Attachment 9.2 – Remediation Duration Estimate Calculations: WA

WAA U>DCGL (Alluvium/Transition Zone/SSB) GE-WAA-01:04 Nitrate

ble 1: Retardation Ca	alculation	$R = 1 + \frac{\rho_b}{n} K_d$	
Bulk Density	Porosity [n] ¹	Nitrate K _d (ml/g) ²	Retardation (R)
1.81	0.3	0.6	4.62

Table 2: Remediation Pore Volume Calculation

Area of Plume [A] (ft ²)	Porosity [n] ¹	Average Plume Thickness [b] ³ (ft)	Pore Volume (ft ³) [PV = b*n*A]	Pore Volume [PV] (gallons)
732,905	0.3	19	4,177,559	31,248,138

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (mg/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	39.26	Average nitrate concentration
Maximum Representative Concentration within		
Remediation Area	139.00	Representative nitrate concentration for WELL T-63

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (22.9 mg/L)

R	Nitrate Cleanup Concentration (mg/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (mg/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal and
4.62	22.9	139	8.3	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (22.9 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
			>			Time to achieve cleanup goal and
8.3	31,248,138	99	142,560	1,826	60.1	discontinue remediation.

Definitions: ml - milliliters g - gram ft³ - cubic feet K_d - distribution coefficient ug - microgram L - liter gpm - gallons per minute gpd - gallons per day

DCGL - derived cleanup goal level

ACL - alternative contaminant level

Notes:

 1 Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 16 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the nitrate groundwater concentration reaches the ACL (22.9 mg/L)

⁵The larger of the following is assumed as initial nitrate concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal combined groundwater recovery rate for extraction wells GE-WAA-01 through GE-WAA-04.

WAA U>DCGL (Alluvium/Transition Zone/SSB) Uranium

Table 1: Retardation Ca	lculation		$R = 1 + \frac{\rho_b}{n} K_d$
Bulk Density		Uranium K _d	
(g/ml)	Porosity [n] ¹	(ml/g) ²	Retardation [R]
1.81	0.3	2	13.07

Table 2: Remediation Pore Volume Calculation

	State of the state	Average Plume		
Area of Plume [A] (ft ²)	Porosity [n] ¹	Thickness [b] ³ (ft)	Pore Volume (ft ³) [PV = b*n*A]	Pore Volume [PV] (gallons)
732,905	0.3	19	4,177,559	31,248,138

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

	Initial Aqueous-Phase Contaminant Concentration	
Concentration Basis	(ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	76.16	Average uranium concentration
Maximum Representative Concentration within		
Remediation Area	177.80	Representative uranium concentration for WELL T-62

05 15 E-WAA-18 14 Pho. 04 01 📡 WAA U>DCGL - Uranium

discontinue remediation.

	Table 4a: Estimated Number	of Pore Volumes to Achieve			
ate		Uranium Cleanup Concentration	Initial Aqueous-Phase Contaminant Concentration	No. of Pore Volumes ⁶	
E	R	(ug/L)"	(ug/L) ³	[#PV = -R In(Cleanup/Initial)]	Remarks
Esti					Pore volumes required to achieve cleanup goal (DCGL) and
5	13.07	119	178	5.2	discontinue remediation

Table 5a: Estimated Time to Achieve Remediation Goal (119 ug/L)

DCGL	No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
							Time to achieve cleanup goal (DCGL) and
	5.2	31,248,138	99	142,560	1,150	37.9	discontinue remediation.
						3.16	

142,560

timate	R	Uranium Cleanup Concentration (ug/L)	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R ln(Cleanup/Initial)]	Re	marks	
I Es	13.07	30	178	23.3	Pore volumes required to ach	ieve cleanup goal (MCL) and	
uratio	Table 5b: Estimated Time to A	Achieve Remediation Goal (30 ug/L)				-
MCLD	No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
					1		Time to achieve cleanup goal (MC

Definitions: ml - milliliters g - gram

ft³ - cubic feet

ug - microgram pCi/L - picocuries per liter

L - liter

K_d - distribution coefficient

gpm - gallons per minute

gpd - gallons per day

Notes:

31,248,138

23.3

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

99

³Saturated zone thickness assumed to be 16 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the uranium groundwater concentration reaches 119 ug/L, the equivalent of 180 pCi/L as calcuated in Uranium Activity vs. Mass Concentration_Rev. A (07-30-18).xlsx, and 30 ug/L.

5,097

167.6

⁵The larger of the following is assumed as initial uranium concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see Incr. AWCA Calcs_Rev. C (09-05-18).xlsx). Initial aqueous-phase contaminant concentrations will be variable.

DCGL - derived cleanup goal level MCL - maximum contaminant level

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates. ⁷Flow rate is based on the nominal combined groundwater recovery rate for extraction wells GE-WAA-01 through GE-WAA-04.

WU-UP1 (SSA)

Nitrate

Table 1: Retardation C	Calculation	n = 1 n na	
Bulk Density (g/ml)	Porosity [n] ¹	Nitrate K _d (ml/g) ²	Retardation [R]
1.81	0.1	0.6	11.86

Table 2: Remediation Pore Volume Calculation

	Average Plume		
Porosity [n] ¹	Thickness [b] ³ (ft)	Pore Volume (ft ³)	Pore Volume [PV]
rereatly [ii]	(re)		(Ballolla)
	Porosity [n] ¹	Average Plume Thickness [b] ³ Porosity [n] ¹ (ft)	Average Plume Thickness [b] ³ Pore Volume (ft ³) Porosity [n] ¹ (ft) [PV = b*n*A]

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (mg/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	203.88	Average nitrate concentration
Maximum Representative Concentration within		
Remediation Area	379.70	Representative nitrate concentration for WELL 1321

WU-UP1 - Nitrate

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (22.9 mg/L)

R	Nitrate Cleanup Concentration (mg/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (mg/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal and
11.86	22.9	380	33.3	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (22.9 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
22.2	2 000 111		C2 2C0	1 522	FO 1	Time to achieve cleanup goal and
33.3	2,898,111	44	63,360	1,525	50.1	discontinue remediation.

Definitions:

ml - milliliters g - gram ft³ - cubic feet K_d - distribution coefficient ug - microgram L - liter gpm - gallons per minute gpd - gallons per day DCGL - derived cleanup goal level ACL - alternative contaminant level

Notes:

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 8 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the nitrate groundwater concentration reaches the ACL (22.9 mg/L).

⁵The larger of the following is assumed as initial nitrate concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

 $D = 1 + \frac{\rho_{b}}{\nu}$

⁷Flow rate is based on the nominal combined groundwater injection rate for extraction trenches GWI-UP1-02 through GWI-UP1-04.

WU-UP1 (SSA)

Uranium

Table 1: Retardation Ca	lculation		$R = 1 + \frac{\rho_b}{n} K_d$
Bulk Density (g/ml)	Porosity [n] ¹	Uranium K _d (ml/g) ²	Retardation [R]
1.81	0.1	3	55.30

Table 2: Remediation Pore Volume Calculation

		Average Plume		
Area of Plume [A]		Thickness [b] ³	Pore Volume (ft ³)	Pore Volume [PV]
(ft ²)	Porosity [n] ¹	(ft)	[PV = b*n*A]	(gallons)
484,310	0.1	8	387.448	2,898,111

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	15.61	Average uranium concentration
Maximum Representative Concentration within		
Remediation Area	22.11	Representative uranium concentration for WELL 1312

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (30 ug/L)

	R	Uranium Cleanup Concentration (ug/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
Γ					Pore volumes required to achieve cleanup goal (MCL) and
	55.30	30	22	0.0	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (30 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
						Time to achieve cleanup goal (MCL) and
0.0	2,898,111	44	63,360	0	0.0	discontinue remediation.

Definitions:

ml - milliliters g - gram ft^3 - cubic feet K_d - distribution coefficient ug - microgram L - liter gpm - gallons per minute gpd - gallons per day

DCGL - derived cleanup goal level

MCL - maximum contaminant level

Notes:

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 8 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

 4 Remediation will be discontinued when the uranium groundwater concentration reaches the MCL (30 ug/L).

⁵The larger of the following is assumed as initial uranium concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal combined groundwater injection rate for extraction trenches GWI-UP1-02 through GWI-UP1-04.

WU-UP2-SSA

Nitrate

Table 1: Retardation Ca	alculation	$R = 1 + \frac{n}{n} K_d$	
Bulk Density (g/ml)	Porosity [n] ¹	Nitrate K _d (ml/g) ²	Retardation [R]
1.81	0.1	0.6	11.86

Table 2: Remediation Pore Volume Calculation

		Average Plume		
Area of Plume [A] (ft ²)	Porosity [n] ¹	Thickness [b] ³ (ft)	Pore Volume (ft ³) [PV = b*n*A]	Pore Volume [PV] (gallons)
419,878	0.1	8	335,903	2,512,551

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (mg/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	379.27	Average nitrate concentration
Maximum Representative Concentration within		
Remediation Area	1,006.00	Representative nitrate concentration for WELL 1385

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (22.9 mg/L)

R	Nitrate Cleanup Concentration (mg/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (mg/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal and
11.86	22.9	1,006	44.9	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (22.9 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
44.0	2 512 551	EG	80.640	1 208	46.0	Time to achieve cleanup goal and
44.9	2,512,551	56	80,640	1,396	40.0	discontinue remediation.

Definitions:

ml - milliliters g - gram ft³ - cubic feet K_d - distribution coefficient ug - microgram L - liter gpm - gallons per minute gpd - gallons per day DCGL - derived cleanup goal level

ACL - alternative contaminant level

Notes:

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

D . Pau

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 8 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the nitrate groundwater concentration reaches the ACL (22.9 mg/L).

⁵The larger of the following is assumed as initial nitrate concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal combined groundwater injection rate for extraction trenches GWI-UP1-02 through GWI-UP1-04.

WU-UP2-SSA Uranium

ole 1: Retardation Ca	lculation	$R = 1 + \frac{\rho_b}{n} K_d$	
Bulk Density (g/ml)	Porosity [n] ¹	Uranium K _d (ml/g) ²	Retardation [R]
1.81	0.1	3	55 30

Table 2: Remediation Pore Volume Calculation

		Average Plume		
Area of Plume [A] (ft ²)	Porosity [n] ¹	Thickness [b] ³ (ft)	Pore Volume (ft ³) [PV = b*n*A]	Pore Volume [PV] (gallons)
419.925	0.1	8	335.940	2,512,831

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	26.34	Average uranium concentration
Maximum Representative Concentration within		
Remediation Area	81.92	Representative uranium concentration for WELL 1381

WU-UP2 - Uranium

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (30 ug/L)

	R	Uranium Cleanup Concentration (ug/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R ln(Cleanup/Initial)]	Remarks
ſ					Pore volumes required to achieve cleanup goal (MCL) and
	55.30	30	82	55.6	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (30 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
						Time to achieve cleanup goal (MCL) and
55.6	2,512,831	56	80,640	1,731	57.0	discontinue remediation.

Definitions:

ml - milliliters g - gram ft³ - cubic feet K_d - distribution coefficient ug - microgram

L - liter

gpm - gallons per minute

gpd - gallons per day

DCGL - derived cleanup goal level

MCL - maximum contaminant level

Notes:

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 8 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the uranium groundwater concentration reaches the MCL (30 ug/L).

⁵The larger of the following is assumed as initial uranium concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).x/sx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal combined groundwater injection rate for extraction trenches GWI-UP1-02 through GWI-UP1-04.

WAA-WEST (Alluvium/Transition Zone/SSB)

Nitrate

Table 1: Retardation Ca	alculation	$R = 1 + \frac{\rho_b}{n} K_d$	
Bulk Density (g/ml)	Porosity [n] ¹	Uranium K _d (ml/g) ²	Retardation [R]
1.81	0.3	0.6	4.62

(GE-WAA-05)

Table 2: Remediation Pore Volume Calculation

		Average Plume		
Area of Plume [A]		Thickness [b] ³	Pore Volume (ft ³)	Pore Volume [PV]
(ft ²)	Porosity [n] ¹	(ft)	[PV = b*n*A]	(gallons)
397,843	0.3	20	2,387,058	17,855,194

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	-	Average nitrate concentration
Maximum Representative Concentration within		
Remediation Area	10.22	Representative nitrate concentration for WELL T-97

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (22.9 ug/L)

R	Nitrate Cleanup Concentration (ug/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R ln(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal (ACL) and
4.62	22.9	10.2	0.0	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (22.9 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate	Flow Rate (god)	Duration Estimate (days)	Duration Estimate (months)	Remarks
	(84.14.14)	(OF)	NOF T			Time to achieve cleanup goal (ACL) and
0.0	17,855,194	10	14,400	0.0	0.0	discontinue remediation.

Definitions:	Notes:
ml - milliliters	¹ Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.
g - gram	2 K $_{d}$ derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.
ft ³ - cubic feet	³ Saturated zone thickness assumed to be 20 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.
K _d - distribution coefficient	⁴ Remediation will be discontinued when the nitrate groundwater concentration reaches the ACL (22.9 mg/L).
ug - microgram	⁵ The larger of the following is assumed as initial nitrate concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration
L - liter	reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration
gpm - gallons per minute	estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours
gpd - gallons per day	developed using representative groundwater concentrations for monitor wells located within the remediation area (see Incr. AWCA Calcs_Rev. C (09-05-18).xlsx). Initial
DCGL - derived cleanup goal level	aqueous-phase contaminant concentrations will be variable.
ACL - alternative contaminant level	⁶ Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.
	⁷ Flow rate is based on the nominal groundwater recovery rate for extraction well GE-BA1-05.

WAA-WEST (Alluvium/Transition Zone/SSB)

Uranium

(GE-WAA-05)

Table 1: Retardation (Calculation		$R = 1 + \frac{r \cdot s}{n} K_d$

Bulk Density	and the second second second	Uranium K _d	and the second second second second	
(g/ml)	Porosity [n] ¹	(ml/g) ²		Retardation [R]
1.81	0.3	2		13.07

Table 2: Remediation Pore Volume Calculation

		Average Plume		
Area of Plume [A] (ft ²)	Porosity [n] ¹	Thickness [b] ³ (ft)	Pore Volume (ft ³) [PV = b*n*A]	Pore Volume [PV] (gallons)
397,843	0.3	20	2,387,058	17,855,194

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	45.95	Average uranium concentration
Maximum Representative Concentration within		
Remediation Area	64.07	Representative uranium concentration for WELL T-97

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (30 ug/L)

R	Uranium Cleanup Concentration (ug/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal (MCL) and
13.07	30	64	9.9	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (30 ug/L)

	Pore Volume	Flow Rate	Flow Rate		Duration Estimate	
No. of Pore Volumes	(gallons)	(gpm)	(gpd)	Duration Estimate (days)	(months)	Remarks
						Time to achieve cleanup goal (MCL) and
9.9	17,855,194	10	14,400	12,294	404.2	discontinue remediation.

Definitions: ml - milliliters g - gram

ft³ - cubic feet

ug - microgram

L - liter

K_d - distribution coefficient

gpm - gallons per minute gpd - gallons per day

DCGL - derived cleanup goal level

MCL - maximum contaminant level

Notes:

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 ${}^{2}K_{d}$ derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 20 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the uranium groundwater concentration reaches the MCL (30 ug/L).

⁵The larger of the following is assumed as initial uranium concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see Incr. AWCA Calcs_Rev. C (09-05-18).xlsx). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal groundwater recovery rate for extraction well GE-BA1-05.

WAA-EAST (Alluvium/Transition Zone/SSB) GE-WAA-14 & GE-WAA-15

	•	۲.		 •••	

		- 21		
	u	a		

 $R = 1 + \frac{\rho_b}{K_a}$

Table 1: Retardation Ca	alculation		n
Bulk Density	Porosity [n] ¹	Nitrate K _d	Petardation [0]
(8/111)	Torosity [11]	(111/6)	Retardation [N]
1.81	0.3	0.6	4.62

Table 2: Remediation Pore Volume Calculation

Area of Plume [A]		Average Plume Thickness [b] ³	Pore Volume (ft ³)	Pore Volume [PV]
(ft²)	Porosity [n] ¹	(ft)	[PV = b*n*A]	(gallons)
827,431	0.3	19	4,716,357	35,278,348

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

	Initial Aqueous-Phase Contaminant Concentration	
Concentration Basis	(mg/L)	Remarks
Incremental Averaging of Concentrations within	×	
Remediation Area	55.44	Average nitrate concentration
Maximum Representative Concentration within		
Remediation Area	112.40	Representative nitrate concentration for WELL T-59

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (22.9 mg/L)

Notes:

	Nitrate Cleanup Concentration	Initial Aqueous-Phase Contaminant Concentration	No. of Pore Volumes ⁶	
R	(mg/L) ⁴	(mg/L) ⁵	[#PV = -R In(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal and
4.62	22.9	112	7.4	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (22.9 ug/L)

	Pore Volume	Flow Rate	Flow Rate		Duration Estimate	and the second second second second second
No. of Pore Volumes	(gallons)	(gpm) ⁷	(gpd)	Duration Estimate (days)	(months)	Remarks
						Time to achieve cleanup goal and
7.4	35,278,348	20	28,800	9,003	296.1	discontinue remediation.

Definitions:

ml - milliliters g - gram ft³ - cubic feet K_d - distribution coefficient ug - microgram L - liter gpm - gallons per minute gpd - gallons per day DCGL - derived cleanup goal level ACL - alternative contaminant level

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

²K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 19 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the nitrate groundwater concentration reaches the ACL (22.9 mg/L).

⁵The larger of the following is assumed as initial nitrate concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see Incr. AWCA Calcs_Rev. C (09-05-18).xlsx). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal combined groundwater recovery rate for extraction wells GE-WAA-14 and GE-WAA-15.

WAA-EAST (Alluvium/Transition Zone/SSB) GE-WAA-14 & GE-WAA-15

ble 1: Retardation Ca	$R = 1 + \frac{\rho_b}{n} K_d$		
Bulk Density		Uranium K _d	
(g/ml)	Porosity [n] ¹	(ml/g) ²	Retardation [R]
1.81	0.3	2	13.07

Table 2: Remediation Pore Volume Calculation

		Average Plume		
Area of Plume [A]	Porosity [n] ¹	Thickness [b] ³	Pore Volume (ft ³)	Pore Volume [PV]
927 421	0.3	19	4 716 257	25 279 249

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	39.88	Average uranium concentration
Maximum Representative Concentration within		
Remediation Area	92.26	Representative uranium concentration for WELL T-59

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (30 ug/L)

	Uranium Cleanup Concentration	Initial Aqueous-Phase Contaminant Concentration	No. of Pore Volumes ⁶	
R	(ug/L) ⁻	(ug/L) [°]	[#PV = -R In(Cleanup/Initial)]	Remarks
			а. С	Pore volumes required to achieve cleanup goal (MCL) and
13.07	30	92	14.7	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (30 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
						Time to achieve cleanup goal (MCL) and
14.7	35,278,348	20	28,800	17,981	591.2	discontinue remediation.

Definitions:

ml - milliliters g - gram ft^3 - cubic feet K_d - distribution coefficient ug - microgram L - liter gpm - gallons per minute gpd - gallons per day DCGL - derived cleanup goal level

MCL - maximum contaminant level

Notes:

 1 Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 19 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the uranium groundwater concentration reaches the MCL (30 ug/L).

⁵The larger of the following is assumed as initial uranium concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal combined groundwater recovery rate for extraction wells GE-WAA-14 and GE-WAA-15.

