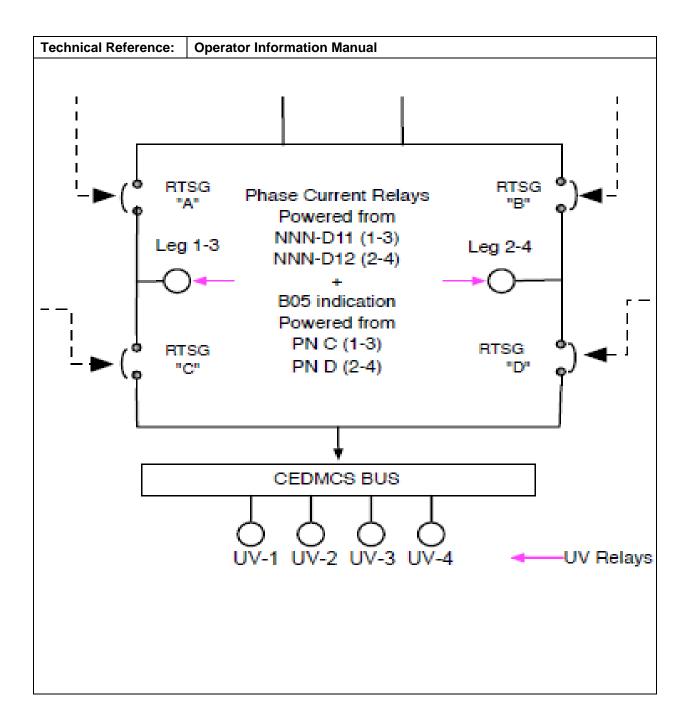
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Trip, Stabilization, Recovery: Ability to	Tier	1		
determine or interpret the following as they apply to a reactor trip: Reactor trip breaker position	Group	1		
	K/A		007 EA2.03	3
	IR	4.2		

Each EXTINGUISHED phase current light on Control Room Board 5 (B05) indicates a MINIMUM of ____(1)___ RTCB(s) is(are) open, and a MINIMUM of ___(2)__ phase current light(s) must be extinguished in order for the Reactor to trip.


- A. (1) 1
 - (2) 1
- B. (1) 1 (2) 2
- C. (1) 2 (2) 1
- D. (1) 2 (2) 2

Pro	Proposed Answer: B				
Exp	lanations:				
Α.	breakers need to the Reactor. If 'A'	be op and '	e second part is plausible because to trip the Reactor a minimum of 2 bened. A combination of 'A' or 'C' AND 'B' or 'D' need to be opened to trip C' or 'B' and 'D' were the only 2 breakers open, only 1 phase current light and the Reactor wouldn't trip.		
В.	Correct				
C.	light and only by o is plausible becau combination of 'A'	openi ise to ' or 'C only 2	it is thought that there will still be a path for current to the phase current ng both breakers is power completely isolated to the light. The second part trip the Reactor a minimum of 2 breakers need to be opened. A 2' AND 'B' or 'D' need to be opened to trip the Reactor. If 'A' and 'C' or 'B' breakers open, only 1 phase current light would be extinguished and the		
D.			it is thought that there will still be a path for current to the phase current ng both breakers is power completely isolated to the light. Second part is		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:		nt Protection System LP #NKASYC14907 – Describe how RTCBs are ped and what indication or trip path status is available

Technical Reference: Plant Protection System Tech Manual

RTSG Phase Current Indicator

These white lamps at the bottom of the channel C and D ROMs are normally on to indicate current flow to the CEDMs. If power through one leg of the RTSG is interrupted by RTSG opening, the appropriate lamps will go out (RTSGs 1 and/or 3 for the phase current lamp on the channel C ROM: RTSGs 2 and/or 4 for that on channel D).

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Small Break LOCA: Ability to determine or	Tier	1		
interpret the following as they apply to a small break LOCA: Adequate core cooling	Group	1		
LOCA. Adequate core cooling	K/A		009 EA2.39	Э
	IR	4.3		

Given the following conditions:

- A LOCA is in progress
- The CRS has entered 40EP-9EO03, Loss of Coolant Accident
- Containment Temperature is 150°F

Adequate Core cooling is indicated by a MINIMUM subcooling or MAXIMUM superheat of ...

- A. 24°F subcooled
- B. 0°F
- C. 44°F superheat
- D. 60°F superheat

Pro	oposed Answer: C				
Exp	lanations:				
Α.	24°F subcooled is uncomplicated Re		minimum subcooled value for adequate core cooling during an r trip		
В.	0°F is the value ir	n whic	ch water changes from a subcooled condition to a superheated condition		
С.	Correct				
D.	60°F superheat is	s the v	value of adequate core cooling when the Containment is in Harsh Condition		

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	14
Reference Provided:	Ν
Learning Objective:	Given conditions of LOCA, analyze Core Heat Removal to determine if the SFSC acceptance criteria is satisfied per 40EP-9EO03

Technic	al Reference:	40EP-9EO03, Loss of Coolant Accident				
5. Cor	5. Core Heat Removal					
AC	CEPTANCE CRITE	RIA:				
a.	CET Subcooling i superheat and NC	ndicates less than 44°F [60°F] OT rising.				
b.	RCS Subcooling i superheat and NC	ndicates less than 44°F [60°F] DT rising.				

Tech	nica	Reference:	40EP-9EO02, Reactor Trip
5.	Core	e Heat Removal	
	ACC	EPTANCE CRI	TERIA:
	a.	RCS ∆T is les	s than 10°F.
	<mark>b.</mark>	The RCS is 24	°F or more subcooled.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Large Break LOCA: Ability to diagnose and	Tier	1		
recognize trends in an accurate and timely manner utilizing the appropriate control room reference material	Group	1		
	K/A	0	11 G 2.4.4	7
	IR	4.2		

Given the following conditions:

- Unit 1 tripped due to a large break LOCA
- The CRS has entered 40EP-9EO03, Loss of Coolant Accident
- RWT level is 80% and lowering at a rate of 1%/min

As RWT level continues to lower, the crew will be procedurally REQUIRED to shift Charging Pump suction to an alternate source in MAXIMUM of...

- A. 7 minutes
- B. 30 minutes
- C. 36 minutes
- D. 46 minutes

Proposed Answer: A					
Exp	lanations:				
Α.	Correct				
В.	RWT level lowering to 50% will require the crew to stop 1 charging pump				
C.	RWT level lowering to 44% will require the crew to stop all charging pump				
D.	This value correlates to the auto makeup to the VCT setpoint				

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Х	Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	N	
Learning Objective:	29739 - Using the current copy of the Standard Appendices, perform Charging Pump Alternate Suction to the SFP / Restoration, per 40EP- 9EO10, Appendix 11	

PALO VERDE NUCLEAR GENERATING STATION LOSS OF COOLANT ACCIDENT 40EP-9E003 Revision 44 Page 5 of 79 INSTRUCTIONS CONTINGENCY ACTIONS * 6. IF SIAS has actuated, THEN perform the following: a. (IF its determined that RWT level) may lower to less than 73% during the event, OR its desired to align Charging Pump suction through an alternate suction path, THEN PERFORM ONE of the following: • • Appendix 10, Charging, Pump Alternate Suction to, the RWT / Restoration • • Appendix 11, Charging, Pump Alternate Suction to, the RWT / Restoration • b. IF RWT level is above 73%, AND it is desired to align Charging Pump suction through CHE-HV-536 or CHN-UV-514, THEN PERFORM Appendix 103, RCS Makeup / Emergency, Boration. * 7. IF pressurizer pressure remains below the SIAS setpoint, THEN perform the following: a. Ensure ONE RCP is stopped in each loop. b. IF RCS subcooling is less than 247F [44"F], THEN ensure all RCPs are stopped	echnical	Reference:	
 * 6. IF SIAS has actuated, THEN <u>perform</u> the following: a. IF it is determined that RWT level may lower to less than 73% during the event, OR it is desired to align Charging Pump suction through an alternate suction path, THEN <u>PERFORM</u> ONE of the following; Appendix 10, <u>Charging</u> <u>Pump Alternate Suction to, the RWT / Restoration</u> Appendix 11, <u>Charging</u> <u>Pump Alternate Suction to, the SFP / Restoration</u> b. IF RWT level is above 73%, AND it is desired to align Charging Pump suction through CHE-HV-536 or CHN-UV-514, THEN <u>PERFORM</u> Appendix 103, <u>RCS Makeup / Emergency</u> Bioration. * 7. IF pressurizer pressure remains below the SIAS setpoint, THEN <u>perform</u> the following: a. <u>Ensure</u> ONE RCP is stopped in each loop. b. IF RCS subcooling is less than 24'F [44'F], THEN <u>ensure</u> all RCPs are 	PAL		
 THEN <u>perform</u> the following: a. IF it is determined that RWT level may lower to less than 73% during the event. OR it is desired to align Charging Pump suction through an alternate suction path. THEN <u>PERFORM</u> ONE of the following: • Appendix 10, <u>Charging</u> <u>Pump Atternate Suction to</u> the RWT / Restoration • Appendix 11, <u>Charging</u> <u>Pump Atternate Suction to</u> the SFP / Restoration b. IF RWT level is above 73%, AND it is desired to align Charging Pump suction through CHE-HV-536 or CHN-UV-514, THEN <u>PERFORM</u> Appendix 103, <u>RCS Makeup / Emergency</u> Boration. * 7. IF pressurizer pressure remains below the SIAS setpoint, THEN <u>perform</u> the following: a. <u>Ensurg</u> ONE RCP is stopped in each loop. b. IF RCS subcooling is less than 24°F [44°F], THEN <u>ensurg</u> all RCPs are 		INSTRUCTIONS	CONTINGENCY ACTIONS
 the SIAS setpoint, THEN perform the following: a. Ensure ONE RCP is stopped in each loop. b. IF RCS subcooling is less than 24°F [44°F], THEN ensure all RCPs are 	* 6.	 THEN perform the following: a. IF it is determined that RWT level may lower to less than 73% during the event, OR it is desired to align Charging Pump suction through an alternate suction path, THEN PERFORM ONE of the following: Appendix 10, Charging Pump Alternate Suction to the RWT / Restoration Appendix 11, Charging Pump Alternate Suction to the SFP / Restoration b. IF RWT level is above 73%, AND it is desired to align Charging Pump suction through CHE-HV-536 or CHN-UV-514, THEN PERFORM Appendix 103, RCS Makeup / Emergency 	
экорреч.	* 7.	 the SIAS setpoint, THEN <u>perform</u> the following: a. <u>Ensure</u> ONE RCP is stopped in each loop. b. IF RCS subcooling is less than 24°F [44°F], 	

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Reactor Coolant Pump Malfunctions: Ability to	Tier	1	
determine and interpret the following as they apply to the Reactor Coolant Pump Malfunctions (Loss of RC	Group	1	
Flow): When to secure RCPs on high stator	K/A	015 AA2.0	9
temperatures	IR	3.4	

Given the following conditions:

• Unit 3 was tripped due to a high Motor Stator temperature on 1A RCP

Per 40AO-9ZZ04, Reactor Coolant Pump Emergencies, the crew should stop ____(1)____. Stopping the RCP(s) should be performed ____(2)____.

- A. (1) ALL RCPs(2) BEFORE the Reactivity Control Safety function is addressed
- B. (1) ALL RCPs(2) AFTER the Reactivity Control Safety function is addressed
- C. (1) 1A RCP ONLY(2) BEFORE the Reactivity Control Safety function is addressed
- D. (1) 1A RCP ONLY
 - (2) AFTER the Reactivity Control Safety function is addressed

Pro	posed Answer:	D	
Exp	lanations:		
Α.	RCPs are stoppe	d. Se	ecause during malfunctions that cause a loss of cooling water to RCPs, all cond part is plausible if it is thought that stopping the RCP takes ing that the Reactor has tripped since there is a high temperature.
В.	First part is plausible because during malfunctions that cause a loss of cooling water to RCPs, all RCPs are stopped. Second part is correct.		
C.			cond part is plausible if it is thought that stopping the RCP takes ing that the Reactor has tripped since there is a high temperature.
D.	Correct		

Question Source:		New	
	Х	Bank	
		Modified	
		Previous NRC Exam	2016

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	2	
10CFR55.41:	10	
Reference Provided:	Ν	
Learning Objective:	18654 – Given that the ORP is being implemented, describe the use of an AOP or OP when the reactor trips or when performing an EOP, in accordance with 40DP-9AP16, EOP Users Guide	

Technical Reference:	Previous Question on 2016 NRC Exam						
Question 99							
While directing acti	While directing actions in an AOP, the CRS encounters the following set of steps:						
Step 4. Trip the	Reactor.						
Step 5. Trip all	4 RCPs.						
Step 6. GO TO	40EP-9EO01, SPTAs.						
	Abnormal Operating Procedure Users Guide, the CRS should direct (1)and the CRS should(2)						
	ssing the Reactivity Control Safety Function and direct SPTAs						
B. 1. prior to addre	ssing the Reactivity Control Safety Function						
2. continue in th	e AOP while directing SPTAs						
-	after addressing the Reactivity Control Safety Function. and direct SPTAs						
D. 1. immediately a	after addressing the Reactivity Control Safety Function.						

2. continue in the AOP while directing SPTAs

Technical Reference: 40AO-9ZZ04, Reactor Coolant Pump Emergencies								
	PALO VERDE NUCLEAR GENERATING STATION 40AO-9ZZ04 Revision 29 Page 6 of 32							
3.0 A	BNORMAL RCP MOTOR OR BEARING I	PARAMETERS						
5.	 IF the RCP parameters indicated on RMN-TJR-2 points 1-32 exceed any of the trip setpoints listed in Appendix A, <u>RCP Motor Or Bearing</u> <u>Trip Setpoints</u>, THEN <u>perform</u> the following: a. <u>Ensure</u> the Reactor is tripped. b. <u>Stop</u> the affected RCP. c. <u>GO TO</u> the appropriate procedure for current plant conditions. 							
6.	 IF any RCP motor or bearing parameter is trending to a trip setpoint (<u>REFER TO</u> Appendix D, <u>Instrumentation and Setpoints</u>), AND the CRS determines a plant shutdown or cooldown is needed, <u>THEN perform</u> BOTH of the following: The appropriate procedure to shutdown or cooldown the plant 400P-9RC01, <u>Reactor Coolant Pump Operation</u>, to stop the affected RCP 							

Technical Reference:	EOP Operations Expectations				
PALO VERDE NU	CLEAR GENERATING STATION	Revision 27			
EOP OPERA	Page 5 of 50				
This is norm interval of a CRS gets to	nally delegated to the STA. The STA v pproximately every 15 minutes. If the s	STA is not in the control room when the rol room staff (normally the 3rd Reactor			
11.When direc	ting Chemistry to perform 74DP-9ZZ0	5, notify them of the event in progress.			
PZR level fr reference F	om the calibration graph. When the pla	ns, the operator must interpolate actual int is in cold conditions, the operator can assary if not at cold conditions. RCN-LI-			
The intent of whether a g which an ev is responsit based upor	13. The use of the term "is desired" is found throughout the Emergency Operating Procedures. The intent of the term "is desired" is to provide the latitude for making a decision as to whether a given step should be performed based upon the existing plant conditions under which an event is being mitigated and the mitigation strategy being employed. The CRS is responsible to determine whether a given "is desired" action step should be performed based upon the mitigation strategy and the plant conditions which exist at the time the decision is made.				
14. The preferr	14. The preferred instrumentation for determining containment temperature is ERFDADS.				
ERFDADS	For post accident conditions, average containment temperature is calculated from the ERFDADS temperature instruments: HCN-T-0042A1, HCN-T-0042B1, HCN-T-0042C1 HCN-T-0042D1, and HCN-T-0042E1.				
	If ERFDADS is unavailable, determine average containment temperature using an average of ALL of the five readings from recorder RMN-TJR-1:				
 HCN-TE 	-42A				
 HCN-TE 	-42B				
 HCN-TE 					
 HCN-TE 					
HCN-TE					
Reactivity C however, so performed p	Control Safety Function shall be addres ome operations in progress will require				
to be outsid becomes a	le the acceptance criteria, it is importa	imit for how long a parameter is allowed			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Reactor Coolant Makeup: Knowledge of	Tier	1		
the operational implications of EOP warnings, cautions, and notes	Group	1		
	K/A	022 G 2.4.20		0
	IR	3.8		

Given the following conditions:

- Unit 2 is operating at 100% power
- 'A' & 'B' Charging Pumps are operating

Subsequently:

- The OATC recognizes that charging flow has lowered to 25 gpm
- An Auxiliary Operator reports to the Control Room that 'A' Charging Pump is partially gas bound and 'B' Charging Pump is completely gas bound
- (1) A completely gas bound pump should be indicated by a...
- (2) The crew should isolate letdown and stop...
- A. (1) quieter than normal sound
 - (2) both Charging Pumps
- B. (1) quieter than normal sound
 - (2) ONLY the 'B' Charging Pump and evaluate whether Charging flow restores to normal
- C. (1) louder than normal sound
 - (2) both Charging Pumps
- D. (1) louder than normal sound
 - (2) ONLY the 'B' Charging Pump and evaluate whether Charging flow restores to normal

Pro	posed Answer:	Α				
Exp	Explanations:					
Α.	Correct	Correct				
В.	First part is correct. Second part is plausible because in a scenario, if there is a RAS actuation and there is indication of cavitation, the Containment Spray pump will be stopped and conditions evaluated for improvement					
C.	First part is plausible since Charging Pumps are positive displacement pumps they try to maintain a higher discharge pressure. As the pump become more gas bound it will work harder and therefore make a louder than expected noise. Another possibility is that the more gas bound a pump becomes, the more cavitation is occurring because of air in the system. Therefore more cavitation will have a higher than normal noise. Second part is correct.					
D.	a higher discharg therefore make a pump becomes, t cavitation will hav there is a RAS ac	e pre loude he me e a h tuatic	ince Charging Pumps are positive displacement pumps they try to maintain ssure. As the pump become more gas bound it will work harder and er than expected noise. Another possibility is that the more gas bound a pre cavitation is occurring because of air in the system. Therefore more igher than normal noise Second part is plausible because in a scenario, if on and there is indication of cavitation, the Containment Spray pump will be a evaluated for improvement			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	N	
Learning Objective:		393 – Explain how gas binding of the charging pumps is mitigated in O-9ZZ05, Loss of Charging or Letdown.

Technical Reference: 40AO-9ZZ05, Loss of Charging or Letdown					
	DCEDURE	40AO-9ZZ05 Page 78	Revision 35 of 142		
2033 01 01		Appendix G	Page 2 of 4		
Appendi	Appendix G, Responding to Gas Binding of Charging Pumps				
INSTR	RUCTIONS	CONTINGENCY AC	TIONS		
level lowe THEN <u>PE</u> Venting C	usion was NOT due to VCT ring below 0%, <u>RFORM</u> Appendix I, <u>harging Pumps and</u> the Recycle Drain Header.				
7. <u>GO TO</u> Section 3.0, Step 5 OR Section 4.0, Step 4.					
	<u>NOTE</u>				
With two charging pumps operating while one of the pumps is gas bound, the primary indication of the gas bound pump will be the sound. A charging pump that is partly gas bound will initially have much louder cavitation noises than a filled pump. As the pump becomes fully gas bound, the plate valves will make much less noise than those in a pump that is filled with fluid.					

Т	Technical Reference: 40AO-9ZZ05, Loss of Charging or Letdown						
			DCEDURE	WN	40AO-9ZZ05 Revision 35 Page 77 of 142		
	20	33 01 01		Appendix G	Page 1 of 4		
		Appendi	x G, Responding to	Gas Bindi	ng of Charging P	umps	
		INSTR	RUCTIONS	<u>C</u>	ONTINGENCY A	CTIONS	
	1.	<u>Enter</u> App Date:	endix Entry Time and				
	2.	Regen HX 40 gpm,	I-212, Charging Pump to (, indicates greater than) TO Step 8.				
	3. <u>Close</u> CHB-UV-515, Letdown To Regen HX Isolation Valve, to isolate letdown flow.						
	<mark>4.</mark>		L of the following thes in "PULL TO LOCK":				
			-HS-216, Charging p 1 P01				
			HS-217, Charging p 2 P01				
			HS-218A, Charging				
			HS-218, Charging p 3 P01				

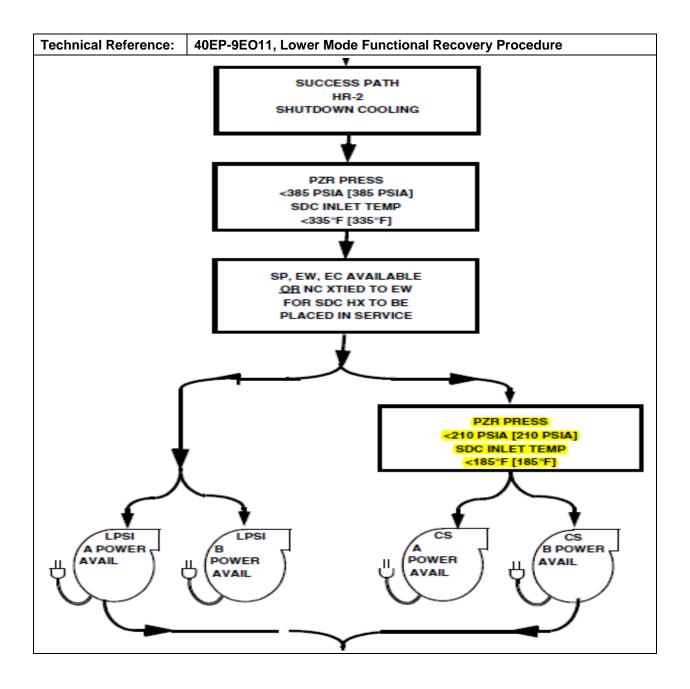
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Residual Heat Removal System: Ability to	Tier	1		
operate and/or monitor the following as they apply to the Loss of Residual Heat Removal System: RCS Inventory	Group	1		
	K/A	025 AA1.02		2
	IR	3.8		

Given the following conditions:

- Unit 3 is in MODE 4
- Train 'A' SDC is in-service using the 'A' LPSI pump
- RCS Pressure is 320 psia
- RCS Temperature is 250°F
- Pressurizer level is 40%

Subsequently:

- A leak in the SDC loop occurs
- RCS pressure is 310 psia and slowly lowering
- Pressurizer level is 35% and lowering
- (1) With NO operator action, the Pressurizer Low Level alarm should annunciate AS SOON AS Pressurizer level lowers to...
- (2) After the 'A' SDC Cooling Loop is isolated, the crew can shift to 'B' SDC Cooling Loop using...
- A. (1) 10%(2) ONLY 'B' LPSI Pump
- B. (1) 10%(2) 'B' LPSI OR 'B' CS Pump
- C. (1) 25%
 - (2) ONLY 'B' LPSI Pump
- D. (1) 25%
 - (2) 'B' LPSI OR 'B' CS Pump


Proposed Answer: C						
Exp	Explanations:					
Α.	First part is plausible because 10% pressurizer level represents a value that ensures that there is subcooled liquid in the Pressurizer. During SPTAs, operators will maintain Pressurizer level greater than 10%. Second part is correct.					
В.	First part is plausible because 10% pressurizer level represents a value that ensures that there is subcooled liquid in the Pressurizer. During SPTAs, operators will maintain Pressurizer level greater than 10%. Second part is plausible because a CS pump can be used if temperature and pressure requirements have been met (<210 psia and <185°F)					
C.	. Correct					
D.			cond part is plausible because a CS pump can be used if temperature and have been met (<210 psia and <185°F)			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		lemory or Fundamental Knowledge	
	Χ	Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	Ν	
Learning Objective:		81 – Describe the purpose and conditions under which Shutdown bling System is designed to function

Technical Reference: 40AL-9RK4A, Panel B04A Alarm Responses						
PALO VERDE	PALO VERDE PROCEDURE Page 258 of 420					
	Panel B04A Alarm Responses	40AL-9RK4A S6				
		Page 1 of 4				
Respons	se Section	4A02B				
Pressurizer Lev	vel High-Low	PZR LVL HI-LO				
Point ID D	Description	Setpoint				
RCLS110X F	Pressurizer Level Ch X Lo	25%				
RCLS110Y F	Pressurizer Level Ch Y Lo	25%				

Fechnical Reference: 40EP-9EO11, Lower Mode Functional Recovery						
PALO VERDE NUCLEAR GENERATING STAT	Page 276 of 370					
	HR-2 Page 8 of 13					
INSTRUCTIONS	CONTINGENCY ACTIONS					
* 13. IF ANY of the following exist:						
 SDC is NOT running, 						
 It is desired to start an idle train, 						
AND ALL of the following are met:						
 Any CS Pump is available, 						
 The 4.16 kV bus for the available CS pump is NOT energized from a single SBOG, 						
 Pressurizer pressure is less than 210 psia [210 psia], 						
 RCS temperature is less than 185°F [185°F], 						
THEN <u>PERFORM</u> ONE of the following as appropriate:						
 Appendix 239, <u>LM - Placing Train</u> <u>A CS on SDC</u> 						
 Appendix 240, <u>LM - Placing Train</u> <u>B CS on SDC</u> 						

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Component Cooling Water: Knowledge of	Tier	1		
the reasons for the following responses as they apply to	Group	1		
the Loss of Component Cooling Water: Effect on the CCW flow header of a loss of CCW	K/A	()26 AK3.04	4
	IR	3.5		

Given the following conditions:

- Unit 1 is operating at 100% power
- A complete loss of Nuclear Cooling water occurred 5 minutes ago
- The CRS has directed the BOP to perform 40AO-9ZZ03 Loss of Cooling Water, Appendix A, Cross-connect EW to NC, using Train 'A' EW

Per Appendix A the BOP should ensure that a MAXIMUM of ____(1)___ Normal Chiller NC outlet valve(s) is(are) open in order to ____(2)___.

- A. (1) one
 - (2) provide additional EW flow to NC priority loads
- B. (1) one
 - (2) ensure sufficient flow to the 'A' SDCHX in the event of a design basis accident
- C. (1) two
 - (2) provide additional EW flow to NC priority loads
- D. (1) two
 - (2) ensure sufficient flow to the 'A' SDCHX in the event of a design basis accident

Pro	posed Answer:	Α	
to N	IC priority loads.	After	a match because there is a loss of NC (CCW) that results in flow lost EW is cross-tied to NC, there is still insufficient flow to NC priority naximum of 1 chiller outlet valve will increase flow.
Α.	Correct		
В.	more flow to the S	SDCF	econd part is plausible because losing the outlet valve initially will provide HX, however if there is an accident and a SIAS, the cross connect valves at there is enough flow to the SDCHX.
C.			because during summer months, two large chillers are needed to maintain oly. Second part is correct.
D.	adequate cooling provide more flow	supp to th	because during summer months, two large chillers are needed to maintain oly. Second part is plausible because losing the outlet valve initially will the SDCHX, however if there is an accident and a SIAS, the cross connect sure that there is enough flow to the SDCHX.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	7
Reference Provided:	N
Learning Objective:	22359 – Given a loss of NC, describe how flow to the RCPs is increased after EW has been cross-tied

Technical Reference: 40AO-9ZZ03, Loss of Cooling Water, Appendix A, Cross-Connect E NC					
PALO VERDE	NUCLEAR GENERATIN	G STATION	40AO-9ZZ03	Revision 13	
LOS	S OF COOLING WAT	Page 27 of 44			
			Appendix A	Page 2 of 13	
	Appendix A, C	ross-connec	t EW to NC		
IN	ISTRUCTIONS	<u>C</u>	ONTINGENCY A	CTIONS	
Wate	<u>re</u> that both Nuclear Cooli r pump handswitches are L TO LOCK".	-			
Step 7 or	99 must be fully closed be Step 8. If NCN-UV-99 is n between NC and EW.	fore opening the			
	≥ NCN-UV-99, Nuclear Co r Containment Header Re e.				
	<u>re</u> that no more than one al Chiller NC outlet valve i	s			

Licensed (Descentes Initial Testinian					
Licensed Operator Initial Training Page: 21 of 23						
Title:	Loss of Cooling Water	Lesson Plan #:	NKASMC030305			
EO: 1.11	Given a loss of NC, describe how been cross tied in accordance wi		reased after EW has			
Introductio	on					
The 10 min	ute "clock" is still ticking until the RC	P low flow alarms have c	eared.			
Main Idea						
Before throttling the Train A or Train B SDHX Outlet Valve (EWX-HCV-53/54) the operator ensures that no more than one Normal Chiller outlet valve is open. This is done by taking the control room handswitch on the previously operating chiller(s) to stop. Normally only two chillers are operating, so only one chiller handswitch is taken to stop.						
Taking the selected chiller's handswitch to stop, secures the chill water circ pump and closes the chiller NC outlet valve. Ensuring that no more than one Normal Chiller outlet valve is open provides for the following:						
 Addi 	itional EW flow to NC priority loads by	y closing tripped chiller(s)	NC outlet valve(s).			
 Continued chill water flow (even though it's NOT being cooled by a chiller) to WC cooled components including the Main Generator collector housing. (The chill water circ pump continues to operate on the chiller that has NOT been taken to stop.) 						
-	ents the RCP NC low flow alarm from	m recurring on a subsequ	ent chiller start			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Pressure Control System Malfunction:		1		
Knowledge of the reasons for the following responses as they apply to the Pressurizer Pressure Control Malfunctions: Actions contained in EOP for PZR PCS	Group	1		
	K/A	()27 AK3.03	3
malfunction	IR	3.7		

Given the following conditions:

• Unit 3 is operating at 100% power

Subsequently:

- Pressurizer Spray Control Valve, RCE-PV-100E, failed open
- All ARP actions to close the failed valve were unsuccessful
- The CRS directed the BOP to trip the Reactor when RCS Pressure lowered to 1950 psia
- During SPTAs, the OATC operated RCPs as directed in the ARP

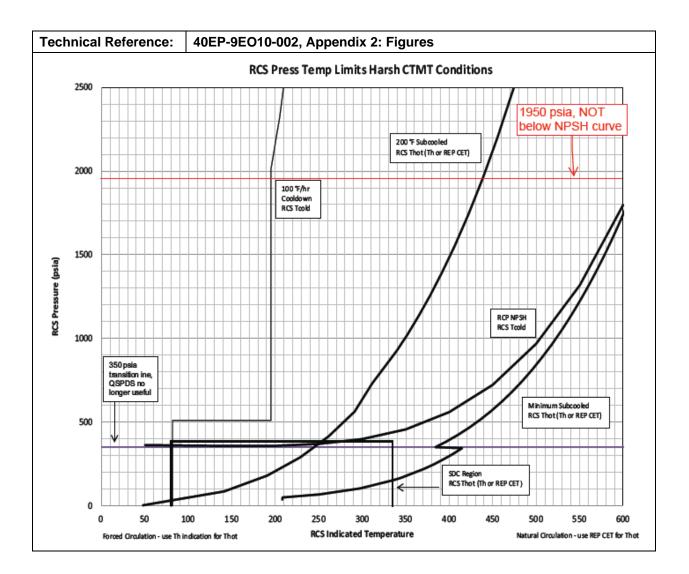
Which of the following describes the ARP directed action for RCP operation and the reason for this direction?

