# HEAF PRA Methodology Working Group Status Update

Marko Randelovic, Principal Technical Leader, EPRI Ashley Lindeman, Principal Technical Leader, EPRI

HEAF Public Meeting April 6, 2021



# **Current HEAF Fire PRA Method**

- In the current NUREG/CR-6850 methodology a one size fits all approach is used for HEAF consequences:
  - Both the MV and LV Switchgear ZOI is based predominantly on the HEAF event that occurred at SONGs
  - The non-segregated bus duct ZOI is based predominantly on the HEAF event that occurred at Diablo Canyon
  - **Both events were generator fed HEAFs** the fault was fed by the generator as it coast-down sustaining the arc for a longer duration at higher fault currents than would be expected for switchgear and bus ducts located in other portions of the electrical distribution system
- The current framework does not take into consideration the following elements:
  - Differences in electrical distribution designs and backup electrical protection schemes
  - Insights from operational experience and experimental testing
- These elements may limit the duration of the event and therefore the consequences (ZOI)

#### The current NUREG/CR-6850 HEAF framework is not representative of all HEAF events



2

# **Developing HEAF Methodology: Purpose**

- Develop a framework that captures the different types of NPP electrical designs, fault locations, electrical protection, and fault durations that may impact the ZOI of a HEAF event
  - Not limited to equipment with aluminum
  - Use insights gained from EPRI survey and US OE
- Developed by a HEAF Working Group
  - Members from the NRC-RES/Sandia, EPRI and the industry
  - Establishing a more refined method for implementation, and the understanding of influencing factors affecting the energetic phase of a HEAF

3



#### Key variables defining and differentiating HEAFs

- Fault duration and protection scheme matters
  - For MV switchgear, cabinet breach has been observed around 0.5 sec
  - Most HEAF events have been generator fed events that can persist longer than 4 seconds
    - This is equipment powered by the Unit Auxiliary Transformer (UAT) without a generator circuit breaker
  - The average fault clearing time for the MV SWGR when powered by the SAT is <2 sec for the US fleet (EPRI Survey)
    - Fewer HEAFs on equipment powered by the Station Transformer (SAT)
  - Additional overcurrent protection limits durations of low impedance faults
    - Challenging to see a HEAF below the first switchgear (below the Non-Class 1E in the figure)





#### Key variables defining and differentiating HEAFs

- Fault location matters
  - Most US HEAF events in switchgear have occurred at the breaker stabs
    - The breaker stabs are copper
  - Only one US HEAF event has occurred on the primary compartment bus bar
    - The bus bars (primary compartment and main bus bar may be aluminum)
  - Most US HEAF events in switchgear have occurred in the 'supply' sections
    - Rare for HEAF events to occur in a 'load' vertical section due to the protection provided by the supply breaker





# **Developing HEAF Methodology: Considerations**



6

© 2021 Electric Power Research Institute, Inc. All rights reserved.



| Ignition Frequency    | Vertical Section           | <u>ZOI</u>                       | <u>End State</u><br>Probability | End Sequence   |
|-----------------------|----------------------------|----------------------------------|---------------------------------|----------------|
|                       | Primary Supply (0.54)      | Generator Fed or SWYD FCT (0.06) | 0.03                            | A <sub>2</sub> |
| [                     |                            | Misc. HEAF (0.94)                | 0.51                            | B <sub>2</sub> |
| Zone 2 SWGR Frequency | Secondary Supply (0.32)    | Generator Fed or SWYD FCT (0.06) | 0.02                            | C <sub>2</sub> |
|                       |                            | Misc. HEAF (0.94)                | 0.30                            | D <sub>2</sub> |
|                       | Load & Main Bus Bar (0.14) | Generator Fed or SWYD FCT (0.04) | 0.01                            | E <sub>2</sub> |
|                       |                            | Misc. HEAF (0.96)                | 0.13                            | F <sub>2</sub> |

www.epri.com

*Fault Progression Trees* drafted to identify the probability of potential HEAF consequences based on:

- Equipment (bin)
- Power source
- Fault location
- Electrical distribution protection schemes and fault clearing time
- Operating experience





| Ignition Frequency    | Vertical Section           | <u>zoi</u>                       | <u>End State</u><br>Probability | End Sequence   |
|-----------------------|----------------------------|----------------------------------|---------------------------------|----------------|
| $\langle \rangle$     | Primary Supply (0 E4)      | Generator Fed or SWYD FCT (0.06) | 0.03                            | A <sub>2</sub> |
| [                     |                            | Misc. HEAF (0.94)                | 0.51                            | B <sub>2</sub> |
|                       | Cocondary Supply (0.22)    | Generator Fed or SWYD FCT (0.06) | 0.02                            | C2             |
| Zone 2 Swor Prequency |                            | Misc. HEAF (0.94)                | 0.30                            | D <sub>2</sub> |
|                       | Load & Main Bus Bar (0.14) | Generator Fed or SWYD FCT (0.04) | 0.01                            | E2             |
|                       | Y L                        | Misc. HEAF (0.96)                | 0.13                            | F2             |

*Fault Progression Trees* drafted to identify the probability of potential HEAF consequences based on:

- Equipment (bin): The generic ignition frequencies are updated through 2017
- Power source
- Fault location
- Electrical distribution protection schemes and fault clearing time
- Operating experience







www.epri.com

*Fault Progression Trees* drafted to identify the probability of potential HEAF consequences based on:

- Equipment (bin)
- Power source: OE and testing shows the power source impacts the HEAF consequence through the possible fault durations
- Fault location
- Electrical distribution protection schemes and fault clearing time
- Operating experience







www.epri.com

*Fault Progression Trees* drafted to identify the probability of potential HEAF consequences based on:

- Equipment (bin)
- Power source
- Fault location: OE highlights where HEAF events are more likely to occur within equipment
- Electrical distribution protection schemes and fault clearing time
- Operating experience





| Ignition Frequency    | Vertical Section           | <u>ZOI</u>                       | <u>End State</u><br>Probability | End Sequence   |
|-----------------------|----------------------------|----------------------------------|---------------------------------|----------------|
|                       | Primary Supply (0.54)      | Generator Fed or SWYD FCT (0.06) | 0.03                            | A <sub>2</sub> |
|                       |                            | Misc. HEAF (0.94)                | 0.51                            | B <sub>2</sub> |
| Zone 2 SWGR Frequency | Secondary Supply (0.32)    | Generator Fed or SWYD FCT (0.06) | 0.02                            | C <sub>2</sub> |
|                       |                            | Misc. HEAF (0.94)                | 0.30                            | D2             |
|                       | Load & Main Bus Bar (0.14) | Generator Fed or SWYD FCT (0.04) | 0.01                            | E <sub>2</sub> |
|                       | V.                         | Misc. HEAF (0.96)                | 0.13                            | F <sub>2</sub> |

*Fault Progression Trees* drafted to identify the probability of potential HEAF consequences based on:

- Equipment (bin)
- Power source
- Fault location
- Electrical distribution protection schemes and fault clearing time: The duration of a fault impacts the hazard (i.e. ZOI)
- Operating experience







www.epri.com

*Fault Progression Trees* drafted to identify the probability of potential HEAF consequences based on:

- Equipment (bin)
- Power source
- Fault location
- Electrical distribution protection schemes and fault clearing time
- Operating experience: Split fractions developed by working group through expert judgement based on operating experience, typical plant alignments, and switching considerations



12

# Key Takeaways

- The current NUREG/CR-6850 HEAF framework is not representative of all HEAF events
- Working Group of experts –NRC-RES/Sandia, EPRI and the industry– is establishing a refined methodology for incorporating the influencing factors affecting the energetic phase of HEAFs and practical implementation in fire PRA
- The draft framework captures the different types of NPP electrical designs, fault locations, electrical protection, and fault durations that may impact the HEAF ZOI
- New framework will provide a more accurate reflection of realism for the modeling of HEAF



#### Together...Shaping the Future of Electricity