Nitrate

ble 1: Retardation Ca	alculation	$R = 1 + \frac{p_b}{n} K_d$	
Bulk Density (g/ml)	Porosity [n] ¹	Nitrate K _d (ml/g) ²	Retardation [R]
1.81	0.05	0.6	22.72

Table 2: Remediation Pore Volume Calculation

		Average Plume	to react the second state of the second	where the second se
Area of Plume [A] (ft ²)	Porosity [n] ¹	Thickness [b] ³ (ft)	Pore Volume (ft ³) [PV = b*n*A]	Pore Volume [PV] (gallons)
243,436	0.05	19	231,264	1,729,856

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (mg/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	15.55	Average nitrate concentration
Maximum Representative Concentration within		
Remediation Area	75.79	Representative nitrate concentration for WELL 1319B-3

e de HU-DI e de HU-DI e WU-PBA - Nitrate

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (22.9 mg/L)

R	Nitrate Cleanup Concentration (mg/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (mg/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal and
22.72	52	76	8.6	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (22.9 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
						Time to achieve cleanup goal and
8.6	1,729,856	5	7,200	2,056	67.7	discontinue remediation.

Definitions:

 $\begin{array}{l} ml - milliliters \\ g - gram \\ ft^3 - cubic feet \\ K_d - distribution coefficient \\ ug - microgram \\ L - liter \\ gpm - gallons per minute \\ gpd - gallons per day \\ DCGL - derived cleanup goal level \\ ACL - alternative contaminant level \\ \end{array}$

Notes:

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 19 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴The nitrate remediation goal for the Sandstone B formation in the PBA is the ACL (52 mg/L).

⁵The larger of the following is assumed as initial nitrate concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal groundwater recovery rate for extraction well GE-WU-01.

WU-PBA (SSB)

Uranium

Table 1: Retardation Ca	lculation		$R = 1 + \frac{1}{n} K_{\dot{a}}$
Bulk Density	Described to 11	Uranium K_d	Persentation (P)
(g/mi)	Porosity [n]	(mi/g)	Retardation [R]
1.81	0.05	3	109.60

Table 2: Remediation Pore Volume Calculation

Area of Plume [A]		Average Plume Thickness [b] ³	Pore Volume (ft ³)	Pore Volume [PV]
(ft ²)	Porosity [n] ¹	(ft)	[PV = b*n*A]	(gallons)
243,436	0.05	19	231,264	1,729,856

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (ug/L)	Remarks	
Incremental Averaging of Concentrations within			
Remediation Area	34.69	Average uranium concentration	
Maximum Representative Concentration within			
Remediation Area	38.01	Representative uranium concentration for WELL 1319B-1	

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (30 ug/L)

	R	Uranium Cleanup Concentration (ug/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
ſ					Pore volumes required to achieve cleanup goal (MCL) and
	109.60	30 .	38	25.9	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (30 ug/L)

	Pore Volume	Flow Rate	Flow Rate		Duration Estimate	
No. of Pore Volumes	(gallons)	(gpm) ⁷	(gpd)	Duration Estimate (days)	(months)	Remarks
						Time to achieve cleanup goal (MCL) and
25.9	1,729,856	5	7,200	6,232	204.9	discontinue remediation.

Definitions:

ml - millilliters g - gram ft³ - cubic feet K_d - distribution coefficient ug - microgram L - liter gpd - gallons per minute gpd - gallons per day DCGL - derived cleanup goal level MCL - maximum contaminant level

Notes:

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

0.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 19 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the uranium groundwater concentration reaches the MCL (30 ug/L).

⁵The larger of the following is assumed as initial uranium concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal groundwater recovery rate for extraction well GE-WU-01.

1206-NORTH (Alluvium/Transition Zone/SSB)

Nitrate

Table 1: Retardation Ca	alculation		$R = 1 + \frac{\rho_b}{n} K_d$
Bulk Density		Nitrate K _d	
(g/ml)	Porosity [n] ¹	(ml/g) ²	Retardation [R]
1.81	0.11	0.6	10.87

Table 2: Remediation Pore Volume Calculation

Bulk Saturated Plume			
Volume [V] ³		Pore Volume (ft ³)	Pore Volume [PV]
(ft ³)	Porosity [n] ¹	[PV = V*n]	(gallons)
27.396	0.11	3.014	22.541

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (mg/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	42.20	Average nitrate concentration
Maximum Representative Concentration within		
Remediation Area	43.05	Representative nitrate concentration for WELL MWWA-09

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (22.9 mg/L)

	R	Nitrate Cleanup Concentration (mg/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (mg/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
Γ					Pore volumes required to achieve cleanup goal and discontinue
	10.87	22.9	43	6.9	remediation

Table 5: Estimated Time to Achieve Remediation Goal (22.9 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
						Time to achieve cleanup goal and
6.9	22,541	8	11,520	13	0.5	discontinue remediation.

Definitions:

ml - milliliters

g - gram

ft³ - cubic feet

K_d - distribution coefficient

ug - microgram

L - liter

gpm - gallons per minute

gpd - gallons per day

DCGL - derived cleanup goal level

ACL - alternative contaminant level

Notes:

¹Assumes 11% transmissve porosity for BA1 transition zone, as presented in *Environmental Sequence Stratigraphy (ESS) and Porosity Analysis, Burial Area* 1, dated April 6, 2018. ²K_a derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Plume volume calculated using Earth Volumtric Studio. Includes saturated volume of transition zone and Sandstone B formations within combined capture zone of extraction trenches GETR-BA-01 and GETR-BA1-02, located within area of uranium groundwater contamination exceeding 30 ug/L.

⁴Remediation will be discontinued when the nitrate groundwater concentration reaches the ACL (22.9 mg/L).

⁵The larger of the following is assumed as initial nitrate concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal groundwater recovery rate for extraction trench GETR-WU-02.

1206-NORTH (Alluvium/Transition Zone/SSB)

Uranium

$R = 1 + \frac{\rho_b}{n} K_d$

Table 1: Retardation Ca	alculation	$n = 1 + n^{na}$	
Bulk Density (g/ml)	Porosity [n] ¹	Uranium K _d (ml/g) ²	Retardation [R]
1.81	0.11	3	50.36

Table 2: Remediation Pore Volume Calculation

Bulk Saturated Plume			
Volume [V] ³		Pore Volume (ft ³)	Pore Volume [PV]
(ft ³)	Porosity [n] ¹	[PV = V*n]	(gallons)
27.396	0.11	3.014	22.541

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	248.49	Average uranium concentration
Maximum Representative Concentration within		
Remediation Area	526.60	Representative uranium concentration for WELL MWWA-03

Table 4a: Estimated Number of Pore Volumes to Achieve Remediation Goal (119 ug/L)

timate	R	Uranium Cleanup Concentration (ug/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks	
E E					Pore volumes required to achieve cleanup goal (DCGL) and	
tio	50.36	119	527	74.9	discontinue remediation	
e						

Table 5b: Estimated Time to Achieve Remediation Goal (119 ug/L)

Ö		Pore Volume	Flow Rate	Flow Rate	and the set of the set	Duration Estimate	
	No. of Pore Volumes	(gallons)	(gpm) ⁷	(gpd)	Duration Estimate (days)	(months)	Remarks
							Time to achieve cleanup goal (DCGL) and
	74.9	22,541	8	11,520	147	4.9	discontinue remediation.

	Table 4b: Estimated Number of	of Pore Volumes to Achieve	e Remediation Goal (30 ug/L)				
timate	R	Uranium Cleanup Concentration (ug/L)	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R ln(Cleanup/Initial)]	R	emarks	
E	50.36	30	527	144.3	Pore volumes required to ac	hieve cleanup goal (MCL) and	
uratio	Table 5b: Estimated Time to A	chieve Remediation Goal (30 ug/L)				
L D		Pore Volume	Flow Rate	Flow Rate		Duration Estimate	
Ŭ	No. of Pore Volumes	(gallons)	(gpm) ⁷	(gpd)	Duration Estimate (days)	(months)	Remarks
							Time to achieve cleanup goal (MCL) and
A State of the second second	144.3	22,541	8	11,520	282	9.3	discontinue remediation.

Definitions:

ă

ml - miliiliters g - gram ft³ - cubic feet K_d - distribution coefficient ug - microgram pCi/L - picocuries per liter L - liter gpm - gallons per minute gpd - gallons per day DCGL - derived cleanup goal level MCL - maximum contaminant level

Notes:

¹Assumes 11% transmissve porosity for BA1 transition zone, as presented in Environmental Sequence Stratigraphy (ESS) and Porosity Analysis, Burial Area 1, dated April 6, 2018.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Plume volume calculated using Earth Volumtric Studio. Includes saturated volume of transition zone and Sandstone B formations within combined capture zone of extraction trenches GETR-BA-01 and GETR-BA1-02, located within area of uranium groundwater contamination exceeding 30 ug/L.

1206 North - Uranium

⁴Remediation will be discontinued when the uranium groundwater concentration reaches 119 ug/L, the equivalent of 180 pCi/L as calcuated in *Uranium Activity vs. Mass Concentration_Rev. A (07-30-18).xlsx*, and 30 ug/L. ⁵The larger of the following is assumed as initial uranium concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area

(determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal groundwater recovery rate for extraction trench GETR-WU-02.

WU-1348 (SSA)

Nitrate

Table 1: Retardation Calculation

Bulk Density (g/ml)	Porosity [n] ¹	Nitrate K _d (ml/g) ²	Retardation [R]
1.81	0.1	0.6	11.86

Table 2: Remediation Pore Volume Calculation

Area of Plume [A]		Average Plume Thickness [b] ³	Pore Volume (ft ³)	Pore Volume [PV]
(ff ⁻)	Porosity [n]	(π)	[PV = b*n*A]	(galions)
44,143	0.1	14	61,800	462,265

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

	Initial Aqueous-Phase Contaminant Concentration	
Concentration Basis	(ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	-	Average nitrate concentration
Maximum Representative Concentration within		
Remediation Area	11.57	Representative nitrate concentration for WELL 1348

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (22.9 ug/L)

	Nitrate Cleanup Concentration	Initial Aqueous-Phase Contaminant Concentration	No. of Pore Volumes ⁶	
R	(ug/L) ⁺	(ug/L) ²	[#PV = -R In(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal (ACL) and
11.86	30	12	0.0	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (22.9 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
						Time to achieve cleanup goal (ACL) and
0.0	462,265	4	5,760	0	0.0	discontinue remediation.

Definitions:

ml - milliliters

g - gram

 ft^3 - cubic feet K_d - distribution coefficient

ug - microgram

L - liter

gpm - gallons per minute

gpd - gallons per day

DCGL - derived cleanup goal level

ACL - alternative contaminant level

Notes:

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 14 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

 4 Remediation will be discontinued when the nitrate groundwater concentration reaches the ACL (22.9 mg/L).

⁵The larger of the following is assumed as initial nitrate concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates. ⁷Flow rate is based on the nominal groundwater recovery rate for extraction trench GETR-WU-01.

 $R = 1 + \frac{\rho_b}{n} K_d$

WU-1348 (SSA)

Uranium

Table 1: Retardation Calculation

Bulk Density		Uranium K _d		Uranium K _d	
(g/ml)	Porosity [n] ¹	(ml/g) ²	Retardation [R]	(ml/g) ²	Retardation [R]
1.81	0.1	3	55.30	3	55.30

Table 2: Remediation Pore Volume Calculation

Area of Plume [A]		Average Plume Thickness [b] ³	Pore Volume (ft ³)	Pore Volume [PV]
(ft ²)	Porosity [n] ¹	(ft)	[PV = b*n*A]	(gallons)
44,143	0.1	14	61,800	462,265

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	56.79	Average uranium concentration
Maximum Representative Concentration within		
Remediation Area	71.26	Representative uranium concentration for WELL 1348

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (30 ug/L)

R	Uranium Cleanup Concentration (ug/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal (MCL) and
55.30	30	71	47.8	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (30 ug/L)

No. of Pore Volumes	Pore Volume (gallons)	Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
	10 /					Time to achieve cleanup goal (MCL) and
47.8	462,265	4	5,760	3,840	126.3	discontinue remediation.

Definitions:

ml - milliliters g - gram ft³ - cubic feet K_d - distribution coefficient ug - microgram L - liter gpm - gallons per minute gpd - gallons per day DCGL - derived cleanup goal level MCL - maximum contaminant level

Notes:

 1 Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 2 K_d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 14 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the uranium groundwater concentration reaches the MCL (30 ug/L).

⁵The larger of the following is assumed as initial uranium concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see *Incr. AWCA Calcs_Rev. C (09-05-18).xlsx*). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates. ⁷Flow rate is based on the nominal groundwater recovery rate for extraction trench GETR-WU-01.

 $R = 1 + \frac{\rho_b}{n} K_d$

WU-BA3 (SSA)

Nitrate

Table 1: Retardation Calculation

Bulk Density		Nitrate K _d	
(g/ml)	Porosity [n] ¹	(ml/g) ²	Retardation [R]
1.81	0.1	0.6	11.86

Table 2: Remediation Pore Volume Calculation

		Average Plume		
Area of Plume [A] (ft ²)	Porosity [n] ¹	Thickness [b] ³ (ft)	Pore Volume (ft ³) [PV = b*n*A]	Pore Volume [PV] (gallons)
41,390	0.1	5	20,695	154,799

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration	Remarks
Concentration basis	(11)6/ L/	Reindiks
Incremental Averaging of Concentrations within		
Remediation Area	54.02	Average nitrate concentration
Maximum Representative Concentration within		
Remediation Area	76.09	Representative nitrate concentration for WELL 1351

Table 4: Estimated Number of Pore Volumes to Achieve Remediation Goal (22.9 mg/L)

R	Nitrate Cleanup Concentration (mg/L) ⁴	Initial Aqueous-Phase Contaminant Concentration (mg/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Remarks
				Pore volumes required to achieve cleanup goal and
11.86	22.9	76	14.2	discontinue remediation

Table 5: Estimated Time to Achieve Remediation Goal (22.9 ug/L)

	Pore Volume	Flow Rate	Flow Rate		Duration Estimate	
No. of Pore Volumes	(gallons)	(gpm) ⁷	(gpd)	Duration Estimate (days)	(months)	Remarks
						Time to achieve cleanup goal and
14.2	154,799	8	11,520	191	6.3	discontinue remediation.
					0.5	

Definitions:	Notes:
ml - milliliters	¹ Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.
g - gram	2 K _d derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.
ft ³ - cubic feet	³ Saturated zone thickness assumed to be 5 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.
K _d - distribution coefficient	⁴ Remediation will be discontinued when the nitrate groundwater concentration reaches the ACL (22.9 mg/L).
ug - microgram	⁵ The larger of the following is assumed as initial nitrate concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration
L - liter	reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration
gpm - gallons per minute	estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours
gpd - gallons per day	developed using representative groundwater concentrations for monitor wells located within the remediation area (see Incr. AWCA Calcs_Rev. C (09-05-18).xlsx). Initial
DCGL - derived cleanup goal level	aqueous-phase contaminant concentrations will be variable.
ACL - alternative contaminant level	⁶ Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.
	⁷ Flow rate is based on the nominal water injection rate for injection trench GWI-WU-01.

- Remediation durations presented herein are estimates and do not account for all factors contributing to the actual time required to remediate plumes via groundwater injection and extraction. Estimates will be updated using system performance and groundwater monitoring data collected during the early stages of remedial operations.

$R = 1 + \frac{\rho_b}{n} K_d$

WU-BA3 - Nitrate

WU-BA3 (SSA) Uranium

ole 1: Retardation Ca	lculation		$R = 1 + \frac{r_{D}}{n} K_{d}$
Bulk Density (g/ml)	Porosity [n] ¹	Uranium K _d (ml/g) ²	Retardation [R]
1.81	0.1	3	55.30

Table 2: Remediation Pore Volume Calculation

Area of Plume [A]	Porosity [n] ¹	Average Plume Thickness [b] ³ (ft)	Pore Volume (ft ³) [PV = b*n*A]	Pore Volume [PV]
41.390	0.1	5	20.695	154.799

Table 3: Estimated Initial Aqueous-Phase Contaminant Concentration

Concentration Basis	Initial Aqueous-Phase Contaminant Concentration (ug/L)	Remarks
Incremental Averaging of Concentrations within		
Remediation Area	311.34	Average uranium concentration
Maximum Representative Concentration within		
Remediation Area	875	Representative uranium concentration for WELL 1351

WU-BA3 - Uranium

Table 4a: Estimated Number of Pore Volumes to Achieve Remediation Goal (119 ug/L) Uranium Cleanup Initial Aqueous-Phase Concentration **Contaminant Concentration** No. of Pore Volumes⁶ [#PV = -R In(Cleanup/Initial)] $(ug/L)^4$ $(ug/L)^5$ Remarks R Estin 55.30 119 875 110.3 Pore volumes required to achieve cleanup goal (DCGL) and Table 5a: Estimated Time to Achieve Remediation Goal (119 ug/L) DC DCGL Flow Rate Pore Volume Flow Rate **Duration Estimate** Duration Estimate (days) No. of Pore Volumes (gallons) (gpm)⁷ (gpd) (months) Remarks Time to achieve cleanup goal (DCGL) and discontinue 154,799 11,520 1,482 48.8 110.3 8 remediation.

timate	R	Uranium Cleanup Concentration (ug/L)	Initial Aqueous-Phase Contaminant Concentration (ug/L) ⁵	No. of Pore Volumes ⁶ [#PV = -R In(Cleanup/Initial)]	Re	emarks	
n Es	55.30	30	875	186.5	Pore volumes required to acl	hieve cleanup goal (MCL) and	
0							
uratio	Table 5b: Estimated Time to A	Achieve Remediation Goal	(30 ug/L)	-			
MCL Duratio	Table 5b: Estimated Time to A No. of Pore Volumes	Achieve Remediation Goal Pore Volume (gallons)	(30 ug/L) Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks
MCL Duratio	Table 5b: Estimated Time to A No. of Pore Volumes	Achieve Remediation Goal Pore Volume (gallons)	(30 ug/L) Flow Rate (gpm) ⁷	Flow Rate (gpd)	Duration Estimate (days)	Duration Estimate (months)	Remarks Time to achieve cleanup goal (MCL) and discontinue

0

Definitions:

ml - milliliters g - gram

ft³ - cubic feet

K_d - distribution coefficient

ug - microgram

pCi/L - picocuries per liter

L - liter

gpm - gallons per minute gpd - gallons per day

DCGL - derived cleanup goal level

MCL - maximum contaminant level

Notes:

¹Assumes 30% transmissve porosity for alluvial sand, as presented in the Technical Memorandum (TM002), September 10, 2018, page 3.

 ${}^{2}K_{d}$ derived from previous studies as mentioned in the Technical Memorandum (TM002), September 10, 2018, page 4.

³Saturated zone thickness assumed to be 5 feet, as presented in the Technical Memorandum (TM002), September 10, 2018, page 5.

⁴Remediation will be discontinued when the uranium groundwater concentration reaches 119 ug/L, the equivalent of 180 pCi/L as calcuated in Uranium Activity vs. Mass Concentration_Rev. A (07-30-18).xlsx , and 30 ug/L.

⁵The larger of the following is assumed as initial uranium concentration for estimating the groundwater remediation duration: (1) the maximum representative concentration reported for any well within the remediation area (determined using sampling results for monitoring events conducted from 2011 through Q2 2017), (2) the concentration estimated by conducting incremental averaging of concentrations within the specified treatment area. The incremental averaging is performed using isopleth contours developed using representative groundwater concentrations for monitor wells located within the remediation area (see Incr. AWCA Calcs_Rev. C (09-05-18).xlsx). Initial aqueous-phase contaminant concentrations will be variable.

⁶Number of pore volumes assumes linear, reversible and instantaneous sorption, and may result in an underestimation of cleanup timeframe estimates.

⁷Flow rate is based on the nominal water injection rate for injection trench GWI-WU-01.