The OATC should trip ____(1)___ RCPs in order to ____(2)___.

- A. (1) ONLY 2
 - (2) protect RCPs due to insufficient NPSH for 4 RCPs to be in operation
- B. (1) ONLY 2
 - (2) reduce DP across the Main Spray valves to allow heaters to restore pressure

C. (1) ALL 4

- (2) protect RCPs due to insufficient NPSH for 4 RCPs to be in operation
- D. (1) ALL 4
 - (2) reduce DP across the Main Spray valves to allow heaters to restore pressure


Pro	Proposed Answer: D					
Exp	lanations:					
Α.	A. First part is plausible since the Main Spray valves only tap off of two RCS loops and maintaining forced circulation is always preferred, however the ARP directs stopping all 4 RCPs. Second part is plausible as NPSH is degrading as RCS pressure lowers, and RCPs are required to be stopped if pressure lowers to less than minimum NPSH, however that pressure has not been reached and is not the basis for stopping RCPs following the reactor trip.					
В.			ince the Main Spray valves only tap off of two RCS loops and maintaining vays preferred, however the ARP directs stopping all 4 RCPs. Second part			
C.	C. First part is correct. Second part is plausible as NPSH is degrading as RCS pressure lowers, and RCPs are required to be stopped if pressure lowers to less than minimum NPSH, however that pressure has not been reached and is not the basis for stopping RCPs following the reactor trip.					
D.	Correct.					

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	14	
Reference Provided:	N	
Learning Objective:	24946 – Describe the response of the Pressurizer Pres System to a failure of an input transmitter	sure Control

Technical Reference:	40AL-9RK4A, Panel B04A Alarm Responses					
5.3 IF ANY of the following will NOT close following attempts to close the open Pressurizer spray valve:						
• RC	E-PV-100E, Pressurizer Spray Control Valve from RCS Loop 1A					
• RC	E-PV-100F, Pressurizer Spray Control Valve from RCS Loop 1B					
THEN	THEN perform the following:					
5.3.1 <u>Tri</u>	o the Reactor.					
<u> </u>	<u>o</u> all four RCPs.					
5.3.3 <u>G</u> G	TO 40EP-9EO01, Standard Post Trip Actions.					

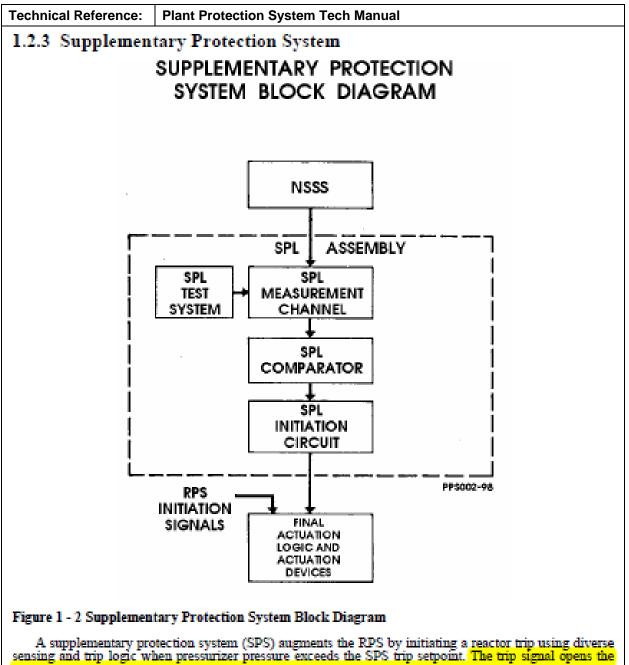
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Anticipated Transient Without Scram: Knowledge	Tier	1		
of the interrelations between the ATWS and the following an ATWS: Breakers, relays, and disconnects	Group	1		
Tonowing an ATWS. Breakers, relays, and disconnects	K/A	(029 EK2.0	6
	IR	2.9		

Given the following conditions:

• A malfunction has caused Pressurizer pressure to rise

IF an ATWS occurred and NO OPERATOR ACTION is taken, the SPS should send a trip signal to ____(1)___ AS SOON AS RCS pressure reaches a MINIMUM of ____(2)___ psia.

- A. (1) RTCBs ONLY
 - (2) 2383
- B. (1) RTCBs ONLY(2) 2409
- C. (1) RTCBs and MG Set contactors(2) 2383
- D. (1) RTCBs and MG Set contactors(2) 2409


Pro	posed Answer:	D				
Exp	Explanations:					
Α.	A. First part is plausible because if an RPS Reactor trip setpoint is exceeded, only the RTCBs will open. Second part is plausible because 2383 psia is the RPS Reactor trip setpoint.					
В.	First part is plausible because if an RPS Reactor trip setpoint is exceeded, only the RTCBs will open. Second part is correct.					
C.	First part is correct. Second part is plausible because 2383 psia is the RPS Reactor trip setpoint.					
D.	Correct					

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	7
Reference Provided:	N
Learning Objective:	24948 – Describe the Supplementary Protection System including its function, instrumentation, bases, and setpoint

Technical Reference: 40AL-9RK5A, Panel B05A Alarm Responses								
PVNGS NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 30 of 273								
Panel B	Panel B05A Alarm Responses							
Response Se	ection	5A07A						
Supplementary Protect	SPS CH TRIP							
Point ID Descrip	otion	Setpoint						
SBYS47 Suppler	mentary Protection System Channel A Tr mentary Protection System Channel B Tr mentary Protection System Channel C Tr mentary Protection System Channel D Tr	ip 2409 psia						

sensing and trip logic when pressurizer pressure exceeds the SPS trip setpoint. The trip signal opens the reactor trip switchgear (RTSG) and CEDM MG set output contactors, either one of which will deenergize the CEDM coils allowing all CEAs to drop into the core.

Technical Reference: 40AL-9RK5A, Panel B05A Alarm Responses					
PVNGS NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 22 of 273					
Panel B05A Alarm Responses	40AL-9RK5A Revision 2				
	Page 1 of 5				
Response Section	5A05A				
High Pressurizer Pressure Channel Trip	HI PZR PRESS CH TRIP				
Point ID Description	Setpoint				
SBTA05Hi Pressurizer Pressure Channel A TripSBTB05Hi Pressurizer Pressure Channel B TripSBTC05Hi Pressurizer Pressure Channel C TripSBTD05Hi Pressurizer Pressure Channel D Trip	2383 psia 2383 psia 2383 psia 2383 psia				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Generator Tube Rupture: Knowledge of the		1		
operational implications of the following concepts as they apply to the SGTR: Use of steam tables	Group	1		
	K/A	(038 EK1.01	1
	IR	3.1		

Given the following conditions:

- Unit 2 was tripped due to a SG tube rupture on SG #1
- The CRS entered 40EP-9EO04, SGTR

The BOP should lower Steam Generator pressures to a MAXIMUM of (1) to ensure that (2) is at the required temperature prior to isolating SG #1.

- A. (1) 950 psia
 - (2) Тнот
- B. (1) 950 psia
 - (2) T_{COLD}
- C. (1) 1135 psia (2) Т_{нот}
- D. (1) 1135 psia
 - (2) TCOLD

Pro	Proposed Answer: A			
Ехр	Explanations:			
Α.	Correct			
В.	First part is correct. Second part is plausible because when cooling down for all other events, T _{COLD} is used to track the cooldown.			
C.	First part is plausible because 1135 psia is the pressure that the RCS will be lowered to prevent possibly lifting a Main Steam Safety Valve during a SGTR. Second part is correct.			
D.				

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	5	
Reference Provided:	Y	Steam Tables
Learning Objective:	29951 – Given that the SGTR ORP is being performed and the RCS is being cooled to allow SG isolation, state the associated parameter and value of the cooldown target and its basisin accordance with 40EP- 9EO04 and the SGTR Technical Guideline	

echnical Reference: 40EP-9EO04, Steam Generator Tube Rupture				
PALO VERDE NUCLEAR GENERATING STAT		40EP-9EO04	Revision 33	
STEAM GENERATOR TUBE RUPTUR	25	Page 8 o	f 48	
STEAM GENERATOR TOBE ROTTO	~			
INSTRUCTIONS		CONTINGENCY AC	TIONS	
KEY OPERATOR ACTION - Perfect performance of closely related steps 10. through 12. will significantly reduce plant risk.				
10. <u>Commence</u> an RCS cooldown to a T _h of less than 540°F using SBCS.	а	SBCS to the condense vailable, HEN <u>cooldown</u> using A bllowing:		
	•	ADV operation from Room	the Control	
	•	Appendix 116, <u>Oper</u> Valves 1007 and 10		
	•	Appendix 18, <u>Local</u> Operation	ADV_	

Technical Reference:	echnical Reference: 40EP-9EO04, Steam Generator Tube Rupture					
	CLEAR GENERATING STAT		40EP-9EO04 Page 9 of	Revision 33 48		
INST	RUCTIONS	2	CONTINGENCY ACT	IONS		
12. <u>Depressurize</u> the following	e the RCS by performing	lo	pressurizer pressure ca owered and maintained w total oritoria			
	<u>n</u> pressurizer pressure ALL of the following criteria:	т	tated criteria, T HEN <u>PERFORM</u> Append Depressurization using R(
• (Le	ess than 1135 psia					
pr G	pproximately equal to the ressure of the Steam enerator with the tube pture (± 50 psi)					
R	′ithin the P/T Limits. <u>EFER TO</u> Appendix 2, <u>gures</u>					
R	/ithin RCP NPSH Limits. <u>EFER TO</u> Appendix 2, <u>gures</u>					

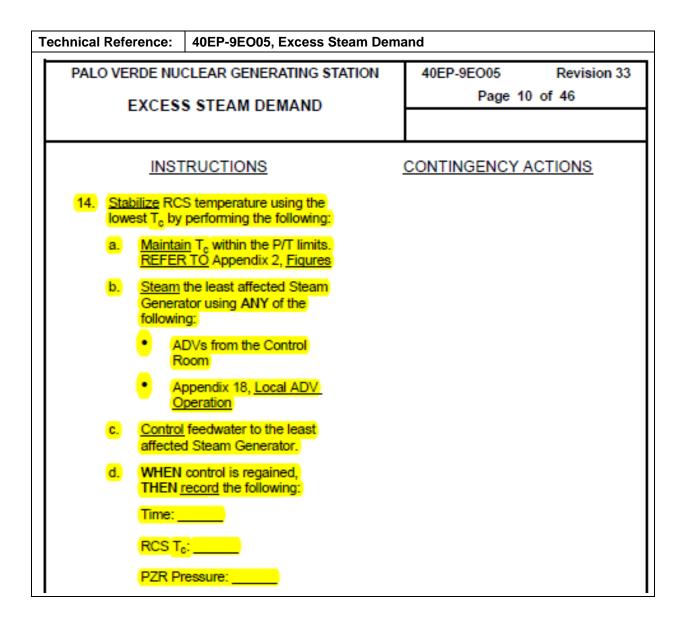
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Line Rupture – Excessive Heat Transfer:	Tier	1		
Knowledge of the interrelations between the (Excess Steam Demand) and the following: Facility's heat	Group	1		
removal systems, including primary coolant, emergency	K/A	040 EK2.2		
coolant, the decay heat removal systems, and relations between the proper operation of these systems to the operation of the facility	IR	3.2		

Given the following conditions:

- An unisolable ESD event outside of Containment is in progress in Unit 1
- SG #1 pressure is 920 psia and lowering
- SG #2 pressure is 950 psia and stable
- The CRS has entered 40EP-9EO05, Excess Steam Demand

After dryout conditions have been met on the faulted Steam Generator, the crew should minimize the effects of Pressurized Thermal Shock by stabilizing T_{COLD} using ____(1)___ and ____(2)___.

- A. (1) ADVs
 - (2) throttling closed HPSI Injection valves
- B. (1) ADVs
 - (2) depressurizing the RCS with Auxiliary Spray Valves
- C. (1) SBCVs(2) throttling closed HPSI Injection valves
- D. (1) SBCVs
 - (2) depressurizing the RCS with Auxiliary Spray Valves


Pro	Proposed Answer: A			
Exp	lanations:			
Α.	Correct			
В.				
C.	First part is plausible because SBCVs would normally be used to control RCS temperature post Reactor trip. However since SG pressures have lowered below MSIS setpoints, therefore ADVs will be used. Second part is correct.			
D.	Reactor trip. How will be used. Seco	ever ond p	ecause SBCVs would normally be used to control RCS temperature post since SG pressures have lowered below MSIS setpoints, therefore ADVs art is plausible because opening Auxiliary Spray Valves will stop (or limit) the RCS, however the continuing injection of SI flow will continue making	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	5	
Reference Provided:	N	
Learning Objective:	25489 - Given a set of plant parameters determine when and how RCS temperature is stabilized during an ESD per 40EP-9EO05, ESD	

Technical Reference: 40AL-9RK5A, Panel B05A Alarm Responses						
PVNGS NUCLEAR	ADMINISTRATIVE AND TECHNICAL	MANUAL Page 160) of 273			
Pane	Panel B05A Alarm Responses		Revision 2			
		Page 1 of 4				
Response	Response Section 5A07C					
Low Steam Generat	or 1 Pressure Channel Trip	LO SG PRESS CH TRIP				
Point ID Desc	ription	Setpoint				
SBTB11 Lo S SBTC11 Lo S	SBTB11 Lo Steam Generator 1 Pressure Ch B Trip SBTC11 Lo Steam Generator 1 Pressure Ch C Trip		ariable ariable ariable ariable			

Т	Fechnical Reference: 40EP-9EO05, Excess Steam Demand					
	PALO VERDE NUCLEAR GENERATING STATION EXCESS STEAM DEMAND	40EP-9EO05 Revision 33 Page 11 of 46				
	INSTRUCTIONS	CONTINGENCY ACTIONS				
	<u>CAUTION</u> Throttling HPSI injection valves will cause erosion damage to downstream piping.					
	 IF at least one HPSI Pump is operating, AND ALL of the following conditions exist: RCS is 24°F [44°F] or more subcooled Pressurizer level is greater than 10% [15%] and NOT lowering The unisolated Steam Generator is available for RCS heat removal with level being maintained within or being restored to 45 - 60% [45 - 60%] NR RVLMS indicates RVUH level is 16% or more THEN throttle HPSI flow or stop the HPSI Pumps one pump at a time. 					

T	echnical Reference: 40DP-9AP10, Excess Steam Demand	Technical Guideline
	PVNGS NUCLEAR ADMINISTRATIVE AND TECHNICA	LMANUAL Page 15 of 53
	Excess Steam Demand Technical Guideline	40DP-9AP10 Revision 24
	4.5.14 Step 14 - Stabilize RCS Temperature	
	A. The main objective following an overcooling on the reactor vessel, return RCS temperat limits and establish stable RCS pressure an SDC entry conditions can be started. In ge should be started as soon as possible.	ure to within the Post Accident P/T nd temperature until a cooldown to
	RCS temperature control is achieved by ste the atmospheric dump valves as necessary inventory for heat removal.	
	A heat removal method via the least affecte before SG dry out occurs, if possible. PTS and the factors or mitigating trends that ter	concerns regarding an ESD event
	 Limiting RCS repressurization as much minimum RCS subcooling requirement 	
	 Restoring and maintaining control of R accident P/T limits. 	CS temperature within post
	In case the atmospheric dump valves are r unaffected SG will serve as a heat removal safeties is not the preferred method becaus increasing as SG temperature/pressure ris setpoint. Therefore, every effort should be atmospheric dump valves to eliminate the p	I method. Steaming via the SG se it results in RCS pressure e to the SG safety valve lift made to regain use of the
	RCS temperature will begin to increase after dries out unless a means of controlling RCS increase in RCS temperature may result in inventory added from safety injection and of blowdown phase of the event. The post-dry also presents a PTS concern. Limiting RCS possible while maintaining RCS subcooling control of RCS temperature within the limits limit PTS concerns.	S heat removal is established. The a water-solid condition due to the charging operation during the yout heatup and repressurization S repressurization as much as prequirements and maintaining

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Main Feedwater: Knowledge of the	Tier	1		
operational implications of the following concepts as they apply to the (Loss of Feedwater): Components,	Group	1		
capacity, and function of emergency systems	K/A		054 EK1.1	
	IR	3.2		

Given the following conditions:

- Unit 1 tripped due to a complete loss of Main Feedwater.
- AFB-P01 has been manually started and aligned to feed both SGs.

Subsequently:

• AFAS-1 actuates.

With NO operator action, how should the AFAS-1 affect the current feed lineup?

AFA-P01 should start and feed ____(1)___ and AFB-P01 should be feeding ____(2)___.

- A. (1) SG #1 ONLY (2) SG #1 ONLY
- B. (1) SG #1 ONLY(2) both SGs
- C. (1) both SGs (2) SG #1 ONLY
- D. (1) both SGs (2) both SGs

Pro	posed Answer:	Α		
Exp	Explanations:			
Α.	Correct			
В.	First part is correct. Second part is plausible since it will align to feed SG 1 and it was already aligned to feed SG 2, however on an AFAS-1, all feed will stop to SG 2 and both AFW Pumps will commence feeding SG 1.			
C.			ince AFA-P01 is drawing steam from both SGs on an AFAS-1 or AFAS-2, d the SG with the active AFAS signal. Second part is correct.	
D.	however it will on align to feed SG	ly fee I and	ince AFA-P01 is drawing steam from both SGs on an AFAS-1 or AFAS-2, d the SG with the active AFAS signal. Second part is plausible since it will it was already aligned to feed SG 2, however on an AFAS-1, all feed will AFW Pumps will commence feeding SG 1.	

Question Source:		New	
	X	Bank	
		Modified	
	Х	Previous NRC Exam	2016

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	Ν	
Learning Objective:	24499 - Describe the system response to an Auxiliary Feedwater Actuation Signal	

Technical Reference: Auxiliary Feedwater System Tech Manual

3.1 Normal Operations

The essential components of the AFW system will be aligned for automatic operation during normal at power conditions of the unit. This allows for AFW system response to automatic actuation signals that would be generated by the plant protection system (PPS). When the S/G level decreases to 25.8 % WR, as sensed by two out of four class level instruments for that S/G, the PPS circuitry responds to initiate an auxiliary feedwater actuation signal (AFAS) for that S/G.

When an AFAS 1 signal is generated, at 25.8% WR on 2 of 4 class level instruments for the #1 S/G, the following automatic actions are initiated:

- Both essential AFW pumps are automatically started
- Both emergency diesel generators are started.
- The A and B trains of SP, EC, and EW are started.
- All S/G blowdown and sampling is isolated.
- The isolation and flow control valves to the #1 S/G from AFA-P01 are opened. (AFC-UV-36 and AFA-UV-32)
- The isolation and flow control valves to the #1 S/G from AFB-P01 are opened. (AFB-UV-34 and AFB-UV-30)

When these actions occur, the #1 S/G receives full AFW flow from the essential pumps. This flow continues until S/G level reaches 40.8% WR, as sensed by the class level instruments for that S/G. At 40.8%, all of the isolation and flow control valves (4) will automatically close to stop adding feedwater to the S/G. These valves will then open again, automatically, if level decreases to 25.8% to restore S/G level. All four valves will continue to open and close, as required, to maintain S/G level between 25.8% and 40.8% WR.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Station Blackout: Knowledge of the reasons for	Tier	1		
the following responses as they apply to the Station Blackout: Actions contained in EOP for loss of offsite	Group	1		
and onsite power	K/A	()55 EK3.02	2
	IR	4.3		

Per 40EP-9EO08, Blackout, the purpose of actuating a MSIS is to...

- 1. minimize cooldown of the RCS
- 2. minimize effects of loss of Instrument Air
- 3. prevent damage to the Main Condenser
- 4. prevent an inadvertent loss of steam pressure and inventory
- A. 1 AND 4 ONLY
- B. 1 AND 3 ONLY
- C. 2 AND 3 ONLY
- D. 2 AND 4 ONLY

Pro	posed Answer:	в		
Exp	Explanations:			
Α.	Minimize cooldown of the RCS is correct. Prevent an inadvertent loss of steam pressure and inventory is plausible because an MSIS will minimize pressure and inventory losses but this is not the reason for MSIS. During Blackout inventory will be maintained with AFA-P01 and will not be an issue.			
В.	Correct			
C.	Minimize the effects of loss of Instrument Air is plausible because all Instrument Air and Service Air Compressors lose power. As Instrument Air pressure lowers, there are valves that will fail open and could potentially affect the RCS. 40EP-9EO08, Blackout does have a step to monitor IA and Nitrogen air pressure, however it is not one of the purposes for actuating MSIS. It is also plausible because the second step in the Loss of Instrument Air AOP is to initiate MSIS if desired. Prevent damage to the Main Condenser is correct.			
D.	Air Compressors open and could p and Nitrogen air p plausible because Prevent an inadve minimize pressure	lose otent oress e the ertent e and	loss of Instrument Air is plausible because all Instrument Air and Service power. As Instrument Air pressure lowers, there are valves that will fail ially affect the RCS. 40EP-9EO08, Blackout does have a step to monitor IA ure, however it is not one of the purposes for actuating MSIS. It is also second step in the Loss of Instrument Air AOP is to initiate MSIS if desired. closs of steam pressure and inventory is plausible because an MSIS will inventory losses but this is not the reason for MSIS. During Blackout ained with AFA-P01 and will not be an issue.	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	4	
Reference Provided:	N	
Learning Objective:	26233 - Blackoι	Explain why an MSIS is initiated in accordance with 40EP-9EO08, ut

Technical Refe	Technical Reference: 40DP-9AP13, Blackout Technical Guideline							
PALO VERDE PROCEDURE Page 11 of 42								
	Black	out Technical Guideline	40DP-9AP13 Revis					
4.5.3 Step 3 - Open the Placekeeper and Enter the Time of the Event								
A. This step reminds the operator to open the placekeeper and record the tin the event. The placekeeper provides a place for the CRS to keep track of progress through the procedure, and provides a broad overview of its implementat The placekeeper is located in the back of the procedure.								
<mark>4.5.4</mark>	Step 4	- Actuate MSIS						
A. Various secondary valves may fail open on a Blackout causing a cooldown the RCS and possibly causing Main Condenser damage due to the loss of vacuum. Actuating MSIS minimizes the cooldown and the potential for damage to the condenser.								

Т	Technical Reference: 40DP-9AP13, Blackout Technical Guideline							
	PALO VERDE PRO	Page 17	of 42					
	Black	40DP-9AP13	Revision 25					
	lo S	ply Instrument Air Compress backs up the Instrument nt Air header pressure a hitrogen exists for air ope	Air nd N ₂					
		lve operation.						

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Vital AC Instrument Bus: Knowledge of	Tier	1		
the reasons for the following responses as they apply to the Loss of Vital AC Instrument Bus: Actions contained	Group	1		
in EOP for loss of vital ac electrical instrument bus	K/A	()57 AK3.0 ²	1
	IR	4.1		

Given the following conditions:

- Unit 2 is operating at 100% power
- 120 VAC Class Instrument Bus, PNA-D25, tripped on a fault

The crew is required to commence monitoring DNBR/LHR/AZTILT/ASI for ADVERSE trends within a MAXIMUM of ____(1)___ to ensure DNBR/LHR/AZTILT/ASI are within Technical Specification limits due to the loss of ___(2)___.

A. (1) 15 minutes

(2) COLSS

- B. (1) 15 minutes(2) CEAC 1
- C. (1) 1 hour (2) COLSS
- D. (1) 1 hour
 - (2) CEAC 1

Pro	posed Answer:	Α				
Ехр	lanations:					
Α.	Correct					
В.	First part is correct. Second part is plausible because CEAC 1 is INOPERABLE with a loss of PNA-D25					
C.	First part is plausible because a loss of PNA-D25 makes COLSS out of service and it may be assumed that LHR and DNBR are exceeding the Technical Specification limits and is required to be restored within one hour. Second part is correct.					
D.	assumed that LHI be restored within	R and one	ecause a loss of PNA-D25 makes COLSS out of service and it may be DNBR are exceeding the Technical Specification limits and is required to hour. Second part is plausible because CEAC 1 is INOPERABLE with a C can still be monitored from CEAC 2.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	4	
Reference Provided:	Ν	
Learning Objective:	17537 – Given conditions where COLSS is inoperable, monitor DNBR/LHR/ASI with COLSS out of service in accordance with 72ST 9RX03	

٦	Technical Reference: 40AO-9ZZ13, Loss of Class Instrument or Control Power						
		LOSS OF	CLEAR GENERATING STATION	40AO-9ZZ13 Revision 3 Page 21 of 184			
		SS OF PN	IA-D25	CONTINGENCY A	CTIONS		
	<mark>6.</mark>	20% RTP THEN <u>PE</u> DNBR/LH	power is greater than <u>REORM</u> 72ST-9RX03, <u>R/AZTILT/ASI With</u> <u>ut Of Service</u> within s				

Technical Reference:						
	PALO VERDE NUCLEAR GE			ENERATING STATION	40AO-9ZZ13 Revision 30 Page 91 of 184	
			OL PO		Appendix A	Page 5 of 6
		Арр	pendix	A, Effects of the Loss	s of Channel A	
System	PKA M41	PKA D21	PNA D25	Roenoneo		
	х			RTSG Breaker A trips open due to the UV relay de-energizing.		
SB			×	RTSG Breaker A and C trip open due to loss of power to one leg of the RPS logic matrices AB, AC, AD. RTSG Breaker A trips on a SPLA trip and loss of power to RPS Initiation path #1. Lose power to all Channel A input parameter instruments resulting in 1-3 half leg trips on all parameters that have a trip setpoint. Parameters that fail high or low are inoperable. CEAC 1 in all CPC channels becomes inop due to loss of power to RSPTs and may generate penalty factors when reenergized.		

Technical Reference: Technical	Technical Reference: Technical Specifications								
3.2 POWER DISTRIBUTION LIMITS									
3.2.1 Linear Heat Rate (LHR)	3.2.1 Linear Heat Rate (LHR)								
LCO 3.2.1 LHR shall r	not exceed the limits specified in th	ne COLR.							
APPLICABILITY: MODE 1 w	ith THERMAL POWER > 20% RT	P.							
ACTIONS									
CONDITION	REQUIRED ACTION	COMPLETION TIME							
A. Core Operating Limit Supervisory System (COLSS) calculated core power exceeds the COLSS calculated core power operating limit based on LHR.	A.1 Restore LHR to within limits.	<mark>1 hour</mark>							

 3.2 POWER DISTRIBUTION LIMITS 3.2.4 Departure From Nucleate Boiling Ratio (DNBR) LCO 3.2.4 The DNBR shall be maintained by one of the following methods: a. Core Operating Limit Supervisory System (COLSS) In Service: 1. Maintaining COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR when at least one Control Element Assembly Calculator (CEAC) is OPERABLE in each OPERABLE Core Protection Calculator (CPC) channel; o 2. Maintaining COLSS calculated core power less than or equal to COLSS calculated core power less than or operating Limit based on DNBR when at least one Control Element Assembly Calculator (CEAC) is OPERABLE in each OPERABLE Core Protection Calculator (CPC) channel; o
 LCO 3.2.4 The DNBR shall be maintained by one of the following methods: a. Core Operating Limit Supervisory System (COLSS) In Service: 1. Maintaining COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR when at least one Control Element Assembly Calculator (CEAC) is OPERABLE in each OPERABLE Core Protection Calculator (CPC) channel; o 2. Maintaining COLSS calculated core power less than or equal to COLSS calculated core power less than or equal to COLSS calculated core power less than or equal to COLSS calculated core power less than or equal to COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR decreased by the allowance specified in
 a. Core Operating Limit Supervisory System (COLSS) In Service: 1. Maintaining COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR when at least one Control Element Assembly Calculator (CEAC) is OPERABLE in each OPERABLE Core Protection Calculator (CPC) channel; o 2. Maintaining COLSS calculated core power less than or equal to COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR decreased by the allowance specified in
Service: 1. Maintaining COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR when at least one Control Element Assembly Calculator (CEAC) is OPERABLE in each OPERABLE Core Protection Calculator (CPC) channel; o 2. Maintaining COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR decreased by the allowance specified in
equal to COLSS calculated core power operating limit based on DNBR when at least one Control Element Assembly Calculator (CEAC) is OPERABLE in each OPERABLE Core Protection Calculator (CPC) channel; o 2. Maintaining COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR decreased by the allowance specified in
equal to COLSS calculated core power operating limit based on DNBR decreased by the allowance specified in
are not met.
b. COLSS Out of Service:
 Operating within the region of acceptable operation specified in the COLR using any OPERABLE Core Protection Calculator (CPC) channel when at least one Control Element Assembly Calculator (CEAC) is OPERABLE in each OPERABLE CPC channel; or
 Operating within the region of acceptable operation specified in the COLR using any OPERABLE CPC channel (with both CEACs inoperable) when the CEAC requirements of LCO 3.2.4.b.1 are not met.
APPLICABILITY: MODE 1 with THERMAL POWER > 20% RTP.
ACTIONS
CONDITION REQUIRED ACTION COMPLETION TIME
A. COLSS calculated core A.1 Restore the DNBR 1 hour power not within limit.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of DC Power: Knowledge of limiting	Tier	1		
condition for operations and safety limits	Group	1		
	K/A	0	58 G 2.2.2	2
	IR	4.0		

Given the following conditions:

- Unit 1 is operating in MODE 4
- The crew is cooling down and depressurizing the RCS following a LOOP per 40EP-9EO07, Loss of Offsite Power/Loss of Forced Circulation

Subsequently:

• Class 125 VDC Bus, PKB-M42, tripped on overcurrent

Per Technical Specifications, the REQUIRED ACTION(s) of LCO ___(1)___ must be performed and ___(2)___ Auxiliary Spray Valve(s) is(are) available to continue the depressurization.

