. OLM Data Analysis 

An important aspect of OLM implementation in a nuclear power plant is the choice of  

algorithms for analysis of static and dynamic data.  This chapter explains the types of 

algorithms that are available, and some of the advantages and disadvantages of using 

these algorithms. 

3.1 Static OLM analysis 

The main objective of static OLM analysis is to detect out-of-normal situations in 

sensors or equipment that indicate a sensor is drifting out of tolerance, or that 

equipment is behaving abnormally.  Most techniques involve using an algorithm to 

determine a process estimate and then subtracting the measured sensor values from 

the process estimate to form a deviation or residual.  The deviations or residuals of 

each individual sensor are then checked for abnormal values by various fault detection 

methods. 

3.1.1 Data analysis by trending 

Perhaps the simplest way of analyzing static data is to trend simple statistical 

quantities such as the mean and standard deviation. 
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Figure  12:  Distribution of signals with various kurtosis values 
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Figure 13 shows plots of the mean and standard deviation of two steam 

generator (SG) level transmitters over one fuel cycle.  It is clear from just looking at 

the means that one of the transmitters is drifting upwards while one is remaining 

constant.  This example shows that just monitoring some basic statistical parameters 

can identify if there is a change in the performance of the signal.  Once a change is 

identified, it must be determined if the process is changing or the sensor is changing.  

As in Figure 13, the casual observer will assume that the plant process is stable thus 

indicating the change in the signal is due to the sensor drifting.  However, it is 

possible that the plant process is actually drifting up and the second sensor output that 

appears constant is actually drifting down masking the plant drift.  When sufficiently 

redundant sensors are not available for a process parameter, diverse signals may be 

used to determine if the plant process parameter is constant.  In any event, the simple 

statistical calculations can detect changes in the data.  The bottom standard deviation 

plot in Figure 13 shows that there is no change in the standard deviation of the signal, 

indicating that there are no gross dynamic problems with this process parameter and 

associated sensors. 

3.1.2 Redundant sensor averaging 

Most nuclear plant safety process parameters are instrumented with redundant 

sensors. The most straightforward technique for determining drift or abnormality in 

nuclear plant data is comparison of redundant sensor measurements against their 

average. A variety of averaging techniques are available, including: 

 

 Simple Averaging – Simple averaging involves adding the values of the 

signals at each instant of time and dividing the sum by the number of 

signals. 

 

 Band Averaging – Band averaging uses a band to reject outliers and 

averages the values of the remaining signals at each instant of time. 

 

 Weighted Averaging – Weighted averaging applies a set of fixed 

multipliers to the signals prior to averaging. For example, weights could be 

determined based on how far they deviate from the simple average. 

 

 Parity Space – In parity space, each signal is weighted based on how 

many other signals share the parity space band with the signal.  This 

weighted measure is commonly referred to as consistency, and requires the 

determination of a consistency check value which dictates the sensitivity 

of the parity space estimate to individual signal values which deviate from 

each other. 

These averaging techniques are illustrated in Figure 14.  
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Figure 13:  Statistical trending of static OLM data 

 

 

 



A-16 

 

 

Simple Band Weighted Parity Space

0

1

1

Simple 

Average

0.1

0.8

0.2

OLM034-2

Outlier

 

 

Figure 14:  Redundant sensor averaging techniques 

 

3.1.3 Detecting deviation from average  

Once the parameter estimate is calculated using an averaging technique, the 

deviations of each individual sensor in the redundant group from this estimate are 

computed. For transmitter calibration monitoring, these deviations are analyzed over 

an entire fuel cycle and checked against deviation limits that are established such that 

if the sensor deviations reside within the limits, then the sensor is determined to be 

within calibration.  Sensors are classified as being in need of calibration when their 

respective deviations exceed the deviation limits.  Note that the deviation limits must 

be specifically derived for on-line calibration monitoring and differ from the manual 

as-found and as-left calibration limits.   

Figure 15 presents an illustration of a deviation analysis for four reactor 

coolant system (RCS) flow transmitters. The y-axis in this figure is the difference 

between the reading of each transmitter from the parity space average estimate, and 

the x-axis represents time in months. The data is shown for a period of 74 months 

during which the plant was operating.  None of the four signals show any significant 

drift during the 74-month period and remain within the deviation limits. That is, these 

transmitters have not suffered any significant calibration change and do not need to be 

calibrated.  
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Figure 15:  On-line calibration monitoring data for four RCS flow transmitters in a 

nuclear power plant 

 

 

Figure 16 (a) shows data from three flow transmitters.  The average of the 

three transmitters is plotted as a solid line.  As shown in Figure 16 (a), the top 

transmitter appears to be drifting upwards, which is subsequently causing the average 

of the three transmitters to drift upwards as well.  As a consequence, the deviation of 

the bottom transmitter exceeds the lower deviation limit as shown in Figure 16 (b), 

although it is clearly not drifting in Figure 16 (a). 

Figure 17 (a) shows the same transmitters that were shown in Figure 16 

plotted with an average calculated by using the parity space technique.  The parity 

space technique effectively removes drifting sensors so that the average is not 

affected.  

As shown in Figure 17 (a), the parity space technique rejects the top sensor 

when it has drifted too far away from the bottom two sensors.  As a result, the 

deviations of the bottom two transmitters remain within the deviation limits as shown 

Figure 17 (b). 

3.1.4 Physical modeling 

Physical modeling techniques use the mathematical relationships between parameters 

to detect process or sensor anomalies.  These relationships are based on first principal 

equations such as heat and mass balance equations, steady-state thermodynamics, 

transient thermodynamics and fluid dynamics.  The application of physical modeling 

may be as simple as calculating a mass-flow balance equation or as involved as
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Figure 16:  Effect of spillover on deviations from the average of redundant sensors 
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Figure 17:  Average of redundant sensors using the parity space technique 
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describing the complex mathematical relationships between nuclear power plant 

components such as a turbine, heat exchanger, condenser, pump, valve, mixer, 

diffuser, etc.   Physical modeling involves inputting process parameter measurements 

into mathematical equations, and determining sensor or process anomalies by 

subtracting the outputs of the model from the inputs to form residuals (Figure 18). 

Residuals from physical models should be near zero when the plant parameters are 

normal.   

The main requirement for physical modeling is that the structure, design, and 

function of the modeled process or component is well known and can be accurately 

described in mathematical equations. The availability of efficient computational 

methods for solving the particular type of equations employed in the physical 

modeling is also a primary requirement. 

3.1.5 Empirical modeling 

In contrast to physical models, empirical modeling techniques attempt to define 

relationships between variables based only on the data itself, and not on the physical 

properties of the variables that are being compared.  As such, empirical models do not 

require as much of an in-depth knowledge of the plant and as a result, may be easier 

to implement and maintain than physical models. 

 The most common empirical modeling techniques are generally separated into 

two main categories, namely parametric models and non-parametric models.  These 

types of empirical models are illustrated using a 1-Dimensional data set (Table 1) for 

simplicity. 
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Figure 18:  Physical modeling process 
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Table 1:  Example 1-dimensional data set 

X Value 2 10 20 40 80 97 

Y Value 3.6 18.0 54.0 186.0 690.0 1001.1 

Parametric empirical models 

In parametric empirical models, the mathematical structure of the model is pre-

defined, such as in an equation, and the example data are fit to the pre-defined 

structure. For example, suppose the example data set from Table 1 is assumed to 

follow a polynomial model defined by: 

                                               
2

210 ttt xaxaay                                          (3) 

where yt is the output at sample t, xt is the input at sample t, and a0, a1, and a2 are the 

coefficients of the equations which are unknown.  The object of parametric modeling 

is to use the example data to find the coefficients a0, a1, and a2 that best fit the data.  

Figure 19 shows the 6 sample X-Y value pairs denoted by solid circles.  Inputting the 

X-Y pairs into a polynomial results in the coefficients a0 = 2.0, a1 = 0.6, and a2 = 0.1.  

Figure 19 shows the original training points and the curve defined by the coefficients 

a0, a1, and a2.  As shown in the figure, the polynomial model fits the data very well. 

 One of the major problems with parametric modeling is that most of the time, 

the mathematical structure of the example data is not always known.  In the case of 

this example, the fact that the data should follow a 2
nd

 order polynomial was known 

beforehand, and as a result, the parametric model fit the training data very well.   

However, it is rarely the case in practice that the exact relationship between variables 

is known, especially when dealing with complex relationships between processes in 

nuclear power plants. With parametric modeling, the best that can be done is to make 

an educated guess at the underlying structure of the data and then modify the model 

until the model fits the example data to some desired accuracy. 

Neural networks are a class of parametric models that have been used for 

static OLM applications in nuclear power plants [Hashemian, 1995; Hashemian et al., 

1998; Hines, 2006].
 

 

Non-parametric empirical models 

In a non-parametric empirical model, the mathematical structure is not implied 

beforehand.  Instead, training examples are stored in memory, and each new data 

sample is compared to the training examples to calculate a best estimate.  Unlike 

parametric modeling, non-parametric models are not restricted to a pre-defined 

relationship between the inputs and outputs.   

In non-parametric models, the example data is all that the non-parametric 

model ‘knows’.  Non-parametric models do not assume the data is restricted to 

underlying structure (like a parametric model).  For example, given the data from
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Figure 19:  Parametric model of the example data points 

  

 

Table 1, a non-parametric model would only ‘know’ that an X value of ‘2’ is 

associated with a Y value of ‘3.6’, an X value of ‘10’ is associated with a Y value of 

’18.0’, and so on.  When a non-parametric model is presented with new data, it 

calculates a new estimate based solely on the training examples 

 Figure 20 shows non-parametric model estimates for X values 1 through 100 

given the training data in Table 1. 

Figure 20 shows that the non-parametric model estimates agree closely with 

the ideal curve from which the training data was taken.  Note that non-parametric 

modeling may not estimate well in areas that do not have training data (in Figure 20, 

see the estimates for X values 20 through 40).  This is why it is important with non-

parametric models to carefully choose training data that spans the data effectively. 

The multivariate state estimation technique (MSET) and kernel regression are 

two non-parametric methods that have been used with success to model data in 

nuclear power plants [Hines, 2006; Hashemian 2006]. 

3.2 Dynamic OLM analysis 

Dynamic analysis of nuclear plant sensors and equipment is concerned with 

determining how sensors and equipment react to fast-changing events such as 

temperature or pressure steps, ramps, spikes, etc. Dynamic analysis is most often 

divided into frequency and time domain analysis.  Methods for dynamic analysis, 

unlike static modeling methods, are well-understood and have been used for decades 

in the nuclear industry. 
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Figure 20:  Non-parametric model estimates 

 

3.2.1 Frequency domain analysis 

In frequency-domain analysis, the spectrum of the data is calculated using a technique 

such as the FFT.  Figure 21 shows the spectrum of the noise signal from a sensor in a 

nuclear power plant.  Note that the spectrum is shown in terms of the auto power 

spectral density (APSD).  The APSD is the variance of the signal within a small 

frequency band as a function of frequency plotted against frequency.  For a simple 

first-order system, the APSD is all that may be needed to provide the sensor’s 

dynamic response or response time.  In this case, the response time is determined by 

measuring the break frequency (Fb) of the APSD, as shown in Figure 22.  However, 

process sensors are not necessarily first order, and APSD plots from actual process 

signals are not smooth enough to allow one to measure the break frequency as simply 

as shown in Figure 22.  In fact, APSDs often contain resonances and other process 

effects that complicate the process of determining a response time by analyzing the 

APSD.  As such, APSD analysis experience is often needed to determine a sensor’s 

response time by using the noise analysis technique.  For example, a dynamic model 

of the sensor is used with the APSD plot in order to obtain the sensor’s response time.  