Attachment 10.1 – Initial and Maximum Influent Contaminant Concentration Calcs. for BA1 and WA

MAXIMUM INFLUENT CONTAMINANT CONCENTRATION CALCULATION SUMMARY **Cimarron Environmental Response Trust**

Remediation Area	Extraction Well/Trench	Influent Flow Rate	Adjusted Flow Rate	Nitrate	Uranium	Fluoride	Weighted Nitrate	Weighted Uranium	Weighted Fluoride	
		(gpm) q	(gpm) q*%	(mg/L)	(ug/L) C _{max}	(mg/L)	(mg/L)	(ug/L) q*c _{max}	(mg/L)	Comments:
			Wester	n Area						Governing Assumptions: - Maximum uranium, nitrate, and fluoride influent concentrations will not occur at time zero for extraction wells GE-WAA-6 through -13; however maximum uranium, nitrate, and fluoride influent concentrations will occur at time zero for all other extraction wells and trenches. - Initial (time zero) uranium, nitrate, and fluoride influent nitrate concentrations for GE-WAA-6 through -13 are based on representative SSB/TZ/Alluvium concentrations. - Future (time 't') uranium, nitrate, and fluoride influent nitrate concentrations for GE-WAA-6 through -13 are based on representative, upgradient (UP1 & UP2) SSA concentrations. 100% of this SSA groundwater contribution is assumed to be driven by the proposed injection features (i.e., natural groundwater flux from SSA is assumed to be negligible).
WU "1206 NORTH"	GETR-WU-02	8		38.6	304	7.03	309.12	2428.36	56.26	- Linear, incremental concentration averaging along trench alignment using isoconcentration contours [see Incr. AWCA Calcs, Rev. B (08-15-18)]
WU-PBA	GE-WU-01	5		61.7	29.0	0.32	308.65	145.10	1.58	Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15-18)].
WU "1206 SOUTH"	GETR-WU-01	4		10.14	62.0	1.00	40.57	247.90	4.01	- Linear, incremental concentration averaging along trench alignment using isoconcentration contours [see Incr. AWCA Calcs_Rev. B (08-15-18)].
	GE-WAA-01	25		25.3	134	1.40	632.75	3354.50	35.00	 Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15-18)].
WAA "U>DCGL"	GE-WAA-02	30		29.0	163	2.62	869.40	4903.20	78.60	- Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15-18)].
	GE-WAA-03	24		67.1	163	3.41	1610.88	3908.40	81.84	Hiterpolated concentrations calculated in Surfer [see Incr. AVVCA Calcs_Rev. B (08-15-18)]. Interpolated concentrations calculated in Surfer [see Incr. AVVCA Calcs_Rev.
	GE-WAA-04	20		21.4	119	1.44	427.40	2380.60	28.80	 B (08-15-18)]. Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev.
WAA OCDEGE WEST	GE-WAA-05	10		10.2	58.6	0.45	102.40	586.40	4.50	B (08-15-18)]. - Initial Influent Concentration: [SSB/TZ/Alluvium] interpolated
	GE-WAA-06	13		90.8	64.0	3.26	1180.79	832.39	42.38	concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15- 18)].
				204	15.0	10.0	2652.00	202.80	044.40	- Maximum Influent Concentration: [SSA] UP1 area-weighted incremental concentration averaging using isoconcentration contours [see Incr. AWCA
				204	15.0	10.0	2052.00	202.80	244.40	Calcs_Rev. C (08-22-18)]. - Initial Influent Concentration: [SSB/TZ/Alluvium] interpolated
	GE-WAA-07	13		73.2	10.9	2.6	951.99	142.09	33.93	18)]. Maximum Influent Concentration: [SSA11P1 area-weighted incremental
				204	15.6	18.8	2652.00	202.80	244.40	Concentration averaging using isoconcentration contours [see Incr. AWCA Calos Rev. C (08-22-18)]
										- Initial Influent Concentration: [SSB/TZ/Alluvium] interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs Rev. B (08-15-
	GE-WAA-08	13		141	7.70	3.54	1833.00	100.10	46.02	18)]. - Maximum Influent Concentration: [SSA] UP1 area-weighted incremental
				204	15.6	18.8	2652.00	202.80	244.40	concentration averaging using isoconcentration contours [see Incr. AWCA Calos_Rev. C (08-22-18)].
				218	4 77	2 46	2829 71	62 01	31.98	- Initial Influent Concentration: [SSB/12/Alluvium] Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15-
	GE-WAA-09	13			4.77	2.40	2020.71	02.01	01.00	- Maximum Influent Concentration: [SSA] UP2 area-weighted incremental
WAA "BLUFF"				378	26.3	7.80	4914.00	341.90	101.40	Calcs_Rev. C (08-22-18)]. - Initial Influent Concentration: [SSB/TZ/Alluvium] interpolated
	GE-WAA-10	13		207	6.40	2.03	2692.43	83.20	26.39	concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15- 18)].
	OL-WAR-10	10								- Maximum Influent Concentration: [SSA] UP2 area-weighted incremental concentration averaging using isoconcentration contours [see Incr. AWCA
				378	26.3	7.80	4914.00	341.90	101.40	Calcs_Rev. C (08-22-18)] Initial Influent Concentration: [SSB/TZ/Alluvium] interpolated
	GE-WAA-11	14		128	6.80	1.76	1794.94	95.20	24.64	concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15- 18)]. Maximum Influent Concentration: [SSA11182 area weighted incremented
				378	26.3	7.80	5292.00	368.20	109.20	- maximum muture Concentration: [SSA] 0P2 area-weighted incremental concentration averaging using isoconcentration contours [see Incr. AWCA Cales, Rev. C. (08-22-18)]
										- Initial Influent Concentration: [SSB/TZ/Alluvium] interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs Rev. B (08-15-
	GE-WAA-12	13		24.5	5.48	0.92	318.24	71.24	11.96	18)]. - Maximum Influent Concentration: [SSA] UP2 area-weighted incremental
				378	26.3	7.80	4914.00	341.90	101.40	concentration averaging using isoconcentration contours [see Incr. AWCA Calcs_Rev. C (08-22-18)].
				00.4	0.45	0.04	005.00	07.00	10.00	 Initial Influent Concentration: [SSB/TZ/Alluvium] interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15-
	GE-WAA-13	12		22.1	8.15	0.84	205.32	97.80	10.08	18)]. - Maximum Influent Concentration: [SSA] UP2 area-weighted incremental concentration averaging languagestration sectors [see language]
	05.000.00			378	26.3	7.80	4536.00	315.60	93.60	Calcs. Rev. C (08-22-18)]. - Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs. Rev.
WAA "U <dcgl" east<="" td=""><td>GE-WAA-14</td><td>10</td><td></td><td>79.1</td><td>61.9</td><td>0.46</td><td>791.00</td><td>619.00</td><td>4.60</td><td>B (08-15-18)]. - Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev.</td></dcgl">	GE-WAA-14	10		79.1	61.9	0.46	791.00	619.00	4.60	B (08-15-18)]. - Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev.
Ir	nitial ∑q*c _{max}	250	0	65.4	40.4	0.43	653.50 17612	403.60	4.30 526.9	B (08-15-18)].
lr Ir	nitial ∑q nitial Influent Concer						250 70.4	250 81.8	250 2.11	
		1	Burial	Area 1					1	Governing Assumptions: - Maximum uranium influent concentrations for all extraction wells and trenches will occur at time zero.
	GETR-BA1-01	7			1,360			9,520.00		- Linear, incremental concentration averaging along trench alignment using isoconcentration contours (see Incr. AWCA Calcs_Rev. A (07-31-18).
	GETR-BA1-02	7			2,080			14,560.00		- Linear, incremental concentration averaging along trench alignment using isoconcentration contours (see Incr. AWCA Calcs_Rev. A (07-31-18).
	GE-BA1-02	24			2,420			58,080.00		- Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15-18)].
AREA B	GE-BA1-03	18			430			7,740.00		- Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. B (08-15-18)].
	GE-BA1-04	24			389			9,336.00		 B (08-15-18)]. Interpolated concentrations calculated in Surfer Isee Incr. AWCA Calcs_Rev.
	GE-BA1-05	0			168			0.00		B (08-15-18)]. - Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs Rev.
AREA C	GE-BA1-06	0			88.6			0.00		B (08-15-18)]. - Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev.
	GE-BA1-07	0			43.3			0.00		B (08-15-18)]. - Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev.
	GE-BAT-08	10			32.1			321.00		B (08-15-18)]. - Interpolated concentrations calculated in Surfer [see Incr. AWCA Calcs_Rev. P (09.16 19)]
Σ	GE-BA1-09 q*c _{max}	10 100			37.2			372.00 99929.00		ם (טסנו -נו)].
Σ	q lax Influent Concent							100 999		

<u>Notes</u>: SSA - Sandstone A SSA - Sandstone B

TZ - Transition Zone

gpm - gallons per minute

ug/L - micrograms per liter mg/L - milligrams per liter

Attachment 10.2a – BA1 Influent Concentration Decline Analysis

.

Note: the estimates provided below are preliminary in nature and will require revision during 90% Water Treatment Design Basis development associated with the Groundwater Remediation Project being conducted for the Cimarron Environmental Response Trust.

	BA1 - Uranium														
Remediation Area	C _i (ug/L)	C _i Source	C _{max} (ug/L)	C _{max} Source	Is C _i representative of C _{max} ? (Y/N)	Flow Rate (gpm)	R⁴	PV⁴ (ft³)	PV (liters)	Q (liters/day)	Time Required for Initial Conc. to Reach Max. Level (days)	C _f (ug/L)			
BA1-A1 (GETR-BA1-01 & GETR-BA1-02)	1-A1 (GETR-BA1-01 & GETR-BA1-02) 1720 FWCA Y 14 50.4 90,021 2,549,098 76,314 0 114														
BA1-B1 (GE-BA1-02 through GE-BA1-04)	1139	FWCA	1139	FWCA	Y	66	13.1	619,099	17,530,908	359,765	0	556			
BA1-B2 (GE-BA1-02 through GE-BA1-04)	556	FWCA ¹	556	FWCA ¹	Y	66	13.1	446,530	12,644,301	359,765	0	0.0			
BA1-B3 (GE-BA1-02 through GE-BA1-04)															
BA1-B3R (GE-BA1-02 through GE-BA1-04)	99.4	FWCA ²	99.4	FWCA ²	Y	86	13.1	366,168	10,368,706	468,785	0	0.00			
BA1-C1 (GE-BA1-08 & GE-BA1-09)	34.7	FWCA	34.7	FWCA	Y	20	13.1	250,418	7,091,039	109,020	0	20.3			
BA1-C2 (GE-BA1-06 & GE-BA1-07)	32.2	FWCA ³	32.2	FWCA ³	Y	20	13.1	455,345	12,893,899	109,020	0	0.0			
BA1-C3 (GE-BA1-05 & GE-BA1-06)															
		Combine	ed Treatmen	t System In	fluent Flow Rate	100									

 $C_t = C_0 e^{(-Q/(PV*R))t}$

Notes:

C_i - initial concentration

C_f - final concentration

 $\rm C_{max}$ - maximum concentration

gpm - gallons per minute MCL - maximum contaminant level

ug/L - micrograms per liter

R - retardation

 $R = 1 + \frac{\rho_b}{n} K_d$

PV - pore volume Q - flow rate

AWCA - Area-weighted concentration averaging

FWCA - Flow rate-weighted concentration averaging

¹Initial concentration for Area B2 equals final concentration for Area B1.

²Initial concentration for Area B3R equals final concentration for Area B2.

³Initial concentration for Area C2 equals flow rate-weighted average concentration decayed over the duration of Area C1 operation. Note that wells GE-BA1-06 and GE-BA1-07 are located in Area B1; consequently Area B1 parameters are used to calculate the concentration decay.

⁴Retardation (R) and pore volume (PV) taken from remediation duration estimate calculations [DRAFT_Remediation Duration Estimates_Rev. B (09-10-18).xlsx].

cubic foot = 28.3168 liters gpm 5451 liters p

Combined Influent C _f (ug/L)	Time Required for Combined Influent Conc. to Reach MCL (months)
16.0	116

liters liters per day

		12,893,899	7,091,039	10,368,706	12,644,301	17,530,908	2,549,098	(liters)
$C_t = C_0 e^{(-Q/(F))}$		109,020	109,020	468,785	359,765	359,765	76,314	Q (liters/day)
		0	Q	D	C	0	0	Time Required for Initial Conc. to Reach Max. Level (months)
Combined WEIGHTED Influent Flow AVERAGE Rate	1	C2	C1	B3R	B2	В	А	Cumulative Time (Months)
Average Mate 999,29 100 959,67 100 921,78 100 885,62 100 850,64 100 817,65 100 726,42 100 698,58 100 671,93 100 646,42 100 554,74 100 530,19 100 554,74 100 530,19 100 530,19 100 530,19 100 530,19 100 530,19 100 530,19 100 530,19 100 530,19 100 304,82 100 388,49 100 363,68 100 347,82 100 332,85 100 280,73 100 269,42 100 269,42 100 248,67 100 248,67 100		32.209377 31.581564 30.965988 30.362410 29.770597 29.190319 26.621353 28.063476 27.516473 26.980132 26.454245 25.938609 25.433023 24.451223 23.974629 23.507324 23.0479128 22.599863 22.159355 21.727433 21.303930 20.888681 20.481527 20.082308	34.650000 33.431728 32.256290 31.122180 30.027944 28.972181 27.953538 26.970710 26.022437 25.107505 24.224741 23.373015 22.551235 21.758348 20.953338 20.255226		556. 1439905 520. 4987301 487. 1381021 455. 9156763 426. 6944077 399. 3460347 373. 7506165 349. 7955076 326. 3761570 251. 1749678 235. 0762644 205. 9081951 192. 7108014 180. 3592755 168. 7994038 157. 9804454 147. 8549128 157. 9804454 147. 8549128 138. 3783619 129. 5091970 121. 2084887 113. 4398025	1138.727273 1085.602640 1034.956411 986.672962 940.642064 856.758629 854.922472 815.038082 777.014404 740.764631 706.206006 673.259631 641.850292 611.906282 553.359239 556.143990	1720.00000 1689.199612 1658.950773 1629.243006 1600.068411 1571.415663 1543.276005 1515.640249 1498.499373 1461.844913 1435.666968 1409.958189 1384.709783 1359.913505 1335.561259 1311.645093 1288.157199 1265.089908 1242.435687 1220.187140 1198.337002 1176.878139 1155.803544 1135.106336 1114.779757 1094.817711 1075.212058 1055.958019 1037.048765 1018.478123 1000.240029 964.737773 947.452019 930.495625 913.83051 897.468258 881.397702 865.614335 850.113604	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 24 25 26 31 31 32 33 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39
130.65 000 184.23 100 179.95 100 171.05 100 162.88 100 155.36 100 148.44 100 136.16 100 130.70 100 125.64 100 112.55 100 112.51 100 108.71 100 105.16 100 98.71 100 93.00 100 97.79 100 96.77 100 97.39 100 87.91 100 87.91 100		19.307064		99.36428523 89.43727224 80.50201989 72.45944609 65.22036758 58.70451095 52.83962256 47.50066727 42.80910729 38.53225305 34.68267898 31.21769753 22.9088589 22.76489049 20.49055859 18.4334437 16.60084759 13.4495182 12.1054083 10.89640387 9.807755999	99.36428523		819.339895 805.257066 790.837165 776.675484 762.767399 743.108369 735.693934 722.519714 709.681407 696.874789 684.335711 672.140099 660.103950 643.03551 636.674395 625.273337 614.076441 603.080050 592.280574 581.674486 571.258323 561.028685 550.982231	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63
83.35 100				8.827945764			541.115681	64
81.23 100 79.22 100 77.30 100 75.46 100 73.70 100 70.39 100 68.83 100 67.33 100 65.88 100 64.49 100 63.14 100 60.56 100				7.945987704 7.152141877 6.43760541 5.794454882 5.215558464 4.694496832 4.225491989 3.803343188 3.423369265 3.081356729 2.773513039 2.496424547 2.247018648 2.022529705			$\begin{array}{c} 531.425813\\ 521.909463\\ 512.563525\\ 503.384946\\ 494.370730\\ 485.517933\\ 476.823666\\ 468.285088\\ 459.899412\\ 451.663900\\ 443.575863\\ 435.632661\\ 427.831699\\ 420.170430\end{array}$	65 66 67 68 69 70 71 72 73 74 75 76 77 77 78

	Combined	Months	Days	Months	Days	Months	Days	Months	Days
WEIGHTED	Influent Flow Rate	(for A1/B1/0	C1 Areas)	(for B2/C	2 Areas)	(for B3/C3	Areas)	(for B3F	R Aea)
999.29	100	0	0.0						
959.67	100	1	30.4						
921.78	100	2	60.8	1.					
885.52	100	3	91.3	2.62.2	1				
850.84	100	4	121.7						1
817.65	100	5	152.1	<u> </u>	<u></u>				
785.90	100	6	182.5						
735.51	100	1	212.9						
120.42	100	0	243.4						
671.93	100	10	304.2						
646 42	100	11	334.6						-
621.99	100	12	365.0						
598.60	100	13	395.5						1
576.19	100	14	425.9	100 A 100 A	1.2.1.1.1.1			1	
554.74	100	15	456.3	0	0.0			1	1.121
530.19	100	16	486.7	1	30,4				
504.82	100	17	517.1	2	60.8				
480.92	100	18	547.6	3	91.3				1000
458.40	100	19	578.0	4	121.7				
437.17	100	20	608.4	5	152.1				200 - 20
417.16	100	21	638.8	6	182.5				
398.29	100	22	669.2	7	212.9				
380.49	100	23	699.7	8	243.4				
363.68	100	24	730.1	9	273.8				
347.82	100	25	760.5	10	304.2				
332.85	100	26	790.9	11	334.6				
318.70	100	27	821.3	12	365.0				
305.32	100	28	851.8	13	395.5				12030.33
292.68	100	29	882.2	14	425.9			States -	
280.73	100	30	912.6	15	456.3				
269.42	100	31	943.0	16	486.7				
200./1	100	32	9/3.4	17	517.1				
240.37	100	33	1003.9	10	547.0				
230.57	100	35	1054.5	20	608.4				
223.07	100	36	1004.7	20	638.8				
213.05	100	37	1125.5	22	669.2				-
205 28	100	38	1156.0	23	699.7				
197.90	100	39	1186.4	24	730.1				
190.89	100	40	1216.8	25	760.5				1
184.23	100	41	1247.2	26	790.9			0	0.0
189.65	100	42	1277.6	27	821.3			1	30.4
179.95	100	43	1308.1	28	851.8			2	60.8
171.05	100	44	1338.5	29	882.2			3	91.3
162.88	100	45	1368.9	30	912.6			4	121.7
155.36	100	46	1399.3	31	943.0			5	152.1
148.44	100	47	1429.7	32	973.4			6	182.5
142.05	100	48	1460.2	33	1003.9			7	212.9
136.16	100	49	1490.6	34	1034.3			8	243.4
130.70	100	50	1521.0	35	1064.7			9	273.8
125.64	100	51	1551.4	36	1095.1			10	304.2
120.95	100	52	1581.8	37	1125.5			11	334.6
116.58	100	53	1612.3	38	1156.0			12	365.0
112.51	100	54	1642.7	39	1166.4			13	395.5
105.71	100	50	1702 5	40	12/0.0			14	425.9
105.16	100	57	1733.0	41	1247.2			10	430.3
09.74	100	59	1764.4	42	12/1.0			17	400./ 517.4
96.71	100	50	1704.4	40	1329.5			19	547.6
93.00	100	60	1825.2	44	1368.0			10	579.0
93.00	100	61	1855.6	40	1300.9			20	578.U
87.01	100	62	1886.0	40	1420 7			20	638.8
85.57	100	63	1916.5	48	1460.2			22	669.2
00.07	150		101010		1.00.2				000.2
83.35	100	64	1946.9	49	1490.6			23	699.7
81.23	100	65	1977.3	50	1521.0			24	730.1
79.22	100	66	2007.7	51	1551.4			25	760.5
77.30	100	67	2038.1	52	1581.8			26	790.9
75.46	100	68	2068.6	53	1612.3			27	821.3
73.70	100	69	2099.0	54	1642.7			28	851.8
72.01	100	70	2129.4	55	1673.1			29	882.2
70.39	100	71	2159.8	56	1703.5			30	912.6
68.83	100	72	2190.2	57	1733.9			31	943.0
67.33	100	73	2220.7	58	1764.4			32	973.4
65.88	100	74	2251.1	59	1794.8			33	1003.9
64.49	100	75	2281.5	60	1825.2			34	1034.3
63.14	100	76	2311.9	61	1855.6			35	1064.7
61.83	100	77	2342.3	62	1886.0			36	1095.1
60.56	100	78	23/2.8	63	1916.5			37	1125.5

(PV*R))t

	BA1 Combined Influent - Uranium													
Area	BA1-A1 (GETR-BA1-01 & GETR-BA1-02)	BA1-B1 (GE-BA1-02 through GE-BA1-04)	BA1-B2 (GE-BA1-02 through GE-BA1-04)	BA1-B3 (GE-BA1-02 through GE-BA1-04)	BA1-B3R (GE-BA1-02 through GE-BA1-04)	BA1-C1 (GE-BA1-08 & GE-BA1-09)	BA1-C2 (GE-BA1-06 & GE-BA1-07)	BA1-C3 (GE-BA1-05 & GE-BA1-06)						
C _i (ug/L)	1720	1139	556		99	35	32							
C _{max} (ug/L)	1720	1139	556		99	35	32							
Flow Rate (gpm)	14	66	66		86	20	20							
R	50.4	13.1	13.1		13.1	13.1	13.1							
PV (liters)	2,549,098	17,530,908	12,644,301		10,368,706	7,091,039	12,893,899							
Q (liters/day)	76,314	359,765	359,765		468,785	109,020	109,020							
			and the second											
Time Required for Initial Conc. to Reach Max. Level														

Notes

According to remediation duration calculations, the uranium MCL is achieved in Area C1 in 15 months.