- A. (1) 3.8.4, DC Sources Operating(2) one
- B. (1) 3.8.4, DC Sources Operating(2) both
- C. (1) 3.8.5, DC Sources Shutdown(2) one
- D. (1) 3.8.5, DC Sources Shutdown(2) both

Pro	posed Answer:	Α		
Exp	lanations:			
Α.	Correct			
В.			cond part is plausible because only PKA-M41 and PKB-M42 cause a loss alve. PKC-M43 and PKD-M44 will not cause a loss of an Auxiliary Spray	
C.	First part is plausible because the Lower Mode Functional Recovery procedure is used in Mode 4 so it could be assumed that if the LMFRP is being used then LCO 3.8.5 would be applicable. Second part is correct.			
D.	so it could be ass Second part is pla	umec ausibl	ecause the Lower Mode Functional Recovery procedure is used in Mode 4 I that if the LMFRP is being used then LCO 3.8.5 would be applicable. e because only PKA-M41 and PKB-M42 cause a loss of an Auxiliary Spray PKD-M44 will not cause a loss of an Auxiliary Spray Valve.	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	8
Reference Provided:	N
Learning Objective:	21203 – Given a set of plant conditions determine whether or not the LCOs and TLCOs of 3.8 are satisfied in accordance with Tech Spec 3.8

Technical Reference:	Technical Specifications
3.8 ELECTRICAL F	POWER SYSTEMS
3.8.4 DC Sources -	- Operating
	The Train A and Train B DC electrical power subsystems shall be OPERABLE.
	MODES 1, 2, 3, and 4.

echnical Re	chnical Reference: 40AO-9ZZ13, Loss of Class Instrument or Control Power						
	VERDE NUCLEAR GE				40AO-9ZZ13 Revision 30 Page 115 of 184		
	LOSS OF CLASS INSTRUMENT OR CONTROL POWER				Appendix C	Page 1 of 5	
	Appendix C, Effects of the Loss of Channel B						
System	PKB M42	PKB D22	PNB D26	Response			
AF	х	х		AFB-P01 has lost its control power.			
			х	CHB-UV-515 closes due	to loss of power to C	HB-TT-221.	
				CHB-UV-515/523, CVCS causing a loss of letdown		alves, fail closed	
				CHB-UV-505, RCP Controlled Bleedoff valve, fails closed. RCP bleedoff lifts CHN-PSV-199, RCP Seal Leak-Off To RDT Relief Valve. CHB-HV-203, Aux Spray Valve, fails closed. CHA-HV-205 must be used for pressure control if the Main Spray Valves are unavailable.			
СН	×	x					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Nuclear Service Water: Ability to operate	Tier	1		
and/or monitor the following as they apply to the Loss of Nuclear Service Water (SWS): Loads on the SWS in the	Group	1		
control room	K/A	()62 AA1.0	2
	IR	3.2		

Given the following conditions:

- Unit 2 is operating at 100% power
- 'A' PW pump is OOS

Subsequently:

- 'B' PW pump trips on overcurrent
- (1) Per 40AO-9ZZ03, Loss of Cooling Water, the crew should trip...
- (2) The crew should break vacuum on the Main Turbine...
- A. (1) the Main Turbine ONLY(2) IMMEDIATELY following the Main Turbine trip
- B. (1) the Main Turbine ONLY(2) as soon as the Main Turbine reaches 1200 RPM
- C. (1) the Reactor(2) IMMEDIATELY following the Main Turbine trip
- D. (1) the Reactor(2) as soon as the Main Turbine reaches 1200 RPM

Pro	posed Answer:	D		
Exp	lanations:			
Α.	A. First part is plausible because Plant Cooling Water is the heat sink for the Turbine Cooling Water HX, therefore cools portions of the Main Turbine. However since it is also the heat sink for the Nuclear Cooling Water HXs, the Reactor must be tripped. Second part is plausible if it is thought that the quicker the Main Turbine is stopped, the less damage a high temperature condition will cause.			
В.	First part is plausible because Plant Cooling Water is the heat sink for the Turbine Cooling Water HX, therefore cools portions of the Main Turbine. However since it is also the heat sink for the Nuclear Cooling Water HXs, the Reactor must be tripped. Second part is correct.			
C.			cond part is plausible if it is thought that the quicker the Main Turbine is age a high temperature condition will cause.	
D.	Correct			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Х	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	4	
Reference Provided:	Ν	
Learning Objective:	det	38 – Given the Loss of Cooling Water AOP is being performed ermine the appropriate mitigating strategies for a loss of plant cooling er in accordance with 40AO-9ZZ03

Technical Reference:	40AO-9ZZ03, Loss of Cooling W	ater
PALO VERDE NUC	LEAR GENERATING STATION	40AO-9ZZ03 Revision 13
LOSS O	F COOLING WATER	Page 6 of 44
3.0 PLANT CO	DLING WATER	
INSTR	RUCTIONS	CONTINGENCY ACTIONS
AND the F	system is NOT restored, Reactor is at power, form the following:	
a. <u>Trip</u>	the Reactor.	
	EORM 40EP-9EO01, dard Post Trip Actions.	

Technical Reference:	40AO-9ZZ03, Loss of Co Load on TC	oling Wat	er, Appendix B, Min	imize Cooling
	CLEAR GENERATING STA	TION	40AO-9ZZ03 Page 4	Revision 13 2 of 44
20000			Appendix B	Page 4 of 6
	Appendix B, Minimize		-	
INSTR	RUCTIONS	<u>C</u>	ONTINGENCY A	CTIONS
than 1200	ain Turbine speed is less) rpm, <u>form</u> the following:			
·	<u>ure</u> that Air Removal np D is in "PULL TO LOCK".			
	ure that Air Removal lps A, B and C are stopped.			
	ounce the following using unit page system:			
Turb	personnel stay clear of the ine Building 140 ft ation North side while iking vacuum."			
	n the Main Condenser uum Breakers.			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Instrument Air: Ability to operate and/or	Tier	1		
monitor the following as they apply to the Loss of Instrument Air: RPS	Group	1		
	K/A	065 AA1.05		5
	IR	3.3		

Given the following conditions:

- Unit 3 is operating at 100% power
- A loss of Instrument Air and Service Air has caused system pressure to lower to 50 psig

With NO operator action, the Reactor should AUTOMATICALLY trip on...

- A. Low DNBR
- B. Variable Overpower
- C. High Pressurizer Pressure
- D. Low Steam Generator Water Level

Pro	posed Answer:	D	
Exp trip		eacto	r will trip on Low Steam Generator Water Level because both MFPs
Α.			n generator water levels will lower causing the RCS to heat up. Also power harge valves closing causing DNBR to lower.
В.	0		close and will cause a minor rise in Reactor power but will not rise to an erpower Reactor trip.
C.	rise. Pressurizer s	spray	d and MFPs will trip sequentially therefore there Pressurizer pressure will valves will fail closed once IA pressure lowers to 38-48 psig. Since they sig, Pressurizer pressure will not rise to the automatic Reactor trip setpoint
D.	Correct		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	4	
Reference Provided:	Ν	
Learning Objective:		35 – Determine the major effects on plant operation as instrument air ssure degrades

PALO VERD	E NUCLEAR GENE	RATING STATION	40AO-9ZZ06 Revision
1.00	SS OF INSTRUM		Page 27 of 163
20.			Appendix A Page 5 of
Append	ix A, Expected C	omponent Failure	as System Pressure Drops
PRESS	COMPONENT		ACTION
80 psig SR			ing resin from the High or Low Activi in Tank to ANY of the following:
		Porta	ble RW System,
		Wast	e Feed Tank,
			o <u>m</u> the following to prevent overfillir Resin Tank:
		a. <u>Stop</u>	SRN-P01, Dewatering Pump.
		THE	N it is desired to stop line flushing, N <u>close</u> SRN-HV-402, Dewatering SRN-P01 Seal Flush Valve.
75 - 65 psig ED	EDN-UV-40 / 41 / 42 / 43 / 44 / 45 / 46, Extraction Steam Air Operated Drain Valves	Relay Dump Valve se	NOTE e Front Standard Turbine Trip Air nds the same signal as during a L900 & 901 to open the valves liste
	EDN-UV-29 / 30 / 33 / 34 / 36, Feedwater Htr Stm Line Motor Operated Drn Valves		
FT	FTN-PV-75, Auxiliary Steam Pressure Control Valve to Feed Pump Turbine (FC)	Valve normally	NOTE closed during plant operation
FW	FWN-FV-1 / 2, Main Feedwater Pump Mini-flow Recirc Valves	Valves will begin to op Main Feedwater Pum	NOTE eedwater Pump Mini-flow Recirc oen, possibly causing a reduction in p Suction Pressure, lowering Stean a Main Feedwater Pump trip.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Generator Voltage and Electric Grid Disturbances:	Tier	1		
Knowledge of the interrelations between Generator Voltage and Electric Grid Disturbances and the	Group	1		
following: Sensors, detectors, indicators	K/A	077 AK2.03		
	IR	3.0		

Given the following conditions:

- Unit 1 is operating at 100% power
- Main Generator MVARs are at UNITY

Subsequently:

- A transmission line relaying has caused grid voltage to rise
- (1) Main Generator MVARs should initially be...
- (2) Main Generator MVARs should be restored to UNITY...
- A. (1) BUCKING(2) by a manual voltage adjustment
- B. (1) BUCKING(2) by the Auto Voltage Regulator
- C. (1) BOOSTING(2) by a manual voltage adjustment
- D. (1) BOOSTING(2) by the Auto Voltage Regulator

Pro	posed Answer:	Α		
Exp	lanations:			
Α.	Correct			
В.		As sy	cond part is plausible because the AC Regulator will maintain Generator stem load changes, the terminal voltage will need to be adjusted with a	
C.	C. First part is plausible because when grid voltage changes, MVARS will no longer be in Unity. Since grid voltage rises it may be assumed that the Main Generator will react in the same way and will be Boosting. Second part is correct.			
D.	Since grid voltage and will be Boosti	e rise: ng. S As sy	ecause when grid voltage changes, MVARS will no longer be in Unity. s it may be assumed that the Main Generator will react in the same way second part is plausible because the AC Regulator will maintain Generator stem load changes, the terminal voltage will need to be adjusted with a	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	5	
Reference Provided:	N	
Learning Objective:	367	777 – Explain the operation of the EX2100e Voltage Regulators

Technical	Reference:	Main Generator Excitation	and Regulation (E)	X2100e) Lesson Plan			
Licensed Operator Initial Training Page: 65 of 67							
Title:		ator Excitation and (EX2100e) Lesson Plan	Lesson Plan #:	NKASYC124A01			
EO: 1.19		neanings of VARs out, VAR ging VARs, and leading VA		boost VARs, buck			
power tha rooms and Main Idea	ifferent terms/ t a generator d ECC.	designators are used to iden is carrying. The terms prese ED WHEN REFERRING TO	nted here are used b	by personnel in the control			
		actually lagging the voltage.					
 Pos 	RS out. sitive VARS (- gging VARS. o <mark>st.</mark>	-VARS).					
VARS who	en current is a	actually leading the voltage.					
	gative VARS ading VARS.	(-VARS).					

Technical Reference:	Main Generator Excitation and Regulation (EX2100e) Lesson Plan

Licensed Operator Initial Training

Page: 66 of 67

Title: Main Generator Excitation and Regulation (EX2100e) Lesson Plan Lesson Plan #: NKASYC124A01

EO: 1.20 Discuss how ECC determines MVAR changes at Palo Verde

Main Idea

VARs flow whenever the circuit has inductance or capacitance. Capacitance creates VARs, inductance consumes VARs.

Electric motors need inductive VARs to set up magnetic fields. Transmission lines need inductive VARs to create magnetic fields around them. As load on a line goes up; current goes up; voltage gets lower; and more VARs are consumed by the line. This causes a need for greater VAR support.

As inductive loads are added on the system, a large inductive VAR demand is created. This causes current from the generator to go up due to its internal reactance and a drop in terminal voltage. The solution is to raise field excitation. This produces more VAR output and terminal voltage goes back up. VAR flow magnitude will be determined by the difference between voltage at the generator terminal and voltage at the load. Equal voltages would create zero VAR flow. "VARs flow downhill to voltage."

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Continuous Rod Withdrawal: Knowledge of the	Tier	1		
operational implications of the following concepts as they to Continuous Rod Withdrawal: Integral rod worth		2		
they to Continuous Rod Withdrawai: Integral rod worth	K/A	(001 AK1.2	1
	IR	2.9		

Given the following conditions:

- Unit 3 is operating at 50% power
- The crew is recovering from a loss of the 'A' MFP
- The OATC is withdrawing CEAs to restore overlap per 40AO-9ZZ09, Reactor Power Cutback (Loss of Feedpump)
- The selected Group is 30 inches withdrawn
- After the RO lets go of the withdrawal switch, CEA 18 continues to withdraw
- (1) As CEA 18 continues to withdraw, its integral rod worth available to insert should...
- (2) If all actions to stop CEA 18 were unsuccessful, the crew should...
- A. (1) increase(2) trip the Reactor

B. (1) increase

(2) manually insert all other CEAs in the selected group

C. (1) decrease

- (2) trip the Reactor
- D. (1) decrease
 - (2) manually insert all other CEAs in the selected group

Pro	posed Answer:	Α		
Exp	lanations:			
Α.	Correct			
В.	B. First part is correct. Second part is plausible because SDM will still be met if the CEA completely withdraws. It may be assumed that because Reactor power is 50% a single CEA withdrawing will not cause power to exceed our thermal power limit so inserting the remaining CEAs in the group will allow the crew to maintain the Reactor on line and possible troubleshoot the malfunctioning CEA			
C.	First part is plausible because as a CEA is withdrawn differential rod worth will eventually decrease, it may be assumed that integral rod worth is the same. However as a CEA withdraws, the available integral rod worth will increase. Second part is correct.			
D.	decrease, it may l the available integ met if the CEA co single CEA withdu	be as gral ro mple awin n the	ecause as a CEA is withdrawn differential rod worth will eventually sumed that integral rod worth is the same. However as a CEA withdraws, od worth will increase. Second part is plausible because SDM will still be tely withdraws. It may be assumed that because Reactor power is 50% a g will not cause power to exceed our thermal power limit so inserting the group will allow the crew to maintain the Reactor on line and possible nctioning CEA	

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	6	
Reference Provided:	N	
Learning Objective:		20 - Given conditions of a CEA Malfunction determine when a Reactor is required

٦	Fechnical Re	eference:	40AO-9ZZ11, CEA Malfu	nctions				
	5.0 UI	NCONTR	DLLED CEA MOVEME	NT MODE 1 OR 2				
		INST	RUCTIONS	CONTINGENCY ACTIONS				
	If a twelve fingered CEA is misaligned from its group, a CEAC penalty factor will ramp up over a six hour period, reducing the margin to trip.							
	4.	IF ANY of exist:	the following conditions					
		• CEA	movement continues,					
		devi 9.9 i	or more CEAs are ating by greater than nches from their ociated groups,					
			ASI exceeds <u>+</u> 0.45 and ding to <u>+</u> 0.5 (Pt ID 0187),					
		rece misa <u>(REI</u>	PC DNBR or LPD trip will be ived prior to restoring a ligned 12 Finger CEA <u>FER TO</u> Appendix A, <u>CEA</u> <u>mation</u>),					
		THEN per	form the following:					
		a. <u>Trip</u>	the reactor.					
			TO 40EP-9EO01, <u>Standard</u> Trip Actions.					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Inoperable/Stuck Rod: Ability to operate and/or	Tier	1		
monitor the following as they apply to the Inoperable/Stuck Control Rod: CRDS	Group	2		
	K/A	(005 AA1.0 ⁻	1
	IR	3.6		

Given the following conditions:

- Unit 1 is operating at 10% power
- A power ascension is in progress
- The OATC is withdrawing Group 5 CEAs in Manual Sequential
- Group 5 CEAs are currently 138 inches

Subsequently:

- The OATC withdraws Group 5 CEAs
- All Group 5 CEAs withdraw to 142.5 inches with the exception of CEA 14
- CEA 14 is stuck at 138 inches

CEA 14 can be verified stuck at 138 inches using ____(1)___. Once troubleshooting is complete and management concurrence is received, per 40AO-9ZZ11, CEA Malfunctions, the crew should re-align CEAs by ____(2)___.

- A. (1) RSPTs
 - (2) withdrawing CEA 14 to 142.5 inches
- B. (1) RSPTs(2) inserting Group 5 CEAs to 138 inches
- C. (1) pulse counters
 - (2) withdrawing CEA 14 to 142.5 inches
- D. (1) pulse counters
 - (2) inserting Group 5 CEAs to 138 inches

Pro	Proposed Answer: A				
plaı actı	Explanations: Pulse counters vs reed switches are commonly confused at PVNGS. It is very plausible for someone to think that the pulse counters are referring to a magnetic pulse that actuates as the rod passes each magnet and that each time the CEDMCS latches and unlatches from upper and lower grippers that the next reed switch in the system is actuated.				
Α.	Correct				
В.	First part is correct. Second part is plausible because inserting CEAs is a possibility. However, 40AO-9ZZ11, CEA Malfunctions directs withdrawing a single CE to align with its group.				
C.	However since a	withd	ecause pulse counters can normally be used to determine CEA location. raw demand was inputted and CEA position did not change, pulse counter inches instead of 138 inches. RSPTs will indicate 140 inches. Second part		
D.	However since a indication will be	withd 142.5 ise in	ecause pulse counters can normally be used to determine CEA location. raw demand was inputted and CEA position did not change, pulse counter inches instead of 138 inches. RSPTs will indicate 140 inches. Second part serting CEAs is a possibility. However, 40AO-9ZZ11, CEA Malfunctions ingle CE to align with its group.		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3		
10CFR55.41:	6		
Reference Provided:	N		
Learning Objective:	226	22615 – Explain the operation of the RSPTs	

Technical Reference: Control Element Drive Mechanism Control System Tech Manual

MG, AS, or MS Operation

Group or sequential mode operation requires simultaneous motion of all subgroup CEAs. The individual CEA enable and pulse count logic performs this function by issuing an insert CEA (ICE) or withdraw CEA (WCE) signal to each of its interconnected CEA timer and coil driver actuating logic cards.

During MG, AS, or MS operation, a subgroup raise (SGR) or subgroup lower (SGL) command is issued to all individual CEA enable and pulse count logic cards within the selected group. It is received from the common logic housing slave subgroup sequencer of that group, where it originates as a control group raise or lower (CGR or CGL) signal.

Technical Reference:	40AO-9ZZ11, CEA Malfunction	6			
	LEAR GENERATING STATION	40AO-9ZZ11 Page 88	Revision 27 of 92		
		Appendix I	Page 2 of 3		
	Appendix I, CEA Rea	lignment			
INSTR	RUCTIONS	CONTINGENCY AC	CONTINGENCY ACTIONS		
	cted CEA can be moved, H of the following concur:				
	ations Management, tor Engineering,				
3. (continued)					
remai	the affected CEA with the nder of its group, taking at he minimum withdrawal				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Accidental Liquid Radwaste Release: Knowledge	Tier	1		
of the interrelations between the Accidental Liquid Radwaste Release and the following: Radioactive-gas	Group	2		
monitors	K/A	(059 AK2.0	2
	IR	2.7		

Given the following indications:

- A leak on Liquid Radwaste Holdup Tank, LRN-T01C, caused a Lo-Lo Level Alarm at the Liquid Radwaste Annunciator Panel, LRN-E01.
- (1) When LRN-T01C, Lo-Lo Level alarm annunciates a trip signal should be sent to...
- (2) Airborne radioactivity vented from any Liquid Radwaste Holdup Tank should be detected INITIALLY by ____(2)___
- A. (1) ALL Liquid Radwaste Holdup Tank Pumps(2) RU-143, Plant Vent radiation monitor
- B. (1) ALL Liquid Radwaste Holdup Tank Pumps(2) RU-14, Radwaste Building Ventilation Exhaust Filter Inlet radiation monitor
- C. (1) ONLY Liquid Radwaste Holdup Tank Pump, LRN-P01C(2) RU-143, Plant Vent radiation monitor
- D. (1) ONLY Liquid Radwaste Holdup Tank Pump LRN-P01C
 (2) RU-14, Radwaste Building Ventilation Exhaust Filter Inlet radiation monitor

Proposed Answer: B		В	
Exp	lanations:		
Α.	First part is correct. Second part is plausible RU-143 is the Tech Spec radiation monitor that is used to monitor planned releases.		
В.	Correct		
C.	make sense that	only t	ecause if the pump suctions were not cross-tied to all of the tanks, it would he pump that is pumping down a tank would actually trip. Second part is a Tech Spec radiation monitor that is used to monitor planned releases.
D.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	11
Reference Provided:	N
Learning Objective:	31202 – Given a Radiation Monitor number and name describe the ourposes and sample points of the monitor

Technical Reference: Liquid Radwaste System Tech Manual

LR Holdup Pump Controls (HS-10, 11, 12)

A three position (stop/start) spring return to unmarked neutral control switch (HS-10, 11, 12) is provided for each pump on panel ZRN-E04 in the radwaste control room. When momentarily placed in the start position, the associated breaker contactor closes, starting the pump. When momentarily placed in the stop position, the associated breaker contactor opens, stopping the pump, A lo-lo level in any one of the three tanks will trip all three pumps. Electrical protection will also trip a pump.

Red and green indicating lights are provided at the panel and at the MCC. Red indicates the breaker contactor is closed; green indicates the breaker contactor is open. Bright green indicates the associated thermal overloads have actuated. Following a loss and restoration of power, the pump(s) will require a manual restart.

Technical Reference: Radiation Monitoring System Tech Manual

2.13 Radwaste Building Ventilation Exhaust Filter Inlet Monitor, (RBFI) SQN-RU-14

The purpose of the RBFI radiation monitor is to iso-kinetically sample and continuously monitor airborne radioactive particulates and noble gases exhausted for the radwaste building. Isokinetic sampling is conducted in accordance with ANSI N13.1-1969.

Taking into consideration the dilution factor for the contribution from each compartment, the monitor is capable of detecting the presence of the 10CFR20 maximum permissible concentration in any one compartment of the radwaste building within 1 hour for Cs-137 and within 8 hours for I-131. Iodine monitoring is not included in this monitor as there are no significant sources of radio-iodine in the radwaste building (see drawing 13-M-HRP-001).

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Accidental Gaseous Radwaste Release: Ability to	Tier	1		
verify system alarm setpoints and operate controls identified in the alarm response manual	Group	2		
identified in the alarm response manual	K/A	0	60 G 2.4.5	0
	IR	4.2		

During a release of a Waste Gas Decay Tank, a high-high alarm on which of the following Radiation Monitors, INDIVIDUALLY, will require the crew to ensure that the Gaseous Discharge Header Isolation Valves, GR-UV-34A and GR-UV-34B are closed per 74AL-9SQ01, Radiation Monitoring System Alarm Validation and Response?

- 1. RU-8, Auxiliary Building Ventilation Exhaust Filter Monitor
- 2. RU-12, Waste Gas Decay Tank Monitor
- 3. RU-15, Waste Gas System Area Combined Ventilation Exhaust Monitor
- A. 1 ONLY
- B. 2 ONLY
- C. 1 and 3 ONLY
- D. 2 and 3 ONLY

Pro	posed Answer:	В		
Exp	lanations:			
Α.	leak from the Was	ste G	Auxiliary Building is adjacent to the Radwaste Building and if there was a as header, it is possible that RU-8 will detect it. However the high radiation te Gas system, therefore RU-8 will not detect it.	
В.	Correct			
C.	Plausible because the Auxiliary Building is adjacent to the Radwaste Building and if there was a leak in the Waste Gas header, it is possible that RU-8 will detect it. However the high radiation is in the enclosed Waste Gas system, therefore RU-8 will not detect it. RU-15 will detect a leak from the Waste Gas header however the high radiation is in the enclosed Waste Gas system, therefore RU-15 will not detect it.			
D.			5 will detect a leak from the Waste Gas header however the high radiation te Gas system, therefore RU-15 will not detect it.	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Х	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	11
Reference Provided:	N
Learning Objective:	18733 – Describe the automatic functions / interlocks with Gaseous Discharge Header Isolation Valves (UV-34A & 34B)

Technical Reference: Radiation Monitoring System Tech Manual

2.11 Waste Gas Decay Tank Monitor, (WGDT) SQN-RU-12

The function of the WGDT radiation monitor is to monitor the gross beta radioactivity level in the decay tank discharge header. A high activity alarm provides an indication of an abnormal operating condition, such as, an inadvertent discharge or incorrect valve lineup. The monitor high-high activity alarm initiates isolation of the decay tank discharge header (see drawing 13-M-GRP-001).

ODCM section 2.1 and table 2-1 apply. Required monitor features for operability are the gas channel, flow rate monitor, control room annunciation and indication, and the automatic isolation actuation function.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Control Room Evacuation: Knowledge of the	Tier	1		
interrelations between the Control Room Evacuation and the following: Auxiliary shutdown panel layout	Group	2		
the following. Auxiliary shutdown parter layout	K/A	(068 AK2.0 ⁻	1
	IR	3.9		

Per 40AO-9ZZ19, Control Room Fire, the crew should actuate MSIS ____(1)____ exiting the Control Room and disconnect switches should be taken to LOCAL on the ____(2)____ Remote Shutdown Panel.

- A. (1) prior to (2) A
- B. (1) prior to(2) B
- C. (1) after
 - (2) A
- D. (1) after
 - (2) B

Pro	Proposed Answer: B						
Exp	lanations:						
Α.	First part is correct. The second part is plausible because 'A' Remote Shutdown Panel is similar to the 'B' panel with the exception of the disconnect switches.						
В.	Correct						
C.	First part is plausible because an MSIS can be actuated from the RSD panels and if there is a Control Room fire it is important to evacuate the CR as quickly as possible. The second part is plausible because 'A' Remote Shutdown Panel is similar to the 'B' panel with the exception of the disconnect switches.						
D.	First part is plausible because an MSIS can be actuated from the RSD panels and if there is a Control Room fire it is important to evacuate the CR as quickly as possible. Second part is correct.						

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

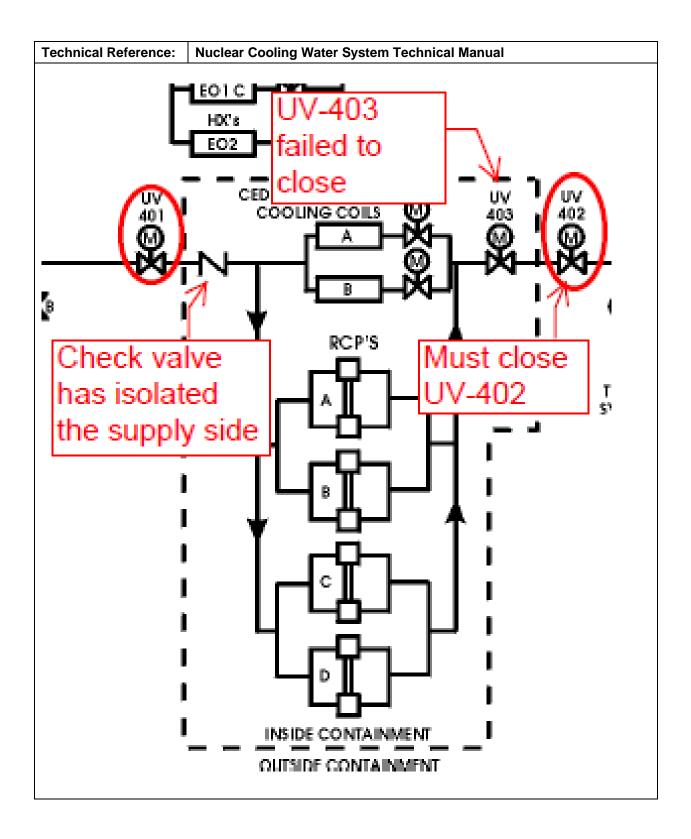
Level of Difficultly:	2	
10CFR55.41:	8	
Reference Provided:	Ν	
Learning Objective:		55 – State the indications available to the operator at the Remote utdown Panel (RSP)

Т	echnical Re	ference	: 40AO-9ZZ19, Control Room Fire							
	PALO V	ERDE F	ROCEDURE	40AO-9ZZ19 Revision 42						
		CO	NTROL ROOM FIRE	Page 5 of 199						
	3.0 CONTROL ROOM FIRE									
		IN	STRUCTIONS	CONTINGENCY ACTIONS						
	1.	<u>Enter</u>	AOP Entry Time and Date:							
		oom is e	<u>NOTE</u> 01, <u>Standard Post Trip Actions</u> , is NOT vacuated.	performed when the Control						
			<u>NOTE</u>							
		Ste	os 2 through 5 are expected to be perfo	med in the Control Room.						
	2.	Perfor	m the following:							
		a	rip the Reactor.							
		b. <u>(</u>	Check that power is lowering.							
		с. <u>(</u>								
		d. <u>I</u>	inter the time of the trip:							
	<u> </u>	Initiate	MSIS.							

Technical Refere	ence: Simula	tor Computer Dr	awing						
REMOTE SHUTDOWN PANEL CHANNEL B 1-J-ZJB-E01									
USE ACCH SQ Damen Bar and Bar DSE ARRAS	HIL MICH MO DOWNAL MICHAENE SIZ JARAFSAN WITH AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND	SC LENE 2.40 SC LENE 2.40 SC SC S	BC 2 (H 1 AV 25 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H						
Hand and a second s	And an arriter with the second	REFERENCES	A L FORM AND M ST COMPANY ST COMPANY						
LINE 10 HOAM HORE To be 8 a for Addition	Revealed representation of the second	H 2 THE MAY DOTE TO A SAME	BE A TOME NAME TOMES OF A CONSTRUCTION						
RY CON BASAN IN A 24 YO WE DO NO									

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Containment Integrity: Knowledge of the		1		
reasons for the following responses as they apply to the Loss of Containment Integrity: Guidance contained in	Group	2		
EOP for loss of containment integrity	K/A	()69 AK3.0 [,]	1
	IR	3.8		

Given the following conditions:


- Unit 3 was manually tripped due to a LOCA on RCP 1B HP Seal Cooler
- All RCPs were stopped
- RCP Controlled Bleedoff was isolated
- The power supply to RCP 1B HP Seal Cooler isolation valves, NHN-M10 faulted
- When the crew attempted to close NCB-UV-403 NCWS Return Internal Isolation Valve, it failed to close
- (1) To maintain Containment integrity the crew should close at a MINIMUM...
- (2) Closing the correct NC valve should...
- A. (1) NCB-UV-401 NCWS Supply External Isolation Valve(2) isolate the RCS leak
- B. (1) NCB-UV-401 NCWS Supply External Isolation Valve(2) restrict the RCS leak to Containment ONLY
- C. (1) NCA-UV-402 NCWS Return External Isolation Valve(2) isolate the RCS leak
- D. (1) NCA-UV-402 NCWS Return External Isolation Valve
 (2) restrict the RCS leak to Containment ONLY

Pro	posed Answer:	D					
Exp	Explanations:						
Α.	First part is plausible because NCB-UV-401 is a Containment Isolation Valve that the crew will attempt to close. However there is a check valve in line with NCB-UV-401 that will isolate the NC Supply. Second part is plausible because the RCS leak will be isolated to Containment. However, there is a relief valve that will lift inside of Containment, therefore the leak will continue inside of Containment.						
В.		Howe	ecause NCB-UV-401 is a Containment Isolation Valve that the crew will over there is a check valve in line with NCB-UV-401 that will isolate the NC correct.				
C.		veve	cond part is plausible because the RCS leak will be isolated to t, there is a relief valve that will lift inside of Containment, therefore the leak Containment.				
D.	Correct						

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Х	Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	4	
Reference Provided:	N	
Learning Objective:		90 – Explain the operation of the NC Containment Isolation Valves ler normal operating conditions

Fechnical Reference: 40EP-9EO03, Loss of Coolant Accident							
Pal			CLEAR GENERATING STATION	40EP-9EO03 Revision 44 Page 7 of 79			
		INST	RUCTIONS	CONTINGENCY ACTIONS			
* 10.	IF A	NY of the	e following conditions exist:				
	•		luclear Cooling Water on Monitor alarming				
	•		ormal rise in Nuclear) Water surge tank level				
	THE	EN perfor	m the following:				
	a.	Stop al	RCPs.				
	<mark>b.</mark>		he Nuclear Cooling Water iment Isolation Valves.				
	C.	lsolate the RC	controlled bleedoff from Ps.				
	d.	Isolatio RCP Hi REFER	<u>e</u> the RCP HP Cooler n Valves for ANY leaking igh Pressure Cooler(s). <u>CTO</u> Appendix 36, <u>RCP HP</u> poler Breaker List.				
	e.	Isolatio	he RCP HP Cooler n Valves for ANY leaking ressure Cooler(s).				
	f.		Chemistry to sample the r Cooling Water System for				
	g.	the isol Cooler, AND re Cooling THEN	storation of Nuclear Water to CTMT is desired, open the Nuclear Cooling Containment Isolation				

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: High Reactor Coolant Activity: Ability to determine	Tier	1	
and interpret the following as they apply to the High Reactor Coolant Activity: Location or process point that	Group	2	
is causing alarm	K/A	076 AA2.0	1
	IR	2.7	

An RMS alarm on ____(1)____, which monitor(s) radiation levels of ____(2)____, is(are) the primary RMS indication(s) of high reactor coolant activity and possible fuel failure.