The model, which is normally a frequency-domain equation, is fit to the APSD to 

yield the model parameters.  These parameters are then used in the model to calculate 

the sensor’s response time.  Figure 23 shows an example APSD and the model fit to 

the APSD for a pressure sensor in an operating nuclear power plant. 
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Figure 21:  APSD of a typical nuclear power plant sensor 
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Figure 22:  First-order system APSD 



A-25 

 

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

0.01 0.1 1 10

A
P

S
D

 (
 %

/H
z
)

Frequency (Hz)

APSD

Model Fit

RAD121B-01

 

 

Figure 23:  Sensor APSD and model fit to APSD 

 

The procedure for analyzing noise data in the frequency domain is illustrated in 

Figure 24.  This analysis involves performing an FFT on the sensor’s output signal in 

order to obtain its APSD. A function (i.e., sensor model) is then fit to the APSD and the 

parameters of the function are identified and used to calculate the sensor’s response time. 

3.2.2 Time domain analysis 

In the time domain, correlation and autoregressive methods are used for analysis of noise 

data.  The correlation function for a noise signal x(t) is written as: 

 

                                      
   dttxtx

T

1
 = )( R

2/T

2/T
xx                              (4) 

 

where Rxx( ) is referred to as autocorrelation function,  is a time lag, and T is the signal 

duration.  The autocorrelation function describes the general dependence of the value of 

the data at one time on the values at another time.  The function provides insight into the 

existence of periodic signal components in the random data and the nature of narrow and 

wideband noise properties.  In order to obtain the correlation between two different 

signals x(t) and y(t), a function called cross-correlation is used.  The cross-correlation 

function Rxy( ) is written as: 
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Figure 24:  Frequency domain analysis procedure 

 

                                        
   dt-tytx

T

1
 = )( R

2/T

2/T
xy                             (5) 

The cross-correlation function describes the general dependence of the values of 

one set of data on the other.  It is used for measurement of time lags in transport 

processes, determination of transmission path by observing multiple peaks in Rxy( ), and 

detection and elimination of interfering noise.  In the time domain analysis of sensor 

noise data, the correlation function is plotted versus time.  The peak in the correlation 

plot identifies the time delay between the sensors, i.e. the propagation time of the noise 

between the two sensors.  Figure 25 illustrates the result of the cross-correlation of a pair 

of signals from two sensors in a nuclear power plant. 

4. OLM Implementation Requirements for Existing Reactors 

Most of the existing nuclear power plants have the capabilities and equipment that are 

needed for implementing many of the OLM technologies discussed in this paper.  

However, for most plants, these capabilities are not used to their fullest extent for OLM 

applications.  This section addresses the various requirements for implementing OLM 

technologies in existing generation of nuclear power plants.   

4.1 Data acquisition for static applications 

4.1.1 Source of data 

OLM technologies are dependent on the amount of data that can be readily accessed.  In 

most existing nuclear power plants, data from the sensors needed for the static OLM 

applications is available from the plant computer.  However, depending on the type of 

static OLM application being developed, additional sensor data may be needed.  Table 2 

lists examples of the plant services that need to be measured in order to implement the 

OLM technologies discussed in this paper. 
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Figure 25:  Plot of correlation function of a pair of signals from two sensors in a 

  nuclear power plant 

 

It should be noted in Table 2 that the services included for calibration monitoring 

are typically those that have at least two redundant sensors.   

For cross-calibration, the services include the hot leg and cold leg temperatures 

which are measured by redundant resistance temperature detectors (RTDs).  This list 

includes both the narrow range and wide range RTDs.  Also included in cross-calibration 

are the core exit temperatures, which are typically measured by thermocouples. 

The list of services for equipment condition assessment includes the typical 

services that have been used in implementations in the past, and is not an exhaustive list 

of services that can be monitored.  In fact, virtually any service that can be measured can 

be used for monitoring the performance of some plant system or some piece of 

equipment. 

4.1.2 Plant conditions 

Static OLM applications generally use data during startup, steady-state, and shutdown 

periods as illustrated in Figure 26. However, experience with implementing OLM in 

nuclear plants has shown that some services in PWRs, such as refueling water storage 

tank (RWST) level, may transition through their calibrated ranges during the refueling 

outages (depending on when the tank is drained and/or filled).  As such, it is 

recommended that plants consider retrieving data during outages as well as the normal 

periods of plant operation. 
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Table 2:  Sources of static OLM data 

 
OLM Static Analysis Applications 

Service 
Calibration 

Monitoring 

Cross-

Calibration 

Equipment 

Condition 

Assessment 

Reactor Coolant System Flow   
 

  

Steam Generator Level   
 

  

Pressurizer Level   
 

  

Pressurizer Pressure   
 

  

Steam Generator Pressure   
 

  

Steam Flow   
 

  

Feedwater Flow   
 

  

Turbine Impulse Pressure   
 

  

Reactor Building Pressure   
 

  

Reactor Coolant System Pressure   
 

  

Refueling Water Storage Tank Level   
 

  

Reactor Coolant System Hot Leg Temp 
 

    

Reactor Coolant System Cold Leg Temp 
 

    

Core Exit Temperature 
 

    

Reactor Coolant Pump Seal Injection 

Flow   
  

Volume Control Tank Level 
  

  

Chemical Volume Control System 

Letdown Flow   
  

Chemical Volume Control System 

Charging Flow   
  

Reactor Power 
  

  

Generator Output 
  

  

Feedwater Temperature 
  

  

Condenser Pressure 
  

  

Reheater Outlet Temperature 
  

  

Condenser Cooling Water Inlet 

Temperature   
  
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Figure 26:  Three regions of OLM data: startup, steady-state, and shutdown 

 

4.1.3 Sampling frequency 

The sampling frequency or sample period for OLM data in existing generation of nuclear 

power plants is typically limited to the maximum sample rate of the data that is supplied 

to the plant computer. For example, data is sent to the plant computer every 30 seconds.  

In these cases, data should be sampled for longer periods of time to obtain a sufficient 

number of samples. Table 3 lists the minimum sampling rate requirements for the OLM 

applications discussed in this paper. 

As noted in Table 3, the sample period for calibration monitoring ranges from 10 

to 60 seconds.  The sample period will depend on how the data for calibration monitoring 

is analyzed.  For example, if the OLM algorithm for calibration monitoring only includes 

steady-state operation data, then a sample period of 60 seconds is sufficient.
[6]

  However, 

if the OLM algorithm includes periods of startup and shutdown transients, then a shorter 

sample period is recommended.  Experience has shown that a sample period of 10 

seconds is sufficient for monitoring the startup and shutdown transients of most critical 

nuclear plant processes for calibration monitoring [EPRI, 2006]. 
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Table 3:  Sample period requirements for static OLM techniques 

OLM Application Sample Period 

Pressure Transmitter Calibration 

Monitoring 

10 – 60 sec. 

RTD and CET Cross-Calibration 1 – 10 sec. 

Equipment Condition Assessment 60 sec. 

4.1.4 Data resolution requirements 

The plant computers in most nuclear power plants are capable of acquiring sensor data at 

a 12-bit resolution [Hashemian, 2007].  For most static OLM applications, such as the 

ones discussed in this paper, a 12-bit resolution is sufficient.  The biggest issue with 

resolution for static OLM analysis is the compression setting of the historian.  As 

previously mentioned, historians typically have two types of compression parameters to 

determine if data is stored or not: one parameter to set the minimum change from the 

previous value (usually expressed in % range of the sensor); and one parameter for the 

maximum time that can elapse between measurements.  It is recommended that the plant 

turn off the compression settings entirely or at least be capable of turning them off for the 

period when OLM data is acquired. At a minimum, the setting for the minimum time that 

can elapse must be less than or equal to the required sample rate.  Table 4 lists the 

compression settings required for each type of static OLM analysis. 

4.1.5 Data storage requirements 

The storage requirements for static OLM analysis depend on the sampling rate required 

for the type of analysis, the amount of time that is being recorded, and the number of 

sensors needed for a particular application. Table 5 lists the recommended minimum 

storage requirements for the static OLM applications discussed in this paper.  Note that in 

Table 5, the sample period for calibration monitoring has been shortened to 1 second for 

conservatism.  Data storage requirements in Table 5 are listed in terms of gigabytes (GB). 

Table 4:  Compression setting requirements for static OLM techniques 

OLM Technology Maximum Time Between Samples 

Calibration Monitoring 10 – 60 sec. 

Cross-Calibration 1 – 10 sec. 

Equipment Condition Assessment 60 sec. 
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Table 5:  Minimum storage requirements for static OLM techniques per fuel cycle 

 

OLM Technology 
Sampling 

Period 

 

Length Stored 
Number 

of Sensors 

Required 

Storage (GB) 

Calibration 

Monitoring 

(Steady-State) 

1 sec. 12 hours/month 

x18 months 

60 0.5 

Calibration 

Monitoring 

(Startup, Shutdown, 

Outage) 

1 sec. 20 – 40 days 60 2.0 

Cross-Calibration 1 sec. 6 hours 75 0.25 

Equipment 

Condition 

Assessment 

60 sec. 12 hours/month x 

18 months 

200 0.25 

 

 

The storage requirements in Table 5 assume that each measurement consists of a 

4-byte measurement value and a 4-byte timestamp, for a total of 8 bytes per 

measurement. 

4.1.6 Hardware requirements 

Most of the static analysis OLM technologies will get their data from the plant computer.  

As such, no special hardware is required.  However, for those cases where measurements 

must be taken from the instrumentation cabinets, the following specifications are 

recommended: 

 

 Input impedance : 1M Ohms 

 

 Channel-to-channel isolation: 1G Ohms 250 VRMS continuous 

 

 Earth-to-ground isolation: 1000 VRMS continuous 

 

For cross-calibration, spare RTDs need a current bridge and an A/D converter to gather 

or supply data to the plant computer. 
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4.2  Data analysis requirements for static applications 

4.2.1 Static data qualification 

One of the most important aspects of data qualification is the cleaning of data before it is 

analyzed.  Plant computer data frequently has bad data points and they must be removed 

before analysis can begin.  At a minimum, the following problems should be checked for 

and removed from data: 

 Stuck Data 

 Transients 

 Missing Data 

 Spikes and Outliers 

Software programs that can automatically remove the bad data are recommended, but 

these removals can also be done manually. After the data is properly cleaned, the 

following basic statistics and data quality factors should be checked for each sensor’s 

data: 

 Mean Value 

 Standard Deviation or Variance 

 Skewness 

 Kurtosis 

 Amplitude Probability Density (optional) 

 Lag Plot (optional) 

Checking these statistics against normal values can often indicate problems before any 

rigorous analysis begins.  

4.2.2 Static data analysis 

Static OLM data analysis is most concerned with the type of algorithm that will be used 

to do the analysis. Table 6 lists the OLM technologies and the types of algorithms that 

can be used for each technology. 

4.3 Data acquisition requirements for dynamic applications 

4.3.1 Source of data 

The sensors required for dynamic OLM analysis will depend on the type of analysis that 

is being conducted.  Table 7 lists the typical sensors involved with each type for dynamic 

OLM analysis that is discussed in this paper. 
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Table 6:  Algorithms for static OLM analysis 

OLM Application Required Algorithm 

Pressure Transmitter Calibration 

Monitoring 

Averaging, Physical Modeling, Empirical 

Modeling 

RTD and CET Cross-Calibration Averaging 

Equipment Condition Assessment Physical Modeling, Empirical Modeling 

 

4.3.2 Plant conditions 

For most of the dynamic OLM analysis techniques, the plant should be in steady-state 

operation at 80% power or greater.  This is because at lower power levels, the 

fluctuations in the signals become difficult to measure. 

4.3.3 Sampling frequency 

For most dynamic OLM analysis techniques, a sampling rate of 1 kHz is sufficient.  For 

some applications like dynamic response calculation, the data from different sensors does 

not necessarily have to be taken simultaneously.  However, for applications such as 

reactor internals and core flow anomaly detection, it is important that the data is taken 

simultaneously for inter-signal comparisons. 

4.3.4 Data resolution requirements 

While plant computer data has adequate signal resolution for most static applications (12-

bit), it is normally not sufficient for dynamic OLM applications.  As such, dynamic OLM 

applications need special data acquisition with greater digital signal resolution.  As 

shown in Figure 27, there is very useful dynamic response information at both higher 

frequencies and lower signal resolutions than is available from typical plant computer 

data. Most of the dynamic analysis data can be analyzed if taken with a 24-bit resolution.  