According to remediation duration calculations, the uranium MCL is achieved in Area C2 in 25.4 months.

According to remediation duration calculations, the uranium MCL is achieved in Area B3R in 22.6 months; however groundwater extraction will continue in Area B3R to maintain the minimum treatment system flow rate.

PV																
(liters)	2,549,098	17,530,908	12,644,301		10,368,706	7,091,039	12,893,899									
Q										-0/(PV	*R))+					
(liters/day)	76,314	359,765	359,765		468,785	109,020	109,020		C _t =C ₀ e'		ity)t					
Time Required for	The second second			and the second second			Section Section									
Initial Conc. to	State State															
Reach Max. Level	Sand States and States															
(months)	0	0	0		0	0	0									
Cumulative Time									Combine	ed	onths Days	Months	Days	Months Days	Months	Days
(Months)	A	В	B2		B3R	C1	C2	WEIGHT	ED Influent Fl	low		1.1.1.1.1			Market .	
79	412 646353				1 920469295			AVERAG	E Rate	(for	A1/B1/C1 Areas)	(for B2/C	2 Areas)	(for B3/C3 Areas)	(for B3	3R Aea)
80	405.257011				1.63859405				8.15	100	79 2403.2 80 2433.6	64	1946.9		38	1156.0
81	397.999992				1.474889915			5	6.99	100	81 2464.0	66	2007.7		40	1216.8
82	390.872926				1.32754068			5	5.86	100	82 2494.4	67	2038.1		41	1247.2
84	376.999385				1.075534394			3	3.70	100	83 2524.9 84 2555.3	68	2068.6		42	1277.6
85	370.248381				0.968082869			5	2.67	100	85 2585.7	70	2129.4		40	1338.5
86 87	363.618268				0.871366316			5	1.66	100	86 2616.1	71	2159.8		45	1368.9
88	350.712097				0.705955347				9.71	100	87 2646.5 88 2677.0	72	2190.2		46	1399.3
89	344.431825				0.635426707			4	3.77	100	89 2707.4	74	2251.1		48	1460.2
90	338.264014				0.571944248			4	7.85	100	90 2737.8	75	2281.5		49	1490.6
92	326.257761				0.463372399				5.95	100	91 2768.2 92 2798.6	76	2311.9		50	1521.0
93	320.415397				0.417079067			4	5.22	100	93 2829.1	78	2372.8		52	1581.8
94	314.677654				0.375410682			4	4.38	100	94 2859.5	79	2403.2		53	1612.3
96	303.508568				0.304146687				3.56	100	95 2889.9 96 2920.3	80	2433.6		54	1642.7
97	298.073578				0.273760839			4	1.97	100	97 2950.7	82	2494.4		56	1703.5
98	292.735915				0.246410696			4	1.19	100	98 2981.2	83	2524.9		57	1733.9
100	282.345623				0.221792976			4	0.44	100	99 3011.6 100 3042.0	84	2555.3		58	1764.4
101	277.289603				0.179690142			3	3.98	100	101 3072.4	86	2616.1		60	1825.2
102	272.324122				0.161738155			3	3.26	100	102 3102.8	87	2646.5		61	1855.6
104	262.658321				0.131035494			3	.57	100	103 3133.3 104 3163.7	88	2677.0		62	1886.0
105	257.954846				0.117944361			3	5.22	100	105 3194.1	90	2737.8		64	1946.9
106 107	253.335596				0.106161101			3	5.56	100	106 3224.5	91	2768.2		65	1977.3
108	244.343769				0.0860086			3	1.91	100	107 3254.9 108 3285.4	92	2798.6		66	2007.7
109	239.968256				0.07741589			3	3.66	100	109 3315.8	94	2859.5		68	2068.6
110	235.671096				0.069681637			3	3.05	100	110 3346.2	95	2889.9		69	2099.0
112	227.306248				0.056454012			3	87	100	111 33/6.6 112 3407.0	96	2920.3		70	2129.4
113	223.235829				0.05081396			3	1.30	100 1	113 3437.5	98	2981.2		72	2190.2
114	219.238300				0.045737379			3	0.73	100 1	114 3467.9	99	3011.6		73	2220.7
116	211.456713				0.037055078			2	64	100 1	115 3498.3 116 3528.7	100	3042.0		74	2251.1
117	207.670115				0.033353082			2	9.10	100 1	117 3559.1	101	3102.8		76	2311.9
118	203.951325				0.030020934			2	.58	100 1	118 3589.6	103	3133.3		77	2342.3
120	196.712330				0.02/021685			22	5.07	100 1	119 3620.0 120 3650.4	104	3163.7		78	2372.8
121	193.189762				0.021892174			2	.07	100 1	121 3680.8	106	3224.5		80	2433.6
122	189.730274				0.019705031			2	5.58	100 1	122 3711.2	107	3254.9		81	2464.0
124	182.996038				0.017736395			22	63	100 1	123 3/41./ 124 3772.1	108	3285.4		82	2494.4
125	179.719091				0.014369506			2	5.17	100 1	125 3802.5	110	3346.2		84	2555.3
126	176.500825				0.012933917			2	.72	100 1	126 3832.9	111	3376.6		85	2585.7
128	170.236151				0.010478679			22		100 1	127 3863.3 128 3893.8	112	3407.0		86 87	2616.1
129	167.187698				0.009431804			2	.41	100 1	129 3924.2	114	3467.9		88	2677.0
130	164.193834				0.008489517			2	.99	100 1	3954.6	115	3498.3		89	2707.4
132	158.365981				0.006877957			2		100 1	132 4015.4	117	3520.7		90	2768.2
133	155.530090				0.006190813			2	.78	100 1	133 4045.9	118	3589.6		92	2798.6
134	152.744981 150.009746				0.005572318			2	.39	100 1	4076.3	119	3620.0		93	2829.1
136	147.323491				0.004514528			2	.63	100 1	136 4106.7 136 4137.1	120	3680.8		94	2859.5
137	144.685339				0.004063503			2	.26	100 1	137 4167.5	122	3711.2		96	2920.3
138	139.549916				0.003657538			1	.90	100 1	4198.0	123	3741.7		97	2950.7
140	137.050967				0.00296323			1	.19	100 1	4228.4	124	3802.5		98	3011.6
141	134.596768				0.002667187			1	.85	100 1	41 4289.2	126	3832.9		100	3042.0
142	132.186516 129.819426			Part Andrews	0.002400721			1	.51	100 1	42 4319.6	127	3863.3		101	3072.4
144	127.494723				0.002100877			1	.85	100 1	43 4350.1	128	3893.8		102	3102.8
145	125.211649				0.001750679			1	.53	100 1	45 4410.9	130	3954.6		103	3163.7
146 147	122.969459 120.767420			Constantine Constant	0.001575777			1	.22	100 1	46 4441.3	131	3985.0		105	3194.1
148	118.604813				0.001418348			1	.61	100 1	4471.7 48 4502.2	132	4015.4		106	3224.5
149	116.480933				0.001149104			1	.31	100 1	49 4532.6	134	4076.3		108	3285.4
150	114.395085				0.001034303			1	.02	100 1	50 4563.0	135	4106.7		109	3315.8

BA1-A1 (GETR-BA1-01 & GETR-BA1-02 through GE-BA1-04) BA1-B1 (GE-BA1-02 through GE-BA1-04) BA1-B1 (GE-BA1-02 through GE-BA1-04) BA1-C1 (GE-BA1-08 & GE-BA1-04) BA1-C2 (GE-BA1-06 & GE-BA1-04) C _i (ug/L) 1720 1139 556 99 35 32 C _{max} (ug/L) 1720 1139 556 99 35 32 Flow Rate (gpm) 14 66 66 86 20 20 R 50.4 13.1 13.1 13.1 13.1 13.1 13.1 PV (liters) 2,549,098 17,530,908 12,644,301 10,368,706 7,091,039 12,893,899 Q (liters/day) 76,314 359,765 359,765 468,785 109,020 109,020		BA1 Combined Influent - Uranium													
Ci (ug/L) 1720 1139 556 99 35 32 C _{max} (ug/L) 1720 1139 556 99 35 32 Flow Rate (gm) 1720 1139 556 99 35 32 Flow Rate (gm) 14 66 66 86 20 20 R 50.4 13.1 13.1 13.1 13.1 13.1 PV (liters) 2,549,098 17,530,908 12,644,301 10,368,706 7,091,039 12,893,899 Q (liters/day) 76,314 359,765 359,765 468,785 109,020 109,020	Area	BA1-A1 (GETR-BA1-01 & GETR-BA1-02)	BA1-B1 (GE-BA1-02 through GE-BA1-04)	BA1-B2 (GE-BA1-02 through GE-BA1-04)	BA1-B3 (GE-BA1-02 through GE-BA1-04)	BA1-B3R (GE-BA1-02 through GE-BA1-04)	BA1-C1 (GE-BA1-08 & GE-BA1-09)	BA1-C2 (GE-BA1-06 & GE-BA1-07)	BA1-C3 (GE-BA1-05 & GE-BA1-06)						
C _{max} (ug/L) 1720 1139 556 99 35 32 Flow Rate (gpm) 14 66 66 86 20 20 R 50.4 13.1 13.1 13.1 13.1 13.1 PV (liters) 2,549,098 17,530,908 12,644,301 10,368,706 7,091,039 12,893,899 Q (liters/day) 76,314 359,765 359,765 468,785 109,020 109,020	C _i (ug/L)	1720	1139	556		99	35	32							
Flow Rate (gpm) 14 66 66 86 20 20 R 50.4 13.1 13.1 13.1 13.1 13.1 13.1 PV (liters) 2,549,098 17,530,908 12,644,301 10,368,706 7,091,039 12,893,899 Q (liters/day) 76,314 359,765 359,765 468,785 109,020 109,020	C _{max} (ug/L)	1720	1139	556		99	35	32							
R 50.4 13.1 13.1 13.1 13.1 13.1 PV (liters) 2,549,098 17,530,908 12,644,301 10,368,706 7,091,039 12,893,899 Q (liters/day) 76,314 359,765 359,765 468,785 109,020 109,020	Flow Rate (gpm)	14	66	66		86	20	20							
PV (liters) 2,549,098 17,530,908 12,644,301 10,368,706 7,091,039 12,893,899 Q (liters/day) 76,314 359,765 359,765 468,785 109,020 109,020	R	50.4	13.1	13.1		13.1	13.1	13.1							
Q (liters/day) 76,314 359,765 359,765 468,785 109,020 109,020	PV (liters)	2,549,098	17,530,908	12,644,301		10,368,706	7,091,039	12,893,899							
	Q (liters/day)	76,314	359,765	359,765		468,785	109,020	109,020							

2 of 2

Note

According to remediation duration calculations, the uranium MCL is achieved in Area A in 149.1 months.

Attachment 10.2b – WA Influent Concentration Decline Analysis

Note: the estimates provided below are preliminary in nature and will require revision during 90% Water Treatment Design Basis development associated with the Groundwater Remediation Project being conducted for the Cimarron Environmental Response Trust.

Note: the estimates provided below are preliminary in nature and will require revision during 90% Water Treatment Design Basis development associated with the Groundwater Remediation Project being conducted for the Cimarron Environmental Response Trust.

10/23/18

	WATF - Uranium														
Remediation Area	C _i (ug/L)	C _i Source	C _{max} (ug/L)	C _{max} Source	Is C _i representative of C _{max} ? (Y/N)	Flow Rate (gpm)	R ¹	PV ^{1,2,3} (ft ³)	PV (liters)	Q (liters/day)	Time Required for Initial Conc. to Reach Max. Level (days) ²	C _t (ug/L)	Combined Influent C _f (ug/L)	Time Required for Combined Influent Conc. to Reach MCL (months)	
PBA (GE-WU-01) 29.0 SIC 29.0 SIC Y 5 110 231,264.20 6,548,662.10 27,254.95 0 24.4															
WU-1348 (GETR-WU-01)	62.0	LWCA	62.0	LWCA	Y	4	55.3	61,800.20	1,749,983.90	21,803.96	0	26.0			
WAA U>DCGL (GE-WAA-01 through GE-WAA-04)	147	FWCA	147	FWCA	Y	99	13.1	4,177,558.50	118,295,088.53	539,648.05	0	29.9			
1206-NORTH (GETR-WU-02)	304	LWCA	304	LWCA	Y	8	50.4	3,013.56	85,334.38	43,607.92	0	13.9	20.8	107	
WAA-WEST (GE-WAA-05)	58.6	SIC	58.6	SIC	Y	10	13.1	2,387,058.00	67,593,843.97	54,509.90	0	44.2			
WAA-BLUFF (GE-WAA-06 through GE-WAA-13)	14.27	FWCA	22.29	AWCA/FWCA	N	104	13.1	6,811,932.00	192,892,116.06	566,903.00	365	8.7			
WAA-EAST (GE-WAA-14 & GE-WAA-15)	51.1	FWCA	51.1	FWCA	Y	20	13.1	4,716,356.70	133,552,129.40	109,019.81	0	38.4			
Combined Treatment System Influent Flow Rate ³ 250															

	WATF - Nitrate														
Remediation Area	C _i ⁴ (mg/L)	C _i Source	C _{max} ⁴ (mg/L)	C _{max} Source	Is C _i representative of C _{max} ? (Y/N)	Flow Rate (gpm)	R ¹	PV ^{1,2,3} (ft ³)	PV (liters)	Q (liters/day)	Time Required for Initial Conc. to Reach Max. Level (days) ²	C _r (mg/L)	Combined Influent C _r (mg/L)	Time Required for Combined Influent Conc. to Reach MCL (months)	
WU-PBA (GE-WU-01)	61.7	SIC	61.7	SIC	Y	5	22.7	231,264	6,548,662	27,255	0	26.8			
WU-1348 (GETR-WU-01)	11.6	-	11.6	-	Y	4	11.9	61,800	1,749,984	21,804	0	0.20			
WAA U>DCGL (GE-WAA-01 through GE-WAA-04)	35.8	FWCA	35.8	FWCA	Y	99	4.62	4,177,559	118,295,089	539,648	0	0.40			
1206-NORTH (GETR-WU-02)	38.6	LWCA	38.6	LWCA	Y	8	10.9	3,014	85,334	43,608	0	0.00	13.27		
WAA-WEST (GE-WAA-05)	10.2	-	10.2	-	Y	10	4.62	2,387,058	67,593,844	54,510	0	4.61			
WAA-BLUFF (GE-WAA-06 through GE-WAA-13)	114	FWCA	313	AWCA/FWCA	N	104	4.62	6,811,932	192,892,116	566,903	365	22			
WAA-EAST (GE-WAA-14 & GE-WAA-15)	72.2	FWCA	72.2	FWCA	Y	20	4.62	4,716,357	133,552,129	109,020	0	32.3			
	Combined Treatment System Influent Flow Rate ⁵ 250														

WATF - Fluoride											
Remediation Area	C _i (mg/L)	C _i Source	C _{max} (mg/L)	C _{max} Source	Is C _i representative of C _{max} ? (Y/N)						
WU-PBA (GE-WU-01)	0.32	SIC	0.32	SIC	Y						
WU-1348 (GETR-WU-01)	1.00	LWCA	1.00	LWCA	Y						
WAA U>DCGL (GE-WAA-01 through GE-WAA-04)	2.27	FWCA	2.27	FWCA	Y						
1206-NORTH (GETR-WU-02)	7.03	LWCA	7.03	LWCA	Y						
WAA-WEST (GE-WAA-05)	0.45	SIC	0.45	SIC	Y						
WAA-BLUFF (GE-WAA-06 through GE-WAA-13)	2.19	FWCA	11.93	AWCA/FWCA	N						
WAA-EAST (GE-WAA-14 & GE-WAA-15)	0.45	FWCA	0.45	FWCA	Y						

 $C_t = C_0 e^{(-Q/(PV*R))t}$

Notes: C_i - initial concentration C_f - final concentration C_{max} - maximum concentration gpm - gallons per minute MCL - maximum contaminant level mg/L - milligrams per liter

 $R = 1 + \frac{\rho_b}{n} K_d$

R - retardation PV - pore volume Q - flow rate

AWCA - Area-weighted concentration averaging FWCA - Flow rate-weighted concentration averaging

LWCA - Linear-weighted concentration averaging SIC - Surfer-interpolated concentration

¹Retardation (R) and pore volume (PV) taken from remediation duration estimate calculations [DRAFT_Remediation Duration Estimates_Rev. B (09-10-18).xlsx].

²Based on forward particle tracking results for WU-UP1 and WU-UP2 injection components, and uranium and nitrate plume distribution depicted on isopleth maps, maxium uranium and nitrate groundwater concentrations will report to WAA "BLUFF" extraction wells approximately 1 year following intiation of water injection at UP1 and UP2.

³The WAA "BLUFF" pore voluem is inconsequential for remediation duration since the remediation timeframe for this area is predicated on UP1/UP2 remediation timeframe.