- A. (1) Primary Coolant Activity Monitors, RU-150/151
 - (2) each RCS hot leg
- B. (1) Primary Coolant Activity Monitors, RU-150/151
 - (2) one RCS cold leg of each Steam Generator
- C. (1) Reactor Coolant Letdown Line Radiation Monitor, RU-155D
 - (2) the letdown line at the inlet of the Letdown Heat Exchanger
- D. (1) Reactor Coolant Letdown Line Radiation Monitor, RU-155D
 - (2) the letdown line between the Letdown Heat Exchanger and the Ion Exchangers

Pro	posed Answer:	D				
Ехр	Explanations:					
Α.	RU-150/151 is plausible since they are used to determine activity in the primary under post accident conditions, however the primary indicator for high RCS activity under non post accident conditions is RU-155D. Monitored location is plausible because that is where RU-150/151 monitors radiation levels.					
В.	RU-150/151 is plausible since they are used to determine activity in the primary under post accident conditions, however the primary indicator for high RCS activity under non post accident conditions is RU-155D. Monitored location is plausible because the first location that high activity coolant will enter from the core is the hot leg.					
C.	and downstream RCS activity than	of the the a iine if	ausible that RU-155D would detect radiation upstream of the letdown HX letdown containment isolation valve to provide earlier detection of high ctual monitoring point for RU-155D and while allowing for the isolation of RU-155D was reading actual activity or the RM was providing false <i>i</i> ty.			
D.	Correct					

Question Source:		New	
	Х	Bank	
		Modified	
	Х	Previous NRC Exam	2016

Cognitive Level:	Χ	lemory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	2	
10CFR55.41:	11	
Reference Provided:	N	
Learning Objective:	31202 – Given a Radiation Monitor number and name describe the purposes and sample points of the monitor	

Technical Reference: Radiation Monitoring System Tech Manual

2.44 Reactor Coolant Letdown Line Radiation Monitor SQN-RE-155D

This monitor is also referred to as an area monitor (ARM). The fourth available channel of penetration leakage monitor (SQN-RU-155) is used to trend the letdown primary coolant activity. This area radiation monitor provides a continuous recording in the control room of reactor coolant gross gamma activity thus providing a measure of fuel cladding integrity. A high alarm is provided in the control room. Local and remote samples in the CVCS provide the primary means for determining RCS activity. The reactor coolant letdown line monitor serves only as a trending device to warn the operator of possible fuel cladding failure. Verification of the ARM is done by grab sample measurement.

2.42 Primary Coolant Activity Monitors, (PCMA) SQA-RU-150 and (PCMB) SQB-RU-151

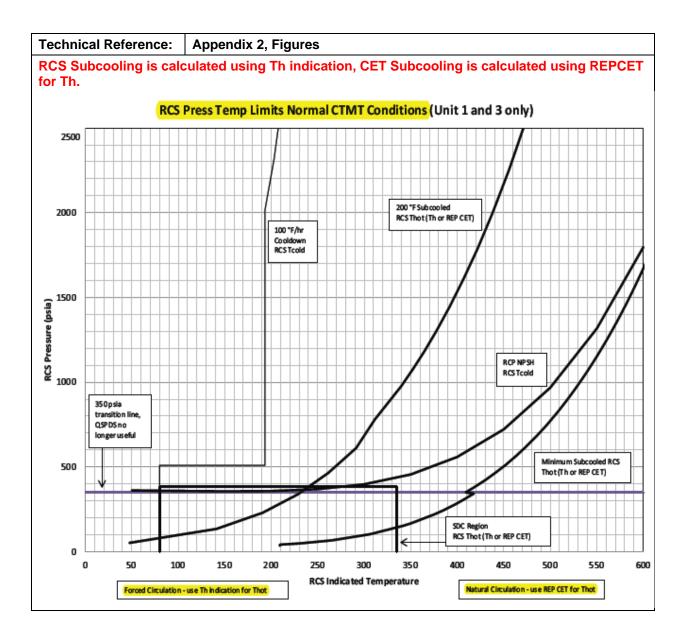
The primary coolant activity monitors consist of two independent ionization chamber channels. These monitors meet the monitoring requirements of NUREG-0737 and regulatory guide 1.97, Rev 2 for the circulating coolant activity monitors. The purpose of these monitors is to assess activity levels in the primary coolant under post accident conditions. The detectors are physically located next to a cold leg of each of the steam generators. These monitors are included as part of the SRMS, and meet IE qualification requirements as described in IEEE standard 323- 1974. These monitors are equipped with a RIC module to provide monitor control and indication in the event of DCU failure. The RIC is mounted in the SRMS panel in the control room with the balance of the safety related monitor RIC units. The micro-computers for these monitors are located in the control building to take advantage of the low radiation fields afforded by this category I structure (see drawings 13-J-ZCF-006, 13-J-ZCF-005 and 13-J-ZCF-009).

Although these monitors are part of the SRMS, they have no operability requirements per the technical specifications.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Natural Circulation: Ability to determine and	Tier	1		
interpret the following as they apply to the (Natural Circulation Operations): Adherence to appropriate	Group	2		
procedures and operation within the limitations in the	K/A	C	E A13 AA2	2.2
Facility's license and amendments	IR	2.9		

Per 40EP-9EO07, Loss of Offsite Power / Loss of Forced Circulation, natural circulation flow is verified by checking that the RCS is a MINIMUM of ____(1)____ subcooled as indicated by ____(2)____.

- A. (1) 24°F
 - (2) CET Subcooling
- B. (1) 24°F(2) RCS Subcooling
- C. (1) 30°F
 - (2) CET Subcooling
- D. (1) 30°F
 - (2) RCS Subcooling


Proposed Answer:		Α			
Exp	Explanations:				
Α.	Correct.				
В.	First part is correct. Second part is plausible since RCS Subcooling is the normal parameter used to verify subcooling, however when all RCPs are secured, CET Subcooling is the correct indication of subcooling.				
C.	First part is plausible since 30°F is the maximum allowed delta-T between Th and max quadrant CET temp for verifying natural circulation, however the minimum allowable subcooling is 24°F. Second part is correct.				
D.	CET temp for ver Second part is pla	ifying ausibl	ince 30°F is the maximum allowed delta-T between Th and max quadrant natural circulation, however the minimum allowable subcooling is 24°F. le since RCS Subcooling is the normal parameter used to verify subcooling, Ps are secured, CET Subcooling is the correct indication of subcooling.		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

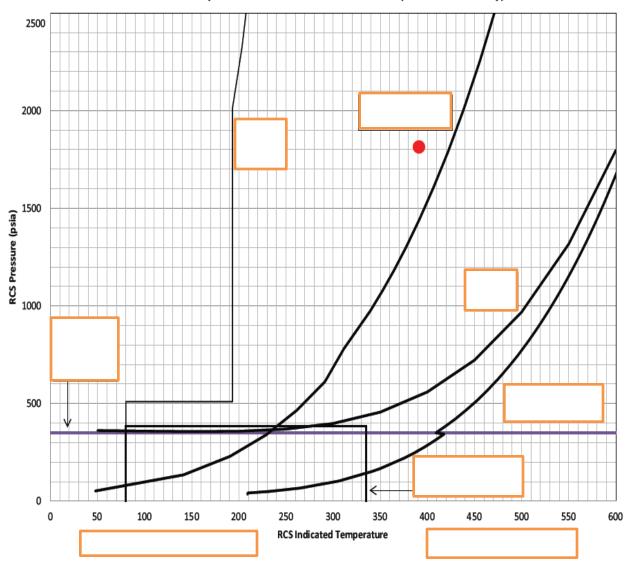
Cognitive Level: X		Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	14
Reference Provided:	Ν
Learning Objective:	62760 – Given a loss of forced circulation, identify the parameters used to determine Natural Circulation flow per 40EP-9EO07.

Technie	cal Reference:	40EP-9EO07, LOOP/LOFC				
	INSTRU	JCTIONS	CONTINGENCY ACTIONS			
* 15.	IF RCPs are NC THEN <u>check</u> na at least one loop following:	tural circulation flow in	15.1 <u>Ensure</u> proper control of Steam Generator feeding and steaming.			
	 Loop ∆T is 	less than 65°F				
	 Hot and co constant o 	ld leg temperatures are r lowering				
		°F or more subcooled Subcooling				
	RTDs and CET temp	a 30°F ∆T between T _h the maximum quadrant erature pages 211 and 213)				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: RCS Overcooling – Pressurized Thermal Shock:	Tier	1		
Ability to operate and/or monitor the following as they apply to the (RCS Overcooling) Components, and	Group	2		
functions of control and safety systems, including	K/A	CE A11 AA1.1		
instrumentation, signals, interlocks, failure modes, and automatic and manual features	IR	3.3		

Given the following conditions:


- Unit 1 tripped from 100% power due to an ESD outside of containment upstream of the MSIVs for SG #1
- SG #1 has been isolated per Appendix 113 Steam Generator 1 Isolation

Using the provided Appendix 2, Figures, on the next page:

 The red dot represents the current RCS temperature and pressure after SG #1 has been isolated

Which of the following is the FIRST action the crew is required to take?

- A. Heatup the RCS ONLY
- B. Depressurize the RCS ONLY
- C. Heatup and depressurize the RCS
- D. Perform an RCS soak for 2 hours

RCS Press Temp Limits Normal CTMT Conditions (Unit 1 and 3 only)

Pro	posed Answer:	В		
Exp	lanations:			
Α.	A. Plausible because heating up the RCS will eventually put RCS temperature and pressure to the allowable side of the oversubcooled line. However once the RCS is oversubcooled, there should not be any additional thermal stresses placed on the RCS or Reactor internals.			
В.	Correct			
C.	Plausible because heating up the RCS will eventually put RCS temperature and pressure to the allowable side of the oversubcooled line. However once the RCS is oversubcooled, there should not be any additional thermal stresses placed on the RCS or Reactor internals. Depresurizing is correct, but it will be the only action taken.			
D.	taken. However, t	he R	the RCS cooldown rate was violated, it is an action that will need to be CS temperature and pressure must be on the allowable side of the performing a soak.	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	Y	Attached Appendix 2, Figures
Learning Objective:	e: 25501 - Given that the EOPs are being performed and specific plant conditions are given, determine whether or not the plant is oversubcooled, and if it is what actions must be taken per the appropriate procedure	

٦	Fechnical Reference:	40EP-9EO05, Excess Ste	am Dem	and			
		CLEAR GENERATING STAT	FION	40EP-9EO05 Revision 33 Page 13 of 46			
	 ★ 21. <u>Maintain RCS</u> limits by performing <u>REFER TO</u> A a. <u>Control</u> b. <u>Control</u> 	RUCTIONS S pressure within the P/T prming the following. oppendix 2, <u>Figures</u> : the cooldown rate. pressurizer heaters and auxiliary spray.	21.1 1 P F E	F the FHEI press P/T li REFE	NTINGENCY A RCS exceeds the N <u>perform</u> the follo sure and temperati imits: ER TO Appendix 2 IF a cooldown is in THEN <u>stop</u> the co	e P/T limits, wing to restore ure to within the <mark>, Figures</mark> n progress,	
	less tha OR Aux THEN <u>F</u>	Spray is being used with n four RCPs running, iliary Spray is being used, <u>PERFORM</u> Appendix 6, <u>/alve Actuation Data</u>			Depressurize the or auxiliary pressure IF SI throttle criter THEN <u>control</u> cha and HPSI flow.	<mark>urizer spray.</mark> ia are met,	

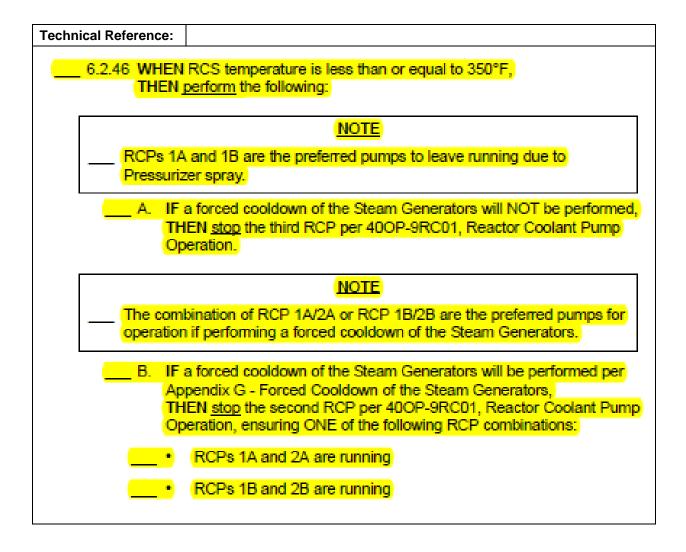
Examination Outline Cross-Reference:	Level	RO	SRO	
K/A: Reactor Coolant Pump: Ability to (a) predict the	Tier	2		
impacts of the following malfunctions or operations on the RCPS; and (b) based on those predictions, use	Group	1		
procedures to correct, control, or mitigate the	K/A	003 A2.02		
consequences of those malfunctions or operations: Conditions which exist for an abnormal shutdown of an RCP in comparison to a normal shutdown of an RCP	IR	3.7		

Given the following conditions:

- Unit 1 was tripped from 100% power due to a malfunction on RCP 1A
- RCP 1A was manually tripped during SPTAs per 40AO-9ZZ04, RCP Emergencies
- The CRS has entered 40EP-9EO02, Reactor Trip
- (1) When securing a RCP per 40AO-9ZZ04, the RCP Oil Lift Pump should automatically start and then...
- (2) If there was NO RCP malfunction and the crew entered 40OP-9ZZ10, Mode 3 to Mode 5 Operations, the FIRST RCP should be stopped once RCS temperature is lowered to a MAXIMUM of...
- A. (1) automatically stop(2) 350°F
- B. (1) automatically stop(2) 500°F
- C. (1) will need to be manually stopped(2) 350°F
- D. (1) will need to be manually stopped(2) 500°F

Proposed Answer:		D			
Ехр	lanations:				
Α.	A. First part is plausible because per 40OP-9RC01, Reactor Coolant Pump Operations, RCN-P02A, RC Pump 1A Oil Lift Pump will automatically stop after an RCP is started within 2 minutes. Second part is plausible because 350°F is MODE 3 entry and two RCPs are required to be stopped per 40OP-9ZZ10, Mode 3 to Mode 5 Operations.				
В.	First part is plausible because per 40OP-9RC01, Reactor Coolant Pump Operations, RCN-P02A, RC Pump 1A Oil Lift Pump will automatically stop after an RCP is started within 2 minutes. Second part is correct.				
C.	C. First part is correct. Second part is plausible because 350°F is MODE 3 entry and two RCPs are required to be stopped per 400P-9ZZ10, Mode 3 to Mode 5 Operations.				
D.	Correct				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam


Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	Ν	
Learning Objective:		13 – Explain the operation of the Reactor Coolant Pumps Lube Oil tem under normal operating conditions

Technical Reference: 400P-9ZZ10, Mode 3 to Mode 5 Operation	ations							
PVNGS NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 73 of 196								
Mode 3 to Mode 5 Operations 40OP-9ZZ10 Revision 71								
NOTE		ר						
 The Low Steam Generator Pressure Pre-Trip times during the cooldown. 	alarms may occur sever	al						
 Reset of the Low Steam Generator Pressure permissible to be performed prior to receiving Pressure Pre-Trip alarms. 		or						
6.2.38 WHEN ANY of the following alarms actuate:		_						
 5A07D, LO SG 1 PRESS CH PRE-TRIP 								
 5A08D, LO SG 2 PRESS CH PRE-TRIP 								
THEN reset ALL of the following PPS Low Stea	am Generator Trip setpoir	nts:						
 Lo SG Press Setpoint Reset at SAA-UIC-3 Module A 	7, PPS Remote Operator	r						
 Lo SG Press Setpoint Reset at SAB-UIC-3 Module B 	8, PPS Remote Operator	r						
 Lo SG Press Setpoint Reset at SAC-UIC-3 Module C 	9, PPS Remote Operato	r						
Lo SG Press Setpoint Reset at SAD-UIC-4 Module D	0, PPS Remote Operato	r						
NOTE		ן ך						
RCPs 1A and 1B are the preferred pumps to leave maximum availability of Main Spray capability.	e running to maintain							
6.2.39 WHEN RCS temperature is less than or equal to 505°F, THEN <u>ensure</u> NO more than 3 RCPs are running.								

Technical Reference:	40OP-9RC01, Reactor Coolant Pump 0	Operations					
PALO VERDE PROCEDURE Page 17 of							
Reactor	Coolant Pump Operation	400P-9RC01	Revision 50				
may res	<u>CAUTION</u> an RCP with any PK battery disconnecte ult in a loss of the PN distribution panel so g supplied from the inverter.						
6.1.37 IF any PK battery is disconnected from its respective bus, THEN <u>obtain</u> Shift Manager approval signature prior to starting RCP 1A. Signature Date Shift Manager							
						6.1.38 <u>Obser</u>	6.1.38 Observe RCN-P02A, RCP 1A Oil Lift Pump, stops 2 minutes after RCP 1A starts.

PALO VERDE NUCLEAR GENERATING STATION	40AO-9ZZ04 Revision 31
REACTOR COOLANT PUMP EMERGENCIES	Page 6 of 32
3.0 ABNORMAL RCP MOTOR OR BEARING P	PARAMETERS
INSTRUCTIONS C	CONTINGENCY ACTIONS
 5. IF the RCP parameters indicated on RMN-TJR-2 points 1-32 exceed any of the trip setpoints listed in Appendix A, <u>RCP Motor Or Bearing Trip Setpoints</u>, THEN perform the following: a. <u>Ensure</u> the Reactor is tripped. b. <u>Stop</u> the affected RCP. c. <u>GO TO</u> the appropriate procedure for current plant conditions. 	
 6. IF any RCP motor or bearing parameter is trending to a trip setpoint (<u>REFER TO</u> Appendix D, <u>Instrumentation and Setpoints</u>), AND the CRS determines a plant shutdown or cooldown is needed, THEN <u>perform</u> BOTH of the following: The appropriate procedure to shutdown or cooldown the plant 400P-9RC01, <u>Reactor Coolant Pump Operation</u>, to stop the affected RCP 	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Chemical and Volume Control: Knowledge of the	Tier	2		
effect that a loss or malfunction of the CVCS will have on the following: RCPs	Group	1		
on the following. Rors	K/A		004 K3.04	
	IR	3.7		

Given the following conditions:

- Unit 1 is operating at 100% power
- CHB-UV-515, Letdown to Regenerative Heat Exchanger Isolation Valve fails closed
- The CRS enters 40AO-9ZZ05, Loss of Charging or Letdown

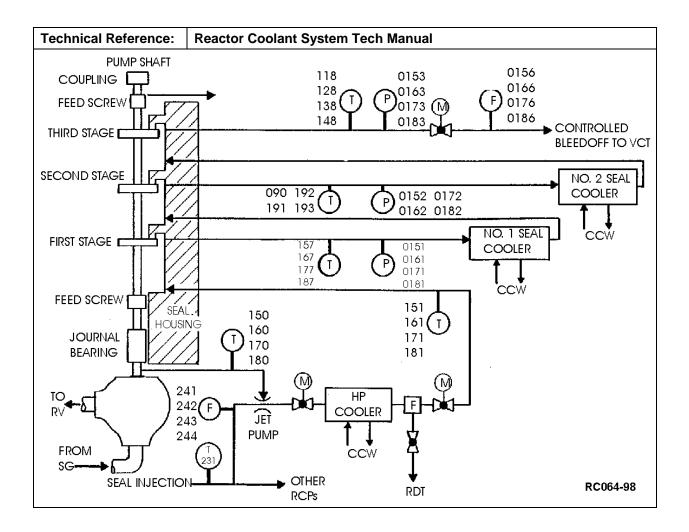
After the crew isolates Seal Injection, which of the following describes the effect (if any) on RCP temperatures?

- A. HP Seal Cooler inlet temperature should remain relatively constant, while all other seal temperatures should rise by about 70°F
- B. HP Seal Cooler inlet temperature should rise to between 200°F and 220°F, all other seal temperatures should rise by about 70°F
- C. HP Seal Cooler inlet temperature should rise to between 200°F and 220°F while all other seal temperatures remain normal
- D. Isolating Seal Injection should have NO impact on seal temperatures

Pro	posed Answer:	С	
Ехр	lanations:		
Α.	same because he around the tempe 70°F. Therefore if	eat fro ratur it los cimate	e Seal Injection is lost, flow stagnates and temperatures will remain the om the RCP is only being transferred to the water around the seals and not e indicators. Second part is plausible because Seal Injection will isolate at t and Seal Injection temperature was at its minimum, temperature of seals ely 70°F. Also, if NC flow is lost along with Seal Injection all seal
В.	First part is correct. Second part is plausible because Seal Injection will isolate at 70°F. Therefore if it lost and Seal Injection temperature was at its minimum, temperature of seals will rise by approximately 70°F. Also, if NC flow is lost along with Seal Injection all seal temperatures will rise		
C.	Correct		
D.	Plausible because once Seal Injection is lost, flow stagnates and temperatures will remain the same because heat from the RCP is only being transferred to the water around the seals and not around the temperature indicators.		

Question Source:		New
	Х	Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis


Level of Difficultly:	3		
10CFR55.41:	3		
Reference Provided:	Ν		
Learning Objective:	tem	26284 – Given a RCP with seal injection removed, determine the temperature response when seal injection is secured to an RCP in accordance with 40AO-9ZZ04 or 40AO-9ZZ05	

Technical Reference: 40AO-9ZZ04, Reactor Coolant Pump Emergencies							
PALO VERDE NUCLEAR GENERATING STATION 40AO-9ZZ04 Revision 29							
REACTOR COOL	ANT PUMP EMERGENCIES	Page 8 of 32					
4.0 ABNORMA	4.0 ABNORMAL RCP SEAL PARAMETERS						
INSTRUCTIONS CONTINGENCY ACTIONS							
1. <u>Enter</u> AOP Entry Time and Date:							
<u>NOTE</u>							
RCP HP Seal Cooler inlet temperature should rise to between 200°F and 220°F if seal injection is stopped. All other seal temperatures should remain normal.							

 Technical Reference:
 Chemical Volume Control System Tech Manual

1.2.2 Reactor Coolant Pump Controlled Bleed-off, Seal Injection, and Chemical Addition Sub-System (Figure 1-4)

A portion of the charging flow is used to supply RCP seal injection. This flow passes through a temperature protection isolation valve which automatically isolates seal injection flow as the temperature downstream of the seal injection heat exchanger decreases to 70°F or increases above 150°F. This is

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Chemical and Volume Control: Knowledge of the	Tier	2		
effect of a loss or malfunction on the following CVCS components: Seal injection system and limits on flow	Group	1		
range	K/A		004 K6.31	
	IR	3.1		

Given the following conditions:

- Unit 2 is operating at 100% power
- Seal Injection was isolated when CHB-HV-255, RCP Seal Injection Header Supply Valve, was inadvertently closed
- The CRS entered 40AO-9ZZ04, RCP Emergencies, and has directed restoring Seal Injection per Appendix H, Restoring RCP Seal Injection
- The individual Seal Injection Flow Controllers have been placed in MANUAL and the Seal Injection Flow Control Valves have been closed
- CHB-HV-255, RCP Seal Injection Header Supply Valve, has been reopened

In order to restore Seal Injection, the OATC should raise Seal Injection flow by ____(1)___ OUTPUT on the Seal Injection Flow Controllers to achieve a final target Seal Injection flow of ____(2)___ .

- A. (1) raising(2) 2.0 4.0 gpm
- B. (1) raising(2) 6.0 7.5 gpm
- C. (1) lowering (2) 2.0 – 4.0 gpm
- D. (1) lowering (2) 6.0 – 7.5 gpm

Pro	posed Answer:	D	
Exp	lanations:		
Α.	Seal Injection Flo	w Co	nce raising output on a controller usually results in raising flow, however ntrollers are reverse acting. Second part is plausible since 2-4 gpm is the P Seal Bleedoff, however the normal flowrate for RCP Seal Injection is 6-
В.			nce raising output on a controller usually results in raising flow, however ntrollers are reverse acting. Second part is correct.
C.			econd part is plausible since 2-4 gpm is the normal flowrate for RCP Seal normal flowrate for RCP Seal Injection is 6-75 gpm.
D.	Correct.		

Question Source:		New
	Χ	Bank
		Modified
		Previous NRC Exam

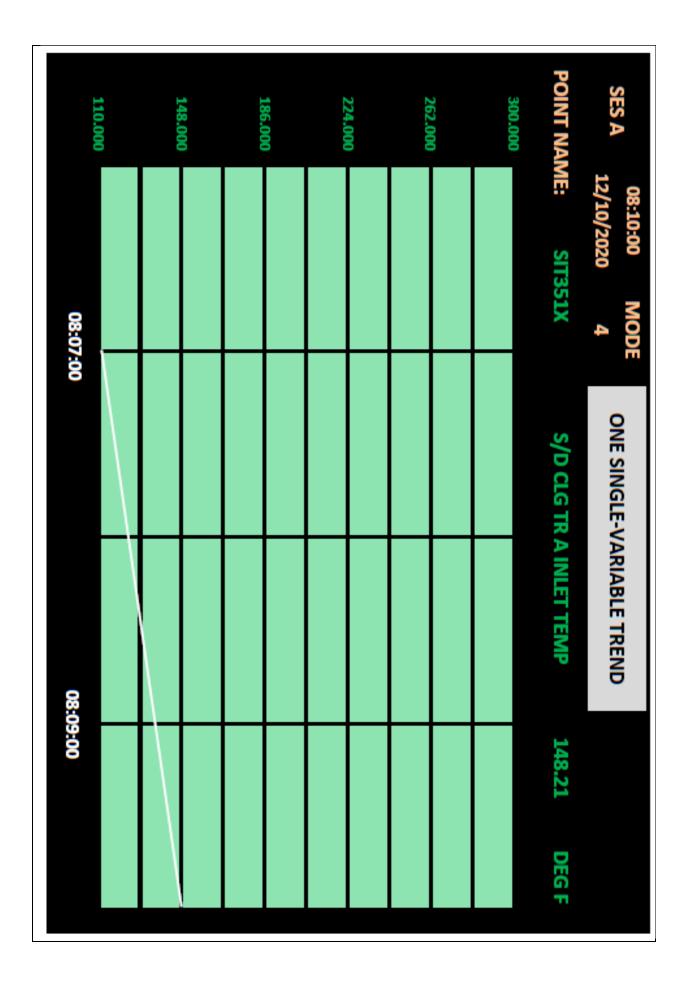
Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	3	
Reference Provided:	N	
Learning Objective:	311	397 – Explain Restoration of Seal Injection

Technical Reference:		
c. <u>Throttle o</u> Flow Con the manu individual RCP seal start drop		

Technical Reference:	40AO-9ZZ04, RCP En	nergencies						
Appendix H, Restoring RCP Seal Injection								
INSTRU	CTIONS	CONTINGENCY ACTIONS						
2. (continued)								
stabilize chargin THEN <u>a</u>	temperatures have ed at approximately) g line temperature, <u>adjust</u> the Seal Injection ontrollers to 6.0 to M.	Adequate Seal Injection flow exists when Seal Injection flow is greater than Controlled Bleedoff flow. d.1 IF RCP Seal Injection flow can NOT be adjusted to 6.0 to 7.5 gpm, THEN <u>balance</u> flows to ensure that Seal Injection flow is greater than Bleedoff flow to all RCPs.						

echnical Reference: 40AO-9ZZ04, RCP Emergencies					
Appendix D, Instrumentation and Setpoints					
Parameter	Instrument Number	Normal	Alarm	Trip	
No. 2 Seal Inlet Pressure	RCN-PT-152/162 (RCN-PI-152 on B04)	See Appendix G	Lo 826 psig	-	
	RCN-PT-172/182 (RCN-PI-172 on B04)		Hi 1766 psig	-	
No. 2 Seal Outlet	RCN-PT-153/163 (RCN-PI-153 on B04)	See Appendix G	Lo 179 psig	-	
Pressure (Controlled Bleedoff)	RCN-T-173/183) (RCN-PI-173 on B04)		Hi 537 psig	-	
Controlled Bleedoff Flow	RCN-FI-156/166/176/186	<mark>2.0 - 4.0</mark>	Lo 1.6 gpm	-	
	(B03)	gpm	Hi 6.0 gpm	Hi ≥9.5 gpm	

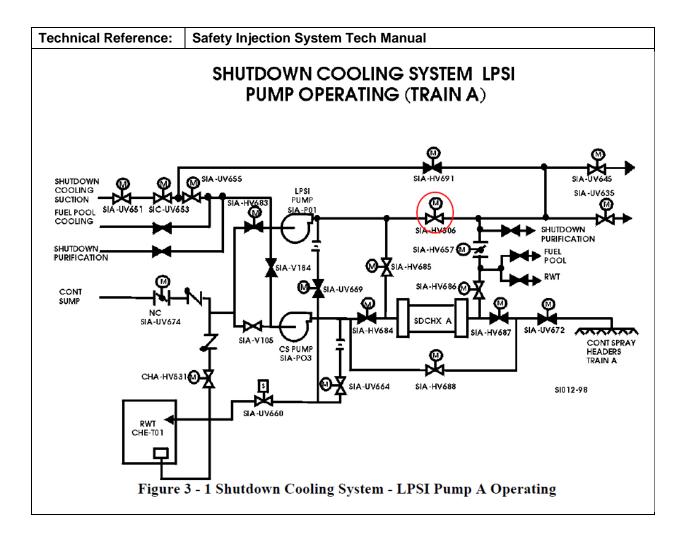

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Residual Heat Removal: Ability to predict and/or	Tier	2		
monitor changes in parameters (to prevent exceeding design limits) associated with operating the RHRS controls including: Heatup/cooldown rates	Group	1		
	K/A	005 A1.01		
	IR	3.5		

Given the following conditions:

- Unit 1 is in MODE 4
- The crew is placing SDC in service using the Train 'A' LPSI Pump
- The CRS directs warming up the Train 'A' SDCHX at the MAXIMUM heat up rate allowed by 40OP-9SI01, Shutdown Cooling Initiation
- SIA-HV-306, LPSI S/D Cooling HX A Bypass Valve, is 20% open
- The 'A' LPSI Pump has been started
- SIA-UV-635, LPSI Header A to RC Loop 1A, is 10% open

Based on the trend on the following page, in order to comply with the CRS direction, the 'A' SDCHX heat up rate should be ____(1)___ and the crew can accomplish this by throttling ____(2)___ on SIA-HV-306, LPSI S/D Cooling HX A Bypass Valve.

