

HEAF Target Fragility Progress

Kenneth Hamburger, P.E. (NRC) Austin Glover (SNL)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-NA0003525. SAND2021-3959-PF

Background

- 2017 Phenomena Identification and Ranking Table (PIRT) identified the assessment of target fragility as a high research priority
 - "Classical" fire failure metrics (e.g., internal jacket temperature of a cable exposed to a fire) are based on low heat flux, long duration exposures
 - HEAF exposures are high heat flux, short duration exposures, and target response is not well characterized

https://www.nrc.gov/docs/ML1803/ML18 032A318.pdf

Objectives

- The goal of this effort is to evaluate the fragility of targets exposed to the environmental conditions after a HEAF
 - Tests at high heat flux/short duration exposures are needed to gain insight on relevant physics and failure modes
- After working group review of possible targets, the test effort was focused on cable targets
 - As in other areas of fire PRA, two categories of cable (thermoset and thermoplastic) were addressed

Test Facility

- Tests were conducted at the Solar Furnace at the National Solar Thermal Test Facility at Sandia National Laboratories in Albuquerque, NM.
 - Concentrates sunlight to generate thermal environments reaching 6 MW/m² on a spot ~5 cm in diameter
- The heliostat (top) reflects sunlight through an attenuator onto a large reflective parabolic dish (bottom) to concentrate heat flux onto a target

Hypothesis

- A literature review was conducted to evaluate relevant phenomena
- The ignition threshold of blackened cellulose as a function of heat flux and total energy was evaluated in the 1960s by Stan Martin
 - This includes bifurcation of the ignition region into two subregions: transient and persistent ignition.
- This work has been extended to several different materials through test data collected at the Solar Furnace and/or Solar Tower
- A preliminary lumped-material model of a cable was derived for the high heat flux exposure conditions resulting from a HEAF
- This model was compared to full-scale test data as a proof-of-concept, which yielded encouraging results
- The tests at the Solar Furnace would be used to gather data on the material properties of different cables with respect to the ignition model

Test Plan

- The objective of testing was to establish, in conjunction with theory, an ignition model that robustly accounts for the variation of cable material properties found in nuclear power plants.
- A three-phase approach was taken to test planning
 - Phase 0 Exploratory tests to evaluate the validity of the approach
 - Phase OB Exploratory tests to evaluate the feasibility of achieving persistent ignition at the Solar Furnace scale
 - Phase 1 Tests to support data collection for development of persistent ignition model
- For each test phase, electrical and thermal instrumentation was used to monitor the cable response to the exposure
- Additionally, high-speed video was taken to evaluate transient and persistent ignition

Results

- Phase 0
 - A single cable sample was used as the target
 - Exploratory tests yielded positive results on spontaneous ignition
 - However, sustained ignition was not observed during this test phase
 - The exposure profile did not account for heat feedback from heat sinks or surrounding cables after the initial exposure.
- Phase OB
 - A three-cable bundle was used to evaluate if sustained ignition is possible.
 - Also, the heat flux profile was modified so that a secondary heat flux was provided after the initial exposure to simulate heat feedback
 - Additional tests were run with a single cable and the secondary heat flux
 - All tests yielded persistent ignition

Results (cont'd)

- Phase 1
 - Test plan originally developed to support persistent ignition model for both thermoset and thermoplastic cables
 - Based on results from Phase OB, it was decided that a single cable would be sufficient since it yielded persistent ignition with secondary heat flux
 - A modified profile was used, which captured insight from thermal monitoring instrumentation from the full-scale tests at KEMA
 - Daily meetings were held with the working group to discuss the results from the previous day and any modifications needed to the test plan based on results
 - Initial test results did not yield sustained ignition results, so working group decided to probe other failure modes
 - Electrical Failure
 - Sub-jacket temperature
 - Jacket Damage
 - Sustained ignition events were also observed in the later tests
 - Additionally, a three-cable bundle was introduced with shorter samples for the later tests

Results (cont'd)

- Phase 1 (cont'd)
 - Gathered data for both thermoset and thermoplastic cables
 - Sustained ignition data (bottom)
 - Damage as a function of total energy
 - Electrical failure of cables
 - Sub-jacket temperature

HEAF Research Working Group Update – April 6th, 2021

Path Forward

- The working group is utilizing the test data to define a method to determine the fragility of cables exposed to a HEAF
- Use of data/insights from multiple sources
 - Full Scale Tests
 - Operating Experience
 - Phase 0, Phase 0B, and Phase 1 Tests at the Solar Furnace
 - International Data
- Evaluation of all phenomena to determine fragility
 - Jacket Damage
 - Persistent Ignition
 - Electrical Failure
 - Sub-jacket temperature
 - Etc.
- The group is currently working on determining the fragility of targets so that it may be combined with the source term to determine the ZOI