⁴Since initial nitrate groundwater concentrations for WU "1206 SOUTH" and WAA "U<DCGL" WEST are below the applicable remediation criteria, the highest representative nitrate concentration for any well in each area was used in the influent concentration decay analysis. ⁵The combined influent flow rate presented in the table reflects initial operating conditions. The influent flow rate is expected to decline over the course of the remediation campaign. Combined influent flow rates for each month of remediation are provided in the concentration decay analysis tables.

cubic foot = 28.3168 liters gpm =

5451 liters per day

Western Area Com	bined Influent - Uranium	1										
Area	WU-PBA (GE-WU-01)	WAA 0>DCGL (GE- WAA-01 through GE- WAA-04)	WAA-WEST (GE-WAA- 05)	WU-1348 (GETR-WU- 01)	WAA-EAST (GE-WAA- 14 & GE-WAA-15)	06 through GE-WAA- 13)	1206-NORTH (GETR- WU-02)					
C _i (ug/L)	29.02	146.94	58.64	61.98	51.13	14.27	303.55					
C _{max} (ug/L)	29.02	146.94	58.64	61,98	51.13	22.29	303.55					
Flow Rate					20	104						
(gpm) R	109.6	13.1	13.1	55.3	13.1	13.1	50.4					
PV (liters)	6,548,662	118,295,089	67,593,844	1,749,984	133,552,129	192,892,116	85,334					
Q (liters/day)	27,255	539,648	54,510	21,804	109,020	566,903	43,608	C _t =C ₀	e ^{(-Q/(P}	vv*R))t		
Time Required for Initial Conc. to Reach Max. Level (months)	0	0	C	0	0	365	0] .
Cumulative Time (Months)	WU-PBA	WAA U>DCGL	WAA-WEST	WU-1348	WAA-EAST	WAA-BLUFF	1206-NORTH	Comb WEIGHTED Influen AVERAGE Ra	ined t Flow te	Months	Days	Notes
0 1	29.020000 28.986497	146.936364 145.384107	58.640000 58.530011	61.975537 61.552218	51.130000 51.032924	14.269519 14.172219	303.545455 222.932518	81.84 78.59	250 250	0	0.0 30.4	
2 3	28.953032 28.919606	143.848249 142.328616	58.420228 58.310652	61.131790 60.714234	50.936032 50.839324	14.075583 13.979605	163.728058 120.246598	76.03 73.97	250 250	2 3	60.8 91.3	
4 5	28.886219 28.852870	140.825037 139.337341	58.201281 58.092114	60.299529 59.887658	50.742800 50.646459	13.884282 13.789608	88.312562 64.859287	72.30 70.90	250	4	121.7	
6 7	28.819559 28.786287	137.865362 136.408933	57.983153 57.874396	59.478599 59.072335	50.550301 50.454326	13.695581 13.602194	47.634527 34.984168	69.71 68.67	250 250	6 7	182.5 212.9	
8 9	28.753054 28.719859	134.967890 133.542070	57.765843 57.657494	58.668845 58.268112	50.358533 50.262921	13.509444 13.417327	25.693380 18.869958	67.74 66.90	250 250	8 9	243.4 273.8	
10	28.686702	132.131313	57.549348	57.870116	50.167491	13.325838	13.858640	66.13	250	10	304.2	According to remediation duration calculations for 1206 North, uranium a however 1206 North groundwater extraction will continue until water inject
11 12	28.653583 28.620503	130.735459 129.354351	57.441405	57.474838	50.072243	13.234973 13.144727	10.178184 7.475151	65.40 64.71	242	11 12	334.6 365.0	
13	28.587461	127.987834	57.226125	56.692364	49.882288	22.287500	5.489966	67.89	242	13	395.5	
14	28.554457 28.521491	126.635753	57.011653	55.920543	49.693053	22.135527 21.984591	2.961209	66.58	242	14	425.9	
16 17	28.488563 28.455673	123.974290 122.664608	56.904718 56.797984	55.538581 55.159229	49.598705 49.504537	21.834684 21.685799	2.174797 1.597234	65.95 65.33	242	16 17	486.7 517.1	
18 19	28.422822 28.390008	121.368762 120.086605	56.691450	54.782468 54.408280	49.410547 49.316735	21.537929 21.391068	1.173054 0.861525	64.72 64.13	242 242	18 19	547.6 578.0	
20	28.357232	118.817993	56.478981	54.036648	49.223102	21.245208	0.632729	63.54	242	20	608.4 638.8	-
22	28.291793	116.320834	56.267309	53.300982	49.036368	20.956465	0.341285	62.38	242	22	669.2	
23	28.259130 28.226506	115.092004 113.876156	56.056429	52.936914	48.943267	20.813568	0.250649	61.82	242	23	730.1	
25 26	28.193918 28.161369	112.673152 111.482857	55.951286	52.216220 51.859561	48.757595 48.665023	20.530692 20.390698	0.135197 0.099292	60.70 60.15	242 242	25 26	760.5 790.9	-
27	28.128857	110.305137	55.741592	51.505338	48.572627	20.251660	0.072923	59.61	242	27	821.3 851.8	
29	28.063945	107.986889	55.532683	50.804133	48.388361	19.976420	0.039334	58.54	242	29	882.2	
30	28.031545 27.999183	105.717363	55.324557	50.457119	48.296490	19.840206	0.028888	57.49	242	31	912.6	
32 33	27.966858 27.934571	104.600550 103.495535	55.220786	49.770186 49.430234	48.113271 48.021923	19.570558 19.437112	0.015582 0.011444	56.98 56.47	242	32 33	973.4 1003.9	
34 35	27.902321 27.870108	102.402194 101.320403	55.013829	49.092604	47.930748	19.304575 19.172942	0.008405	55.96 55.46	242 242	34 35	1034.3 1064.7	
36	27.837932	100.250040	54.807648	48.424248	47.748917	19.042207	0.004533	54.96	242	36	1095.1	
38	27.773692	98.143117	54.602239	48.093489	47.567776	18.783405	0.003329	53.99	242	38	1156.0	
39 40	27.741627 27.709600	97.106319 96.080474	54.499824	47.438735 47.114708	47.477463 47.387321	18.655326 18.528120	0.001796 0.001319	53.51 53.03	242	39 40	1186.4 1216.8	
41 42	27.677609 27.645656	95.065467 94.061182	54.295569 54.193729	46.792894 46.473279	47.297351	18.401782 18.276305	0.000969 0.000711	52.56 52.09	242 242	41 42	1247.2 1277.6	
43	27.613739	93.067506	54.092079	46.155846	47.117923	18.151684	0.000522	51.63	242	43	1308.1	
45	27.550016	91.111536	53.889353	45.527471	46.939176	17.904985	0.000282	50.72	242	45	1368.9	-
46 47	27.518210 27.486440	90.149021 89.196674	53.788274	45.216499	46.850056 46.761106	17.782895	0.000207	49.83	242	46 47	1399.3	
48 49	27.454708 27.423011	88.254388 87.322056	53.586686 53.486175	44.600912 44.296269	46.672325 46.583712	17.541209 17.421600	0.000112 0.000082	49.39 48.95	242 242	48 49	1460.2 1490.6	
50 51	27.391352	86.399574 85.486837	53.385853	43.993706	46.495268 46.406991	17.302807 17.184823	0.000060	48.52 48.09	242	50 51	1521.0 1551.4	-
52	27.328142	84.583742	53.185773	43.394767	46.318882	17.067645	0.000032	47.67	242	52	1581.8	-
53	27.296592	83.690187 82.806072	52.986443	43.098362	46.230941	16.835679	0.000024	46.84	242	54	1642.7	
55 56	27.233601 27.202160	81.931297 81.065764	52.887058 52.787860	42.511612 42.221240	46.055558	16.606865	0.000013	46.02	242	55	1673.1	
57	27.170755	80.209374	52.688848	41.932851	45.880841	16.493628	0.000007	45.62	242	57	1733.9	According to remediation duration calculations for UP1 and UP2, uranium However, groundwater extraction will continue in the WAA "BLUFF" Area
58 59	27.139387 27.108055	79.362031 78.523639	52.590021 52.491380	41.646431 41.361968	45.793731 45.706786	16.381162 16.269463	0.000005	45.22 44.82	242	58 59	1764.4 1794.8	
60 61	27.076759 27.045499	77.694104 76.873333	52.392924 52.294652	41.079448	45.620007	16.158526 16.048345	0.000003	44.43 44.05	242 242	60 61	1825.2 1855.6	
62	27.014275	76.061232	52.196565	40.520184	45.446942	15.938916	0.000001	43.66	242	62 63	1886.0	
64	26.951936	74.462678	52.000942	39.968534	45.274533	15.722290	0.000001	42.91	242	64	1946.9	1
66	26.920820 26.889740	73.676043 72.897719	51.903406 51.806053	39.695532 39.424395	45.188575	15.508609	0.000000	42.54	242	66	2007.7	-
67 68	26.858696 26.827688	72.127618 71.365651	51.708882 51.611893	39.155109 38.887663	45.017146 44.931676	15.402860 15.297832	0.000000 0.000000	41.80 41.44	242	67 68	2038.1 2068.6	1
69 70	26.796716 26.765779	70.611735	51.515087 51.418462	38.622043 38.358238	44.846368	15.193520 15.089920	0.000000	41.08 40.73	242	69 70	2099.0	-
71	26.734878	69.127710	51.322018	38.096235	44.676238	14.987025	0.000000	40.38	242	71	2159.8	1
72	26.673183	67.674875	51.225755	37.836022	44.591415	14.783337	0.000000	39.69	242	73	2220.7	
74 75	26.642389 26.611631	66.959949 66.252574	51.033771 50.938048	37.320914 37.065996	44.422252 44.337912	14.682534 14.582417	0.000000	39.35 39.01	242	74 75	2251.1 2281.5	1
76 77	26.580908 26.550221	65.552673 64.860165	50.842506	36.812820 36.561372	44.253731	14.482984 14.384228	0.000000	38.68 38.35	242	76 77	2311.9 2342.3	-
78	26.519569	64.174973	50.651958	36.311642	44.085849	14.286146	0.000000	38.02	242	78	2372.8	· · ·
(8	26.488952	63.497020	50.556952	36.063618	44.002147	14.188/32	0.00000	1 of 2	242	19	2403.2	1

and nitrate remediation goals (NRC and State Criteria) are both met at 9.3 months; ection in WU-BA3 is discontinued in Month 83.

m and nitrate remediation goals (NRC and State Criteria) are both met at 57 Months, a to maintain the minimum treatment system flow rate.

Western Area Com	bined Influent - Uraniun	n									
Area	WU-PBA (GE-WU-01)	WAA U>DCGL (GE- WAA-01 through GE- WAA-04)	WAA-WEST (GE-WAA- 05)	WU-1348 (GETR-WU- 01)	WAA-EAST (GE-WAA- 14 & GE-WAA-15)	WAA-BLUFF (GE-WAA- 06 through GE-WAA- 13)	1206-NORTH (GETR- WU-02)				
C _i (ug/L)	29.02	146.94	58.64	61.98	51.13	14.27	303.55				
C _{max}	29.02	146.94	58.64	61.98	51 13	22.29	303 55				
Flow Rate		99	10		21	104	8				
R	109.6	13.1	13.1	55.3	13.1	13.1	50.4				
PV (liters)	6,548,662	118,295,089	67,593,844	1,749,984	133,552,129	192,892,116	85,334		1.01		
Q (liters/day)	27,255	539,648	54,510	21,804	109,020	566,903	43,608	С	_t =C ₀ e ^{(-Q/}	(PV*R))t	
Time Required for											
Initial Conc. to Reach Max. Level											
(months)	0	0	0	0	C	365	0				
Cumulative Time (Months)	WU-PBA	WAA U>DCGL	WAA-WEST	WU-1348	WAA-EAST	WAA-BLUFF	1206-NORTH	WEIGHTED	Combined Influent Flow Rate	Months	Days
80 81	26.458371 26.427825	62.826228 62.162523	50.462124 50.367474	35.817288 35.572641	43.918604 43.835220	14.091983 13.995894	0.000000 0.000000	37.38 37.06	242 242	80 81	2433.6 2464.0
82 83	26.397314 26.366839	61.505830 60.856074	50.273001 50.178706	35.329665 35.088348	43.751994 43.668926	13.900459 13.805676	0.000000 0.000000	36.74 36.43	242 242	82 83	2494.4 2524.9
84 85	26.336398 26.305993	60.213181 59.577081	50.084588 49.990646	34.848679 34.610648	43.586015 43.503262	13.711539 13.618043		36.12 35.82	242 242	84 85	2555.3 2585.7
86 87	26.275623 26.245288	58.947700 58.324969	49.896880	34.374242 34.139451	43.420667	13.525185		35.51	242	86 87	2616.1
88	26.214988	57.708815	49.709876	33.906264	43.255945	13.341365		34.92	242	88	2677.0
89 90	26.184723 26.154493	57.099171 56.495968	49.616637 49.523573	33.674670 33.444658	43.173819 43.091848	13.250394 13.160043		34.62 34.33	242 242	89 90	2707.4 2737.8
91	26.124298	55.899136	49.430683	33.216216	43.010034	13.070308		34.05	242	91	2768.2
93	26.064012	54.724322	49.245427	32.764004	42.846870	12.892670		33.48	242	93	2829.1
94 95	26.033922	54.146207 53.574199	49.153059	32.540212	42.765520	12.804758		33.20	242	94	2859.5
96	25.973845	53.008233	48.968842	32.097203	42.603284	12.630729		32.65	242	96	2920.3
97 98	25.943858 25.913906	52.448247 51.894176	48.876993 48.785317	31.877965 31.660225	42.522397	12.544603		32.37 32.10	242 242	97 98	2950.7
99	25.883989	51.345959	48.693812	31.443972	42.361083	12.374110		31.84	242	99	3011.6
100 101	25.854106 25.824257	50.803533 50.266837	48.602478 48.511317	31.229196 31.015887	42.280656	i 12.289734 12.205934		31.57 31.31	242 242	100	3042.0 3072.4
102	25.794444	49.735811	48.420326	30.804035	42.120259	12.122705		31.05	242	102	3102.8
103	25.734919	49.210395 48.690530	48.238855	30.384663	41.960471	11.957945		30.54	242	103	3163.7
105	25.705208	48.176156	48.148376	30.177123	41.880804	11.876407		30.29	242	105	3194.1 3224.5
107	25.645890	47.163653	47.967925	29.766285	41.721924	11.714995		29.80	242	107	3254.9
108 109	25.616282 25.586708	46.665410 46.172430	47.877953 47.788150	29.562969 29.361041	41.642710	11.635114		29.55 29.31	242 242	108	3285.4 3315.8
110	25.557168	45.684658	47.698515	29.160492	41.484734	11.476981		29.07	242	110	3346.2
111 112	25.527663 25.498191	45.202039 44.724518	47.609049 47.519750	28.961314 28.763496	41.405970	11.398723 11.320998		28.83 28.60	242 242	111	3376.6 3407.0
113	25.468754	44.252042	47.430619	28.567029	41.248892	11.243803		28.36	242	113	3437.5
114	25.439350 25.409981	43.784557 43.322011	47.341655 47.252858	28.371904 28.178111	41.170576	11.16/135		28.13 27.91	242	114	3467.9
116	25.380645	42.864351	47.164228	27.985643	41.014391	11.015362		27.68	242	116	3528.7
118	25.322076	41.963485	46.987465	27.604640	40.936520	10.865653		27.23	242	118	3589.6
119 120	25.292842	41.520177	46.899333	27.416089	40.781222	10.791563		27.01	242	119	3620.0
121	25.234475	40.647561	46.723563	27.042841	40.626514	10.644895		26.58	242	121	3680.8
122 123	25.205342 25.176242	40.218154 39.793284	46.635925 46.548452	26.858126 26.674674	40.549380	10.572310		26.37 26.16	242 242	122	3711.2 3741.7
124	25.147176	39.372902	46.461143	26.492474	40.395551	10.428622		25.95	242	124	3772.1
125	25.089146	38.545414	46.287015	26.131801	40.318855	10.357512		25.74	242	125	3802.5
127	25.060180	38.138215	46.200196	25.953309	40.165901	10.216744		25.33	242	127	3863.3
129	25.002350	37.336676	46.027047		40.009042	10.077888		24.72	238	129	3924.2
130 131	24.973485	36.942247	45.940715		39.937557 39.861731	10.009170		24.33	238	130	3954.6 3985.0
132	24.915855	36.165843	45.768538		39.786049	9.873135		23.94	238	132	4015.4
133 134	24.887090 24.858358	35.783782 35.405757	45.682692 45.597006		39.710510 39.635115	9.805813 9.738950		23.75	238 238	133 134	4045.9 4076.3
135	24.829659	35.031726	45.511482		39.559864	9.672543		23.38	238	135	4106.7
136	24.800994 24.772361	34.661646 34.295475	45.426117 45.340913		39.484755 39.409789	9.606588		23.19 23.01	238	136	4137.1 4167.5
138	24.743762	33.933173	45.255869		39.334965	9.476025		22.83	238	138	4198.0
140	24.715195 24.686662	33.574698 33.220011	45.086259		39.260283 39.185743	9.347237		22.65	238	140	4228.4
141	24.658161	32.869070	45.001692		39.111344	9.283500		22.30	238	141	4289.2
143	24.601259	32.178271	44.917284 44.833034		38.962971	9.157329		22.13 21.95	238	142	4350.1
144	24.572857	31.838335	44.748942		38.888995	9.094887		21.78	238	144	4380.5
146	24.516151	31.1691991	44.581232		38.741465	8.971279		21.62	238	145	4441.3
147 148	24.487848	30.839923	44.497613		38.667910	8.910106		21.28	238	147	4471.7
149	24.431338	30.191771	44.330844		38,521219	8.789009		20.96	238	149	4532.6
150	24.403133	29.872820	44.247694		38.448082	8.729079		20.79	238	150	4563.0

According to remediation duration calculations for WU-PBA, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 204.9 Months According to remediation duration calculations WAA U>DCGL, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 167.6 Months According to remediation duration calculations WAA West, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 404.2 Months According to remediation duration calculations WAA West, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 404.2 Months According to remediation duration calculations WAA East, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 591.2 Months

According to remediation duration calculations 1206 South, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 126.3 Months

