

CORE CROSS SECTION Figure 3.2.1-1 July, 1982

Reactor Vessel and Internals

Figure 3.2.1-2 July, 1982

FUEL LOADING ARRANGEMENT

Figure 3.2.1-3

TYPICAL ROD CLUSTER CONTROL ASSEMBLY Figure 3.2.1-4

BOTION VIEW

July, 1982

GUDDE TURE ASSEL

Figure 3.2.1-7

July, 1982 FUEL ASSEMBLY AND CONTROL CLUSTER CROSS SECTION Figure 3.2.1-8

FUEL ASSEMBLY OUTLINE Figure 3.2.1-9

.

NEUTRON SOURCE LOCATIONS

Figure 3.2.1-11

July, 1982 Figure 3.2.1-12

Burnable Poison

Revision: 21	Change Description: UC	CR-1812, Rev. 1	UNIT 1
AMERICAN H COOK NU NUCLEAR GE	ELECTRIC POWER ICLEAR PLANT NERATION GROUP	Title: Control Rod Drive Mechanism Assemb	ly
BRIDGM	AN, MICHIGAN	UFSAR Figure: 3.2.1-13	Sheet 1 of 1

July, 1982

CONTROL ROD DRIVE MECHANISM SCHEMATET

Figure 3.2.1-14

Unit 1

1.116		_			
1.023	1.094				
1.099	0.964	1.119			
1.078	1.138	1.063	1.142		
1.217	1.087	1.156	0.978	1.197	
1.220	1.205	1.168	1.108	0.859	1.015
1.073	1.016	1.057	1.009	0.858	0.487
0.736	0.833	0.710	0.611		

Figure 3.3.1-2 CYCLE 1 ASSEMBLYWISE POWER (BOL)

July, 1984

~

1.175					
1.215	1.162				
1.159	1.158	1.144			
1.187	1.138	1.181	1.125		
1.125	-1.174	1.119	1.102	1.203	
1.153	1.082	1.161	1.047	0.951	0.976
0.968	1.000	0.956	0.964	0.817	0.500
0.730	0.781	0.577	0.576		

Figure 3.3.1- 3 CYCLE 1 ASSEMBLYWISE POWER (MOL) Ju

1.072		_				
1.163	1.080					
1.088	1.150	1.077				
1.171	1.079	1.162	1.093			
1.066	1.144	1.074	1.153	1.213		
1.144	1.047	1.147	1.036	1.051	1.028	
0.969	1.064	0.934	0.990	0.855	0.557	
0.773	0.809	0.732	0.600			-

1

Figure 3.3.1-4 CYCLE 1 ASSEMBLYWISE POWER (EOL)

			,		_			_	_					
					9		9		9					
		8		12		20		20		12		8		
	8		20		12		12		12		20		8	
		20		20		16		16		20		20		
	12		20		20		16		20		20		12	
9		12		20		16		16		20		12		9_
	20		16		16		16		16		16		20	
9		12		16		16		16		16		12		9
	20		16		16		16		16		16		20	
9		12		20		16		16		20		12		9
	12		20		20		16		20		20		12	
		20		20		16		16		20		20		
	8		20		12		12		12		20		8	
		8		12		20		20		12		8		-
					9		9		9				-	

Distribution of Eurnable Poison Rods -Number of B. P. Rods per Assembly (1436 total) Unit 1, Cycle 1

> Figure 3.3.1-11 July, 1984

Unit 1, Cycle 1

Figure 3.3.1-12

July, 1984

8 Rode

HODERATOR TEMPERATURE T_M(*F)

MODERATOR TEMPERATURE COEFFICIENT VS. MODERATOR TEMPERATURE BOL, NO CONTROL RODS INSERTED

Figure 3.3.1-13

MODERATOR TEMPERATURE COEFFICIENT VS. MODERATOR TEMPERATURE

BOL, ALL CONTROL RODS INSERTHE

Figure 3.3.1-,14

MODERATOR TEMPERATURE COEFFICIENT VS. MODERATOR TEMPERATURE BOL

Ftgure 3.3.1-15

Doppler Coefficient vs. Resonance Effective Temperature

RESONANCE EFFECTIVE TEMPERATURE (*F)

Figure 3.3.1- 16

Figure 3.3.1-17: Doppler Contributions to the Power July, 1992 Coefficient vs. Power Level

Power Coefficient, $(\Delta \rho / \text{Power}) \times 10^{-5}$

Thermal Conductivity of UO_2 (Data Corrected to 93 Percent Theoretical Density)

Figure 3.4.1-1

High Power Fuel Rod Experimental Program

Figure 3.4.1-2

COMPARISON OF W-3 PREDICTION AND UNIFORM FLUX DATA

Figure 3.4.1-3 July, 1982

0 W-3 CORRELATION PROBABILITY DISTRIBUTION CURVE 0.9 809 0.996 0.132 н п Ŀ KO. OF DATA POINTS = MEAN VALUE STANDARD DEVIATION = 0.8 (1/MIN DNBR) 0.7 0.6 99.991 99.8 99.9 2 8 2 8 R 98 66 8 8 ጜ P[(q" DNB MEASURED¹ q" DNB PREDICTED) > (I/MIN DNBR)]

> W-3 CORRELATION PROBABILITY DISTRIBUTION CURVE Figure 3.4.1-4

July, 1982

ROD CONTROL CLUSTER ASSEMBLY OUTLING

Figure 3.4.1-4a

COMPARISON OF W-3 CORRELATION WITH ROD BUNDLE DNB DATA (SIMPLE GRID WITHOUT MIXING VANE) Figure 3.4.1-5

COMPARISON OF W-3 CORRELATION WITH ROD BUNDLE DNB DATA (SIMPLE GRID WITH MIXING VANE)

Figure 3.4.1-6 July, 1982

COMFARISON OF NON-UNIFORM DNB DATA WITH W-3 PREDICTIONS Figure 3.4.1-7

COMPARISON OF W-3 FREDICTION WITH MEASURED DNB LOCATION

Figure 3.4.1-8 July, 1982

LOCAL ROD POWER (FRACTION OF AVERAGE ROD POWER)

Figure 3.4.1-9 July, 1982

				BA Rod Cladding			
Zone 1	Number	<u>P</u>	revious Design BA	WABA Design			
	0-1	A	ir	Water Zircalloy			
	1 - 2	S	tainless Steel				
	2 - 3	A	ir s	Helium			
5	3-4	В	orosilicate Glass	Al ₂ O ₃ -B ₄ C			
	4-5	A	ir	Helium			
	5-6	S	tainless Steel	Zircalloy			
Revision: 24.0	Change Description	n: 1	UCR-1990, Rev. 0				
AMERICAN EL COOK NUC NUCLEAR GEN	ECTRIC POWER CLAR PLANT ERATION GROUP		Title:Comparison of Borosilicate GlassAbsorber Rod with WABA Rod				
BRIDGMAN, MICHIGAN			UFSAR Figure: 3.5.1-8		Sheet 1 of 1		

FIGURE 3.5.3-2

TOC versus Revnoids Number for 25" Grid Spacing