AN IMPROVED HYBRID METHOD TO DEVELOP SEISMIC FRAGILITIES FOR SEISMIC PROBABILISTIC RISK ASSESSMENTS

Mohamed M. Talaat and Abhinav Anup

October 22, 2020

SIMPSON GUMPERTZ & HEGER

Engineering of Structure and Building Enclosures

- Seismic Probabilistic Risk Assessment (SPRA) is an important evaluation method for DOE facilities and commercial NPPs
- The complexity and scope of fragility analysis is a major cost driver
- Widely used methods in detailed fragility evaluations (EPRI 3002012994):
 - Separation of Variables
 - Hybrid Method

- Separation of Variables (SOV)
 - Rigorous, highly detailed
 - Higher engineering effort
 - Typically reserved for dominant risk contributors in SPRAs
- Hybrid Method
 - More streamlined, similar to conventional civil/structural design calculations
 - Can be easily performed by engineers with little to no exposure to probability and reliability
 - Enables efficient development of seismic fragilities for a large number of SSCs

- Performance of a facility is typically governed by a subset of SSCs
- The more detailed SOV approach is typically reserved for dominant and/or significant risk contributors, while the remaining vast majority of SSC fragilities are developed using the Hybrid Method
 - Efficient and cost-effective strategy for seismic fragility development in SPRAs

- It is believed that the Hybrid Method introduces some conservatism
- The proposed Improved Hybrid Method performs better
 - More realistic fragilities with only marginally higher fragility analysis effort
 - Makes a systemic non-trivial difference in risk (recent project observation)
 - Saves cost on multiple risk-importance iterations
 - List of significant risk contributors more stable across iterations

Review: Separation of Variables Method

- Start by computing the median seismic capacity, A_m , which has 50% probability of being exceeded, using best-estimate demands, etc.
- Perform separate analyses for applicable sources of randomness and uncertainty in the variables influencing seismic capacity to compute corresponding log. std. dev., β_R and β_U , and combine them across all sources

Review: Hybrid Method

- Intent is to compute the 1% probability of failure seismic capacity, $C_{1\%}$.
- With known A_m and β 's

$$C_{1\%} = A_m \exp(-2.33\beta_{CMP})$$

$$\boldsymbol{\beta}_{CMP} = \sqrt{\boldsymbol{\beta}_{R}^{2} + \boldsymbol{\beta}_{U}^{2}}$$

- Instead of A_m and β 's from SOV, use a set of deterministic rules
 - This set of deterministic rules encompasses the Conservative Deterministic Failure Margin (CDFM) Method
 - The rules are calibrated so that the CDFM seismic capacity, C_{CDFM} , is approximately equal to $C_{1\%}$

Review: Hybrid Method

• High Confidence of Low Probability of Failure (HCLPF) seismic capacity

• 95% confidence of 5% probability of failure

 $HCLPF = A_m exp[-1.65(\beta_R + \beta_U)]$

- It can be shown that $C_{1\%}$ is a lower-bound estimate of the HCLPF seismic capacity (EPRI 3002012994)
- In the EPRI 3002012994 Hybrid Method, HCLPF is conservatively set to $C_{1\%}$, which is approximated by C_{CDFM}
- A conservative A_m is then estimated using generic β_R and β_U , per values recommended in EPRI 3002012994
 - EPRI 3002012994 permits more realistic estimates of A_m , β_R , and β_U seldom practiced

Improved Hybrid Method

- Step 1: Calculate C_{CDFM} following the Hybrid Method
- Step 2: Calculate A_m following the SOV Method (best-estimate demand and capacities)
 - May make conservatively-biased simplifications to streamline
- Step 3: Estimate β_{CMP} from C_{CDFM} ($\approx C_{1\%}$) and A_m

- Constrain β_{CMP} against CDFM Method assumptions (important, discussed later)
- Step 4: Split β_{CMP} into components for randomness and uncertainty

How Much Difference Can it Make?

- Example from a recent SPRA project
 - Special case of significantly high SSI response variability
- AHU governed by anchorage failure

Constraining β_{CMP}

• The CDFM Method recommends deterministic rules for estimating

- *CAP*₁, 1% non-exceedance probability of component capacity
- DEM_{84} , 84% non-exceedance probability of component demand
- Then in principle,

$$C_{CDFM} = \frac{CAP_1}{DEM_{84}} PGA_{ref}$$

CDFM Seismic Capacity Assumptions

$$C_{CDFM} = \frac{CAP_1}{DEM_{84}} PGA_{ref}$$

= $\frac{CAP_{50} \exp(-2.33\beta_{CAP})}{DEM_{50} \exp(\beta_{DEM})} PGA_{ref}$
= $A_m \exp[-(2.33\beta_{CAP} + \beta_{DEM})]$ is taken to represent $C_{1\%} = A_m \exp(-2.33\beta_{CMP})$