			1			1						
Western Area Com	bined Influent - Nitrate	WAA U>DCGL (GE-				WAA-BLUFF (GE-WAA-						
Area	WU-PBA (GE-WU-01)	WAA-01 through GE-	WAA-WEST (GE-WAA- 05)	01)	WAA-EAST (GE-WAA- 14 & GE-WAA-15)	06 through GE-WAA-	1206-NORTH (GETR- WU-02)					
C _i		((),(),(),(),(),(),(),(),(),(),(),(),(),				10						
(ug/L)	61.73	35.76	10.22	11.57	72.23	114.10	38.64					
C _{max} (ug/L)	61.73	35.76	10.22	11.57	72.23	312.75	38.64					
Flow Rate												
(gpm) R	5 22.7	99 4.6	10 4.6	4	20 4.6	104 4.6	8 10.9					
PV												
(liters)	6,548,662	118,295,089	67,593,844	1,749,984	133,552,129	192,892,116	85,334		(0)	/(_)/*_))+		
Q (liters/day)	27 255	539 648	54 510	21 804	109.020	566 903	43 608	C _t	=C ₀ e ^(-u)	(PV [·] K))t		
(11,200	000,010	01,010	21,001	100,020							
Time Required for												
Initial Conc. to Reach Max. Level							The second					
(months)	0	0	0	0	0	0	0			1	1	1
Cumulative Time								WEIGHTED	Combined	1		
(Months)	WU-PBA	WAA U>DCGL	WAA-WEST	VVU-1348	WAA-EAST	WAA-BLUFF	1206-NORTH	AVERAGE	Rate	Months	Days	Notes
0	61.730000 61.386971	35.761919 34.703700	10.220000	11.570000 11.206095	72.225000 71.837838	114.100192 111.913425	38.640000 9.249148	70.47 68.16	250.00 250.00	0	0.0	
2	61.045849	33.676794	10.112040	10.853635	71.452751	109.768568	2.213942	66.59	250.00	2	60.8	-
4	60.369280	31.713243	10.005221	10.181625	70.688760	105.601386	0.126851	63.92	250.00	4	121.7	
5	60.033812 59.700209	30.774827 29.864178	9.952235 9.899530	9.861388 9.551223	70.309833 69.932937	103.577501 101.592405	0.030364 0.007268	62.66 61.43	250.00 250.00	5	152.1	-
7	59.368460	28.980477	9.847104	9.250813	69.558062	99.645353	0.001740	60.22	250.00	7	212.9	-
9	58.710481	27.290749	9.794955	8.678043	68.814328	95.862483	0.000100	57.89	250.00	9	273.8	
10	58.384232	26,483197	9.691485	8.405097	68,445449	94.025247	0.000024	56.77	250.00	10	304.2	According to remediation duration calculations for 1206 North, uranium and however 1206 North groundwater extraction will continue until water injection
11	58.059795	25.699541	9.640161	8.140736	68.078548	92.223223	0.000006	55.67	242.00	11	334.6	
12	57.416321	24.939074 24.201110	9.538326	7.636696	67.350634	312.750000	0.000000	146.73	242.00	13	395.5	-
14 15	57.097263 56.779978	23.484983 22.790046	9.487813 9.437567	7.396503 7.163865	66.989601 66.630503	306.756045 300.876965	0.000000 0.000000	143.91 141.15	242.00 242.00	14	425.9	-
16	56.464456	22.115673	9.387588	6.938544	66.273330	295.110560	0.000000	138.44	242.00	16	486.7	-
18	55.838662	20.826202	9.337873	6.508939	65.564719	283.907177	0.000000	133.19	242.00	18	547.6	-
19 20	55.528371 55.219805	20.209941 19.611915	9.239231 9.190302	6.304217 6.105934	65.213259 64.863683	278.466004 273.129112	0.000000	130.64 128.15	242.00 242.00	19 20	578.0	-
21	54.912952	19.031585	9.141632	5.913887	64.515982	267.894504	0.000000	125.70	242.00	21	638.8	
22	54.304354	17.921934	9.045063	5.547724	63.826160	257.724334	0.000000	120.95	242.00	23	699.7	
24 25	54.002589 53.702501	17.391612 16.876982	8.997162 8.949515	5.373235 5.204233	63.484020 63.143714	252.784963 247.940257	0.000000 0.000000	118.65 116.39	242.00 242.00	24	730.1	-
26	53.404080	16.377581	8.902120	5.040547	62.805232	243.188401	0.000000	114.18	242.00	26	790.9	
27 28	52.812205	15.892957	8.808082	4.882010	62.133702	233.956157	0.000000	109.89	242.00	27	851.8	
29 30	52.518732 52.226889	14.966306 14.523443	8.761436 8.715037	4.579737 4.435692	61.800634 61.469352	229.472311 225.074400	0.000000 0.000000	107.81 105.76	242.00 242.00	29 30	882.2 912.6	-
31	51,936669	14.093685	8.668883	4.296179	61.139846	220.760776	0.000000	103.76	242.00	31	943.0 973.4	-
33	51.361056	13.271942	8.577309	4.030178	60.486122	212.379959	0.000000	99.88	242.00	33	1003.9	
34 35	51.075647 50.791824	12.879216 12.498111	8.531885 8.486702	3.903419 3.780647	60.161887 59.839389	208.309628 204.317306	0.000000	98.00 96.15	242.00 242.00	34	1034.3	-
36	50.509578	12.128284	8.441758	3.661736	59.518620	200.401499	0.000000	94.34	242.00	36	1095.1	
38	49.949782	11.421135	8.352583	3.435017	58.882231	192.793588	0.000000	90.82	242.00	38	1156.0	
40	49.672215 49.396190	11.083176 10.755217	8.308349 8.264349	3.326977 3.222336	58.566593	189.098636 185.474500	0.000000	89.12	242.00	40	1216.8	
41 42	49.121699 48.848734	10.436963	8.220583 8.177048	3.120985	57.940384	181.919820 178 433268	0.000000	85.81 84.20	242.00	41	1247.2	-
43	48.577285	9.828428	8.133744	2.927747	57.320870	175.013536	0.000000	82.63	242.00	43	1308.1	
44 45	48.007345 48.038905	9.537598 9.255374	8.090669	2.835662	56.707980	171.659345 168.369438	0.000000	79.57	242.00	44	1358.5	
46 47	47.771957 47.506492	8.981501 8.715733	8.005203	2.660090	56.403997	165.142583 161.977571	0.000000	78.09	242.00 242.00	46	1399.3 1429.7	-
48	47.242502	8.457828	7.920639	2.495389	55.800911	158.873219	0.000000	75.21	242.00	48	1460.2	- -
49 50	46.718915	8.207555 7.964688	7.878693	2.340885	55.204273	155.828362	0.000000	73.01	242.00	50	1521.0	
51 52	46.459302 46.201131	7.729008	7.795465	2.267259	54.908350 54.614014	149.912596 147.039473	0.000000	71.09	242.00	51	1551.4	-
53	45.944395	7.278362	7.713117	2.126880	54.321256	144.221413	0.000000	68.49	242.00	53	1612.3	
54 55	45.435195	6.853992	7.631639	2.059984	53.740439	138.746287	0.000000	65.98	242.00	55	1673.1	
56	45.182715	6.651177	7.591223	1.932439	53.452363	136.087169	0.000000	64.76	242.00	56	1703.5	According to remediation duration calculations for UP1 and UP2, uranium a
57	44.931638	6.454365	7.551022	1.871659	53.165832	133.479014	0.000000	63.57	242.00	57	1733.9	However, groundwater extraction will continue in the WAA "BLUFF" Area to
59	44.881957	6.078038	7.471256	1.755774	52.597369	128.411705	0.000000	61.25	242.00	59	1794.8	-
60 61	44.186748 43.941206	5.898185 5.723653	7.431689 7.392332	1.700550 1.647064	52.315421 52.034984	125.950653 123.536768	0.000000 0.000000	60.12 59.02	242.00 242.00	60 61	1825.2	-
62	43.697028	5.554287	7.353184	1.595260	51.756050	121.169145	0.000000	57.94	242.00	62	1886.0	
64	43.212736	5.230440	7.275508	1.496488	51.202661	116.569160	0.000000	55.84	242.00	64	1946.9	
65 66	42.972606 42.733810	5.075667 4.925475	7.236978 7.198653	1.449420 1.403832	50.928189 50.655189	114.335074 112.143805	0.000000	54.82 53.82	242.00 242.00	66	2007.7	1
67 68	42.496342	4.779727	7.160530	1.359678	50.383652	109.994532	0.000000	52.84	242.00	67	2038.1	-
69	42.025357	4.501041	7.084889	1.275493	49.844936	105.818772	0.000000	50.93	242.00	69	2099.0	1
70 71	41.791825 41.559591	4.367852 4.238605	7.047369 7.010047	1.235375 1.196520	49.577743 49.311981	103.790721 101.801538	0.000000	50.01 49.10	242.00	70	2129.4	1
72 73	41.328648 41.098988	4.113182	6.972923 6.935996	1.158886	49.047644 48.784725	99.850479 97.936812	0.000000	48.21 47.34	242.00	72	2190.2	-
74	40.870604	3.873359	6.899264	1.087133	48.523214	96.059821	0.000000	46.49	242.00	74	2251.1	-
75 76	40.643489 40.417636	3.758744 3.647520	6.862727 6.826383	1.052940	48.263106 48.004391	94.218803 92.413069	0.000000	45.65	242.00	75	2281.5	1
77 78	40.193039 39.969689	3.539588 3.434849	6.790232 6.754272	0.987746	47.747064	90.641943 88.904760	0.000000	44.02 43.23	242.00 242.00	77	2342.3	1
79	39.747581	3.333209	6.718503	0.926589	47.236540	87.200872	0.000000	42.45	242.00	79	2403.2]
								1 012				

nd nitrate remediation goals (NRC and State Criteria) are both met at 9.3 months; tion in WU-BA3 is discontinued in Month 83.

and nitrate remediation goals (NRC and State Criteria) are both met at 57 Months. to maintain the minimum treatment system flow rate.

Western Area Com	bined Influent - Nitrate						
Area	WU-PBA (GE-WU-01)	WAA U>DCGL (GE- WAA-01 through GE- WAA-04)	WAA-WEST (GE-WAA- 05)	WU-1348 (GETR-WU- 01)	WAA-EAST (GE-WAA- 14 & GE-WAA-15)	WAA-BLUFF (GE-WAA- 06 through GE-WAA- 13)	1206-NORTH (GETR- WU-02)
C _i (ug/L)	61.73	35.76	10.22	11.57	72.23	114.10	38.64
C _{max} (ug/L)	61.73	35.76	10.22	11.57	72.23	312.75	38.64
Flow Rate (gpm)	5	99	10	4	20	104	8
R	22.7	4.6	4.6	11.9	4.6	4.6	10.9
PV (liters)	6,548,662	118,295,089	67,593,844	1,749,984	133,552,129	192,892,116	85,334
Q (liters/day)	27,255	539,648	54,510	21,804	109,020	566,903	43,608
Time Required for Initial Conc. to Reach Max. Level (months)	0	0	0	0	0	0	

 $C_t = C_0 e^{(-Q/(PV^*R))t}$

Cumulative Time (Months)	WU-PBA	WAA U>DCGL	WAA-WEST	WU-1348	WAA-EAST	WAA-BLUFF	1206-NORTH	WEIGHTED	Combined Influent Flow Rate	Months	Davs	Notes
80	39,526707	3.234577	6.682923	0.897446	46,983328	85.529639	0.000000	41.69	242.00	80	2433.6	
81	39 307060	3 138864	6 647531	0.869219	46.731474	83.890435	0.000000	40.95	242.00	81	2464.0	1
82	39.088634	3 045983	6.612327	0.841880	46.480970	82.282648	0.000000	40.21	242.00	82	2494.4	
83	38.871421	2,955850	6,577309	0.815401	46.231809	80.705674	0.000000	39.50	242.00	83	2524.9	
84	38.655416	2.868385	6.542477	0.789754	45,983983	79.158924		40.07	242.00	84	2555.3	
85	38,440611	2,783507	6.507829	0.764915	45.737486	77.641817		39.36	242.00	85	2585.7	
86	38.226999	2.701141	6.473365	0.740856	45.492311	76,153786		38.66	242.00	86	2616.1	
87	38.014575	2.621213	6.439083	0.717554	45.248449	74.694274		37.98	242.00	87	2646.5	
88	37.803331	2.543649	6.404983	0.694985	45.005895	73.262734		37.30	242.00	88	2677.0	
89	37.593261	2.468381	6.371063	0.673126	44.764641	71.858630		36.64	242.00	89	2707.4	
90	37.384358	2.395340	6.337323	0.651955	44.524680	70.481436		35.99	242.00	90	2737.8	
91	37.176616	2.324460	6.303762	0.631449	44.286005	69.130636		35.36	242.00	91	2768.2	
92	36.970028	2.255678	6.270379	0.611589	44.048610	67.805725		34.74	242.00	92	2/98.6	-
93	36.764589	2.188931	6.23/1/2	0.592353	43.812488	65.506207		34.12	242.00	93	2850.5	
94	36.560291	2.124159	6.204141	0.5/3/22	43.577631	00.231093		22.04	242.00	05	2880.0	-
95	30.35/128	2.061303	0.1/1280	0.0000//	43.344033	62 755184		32.34	242.00	96	2920.3	
90	25 054192	2.000300	6,130003	0.530199	43.111000	61 552/61		31 79	242.00	97	2950 7	1
97	35 754380	1.541110	6.073757	0.521272	42.650726	60 372788		31.24	242.00	98	2981.2	
99	35 555705	1 827939	6.041592	0.488997	42 422097	59,215724		30.69	242.00	99	3011.6	1
100	35 358124	1 773849	6 009596	0 473617	42 194693	58.080835		30,16	242.00	100	3042.0	1
101	35 161642	1 721360	5 977771	0.458720	41.968509	56,967697		29.64	242.00	101	3072.4	
102	34,966252	1.670424	5,946114	0.444292	41,743537	55.875893		29.12	242.00	102	3102.8	1
103	34.771947	1.620995	5.914624	0.430318	41.519770	54.805013		28.62	242.00	103	3133.3]
104	34.578722	1.573028	5.883301	0.416784	41.297204	53.754657		28.12	242.00	104	3163.7	
105	34.386571	1.526481	5.852144	0.403675	41.075830	52.724431		27.64	242.00	105	3194.1	
106	34.195487	1.481312	5.821153	0.390978	40.855643	51.713951		27.16	242.00	106	3224.5	
107	34.005465	1.437479	5.790325	0.378681	40.636637	50.722836		26.69	242.00	107	3254.9	
108	33.816500	1.394943	5.759660	0.366771	40.418804	49.750716		26.23	242.00	108	3285.4	
109	33.628584	1.353666	5.729158	0.355235	40.202139	48.797228		25.78	242.00	109	3315.8	-
110	33.441713	1.313610	5.698818	0.344062	39.986635	47.862013		25.34	242.00	110	3346.2	-
111	33.255880	1.274739	5.668638	0.333240	39.772287	46.944722		24.91	242.00	111	33/0.0	-
112	33.071079	1.237019	5.638618	0.322759	39.559088	46.045011		24.48	242.00	112	3407.0	-
113	32.88/306	1.200414	5.608/5/	0.312607	39,347031	40.102040		24.07	242.00	114	3467.9	-
114	32.704554	1.164893	5.5/9054	0.302775	39,130112	44.290909		23.00	242.00	115	3498.3	
115	32.322017	1.130423	5.549506	0.293232	38,717658	43.440022		22.86	242.00	116	3528.7	1
117	32 162368	1.050573	5 400885	0.204020	38 510112	41 798590		22.48	242.00	117	3559.1	1
118	31,983644	1.033013	5 461806	0.266443	38.303679	40.997507		22.10	242.00	118	3589.6	1
119	31,805914	1.002446	5.432882	0.258062	38.098352	40.211776		21.73	242.00	119	3620.0	1
120	31.629171	0.972783	5.404110	0.249946	37.894126	39.441104		21.36	242.00	120	3650.4	
121	31.453410	0.943998	5.375491	0.242084	37.690994	38.685203		21.00	242.00	121	3680.8	
122	31.278626	0.916064	5.347023	0.234470	37.488952	37.943788		20.65	242.00	122	3711.2	
123	31.104813	0.888957	5.318707	0.227095	37.287992	37.216583		20.31	242.00	123	3741.7	1
124	30.931966	0.862652	5.290540	0.219953	37.088110	36.503315		19.97	242.00	124	3772.1	1
125	30.760079	0.837126	5.262522	0.213035	36.889299	35.803717		19.63	242.00	125	3802.5	-
126	30.589148	0.812355	5.234653	0.206334	36.691554	35.117527		19.31	242.00	126	3832.9	
127	30.419167	0.788317	5.206931	0.199844	36.494869	34.444489		18.99	242.00	127	3803.3	According to remediation
128	30.250130	0.764990	5.179356		36.299238	33./84349		10.90	230.00	120	3093.0	-
129	30.082032	0.742353	5.151927		30,104030	33,130001		18 36	238.00	129	3954.6	-
130	29.914009	0.720300	5.124043		35.911110	21 979975		18.06	238.00	131	3985.0	
132	29.740034	0.099070	5.097504		35 527146	31 267906		17.77	238.00	132	4015.4	
132	29.303323	0.658310	5.043656		35 336703	30 668646		17.47	238.00	133	4045.9	1
134	29 255452	0.638830	5 016946		35,147281	30 080872		17.19	238.00	134	4076.3	
135	29.092882	0.619927	4,990377		34,958874	29.504362		16.91	238.00	135	4106.7	
136	28.931215	0.601583	4,963949		34.771477	28.938901		16.63	238.00	136	4137.1	
137	28,770447	0.583781	4,937661		34.585084	28.384278		16.36	238.00	137	4167.5	
138	28.610572	0.566507	4.911512		34.399691	27.840284		16.10	238.00	138	4198.0	
139	28.451585	0.549744	4.885501		34.215292	27.306716		15.84	238.00	139	4228.4	
140	28.293482	0.533476	4.859629		34.031881	26.783374		15.58	238.00	140	4258.8	-
141	28.136257	0.517690	4.833893		33.849453	26.270062		15.33	238.00	141	4289.2	-
142	27.979906	0.502372	4.808293		33,668003	25.766587		15.09	238.00	142	4319.6	-
143	27.824424	0.487506	4.782830		33.487525	25.272762		14.85	238.00	143	4350.1	-
144	27.669806	0.473080	4.757501		33.308016	24.788402		14.61	238.00	144	4380.5	-
145	27.516047	0.459082	4.732306		33.129468	24.313324		14.38	238.00	145	4410.9	-
146	27.363142	0.445497	4.707244		32.951878	23.847351		14.15	238.00	146	4441.3	
147	27.211088	0.432315	4.682316		32.775239	23.390309		13.92	238.00	147	44/1./	-
148	27.059878	0.419522	4.65/519		32.59954/	22.942020		13.70	238.00	140	4532.6	1
149	20.909008	0.407108	4.032054		32.424/90	22.002330		13.27	238.00	150	4563.0	1
100	20.1055/4	0.390001	4.000319		32.230903	22.011070		TO LET	200100		1	

 13.27
 238.00
 150
 4553.0

 According to remediation duration calculations for WU-PBA, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 204.9 Months According to remediation duration calculations WAA U-DCGL, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 167.6 Months According to remediation duration calculations WAA U-DCGL, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 404.2 Months According to remediation duration calculations WAA West, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 404.2 Months According to remediation duration calculations WAA East, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 404.2 Months According to remediation duration calculations WAA East, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 591.2 Months

on duration calculations 1206 South, uranium and nitrate remediation goals (NRC and State Criteria) are both met at 126.3 Months

Attachment 12.0a – Treatment System Effluent Criteria: BA1 and WA

														Treatme	nt Effluent C	riteria												
Constituent Source	Ground	dwater Conta	aminant										1. 1.19				Treatment A	dditives										
Limitation Rationale	Trea	tment Objec	tives							a state	(Cateria)				Wat	er Quality Objection	es (for com	pliance and	injection purpos	ses)								
Limitation Basis	OPD	ES Permit Co	ncentration l	Limits	Injection Criterion	Injection Criterion	Injection Criterion	EPA DWEL ³	C _{mean} ⁴	Influent Conc.	C _{mean}	Influent Conc./ Injection Criterion	Influent Conc.	C _{mean}	Injection Criterion/ Influent Conc.	C _{mean}	Influent Conc.	Injection Criterion	Influent Conc.	Influent Conc./ Injection Criterion	Influent Conc.	Injection Criterion	Injection Criterion	OPDES Permit Requirement				
	Uranium ¹	Nitrate	Fluoride	рН	Heterotrophic Plate Count	Anaerobic Growth	Sulfate Reducing Bacteria	Fe/Mn Reducing Bacteria	Adenosine Triphosphate (ATP)	LSI	Molybdenum	Boron	Selenium	Sulfate	Copper	Manganese	Chlorides ⁵	Nickel	Sodium ⁵	Zinc	тос	Ortho- Phosphate	TDS	Total Iron	Dissolved Iron	Silica	Tannin/ Lignin	Temperature
Groundwater Extraction Process Stream	μg/L	mg/L	mg/L	s.u.	(colonies/ml)	percent population ²	presence/ absence	percent population ³	(colonies/ml)		mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L (as Fe ²⁺)	mg/L (as SiO ₂)	mg/L	
BA1 (Outfall 002)	≤30 -05-	<5	~	65-90	<200	<15%	Abcont	Abcont	<100.000	05 105	<0.20	0	≤4.77	≤251	≤0.03	≤0.10	<100	<14.2	≤80	≤400	≤3.95	-	≤959	≤1.53	≤0.56	<20	~5	There can be no addition of heat from artificial sources
WATF (Outfall 001)	ND (1.0)	23	34	0.5 - 5.0	2300	\$11%	Absent	Absent	\$100,000	-0.5 - +0.5	30.20	57	≤8.97	≤240	≤0.01	≤0.54	5100	514.5	≤82.6	≤4.34	≤6.31	51	≤1200	≤1	≤0.05	(30	73	to the water discharged at Outfalls 001 & 002