However, if a 24-bit A/D is not available, then a gain stage and offset circuit needs to be 

used to achieve adequate resolution. 

4.3.5 Data storage requirements 

Table 8 shows the minimum storage requirements for dynamic data analysis. 

 As in the static OLM application storage requirements, the requirements in Table 

8 assume that the data values are stored in 4 bytes, with another 4 bytes for a timestamp.  

For the neutron detector life extension and dynamic response methods, a timestamp is not 

necessary; however, it is included in this table for conservatism. 
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Table 7:  Sensors for dynamic OLM analysis 

Service 

OLM Dynamic Analysis Applications 

Dynamic 

Response 

Reactor 

Internals 

Core Flow 

Anomalies 

Neutron 

Detectors 

Reactor Coolant System Flow   
  

 

Steam Generator Level   
  

 

Pressurizer Level   
  

 

Pressurizer Pressure   
  

 

Steam Generator Pressure   
  

 

Steam Flow   
  

 

Feedwater Flow   
  

 

Reactor Coolant System 

Pressure 
  

  

 

Reactor Coolant System Hot Leg 

Temp 
  

 
  

 

Reactor Coolant System Cold 

Leg Temp 
  

  

 

Core Exit Temperature 
 

     

Reactor Power 
 

      

Reactor Vessel Level Indication 

System (RVLIS) Delta Pressure   
  

 

In Core Temperature 
 

     

In Core Detectors 
 

      
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Figure 27:  APSD Example of Low Frequency (Plant Computer)  and High Frequency 

 Data Acquisition 

 

 

4.3.6  Hardware requirements 

Because most plant computers in nuclear power plants do not have the capability of 

sampling at rates that are required for dynamic analysis, the data will have to be taken 

with a separate data acquisition system.  Like the dedicated data acquisition system for 

static analysis, the dynamic data acquisition system will have to be isolated. 

There are many ways to obtain high frequency data.  The high-frequency data 

acquisition equipment will have the following general requirements as shown in Figure 

28: 

1) Isolation 

2) Low Pass Filter (for anti-aliasing) 

3) Analog-to-Digital Converter 

4) Computer (to acquire data) 

5) Data Storage 
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Table 8:  Storage requirements for dynamic OLM analysis 

 

OLM Application 
Sample 

Rate 

 

Length 

Stored 

Number 

of Sensors 

Required 

Storage 

(GB) 

Dynamic Response 

Measurements 

1 kHz 30 minutes 200 3.0 

Reactor Internals Vibration 100 Hz 6-12 Hours 80 3.0 

Core Flow Anomaly 

Detection 

1 kHz 6-12 Hours 80 25.0 

Neutron Detector Life 

Extension 

1 kHz 30 minutes 8-16 0.25 

 

Computer:  Calculation of Data Screening, Data 
Qualification, and Data Analysis

Data 
Storage

MISC002-5

Sensor 1

Isolation

Low-Pass 
Filter

Analog-to-Digital 
Converter

Isolation

Low-Pass 
Filter

Analog-to-Digital 
Converter

…..….

…..….

…..

Sensor n…..….

 

 

Figure 28:  Block diagram of high frequency data acquisition system with 24-bit A/D 

 Converter 
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Many signals need to be measured down to the microvolt range.  This can be achieved 

today with 24-bit A/D converters.  Alternatively, if the A/D resolution is only 12- or 16-

bit, then the following additional equipment as shown in Figure 29 may be necessary: 

1) Gain Amplifier 

2) Sample and Hold 

3) Digital-to-Analog Converter  

4) DC Offset Circuit 

These equipment all need to be evaluated on an individual basis for each application to 

cover the dynamic signal ranges and specific isolation requirements for each plant. 

 

 

 

Analog-to-Digital Converter

Digital-to-Analog 
Converter

Computer:  Calculation of DC Offset, Data Screening, Data Qualification, and Data 
Analysis

Data 
Storage

DC Offset

…….

MISC002-6

Digital-to-Analog 
Converter

DC Offset

Isolation

Gain 
Amplifier

Low-Pass 
Filter

Sample and 
Hold

Sensor 1

Isolation

Gain 
Amplifier

Low-Pass 
Filter

Sample and 
Hold

Sensor n…….

 
 

 

Figure 29:  Block diagram of high frequency data acquisition system with gain and DC 

 offset 
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4.4 Data analysis requirements for dynamic applications 

4.4.1  Dynamic data qualification 

For dynamic OLM analysis,  data qualification is concerned with ensuring that the data is 

Gaussian.  At a minimum, the following statistical properties need to be examined: 

 APD Plot 

 Variance 

 Skewness 

 Kurtosis 

These parameters are useful for determining if the data is Gaussian, and for recognizing 

changes when compared against previous measurements. 

4.4.2 Dynamic data analysis 

For dynamic data analysis, some form of time-based and frequency-based analysis must 

be used.  For dynamic response, frequency-based analysis involving calculation of the 

APSD is probably the most important; however, time-based algorithms such as auto-

regressive modeling (AR) are also important to double-check the frequency domain 

results. It is also helpful to have baseline measurements and APSDs for dynamic analysis.  

This provides the simplest way to compare previous and current results for evidence of 

changes. 

 

 

5. OLM Implementation Requirements for New Reactor Designs 

Reactor designs for the next generation of nuclear power plants typically incorporate an 

integrated digital infrastructure including highly-integrated control rooms, fault-tolerant 

control systems, and monitoring systems with large amounts of available information and 

data. Most of these digital systems are designed to monitor their own performance 

continuously, self-correct for identified changes, and function more reliably than previous 

designs. Figure 30 shows a simplified block diagram of a typical digital infrastructure 

design for a new reactor. 

The digital infrastructure for the new reactor designs offers several advantages 

over the analog systems in existing nuclear plants.  These include: 

 Self-checking capabilities and on-line diagnostics 

 Improved accuracy 

 Fault tolerance 

 Low/no drift 
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Transmitters, RTDs, 

Valves, etc.

Plant Data Network

Data Displays and Storage

I&C005-4

Plant Control 

Systems
(Reactor Power, Feed 

Water, Rod Indication, etc.)

Reactor Protection 

System

 

Figure 30:  Simplified block diagram of digital infrastructure in new reactor designs 
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 High data handling and storage capabilities 

 Improved human-machine interface 

It is important to note that although the infrastructures in new plant designs are digital 

instead of analog, the sensors envisioned for the new reactor designs will be similar to the 

types that are used in the existing fleet.  For example, resistance temperature detectors 

(RTDs) and thermocouples will be used to measure primary coolant and core-exit 

temperatures in the new designs, while conventional pressure transmitters will be used to 

measure pressures, levels, and flows.  As such, the periodic verification and maintenance 

requirements for these sensors will likely be similar to those in existing plants [Jarrett, 

Hashemian and Shumaker, 2008].  If this is indeed the case, then the requirements for 

implementing on-line monitoring (OLM) in the next generation of nuclear power plants 

will follow those for the existing fleet that were outlined in Section 4 of this paper. 

For new plants, however, the instrumentation and control (I&C) infrastructure 

design is believed to be open, and opportunities therefore still exist to engineer 

specifications into the initial design to reap the benefits of OLM technologies and avoid 

future retrofits.  This section provides several I&C design recommendations that could 

help the next generation of nuclear power plants more readily benefit from OLM 

technologies. 

 As successful OLM implementations begin with the plant’s ability to acquire the 

proper data, the recommendations outlined in this section focus on improving the data 

access and retrieval capabilities of the next generation of plants as compared to the 

existing fleet, including considerations for: 

 Increased availability of process sensor data in the plant computer 

 Higher sampling frequency and resolution data acquisition capabilities 

 Increased redundancy for critical process sensors 

 More flexible infrastructure to accommodate future data acquisition needs 

Embedding these capabilities in the design will provide an important part of the 

foundation for improving plant health and condition assessment through OLM in the next 

generation of nuclear power plants. 

5.1 Availability and access to plant sensor data 

To use OLM technologies to their fullest extent, plant personnel must first have access to 

the sensor data.  The plant computer provides a central repository for sensor 

measurements, and as such, should be used as the primary source for OLM data. 

 As previously indicated in this paper, existing nuclear power plants store most of 

the sensor measurements needed for OLM analysis in the plant computer; however, some 

sensors that could benefit from OLM are not sent to the plant computer.  For example, 

most Westinghouse PWRs incorporate dual-element RTDs to measure reactor coolant 

temperature.  These RTDs are required to be cross-calibrated periodically, but normally 
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the spare elements are not connected to the plant computer.  As such, the cross-

calibration of RTDs must be performed by manually connecting resistance measurement 

devices to both the active and spare RTDs in order to obtain cross-calibration results.  If 

the spare RTDs were sent to the plant computer, then cross-calibration could be 

accomplished using data from the plant computer, eliminating the need for dedicated 

measurement equipment, and saving the plant critical path time at startup. 

As a general rule, initial design criteria should provide access to all plant 

measurements from the plant computer.  This has not been done in existing plants 

primarily because of the costs associated with: 

 

 Installing instrumentation and wiring to bring the measurements to the plant 

computer 

 

 Storage of the additional data 

 

The costs associated with installing additional instrumentation and wiring may still be 

relatively high today, but the benefits of providing these to the plant computer for OLM 

purposes should be weighed against the initial costs.  If the additional wiring presents 

significant design difficulties, implementing wireless capabilities may be an option.  An 

example of a wireless infrastructure that was recently implemented in an existing U.S. 

nuclear power plant is discussed later in this chapter. 

The widespread availability of inexpensive, high-capacity data storage devices 

today should make additional data storage costs a non-factor in initial plant cost 

considerations. 

5.2 Data acquisition 

 

Not only are OLM technologies dependent on the availability of sensor measurements, 

they are also dependent on the frequency of the data acquisition and the resolution of the 

acquired data.  If designs of the next generation nuclear power plants are built around 

using the same types of sensor measurements as the existing fleet of nuclear power 

plants, the data acquisition requirements for using them with OLM technologies will be 

similar to existing plants.  For static OLM analysis, plants will need sampling periods of 

1 – 60 seconds in order to provide OLM algorithms the best possible data.  For dynamic 

OLM analysis, a minimum sample rate of 1 kHz will be required for most of the safety-

critical process sensors.  Table 9 lists the minimum sample rate requirements for the 

static and dynamic OLM applications discussed in this paper. 

It is anticipated that the new plant designs will incorporate more precise analog-

to-digital (A/D) converters than are currently being used in the existing plants.  These 

new A/D converters will likely be 16-bit or 24-bit providing measurements into the 

microvolt range.  This better signal resolution combined with the higher frequency 

sample rates will allow dynamic OLM technologies to be utilized without supplemental 

data acquisition equipment.  However, to obtain good data at higher frequencies (1 kHz) 

and low signal levels, an anti-aliasing low-pass filter should be included before the A/D
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Table 9:  Minimum sample rate requirements for OLM Techniques 

Static OLM 

Application 
Sampling Period 

Dynamic OLM 

Application 
Sample Rate 

Calibration 

Monitoring (Steady-

State) 

10 sec. Dynamic Response 1 kHz 

Calibration 

Monitoring (Startup, 

Shutdown, Outage) 

1 sec. Reactor Internals 100 Hz 

Cross-Calibration 1 sec. 
Core Flow Anomaly 

Detection 
1 kHz 

Equipment 

Condition 

Assessment 

60 sec. 
Neutron Detector 

Life Extension 
1 kHz 

 

 

 

in the instrumentation channel.  Without this anti-alias filter, electrical noise that is 

present will be aliased into the signals and may mask the higher frequency dynamic 

response information. 

Also, as higher frequency data is obtained, it is important that the data from 

various channels are acquired simultaneously to allow inter-comparisons and cross-

correlations to be performed on the data for reactor internals and core flow anomaly 

detection. 