- A. (1) raised
 - (2) open
- B. (1) raised
 - (2) closed
- C. (1) lowered
 - (2) open
- D. (1) lowered
 - (2) closed


Pro	posed Answer:	В			
Exp	lanations:				
Α.	First part is correct. Second part is plausible since HV-306 is throttled open to heatup (or slow the cooldown of) the RCS, however to raise the heatup rate of the SDCHX, HV-306 must be throttled closed.				
В.	Correct.				
C.	First part is plausible since the SDCHX is heating up at a rate of ~ 13°F/min, and the C/D rate limit for the RCS in MODE 4 is 100°F/hr (~ 1.6°F/min), which is could be assumed is the same temperature change limit for the SDCHX, however the heatup rate limit for the SDCHX is 19°F/min. Second part is plausible since opening HV-306 would lower the heatup rate, however in this case, HV-306 needs to be throttled closed to raise the heatup rate of the SDCHX.				
D.	in this case, HV-306 needs to be throttled closed to raise the heatup rate of the SDCHX. First part is plausible since the SDCHX is heating up at a rate of ~ 13°F/min, and the C/D rate limit for the RCS in MODE 4 is 100°F/hr (~ 1.6°F/min), which is could be assumed is the same temperature change limit for the SDCHX, however the heatup rate limit for the SDCHX is 19°F/min. Second part is correct.				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Х	Comprehension or Analysis	

Level of Difficultly:	3			
10CFR55.41:	7			
Reference Provided:	Y	Attached picture of the SDC Train A Inlet Temperature		
Learning Objective:		21607 – Describe the temperature requirements and their their bases for initiating and securing SDC.		

Techi	nical Reference: 40OP-9	SI01, Shutdown Co	ooling Initiati	on				
PA	PALO VERDE PROCEDURE Page 74 of 246							
	Shutdown Co		400P-9SI01 5					
Step	Step 6.15.23, ContinuedG. Determine the SDC flow rate for the final SDC alignment using the table below:							
		Decision Table	e for Mode 4					
	1 Pump Oper	rating	2 Pumps C	perating	in Opposite Lo	ops		
	4,000 gpm to 5,0	000 gpm	4,000 gpm to 5,000 gpm					
	D	ecision Table for I	Mode 5 or Mo	de 6				
	1 Pump Oper	rating	2 Pumps Operating in Opposite Loops			ops		
	RCS Level	Flow Rate (gpm)	RCS Le	vel	Flow Rate (g	pm)		
	101 ft 6 in to 102 ft	3780 to 4150	Greater that	n 104 ft	3780 to 50	00		
	102 ft to 103 ft 1 in	3780 to 4600	Less than 104 ft		Not allowed ex	xcept		
	Greater than 103 ft	3780 to 5000			for loop swa	aps		
	H. Monitor SIA	-FI-306, LPSI-S/D	Cooling A He	ader Flo	w to Loops.			
	I. <u>Throttle</u> SIA-HV-306 to achieve ALL of the following using handswitch SIA-HS-306, LPSI S/D Cooling HX A Bypass VIv HV-306:							
	The flow rate determined in Step 6.15.23.G							
	• RCS of	ooldown rate detern	nined in Step	6.15.23.	D.1			
	• SIA-E0 19°F/ n	1, Shutdown Coolir ninute	ng Heat Excha	anger 1,	heatup rate les	<mark>s than</mark>		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Residual Heat Removal: Ability to verify that the	Tier	2		
alarms are consistent with the plant conditions	Group	1		
	K/A	C	05 G 2.4.4	6
	IR	4.2		

Given the following conditions:

- Unit 2 is in MODE 5
- Train 'A' SDC is in service using 'A' LPSI Pump

Subsequently:

• The 'A' LPSI Pump tripped due to an 86 lockout

The crew should be alerted of the loss of the 'A' LPSI Pump by a ____(1)___ on the SESS Panel and annunciator 2B06A, SDC TRAIN A/B FLOW LO, ____(2)___ annunciate.

- A. (1) white light AND a blue light
 - (2) SHOULD
- B. (1) white light AND a blue light(2) should NOT
- C. (1) white light ONLY(2) SHOULD
- D. (1) white light ONLY(2) should NOT

Pro	posed Answer:	D				
Exp	Explanations:					
Α.	A. First part is plausible since the blue SESS alarm indicates that a piece of equipment which should be running is not running, however this is only for ESF equipment which is running due to an ESF actuation. Second part is plausible since the trip of the LPSI pump will result in a loss of SDC flow, however in order for that alarm to annunciate, the SDC pump breaker must be closed, therefore on a loss of flow due to a pump trip, the SDC Train A/B Low Flow alarm does not come in.					
В.	First part is plausible since the blue SESS alarm indicates that a piece of equipment which should be running is not running, however this is only for ESF equipment which is running due to an ESF actuation. Second part is correct.					
C.	SDC flow, howeve	er in (cond part is plausible since the trip of the LPSI pump will result in a loss of order for that alarm to annunciate, the SDC pump breaker must be closed, low due to a pump trip, the SDC Train A/B Low Flow alarm does not come			
D.	Correct					

Question Source:		New	
	Х	Bank	
		Modified	
	Χ	Previous NRC Exam	2018

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	Ν	
Learning Objective:	193	58 – Discuss the Shutdown Cooling Low Flow Alarms

Technical Referen	Technical Reference: LOIT Safety Injection Lesson Plan					
SDC (TRAIN A/B) (FLOW) (LO)	This alarm has two setpoints depending on the number of SDC pumps operating. The flow transmitter senses total SDC loop flow upstream of where the line branches to the individual loop injection valves. The setpoint for one pump is below the minimum Tech Spec SDC flow limit and thus requires immediate attention.					
One <u>VERY IMPORT</u>	One <u>VERY IMPORTANT</u> point about this particular alarm:					
If the running LPSI pump trips, this alarm <u>won't</u> come in because breaker position is in the alarm logic circuitry!						
The operator would get a SEIS alarm (white inoperable light) should this occur. But if another piece of equipment is already inoperable in that group, then the audible SEIS won't come in. The long and short of it is that this can be a fairly silent loss of SDC flow. That is the reason an audible ERFDADS alarm for SDC flow is established.						

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Emergency Core Cooling: Ability to evaluate plant	Tier	2	
performance and make operational judgments based on operating characteristics, reactor behavior, and	Group	1	
instrument interpretation	K/A	006 G 2.1.	7
	IR	4.4	

Given the following conditions:

- A LOCA is in progress on Unit 2
- The crew has entered 40EP-9EO03, Loss of Coolant Accident
- Containment pressure is 6.5 psig and rising at 1 psig/min

Per 40DP-9AP16, Emergency Operating Procedure Users Guide:

- (1) When Containment pressure approaches the CSAS setpoint the crew should...
- (2) When RWT level approaches the RAS setpoint the crew should...
- A. (1) let CSAS actuate automatically(2) let RAS actuate automatically
- B. (1) let CSAS actuate automatically(2) manually actuate RAS on trend
- C. (1) manually actuate CSAS on trend(2) let RAS actuate automatically
- D. (1) manually actuate CSAS on trend(2) manually actuate RAS on trend

Proposed Answer: C				
Ехр	Explanations:			
Α.	actuated. Howeve Containment for t	er, the	ecause a RAS is an ECCS actuation that needs to be automatically e reason for that is to make sure that there is enough inventory in AS. If a CSAS is imminent, it should be manually actuated on trend per ctations. Second part is correct.	
В.	First part is plausible because a RAS is an ECCS actuation that needs to be automatically actuated. However, the reason for that is to make sure that there is enough inventory in Containment for the RAS. If a CSAS is imminent, it should be manually actuated on trend per EOP Operations Expectations. Second part is plausible because every other ECCS actuation should be manually actuated prior to the auto setpoint.			
C.	Correct			
D.	First part is correct. Second part is plausible because every other ECCS actuation should be manually actuated prior to the auto setpoint.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	7	
Reference Provided:	Ν	
Learning Objective:		32 – Given conditions of a LOCA, describe the problems associated h initiating a RAS early per 40EP-9EO03

Fechnical Reference:	Emergency Operating Procedure User	's Guide	
PVNGS NUCLEAR	ADMINISTRATIVE AND TECHNICAL	MANUAL Page 19	of 20
Emergency Op	erating Procedure Users Guide	40DP-9AP16	Revision 10
actuate while n	parameters indicate that an ESFAS actu , then an operator shall manually actuate otifying other control room personnel of t	all channels of the ESFA he condition.	AS signal
operate	parameter trends indicate that an ESFAS or should obtain CRS concurrence and a ot be actuated until the RWT level has re	ctuate that signal manual	<mark>lly. RAS</mark>

Technical Reference: 40DP-9AP08, Loss of Coolant Acciden	t Technical Guideline					
PALO VERDE PROCEDURE Page 40 of 92						
Loss of Coolant Accident Technical Guideline	40DP-9AP08	Revision 28				
 4.5.57 Step 57 - Ensure RAS A. For breaks inside containment, if the RWT is operator should ensure that RAS is actuated order to maintain a continuous flow of SI fluit flow of CS. B. Contingency Actions 1. If the signal did not automatically actuated the signal did not automatical did not auto	d. Recirculation is actuat d to the RCS and a cont	ed in inuous				
 If the signal did not automatically actuate the operator should manually actuate a RAS. 4.5.58 Step 58 - Take Actions for RAS A. The operator should be cautioned against prematurely initiating RAS. A possible complication of a premature RAS is that pump suctions could become air bound, consequently leading to a loss of both heat removal loop Pressurizer level or reactor vessel level may go lower when the LPSI pumps are stopped by a RAS actuation. Also, the RCS temperatures and containment pressure may rise for some time after the RAS because the injected water from the RWT is no longer removing heat. These are expected trends. 						

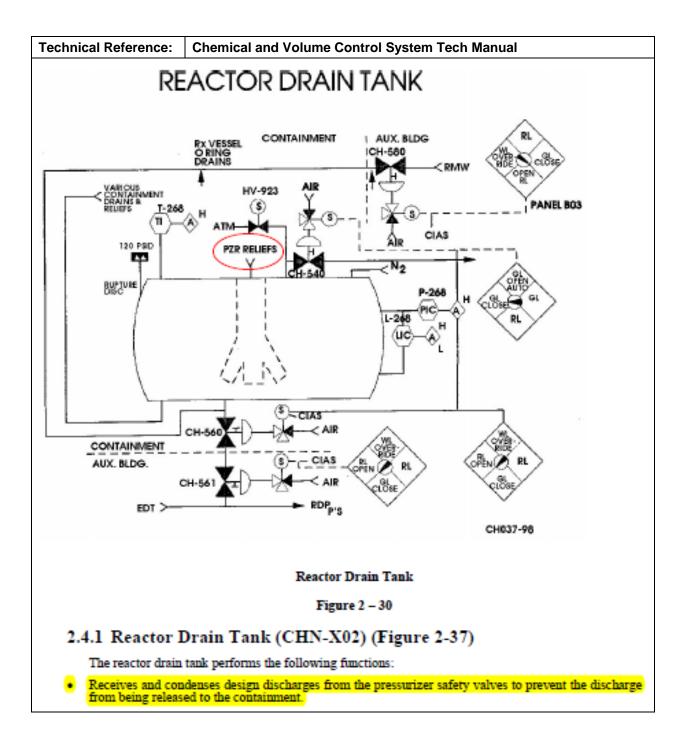
Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Pressurizer Relief/Quench Tank: Ability to	Tier	2	
manually operate and/or monitor in the control room: Relationships between PZR level and changing levels of	Group	1	
the PRT and bleed holdup tank	K/A	007 A4.09)
·	IR	2.5	

Given the following conditions:

• Unit 1 Reactor was tripped due to a Pressurizer relief valve stuck full open

One minute after the Reactor trip and with NO operator action, Pressurizer level should be (1) and (2) level should be rising.

- A. (1) rising (2) EDT
- B. (1) rising(2) RDT
- C. (1) lowering (2) EDT
- D. (1) lowering
 - (2) RDT


Pro	posed Answer:	В	
Exp	lanations:		
Α.	First part is correct. Second part is plausible because letdown relief valves discharge to the EDT. Most auxiliary systems will discharge to the EDT while any identified RCS leakage will collect in the RDT.		
В.	Correct		
C.	First part is plausible because RCS leakage that occurs anywhere but the Pressurizer will cause Pressurizer level to lower. If the leak is anywhere in the steam space, Pressurizer level will rise. Second part is plausible because letdown relief valves discharge to the EDT. Most auxiliary systems will discharge to the EDT while any identified RCS leakage will collect in the RDT.		
D.		to lov	ecause RCS leakage that occurs anywhere but the Pressurizer will cause ver. If the leak is anywhere in the steam space, Pressurizer level will rise.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	5	
Reference Provided:	N	
Learning Objective:	26636 – Given conditions of LOCA, describe how the plant would respond to various types of RCS leaks per 40EP-9EO03	

Technical Reference:	40DP-9AP08, Loss of Coolant Acciden	t Technical Guideline			
PALO VERDE PR	CEDURE	Page 6 of 92			
Loss of Coo	ant Accident Technical Guideline	40DP-9AP08	Revision 28		
as to break contin 4.3 Entry Co 4.3.1 Optin exper lif the comp proce Mode by the indica The p Accid Smal valve legs, and c press steam	al Recovery Procedure Entry Conditions of ted to exist for the event mitigated by the event initiated from Mode 1 or 2, the Stand leted, and the CRS has made a determina dure to enter using the Diagnostic Flowch 3 or 4 and LTOP is not in service, the reco	a recirculation mode wi describe those conditions procedure. dard Post Trip Actions mu tion as to the appropriate art. If the event initiated f very procedure is entered t in progress based on an o exist if a Loss of Coolar o exist if a Loss of Coolar on in the reactor vessel anong the pressurizer surg d. Thus, the liquid level in vior due to the competing	small that are ust be rom d directly vailable nt safety nd hot je line the g		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Component Cooling Water: Knowledge of the	Tier	2		
physical connections and/or cause-effect relationships between the CCWS and the following systems: RCS, in	Group	1		
order to determine source(s) of RCS leakage into the	K/A		008 K1.04	
ccws	IR	3.3		

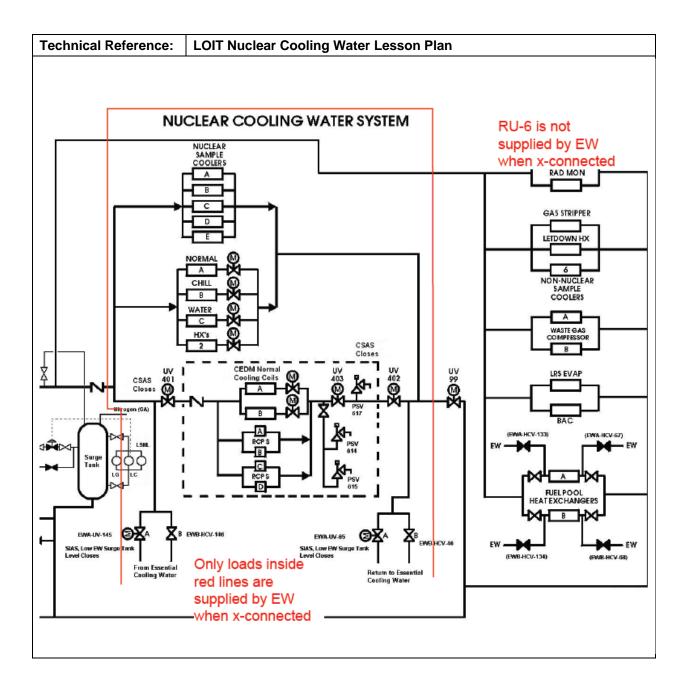
Given the following conditions:

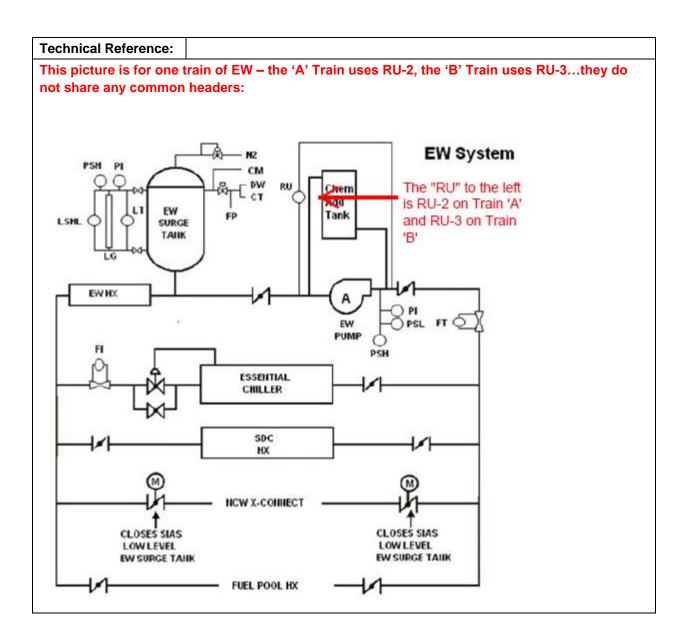
- Unit 2 is operating at 100% power
- Train 'A' Essential Cooling Water is cross-tied to Nuclear Cooling Water

Subsequently:

• A small leak occurred in a RCP High Pressure Seal Cooler

In this condition, which of the following process radiation monitors should be able to detect the resultant activity?


- 1. RU-2, Train 'A' Essential Cooling Water
- 2. RU-3, Train 'B' Essential Cooling Water
- 3. RU-6, Nuclear Cooling Water
- A. 1 ONLY
- B. 1 AND 2 ONLY
- C. 1 and 3 ONLY
- D. 1, 2, and 3


Pro	posed Answer:	Α				
Exp	Explanations:					
Α.	Correct					
В.		ie trai	ught that the trains of Essential Cooling Water shared a common header, n of EW is supplying priority loads, only the associated train will detect kage.			
C.			vill be able to detect activity from an RCS leak, and plausible that RU-6 is e NC-EW cross-tie valves, however RU-6 is isolated when the cross-tie is			
D.	common header, train will detect ac	howe ctivity	is plausible if thought that the trains of Essential Cooling Water shared a ever when one train of EW is supplying priority loads, only the associated due to RCS leakage, and plausible that RU-6 is located upstream of the s, however RU-6 is isolated when the cross-tie is performed.			

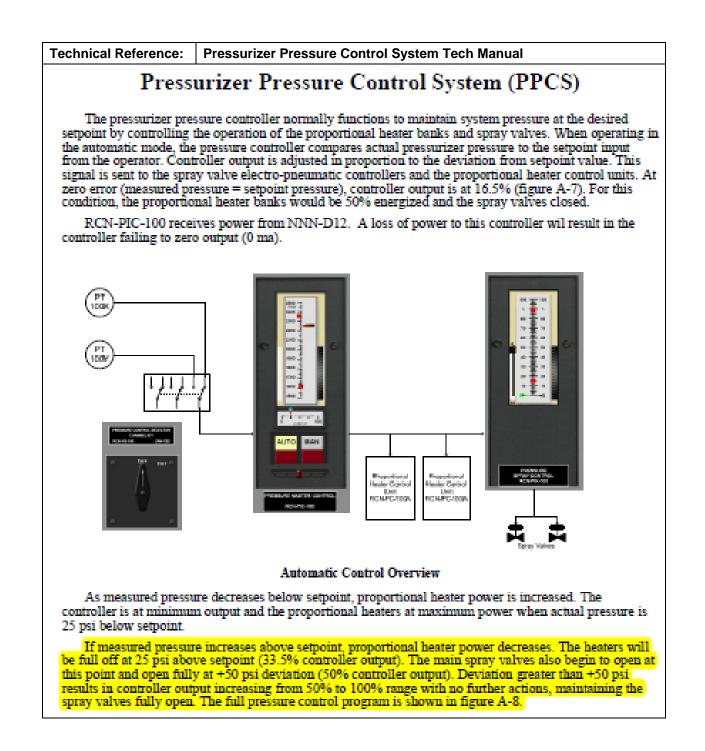
Question Source:		New	
	Х	Bank	
		Modified	
	Х	Previous NRC Exam	2019 Q42

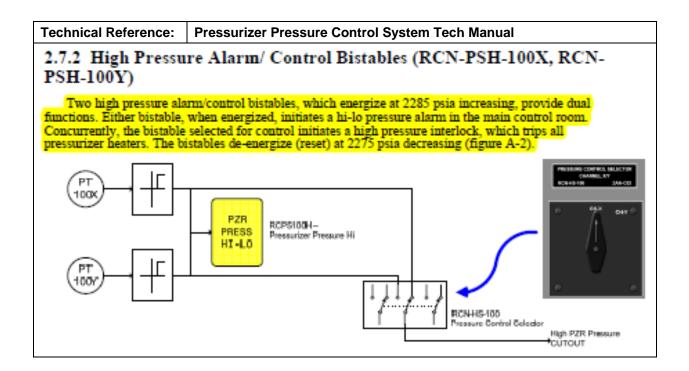
Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

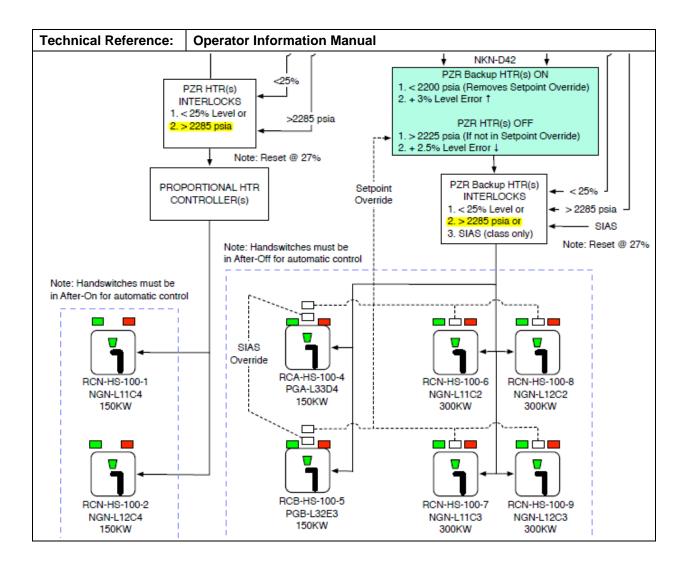
Level of Difficultly:	3	
10CFR55.41:	11	
Reference Provided:	Ν	
Learning Objective:	66723 – Given a Radiation Monitor number and name, describe the purposes and sample points of the Radiation Monitors at PVNGS	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Pressure Control: Knowledge of PZR	Tier	2		
PCS design feature(s) and/or interlock(s) which provide for the following: Over pressure control	Group	1		
for the following. Over pressure control	K/A		010 K4.03	
	IR	3.8		

To aid in protecting the Pressurizer from an over pressure condition, the Main Spray Valves are designed to be FULLY OPEN if RCS pressure rises to a MINIMUM of ____(1)___ and Pressurizer Backup Heaters are designed to trip if RCS pressure rises to a MINIMUM of ____(2)___ .


- A. (1) 2300 psia
 - (2) 2285 psia
- B. (1) 2300 psia
 - (2) 35 psia above the setpoint of Pressure Master Controller, RCN-PIC-100
- C. (1) 50 psia above the setpoint of Pressure Master Controller, RCN-PIC-100
 (2) 2285 psia
- D. (1) 50 psia above the setpoint of Pressure Master Controller, RCN-PIC-100
 (2) 35 psia above the setpoint of Pressure Master Controller, RCN-PIC-100


Proposed Answer: C						
Ехр	Explanations:					
Α.	First part is plausible since the normal setpoint for PIC-100 is 2250 psia, which would result in the Main Spray Valves being full open as soon as RCS pressure reached 2300 psia, however the actual design of the system is for Main Spray Valves to be full open as soon as RCS pressure is 50 psia above the setpoint on PIC-100. Second part is correct.					
В.	First part is plausible since the normal setpoint for PIC-100 is 2250 psia, which would result in the Main Spray Valves being full open as soon as RCS pressure reached 2300 psia, however the actual design of the system is for Main Spray Valves to be full open as soon as RCS pressure is 50 psia above the setpoint on PIC-100. Second part is plausible since 2285 psia is 35 psia above the normal setpoint of PIC-100, however all backup heaters trip at 2285 psia, regardless of PIC-100 setpoint.					
C.	Correct.					
D.			econd part is plausible since 2285 psia is 35 psia above the normal setpoint Il backup heaters trip at 2285 psia, regardless of PIC-100 setpoint.			


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
X Comprehension or Analysis		Comprehension or Analysis	

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:		81 – Describe the automatic features associated with the Pressurizer ssure Control System Bistables

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Pressure Control: Knowledge of the	Tier	2		
operational implications of the following concepts as the apply to the PZR PCS: Determination of condition of	Group	1		
fluid in PZR, using steam tables	K/A		010 K5.01	
_	IR	3.5		

Given the following conditions:

- Unit 2 is recovering from an ESD on SG #2
- Inaction from the crew has caused the Pressurizer to go solid

Subsequently:

- The crew is drawing a bubble in the Pressurizer per 40EP-9EO05, Excess Steam Demand
- 1A and 2A RCPs are running
- Pressurizer pressure is 1800 psia
- Pressurizer temperature is 610°F
- (1) The Pressurizer currently...
- (2) Per 40DP-9AP10, Excess Steam Demand Technical Guideline, if RCP flow is not maintained, the most UNDESIRABLE place for bubble formation is in the...
- A. (1) has a bubble(2) Steam Generator U-Tubes
- B. (1) has a bubble
 - (2) Reactor Vessel Upper Head
- C. (1) is in a water solid condition(2) Steam Generator U-Tubes
- D. (1) is in a water solid condition
 - (2) Reactor Vessel Upper Head

Pro	posed Answer:	С		
Exp	lanations:			
Α.	A. First part is plausible if a candidate thinks that a saturated system exists when pressure is greater than the pressure listed in the steam tables. Second part is correct.			
В.	3. First part is plausible if a candidate thinks that a saturated system exists when pressure is greater than the pressure listed in the steam tables. Second part is plausible because it is not desirable to have voiding in the Reactor Vessel Head. However, it is not a problem if there is RCP flow or natural circulation.			
С.	Correct			
D.			cond part is plausible because it is not desirable to have voiding in the However, it is not a problem if there is RCP flow or natural circulation.	

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level: Memory or Fundamental Knowledge		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:		
10CFR55.41:		
Reference Provided:		
Learning Objective:	5498 – Given the EOPs are being performed, describe how the operator vill diagnose water solid conditions per 40EP-9EO05	

Technical Reference:	Steam Tables
1800.0	621.02
608.0 612.0	1637.3 1686.1

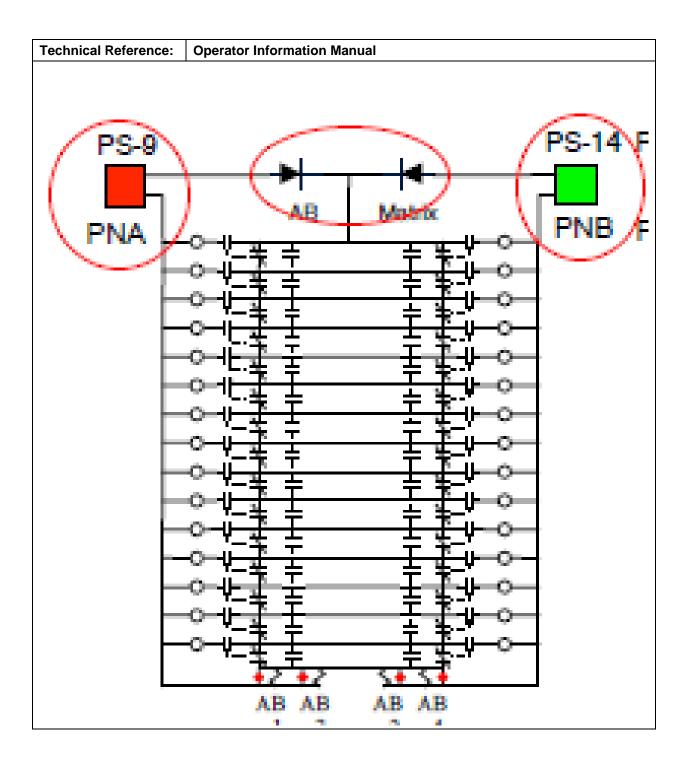
Technical Reference: 40EP-9EO05, Excess Steam Demand								
PALC	VERDE NU	CLEAR GENERATING STATION	40EP-9EO05	Revision 33				
	EXCES	S STEAM DEMAND	Page 18 of 46					
	INST	RUCTIONS	CONTINGENCY AC	TIONS				
* 32.	desired,	oubble in the Pressurizer is the following conditions						
		eam Generators can be ned less than RCS e						
	• At least	one RCP is running						

٦	echnical Reference:	40DP-9AP10, Excess Steam Demand T	echnical Guideline				
	PVNGS NUCLEAR	ADMINISTRATIVE AND TECHNICAL	MANUAL Page 27	of 53			
	Excess Stear	n Demand Technical Guideline	40DP-9AP10	Revision 24			
	4.5.32 Step 32 - Establish a Bubble in the Pressurizer						
	of ste bu do	is step provides directions for drawing a b the stated conditions will minimize the po eam generator U-tubes. The Pressurizer i bble, but a bubble in the reactor vessel h es not interfere with natural circulation flo zzles.	ssibility of forming a void is the preferred location f ead is not a problem as l	in the or the ong as it			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Protection: Knowledge of bus power	Tier	2		
supplies to the following: RPS channels, components, and interconnections	Group	1		
	K/A		012 K2.01	
	IR	3.3		

Continuous power DIRECTLY to RPS Matrix Logic is supplied from ___(1)___ via ___(2)___.

- A. (1) 120 VAC Class buses
 - (2) auctioneering diodes
- B. (1) 120 VAC Class buses(2) static transfer switches
- C. (1) 125 VDC Class buses (2) auctioneering diodes
- D. (1) 125 VDC Class buses(2) static transfer switches


Proposed Answer: A						
Ехр	Explanations:					
Α.	Correct					
В.	First part is correct. Second part is plausible because the power source is PN. PN busses use a static transfer switch to maintain power.					
C.	First part is plausible because 120 VDC is used for control power for Reactor Trip Circuit Breakers which is also part of the Plant Protection System. Second part is correct.					
D.						