				-	Treatme	ent Effluent (Criteria														
Constituent Source				The Association	Water Qua	ality Objectiv	es (for compliance	e and injection	on purposes		AN WE S				A. 2034		Sec.		1.00		
Limitation Rationale	Treatment Additives										Gr	oundwater Co	nstituents								
Limitation Basis	OPDES Permit Requirements	C _{mean}	C _{mean}	C _{mean}	C _{mean}	Injection Criterion	C _{mean}	C _{mean}	Influent Conc.	Influent Conc.	Injection Criterion	Injection Criterion	C _{mean}	Injection Criterion/ Influent Conc.	C _{mean}	C _{mean}	C _{mean}	C _{mean}	C _{mean}	C _{mean}	OPDES Permit Requirement
	General Quality	Lead	Mercury	Thallium	Cyanide	TSS	Ammonia	Silver	Total Alkalinity	Bicarbonate Alkalinity	Potassium	Magnesium	Chromium	Calcium	Barium	Arsenic	Cadmium	Bis (2-Ethylhexyl)	1,4- Dichlorobenzene	Dimethyl Phthalate	Total Halogens
Groundwater Extraction Process Stream		μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	μg/L	mg/L (as CaCO ₃)	mg/L (as CaCO ₃)	mg/L	mg/L	μg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L
BA1 (Outfall 002)	There shall be no discharge of a visible sheen of oil or globules of oil or grease on or in the water. Oil and grease shall not be present in quantities that adhere to stream banks and coat bottoms of watercourses. Surface waters of the State shall be maintained free from oil and grease and to take and advect the and indexence of floating and fild a public form in other stream provides. The dishere then a the stream of the stream	≤23.6	-0.2	(17.2	(12.2		≤0.20	<1.75	≤463	≤462	~5	<190	≤36.4	≤180	<2240	<50.7	<0.28	<2.20	-0.10	1001	
WATF (Outfall 001)	grease and taste and outris. There shall be no discharge of hoaring solids of visitile foam in other than trace amounts. The discharge shall not contain chemical, physical, or biological substances in concentrations that are irritating to skin or sense organs or are toxic or cause illness upon ingestion by human beings.	≤15.5	50.2	517.5	\$13.5	545	≤22.3	\$1.75	≤325	≤294	25	5190	≤102	≤182	\$5540	\$59.7	50.28	\$3.29	\$0.19	5881	<u>≤</u> 0.1

Definitions: BA1 - Burial Area 1 CaCO₃ - calcium carbonate $C_{\text{mean}}\,$ - mean pollutant effluent concentration calculated in OPDES permit. Conc. - concentration DWEL - Drinking water equivalent level EPA - Environmental Protection Agency Fe²⁺ - ferrous iron LSI - Langelier Saturation Index mg/L - milligrams per liter OPDES - Oklahoma Pollutant Discharge Elimination System SiO₂ - silica dioxide s.u. - Standard Units TDS - Total Dissolved Solids TOC - Total Organic Carbon TSS - Total Suspended Solids µg/L - micrograms per liter USEPA - United States Environmental Protection Agency WATF - Western Area Treatment Facility

Applicable Effluent Standards:

1. Concentration limits specified in the OPDES permit

2. Injection Criterion

3. EPA DWEL

4. C_{mean} presented in the OPDES permit

5. Average influent concentrations for WATF and BA1 groundwater process streams

6. Water quality requirement specified in the OPDES permit

Rationale for Establishing Effluent Criteria: 1. Concentration limits specified in the OPDES permit apply for uranium, nitrate, fluoride, and pH.

2. The injection criterion applies if:

a. Influent concentration data are not available but an injection criterion exists and the water treatment process may affect the constituent concentration, characteristic, etc. (e.g., heterotrophic plate count, LSI, etc.)

b. If the injection criterion is less stringent than the corresponding influent concentration. 3. EPA DWELs apply if the water treatment process may affect the constituent concentration, influent concentration data are not available, the constituent is not referenced in the OPDES permit, and no other standard (i.e., USEPA MCL) exits (e.g., molybdenum, boron).

4. The $\mathrm{C}_{\mathrm{mean}}$ presented in the OPDES permit applies if:

a. Influent concentration data are not available but the water treatment process may affect the constituent concentration, characteristic, etc. of a regulated constituent (e.g., selenium). b. Influent concentration data are not available but an injection criterion exists and the water treatment process may affect the constituent concentration, characteristic, etc. (e.g., copper).

5. The influent concentration applies if:

a. An injection criterion exists, the water treatment process may affect the constituent concentration, characteristic, etc., and the influent concentration is more stringent than other standards (e.g., Cmean) [e.g., sulfate].

b. An injection criterion exists but the injection criterion is more stringent than the influent concentration (e.g., manganese – WATF process stream).

6.Water quality requirement specified in the OPDES permit applies if there are no other applicable criteria or standards (e.g., total halogens).

Notes:

¹The maximum treatment effluent uranium concentration for re-injection or OPDES discharge is 30 µg/L. Maximum concentration prior to nitrate removal is non-detect (1.0 µg/L detection limit).

²Anaerobic growth analysis is conducted by analyzing the population of sulfate reducing bacteria (SRB), as a percentage of the total microbial population, because SRB are the most probable, prolific and observable anaerobes in groundwater.

 $^3\mathsf{EPA}$ DWEL used for constituents for which groundwater data and $\mathsf{C}_{\mathsf{mean}}$ levels are not available.

⁴C_{mean} values presented in OPDES discharge permit used for constituents for which groundwater data are not available.

⁵Sodium and chloride concentrations in groundwater extracted from wells located near the Cimarron River may be significantly higher than the concentrations reported for site monitoring wells.

Attachment 12.0b – Treatment System Influent Characteristics: BA1 and WA

				Image: Subscription Subscr																														
1		Flow	Rates												-	1	1	1																
1						Nitrogen,	Nitrogen,							1					1															
				Total	Total	Nitrate-	Nitrate-								0.1.25	Dhamalahtholoin	Total		1						Ortho-			2			700			Temperature
Groundwater				Uranium	Uranium	Nitrite	Nitrite	Fluoride	Fluoride				Bicarbonate	Carbonate	Hydroxide	Phenoiphthalein	Total	Aluminum	Calcium	Chlorides ²	Ferrous Iron	Iron	Magnesium	Manganese	Phosphate	Potassium	Silica	Sodium	Sulfate	TDS	TOC	Phosphorous	Methane	Temperature
Extraction Process	Designated	Nominal	Range	(Initial)	(Maximum)	(Initial)	(Maximum)	(Initial)	(Maximum)	pH	LSI ¹	RSI	Alkalinity	Alkalinity	Alkalinity	Alkalinity	Alkalihity	Aluminum		mg/l	mg/l	ug/L	µg/L	μg/L	mg/L	µg/L	μg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	L
Stream	Remediation Area	gom	gom	ug/L	µg/L	mg/L	mg/L	mg/L	mg/L	s.u.			mg/L	mg/L	mg/L	mg/L	mg/L	μ <u>β</u> /L	μ <u>β</u> /L	20.42	0.40	545.93	49279.31	633.23	0.20	605.21	24072.41	30758.62	50.54	606.61	3.07	-	-	15.19
Jucum	"UNDEGL" AREA A	14	10 - 26	1720	1720	2.35	2.35	0.72	0.72	7.12	0.00	7.10	439.32	0.94	1.00	1.00	436.46	80.59	108831.03	20.45	0.40	763.78	61892.00	436.98	0.13	2133.20	26132.00	91940.00	266.42	985.04	3.79	-	-	15.29
PA1	"UNDEGL" AREA R	66	30 - 90	1139	1139	0.27	0.27	0.49	0.49	7.09	0.16	6.76	460.92	1.53	1.00	1.00	462.96	62.57	163440.00	73.30	0.75	4740.00	6/300.00	807.00	-	1930.00	26000.00	58400.00	338.00	1120.00	5.13	-	-	15.57
DAT		20	10 40	24.7	34.7	0.06	0.06	0.43	0.43	7.24	0.89	5.93	480.00	-	-	-	481.00	26.70	186000.00	149.00	0.05	4740.00	77096.67	86.78	0.20	3346.67	22266.67	115640.00	369.13	1235.33	7.19	-	0.03	13.79
	UKDEGE AREA C	20	10-40	147	147	25.9	35.8	2.27	23	6.96	-0.06	7.07	343.13	0.84	1.00	1.00	343.67	105.65	194200.00	99.37	0.05	107.55	20422.22	91.93	0.00	2930.00	17300.00	96200.00	169.23	944.00	-	-	-	14.85
	WAA U>DCGL	99	60-120	14/	14/	10.2	10.2	0.45	0.5	7 32	0.10	7.01	359.33	-	-	-	360.67		135666.67	94.40	0.05	346.50	36455.55	32.60		-	-	-	270.00	-	4.09	-	0.03	14.97
	WAA-WEST	10	10-30	58.0	56.0	10.2	10.2	0.45	0.5	7.32	-			-	-	-	324.00	-	-	61.60	-	100.00	-	20.00	-	1800.00	14700.00	15300.00	20.20	206.00	-	-	-	16.90
	WAA "U <dcgl" east<="" th=""><th>20</th><th>20 - 60</th><th>51.1</th><th>51.1</th><th>12.2</th><th>12.2</th><th>0.45</th><th>0.4</th><th>7.23</th><th>0.44</th><th>0.20</th><th>277.00</th><th>-</th><th>-</th><th>-</th><th>278.00</th><th>26.70</th><th>24700.00</th><th>3.72</th><th>0.05</th><th>100.00</th><th>9130.00</th><th>18.90</th><th>-</th><th>1050.00</th><th>14700.00</th><th>15500.00</th><th>30.40</th><th>654.00</th><th>-</th><th>-</th><th>-</th><th>19.47</th></dcgl">	20	20 - 60	51.1	51.1	12.2	12.2	0.45	0.4	7.23	0.44	0.20	277.00	-	-	-	278.00	26.70	24700.00	3.72	0.05	100.00	9130.00	18.90	-	1050.00	14700.00	15500.00	30.40	654.00	-	-	-	19.47
WATF	WU-1206 "SOUTH"	4	1 - 5	62.0	62.0	11.57	11.57	1.00	1.00	7.40	-0.44	0.20	2/7.00		-		-	-	-	8.28	-	-	-	-	-	-	-	52250.00	149.40	1391 50	5.01		-	13.39
	WU-PBA	5	1-5	29.0	29.0	61.7	61.7	0.32	0.3	6.93		-	-	-			285 33	16.55	182500.00	12.78	0.05	100.00	65550.00	9.04	-	3580.00	21050.00	52250.00	146.40	1201.50	5.51	-		16.10
	WAA "BLUFF"	104	90 - 210	14.27	22.29	114	312.75	2.19	11.93	7.06	-0.43	7.55	290.00	-	1.00	1.00	580.50		156500.00	17.85	-	204.50	57300.00	160.25	0.20	2439.00	-	84050.00	/2.80	859.50			_	10.10
	WU-1206 "NORTH"	8	3 - 15	304	304	38.6	38.6	7.03	7.0	7.05	0.25	6.55	579.50	1.26	1.00	1.00	530.50				1													

 Definitions:

 BA1 - Burial Area 1

 'C - degrees Celcius

 DCGL - Derived Concentration Goal Level

 gpm - gallons per minute

 LSI - Langelier Saturation Index

 mg/L - milligrams per litter

 PBA - Process Building Area

 RSI - Ryzner Stability Index

 s.u. - Standard Units

 TDS - Total Dissolved Solids

 TOC - Total Organic Carbon

 U - Uranium Concentration

 µg/L - micrograms per liter

 µD - wicrometer

 UP1-U Uranium Pond #1 Area

 UP2- Veranium Pond #2 Area

 WAA - Western Ulpland Area

Notes:
- The averages presented in this summary are not necessarily representative of influent characteristics at all times. The actual characteristics of each process stream may vary based on the groundwater extraction and injection components in operation at any given

- The averages presented in this summary are not necessarily representative of influent characteristics at all times. The actual characteristics of each process stream may vary based on the producted encessarily representative of influent characteristics at all times. The actual characteristics of each process stream may vary based on the producted encessarily representative of influent characteristics at all times. The actual characteristics of each process stream may vary based on the producted encessarily representative of influent characteristics at all times. The actual characteristics of each process stream may vary based on the producted encessarily representative of more process tream may vary based on the producted encessarily representative of each sample location and parameter, as specified in the MS Excel® workbook file entitied 2015-2-28 Comprehensive Analytical Data.xis.
- Influent characteristics for each process stream were estimated by averaging concentrations reported for monitoring wells considered representative of each groundwater remediation area and extraction stream.
- Total Alkalnity, Calcium and TDS concentrations used for LSI and RSI calculations at each location were taken from the same sampling event which occurred in either 2004, 2005, or 2007, depending on the location. Temperature and pH values used for LSI and RSI calculations were taken from the 2015 sampling event at each location.
- Sodium and chloride concentrations in groundwater extracted from wells located near the Cimarron River may be significantly higher than the concentrations reported for site monitoring wells.

Attachment 13.0 – Treated Water Injection Criteria

															Injectio	n Criteria																
Limitation Basis	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation				WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation	WSE Evaluation
Parameter	Nitrate	Chlorides	Ortho- Phosphate	Calcium ³	LSI	тос	Total Alkalinity	Bicarbonate Alkalinity	TDS	Conductivity	ORP1	Total Hardness	Carbonate Hardness	Non- Carbonate Hardness	Sodium	Magnesium	Potassium	Dissolved Iron	Total Iron ²	Copper	Manganese	Sulfate ²	Silica	Tannin/ Lignin	pН	TSS	TSS	Heterotrophic Plate Count	Anaerobic Growth	Sulfate Reducing Bacteria	Fe/Mn Reducing Bacteria	Adenosine Triphosphate (ATP)
Units	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L (as CaCO ₃)	mg/L (as CaCO ₃)	mg/L	μS/cm	mV	mg/L (as CaCO ₃)	mg/L (as CaCO ₃)	mg/L (as CaCO ₃)	mg/L	mg/L	mg/L	mg/L (as Fe ²⁺)	mg/L	mg/L	mg/L	mg/L	mg/L (as SiO ₂)	mg/L	s.u.	μm	mg/L	(colonies/ml)	percent population	presence/ absence	presence/ absence	(colonies/ml)
Limit	≤5	≤100	≤1	≤180	-0.5 - +0.5	≤1	≤180	≤180	≤400	≤750	150 - 220	≤180	≤180	≤50	≤80	≤180	≤5	≤0.02	≤1	≤0.04	≤0.10	≤150	≤30	≤5	6.5 - 9.0	≤10	≤45	≤300	≤15%	Absent	Absent	≤100,000

<u>Definitions:</u> BA1 - Burial Area 1 CaCO₃ - calcium carbonate LSI - Langelier Saturation Index

LSI - Langelier Saturation Index mg/L - milligrams per liter ml - milliliter MV - millivolt ORP - oxidation-reduction potential SIO₂ - silica dioxide

s.u. - standard units TDS - total dissolved solids

TOC - total organic carbon TSS - total suspended solids µg/L - micrograms per liter

μm - micrometer uS/cm - microSiemens per centimeter WATF - Western Area Treatment Facility

WSE - Water Systems Engineering Inc. BOLD - treated effluent is expected to exceed injection criterion. Pretreatment will be required prior to injection unless otherwise noted.

BOLD - treated effluent is expected to exceed injection criterion; however pretreatment will not be required initially. In-process monitoring results will be evaluated to assess the need for future pretreatment.

Notes: - An underground injection control (UIC) permit will not be required for treated water injection; therefore there will be no permit requirements for the injectate.

Results of the WSE evaluation were presented in a letter report entitled *Injection Well Water Quality Criteria* (dated 9/25/18).
 The criteria presented in this table apply only to treatment system effluents utilized for aquifer injection.

¹ORP is dependent on natural water chemistry and any induced subsurface treatment technologies employed.

²Treated effluent is expected to exceed injection criterion for BA1 only.

³Treated effluent is expected to exceed injection criterion for WATF only.

Memorandum

Document No.: BMCD-GWREMED-TM006

Revision: A

Date:February 24, 2021To:Jeff Lux, EPMFrom:John Hesemann, Burns & McDonnell
Ashley Anstaett, Burns & McDonnell

Subject: Basis of Design Addendum No. 2 for Groundwater Remediation

An addendum to the *Basis of Design for Groundwater Remediation* (2018 BOD)¹ was prepared in February 2019 to review additional groundwater monitoring data and assess the potential need for revisions to the 2018 BOD to support detailed remediation design activities (i.e., 90% Design). Since the February 2019 BOD Addendum (BOD Addendum No. 1)² was issued, the original site remediation approach has transitioned to a phased approach, necessitating revisions to the remediation design and Facility Decommissioning Plan. Detailed (90%) design of the phased remediation approach will occur following completion and submittal of the *Cimarron Facility Decommissioning Plan – Revision 2* (D. Plan-Rev.2)³.

This memorandum serves as Remediation BOD Addendum No. 2 to support remediation design activities (i.e., Preliminary Design activities) and preparation of D. Plan-Rev.2 for the Cimarron Environmental Response Trust (CERT) remediation project at the Cimarron Site located in Guthrie, Oklahoma (Site). The following analyses and evaluations, conducted to support revisions to the Remediation BOD, are documented in this memorandum:

- Particle tracking analysis using the existing groundwater flow models
- Remediation area, capture zone, and pore volume estimation
- Area-weighted concentration averaging for uranium and nitrate
- Time-specific concentration averaging for nitrate
- Estimation of uranium groundwater remediation timeframes
- Estimation of uranium treatment timeframes for recovered groundwater
- Estimation of Uranium and nitrate influent concentrations

³ Burns & McDonnell Engineering Company, Inc. (2021). *Cimarron Facility Decommissioning Plan – Revision 2*. Kansas City: John Hesemann.

¹ Burns & McDonnell Engineering Company, Inc. (2018). *Basis of Design for Groundwater Remediation-Rev. C* (Document No.: BMCD-GWREMED-TM001). Kansas City: John Hesemann.

² Burns & McDonnell Engineering Company, Inc. (2019). *Basis of Design Addendum for Groundwater Remediation*. (Document No.: BMCD-GWREMED-TM003). Kansas City: John Hesemann.

February 24, 2021 Page 2 of 11

• Estimation of Nitrate effluent concentrations

The first phase (Phase I) of the phased remediation approach will remediate uranium to the derived concentration goal level (DCGL) required for NRC license termination. Phase I includes groundwater remediation in the Western Area (WA) and Burial Area #1 (BA1) at the Site. Phase I WA remediation areas include the Western Alluvial Area (WAA) U>DCGL, 1206-NORTH and Western Upland Burial Area #3 (WU-BA3). Phase I BA1 remediation areas include BA1 Areas A, B, and C (BA1-A through BA1-C). In the WA, the WAA U>DCGL and 1206-NORTH will be remediated via groundwater extraction and WU-BA3 will be remediated via treated water injection. In BA1, groundwater extraction will occur in BA1-A through BA1-C, and treated water injection will occur in BA1-A. Water treatment during Phase I will be limited to uranium removal via ion exchange. All groundwater will be treated at the Western Area Treatment Facility (WATF) and treated water that is not injected will be discharged to the Cimarron River via Outfall 001. This BOD addendum is focused on the design evaluations and revisions required to implement Phase I remediation.

BOD revisions associated with the phased remediation approached required particle tracking analyses to estimate capture zones for alluvial extraction wells, and to estimate influent groundwater concentrations for uranium and nitrate. Since nitrate treatment will not be conducted during Phase I, an additional analysis of nitrate effluent concentration was conducted to confirm nitrate levels will not exceed the concentration anticipated to be acceptable to the Oklahoma Department of Environmental Quality (DEQ) [approximately 30 milligrams per liter (mg/L)]. None of the Phase I remediation component locations or pumping rates were altered; however, the elimination of remediation components in WA and BA1 alluvial areas altered the capture zones of the concentrations associated with these components. These changes in remediation areas resulted in changes to pore volumes and, consequently, timeframes for uranium remediation and treatment. Finally, because hydraulic capture zones within the WAA U>DCGL and BA1-B areas changed, the stagnation zone analyses were reperformed for these areas.