5.3 Plant computer data access 

 

Both static and dynamic sensor data should be available from the plant computer and/or 

data historian in the next generation of nuclear power plants.  In the existing fleet of 

nuclear power plants, only static OLM data is available from the plant computer due to 

the limited sampling rate capabilities (< 1 Hz).  However, if increased sampling rates up 

to 1 kHz are realized in the new plant designs, dynamic OLM applications will become 

much easier to implement. 

 The vast amounts of data associated with sampling rates in the 1 kHz range, 

however, may cause the storage of dynamic OLM data to be impractical. 
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 As illustrated in Figure 31, a raw data buffer that provides access to digital sensor 

data from the plant computer before it is compressed or stored in the data historian may 

provide an adequate solution for retrieving dynamic OLM data without the need for long-

term storage. 

A few of the existing plants have obtained a raw data buffer that maintains data 

for the last 30 days.  This is mainly utilized in existing plants to look back for precursors 

in the data before a plant event or plant trip occurs to help troubleshoot and isolate the 

problem.  However, it has also been extremely beneficial for OLM applications by 

providing uncompressed data for analysis. 

5.4 Redundant sensors for OLM 

 

Averaging methods have been used with great success in existing plants for static OLM 

applications such as cross-calibration and transmitter calibration monitoring for many 

years.  Averaging algorithms are particularly advantageous for static OLM applications 

as they are relatively easy to implement, simple to explain, and provide a straightforward 

means for calculating uncertainties.  However, for averaging methods to be successful for 

OLM, the plant must have a sufficient number of redundant sensors. 

 For cross-calibration, the number of redundant RTDs is not an issue, as most 

plants have around 20 to 30 RTDs that can be averaged at isothermal conditions.  

However, applications such as transmitter calibration monitoring could benefit with the 

inclusion of more redundant transmitters. 

In a typical U.S. plant, most services that would benefit from calibration 

extension are at best 4-way redundant. The majority of services, however, are 3-way or 2-

way redundant.  Some services, in fact, have no redundancy.  Table 10 lists the number of 

redundant sensors for services in a typical 3-loop PWR that would benefit from 

calibration monitoring. 

  

 

 

 

 

 

 

Figure 31:  Illustration of sensor data flow 
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Table 10:  Services that would benefit from calibration extension in a typical 3-loop 

PWR 

Service Redundancy 

Reactor Coolant System Loop A Flow 3 

Reactor Coolant System Loop B Flow 3 

Reactor Coolant System Loop C Flow 3 

Pressurizer Level 3 

Steam Generator A Narrow Range Level 3 

Steam Generator B Narrow Range Level 3 

Steam Generator C Narrow Range Level 3 

Pressurizer Pressure 3 

Steam Generator A Outlet Pressure 3 

Steam Generator B Outlet Pressure 3 

Steam Generator C Outlet Pressure 3 

Containment Pressure 3 

Steam Generator A Steam Flow 2 

Steam Generator B Steam Flow 2 

Steam Generator C Steam Flow 2 

Feedwater Flow To Steam Generator A 2 

Feedwater Flow To Steam Generator B 2 

Feedwater Flow To Steam Generator C 2 

Refueling Water Storage Tank Level 2 

Turbine First Stage Pressure 2 
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Although 3-way and even 2-way redundancy is sufficient for calibration 

extension, 4-way redundancy would be much better from an OLM standpoint. This is due 

to the reduction of uncertainty of the process estimate and a reduction in the effect of 

spillover as more sensors are included in the average.  Figure 32 illustrates how the 

uncertainty of the process estimate is reduced as the number of redundant sensors is 

increased.  In this figure, the uncertainty of an individual transmitter is assumed to be 1% 

of span. 

As shown in Figure 32, the process estimate uncertainty is reduced to half of the 

individual sensor uncertainty (0.5%), when 4 redundant sensors are used in the average.  

A reduction in process estimate uncertainty should result in more accurate results in 

applications such as calibration monitoring. 

 As mentioned before, spillover can distort the results of calibration monitoring by 

including a drifting sensor measurement in the average.  However, as Figure 33 

illustrates, the spillover error can be reduced by adding more redundant sensors to the 

calculation of the process estimate. 

As shown in Figure 33, a transmitter that has drifted 1% of span will result in an 

error of up to 0.5% of span if only two redundant sensors are used to calculate the process 

estimate.  However, as more sensors are included in the average, the effect of a drifting 

transmitter is significantly reduced. 

The main drawbacks to including more redundancy in the design of new nuclear 

power plants are the increased costs of installing and maintaining additional transmitters.  

However, the benefits provided by OLM applications that can effectively utilize the 

increase in redundancy may provide an important justification for these initial costs over 

the life of the plant. 

5.5 Wireless infrastructure 

Nuclear power plants have found it difficult and costly to add instrumentation to critical 

equipment using their existing infrastructures.  As a result, measurements on parameters 

that could provide diagnostics to critical plant processes and equipment are not 

economically feasible to implement.  Much of the cost of adding new instrumentation to 

existing equipment is in the cabling.  In fact, a recent project funded in part by EPRI 

concluded that adding cabling in existing nuclear plants costs approximately $2000/ft. 

[EPRI, 2005]. As such, an infrastructure that can accommodate additional 

instrumentation in the next generation of nuclear plants should be considered in the initial 

design stages. 

Including wireless communication capabilities based on a standard protocol such 

as 802.11 or ISA 100 Standard in the design plans of the next generation of nuclear 

power plants can not only provide the necessary means to transmit much needed sensor 

data, it can also provide an infrastructure for plant-wide communications.  The Comanche 

Peak nuclear plant in Texas has recently provided an example of how beneficial a plant-

wide wireless infrastructure can be for OLM technologies [EPRI, 2005]. At Comanche 
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Figure 32:  Process estimate uncertainty versus redundancy 
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Figure 33:  Spillover error versus redundancy 
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Peak, a wireless infrastructure has been put in place that provides 100% communications 

coverage throughout the site and gives the plant the ability to add wireless sensors to 

monitor and analyze various plant processes and equipment. 

 In the new plants, while the wireless infrastructure should be implemented around 

an accepted standard, the plant EMI/RFI design should allow for other wireless sensor 

networks to be deployed side-by-side for various applications.  This will allow the 

wireless sensors from various manufactures to be used for OLM applications in the 

plants.  An example of multiple sensor networks interfacing into the plant data network is 

shown in Figure 34. 

Inevitably, research in OLM methods will continue in the future, and there will be 

a need to measure and analyze parameters that are not being considered now.  

Incorporating a wireless infrastructure will help new plants to provide the necessary 

means of communicating these measurements to plant engineers at a low cost to the 

plant, and provide a means for the future expansion of OLM capabilities. 
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Figure 34:  Example of wireless sensors interfaced to the plant data network 
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5.6 Cyber security 

Security of plant systems and data is an issue for both existing plants and the next 

generation of plants.  However, the digital I&C systems that are planned for the next 

generation of plants are more susceptible to cyber security issues than their analog 

counterparts in the existing fleet.  A significant amount of work has been done in recent 

years in preparation for this likely increase in cyber security risks. 

There are several standards related to cyber security that are available for the 

electrical power industry including [Kropp, 2008]:
 

 

 IEC Security Standards ISO/IEC 27000 series consisting of seven standards 

 IEEE P1711 and IEEE P1689 for Cyber Security of Serial SCADA Links 

 ISA99 Security for Industrial and Automation Control Systems 

 North American Electric Reliability Corporation (NERC) Critical 

Infrastructure Protection (CIP) standards CIP-002 through CIP-009.   

 

While these standards address different aspects of cyber security for nuclear plants, they 

focus on many of the same cyber security threats that include: 

 

 Non-directed, damaging attacks by software viruses and worms 

 Data network performance attacks from denial of service attacks and network 

spoofing 

 Loss of data privacy and confidentiality from eavesdropping and network 

packet sniffing 

 Directed threats involving network packet modification, mimicking, and data 

tampering 

 

These cyber threats are traditionally handled by corporate IT departments.  However, the 

impact on plant control systems and plant safety must be evaluated and addressed for new 

plants with many more plant data networks, digital control, and digital safety systems. 

While many of these issues will be resolved for the new plant operation, these issues 

must also be addressed for OLM data systems that will be used to monitor the static and 

dynamic performance of the plant sensors and systems.  The security and configuration of 

the OLM system is important if this is to be used for meeting safety related technical 

specifications [Staggs, 2008]. 
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Redundant Sensor Averaging Methods for On-Line Monitoring 

 

B.1 Averaging Methods 

  

For the on-line calibration monitoring of pressure transmitters, four averaging methods are 

discussed in this Appendix: straight average, band average, weighed average, and parity space.  

These methods will each be examined below. 

 

B.1.1 Straight Average 

 

A straight average is just a simple statistical mean of a group of numbers. 

Let n be the number of redundant signals. 

Let a measurement of each redundant signal be represented by: 

 

nXXX  ...21         (B.1)
 

 

The straight average or mean of a set of measurements is:      

     

n

XXX n


...21
 

        (B.2) 

 

This is just the sum of the redundant signals divided by the number of redundant signals.  This is 

the simplest method and weights all the redundant signals equally. 
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B.1.2 Band Average 

 

The band average method places a limit around the straight average.  If a measurement exceeds 

the limit around the straight average, then it is removed from the signals being averaged and the 

straight average is recalculated.  This process is repeated until all the remaining signals fall 

within the limit around the straight average. 
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or 

 

Straight Average with  limits iX  removed from the measurements 
 

 (B.4) 

 

The selection of the band limit is traditionally selected at the allowable drift limit or slightly 

smaller so that when signals have drifted outside of their drift allowance, they are no longer 

included in the average.  However, if the signal variance is large, the band may need to be larger 

than the drift allowance so the average is not skewed by instantaneous signal fluctuations.  These 

limits will be determined after evaluating the historical plant computer data. 

 

B.1.3 Weighted Average 

 

The weighted average, as the name implies, weights the measurements based on either a 

predetermined factor such as narrow range and wide range signals that have different accuracies, 

or a calculation performed for each set of measurements such as a measurement’s deviation from 

the straight average.  The weighted average formula is simply:  
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Each measurement is multiplied by a weighting factor and all the results are summed.  This sum 

is then divided by a sum of all the weighting factors.  The other two methods of a straight 

average and a band average may be expressed in terms of a weighted average:  
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If all Wi = 1, then weighted average = straight average 

 

When all the weights equal one, the sum of the n weights equal n and the equation reduces to the 

straight average. 

 

if  
 


















limit,0

limit,1





ii

ii

XW

XW = Band Limit       (B.6) 

 

The weights are equal to one when the measurement is inside the band limit and equal to zero 

when the measurement is outside the band limit.  When the weights are selected this way, the 

weighted average reduces to the band average equation. 

 

There are many different types of weighted averages.  For this project, one may be selected that 

is easy to implement, or that has a simple uncertainty calculation.  The uncertainty will be 

discussed in the next section. 

 

 

B.1.4 Parity Space 

 

The parity space method may be expressed as a weighted average.  The parity space method sets 

the weights based on the number of points around a particular measurement that fall within a 

band.  Each redundant measurement is compared against every other redundant measurement to 

see if it falls within a parity space limit.  For every measurement within the limit, the weight 

being calculated is increased by 1.  Once all the weights are determined, the weighted average is 

calculated.  This weight calculation can be expressed as: 
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For the parity space method, selecting the limit has a large contribution on the effectiveness of 

this method.  If the limit is selected very large, then all the measurements have the same weight 

and this reduces to the straight average.  If the limit is smaller than the deviation between the 

measurements, then some measurements will have a weight of zero and the remaining 

measurements may have the same weight.  This would reduce the parity space method to the 

band average.  When the limits are selected so that all the measurements are within the limit of at 
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least one other measurement, then a true weighted average results.  This will weight the 

measurements that are the closest togther more than measurements that fall away from the 

majority. 