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:		
10CFR55.41:		
Reference Provided:		
Learning Objective:	e: 18804 – Describe how matrix logic receives electrical powe	

Technical Reference: Plant				nt Pro	otection System Tech Manual				
	Plant Protection System (PPS-SA/SB)								
	APPENDIX C: Electrical Power Supplies								
	Table C - 1 PPS System Power Supplies								
PPS POWER SUPPLY #'S		A - PN B - PN C - PN D - PN B	B-D20 C-D21	5 7	DESCRIPTION				
1	X	x			Auctioneered power supplies for Channel "A" Bistable Comparator Cards and Relays				
2 4	х	x			Auctioneered power supplies for Channel "B" Bistable Comparator Cards and Relays				
5 7			x	x	Auctioneered power supplies for Channel "C" Bistable Comparator Cards and Relays				
6 8			x	x	Auctioneered power supplies for Channel "D" Bistable Comparator Cards and Relays				
9 14	x	x			Auctioneered power supplies for the Reactor Protection System Logic Matrix "AB"				
10 12	x	x			Auctioneered power supplies for the Reactor Protection System Logic Matrix "AC"				
11 20	x			x	Auctioneered power supplies for the Reactor Protection System Logic Matrix "AD"				
13 15		x	x		Auctioneered power supplies for the Reactor Protection System Logic Matrix "BC"				
16 19			x	x	Auctioneered power supplies for the Reactor Protection System Logic Matrix "CD"				
17 18			x	x	Auctioneered power supplies for the Reactor Protection System Logic Matrix "BD"				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Protection: Knowledge of RPS design	Tier	2		
feature(s) and/or interlock(s) which provide for the following: Logic matrix testing	Group	1		
Tonowing. Logic matrix testing	K/A		012 K4.08	
	IR	2.8		

Given the following conditions:

- Unit 3 is performing logic matrix testing of the RPS system
- All Channel 'C' RPS parameters have been placed in BYPASS
- Testing on Channel 'C' is complete

If a Channel 'B' parameter is taken to BYPASS BEFORE the corresponding Channel 'C' is removed from BYPASS, the Channel 'C' parameter should ____(1)___ and the Channel 'B' parameter should ____(2)___.

- A. (1) remain in BYPASS(2) be in BYPASS
- B. (1) remain in BYPASS(2) NOT go to BYPASS
- C. (1) come out of BYPASS(2) be in BYPASS
- D. (1) come out of BYPASS(2) NOT go to BYPASS

Pro	posed Answer:	С					
Exp	Explanations:						
Α.	First part is plausible because if Channel 'A' was in bypass it would remain in bypass because it is a higher priority channel. However, since Channel 'C' is a lower priority channel, it will come out of bypass. Second part is correct.						
В.	First part is plausible because if Channel 'A' was in bypass it would remain in bypass because it is a higher priority channel. However, since Channel 'C' is a lower priority channel, it will come out of bypass. Second part is plausible because if Channel 'A' was in bypass, Channel 'B' would not go to bypass since it is higher priority channel. However, since Channel 'C' is a lower priority channel, Channel 'B' will go into bypass.						
С.	. Correct						
D.	First part is correct. Second part is plausible because if Channel 'A' was in bypass, Channel 'B' would not go to bypass since it is higher priority channel. However, since Channel 'C' is a lower priority channel, Channel 'B' will go into bypass.						

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	Ν	
Learning Objective:	187	76 – Describe the Matrix Testing Interlock associated with the RPS

Technical Reference: Plant Protection System Tech Manual

2.1.9 RPS Interlocks

Trip Channel Bypass

An electrical interlock prevents the operator from bypassing more than one trip channel at a time for any one type of trip. Different type trips may be bypassed simultaneously, either in one channel or in different channels. Attempting to insert a trip channel bypass in a second channel for the same type of trip will result in only the highest priority channel being in bypass, with A being the highest, and D the lowest priority.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Engineered Safety Features Actuation: Ability to	Tier	2		
predict and/or monitor changes in parameters (to Prevent exceeding design limits) associated with	Group	1		
operating the ESFAS controls including: Containment	K/A		013 A1.02	
pressure, temperature, and humidity	IR	3.9		

Given the following conditions

- A LOCA inside containment is in progress
- Containment pressure is 5 psig and rising
- Containment temperature is 130°F and rising

Given the current conditions with NO OPERATOR ACTION, a CSAS ___(1)___ occurred and if parameters continue to rise will reach a harsh condition AS SOON AS Containment temperature reaches ___(2)___°F.

- A. (1) HAS
 - (2) 170
- B. (1) HAS(2) 235
- C. (1) has NOT (2) 170
- D. (1) has NOT
 - (2) 235

Pro	Proposed Answer: C				
Exp	lanations:				
Α.	First part is plaus part is correct.	ible b	ecause at 3 psig SIAS, CIAS, and MSIS all automatically actuate. Second		
В.	First part is plausible because at 3 psig SIAS, CIAS, and MSIS all automatically actuate. Second part is plausible because 235°F is the expected Containment temperature during a LOCA.				
C.	Correct				
D.	First part is correct. Second part is plausible because 235°F is the expected Containment temperature during a LOCA.				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	7
Reference Provided:	N
Learning Objective:	22587 – Describe what automatically initiates the Containment Spray Actuation System (CSAS) and its function

Technical Re	Technical Reference: 40AL-9RK5B, Panel B05B Alarm Responses						
PALO VE	PALO VERDE PROCEDURE Page 122 of 258						
	Panel	B05B Alarm Responses	40AL-9RK5B	Revision 23			
			Page 1 of 4				
	Response Section 5B05C HI-HI HI-HI High High Containment Pressure Channel Trip CNTMT PRESS C TRIP			HI MT S CH			
Point ID	Descript	ion	Setp	oint			
SATA17	Hi-Hi Cor	ntainment Pressure Channel A Trip	8.06	psig			
SATB17	SATB17 Hi-Hi Containment Pressure Channel B Trip 8.06 psig						
SATC17	Hi-Hi Co	ntainment Pressure Channel C Trip	8.06	psig			
SATD17 Hi-Hi Containment Pressure Channel D Trip 8.06 psig							

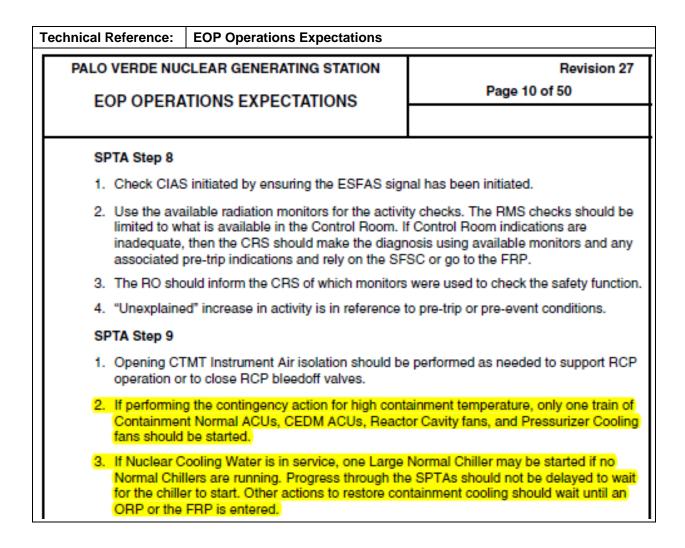
Т	echnical Refere	ence: EOP	Setpoints Document	
	By: K. Geis Reviewer: R. Hid		Subject: Emergency Operating Procedures (EOP) Setpoint Document	TA-13-C00-2000-001 Revision 12 Page 166 of 250
		170F – Harsh Co VALUE:	ontainment Temperature Limit	
			ntainment average air temperature	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment Cooling: Knowledge of the	Tier	2		
operational implications of EOP warnings, cautions, and notes	Group	1		
	K/A	0	22 G 2.4.2	0
	IR	3.8		

Given the following conditions:

- Unit 1 was tripped due to a loss of all Feedwater
- The CRS entered 40EP-9EO01, Standard Post Trip Actions
- Containment temperature is 120°F and slowly rising
- The BOP is performing step 9 of SPTAs and reports that NO Containment ACUs and NO Normal Chillers are running

Per EOP Operations Expectations, during SPTAs the BOP should start ____(1)___ of Containment ACUs and ____(2)___ Large Normal Chiller(s).


- A. (1) one train
 - (2) one
- B. (1) one train
 - (2) two
- C. (1) both trains
 - (2) one
- D. (1) both trains
 - (2) two

Pro	posed Answer:	Α	
Exp	lanations:		
Α.	Correct		
В.	temperature is no	t mee	cond part is plausible if it is assumed that because Containment eting the required temperature in SPTAs and it is rising, more than one d to aid in restoring temperature.
C.	First part is plausible because Containment temperature is not meeting the required temperature in SPTAs and it is rising, therefore more than one Containment ACU should be started to aid in restoring temperature. Second part is correct.		
D.	in SPTAs and it is	s risin ture.	ecause Containment temperature is not meeting the required temperature g, therefore more than one Containment ACU should be started to aid in Second part is plausible to start two large Normal Chillers to support two ACUs

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	4	
Reference Provided:	N	
Learning Objective:	22504 – Given plant conditions following a Reactor trip, analyze whether the Containment Temperature, Pressure and Combustible Gas Control Safety Function is met and what contingency actions are required if it is not in accordance with 40EP-9EO01	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment Spray: Knowledge of bus power	Tier	2		
supplies to the following: MOVs	Group	1		
	K/A		026 K2.02	
	IR	2.7		

The feeder breaker to Containment Spray Header Discharge Valve, SIA-UV-672, is located on which of the following panels?

- A. PNA-D26
- B. PKA-M41
- C. PHA-M35
- D. PGA-L35

Pro	posed Answer:	С			
Exp	lanations:				
Α.		erefo	Containment Spray discharge valve is very important to safety during a re should be powered from an inverter that has a backup ac power supply mer		
В.	B. Plausible because the Containment Spray discharge valve is very important to safety during a LOCA or ESD, therefore should have a power supply that has a battery charger and a battery backup.				
С.	. Correct				
D.	LOCA or ESD an	d car	Containment Spray discharge valve is very important to safety during a be de-energized by a loss of PBA-S03 or PGA-L35. However, the feeder located on PHA-M35.		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	8	
Reference Provided:	Ν	
Learning Objective:	238	44 – Identify the power supplies to SI related equipment

echnical Reference: 40AO-9ZZ12, D	egraded El	ectrical Pow	/er					
PALO VERDE NUCLEAR GENERA DEGRADED ELECTRICAL	0AO-9ZZ12 Revision 72 Page 67 of 413							
PHA-M35 Loads (Bold T.S. numbers indicate less than 2 hour action requirements)								
Equipment	Alt Equip	Power	TS / TRM Reference					
PKA-H11, Battery Charger A	PKA-H15	PHA-M3326	 LCO 3.8.4 (Mode 1 - 4) 					
PNA-V25, Backup Voltage Reg For PNA-D25	PNA-N11	PKA-M4106	irradiated fuel movement)					
HPA-E01, Hydrogen Recombiner	HPB-E01	PHB-M3426						
SIA-UV-655, Shutdown Clg Ctmt Iso Loop 1 Valve SIA-UV-651, Shut Down Clg Iso Loop 1 Valve	N	lone	 LCO 3.4.6 (Mode 4) LCO 3.4.7 (Mode 5 loops filled) LCO 3.4.8 (Mode 5 loops not filled) LCO 3.6.3 (Mode 1 - 4) LCO 3.9.4 (Mode 6 ≥ 23 ft. above Rx vessel flange) LCO 3.9.4 (Mode 6 < 23 ft. 					
CTA-HV-4, Cond Tk to Aux FW Iso VIv	N	lone	 above Rx vessel flange) LCO 3.7.5 (Mode 1 - 3, Mode 4 when SG needed for heat removal) TLCO 7.0.400 					
SIA-UV-864, Ctmt Spray Pump A To RWT Iso Viv SIA-UV-872, Ctmt Spray Control Train A Viv	N	lone	 LCO 3.6.3 (Mode 1 - 4) LCO 3.6.6 (Mode 1 - 3, Mode 4 RCS pressure ≥ 385 psia) TLCO 7.0.400 					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment Spray: Ability to manually operate	Tier	2		
and/or monitor in the control room: CSS controls	Group	1		
	K/A		026 A4.01	
	IR	4.5		

Given the following conditions:

- An inadvertent Train 'B' CSAS has occurred
- The CRS entered 40AO-9ZZ17, Inadvertent PPS-ESFAS Actuations
- The 'B' Containment Spray pump was stopped
- The 'B' Containment Spray header isolation valves were closed

Prior to the CSAS being reset:

- ESF Service Transformer NBN-X04 tripped
- 'B' EDG energized PBB-S04

'B' Containment Spray pump...

- A. starts because the CSAS signal resets.
- B. starts because the Train 'B' Load Sequencer goes through Mode 0.
- C. does not start because the pump is overridden to the STOP position
- D. does not start because the breaker remains in the anti-pump condition until control power is cycled

Pro	posed Answer: B					
Exp	lanations:					
Α.			t that the CSAS signal will be reset if there is a loss of power to class bus containment Spray equipment			
В.	Correct					
C.	Plausible if this p	ump v	vas overridden, however it is taken to 'Stop' and is anti-pumped			
D.			t that because it is anti-pumped it cannot automatically be restarted, encer will restart the pump			

Question Source:		New
	X	Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	7
Reference Provided:	N
Learning Objective:	23824 – Explain how the Load Sequencer changes between the different modes of operation

Technical Reference:	BOP ESFAS System Tech Manual					
SIAS/CSAS of	oincident with a loss of power. Sequencing is started on a diesel generator breaker					
closure signal ((mode 2).					
	 Loss of power without an SIAS/CSAS. Sequencing is started on a diesel generator breaker closure signal (mode 3). 					
Other signals v CRVIAS or CF FBEVAS AFAS-1 or AF Diesel generato	AS-2					
	bsequent input signals, which require a change of operating mode cause, the load transfer to the required mode, and initiate sequencing of the required loads.					
undervoltage to trip time. Reset of the l	are sequentially actuated through the load sequencer receive a load shed signal on bus p the device load, and a load sequencer start signal to start the device at the appropriate load sequencer and its actuation relays does not stop or shed actuated devices. Devices e load shed signal.					

Technical Reference: LOIT BOP ESFAS Lesson Plan

Licensed Operator Initial Training

Page: 66 of 80

Title: Balance Of Plant (BOP) ESFAS Lesson Lesson Plan #: NKASYC15007 Plan

The following example will better illustrate the meaning of the previous statement.

Time	Condition	BOP ESFAS Response
Zero	SIAS	Sequencer receives signal from PPS ESFAS and shifts to Mode 1.
1 minute	SIAS/LOP	The sequencer receives the LOP Signal and resets to Mode 0 and then enters Mode 2. This action results in a Load Shed signal followed by a LOP signal that seals in for 60 seconds. Shortly after the Load Shed, the D/G will close in on the 4kV bus. Once this happens, the Load Sequencer starts sequencing on loads in Mode 2.
2 minutes	SIAS	At this time, the LOP clears and the sequencer resets through zero and back to Mode 1. However, no loads are cycled since the Load Shed relay did not actuate.

Example...

An inadvertent Train "A" CSAS occurs, resulting in the starting of the Train "A" CS pump. The operators "anti-pump" the CS pump, stopping spray flow.

Anti-pump refers to the circuit breakers anti-pump relay (52Y) located in the circuit breaker internal operating mechanism, being energized. When this relay is energized, it opens contacts in line with the closing coil, preventing the breaker from additional closing attempts. This relay initially energizes when the closing spring discharges, and is then maintained in an energized state for as long as the closing signal exists. When a breaker is closed with the handswitch, this closing signal would go away when the handswitch is taken out of the CLOSE position.

In the case of a start signal from the sequencer, the contact will stay closed for as long as the sequencer is in that mode.

A LOP then occurs on PBA-S03. BOP ESFAS now sees the LOP, and needs to shift out of Mode 1. The sequencer shifts to Mode 0, and then enters Mode 2 as soon as the DG Breaker closes (SIAS/CSAS with LOP and DG Breaker closed). This action clears (resets) the sequencer start signal that existed for the CS "A" pump. Because of this, the "A" CS pump will start after the DG closes in.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Main and Reheat Steam: Knowledge of the	Tier	2		
operational implications of the following concepts as the apply to the MRSS: Effect of steam removal on	Group	1		
reactivity	K/A	039 K5.03		
	IR	3.6		

Given the following conditions:

• Unit 2 is operating at 100% power

Subsequently:

- The 6A Feedwater Heater Normal Control Valve has failed closed
- The 6A Feedwater Heater High Level Control Valve is seized closed

With NO operator action, Reactor power should INITIALLY ____(1)___ due to ____(2)____.

- A. (1) rise(2) a decrease in feedwater heating
- B. (1) rise
 - (2) an increase in steam being sent to the Main Turbine
- C. (1) lower(2) a decrease in feedwater heating
- D. (1) lower(2) an increase in steam being sent to the Main Turbine

Proposed Answer: A				
Exp	Explanations:			
Α.	Correct			
В.	3. First part is correct. Second part is plausible since the failures in the stem would result in the extraction steam valve to the 6A heater closing, thus diverting steam to the low pressure turbine, however this will not impact reactor power since the steam leaving the SGs will be unaffected.			
C.	Plausible since hot water in the 6A heater can no longer be rejected to the condenser (due to the normal level control valve failing closed) which would potentially increase the amount of hot water available to be sent to the SG, however the 6A heater will have steam isolated to it resulting in a lower temperature and a net decrease in feedwater heating.			
D.	temperature, whic compensate for th	ch co ne rec e), ho	lation of extraction steam to the 6A heater will result in a lower feedwater uld cause more extraction steam to be aligned to other heaters to duction in feedwater heating (and thus taking steam which could have gone owever when the extraction steam to the 6A heater is stopped, the steam is ssure turbine.	

Question Source:		New	
	Х	Bank	
		Modified	
	Χ	Previous NRC Exam	2018

Cognitive Level:		Memory or Fundamental Knowledge	
	Х	Comprehension or Analysis	

Level of Difficultly:		
10CFR55.41:		
Reference Provided:		
Learning Objective:	420 – Explain the o der normal operat	peration of the High Pressure Feedwater Heaters ng conditions

Technical Reference: | ICES Report #415578 (Palo Verde Unit 2 – May 2017)

Event Summary:

On 05/30/2017 at 1336, the Unit 2 Control Room received a HI-HI level alarm for high pressure feedwater heater 7B. The high level condition in the feedwater heater resulted in extraction steam and drains to the feedwater heater being automatically isolated. As a result, the temperature of the feedwater supplied to the steam generators decreased from 451 degrees to 430 degrees Fahrenheit. The lower feedwater temperature resulted in a reactor power increase to 101.13%. The Control Room operators took prompt action to reduce turbine load and at 1345 stabilized reactor power at 97.5%. Additionally, Group 5 Control Element Assemblies (CEAs) automatically inserted approximately six steps in response to this transient. Repairs were completed at approximately 2030 and Operations commenced increasing reactor power at approximately 2300. On 5/31/2017 at 12:09 AM reactor power was restored to 100%.

Upon investigation, the instrument air supply line to feedwater heater 7B normal level control valve was found disconnected from the valve actuator, causing the valve to fail closed. Also, the valve controller for the high level control valve failed to operate properly,

which caused the valve to stay closed even though actual feedwater heater level was high. The normal and high level control valves maintain thermal efficiency and heater life and their proper operation are important for maintaining feed water temperature and reactivity control.

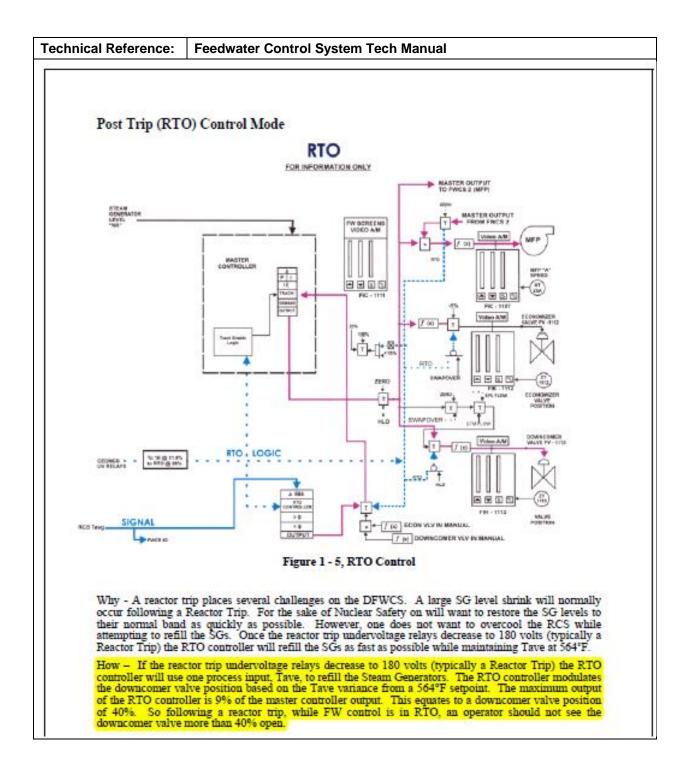
Т	echnical Reference:						
	PALO VERDE PROCEDURE Page 377 of 553						
	Panel B06B Alarm Responses	40AL-9RK6B	Revision 34				
		Page 1 of 2					
	Response Section	6B13C					
	High Pressure Heaters Train A Level High High	HP H TR LV HI-	A L				
	Point ID Description	Setpoint					
	EDLS611 Heater 6A Level Hi-Hi	8 inches above zero level					
	PALO VERDE PROCEDURE	Page 378	of 553				
	Panel B06B Alarm Responses	40AL-9RK6B	Revision 34				
		Page 2 of 2					
	MANUAL ACTIONS						
	1. Check EDN-HS-29, HTR 6A LINE DRAIN VLV, to ve	rify EDN-PV-29 open.					
	 <u>Check</u> EDN-UV-27, Extraction Steam into 6A HPFW EDN-HS-13A, HTR 6A VLVS. 	Heater Block Valve, clos	ed at				
	 <u>Direct</u> Nuclear Operator to check EDN-BTV-13, 6A H Bleeder Trip Valve, closed. 	IPFW Htr Extract Steam	Header				
	 4. <u>Check</u> EDN-HS-615, 1ST STG SCAVENGING MODE SELECTOR, to verify BOTH of the following: 						
	 EDN-FV-611A, A & C 1st Stage RDT Scavenging Steam to 6A Htr Flow Control Valve, is closed. 						
	EDN-FV-611B, A & C 1st Stage Reheater Drain Tank Vent Control Valve, is open.						
	5. Observe reactor power for an increase due to a redu	ction in feedwater tempe	rature.				
			I				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Main Feedwater: Ability to (a) predict the impacts	Tier	2		
of the following malfunctions or operations on the MFW; and (b) based on those predictions, use procedures to	Group	1		
correct, control, or mitigate the consequences of those	K/A		059 A2.12	
malfunctions or operations: Failure of feedwater regulating valves	IR	3.1		

Given the following conditions:

- Unit 3 Reactor was tripped for a Refueling Outage
- T_{COLD} is 571°F and rising
- RRS T_{AVE} has failed to 550°F

Based on the RRS failure, the DFWCS should automatically ____(1)___ and to mitigate the condition the BOP should ____(2)___.


- A. (1) stop feeding
 - (2) adjust MFP speed
- B. (1) stop feeding
 - (2) take MANUAL control of downcomer valves
- C. (1) be feeding at the maximum rate(2) adjust MFP speed
- D. (1) be feeding at the maximum rate
 - (2) take MANUAL control of downcomer valves

Proposed Answer:			
Exp	lanations:		
Α.	A. First part is correct. Second part is plausible because raising or lowering MFP speed would normally increase/decrease Feedflow, however with this malfunction the downcomer valves will be closed so changing MFP speed will not do anything.		
В.	Correct		
C.	First part is plausible if RTO is fed from T _{COLD} and not T _{AVE} . Second part is plausible because raising or lowering MFP speed would normally increase/decrease Feedflow, however with this malfunction the downcomer valves will be closed so changing MFP speed will not do anything.		
D.	D. First part is plausible if RTO is fed from T _{COLD} and not T _{AVE} . Second part is correct		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	4
Reference Provided:	N
Learning Objective:	31226 – Describe the response of the Reactor Regulating System to a failure of a Temperature Transmitter input

	0AL-9RK6A, Panel B06A Alarm Resp	onses			
PALO VERDE PROCEDURE Page 90 of 305					
Panel B0	40AL-9	-9RK6A 2			
		I	Page 1 of 2		
Response Se	ction		6A0	6A	
			FW	CS	
Feedwater Control Syste	em Process Trouble		PROC	ESS	
			TRE	BL	
Point ID	Description		Set	point	
(x)FWCS1:TAVG	Reactor Coolant Avg Temp (x)C0324	I-2 Bad	NA		
(x)FWCS1:SBCS MCD	SBCS MSTR CNTRL Output (x)C0334-2 Bad		NA		
(x)FWCS1:TLI	Turbine Load Index (x)C0335-2 Bad		NA		
None MANUAL ACTIONS					
	NOTE				
• Transm	itters for this alarm group do NOT hav	e redundant	transmitters	s.	
 On a Tavg signal bad to the DFWCS, Reactor Trip Override will NOT function as designed. 					
1. IF BOTH of the	following:				
(x)FWCS1	TAVG, Reactor Coolant Avg Temp (x)	C0324-2 Ba	d, is in alarm	ı.	
Reactor is tripped.					
THEN place the affected DFWCS in Manual.					

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Auxiliary/Emergency Feedwater: Knowledge of the	Tier	2	
effect of a loss or malfunction of the following will have on the AFW components: Controllers and positioners	Group	1	
on the Ar w components. Controllers and positioners	K/A	061 K6.01	I
	IR	2.5	

Given the following conditions:

- Unit 1 is in MODE 2 at 1% power during a startup
- AFN-P01 is feeding both Steam Generators via the Feedwater Isolation bypass valves SGN-HV-1143 and SGN-HV-1145

Subsequently:

• An inadvertent SIAS occurs

With NO operator action, SGN-HV-1143 and SGN-HV-1145 should fail ____(1)___ and AFN-P01 ____(2)___ running.

- A. (1) closed
 - (2) is
- B. (1) closed
 - (2) is not
- C. (1) as-is (2) is
- D. (1) as-is (2) is not

Proposed Answer: D		D			
Exp	Explanations:				
Α.	First part is plausible because on a SIAS, NC cross-tie valves will fail closed. If valves fail as-is, the Feedrate will no longer be controlled by an operator in the Control Room. It is reasonable that at low power levels when this valve is used, the valve will fail closed until manual operation can be restoredSecond part is plausible because if AFB-P01 was running, it would be stripped and then restarted during a SIAS. AFN-P01 is stripped but not restarted.				
В.	3. First part is plausible because on a SIAS, NC cross-tie valves will fail closed. If valves fail as-is, the Feedrate will no longer be controlled by an operator in the Control Room. It is reasonable that at low power levels when this valve is used, the valve will fail closed until manual operation can be restored. Second part is correct.				
C.	C. First part is correct. Second part is plausible because if AFB-P01 was running, it would be stripped and then restarted during a SIAS. AFN-P01 is stripped but not restarted.				
D.	D. Correct				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	4
Reference Provided:	x
Learning Objective:	24524 – Describe the Control Room controls associated with the Non Essential Auxiliary Feedwater Pump AFN-P01 including its indications

Technical Reference: 40AO-9ZZ17, Inadvertent PPS-ESFAS Actuations									
						40AO-9ZZ17 Revision 26 Page 95 of 97			
1	NAD	VERTENT PPS-ESFAS ACTUAT	IONS	Ap	opendix C	Page 27 of 27			
Att	achn	nent C-14 SI/	AS Train B	}		F	age 3 of 3		
1-3		SI Line to RC Loop 1A Drain Valve	SIB-HS-6	B-HS-638 Closed		Y/N	Open / Closed		
1-3		SI Line to RC Loop 1B Drain Valve	SIB-HS-6	348	Closed	Y/N	Open / Closed		
1-3		SI Line to RC Loop 2A Drain Valve	SIB-HS-6	818	Closed	Y/N	Open / Closed		
1-3		SI Line to RC Loop 2B Drain Valve	SIB-HS-6	328	Closed	Y/N	Open / Closed		
1-3		Letdown To Regen Hx Isolation Valve	CHB-HS-	515	Closed	Y/N	Open / Closed		
2-4 Backup Heate		Backup Heaters Bank	RCB-HS-1	00-5	Tripped	Y/N	Tripped / Closed		
	2-4	Condensate Transfer Pump B	CTB-HS-	-16	Running	Y/N	Run / Stop		
	<mark>2-4</mark>	Essential Electric Auxiliary Feed Pump	AFB-HS-	·10	Running	Y/N	Run / Stop		
	<u>.</u>	A COLORED A	1100.110	40	~ .	37.7.81	A 10		

F	PALO	eference: 40AO-9ZZ1	17, Inadvertent PPS-ESI	40AO-9ZZ		Revision 26 97
	NADV	ENTENT PP3-E317	ASACTOATIONS	Appendix	C Pa	age 21 of 27
At	tachm	ent C-13	SIAS Train A	A Contraction of the second se	F	Page 1 of 4
	uation Leg	Component	t Handswite	h Actuated Condition		As Left Condition (Circle one)
	2-4	Diesel Generator A	DGA-HS-	1 Running	Y/N	Run / Stop
2-4 NHN-M71 (F		NHN-M71 (PGA-L33B3)	None	Tripped	Y/N	Tripped / Closed

Т	Fechnical Reference: 40AO-9ZZ12, Degraded Electrical Power							
	PALO VERDE NUCLEAR GENERATING	40AO-9ZZ12 Revision 72 Page 59 of 413						
NHN-M71 Loads								
	Equipment	Alt Equip	Power	TS / TRM Reference				
	 QFN-X04, In-Plant Communications Unit 3 Only - AE-QFN-X06, Transformer for UPS/Charger Input Distribution Panel AE-QFN-D21 	None	NHN-M7211					
	 HCN-M01A, Ctmt Norm ACU A Disch Damper HCN-M01C, Ctmt Norm ACU C Disch Damper SGN-HV-1143, Feedwater Bypass Valve QMN-C04B3, Liquid Radwaste Ht Trace Panel SGN-HV-1142, Feedwater Block Valve SGN-HV-1145, Feedwater Bypass Valve 	None	None	None				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: AC Electrical Distribution: Knowledge of the effect	Tier	2		
that a loss or malfunction of the AC Distribution system will have on the following: DC system	Group	1		
will have on the following. DC system	K/A		062 K3.03	
	IR	3.7		

Assuming the battery room is maintained a minimum of 60°F during a Station Blackout, with NO operator action, the Class 1E batteries should supply DC system loads for a MINIMUM of...

- A. 1 hour
- B. 2 hours
- C. 4 hours
- D. 8 hours

Proposed Answer: B						
Exp	lanations:					
Α.	A. Plausible because in 40EP-9EO08, Blackout there is a 1 hour time requirement to start and pla a Station Blackout Generator on a class bus within 1 hour if power is not available from offsite an EDG.					
В.	Correct					
C. Plausible because in 40EP-9EO08, Blackout there is a 4 hour time requirem cooldown if offsite power or an EDG is not restored to a class bus.						
			0EP-9EO08, Blackout there is an 8 hour time requirement to align cooling if power has not been restored to a class bus with offsite power or an EDG.			

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Х	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	8
Reference Provided:	X
Learning Objective:	18175 – Explain the operation of the Class 1E 125 VDC Batteries under normal operating conditions

 Technical Reference:
 Class 125 VDC Power System Tech Manual

System Description

The class 1E 125 VDC power system consists of four independent class 1E 125 VDC sub-systems divided into four channels. The A and B channels provide vital instrumentation and control power via inverters for channels A and B of the reactor protection and ESF systems and diesel generators A and B. The DC sub-systems C and D provide vital instrumentation and control power via inverters for channels C and D for the reactor protection and ESF systems and other safety related loads.