- Let's evaluate three cases
 - $\beta_{CAP} \gg \beta_{DEM}$ Fragility variability dominated by capacity variables
 - $\beta_{CAP} = \beta_{DEM}$
 - $\beta_{CAP} \ll \beta_{DEM}$ Fragility variability dominated by demand variables

$\beta_{CAP} \gg \beta_{DEM}$

• Seismic fragility variability is dominated by capacity variables

 $\beta_{CMP} = \text{SRSS}(\beta_{CAP}, \beta_{DEM}) \approx \beta_{CAP}$

 $C_{CDFM} = A_m \exp[-(2.33\beta_{CAP} + \beta_{DEM})] \approx A_m \exp(-2.33\beta_{CAP}) \approx A_m \exp(-2.33\beta_{CMP}) \approx C_{1\%}$

• Variabilities for demand and capacity variables are comparable

 $\beta_{CMP} = \text{SRSS}(\beta_{CAP}, \beta_{DEM}) = \sqrt{2}\beta_{CAP}$

$\beta_{CAP} \ll \beta_{DEM}$

• Seismic fragility variability is dominated by demand variables

 $\beta_{CMP} = \text{SRSS}(\beta_{CAP}, \beta_{DEM}) \approx \beta_{DEM}$

 $C_{CDFM} = A_m \exp[-(2.33\beta_{CAP} + \beta_{DEM})] \approx A_m \exp(-\beta_{DEM}) \approx A_m \exp(-\beta_{CMP}) \approx A_m \exp(-2.33\beta_{CMP}) \exp(1.33\beta_{CMP}) > C_{1\%}$

e.g., for $\beta_{DEM} \approx \beta_{CMP} \approx 0.5$, $C_{CDFM} \approx 2C_{1\%}$

CDFM Seismic Capacity Assumptions: Impact

• On the CDFM Method

- $C_{CDFM} \approx C_{1\%}$ holds when β_{CAP} is comparable to or greater than β_{DEM}
- If β_{DEM} becomes significantly larger than β_{CAP} , C_{CDFM} becomes an unconservative estimate of $C_{1\%}$

CDFM Seismic Capacity Assumptions: Impact

- On the Hybrid Method (when β_{CAP} is comparable or greater than β_{DEM})
 - The method works as intended, and is conservative
- On the Hybrid Method (when β_{DEM} is significantly greater than β_{CAP})
 - The effect of $C_{CDFM} > C_{1\%}$ is reduced when C_{CDFM} is used as a surrogate for HCLPF capacity, since HCLPF capacity is typically higher than $C_{1\%}$
 - Additional conservatism in the Hybrid Method fragility exists when using conservatively low β values, which results in a A_m conservative estimate
 - Overall effect on convolution of fragility and hazard curves could still be conservative

Constraining β_{CMP} in Improved Hybrid Method

• Impose a minimum β_{CMP} value to correct for cases where $\beta_{CAP} \ll \beta_{DEM}$ resulting in $C_{CDFM} > C_{1\%}$

Compute

•
$$\beta_{CMP,CDFM} = \left(\frac{1}{2.33}\right) \ln \left(\frac{A_m}{C_{1\%}}\right)$$

• Estimate

•
$$\beta_{DEM} = \ln\left(\frac{DEM_{84}}{DEM_{50}}\right)$$

• $\beta_{CAP} = \left(\frac{1}{2.33}\right)\ln\left(\frac{CAP_{50}}{CAP_{1}}\right)$

• Impose

•
$$\beta_{CMP,MIN} = \sqrt{\beta_{CAP}^2 + \beta_{DEM}^2}$$

• $\beta_{CMP} = \max(\beta_{CMP,CDFM}, \beta_{CMP,MIN})$

Estimating Randomness and Uncertainty

• β_{CMP} can be split into randomness and uncertainty components following the original Hybrid Method outlined in EPRI 3002012994

•
$$\beta_R = 0.24$$

• $\beta_U = \sqrt{\beta_{CMP}^2 - \beta_{DEM}^2}$

•
$$HCLPF = A_m \exp[-1.65(\beta_R + \beta_U)]$$

Conclusions

- Improved Hybrid Method provides:
 - More realistic estimates of A_m and HCLPF seismic capacities
 - More reliable estimates of risk
 - Potential efficiency in SPRA risk-importance iteration cost
- Marginally more computations than the original Hybrid Method are required to get the above benefits
- The method was used successfully and accepted by NRC in a recent SPRA project

Questions?