 

Although this is the most complicated of the methods discussed, it has the advantage of 

producing a smooth average estimate as a sensor drifts away.  For the band limit, when a sensor 

drifts beyond the limit, the average will suddenly jump to the average of the remaining signals 

which will create a sudden large deviation of the outlying signal.  The parity space method will 

create a gradual decreasing weight as it moves away from the majority of the other 

measurements.  In this case, its deviation will be evident earlier and not be a sudden jump away 

from the others. 

 

B.2 Uncertainty of the Weighted Average 

 

 

Since the weighted average can describe all the averaging methods, once its uncertainty is 

determined, all others can be easily calculated.  The general formula for uncertainty with bias 

may be expressed as the root sum square (RSS) of the individual uncertainties in an equation 

multiplied by the partial derivative of the equation with respect to each individual variable.  This 

can be expressed as: 
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To calculate the total uncertainty for the weighted average, first we should calculate the partial 

derivative with respect to each variable.  For example the partial with respect to the first variable, 

X1, is: 

 

 

nn

nn
WA

WWW

W

WWW

XWXWXW

XX 






















......

...

21

1

21

2211

1
        (B.9)

 

 

or this can be written for each variable as: 
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So, if we replace these partial derivative calculations into the original equation we obtain: 
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For the other averaging techniques, their uncertainties may be calculated: 
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Here the simple average is just the RSS of the individual uncertainties divided by n.   

n
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when the individual uncertainties are all the same for the straight average, the total reduces to the 

individual uncertainty divided by the square root of the number of measurements. 

 

For weighted average, 
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when the individual uncertainties are the same for the weighted average, the total uncertainty 

becomes the individual uncertainty multiplied by the RSS of the weights divided by the sum of 

the weights. 

 

From this equation it can be seen that if the weights are predetermined, then the uncertainty of 

the method can also be predetermined.  However, if the weights are calculated based on the 

measurements such as in band average or parity space method, then the uncertainty of the 

method will be different with each set of measurements.  To quantify the measurement 

uncertainty in these cases, the total uncertainty may be expressed by either an average of the 

calculated measurement uncertainties or just the maximum uncertainty obtained for a set of data. 
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Kernel Regression Theory 

 

Kernel regression is a memory-based technique that predicts noise-free estimates of the given input 

signals based on a weighted average of stored training data.  Kernel regression is often referred to in the 

literature as a ‘lazy-learning’ technique because it defers learning the relationships between input 

variables until it receives a test data sample, also known as a query [1]. Lazy-learning techniques are in 

sharp contrast to other types of algorithms, such as neural networks, that attempt to establish the global 

relationships between variables during training.  Techniques like neural networks can suffer from very 

long training times and give unpredictable results if the global relationships between the variables change 

over time.  Kernel regression is more robust than neural networks in this respect because it only tries to 

approximate the relationships between the variables locally, and does not try to approximate global 

relationships [2]. 

 

Kernel regression stores its fault-free training data in an N-by-P memory matrix M, which is made up of 

N observations of P process variables: 
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For each query vector qi = [q1   q2   …   qP] presented to the kernel regression model, the distance between 

qi and each vector in the memory matrix M is calculated according to a distance function, such as the 

Euclidean distance given by: 
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11, ..., ppiiii qMqMqMd     (C.2) 

 

For each input vector qi, the calculation in (C.2) results in a vector di = [d1   d2   …   dN] made up of the 

distances between the query vector, qi , and all of the vectors in the memory matrix M.  Next, these 

distances are used to calculate a weighting vector wi according to a similarity function, typically given by 

the Gaussian kernel function: 
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where Kk is a kernel function, and k is the kernel width. The kernel function effectively gives higher 

weights to memory matrix vectors that are closer to the query vector qi.  Finally, these weights are used to 

produce the output prediction, ŷi, according to: 

 








N

i

i

N

i

ii

i

w

Mw

y

1

1ˆ

 

     (C.4) 

 

where the output prediction ŷi is a weighted average of memory vectors in M. 

 

Figure C-1 shows eleven sample training points of a one-dimensional data set generated from the 

equation: 
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Figure C-1   

One-Dimensional Training Data Set 

 

 

The table to the right of Figure C-1 shows the corresponding x and y values for each of the eleven training 

points.  The eleven x and y training value pairs are all that kernel regression model ‘knows’ about the data 

set.  The kernel regression model does not attempt to discover the global mathematical relationship 
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between x and y, as described in Equation 5, rather it calculates estimates for new data on a point-by-point 

basis. 

 

For example, suppose the model from Figure C-1 is presented with a query value that is not in the training 

data, such as x = 15.  To calculate the corresponding y value, the Euclidean distance between x = 15 and 

the eleven x values in the training data are calculated.  The distances are then converted to weighting 

factors using a kernel function.  Finally, the weighting factors are used to weight the eleven corresponding 

y values in the training set to produce the estimate.  Figure C-2 shows the kernel regression model 

estimate for x = 15, using the Euclidean distance measure and a Gaussian kernel function with a kernel 

width of 0.3. 

 

Figure C-2 shows that the new y estimate for x = 15 lies between point 2 and point 3 of the training data.  

The table to the right of Figure C-2 shows that this is because the y values of training points 2 and 3 have 

a weight factor of 0.5, and the rest of the training points have a weight factor of 0.0, meaning that the new 

estimate is simply the average of training points 2 and 3.  Note that the weight factors of all of the training 

samples are calculated, but the training points that are closest to the query point have the most influence 

on the final estimate. 

 

 

 

Figure C-2 

Kernal Regression Estimate for x = 15 

 

The weight factor given to each estimate is dependent on the distance of the query from the known 

training points, the kernel function, and the kernel width.  Figure C-3 shows the Gaussian kernel function 

with different values of kernel width. 
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As shown in Figure C-3, the weight factor decreases as the distance increases, and is dependent on the 

value of the kernel width parameter k.  As the kernel width is increased, the weight factors of more distant 

points increase, allowing distant points to influence the calculation of the estimate.  Figure C-4 shows the 

estimates from x = 0 to x = 100 for the example data with a kernel width of 0.3.  The estimates for this 

kernel width value fit the training data, and follow the overall pattern closely. 

 

Figure C-5 shows the estimates using a kernel width of 0.1.  The estimates fit the training points well, but 

do not follow the pattern between training points.  In this case, the kernel width is too small to allow 

multiple training points to influence the estimate when the queries are between training points, and as a 

result, the model does not interpolate well. 

 

Figure C-6 shows the estimates of the example data using a kernel width of 0.8.  In this case, distant 

points influence the local estimates too much, resulting in biased estimates.  In fact, as the kernel width 

approaches infinity, each estimate approaches the average of all of the training points. 

 

As shown in the example data, the choice of kernel width can have a significant effect on the performance 

of the model.  There are also other parameters in kernel regression models that must be considered in 

order to produce the most accurate and robust models.  These parameters are listed in Table C-1. 

 

Much has been written about these parameters and their influence on the overall effectiveness of kernel 

regression models, a sample of which can be found in [3-7].  The effects of adjusting these parameters can 

be quantified by measuring the model output against a variety of modeling metrics, as listed in Table C-2.  

These metrics give an objective means for comparing and optimizing various kernel regression models. 
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Figure C-3   

Gaussian Kernal Function with Different Values of Kernel Width 

 

Figure C-4   

Estimates using Kernel Width of 0.3 
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Figure C-5 

Estimates using Kernel Width of 0.1 

 

Figure C-6 

Estimates using Kernel Width of 0.8 
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Table C-1 

Kernel Regression Parameters 

 

Parameter Description 

Memory Matrix Representative samples from the training data 

Distance Function 
The function used to determine the similarity between pairs 

of vectors 

Kernel Function 
The function used to calculate the weight factors for the 

memory matrix vectors 

Kernel Width 
Parameter of the kernel function used to determine the 

weight factors 

 

 

 

 

Table C-2 

Metrics for Model Comparison 

 

Parameter Description 

Accuracy 
Mean-Squared-Error between model predictions and target 

values 

Auto-Sensitivity 
Measure of a model’s ability to make correct predictions in 

the presence of a fault condition 

Cross-Sensitivity 
Measure of the effect a faulty sensor has on other 

predictions in the same model 

Uncertainty Error-bounds around model predictions 

Detectability Smallest sensor drift that can be identified by the model 
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Brief descriptions of each of these metrics are given below.  For more detailed descriptions of these 

metrics and their effects on kernel regression models, the reader is referred to the material in [8-12]. 

 

Accuracy 

 

A model’s accuracy is measured by calculating the cumulative error between the model’s predictions and 

target values.  Accuracy is calculated using fault-free training data, and is calculated as a mean-squared 

error value according to (C-6) (for a one dimensional model): 
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where yi is the target value, ŷi is the model prediction, and N is the number of samples. Figure C-7 shows 

an example of the errors between the model predictions and the target values for a one-dimensional case.  

All of the individual errors are squared, summed, and then averaged to calculate the accuracy. 

 

 

Figure C-7 

Errors Between Predictions and Target Values for One-Dimensional Model  
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The accuracy metric can be used to help choose an appropriate value for the kernel width parameter.  In 

this case, a model is trained with fault-free data, and then tested with another set of fault-free data that is 

different from the training data. The same test data is applied to the training data as the kernel width is 

incremented.  Then the mean-squared-error versus the kernel width is plotted to reveal a curve similar to 

the one shown in Figure C-8.  The appropriate kernel width could then be chosen as the value that 

minimizes the mean-squared error. 
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Figure C-8 

Mean-Squared-Error Versus Kernel Width Auto-Sensitivity 

 

One of the most important attributes of an empirical model is its ability to make correct predictions in the 

presence of drifting inputs.  This is especially true in applications of on-line calibration monitoring where 

the detection of drift is of primary concern.  In an on-line monitoring application, the difference between 

the model input and the model output for a given sensor is used to calculate a residual.  This residual is 

then compared against acceptance limits to determine if the sensor has drifted. Ideally, the model output 

for a sensor would be robust to a drifting input, which would result in a large residual that reflected the 

fact that the sensor was drifting (Figure C-9).  The worst case would be if the model output drifted along 

with the input, in which case the residual would be small, and the drift may go undetected (Figure C-10). 
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Figure C-9 

Output and Residual for Model With Low Auto-sensitivity 

 

 

 

 

 

 

Figure C-10 

Output and Residual for Model With High Auto-Sensitivity 
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Auto-sensitivity is a metric that quantifies robustness to drift of each sensor in a model.  It is calculated by 

artificially drifting a sensor, and then calculating the ratio of the model’s output drift with the actual drift 

introduced.  For sensor i, the auto-sensitivity is calculated by: 
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where 
drift

kiŷ  is the model output of sample k of the drifted sensor i, kiŷ  is the model output of sample k of 

sensor i with no drift applied, 
drift

kix  is sample k of the drifted input for sensor i, kix  is sample k of sensor i 

with no drift applied, and N is the number of samples.  An auto-sensitivity value of 0 indicates that the 

sensor model is robust to drift, and a value of 1 indicates that the sensor model will mask drift. 

 

Cross-Sensitivity 

 

Another important model characteristic is the robustness of a sensor prediction in the presence of faults in 

other sensors in the model.  This characteristic is called cross-sensitivity, and is similar to auto-sensitivity.  

However, the cross-sensitivity for a given sensor is calculated by artificially drifting all of the other 

sensors in the model, and determining the effect the drift has on the sensor’s output.  For a sensor j, cross-

sensitivity is given by: 
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where 
drift

kjŷ  is the model output of sample k of the drifted sensor j, kjŷ  is the model output of sample k of 

sensor j with no drift applied, 
drift

kix  is sample k of the drifted input for sensor i, kix  is sample k of sensor i 

with no drift applied, and N is the number of samples.  A cross-sensitivity value of 0 indicates that the 

sensor model is robust to the drift of other sensors, and a value of 1 indicates that the sensor model is 

affected by the drift of other sensors. 
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Uncertainty 

 

In order for model predictions to be used in applications such as on-line calibration monitoring, an 

estimate of their uncertainty must be attainable.  For on-line calibration monitoring applications, the 

uncertainty of a model estimate is a contributor to the overall acceptance limits, and thus has a significant 

effect on the model’s ability to detect drift.  The following description of kernel regression uncertainty 

calculations is brief, however the reader is referred to the material in [9][10][12] and [13] for more 

detailed information. 