Each sub-system consists of a battery, control center, distribution panel and a battery charger supplied with three phase 480 VAC power from a different class 1E MCC. Each system has two backup chargers: backup charger "AC" for load group 1 and backup charger "BD" for load group 2. Backup charger AC is capable of providing 125 VDC power supply to either channel A or C of the load group 1 and the second backup charger "BD" is capable of providing 125 VDC power supply to either channel B or D of the load group 2. A mechanical interlock is provided between both of the output breakers of the back-up chargers which will prevent simultaneous closing of both of the DC control panels, thus eliminating accidental paralleling of both of the DC control panels of two different load groups.

An equalizing charge is given to the battery at a higher than float voltage to correct any non-uniformity between the cell voltages or specific gravities when one or more cells fall below individual cell critical voltage of 2.14 volts corrected for temperature or whose corrected specific gravity has fallen below 1.197. Periodically or immediately after a battery discharge cycle (due to loss of power or failure of the battery charger) the battery is given an equalizing charge or a recharge at a higher voltage per cell than the float charge.

The class 1E 125 VDC Systems are designed for normal operation at a charger float voltage of 135 VDC. During equalizing mode of operation, the system voltage reaches a maximum operating voltage of 139.8 Volts DC.

The class 1E 125 VDC systems are designed for ungrounded (floating system) operation to reduce the possibilities of system degradation due to ground faults. An ungrounded system requires ground faults simultaneously in both the positive and the negative buses before losing the operability of the system.

Each class 1E battery has sufficient capacity to independently supply the required loads while maintaining the minimum required bus voltages for 2 *hours* following the loss of battery charger connected to the 125 VDC control center at a minimum temperature of 60°F in the battery room.

Technical Reference: 40EP-9EO08, Blackout	
PALO VERDE NUCLEAR GENERATING STAT	ION 40EP-9EO08 Revision 26 Page 7 of 43
<u>INSTRUCTIONS</u> <u>NO</u> In order to be successful in energizing a vita	
the start of the event, Appendix 80, <u>Align SB</u> <u>Disable PBA-S03 Breakers</u> , (or Appendix 8 Attachment 81-A, <u>Disable PBB-S04 Breaker</u> and performed concurrently with Standard A	1, <u>Align SBOG to PBB-S04 (BO)</u> , (s,) must be started as soon as possible,
 IF at least one vital 4.16 kV AC bus is NOT expected to be energized within one hour of the start of the event from EITHER of the following: Offsite power Diesel Generator THEN <u>PERFORM</u> Appendix 80, <u>Align</u>. 	 13.1 IF PBA-S03 is NOT available, THEN <u>PERFORM</u> Appendix 81, <u>Align</u> <u>SBOG to PBB-S04 (BO)</u>. 13.2 IF AC power will NOT be available from offsite power, an SBOG, or any Unit's EDG within one hour of the start of the event (ELAP), THEN <u>perform</u> the following:
SBOG to PBA-S03 (BO).	 a. <u>Declare</u> an ELAP is in progress. b. <u>PERFORM</u> 40MG-9ZZ07,
	c. <u>GO TO</u> step 14.

Т	echnical Reference: 40EP-9EO08, Blackout	
	PALO VERDE NUCLEAR GENERATING STATION BLACKOUT	40EP-9EO08 Revision 26 Page 26 of 43
	 INSTRUCTIONS IF at least one vital 4.16 kV AC bus is NOT expected to be energized within four hours of the start of the event from ANY of the following: Offsite Power Affected Unit Diesel Generator Other Unit Diesel Generator THEN continue in this procedure to commence a cooldown to SDC entry conditions. 	CONTINGENCY ACTIONS

Т	echnical Reference:	40EP-9EO08, Blackout				
	PALO VERDE NUC	LEAR GENERATING STAT	ION	40	EP-9EO08	Revision 26
	E	BLACKOUT		Page 29	of 43	
	INST	RUCTIONS	!	CON	ITINGENCY AC	CTIONS
	NOT expecte	e vital 4.16 kV AC bus is ed to be energized within f the start of the event from bllowing:	T	HEN C co	B-S04 is energized perform the follow oling to the Spent f hours of the start of	ving to restore Fuel Pool within
		Power d Unit Diesel Generator Init Diesel Generator	ab	. <u>[</u>	PERFORM Appen EW to SEP. Direct an operator PCB-P01, Fuel Po	to <u>start</u>
	THEN perform PC Cooling to	03 is energized, m the following to restore o the Spent Fuel Pool ours of the start of the			Pump 2.	
		<u>RM</u> Appendix 64, <u>Aliqn</u> SFP.				
		n operator to <u>start</u>)1, Fuel Pool Cooling				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: DC Electrical Distribution: Knowledge of the	Tier	2		
between the DC electrical systems and the following	Group	1		
	K/A		063 K1.02	
	IR	2.7		

Given the following conditions:

- Unit 2 is operating at 100% power.
- Inverter PNC-N13 Manual Bypass Switch is in the Normal Operation position
- The supply breaker to inverter PNC-N13 was inadvertently opened at PKC-M43

Based on these conditions, PNC-D27 should...

- A. NOT automatically align to its alternate power supply. Power can be restored by manually pressing the Bypass Source to Load pushbutton.
- B. automatically align to its alternate power supply and should automatically transfer back to its normal source when the inverter is re-energized.
- C. NOT automatically align to its alternate power supply. Power can be restored by manually placing the Manual Bypass Switch to the Bypass to Load position.
- D. automatically align to its alternate power supply and can be manually realigned to its normal source when the inverter is re-energized by pressing the Inverter to Load pushbutton.

Pro	posed Answer:	D		
Exp	lanations:			
Α.	Plausible that it will NOT auto align to the alternate source because unit 1 once did not have static switches with automatic switching capabilities. Also, the examinee may very well think that the Bypass Source to Load pushbutton reverses the last transfer, which would realign the bus to the normal source.			
В.	Plausible since it will auto transfer to the alternate source, however it will not auto transfer back to the normal source.			
C.	Plausible that it will NOT auto align to the alternate source because unit 1 once did not have static switches with automatic switching capabilities.			
D.	Correct			

Question Source:		New	
	Χ	Bank	
		Modified	
	Χ	Previous NRC Exam	2016

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	Ν	
Learning Objective:		660 – Explain the operation of the Static Switch provided on Ametek erters (new)

Technical Reference:	120 VAC Class 1E Instrument Power (PN) Lesson Plan
-----------------------------	--

MANUAL BYPASS SWITCH (S1)

This three position switch provides the operator the ability to completely bypass the static switch. The switch positions perform the following functions:

BYPASS TO LOAD – For the normal inverters it connects the distribution panel directly to the swing inverter output through the Remote Swing Lineup switch.

For the swing inverters it connects the output going to the normal inverter, through the Remote Swing Lineup switch, to the voltage regulator.

NORMAL OPERATION - Aligns the distribution panel to the Static Switch.

Technical Reference: 120 VAC Class 1E Instrument Power (PN) Lesson Plan	chnical Reference:	lan
---	--------------------	-----

Static Switch

This device is located in the right cabinet of the inverter. It is an electronic, solid state assembly which, on loss of normal power (inverter), automatically transfers the distribution panel to the voltage regulator without interruption. When power returns, the static transfer switch does NOT transfer back automatically. The distribution panel can be manually transferred by pushing one of the two pushbuttons provided:

INVERTER TO LOAD (Aligns to the inverter)

BYPASS SOURCE TO LOAD (Aligns to the voltage regulator)

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Emergency Diesel Generator: Ability to monitor	Tier	2		
automatic operation of the ED/G system, including: Load Sequencing	Group	1		
	K/A		064 A3.07	
	IR	3.6		

Given the following conditions:

• Unit 1 has tripped due to a LOOP

Which of the following loads should automatically start after the EDGs start?

- 1. 'A' Auxiliary Feedwater Pump
- 'B' Auxiliary Feedwater Pump
 'N' Auxiliary Feedwater Pump
- A. 1 ONLY
- B. 2 ONLY
- C. 1 AND 3 ONLY
- D. 2 AND 3 ONLY

Proposed Answer: B			
Exp	lanations:		
Α.	Plausible because AFA-P01 will start on an AFAS. However, the only pump that starts on a LOOP is AFB-P01.		
В.	Correct		
C.	thought that both	elect	ecause AFA-P01 will start on an AFAS. Second part is plausible if it is rical pumps start because if there is a LOOP and a LOP on PBB-S04, there d pumps that automatically start.
D.		s a L(cond part is plausible if it is thought that both electrical pumps start DOP and a LOP on PBB-S04, there will be no auxiliary feed pumps that

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:	238	23 – Explain the operation of the ESF Load Sequencer

Technical Reference:	Operator Information Manual
("B" train). A Load Sh	MODE 3 LOSS OF OFFSITE POWER insed by 2 out of 4 undervoltage relays on either S03 ("A" train) and/or S04 and on the affected train(s) takes place.
LOAD	SHED first then Sequence starts when DG BRKR closes
Time Seconds Same	e as in Mode 2
LOP	Diesel Generators Start
0 - 10 sec	Diesel Generator Output Breaker Closes on S03 and/or S04
0)	Sequencer Starts
5	Control Room Essential Ventilation A & B
5	All Essential Batter Chargers and Voltage Regulators Re- energized.
5	Containment Normal Air Handling Units Restart (Previously running units will restart, units in Auto are enabled for Auto Start)
10	+ Auxiliary Feedwater Pump (Essential B)

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Process Radiation Monitoring: Ability to predict	Tier	2		
and/or monitor changes in parameters (to prevent exceeding design limits) associated with operating the	Group	1		
PRM system controls including: Radiation levels	K/A		073 A1.01	
	IR	3.2		

Given the following conditions:

• Unit 1 is operating at 100% power

A Steam Generator Tube Leak on SG #1 ____(1)___ cause rising radiation levels on SG #2 RU-142 N-16 Main Steam Line Radiation Monitor and once a downpower is started, INDICATED leak rates on RMS should ____(2)___.

- A. (1) SHOULD
 - (2) lower
- B. (1) SHOULD(2) remain the same
- C. (1) should NOT
 - (2) lower
- D. (1) should NOT
 - (2) remain the same

Pro	posed Answer:	Α	
Exp	lanations:		
Α.	Correct		
В.	First part is correct. Second part is plausible if it is thought that because the leak itself has not changed, than indicated leak rate should remain the same.		
C.	First is plausible because the steam from SG #2 will not have any activity. However the radiation monitor will detect the radioactivity from SG #1. Second part is correct.		
D.	monitor will detec	t the	use the steam from SG #2 will not have any activity. However the radiation radioactivity from SG #1. Second part is plausible if it is thought that has not changed, than indicated leak rate should remain the same.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	11	
Reference Provided:	N	
Learning Objective:	31204 – Explain the basic operation of Process Radiation Monitors	

Technical Reference:	74AL-9SQ01, Radiation Monitoring Sy Response	stem Alarm Validation a	Ind
PVNGS NUCLEAR	ADMINISTRATIVE AND TECHNICAL	MANUAL Page 61	of 277
Radiation Monit	oring System Alarm Validation and Response	74AL-9SQ01	Revision 0
	поаронас	Page 2 of 4	
OPERATOR ACTION			
	NOTE		
	 The steam generator tube leak may response on all four channels for RI the close proximity of the detectors the steam lines. 	J-142 because of	
	 The highest response will normally channels monitoring the steam lines Steam Generator. 		
	 Monitor response to N-16 is proport power level. 	ional to reactor	
	 Changing power level can result in changes in monitor readings without rate. 		
	Changing power level can mask lea	k rate increases.	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Service Water: Knowledge of SWS design	Tier	2		
feature(s) and/or interlock(s) which provide for the following: Conditions initiating automatic closure of	Group	1		
closed cooling water auxiliary building header supply	K/A		076 K4.01	
and return valves	IR	2.5		

Given the following conditions:

- Unit 2 is operating at 100% power
- Train 'A' EW-NC Cross-Tie Supply and Return Valves, EWA-UV-65 and EWA-UV-145, are open in support of Train 'A' EW cross-tied with NC

Which of the following conditions, INDIVIDUALLY, should result in the automatic closure of EWA-UV-65 and EWA-UV-145?

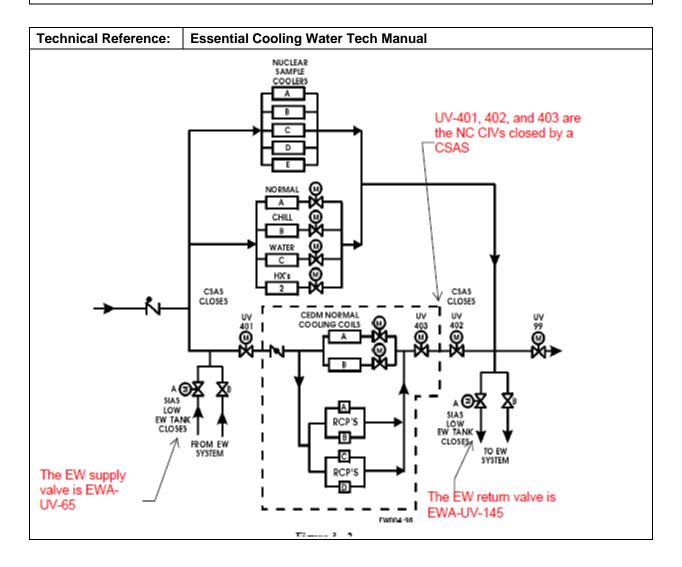
- 1. Inadvertent Train 'A' SIAS
- 2. Inadvertent Train 'A' CSAS
- 3. Low Level in the 'A' EW Surge Tank
- A. 2 ONLY
- B. 3 ONLY
- C. 1 and 2 ONLY
- D. 1 and 3 ONLY

Pro	posed Answer:	D		
Exp	lanations:			
Α.		the (SAS would be correct since an 'A' CSAS will stop EW flow through the aux CSAS stops flow through the aux building by closing the NC CIVs, not the s.	
В.	Plausible since a low level in the 'A' EW Surge Tank will close the EW-NC cross-tie valves, however an 'A' SIAS will also close the EW-NC cross-tie valves.			
C.	through the aux b	uildin	GIAS will close the EW-NC cross-tie valves, and an 'A' CSAS will stop flow g, however the 'A' CSAS will not close the EW-NC cross-tie valves. n the 'A' EW Surge Tank will close the EW-NC cross-tie valves.	
D.	Correct.			

Question Source:		New
		Bank
	Χ	Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	7	
Reference Provided:	N	
Learning Objective:	Coo	54 – Describe the automatic functions associated with the Essential bling Water Cross-tie to Nuclear Cooling Water Valves EWA-UV-145 EWA-UV-65


2018 NRC Exam Q35 (correct answer was B)								
Question 35								
Given the following conditions:								
g at 100% power Il Cooling Water is cross-tied with Nuclear Cooling Water supplying the Is s are in Pull-to-Lock								
ditions, which of the following conditions, individually, would isolate RCPs?								
3' EW Surge Tank								
D. 2 and 3 ONLY								

Technical Reference: Essential Cooling Water Tech Manual

2.7 Piping and Valves

Piping to and from the essential cooling water heat exchangers is carbon steel (corrosion protection is provided by chemical addition). Supply and return piping to and from system components is physically separated from supply and return lines in the redundant flow train.

Two EW system valves can be operated from the control room. They are the isolation valves in the cross-tie lines between EW system train A and the NC system, UV-145 and UV-65. These valves close automatically upon receipt of either a low level signal from the train A surge tank or a SIAS. Manual valves HCV-66 and HCV-146 may be opened to supply the NC system from EW system train B.

Technical Reference: 40AO-9ZZ17, Inadvertent PPS-ESFAS Actuations								
Att	Attachment C-7 CSAS Train A Page 1 of 1							
Actuation Leg		Co	Component Handswitch Actuated		In Actuated Condition (Circle one)	As Left Condition (Circle one)		
1-3		Diesel Generato	r A	DGA-HS-1	Running	Y/N	Run / Stop	
1-3		Control Room E	ssential AHU Fan A	HJA-HS-28	Running	Y/N	Run / Stop	
1-3		Essential Chiller A	/ Chilled Water Pump	ECA-HS-1A	Running	Y/N	Run / Stop	
1-3		Essential Coolin	g Water Pump A	EWA-HS-1	Running	Y/N	Run / Stop	
1-3		Essential Spray	Pond Pump A	SPA-HS-1	Running	Y/N	Run / Stop	
	2-4	Containment Sp Spray Header 1	ray A Discharge to Valve	SIA-HS-672	Open	Y/N	Open / Closed	
1-3		HPSI Pump A		SIA-HS-1	Running	Y/N	Run / Stop	
1-3		Containment Sp	ray Pump A	SIA-HS-5	Running	Y/N	Run / Stop	
1-3		LPSI Pump A		SIA-HS-3	Running	Y/N	Run / Stop	
1-3		RCP Control Ble Isolation Valve	eed-Off Header to VCT	CHA-HS-506	Closed	Y/N	Open / Closed	
1-3		NCW Containme Return Isolation	ent Downstream Valve	NCA-HS-402	Closed	Y/N	Open / Closed	
1-3		Instrument Air O Isolation Valve	utside Containment	IAA-HS-2	Closed	Y/N	Open / Closed	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Service Water: Ability to (a) predict the impacts of	Tier	2		
the following malfunctions or operations on the SWS; and (b) based on those predictions use procedures to	Group	1		
correct, control, or mitigate the consequences of those	K/A	076 A2.02		
malfunctions or operations: Service water header pressure	IR	2.7		

Given the following conditions:

- Unit 1 is in MODE 5
- SDC is in service using Train 'A' auxiliaries and the 'A' LPSI Pump
- A tube leak in the 'A' Essential Cooling Water Heat Exchanger has just occurred
- (1) The tube leak in the EW Heat Exchanger should send water from the...
- (2) If the EW Pump is stopped in response to the tube leak, the in-service SDCHX can be cooled directly from the...
- A. (1) Essential Cooling Water System to the Spray Pond Cooling Water System(2) Nuclear Cooling Water System
- B. (1) Essential Cooling Water System to the Spray Pond Cooling Water System(2) Spray Pond Cooling Water System
- C. (1) Spray Pond Cooling Water System to the Essential Cooling Water System(2) Nuclear Cooling Water System
- D. (1) Spray Pond Cooling Water System to the Essential Cooling Water System(2) Spray Pond Cooling Water System

Pro	posed Answer:	С							
the that	Explanations: Part (b) of the KA is met by knowing the procedure to use to restore cooling to the SDCHX. The reason the procedure to use was not included in the stem of the question is that the name of the procedure would give the correct answer away (Appendix 243, NC Cross-Tie to EW Train A)								
Α.	A. First part is plausible since nominal system pressure of the SP system is ~ 50-55 psig compared to EW which has a nominal system pressure of ~ 95 psig, however the EW system is designed such that at the EW heat exchanger, EW pressure is lower than SP pressure to ensure that in the event of an EW HX tube leak, leakage goes from the SP system to the EW system to minimize the potential for environmental contamination. Second part is correct.								
В.	event of an EW H2 the potential for er	a nomina W heat e X tube le nvironme ling med	al system press exchanger, EW eak, leakage go ental contamina lium for EW, an	ure of ~ 95 ps pressure is lo pes from the S ation. Second d thus the ultir	ig, howeve wer than S P system to part is plau nate heat s	r the EW sys P pressure to the EW sys usible since th	tem is designed b ensure that in the tem to minimize		
С.	C. Correct.								
 First part is correct. Second part is plausible since the Spray Pond system is for EW, and thus the ultimate heat sink for SDC, however the Spray Pond sy directly lined up to the SDCHX. 							5		

Question Source: New		New		
x Bank – question was slightly modified but not to th question can be classified as modified per NUREG				
		Modified		
	x	Previous NRC Exam	2016	

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	4	
Reference Provided:	Ν	
Learning Objective:		38 – Describe the design characteristics of the Essential Cooling ter Heat Exchangers

Technical Reference: Essential Cooling Water System Lesson Plan							
Licensed Operator Initial Training Page: 14 c							
	itle: Essential Cooling Water System Lesson Plan #: Lesson Plan						
Main Idea							
The EW system has two separate and redundant trains each consisting of a pump, a heat exchanger, a surge tank, a radiation monitor, and a chemical addition tank.							
The EW system is a closed loop system which is cooled by the Spray Pond system and removes heat from the Essential Chillers and the Shutdown Cooling Heat Exchanger.							
The EW system can also provide cooling to the Nuclear Cooling Water priority loads (discussed later in the lesson plan) and the Spent Fuel Pool Heat Exchangers in situations when Nuclear Cooling is not available.							
	is maintained at a lower revent a radioactive relea			ystem at the EW Heat			

Te	Technical Reference: 40EP-9EO11, Lower Mode Functional Recovery							
ſ		PALO VERDE NUCLEAR GENERATING STATION			40EP-9EO11 Page 2	Revision 34 73 of 370		
	201		mode	T ON ON ON ALL RECOVERY	HR-2	Page 5 of 13		
ſ			<u>INST</u>	RUCTIONS	CONTINGENCY ACTIONS			
	* 10.	ava	ilable,	rain auxiliaries are NOT <u>m</u> the following:				
		a.	availab	SDC auxiliaries are NOT le to the appropriate train, <u>PERFORM</u> ONE of the ng:				
			Ti	ppendix 241, <u>LM - SDC</u> rain A using Train B uxiliaries				
			T	ppendix 242, <u>LM - SDC</u> rain <u>B using Train A</u> uxiliaries				
		b.	IF BOT	H of the following:				
				oth SDC train auxiliaries re NOT available				
				he Nuclear Cooling Water ystem is available				
			THEN J	PERFORM ONE of the lg:				
				ppendix 243, <u>LM - NC</u> ross Tie to EW Train A				
				ppendix 244, <u>LM - NC</u> ross Tie to EW Train B				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Instrument Air: Knowledge of the physical	Tier	2		
connections and/or cause-effect relationships between the IAS and following systems: MSIV air	Group	1		
the LAS and following systems. More an	K/A		078 K1.05	
	IR	3.4		

Given the following conditions:

- Unit 2 is operating at 100% power
- An Instrument Air rupture has occurred just downstream of the IA compressors
- IA pressure is at atmospheric pressure throughout the system
- The nitrogen backup supply valve has failed closed

Based on these conditions, the Main Steam Isolation Valves should...

- A. slow close due to the loss of IA
- B. fast close due to the loss of IA
- C. remain open and can only be slow closed
- D. remain open and can only be fast closed

Pro	Proposed Answer: D					
Exp	lanations:					
Α.	A. Plausible that the MSIVs would fail closed as this is the fail safe position, and the valves are stoked open in slow speed and can be closed in slow speed, however the MSIVs remain open or a loss of instrument air					
В.	Plausible that the MSIVs would fail closed as this is the fail safe position, and the valves are normally closed in fast speed, however the MSIVs remain open on a loss of instrument air.					
C.	C. Plausible since the MSIVs will remain open, however slow close is not available on a loss of instrument air.					
D.	Correct.					

Question Source:		New	
	Х	Bank	
		Modified	
	Х	Previous NRC Exam	2019

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	4
Reference Provided:	N
Learning Objective:	25935 – Determine the major effects on plant operation as instrument air pressure degrade

Appendix A, Expected Component Failure as System Pressure Drops											
PRESS	COMPONENT	ACTION NOTE ARDV-1, Main Turbine Front Standard Turbine Trip Air Relay Dump Valve actuates EDNPSL76 closing the Bleeder Trip valves. Extraction steam flow will maintain the valves in the open position until pressure decays, allowing the valves to close preventing any backflow from the heaters to the turbine.									
60 - 50 psig ED	EDN-BTV-3 / 4 / 13 / 14 / 23 / 24 / 59 / 60 / 61 / 69 / 70 / 71 / 73 / 74 / 75, Bleeder Trip Valves (FC)										
NC	NCN-LV-75, Nuclear Cooling Water Surge Tank Demin Water Makeup Valve (FC)	IF makeup will be provided to the NC Surge Tank, THEN <u>PERFORM</u> 40OP-9NC01, <u>Nuclear</u> <u>Cooling Water (NC)</u> , <u>Alternate Makeup to NC</u> <u>System</u> , to maintain normal level in the NC Surge Tank.									
SG	SGE-UV-170 / 171 / 180 / 181, MSIV	NOTE Fast closure operation is available via the accumulator, slow mode valve operation will not be available.									
	(FAIL AS IS)	 IF the MSIVs will be closed, THEN <u>fast close</u> the MSIVs using ANY of the following: 									
		SG #1									
		• SGA-HS-251									
		• SGB-HS-253									
		SG #2									
		• SGA-HS-250									
		• SGB-HS-252									

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Instrument Air: Ability to monitor automatic	Tier	2		
operation of the IAS, including: Air pressure	Group	1		
	K/A		078 A3.01	
	IR	3.1		

During a leak on the Instrument Air header, the Nitrogen Backup Valve should automatically open AS SOON AS header pressure lowers to ____(1)___ psig and should re-close AS SOON AS header pressure rises to ____(2)___ psig.

- A. (1) 85 (2) 105
- B. (1) 85
 - (2) 115
- C. (1) 95 (2) 105
- D. (1) 95
 - (2) 115

Proposed Answer:		Α			
Exp	Explanations:				
Α.	Correct.				
В.	First part is correct. Second part is plausible since 115 psig is the middle of the control band for normal IA header pressure (109-119), however the backup N2 valve closes when pressure rises to 105 psig.				
C.	First part is plausible since 95 psig is the setpoint for the IA header low pressure alarm, however the N2 backup valve doesn't open until 85 psig. Second part is correct.				
D.	the N2 backup va	lve de trol ba	ince 95 psig is the setpoint for the IA header low pressure alarm, however pesn't open until 85 psig. Second part is plausible since 115 psig is the and for normal IA header pressure (109-119), however the backup N2 valve rises to 105 psig.		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	4	
Reference Provided:	Ν	
Learning Objective:		31 – Describe the automatic functions associated with the Instrument System

Technical Reference: 40AO-9ZZ06, Loss of Instrume	Technical Reference: 40AO-9ZZ06, Loss of Instrument Air								
PALO VERDE NUCLEAR GENERATING STATION LOSS OF INSTRUMENT AIR	40AO-9ZZ06 Revision 45 Page 11 of 163								
3.0 LOSS OF INSTRUMENT AIR INSTRUCTIONS	CONTINGENCY ACTIONS								
 15. IF it is desired to supply the Instrument Air Header with nitrogen, AND IA Header pressure is less than 85 psig, THEN perform the following: 									
a. <u>Check</u> that IAN-PV-52, Nitrogen Backup Valve is open.	a.1 <u>Direct</u> an operator to throttle open IAN-V591, Nitrogen Backup Valve Bypass, to maintain the desired instrument air pressure.								

3.2 Normal Operating Procedure Overview

3.2.1 Instrument Air System

The objectives of this procedure are to place the IA system in service with the compressors supplying the instrument air header through an air dryer, to allow routine transfer of operating compressors and dryers, and to shutdown the IA compressors and dryers.

Placing the Instrument Air System In Service

This section of the procedure will place the instrument air compressors in operating condition, place the air dryers in operating condition and pressurize the instrument air header. The air dryer air operated valves require at least 80 psig to be operable. Once placed in service, the air dryers are fully automatic. There is a nitrogen backup system that will supply the instrument air header if header pressure drops below 85 psig. The nitrogen backup system isolation valve shuts if pressure rises above 105 psig at the discharge of the instrument air dryers.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment: Knowledge of the effect that a loss	Tier	2		
or malfunction of the containment system will have on the following: Loss of containment integrity under	Group	1		
shutdown conditions	K/A		103 K3.01	
	IR	3.3		

Given the following conditions:

- Unit 3 is in MODE 4
- A Containment vent is in progress

Subsequently:

- A malfunction causes Containment vent valves to be stuck open
- When the Containment vent valves are closed Containment pressure is -0.5 psig
- After the vent an AO reports that a Containment air lock inner door window has a crack causing it to be INOPERABLE

To maintain compliance with Technical Specifications the crew should raise Containment pressure to a MINIMUM of ____(1)___ psig, and the MINIMUM REQUIRED action(s) is(are) to ____(2)___.

- A. (1) -0.3
 - (2) verify the OPERABLE door is closed in the affected air lock ONLY
- B. (1) -0.3
 - (2) verify the OPERABLE door is closed in the affected air lock AND initiate action to evaluate overall containment leakage rate
- C. (1) 0.25
 - (2) verify the OPERABLE door is closed in the affected air lock ONLY
- D. (1) 0.25
 - (2) verify the OPERABLE door is closed in the affected air lock AND initiate action to evaluate overall containment leakage rate

Proposed Answer: A				
Exp	lanations:			
Α.	Correct			
В.			cond part is plausible because evaluating containment leakage rate is the k is INOPERABLE for reasons other than Condition A or B.	
C.	First part is plausible because 0.25 is the pressure at which a Containment vent is stopped per 40OP-9CP01, Containment Purge System. Second part is correct.			
D.	400P-9CP01, Co	First part is plausible because 0.25 is the pressure at which a Containment vent is stopped per 400P-9CP01, Containment Purge System. Second part is plausible because evaluating containment leakage rate is the action take if the air lock is INOPERABLE for reasons other than		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	9	
Reference Provided:	Ν	
Learning Objective:		en a set of plant conditions, apply the one hour or less actions rements of T.S. 3.6 in accordance with Tech Spec 3.6

Technical Reference:	Technical Specifications		
3.6 CONTAINME	3.6 CONTAINMENT SYSTEMS		
3.6.4 Containment Pressure			
LCO 3.6.4	Containment pressure shall be \geq -0.3 psig and \leq +2.5 psig.		
APPLICABILITY:	MODES 1, 2, 3, and 4.		

Technical Reference:	echnical Reference: 400P-9CP01, Containment Purge System						
PALO VERDE PRO	PALO VERDE PROCEDURE Page 10 of 71						
Cont	ainment Purge System	400P-9CP01	Revision 28				
	Step 6.2.11, Continued B. Ensure CPB-V023, Isolation between Refueling Purge Duct/RU-34 Isolation Valve, is closed.						
	NOTE Surveillance Requirement 3.3.8.1, Channel Check, is met by 74ST-9SQ07, Radiation Monitoring System Shiftly Surveillance Test.						
	6.2.12 <u>Direct</u> the Radiation Monitoring Technician to ensure 74ST-9SQ07, Radiation Monitoring System Shiftly Surveillance Test, is current for BOTH of the following:						
• R	U-37, CP PRE-ACCESS PURGE AREAA						
• R	U-38, CP PRE-ACCESS PURGE AREAB						
6.2.13 IF directed by the SM/CRS, THEN insert an Emergency Response Facilities Data Acquisition and Display System (ERFDADS) alarm at 0.3 psig to alert the operator NOT to go below 0.25 psig.							
	6.2.14 IF venting the Containment only for pressure reduction, THEN maintain Containment pressure greater than 0.25 psig.						