The methods used to perform the analyses, evaluations and estimations described above were similar to those used in the previous BOD development effort. BOD updates and/or revisions are detailed in the following sections.

February 24, 2021 Page 3 of 11

1.0 Phased Remediation Approach – Phase I Components and Operating Conditions As stated above, updates to the remediation BOD are based on the infrastructure and operating conditions associated with Phase I of the phased remediation approach planned for the Site.

1.1 As stated above, WA remediation areas included in Phase I include WAA U>DCGL, 1206-NORTH, and WU-BA3. WAA U>DCGL includes extraction wells GE-WAA-01 through GE-WAA-04; 1206-NORTH includes extraction trench GETR-WU-02; and WU-BA3 includes injection trench GWI-WU-01. None of the groundwater extraction flow rates or treated water injection flow rates associated with these remediation components were altered from the 2018 BOD (see figure provided in Attachment 1.1).

Groundwater extracted from the WA remediation components identified above will be treated for uranium via ion exchange. Following treatment, a portion of the treated water (8 gallons per minute [gpm]) will be injected into WU-BA3 via GWI-WU-01. The remaining treated water will be combined with the treated BA1 effluent not used for injection and discharged to Outfall 001.

Remediation for nitrate is not included as part of Phase I groundwater remediation. However, the nitrate concentration discharged to Outfall 001 must be reported to the DEQ in accordance with anticipated Oklahoma Pollutant Discharge Elimination System (OPDES) permit requirements. Consequently, the estimation of influent nitrate groundwater concentrations for individual WA remediation components and areas, and the estimation of combined treated water effluent nitrate concentrations were required to update the remediation BOD.

 All BA1 remediation areas (BA1-A, BA1-B and BA1-C) will be remediated as part of Phase I of the proposed remediation approach. Infrastructure and operating conditions associated with BA1-A and BA1-B were not altered from the 2018 Basis of Design.
 BA1-A includes groundwater extraction trenches GETR-BA1-01 and GETR-BA1-02 and injection trenches GWI-BA1-01 through GWI-BA1-03 (see figure provided in Attachment 1.1).

BA1-B includes extraction wells GE-BA1-02, GE-BA1-03, and GE-BA1-04, and BA1-C includes extraction wells GE-BA1-05 and GE-BA1-06. BA1-B and BA1-C will operate until the maximum contaminant level (MCL) for uranium (30 micrograms per liter $[\mu g/L]$) is achieved in Area C, at which point wells GE-BA1-05 and GE-BA1-06 will cease operation. The combined pumping capacity of GE-BA1-05 and GE-BA1-06 will

February 24, 2021 Page 4 of 11

then be distributed evenly among BA1-B wells GE-BA1-02 through GE-BA1-04. For the purposes of estimating water treatment influent uranium concentrations and treatment and remediation timeframes, BA1-B is referred to as BA1-B3R once wells in BA1-C are no longer operational. The area and pore volume of BA1-B3R differ from BA1-B due the change in hydraulic capture zone resulting from the shutdown of BA1-C wells GE-BA1-05 and GE-BA1-06.

Water extracted from BA1 will be routed to the WATF for uranium removal via a dedicated ion exchange treatment train. Following treatment, a portion of the treated water (approximately 18 gpm) will be returned to BA1 for re-injection via injection trenches GWI-BA1-01 through GWI-BA1-03. The remaining treated effluent will be combined with the WA uranium treatment effluent and discharged via Outfall 001.

2.0 Revised Remediation Simulation and Particle Tracking Analysis

The particle tracking analyses for the alluvial remediation areas (WAA U>DCGL and BA1-B, BA1-C, and BA1-B3R) were updated to reflect the phased groundwater treatment approach described in Section 1.0. Figures depicting the updated particle tracking analysis outputs are provided in Attachment 2.0.

- 2.1 The particle tracking analysis for BA1 was updated to reflect the elimination of extraction wells GE-BA1-07 through GE-BA1-09. In addition, the original BOD assumed GE-BA1-05 through GE-BA1-07 would initially remain idle. As discussed in Section 1.2, GE-BA1-02 through GE-BA1-06 will be operational at the start of Phase I operations. Once the uranium MCL is achieved in Area C, GE-BA1-05 and GE-BA1-06 will cease operation and the combined pumping capacity of these wells will be distributed evenly among BA1-B wells GE-BA1-02 through GE-BA1-04, creating a new remediation area referred to as BA1-B3R. A forward particle tracking analysis was used for BA1 since the remediation area is defined by the 30 μg/L uranium concentration contour (see Attachment 2.0). The only substantive change resulting from the modifications described above was a change in the boundary between Areas BA1-B and BA1-C, as defined by the capture zones of GE-BA1-04 and GE-BA1-06.
- 2.2 As shown on the WA particle tracking figure included in Attachment 2.0, the capture zone of the WAA U>DCGL expanded significantly in the easterly direction due to the elimination of the WAA-BLUFF extraction wells from Phase I of the phase remediation approach. Consequently, a larger portion of the WAA nitrate plume, and higher concentrations of nitrate, will be captured by WAA U>DCGL extraction wells. As stated above, recalculation of estimated influent nitrate groundwater concentrations for

February 24, 2021 Page 5 of 11

individual WA remediation components and areas was required to estimate nitrate concentrations in the combined WATF effluent, and confirm compliance with anticipated OPDES permit requirements.

To accurately estimate influent uranium and nitrate groundwater concentrations for individual WAA U>DCGL extraction wells, a reverse particle tracking analysis was used to account for uranium and nitrate concentrations across the entire estimated capture zone for each well. Also, because nitrate concentrations for individual WAA U>DCGL extraction wells are anticipated to increase over time (i.e., nitrate concentrations increase with distance east of the WAA U>DCGL extraction well alignment), a time-specific averaging approach was used to estimate influent nitrate concentrations for these wells. Time-specific averaging was not required for uranium since the highest uranium concentrations are located along the WAA U>DCGL extraction well alignment. Likewise, time-specific averaging was not required for BA1 remediation components since the highest uranium and nitrate iso-concentration contours are presented on the WA particle tracking figure included in Attachment 2.0.

Remediation area and pore volume estimate calculations are discussed in Section 3.0 and area and time-specific concentration averaging for individual alluvial remediation components and areas is discussed in Section 4.0.

3.0 Revised Remediation Area and Pore Volume Estimates

As discussed in Section 2.0, the capture zones of remediation components located in alluvial remediation areas WAA U>DCGL and BA1-B, BA1-C and BA1-B3R were altered as a result of the phased remediation approach. This necessitated the re-estimation of lateral extent (area) of each remediation area to support calculations of pore volume, influent concentration, and remediation and treatment timeframe.

3.1 Updated BA1 remediation areas were calculated for BA1-B, BA1-C and BA1-B3R. As described in the 2018 BOD, the lateral extent of each remediation area was estimated based on the extent of the hydraulic capture zone within which uranium concentrations are at or above the MCL ($30 \mu g/L$) (see Attachment 3.1). The aquifer pore volume targeted for remediation in each area was estimated based on the lateral extent and saturated thickness of the area, estimated as described in the 2018 Technical

February 24, 2021 Page 6 of 11

Memorandum entitled *Input Parameters for Updated Remediation Duration Estimates* (2018 Input Parameters Memo)⁴.

3.2 Two separate remediation areas, one for uranium and another for nitrate, were estimated for the WAA U>DCGL area based on the updated particle tracking analysis results discussed above. Although nitrate is not a target constituent for Phase I groundwater remediation, it is necessary to establish nitrate "remediation areas" to estimate influent nitrate concentrations for the purposes described above. The uranium WAA U>DCGL remediation area was estimated based on the extent of the hydraulic capture zone in which uranium concentrations are at or above the MCL. The complete zone of WAA U>DCGL hydraulic capture was established as the nitrate remediation area. Uranium and nitrate remediation areas are depicted on the figures included in Attachment 3.2.

As described in the 2018 Input Parameters Memo, the updated WAA U>DCGL aquifer pore volumes targeted for remediation were calculated estimated based on the lateral extents of the uranium and nitrate remediation areas and the saturated thickness of the WAA U>DCGL area.

3.3 Uranium pore volumes were used to calculate area-weighted concentrations, influent concentrations and remediation and treatment durations. Nitrate pore volumes were used to calculate area-weighted concentrations, influent concentrations and effluent concentrations.

4.0 Revised Area-Weighted and Time-Specific Influent Concentration Estimates Area-weighted influent uranium concentrations were updated for remediation areas WAA U>DCGL, BA1-B, BA1-C and BA1-B3R using the same methodology described in the 2018 BOD. Area-weighted influent concentrations were used to support uranium remediation duration estimate calculations. Area-weighted influent nitrate concentrations were also updated for WAA U>DCGL and time-specific nitrate influent concentrations were calculated to support estimations of WATF influent and effluent nitrate concentrations.

4.1 Uranium and nitrate (WAA U>DCGL only) isopleths and updated particle tracking outputs (Section 2.0) were used to conduct incremental groundwater concentration

⁴ Burns & McDonnell Engineering Company, Inc. (2018). *Input Parameters for Updated Remediation Duration Estimates*. Kansas City: John Hesemann.

February 24, 2021 Page 7 of 11

averaging within the capture zone of each alluvial remediation area (WAA U>DCGL, BA1-B, BA1-C and BA1-B3R). Results of the area-weighted averaging analysis completed for each remediation area are presented in Attachment 4.1.

4.2 Nitrate isopleths and updated particle tracking outputs (Section 2.0) were used to conduct incremental groundwater concentration averaging within time-specific (annual) capture zones of each WAA U>DCGL extraction well to account for increasing influent nitrate concentrations over the course of groundwater extraction. The time-specific concentrations were estimated by conducting incremental, area-weighted concentration averaging within the hydraulic capture zone of a given year. The entire WAA U>DCGL nitrate plume is anticipated to be captured within 5 years; therefore, time-specific concentration averaging was only performed for Years 1 through 5 (see Attachment 4.2). The time-specific nitrate concentration estimates are considered conservative since the effects of dilution and dispersion are not accounted for in the analysis. As groundwater with elevated nitrate concentrations (located significant distances from the extraction wells) migrates toward the extraction wells, it will encounter and mix with groundwater with lower nitrate concentrations; however, the nitrate concentration estimated at the original plume location is assumed to persist over the entire groundwater capture flow path.

Influent nitrate concentrations were assumed to increase above the initial concentration for the following extraction wells:

- GE-WAA-01 the estimated initial nitrate influent concentration for this well is 32 mg/L; however, the concentration is assumed to increase as groundwater with higher nitrate concentrations, located to the east, are drawn toward the well. For the purposes of estimating WATF influent concentrations, the influent nitrate concentration for this well is assumed to increase to a maximum of approximately 59 mg/L in Year 5 (see Attachment 4.2).
- GE-WAA-02 the estimated initial nitrate influent concentration for this well is 31 mg/L; however, the concentration is also expected to increase as higher concentrations, located to the east, are drawn toward the well. For the purposes of estimating WATF influent concentrations, the influent nitrate concentration for this well is assumed to increase to approximately 47 mg/L, during Year 3 of operation, then decline thereafter (see Attachment 4.2).

February 24, 2021 Page 8 of 11

4.3 Results from the incremental, area-weighted (and time-specific) averaging analysis for each applicable remediation area and groundwater extraction component are presented in Attachments 4.1 and 4.2. Calculation files in native (MS Excel[®]) format can be provided to facilitate review of calculation methods (i.e., formulas, references, inputs, etc.) by Nuclear Regulatory Commission (NRC) and DEQ personnel.

5.0 Revised Remediation Duration Estimates

Uranium remediation duration estimates were revised for the WAA U>DCGL, BA1-B, BA1-C, and BA1-B3R remediation areas using the remediation areas and pore volumes described in Section 3.0, in accordance with the calculation methodology and input parameters described in the 2018 BOD. The remediation duration estimate calculations and results for WAA U>DCGL, BA1-B, BA1-C, and BA1-B3R are included as Attachment 5.0. Remediation duration estimate calculation files in native (MS Excel®) format can be provided to facilitate review of calculation methods (i.e., formulas, references, inputs, etc.) by NRC and DEQ personnel.

The duration estimates for BA1-B and BA1-C were evaluated for achievement of both the DCGL and MCL. The DCGL in BA1-B is achieved in approximately 36 months. BA1-C is already below the DCGL upon commencement of operation. The MCL is achieved in approximately 60 months in BA1-B and 108 months in BA1-C. As discussed in Section 1.2, BA1-C extraction components cease operation upon achievement of the MCL. The capacity is then evenly distributed across the wells operating in area B3, which continue to operate until the DCGL is achieved in BA1-A in order to maintain the minimum flow rate requirement for treatment. It is predicted that the uranium concentration in both BA1-B and BA1-C will be below the MCL upon commencement of B3R operations.

6.0 Revised Nitrate Influent Concentration Estimates

As discussed in Section 4.0, incremental groundwater concentration averaging was conducted within time-specific (annual) capture zones of each WAA U>DCGL extraction well to account for increasing influent nitrate concentrations over the course of remediation. Future maximum nitrate influent concentrations are anticipated to be higher than initial concentrations for wells GE-WAA-01 and GE-WAA-02, while future maximum nitrate influent concentrations are anticipated to be lower than initial concentrations for GE-WAA-03 and GE-WAA-04. Due to the potential for influent WAA U>DCGL nitrate concentrations to increase over time, time-specific influent nitrate concentrations for each WAA U>DCGL were factored into the influent nitrate concentration analysis. The process is described below in detail.

February 24, 2021 Page 9 of 11

- 6.1 As described in Section 4.0, time-specific, area-weighted nitrate concentrations were calculated for each WAA U>DCGL extraction well for each of the first five years of groundwater extraction (i.e., $C_1, C_2, ..., C_5$). The C_1 concentration for each WAA U>DCGL extraction well was then compared to the nitrate concentration estimated via interpolation at each extraction component location (interpolation performed using the Surfer[®] software application). The higher of the two concentrations was then selected as the representative initial concentration (C_i) for the extraction well. The highest of the time-specific nitrate concentrations for each WAA U>DCGL extraction (C_{max}). The time-specific nitrate concentrations for each WAA U>DCGL extraction well are presented in Attachment 4.2 and the C_i and C_{max} nitrate concentration for each well are presented in Attachment 6.1.
- 6.2 Because groundwater is recovered from both the WAA U>DCGL and 1206-NORTH remediation areas in the WA, flow-rate weighted averaging was used to was used to calculate the estimated initial and time-specific influent nitrate concentrations for the combined influent WA treatment stream. The flow-rate weighted average calculations used to estimate the initial WA influent nitrate concentration were conducted in accordance with the methodology described in the 2018 BOD. The results of these calculations are summarized in Attachment 6.2. As shown in the attachment, the influent concentration for 1206-NORTH (extraction trench GETR-WU-02) is expected to decline below measurable levels by the end of Year 1. Calculation files in native (MS Excel®) format can be provided to facilitate review of calculation methods (i.e., formulas, references, inputs, etc.) by NRC and DEQ personnel.
- 6.3 Flow rate-weighted average nitrate concentrations for the combined WA influent for Years 1 through 5 are summarized in Attachment 6.3. Although influent nitrate concentrations for GE-WAA-01 and GE-WAA-02 increase over time, results of the flow rate-weighted averaging reveals that the maximum combined WA influent nitrate concentration still occurs at time zero (i.e., $C_i = C_{max}$). Calculation files in native (MS Excel®) format can be provided to facilitate review of calculation methods (i.e., formulas, references, inputs, etc.) by NRC and DEQ personnel.
- 6.4 To model long-term nitrate concentrations for the WAA U>DCGL influent stream, and its contribution to the combined WATF influent, the flow rate-weighted average, time-specific concentrations calculated for Years 1 through 4 were assumed as the initial nitrate influent concentration for each corresponding year. Due to the potential for influent nitrate concentrations to increase between Years 2 and 3, based on flow rate-

February 24, 2021 Page 10 of 11

weighted averaging results (see Section 6.3), WAA U>DCGL influent nitrate concentrations during the first three years of operation were held constant and the first-order kinetic concentration decay model described in the 2018 BOD was not applied. Following Year 3, the influent nitrate concentration was increased to the Year 4 time-specific concentration and the first-order kinetic concentration decay equation was applied to model continuous influent nitrate concentration reductions through the end of operations.

The concentration decay model was applied to the 1206-NORTH nitrate influent concentration from the start of operations, with no nitrate expected in the influent after month 13. The results of the WA nitrate influent concentration decay analysis are presented in Attachment 6.4. In addition, calculation files in native (MS Excel[®]) format can be provided to facilitate review of calculation methods (i.e., formulas, references, inputs, etc.) by NRC and DEQ personnel.

7.0 Revised Uranium Influent Concentration Estimates

Uranium influent concentrations were recalculated for WAA U>DCGL, BA1-B, BA1-C, and BA1-B3R. Using the same process described in the 2018 BOD, the uranium influent concentration calculations for WAA U>DCGL and BA1-B, BA1-C and BA1-B3R were updated using the revised remediation areas and pore volume estimates presented in Section 3.0. A decay analysis was performed in accordance with the 2018 BOD to estimate uranium flow rate weighted-average influent concentrations for each combined remediation area at the conclusion of remediation operations. Results of the WA influent uranium concentration estimates are presented in Attachment 6.3. Results of the WA uranium decay analysis, BA1 uranium influent concentration estimates, and BA1 uranium decay analysis are presented in Attachment 7.0.

8.0 Calculation of Combined WA, BA1 Nitrate Effluent Concentration

To determine the concentration of nitrate discharged at Outfall 001, a new flow rate-weighted average concentration was calculated for the initial nitrate concentration (C_i) and final nitrate concentration (C_f) once the WA treatment effluent is combined with the treatment effluent from BA1. Based on the proposed process, 8 gpm of nitrate-impacted water will be re-injected into the WA, via GWI-WU-01A, and 18 gpm of treated effluent from BA1 will be re-injected via GWI-BA1-01 through GWI-BA1-03. The combined WA/BA1 nitrate flow weight-rated average nitrate concentration was therefore based on a combined flow rate of 181 gpm, equal to the sum of the WA and BA1 groundwater extraction flow rates, minus the treated water injection flow rate for each area. As described in Sections 4.0 and 6.0, C_i is also projected to represent the maximum nitrate influent concentration during the treatment process. Results of the combined

February 24, 2021 Page 11 of 11

WA/BA1 effluent nitrate concentration estimates and decay analysis are presented in Attachment 8.0.

9.0 Reassessment of Stagnation Zone Potential

The potential for hydraulic stagnation in alluvial remediation areas exceeding the NRC uranium criterion (WAA U>DCGL and BA1-B) was reassessed in accordance with the methodology outlined in the 2018 BOD. The results of the stagnation zone analysis for WAA U>DCGL and BA1-B are presented in the figures included as Attachment 9.0. The figures indicate that the alternating operating scenarios should eliminate the potential for hydraulic stagnation.

Attachments:

Attachment 1.1 – Remediation Area Extraction/Injection Components Attachment 2.0 – Particle Tracking Figures
Attachment 3.1 – BA1 Remediation Areas Attachment 3.2 – WA Remediation Areas
Attachment 4.1 – Area-Weighted Concentration Averaging Results Attachment 4.2 – Time-Weighted Concentration Averaging Results
Attachment 5.0 – Remediation Duration Estimates
Attachment 6.1 – Initial & Maximum Influent Concentrations Attachment 6.2 – Nitrate Influent Concentrations by Year Attachment 6.3 – Western Area Treatment Duration Analysis Attachment 6.4 – Western Area Nitrate Decay Analysis
Attachment 7.0 – BA1 Uranium Analysis Attachment 8.0 – Western Area, BA1 Nitrate Effluent Analysis Attachment 9.0 – Stagnation Zone Analysis Figures