 

There are two different types of uncertainty estimations that can be calculated for a kernel regression 

model, namely prediction intervals and confidence intervals [10].  Prediction intervals give the 

uncertainty around each individual prediction, while confidence intervals provide the uncertainty around 

the residual formed from subtracting the model estimate from the measured value.  Figures C-11 and C-

12 illustrate the concepts of prediction and confidence intervals respectively. 

 

According to [10], the prediction interval around a given model estimate ŷ with a 95% confidence level is 

given by: 

 

  2ˆ2ˆ BiasyVary e        (C.9) 

 

where 

 

   Bias
2
   =  the systematic error of the model predictions 

   Var(ŷ)   =  the variance of the model predictions 

     σe  = the estimate of the noise variance on ŷ. 
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Figure C-11 

Predicition Intervals Around Model Predictions 
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Figure C-12 

Confidence Intervals Around Residual 
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Similarly, the 95% confidence interval around the residual E(ŷ) is given by: 

 

    2ˆ2ˆ BiasyVaryE      (C.10) 

where  

Bias
2
   =  the systematic error of the model predictions 

 Var(ŷ)   =  the variance of the model predictions. 

 

Note that the only difference between the prediction and confidence intervals is that the confidence 

interval does not include the noise variance term σe, as this term is assumed to be cancelled out in the 

calculation of the residual.  As a result, confidence intervals are typically much smaller than prediction 

intervals, making them more feasible for inclusion in acceptance criteria calculations for on-line 

calibration monitoring applications [10]. 

 

The uncertainty intervals for kernel regression models can be calculated analytically or experimentally 

using Monte Carlo methods.  A particular advantage of kernel regression models over other methods such 

as neural networks is that the use of Monte Carlo techniques to estimate the uncertainty is practical in 

kernel regression models due to the short training times. 

     

Detectability 

 

For OLM applications, the most important characteristic of an empirical model is its ability to detect drift.  

Therefore, the model’s ability to detect drift must be quantified such that the engineer can determine if the 

model will be effective.  For example, if a certain sensor is allowed to drift only 1% of its range over a 

given time period, the model must be able to detect drifts of at least 1% of the sensor’s range, or the 

model will be ineffective.  The detectability metric quantifies the smallest amount of drift detectable for a 

given sensor in a model and is given by [8]: 
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where Ui is the sensor’s 95% confidence interval, and SAi is the sensor’s auto-sensitivity.  The 

detectability Di is given as a percentage of the sensors total range.  Therefore, a Di of 1% means that the 

smallest amount of drift that the sensor can detect is 1% of its range.  The detectability for each sensor is 

subtracted from the acceptance limits so that drift can be appropriately detected. 
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Tutorial on the Noise Analysis Technique  

 

Noise analysis is the process of extracting information from the normally occurring fluctuations which 

occur on the output of most sensors while the plant is operating.  These fluctuations are usually due to 

normal structural vibration, flow turbulence, random heat transfer, random flux, and other effects.  These 

fluctuations are referred to as noise, and the processing of this noise is called noise analysis.  One of the 

most familiar applications of noise analysis is monitoring of rotating machinery in industrial processes.  

In these applications, vibration sensors such as accelerometers are used to provide information about 

displacement, velocity, or acceleration of the rotating equipment.  In nuclear power plants, in addition to 

vibration sensors, noise signals from temperature, pressure, neutron, and other sensors are used to study 

the dynamics of the system and provide the frequency response of the sensors themselves.   

 

The noise data is separated from the steady state output of the sensor by a routine signal conditioning 

procedure such as the one illustrated in Figure D-1.  A high-pass filter is used to remove the DC 

component of the signal so that the noise can be amplified (a DC offset voltage can also be used instead 

of the high-pass filter).  The amplified signal is then sent to a low-pass filter to remove any undesirable 

high-frequency component of the noise and to provide for anti-aliasing.  The filtered signal is then 

sampled (i.e., digitized by an analog-to-digital or A/D converter) with a computer and stored on a 

computer disk for subsequent analysis.  The sampling rate, amplifier gain, and the high-pass and low-pass 

filter settings are selected based on the frequency range of interest. 

Analysis of Noise Data 

The noise data may be analyzed in the amplitude domain, time domain, or frequency domain.  For any of 

these analyses, the mean or average value of the noise signal is usually subtracted out unless the signal 

has been high-pass filtered, in which case, the mean value is zero.  These analyses are described below.

 

Figure D-1 

Block Diagram of Signal Conditioning and Noise Data Acquisition Equipment 
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Amplitude Domain Analysis 

In amplitude analyses, the root mean squared (RMS) value, the variance, and the amplitude distribution of 

the noise signals are calculated.  If the signal is denoted as x(t), then the RMS value is calculated as: 

2x = RMS
   

 (D.1) 

where the bar is used to represent the average value.  In discrete form, Equation (D.1) would be shown as 




N

i

i

N

x
  = RMS

1

2

     (D.2) 

where N is the number of points sampled and xi is an individual sample.  The RMS value is also referred 

to as standard deviation and denoted as σ. 

 

 

The RMS value of a signal provides a quantitative measure of the magnitude of the variations occurring 

in the signal.  A related quantity called variance is also used.  Variance is the RMS value squared (σ
2
), that 

is: 

2 = Variance     
 

(D.3) 

 

If the average value was not removed from the signal before sampling, then the RMS value and variance 

are calculated as follows: 

 
N
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     (D.4) 
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
      (D.5) 

Another parameter of interest is one that describes the distribution of the data about its mean value.  If one 

takes a set of N samples of random noise data and counts the number of times each value occurs, those 

values near the average or mean would occur most frequently.  As one moves away from the mean value 

in either direction (above or below the mean), the number of occurrences decreases until at some distance 

from the mean value one finds no occurrences of the data.  This is the basic concept of the amplitude 

probability distribution or APD. Figure D-2 illustrates a typical APD.  A more familiar and general term 

for an APD is a histogram.   

 

The function that describes the APD of a Gaussian signal x(t) is written as: 

 




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 = p(x)      (D.6) 
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Figure D-2 

Illustration of Histogram (top) and APD (bottom) 
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where σ is the RMS value of the signal x(t).  Figure D-2 represents the APD of a signal that has a 

Gaussian distribution described by Equation (D.6).  The Gaussian distribution is also called a “normal” 

distribution.  Almost all nuclear plant noise signals from properly operating sensors and systems should 

have Gaussian distributions.  With this in mind, the Gaussian distribution (i.e., APD plot) is used as a 

means of qualifying the noise signal for analysis.  A departure from Gaussian distribution can be 

determined by calculating the skewness of the signal.  Skewness is an index of the symmetry of the signal 

or the behavior of the signal above and below the mean value.  The skewness is computed as: 

 

           
3

3

1

1 x

N
 = Skewness

  
i

N

=i

     (D.7) 

 

Data which is symmetrical above and below its average value will have a skewness value of zero. 

 

The APD described above quantifies the probability of a sample occurring with a value of “x”.  In some 

cases, it is desirable to look at the probability of a sample occurring with a value of “x or less”.  This is 

called the cumulative probability distribution function (CPDF), shown in Figure D-3 for a normal and a 

skewed signal.  To better see small deviations from the Gaussian distribution, the CPDF is sometimes 

plotted as the number of standard deviations departure of the data value from the mean value.  This is 

similar to using a special probability axis which causes the normal or Gaussian data to lie on a straight 

line.  This process is also similar to plotting exponential data on semi-log paper to obtain a straight line.  

An example of this type of plot of the CPDF is shown in Figure D-4 for a normal (Gaussian) and a 

skewed set of random data.  Figures D-3 and D-4 represent the same data sets.  Note that the departures 

from Gaussian (dotted line) at the extreme ends are evident in the plot of Figure D-4. 

 

Time Domain Analysis 

 

In the time domain, correlation and autoregressive methods are used for analysis of noise data.  The 

correlation function for a noise signal x(t) is written as: 

 

   dttxtx
T
 = )( R

T

T
xx  

2/

2/

1
    (D.8) 

 

where Rxx( ) is referred to as autocorrelation function,  is a time lag, and T is the signal duration.  The 

autocorrelation function describes the general dependence of the value of the data  
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Figure D-3 

 CPDF for Normal and Skewed Noise Records 

 

Figure D-4 
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at one time on the values at another time.  The function provides insight into the existence of periodic 

signal components in the random data and the nature of narrow and wideband noise properties.  In order 

to obtain the correlation between two different signals x(t) and y(t), a function called cross-correlation is 

used.  The cross-correlation function Rxy( ) is written as: 

 

   dt-tytx
T
 = )( R

T

T
xy 

2/

2/

1
     (D.9) 

 

The cross-correlation function describes the general dependence of the values of one set of data on the 

other.  It is used for measurement of time lags in transport processes, determination of transmission path 

by observing multiple peaks in Rxy( ), and detection and elimination of interfering noise.  In the time 

domain analysis of sensor noise data, the correlation function is plotted versus time.  The peak in the 

correlation plot identifies the time delay between the sensors, i.e. the propagation time of the noise 

between the two sensors.  Figure D-5 illustrates the result of the cross-correlation of a pair of signals from 

two sensors in a nuclear power plant. 

 

 

Figure 5 

Plot of Correlation Function of a Pair of Signals from Two Sensors in a Nuclear Power Plant 
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Frequency Domain Analysis 

 

Frequency domain techniques are a popular method for analysis of reactor noise signals.  The frequency 

domain descriptors may be obtained from time domain correlation functions discussed above or from a 

direct Fourier transformation of the noise data.  As in the time domain analysis, there are two groups of 

frequency domain descriptors.  One group such as auto power spectral density (APSD) that is used for 

single signals, and another group such as cross power spectral density (CPSD) that is used for signal 

pairs.  These frequency domain descriptors are related to their time domain counterparts through an 

integral function: 

 

    deR= APSD jf2-
xx




2

  
 (D.10) 

 

and 

    deR= CPSD jf2-
xy




2    (D.11) 

 

Instead of integrating the correlation functions, the APSD and CPSD can be determined by the Fourier 

transform of the signal.  For example, the APSD of x(t) can be identified from: 

 

  dt etx
T
 = APSD

T

T

ftj2-


2/

2/

22     (D.12) 

The physical significance of the APSD is that it provides a measure of signal power within discrete 

frequency bands over specified frequency ranges, i.e., it is the variance (σ
2
) per unit narrow frequency 

band as a function of frequency. 

 

 

It is customary to divide the values of the APSD and CPSD obtained from the above equations by the 

square or product of the steady state values of the signal to obtain normalized quantities.  The normalized 

quantities are sometimes denoted as NPSD and NCPSD, but the terms PSD and CPSD (without the N) are 

the most common terms used for expressing these normalized quantities.   

 

Two other useful frequency domain descriptors are the coherence and the phase angle between two 

signals.  These descriptors can be identified from the PSD and CPSD of two signals x and y as follows:   

 

yx
xy

PSDPSD

CPSD
Coherence

)()(

)( 2
2
    (D.13) 
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The coherence is a dimensionless quantity which defines the strength of the x(t) and y(t) relationship as a 

function of frequency.  It has a value between zero and one, with one indicating that the relationship 

between x and y is linear time invariant. 

 

10
2
 xy    (D.14) 

  

The phase is obtained from CPSD as: 
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  (D.15) 

 

where Im() and Re() represent the imaginary and real components of the CPSD function.   

 

The phase spectrum of the Fourier transform of the sensor data can also be used to determine the transit or 

propagation time of noise between pairs of sensors.  The slope of the phase plotted as a function of 

frequency is used to calculate the time delay as follows: 

 





 ft

slope

f
t 2where,

3602
  (D.16) 

 

where t is the time separation of the correlated signals,   is the change in FFT phase, and f is the 

frequency band of highest coherence.  The slope is calculated over the region of the spectrum where the 

two data sequences are most coherent to avoid some of the effects of process variations not related to 

flow. 

 

Auto Regression Modeling 

 

Auto regression (AR) modeling, moving average (MA) modeling, and auto regressive moving average 

(ARMA) modeling are all related [1-6].  

 

The AR model general equation is: 

 

ipipiii aaa   2211    (D.17) 

where: 
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ai’s are the AR coefficients 

Yi is the data value at time i 

Xi is the white noise input with mean=0 and constant variance σ
2
 

p is the AR model order. 

 

The number of coefficients determines the order of the AR model.  Future values are based on a 

combination of the previous data value and the white noise input. 

 

An example of an AR model of order 3 is: 

 

iiaiaiai  332211
   (D.18) 

 

Here, future values are based on the prior three values. 

 

As the AR order increases, the white noise input comprises less of the data and future data is composed of 

primarily of combinations of prior data values. 

 

The MA model general equation is: 

 

ipipiii XbXbXb   2211     (D.19) 

where: 

b’s are the MA coefficients 

Yi is the data value at time i 

Xi is the white noise input with mean=0 and constant variance σ
2
 

p is the MA model order. 

 

 

ARMA is then a combination of both AR and MA in the form: 

 

      ipipiipipiii XbXbXbaaa    22112211  (D.20) 

where: 

a’s are the AR coefficients  
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b’s are the MA coefficients 

Yi is the data value at time i 

Xi is the white noise input with mean=0 and constant variance σ
2
 

p is the AR and MA model order. 

 

The order for ARMA can be different for the AR and MA portions, but in practice the same order is 

typically used for both as shown in the equation above. 

 

Power Spectral Density 

 

The reason for creating an AR model is to obtain a good power spectral density (PSD) estimate based on 

the AR model.  Typically a good AR estimate can be obtained from a small quantity of data.   

 

The PSD of the AR model can be calculated directly from the AR coefficients by [4]: 
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    (D.23) 

 

Optimum Order Selection 

 

There are several classic criteria to evaluate the model order:  Akaike, Bayes Probability, and Rissanen 

Minimum Descriptive Length (MDL).  These are calculated as follows [1]: 

 

  iNAICAkaike 2ln)( 2        (D.24) 

   NiNMDL lnln 2        (D.25) 

    1lnln 2

0

2   rNiNBayes    (D.26) 

 

where 

 N = Samples 

 σ
2
 = Residual variance 
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 i = AR Order 

 r0 = Auto correlation value at 0 time lag. 

 

A comparison of these criteria versus model order shows that they find the optimal order at different 

places.  The second part of the equation always increases with increasing model order.  This attempts to 

identify the lowest possible model order that is suitable. The common component in these criteria is the 

first part of the equation based on the residual variance.  In general, the best criteria overall is the MDL 

criteria. 

 

Auto Regressive Methods 

 

Some traditional AR methods are:  Yule-Walker, Burg, Covariance, and Modified Covariance.  Also, the 

Prony method is a traditional ARMA method.  The Yule-Walker method was developed from a 

combination of work by British statistician G. Yule in 1927 on modeling sunspot data from 1749 to 1894 

and work by Walker in 1931 [1].  Using a least square regression, they modeled future data on past data 

samples.  The results of this work produced the Yule-Walker equations: 
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 This relates to the AR model of order 3 by: 
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This makes the Yule-Walker method the best suited for analyzing multiple blocks of data because the 

autocorrelation coefficients can be calculated for each block and then averaged to determine an average 

set of autocorrelation coefficients for the data set.  These averaged autocorrelation coefficients are then 

used to solve the AR coefficients for various model orders. 
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The Burg method was developed by John Burg in 1967.  The Burg method estimates the reflection 

coefficients directly and avoids calculating the autocorrelation function.  It attempts to minimize both 

forward and backward prediction errors to solve for the AR coefficients by using least squares recursion.  

The Burg method is good at identifying closely spaced sinusoids in signals with low noise levels and also 

modeling well with short data sets [1].  The accuracy of the Burg method decreases as the model order 

becomes high or for long data sets. 

 

The covariance and modified covariance methods use covariance to solve for the AR coefficients.  The 

covariance method attempts to minimize the forward prediction error.  The modified covariance attempts 

to minimize both the forward and backward prediction error [1].  Similar to the Burg method, they 

estimate the coefficients directly from the data and do not calculate the autocorrelation function. 

 

The Prony method of ARMA is based on work by Gaspard Riche, Baron de Prony in 1795 that attempted 

to model expansion of gases by sums of damped exponentials.  The modern Prony method of ARMA first 

models a portion of the data with an AR model, and then models the residual noise with an MA model.  

The combination of these two methods should allow good spectral estimation with a much smaller model 

order than either AR or MA alone [1]. 
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ABSTRACT 

Nuclear power plants (NPPs) are instrumented with numerous sensors to provide data for 

control, assurance of safety, and plant operations.  Many of the signals from these sensors can be 

monitored while the plant is on-line to verify the accuracy and reliability of the sensors 

themselves, and as importantly, for plant diagnostics, aging management, and health monitoring.  

This can be accomplished by taking full advantage of the information that can be extracted from 

the outputs of these sensors. 

The steady-state value of the sensor output is referred to as the static component, while the 

small fluctuations inherently present are known as the dynamic component of the signal.  When 

used together, static and dynamic analysis techniques can help verify the health of the plant; 

however, they are often applied separately by different individuals and organizations, and as a 

result, they do not provide a complete picture of plant health.  To help close this gap, the authors 

developed a system that integrates static and dynamic on-line monitoring (OLM) techniques as 

part of a Small Business Innovation Research (SBIR) project sponsored by the U.S. Department of 

Energy (DOE).  In particular, the OLM system developed for this project integrates two important 

classes of static and dynamic OLM techniques referred to as process modeling and noise analysis. 

These techniques can be applied using data from existing sensors in NPPs, enabling centralized 

analysis for applications such as on-line calibration monitoring of pressure, level, and flow 

transmitters, equipment condition monitoring, and dynamic sensor response testing. This paper 

provides details into the research and development of the OLM system and demonstrates results of 

testing the system on actual operating NPP data provided by several plants that actively 

participated in the project. 

Key Words: on-line monitoring, plant computer data, calibration monitoring, noise analysis 

1 INTRODUCTION 

As the current generation of nuclear power plants (NPPs) have passed mid-life, increased monitoring 

of their health is critical to safe operation. This is especially true now that license renewal of NPPs has 

accelerated in the United States, allowing plants to operate up to 60 years. Furthermore, many utilities are 

maximizing their power output through uprating projects and retrofits, which put additional stresses on 

the plant equipment and make them more vulnerable to the effects of aging, degradation, and failure. In 

the meantime, the nuclear power industry is working to reduce generation costs by adopting condition-

based maintenance strategies and automating testing activities. 



Presented at Seventh American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control and Human-Machine Interface 

Technologies NPIC&HMIT 2010, Las Vegas, Nevada, November 7-11, 2010, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2010) 

 

E-2 

 

Prior to the work done for the project described in this paper, the foundation for much of the required 

technology had already been established, but the various technologies had yet to be assembled into an 

integrated on-line monitoring system to facilitate their use in NPPs.  As such, the primary objective of this 

project was to design and develop such a system and demonstrate its use in an operating NPP. 

The term on-line monitoring (OLM) is used to describe methods for evaluating the health and 

reliability of nuclear plant sensors, processes, and equipment from data acquired while the plant is 

operating.  NPPs are instrumented with numerous sensors to provide data for control, assurance of safety, 

and plant operations. Many of the signals from these sensors can be monitored while the plant is on-line 

to verify the accuracy and reliability of the sensors themselves, and as importantly, for plant diagnostics, 

aging management, and health monitoring. This can be accomplished by taking full advantage of the 

information that can be extracted from the outputs of these sensors. 

2 STATIC AND DYNAMIC ON-LINE MONITORING 

Normally, while the plant is operating, a sensor‟s output will have a steady-state value corresponding 

to the process parameter indicated by the sensor. This steady-state value is often referred to as the static 

component, or DC value. In addition to the static component, a small fluctuating signal is naturally 

present on the sensor output. This fluctuating signal, which is known as the signal‟s dynamic component, 

or AC signal, stems from inherent fluctuations in the process parameter caused by turbulence, random 

flux, random heat transfer, vibration, and other effects. 

The types of OLM applications in NPPs are in large part determined by the sampling rates available 

for data acquisition. OLM applications that use static data, such as on-line calibration monitoring of 

pressure transmitters, typically require sampling rates up to 1 Hz, while OLM applications using dynamic 

data such as sensor response time testing use sampling rates in the 1 kHz range.  Table 1 lists several 

OLM applications that can be implemented by utilizing static and dynamic data. 

The static and dynamic components of the sensor output each contain different information about the 

process being measured, and as such, can be used for a number of OLM applications. For example, 

applications that monitor for gradual changes in the process over the fuel cycle, such as sensor calibration 

monitoring, make use of the static component. On the other hand, applications that monitor fast changing 

events, such as core barrel motion, use the information in the dynamic component that provides signal 

bandwidth information.  In particular, the system developed for this project integrates two important 

classes of static and dynamic OLM techniques referred to as process modeling and noise analysis [1] that 

can be applied using data from existing sensors in NPPs.  Figure 1 illustrates the concept of the OLM 

system that was designed, developed, and implemented as part of this project and its relationship with 

existing NPP sensors and plant systems. 

Table 1.  OLM applications using static and dynamic data 

Static Data Dynamic Data 

On-Line Calibration Monitoring 

of Pressure Transmitters 
Dynamic Response of Pressure Transmitters 

RTD Cross-Calibration Predictive Maintenance of Reactor Internals 

Thermocouple Cross-Calibration Detection of Core Flow Anomalies 

Equipment Condition Assessment Life Extension of Neutron Detectors 
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Figure 1.  OLM system concept 

 

2.1 Static Data and Process Modeling 

Static data is generally retrieved from the plant computer and is sampled at various rates, 1 Hz being 

typical.  This data can be used to perform analytical modeling of the processes and sensors that are being 

monitored.  A primary operation of any static data analysis performed for an NPP is to detect transmitters 

or processes that may be drifting from their normal operating states.  However, it is often difficult in 

practice for static analysis algorithms to separate instrument drift from process drift.  Analytical models 

provide one solution for accomplishing this in NPPs. 

To separate instrument drift from process drift, or to establish a reference for detecting drift, a 

number of techniques may be used depending on the process and number of instruments that can be 

monitored simultaneously. For example, if redundant instruments are used to measure the same process 

parameter, then the average reading of the redundant instruments may be used as the reference for 

detecting drift. In this case, the normal outputs of the redundant instruments are scanned and averaged. 

This average value is subtracted from the reading of each redundant instrument to identify the deviation 

of the instrument from the average.  The deviation from the average for each transmitter can then be 

evaluated versus a limit, to determine if the sensor is drifting.  Figure 2 shows an example of the average 

deviations of four NPP pressure transmitters over a period of six years. 

 



Presented at Seventh American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control and Human-Machine Interface 

Technologies NPIC&HMIT 2010, Las Vegas, Nevada, November 7-11, 2010, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2010) 

 

E-4 

 

-1.5

-1

-0.5

0

0.5

1

1.5

4-Jun-02 11-Jun-03 17-Jun-04 24-Jun-05 1-Jul-06 8-Jul-07 14-Jul-08

D
e

v
ia

ti
o

n
 f
ro

m
 A

v
e

ra
g

e
 (
%

 F
lo

w
)

Time (Month)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

KDL144A-02

+ (Deviation Limit)

- (Deviation Limit)

 

Figure 2.  Deviation from average of four pressure transmitters 

 

Although averaging techniques have proven successful for determining drift in nuclear power plants 

[2-6], they are not always adequate to estimate the process parameter in cases where there is little or no 

redundancy.  In this case, static analysis algorithms must incorporate a methodology to produce process 

estimates from diverse signals.  Analytical modeling can be used to provide process estimates from 

diverse signals where the amount of redundancy is not sufficient for averaging techniques.  In other 

words, averaging techniques can be used to form a process estimate where redundant signals are 

available, and analytical modeling techniques are used to calculate a process estimate from a group of 

physically related diverse signals. 

2.2 Dynamic Data and Noise Analysis 

Dynamic data in general cannot be retrieved from the plant computer, as the sampling rate of most 

plant computers is not high enough to capture the high frequency components of the sensor signal.  A 

dedicated data acquisition unit can be used to acquire the high frequency data for dynamic analysis, 

typically in the 1 kHz range.  Primarily, this data is used to perform noise analysis on pressure 

transmitters to determine the response time of the sensors. 

Noise analysis includes fitting an equation to the relevant portion of the power spectral density 

(PSD) plot calculated from the data (to estimate the dynamic response of the sensor), and performing 

various statistical tests.  The dynamic analysis performed by the OLM system is largely based on 

performing an auto-regressive (AR) model analysis of the time series data [7].  The PSD of the data, 

along with other factors such as the step response, can be calculated from the AR model.  This process is 

described in more detail in the next section. 

In the past, performing AR analysis of dynamic NPP sensor data required expert knowledge and 

complicated software programs. One of the sub-goals of this project was to simplify the process of 

performing AR analysis so that it could be automated and used to provide reliable dynamic evaluation of 

NPP sensors.  Once the analysis is completed, the results can be saved to the OLM system database.  As 

the same sensors (and sensors of the same type) are tested repeatedly over time, the results of the testing 

can be trended to help identify sensor or sensing line degradation and other anomalies that may occur. 
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3 INTEGRATED ON-LINE MONITORING SYSTEM 

When used together, static and dynamic OLM techniques can help verify the health of the plant; 

however, they are often applied separately by different individuals and organizations, and as a result, they 

do not provide a complete picture of plant health. To help close this gap, the authors developed a system 

that integrates static and dynamic OLM techniques of process modeling and noise analysis that can be 

applied using data from existing sensors in NPPs, enabling centralized analysis for applications such as 

those listed in Table 1 above. 

A key component of the research was developing a framework to provide the foundation for the 

practical integration and implementation of the various OLM analysis techniques in existing and next 

generation NPPs. As such, the technical scope of the project included completing several objectives 

including: 

 Identifying sources of data, such as the plant computer, that are typically available in 

operating NPPs, and determining any limitations in the data from these sources that might 

affect the OLM analysis. 

 Designing and developing an automated data acquisition system to provide the necessary 

capabilities for data extraction for cases in which the existing plant computer data is not 

sufficient for OLM. 

 Identifying data qualification and data analysis techniques that are best suited for 

establishing instrument reliability and plant health monitoring. 

 Designing, developing, and testing a system comprised of both hardware and software 

modules that integrates all the necessary components of OLM including data acquisition, 

data qualification, data analysis, and plant health status reporting and can be controlled from 

a single personal computer (PC) platform. 

 Validating the OLM system modules in a laboratory test loop environment. 

 Implementing and demonstrating the OLM system in an operating NPP. 

As a result of the research and development (R&D) performed during this project, an OLM system 

was constructed that consisted of several software/hardware modules integrated into one common 

framework.  The parts of this framework are illustrated in Figure 3, with the main components described 

in detail in the following sections. 

3.1 Data Acquisition 

Most of the data collected by the plant computer is stored on a plant historian.  These historians are 

designed to compress data to facilitate storage and retrieval.  As such, the data is typically stored at slower 

rates than may be required for dynamic performance evaluations and some other diagnostics.  However, 

most of these historians can be configured to supply data at faster rates for shorter periods of time.  Even 

so, it is often the case that a sample rate much higher than the plant computer can provide is necessary to 

assess the dynamic performance of a sensor. 

The Data Acquisition module allows the user the acquire data from the plant computer for static 

analysis, and/or from a dedicated data acquisition system for use with dynamic analysis techniques.  To 

obtain static data, a data bridge software module was incorporated into the OLM system that is capable of 

retrieving data from common plant data historians such as the PI system, which is a software product 

from the OSIsoft Company, or the eDNA system, which is a software product from the InStep Software 

Company. 
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Figure 3.  Block diagram of the OLM system 

 

Dynamic data acquisition is made possible by the OLM system interface to a dedicated high-speed 

data acquisition system called the OLM-32, which is able to acquire up to 32 signals simultaneously at 

rates up to 50 kHz.  The OLM system is interfaced to the plant computer (via the data bridge) and the 

OLM-32 data acquisition system through a TCP/IP connection provided over an Ethernet network link.  

This allows the OLM system to acquire and store both static and dynamic data from a central location.  

Alternatively, dynamic data acquisition with the OLM-32 may also be accomplished using a laptop 

computer or other portable device. 

3.2 Data Cleaning and Qualification 

Once the data has been acquired, either from the plant computer or through the dedicated data 

acquisition system, it must be cleaned and qualified.  Data cleaning involves removing artifacts such as 

gaps, and/or „dead‟ spots in the data that can hinder analysis.  Data qualification, on the other hand, 

involves analyzing the data using various statistical descriptors such as mean, variance, and kurtosis, as 

well as amplitude probability distribution (APD) plots to verify that the data does not deviate significantly 

from its historical baseline. 

3.3 Static Data Analysis 

This module provides software interfaces and algorithms for performing sensor and process drift 

detection using redundant sensor averaging and analytical modeling techniques.  The OLM system uses 

kernel regression [8] as the algorithm for static process modeling.  For a comprehensive treatment of 

kernel regression as applied to modeling NPP processes, the reader is referred to [9].  Basically, the 
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process of training a kernel regression model involves choosing the various kernel regression parameters 

and evaluating the resulting model.  Once these parameters have been chosen, and the modeling metrics 

are deemed satisfactory, the modeling parameters can be saved to the OLM system database for later 

testing. 

New data acquired from the plant computer is evaluated against the models stored in the OLM 

system database.  The OLM system allows the user to load a set of data and view the residuals calculated 

by the kernel regression algorithm.  Each sensor in the models can be viewed versus its acceptance limits 

as configured by the user.  The results can then be saved to the OLM system database for later viewing 

and trending. 

3.4 Dynamic Data Analysis 

This module provides software interfaces and techniques for analyzing high-frequency data for 

sensor response time testing, and on-line detection of sensing-line voids, blockages, and leaks.  The 

primary tool used to evaluate the dynamic response of the sensor data is auto-regressive (AR) modeling 

[7].  Various AR methods were evaluated, and in general each method solves for the AR coefficients by 

minimizing error terms. 

Generally, the various AR methods result in very similar coefficients; however, AR modeling works 

best when used on data that resides in a narrow frequency band.  Therefore, the wide band data that was 

acquired with the OLM-32 data acquisition system discussed above was trimmed to form narrow band 

data to maximize the efficiency of the AR modeling.  In this way, the approach was focused on limiting 

data provided to the AR model in order to constrain the solution to the dominant features in the PSD of 

the data. 

The PSD shown in Figure 4 is a typical example of the wide band data acquired for analysis.  If all 

the data used to create the wide band PSD was given to the AR algorithm, the results will be dominated 

by the low frequency fluctuation in Region A and also the high frequency fluctuation in Region B.  To 

 

Low Frequency
Region A

High Frequency
Region B

 

Figure 4.  Wide band PSD with AR analysis problem regions identified 
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Figure 5.  Narrow band dynamic analysis window selection with its PSD overlaid 

 

avoid these limitations of the AR technique, the OLM analyst selects a narrow band frequency window in 

the wide band PSD between Regions A and B that includes the dominant parts of the PSD roll-off, as 

shown in Figure 5. 

After the narrow band data is selected, it is analyzed by the various AR methods and polynomial 

order sizes.  The results of the combinations of parameters are evaluated and the order and method 

combination that produces the best fit and minimum error for the narrow band data is then chosen.  After 

the AR parameters are determined, they are posted to the OLM database for future reference.  If baseline 

data records already exist, then a comparison can be made to determine if there is any dynamic change in 

the sensors.  If this is the first data record for a particular sensor, then results from other sensors in the 

same service can be inter-compared to assess the health of the sensor. 

3.5 Database 

In order for the OLM system to operate, a means for centralized storage of configuration settings, 

sensor information, and results must be provided.  The OLM system database serves as a central 

repository for the various configuration settings, sensor information, and results used and produced by the 

OLM system.  To help simplify the storage and retrieval of all of this information, a Microsoft SQL 

Server database was incorporated into the design of the OLM system.  Virtually every part of the OLM 

system uses the database for storing and retrieving settings, data, results, and other information.  A 

diagram of the OLM database and the types of information that can be stored to and retrieved from it is 

shown in Figure 6. 
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Figure 6.  OLM database diagram 

 

3.6 Diagnostics 

This module allows the user to view at-a-glance the status of the various plant systems and 

components that are being monitored by the OLM system.  The Diagnostics module displays and 

integrates the analysis results of all static and dynamic testing performed by the OLM system.  The results 

of various types of static and dynamic analysis that have been performed on the plant sensors can be 

loaded from the OLM system database and displayed.  The health of each sensor is displayed in terms of 

static data tests (such as process modeling), and dynamic tests (such as dynamic response). 

4 RESULTS 

Throughout the course of the project, several nuclear power plants actively participated by providing 

plant computer data, engineering resources, and plant access to test the implementation of the OLM 

system.  As an example of static analysis results, consider a steam generator model made for Plant 1.  A 

model for each of the steam generators at Plant 1 was created and tested using the OLM system.  The 

Steam Generator model consists of flow, level, pressure, and temperature sensors.  The model was trained 

on a 12-hour sample of data, and then evaluated with 11 months of test data that followed the training 

sample.  Figure 7 shows test results for the flow, level, and pressure transmitters.  The test results show 

the average residuals for each of the sets of transmitters in the model versus their acceptance limits.  As 

shown in the figure, most of the residuals remain within the acceptance limits.  The exception is the 

Steam Generator A level transmitter number 4 that drifts beyond its acceptance limits over the cycle.  In 

the case of this transmitter, manual calibrations performed during the outage confirmed that the 

transmitter had drifted over the cycle and required adjustment.  Similarly, the transmitters that did not 

show drift beyond their OLM acceptance limits did not require manual adjustments. 
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Figure 7.  Plant 1 Steam Generator A analytical modeling results for flow, level, and pressure 
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For dynamic analysis, the AR PSDs are compared and the RMS error of the PSD difference is used 

to quantify the difference.  An example of this is shown in Figure 8 for data taken at Plant 2 as part of the 

OLM project.  This data shows a degraded PSD caused by a partially-blocked sensing line before the 

blockage was removed, and the resulting PSD after the line was cleared.  In this case, as shown in the 

figure, the change in PSD creates a large error in the AR PSD Difference plot, and results in a large RMS 

error that is used to automatically flag this sensor as having a dynamic problem.  With the normal PSD 

stored in the OLM system as a baseline for this transmitter, subsequent tests can be compared to it in 

order to detect anomalies. 

 

 

Figure 8.  Example of dynamic analysis comparison results 

 

5 CONCLUSIONS 

This paper provides details into the research and development of an OLM system that integrates 

static and dynamic analysis techniques to verify the accuracy and reliability of NPP systems and 

components.  The paper also provides results of testing the OLM system on actual operating NPP data 

provided by several plants that actively participated in the project. 

After the OLM system was developed and tested in a laboratory environment, it was demonstrated 

with data acquired from several operating nuclear power plants.  Both static and dynamic analysis 

techniques were demonstrated and showed good results in verifying the health and performance status of 

NPP systems and components. 

Full plant implementation of the OLM system has been shown to have a substantial direct economic 

impact.  Significant gains in indirect benefits, such as avoidance of forced outages, reduction of 

maintenance-induced damage to plant equipment, and improved plant safety and availability, could also 

be realized with implementation of the OLM system. 

Blocked Sensing Line PSD 

Normal PSD 
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