Technical Reference: Technical Specifications							
3.6 CONTAINMENT SYSTEMS							
3.6.2 Containment Air Locks	3.6.2 Containment Air Locks						
LCO 3.6.2 Two contains	LCO 3.6.2 Two containment air locks shall be OPERABLE.						
APPLICABILITY: MODES 1, 2, 3, and 4.							
ACTIONS							
	NOTES						
 Entry and exit is permissible components. 	to perform repairs on the affected air	r lock					
2. Separate Condition entry is a	llowed for each air lock.						
 Enter applicable Conditions a when leakage results in exce acceptance criteria. 	and Required Actions of LCO 3.6.1, eding the overall containment leaka	"Containment," ge rate					
CONDITION	REQUIRED ACTION	COMPLETION TIME					
A. One or more containment air locks with one containment air lock door inoperable.	 NOTES Required Actions A.1, A.2, and A.3 are not applicable if both doors in the same air lock are inoperable and Condition C is entered. Entry and exit is permissible for 7 days under administrative controls if both air locks are inoperable. 	(continued)					
		(continued)					
ACTIONS	ACTIONS						
CONDITION	REQUIRED ACTION	COMPLETION TIME					
A. (continued)	A.1 Verify the OPERABLE door is closed in the affected air lock.	1 hour					

Techni	Technical Reference: Techr		ecifications		
C.	One or more containment inoperable for other than Co or B.	t air locks or reasons	C.1	Initiate action to evaluate overall containment leakage rate per LCO 3.6.1.	Immediately
			C.2	Verify a door is closed in the affected air lock.	1 hour
			AND		
			C.3	Restore air lock to OPERABLE status.	24 hours

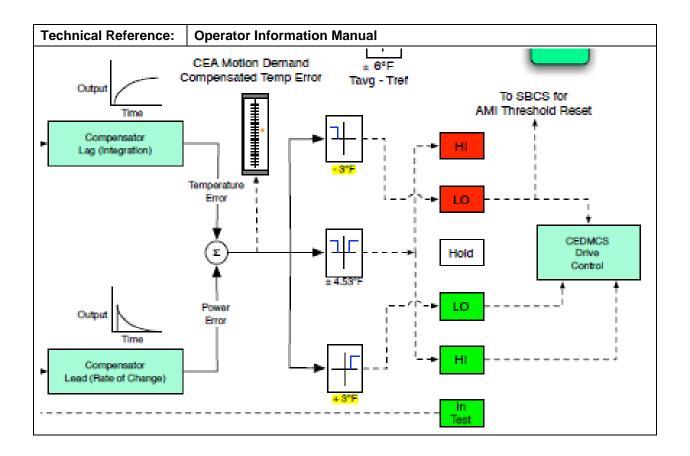
Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Control Rod Drive: Ability to monitor automatic	Tier	2		
operation of the CRDS, including: RCS temperature and pressure	Group	2		
hiessnie	K/A		001 A3.06	
	IR	3.9		

Given the following conditions:

- 'A' MFP has tripped causing a RPCB
- All required CEA subgroups have been verified to have fully inserted into the core
- TAVG is 582°F •
- TREF is 576°F •

Assuming TREF remains constant, Group 3 CEAs are currently inserting at a

(1) rate and should STOP inserting AS SOON AS T_{AVG} is less than (2) °F.


- A. (1) low (2) 579
- B. (1) low (2) 580.5
- C. (1) high (2) 579
- D. (1) high
 - (2) 580.5

Proposed Answer: C					
Exp	Explanations:				
Α.	First part is plausible because the CEAs will insert at a low rate once T _{AVG} -T _{REF} deviation is less than 4.5°F. The current deviation of 6°F will cause CEAs to insert at a high rate. Second part is correct.				
В.	First part is plausible because the CEAs will insert at a low rate once T _{AVG} -T _{REF} deviation is less than 4.5°F. The current deviation of 6°F will cause CEAs to insert at a high rate. Second part is plausible because at 580.5°F the CEAs will stop inserting at a high rate, however they will still be inserting at a low rate.				
C.	Correct				
D.	First part is correct. Second part is plausible because at 580.5°F the CEAs will stop inserting at a high rate, however they will still be inserting at a low rate.				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	6	
Reference Provided:	N	
Learning Objective:	19485 – Describe the automatic functions/interlocks associated with CEDMCS	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Reactor Coolant: Ability to manually operate	Tier	2		
and/or monitor in the control room: Indications necessary to verify natural circulation from appropriate level, flow, and temperature indications and valve	Group	2		
	K/A		002 A4.02	
positions upon loss of forced circulation	IR	4.3		

Given the following conditions:

- Unit 1 tripped from 100% power due to a loss of off-site power.
- The crew is verifying natural circulation has been established.

As natural circulation flow develops, the crew should expect to see loop ΔT indicating ____(1)___ 65°F and should expect a delay of approximately ____(2)___ before the RCS temperature response of feeding and steaming adjustments can be verified.

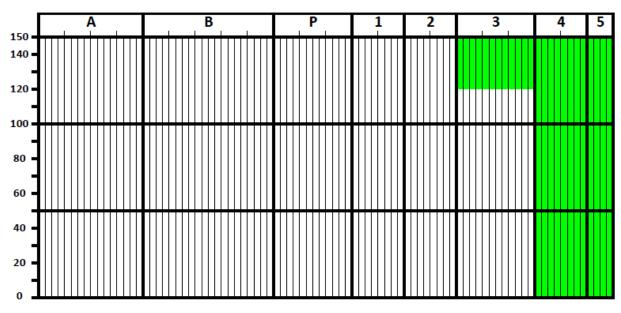
- A. (1) less than
 - (2) 1 to 2 minutes
- B. (1) less than(2) 5 to 15 minutes
- C. (1) greater than (2) 1 to 2 minutes
- D. (1) greater than
 - (2) 5 to 15 minutes

Pro	posed Answer:	В			
Exp	Explanations:				
Α.	First part is correct. Second part is plausible since frequent adjustments of steaming and feeding are needed when controlling in manual (as is the case in a LOOP/LOFC) in order to maintain parameters within post-trip control bands, however in natural circulation conditions, the plant response to these adjustments will not be seen for ~ 5 to 15 minutes.				
В.	Correct				
C.	First part is plausible since the driving head in natural circulation is developed by the difference in density between the hot and cold legs, therefore a higher delta-T than with forced circulation is plausible, however delta-T must be < 65°F (full power delta-T) in natural circulation conditions. Second part is plausible since frequent adjustments of steaming and feeding are needed when controlling in manual (as is the case in a LOOP/LOFC) in order to maintain parameters within post-trip control bands, however in natural circulation conditions, the plant response to these adjustments will not be seen for ~ 5 to 15 minutes.				
D.	density between t	he ho er delt	ince the driving head in natural circulation is developed by the difference in ot and cold legs, therefore a higher delta-T than with forced circulation is ta-T must be < 65°F (full power delta-T) in natural circulation conditions.		

Question Source:		New	
	Х	Bank	
		Modified	
	Х	Previous NRC Exam	2016

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	14	
Reference Provided:	Ν	
Learning Objective:		75 – Explain the difference between single phase and two phase ural circulation


Technical	Reference:	40EP-9EO07, Loss of Off	Site Pov	ver / Loss of Forced	Circulation			
PAL	PALO VERDE NUCLEAR GENERATING STATION 40EP-9E007 Revision 31							
LOSS OF OFF SITE POWER / LOSS OF Page 12 of 54								
	FORCE	ED CIRCULATION						
	INSTRUCTIONS CONTINGENCY ACTIONS							
* 15.	 IF RCPs are NOT operating, THEN <u>check</u> natural circulation flow in at least one loop by ALL of the following: 15.1 <u>Ensure</u> proper control of Steam Generator feeding and steaming. 							
	• Loop Δ	T is less than 65°F						
		l cold leg temperatures are It or lowering						
		24°F or more subcooled ET Subcooling						
	RTDs a CET ter	an a 30°F ∆T between T _h nd the maximum quadrant mperature S, pages 211 and 213)						

Technical Reference:	40DP-9AP12, Loss of Off Site Power / Technical Guideline	Loss of Forced Circulat	tion			
PVNGS NUCLEAR	ADMINISTRATIVE AND TECHNICAL	MANUAL Page 16	6 of 42			
Loss of Offsite Power / Loss of Forced Circulation Technical Guideline 40DP-9AP12 Revision 27						
A. T	 4.5.15 Step 15 - Ensure Natural Circulation A. The intent of this step is to check that natural circulation flow is established and is supporting RCS heat removal. 					
After RCPs are tripped, natural circulation flow should develop within 5 - 1 minutes (longer if the plant tripped from a low power). Natural circulation flow will continue as long as RCS pressure and inventory control are maintaine and at least one steam generator is available for heat removal.						

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Rod Position Indication: Ability to locate control	Tier	2		
room switches, controls, and indications, and to determine that they correctly reflect the desired plant	Group	2		
lineup	K/A	0	14 G 2.1.3	1
	IR	4.6		

Given the following conditions:

- Unit 3 was operating at 100% power when a Reactor Power Cutback occurred
- The CRS has entered 40AO-9ZZ09, Reactor Power Cutback (Loss of Feedpump)
- All automatic CEA motion has stopped
- The CRS has just directed the OATC to restore CEA overlap
- Current CEA positions are as follows:

Per 40AO-9ZZ09, Reactor Power Cutback (Loss of Feedpump), prior to commencing the restoration of CEA overlap, the OATC should ensure that the CEDMCS Mode Selector Switch is selected to ____(1)___ and the FIRST CEA Reg Group to be withdrawn should be ____(2)___ .

- A. (1) Manual Group
 - (2) Reg Group 3
- B. (1) Manual Group
 - (2) Reg Group 4

- C. (1) Manual Sequential(2) Reg Group 3
- D. (1) Manual Sequential
 - (2) Reg Group 4

Pro	posed Answer:	В		
Exp	lanations:			
Α.	First part is correct. Second part is plausible since Group 3 CEAs were the last to insert so it would make sense that they would be first to withdraw, however prior to withdrawing Group 3 CEAs, Group 4 CEAs must be withdrawn until they are within 95 inches of Group 3 CEAs.			
В.	Correct.			
C.	First part is plausible since CEAs will be restored to an ARO condition using manual sequential control, however when re-establishing CEA group overlap, manual group is used. Second part is plausible since Group 3 CEAs were the last to insert so it would make sense that they would be first to withdraw, however prior to withdrawing Group 3 CEAs, Group 4 CEAs must be withdrawn until they are within 95 inches of Group 3 CEAs.			
D.			ince CEAs will be restored to an ARO condition using manual sequential re-establishing CEA group overlap, manual group is used. Second part is	

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	6
Reference Provided:	N
Learning Objective:	19515 – Explain how electric control of the CEDMs is achieved

Technical Reference:	40AO-9ZZ09, Reactor Power Cutback (Loss of Feedpump)
30. <u>Determine</u> the position for R	normal overlap 3-4.
RG-3 position	inches - 95
RG-4 = _	Inches

Technical Ref	erence: 40AO-9ZZ09, Reactor Power Cutback (Loss of Feedpump)				
 31. IF CEA Reg Group 3 is higher than 95 inches withdrawn, THEN perform the following to restore normal CEA group overlap: 					
a.	<u>PERFORM</u> Appendix E, <u>Reactivity Impact While</u> <u>Restoring CEA Overlap</u> .				
b.	<u>Monitor</u> CEA alignment using the CEAC CRT when moving CEAs.				
C.	<u>Maintain</u> the Tave/Tref mismatch within <u>+</u> 3°F.				
d.	<u>Wait</u> a minimum of 1 minute between CEA pulls.				
e.	Withdraw Reg Group 4 in Manual Group "MG" in 10 inch increments to 95 inches below the position of Reg Group 3 while closely monitoring the reactor response.				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: In-Core Temperature Monitor: Knowledge of the	Tier	2		
effect of a loss or malfunction of the following ITM system components: Sensors and detectors	Group	2		
	K/A		017 K6.01	
	IR	2.7		

Given the following conditions:

- Unit 3 is operating at 100%
- One Core Exit Thermocouple (CET) sensor has just failed out of range low

The failure of this CET should be indicated on QSPDS by (1) and the input from the failed CET into the overall CET calculation should be (2).

- A. (1) "NO DATA"
 - (2) ignored by QSPDS
- B. (1) "NO DATA"(2) replaced by a canned value
- C. (1) question marks(2) ignored by QSPDS
- D. (1) question marks(2) replaced by a canned value

Pro	posed Answer:	С		
Exp	lanations:			
Α.	First part is plausible since invalid inputs on Plant PI are indicated by "NO DATA", however QSPDS uses a string of question marks to indicate a failed sensor. Second part is correct.			
В.	First part is plausible since invalid inputs on Plant PI are indicated by "NO DATA", however QSPDS uses a string of question marks to indicate a failed sensor. Second part is plausible as a canned value is used in the DFWCS for inputs that are out of range, however CET data that is out of range is simply ignored by QSPDS.			
C.	Correct.			
D.			econd part is plausible as a canned value is used in the DFWCS for inputs over CET data that is out of range is simply ignored by QSPDS.	

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	2
Reference Provided:	N
Learning Objective:	19076 – Describe the Control Room indications associated with the QSPDS system

Technical Reference:	QSPDS Lesson Plan		
CET Failure			
	aniand for an and of many and then unkick sound indicate a failed and an		
All CET inputs are examined for an out-of-range condition which would indicate a failed sensor. The out-of-range sensor is flagged by QSPDS and not used for further calculations unless accident			
The out of lange bende	n lo hagged by gor bo and hot abed for landler baloalations amedo abolaent		
conditions exist. You co	ould determine the existence of a CET out-of-range by a display of question		
marks instead of a temp	<mark>erature.</mark>		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment lodine Removal: Knowledge of the	Tier	2		
physical connections and/or cause effect relationships between the CIRS and the following systems: CSS	Group	2		
	K/A		027 K1.01	
	IR	3.4		

The amount of gaseous iodine in the containment atmosphere is minimized during normal conditions by the use of (1) filters and is minimized during a LOCA by maintaining pH of the water in containment (2) 7.0.

- A. (1) HEPA
 - (2) less than
- B. (1) HEPA
 - (2) greater than
- C. (1) charcoal
 - (2) less than
- D. (1) charcoal
 - (2) greater than

Pro	posed Answer:	D		
Exp	lanations:			
Α.	First part is plausible since HEPA filters are used in several air filtration units throughout the plant and filter our micro particles from the air, however the iodine is filtered by use of charcoal filters. Second part is plausible since the water injected into the core during a LOCA is a boric acid solution, and boric acid has a pH less than 7.0, however in order to maintain iodine in solution, trisodium phosphate is added to the water to raise the pH to greater than 7.0.			
В.	First part is plausible since HEPA filters are used in several air filtration units throughout the plant and filter our micro particles from the air, however the iodine is filtered by use of charcoal filters. Second part is correct.			
C.	First part is correct. Second part is plausible since the water injected into the core during a LOCA is a boric acid solution, and boric acid has a pH less than 7.0, however in order to maintain iodine in solution, trisodium phosphate is added to the water to raise the pH to greater than 7.0.			
D.	Correct			

Question Source:		New	
	Χ	Bank	
		Modified	
	Χ	Previous NRC Exam	2016

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	13	
Reference Provided:	Z	
Learning Objective:		lain the operation of the Containment Building Pre-Access Filtration Js (HCNF01A and B) under normal operating conditions

Electric heaters are installed in the common distribution duct. These heaters can be energized as necessary to maintain Containment temperatures above 50°F during shutdowns. The Containment air cooling can be maintained by two of the four units. Temperature indicators for each level in the Containment are provided in the control room.

Normal Cleanup (Figure A-1)

The Containment Normal Cleanup system consists of two 50% capacity, pre-access air filtration units (AFUs). Each AFU (HCN-F01A, B) consists of one high efficiency filter, two high efficiency particulate air (HEPA) filters, one charcoal filter, and a fan. During cleanup system operation, air is drawn through the filters by the associated fan and discharged directly to Containment atmosphere. The high efficiency filters remove particulate materials and the charcoal filters adsorb fission product gases (mainly radioiodine) to minimize Containment atmospheric contaminants. This process cleans up the internal air without the need for dilution via outside air.

Technical	Reference:	LOIT Safety Injection Syste	m Lesson Plan		
Licensed	Operator In	tial Training		Page: 61 of 101	
Title:	Safety Inje	ction System Lesson Plan	Lesson Plan #:	NKASYC014011	
EO: 1.25	Describe	the Recirculation Sumps ar	d Trisodium Phosp	bate baskets.	
Main Idea					
containme safety inje line ruptur depleted, a suction o recirculation to	ent building. T ection system re within the o the recirculat on the water on actuation	s, one for each train, are larg heir purpose is to collect wat through a break in the RCS, ontainment . When the norm ion sump valves auto open to volume in containment. The s signal (RAS) and is generated sump valves also trips the LI	er released to the co or the containment s al source of SI and C allow the HPSI pur- ignal that places the d by a low level in the	ntainment by either the spray system, or a steam CS water (RWT) is the sumps and CS pumps to take sumps in service is a e RWT. The RAS in	
		s have metal screens located the SI pumps after a LOCA.	above the sump to p	prevent trash from	
sodium ph and raises while mini	nosphate (TS s the pH of th mizing the st	tions on the floor of the conta P). When the containment is e recirc water. The primary po ress-corrosion cracking of sta ion of containment metals.	flooded, this chemica urpose of which is to	al is dissolved in the water maintain iodine in solution	
The TSP is required to adjust the pH of the recirculation water to \geq 7.0 after a LOCA. A pH of greater than 7.0 is necessary to prevent significant amounts of lodine dissolved in the coolant from becoming volatile and entering containment atmosphere. A pH of greater than 7.0 also helps to prevent stress corrosion cracking of stainless steel components in containment.					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Hydrogen Recombiner and Purge Control:	Tier	2		
Knowledge of bus power supplies to the following: Hydrogen recombiners	Group	2		
	K/A		028 K2.01	
	IR	2.5		

The power supply to Hydrogen Recombiners is a ___(1)___ and ___(2)___.

- A. (1) 480V Class Bus
 - (2) is hardwired to the recombiners
- B. (1) 480V Class Bus
 - (2) must be manually connected to the recombiners
- C. (1) 4.16 kV Class Bus
 - (2) is hardwired to the recombiners
- D. (1) 4.16 kV Class Bus
 - (2) must be manually connected to the recombiners

Pro	posed Answer:	В	
Exp	lanations:		
Α.	First part is correct. Second part is plausible because another component that is used for Containment Hydrogen during an accident, Hydrogen Analyzers, are hardwired into the electrical system.		
В.	Correct		
C.	First part is plausible because the power supply is Class power, however it is only 480 VAC. Second part is plausible because another component that is used for Containment Hydrogen during an accident, Hydrogen Analyzers, are hardwired into the electrical system.		
D.	First part is plausible because the power supply is Class power, however it is only 480 VAC. Second part is correct.		

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	8	
Reference Provided:	N	
Learning Objective:		59 – Describe the response of the Class AC Distribution System to an ormal/emergency operating condition

Technical	Reference: LOIT Hydrogen Control System Lesson Plan						
Licensed	Licensed Operator Initial Training Page: 16 of 38						
Title:	Hydrogen Control System Lesson Lesson Plan #: NKASYC131B07 Plan						
EO: 1.6	Explain the operation of the Hydrogen Recombiner under normal operating conditions.						
Introduct							
	esign Bases Manual the Hydrogen Recombiners are expected to be installed 72 hours start of a LOCA						
	esign Bases Manual the Hydrogen Recombiners are expected to be place in service 100 er the start of a LOCA						
	A EOP 40EP-9EO03 directs aligning the Hydrogen Recombiners per standard appendix CSAS has actuated						
appendix	A EOP 40EP-9EO03 directs placing the Hydrogen Recombiners in service per standard 19 when hydrogen concentration reaches .7% & Containment pressure is < 8.5 psig Range Containment pressure.)						
	203 LOCA Safety Function – Containment Combustible Gas Control						
	 Hydrogen Concentration is less than .7% All available Hydrogen Recombiners are Operating and hydrogen concentration is less 						
The Recombiner trip setpoints are optional and are not testable but are supplied for the student's information only.							
Main Idea							
is moved PHA and	mbiners are located in the 100' Aux Bldg in Unit 1. When required, the skid mounted uni to the appropriate unit and connected to Class 1E electrical power. ("A" recombiner from "B" recombiner from PHB). When the recombiner is not in service, a low power trickle turned on to maintain the recombiner free of moisture.						

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Dump/Turbine Bypass Control: Knowledge	Tier	2		
of the effect that a loss or malfunction of the SDS will have on the following: RCS	Group	2		
have on the following. RCS	K/A		041 K3.02	
	IR	3.8		

Given the following conditions:

- Unit 2 is operating at 100% power
- NNN-D11 is de-energized

Subsequently:

• The Main Turbine trips

The Reactor should trip on (1) and the crew should control RCS temperature with (2).

- A. (1) High Pressurizer pressure RPS(2) ADVs
- B. (1) High Pressurizer pressure RPS(2) SBCV-1007 and 1008
- C. (1) High Pressurizer pressure SPS(2) ADVs
- D. (1) High Pressurizer pressure SPS(2) SBCV-1007 and 1008

Pro	posed Answer:	Α				
Exp	Explanations:					
Α.	Correct					
В.	will allow for the u	ise of	cond part is plausible because there are malfunction (loss of vacuum) that SBCV-1007 and 1008. However the loss of NNN-D11 will cause a loss of valves can be operated automatically or manually.			
C.	First part is plausible because if the Reactor failed to trip on High Pressure at 2383 psia, the SPS trip will trip the Reactor at 2409 psia. Second part is correct.					
D.	trip will trip the Re of vacuum) that w	eactor	ecause if the Reactor failed to trip on High Pressure at 2383 psia, the SPS at 2409 psia. Second part is plausible because there are malfunction (loss ow for the use of SBCV-1007 and 1008. However the loss of NNN-D11 will to SBCS and no valves can be operated automatically or manually			

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Χ	Comprehension or Analysis	

Level of Difficultly:	2	
10CFR55.41:	4	
Reference Provided:	Ν	
Learning Objective:	25753 – Given a loss of non-class instrument power, describe how the loss impacts the operation of SBCS in accordance with 40AO-9ZZ14	

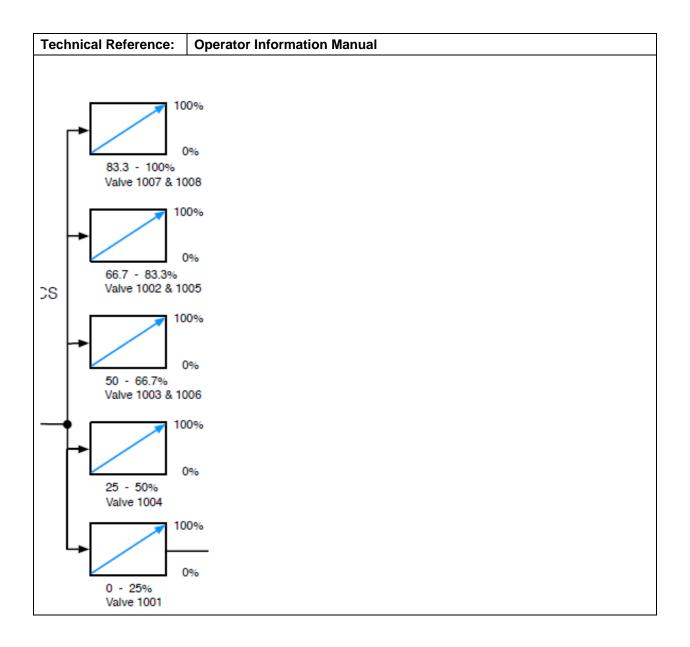
Loss of NNN-D11 NNN-D11 supplies power to instruments and Logic Power Assemblies within SBCS. It also supplies power to the SBCS Master controller. No Power Effect on SBCS I. SBCS loses Logic Power, SBCS valves fail closed and can not be operated in Manual or Auto. When energized SBCS will come back in Manual with zero output and may also be in Emergency Off or Disconnected.	Technical Reference:		Operator Information Manual					
	Loss of NNN-D11)	instruments a Assemblies w also supplies	nd Logic Power vithin SBCS. It power to the	No Power	 SBCS loses Logic Power, SBCS valves fail closed and can not be operated in Manual or Auto. When energized SBCS will come back in Manual with zero output and may also be in Emergency Off or 			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Main Turbine Generator: Ability to (a) predict the	Tier	2		
impacts of the following malfunctions or operation on the MT/G system; and (b) based on those predictions,	Group	2		
use procedures to correct, control, or mitigate the	K/A	045 A2.08		
consequences of those malfunctions or operations: Steam dumps are not cycling properly at low load, or stick open at higher load (isolate and use atmospheric reliefs when necessary)	IR	2.8		

Given the following conditions:

- Unit 3 is operating at 100% power
- Core life is MOC

Subsequently:


- The Main Turbine tripped
- 10 minutes after the Main Turbine Trip Reactor Power stabilizes at 60%
- SBCV-1001 and SBCV-1004 are both FULL open
- (1) If automatic control of SBCV-1001 is lost and SBCV-1001 Mode Selector Switch is taken to 'OFF', the FIRST set of valves to modulate to pick up steam load is...
- (2) With NO operator action, over the next 4 hours, the SBCVs that modulated open after SBCV-1001 failed should modulate in the...
- A. (1) SBCV-1002 & SBCV-1005
 - (2) open direction
- B. (1) SBCV-1002 & SBCV-1005(2) closed direction
- C. (1) SBCV-1003 & SBCV-1006(2) open direction
- D. (1) SBCV-1003 & SBCV-1006
 - (2) closed direction

Pro	posed Answer:	D				
Exp	Explanations:					
Α.	A. The first part is plausible because SBCV-1002 & SBCV-1005 are the next valves numerically. Second part is plausible because eventually xenon will decay away and the SBCVs will modulate open. However over the first 4 hours, xenon will be building in.					
В.	The first part is plausible because SBCV-1002 & SBCV-1005 are the next valves numerically. Second part is correct.					
C.			cond part is plausible because eventually xenon will decay away and the pen. However over the first 4 hours, xenon will be building in.			
D.	Correct					

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge	
	Х	Comprehension or Analysis	

Level of Difficultly:		
10CFR55.41:		
Reference Provided:		
Learning Objective:	8910 – Describe the overall system operation of the Steam By ontrol System	pass

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Waste Gas Disposal: Knowledge of design	Tier	2		
feature(s) and/or interlock(s) which provide for the following: Isolation of waste gas release tanks	Group	2		
	K/A		071 K4.04	
	IR	2.9		

Given the following conditions:

• Unit 2 is venting the RDT to the Waste Gas system

Subsequently:

• An inadvertent CIAS occurs

The Waste Gas header should be isolated by (1) Containment Isolation valve(s) and if header pressure downstream of the Containment Isolation Valve(s) rises, there is a relief valve that should lift and relieve (2).

- A. (1) one(2) DIRECTLY to the Radwaste Building Exhaust
- B. (1) one
 - (2) to the Radwaste Building Exhaust via the Gaseous Discharge Header Release path
- C. (1) two(2) DIRECTLY to the Radwaste Building Exhaust
- D. (1) two
 - (2) to the Radwaste Building Exhaust via the Gaseous Discharge Header Release path

Pro	posed Answer:	С			
Exp	lanations:				
Α.	A. First part is plausible because there are other systems that are isolated by only one Containment Isolation valves (e.g RDT Makeup Valve CHA-UV-580). Second part is correct.				
В.	First part is plausible because there are other systems that are isolated by only one Containment Isolation valves (e.g RDT Makeup Valve CHA-UV-580). Second part is plausible because the Waste Gas Decay tanks are released through this path.				
C.	Correct				
D.	First part is correct through this path.		cond part is plausible because the Waste Gas Decay tanks are released		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:		
10CFR55.41:		
Reference Provided:		
Learning Objective:	20262 - Describe the Gaseous Release Flowpath	

Technical Reference: Gaseous Radwaste System Tech Manual

Gas Surge Header Containment Isolation Valve Controls (HS-1, 2)

Two containment isolation valves (GR-UV-1 and GR-UV-2) provide isolation of the reactor drain tank, containment refueling failed fuel detector vent and the dry sipping auxiliary pump from the gas surge header. GR-UV-1 is a motor operated valve and is located inside containment. GR-UV-2 is a solenoid operated valve and is located outside containment. Both valves will close upon receipt of a containment isolation actuation signal (CIAS). Both valves are controlled from handswitches (HS-1, 2)

Title:	Gaseous	Radwaste Lesson Plan	Lesson Plan #:	NKASYC16102
EO: 1.4	Explain conditio	the operation of the followi	ng components unde	r normal operating
	• Gas S	urge Header		
	• Gas S	urge Header Containment Is	solation Valve	
	• Gas S	urge Tank (GRN-X01)		
	Gas C	ompressor Pre-filters (GRN	-F02A, F02B)	
	 Gas C 	ompressors (GRN-C01A, C	01B)	
	-	Tanks (GRN-X02A, X02B,)		
	-	Tank Disch Header Isolatio		· · · · ·
		us Discharge Header Isolat	tion Valves (HS-34A a	ind 34B)
		tion Monitor (RU-12)		
	 Gaseo 	ous Discharge Flow Control	valve (GRN-FV33)	
ntroduc	tion			
		es that the license candidate un this system.	understand the operation	on of the various
Main Ide	a			
Gas Sur	ge Header			
	h diameter (ing sources	gas surge header receives ra :	dioactive and potential	ly radioactive gases from
• Re	actor drain	tank		
• Ga	as stripper			
• Vo	lume contro	l tank		
 Vo 	lume contro	l tank relief		

The gas surge header is equipped with isolation valves located both inside and outside the containment. These valves close automatically upon receipt of a CIAS. A spring-loaded relief valve (GR-PSV-3) relieves to the radwaste building exhaust system to prevent over pressurization of the header.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Area Radiation Monitoring: Knowledge of the	Tier 2			
operational implications of the following concepts as they apply to the ARM system: Radiation theory,	Group	2		
including sources, types, units, and effects	K/A		072 K5.01	
	IR	2.7		

Control Room Area Radiation Monitor, RU-18, measures ____(1)___ radiation and when it rises to the alarm setpoint ____(2)___ auto actuate CREFAS.

- A. (1) neutron
 - (2) SHOULD
- B. (1) neutron
 - (2) should NOT
- C. (1) gamma
 - (2) SHOULD
- D. (1) gamma
 - (2) should NOT

Pro	Proposed Answer: D					
Exp	lanations:					
Α.	A. First part is plausible because neutron radiation is highly hazardous, however RU-18 measures gamma radiation. Second part is plausible because RU-18 does monitor radiation levels around the Control Room, however only RU-29 and RU-30 directly will automatically actuate CREFAS.					
В.	First part is plausible because neutron radiation is highly hazardous, however RU-18 measures gamma radiation. Second part is correct.					
C.			cond part is plausible because RU-18 does monitor radiation levels around rever only RU-29 and RU-30 directly will automatically actuate CREFAS.			
D.						

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	11	
Reference Provided:	N	
Learning Objective:	239	11 - Explain the basic operation of Area Radiation Monitors

Technical F	Reference:	LOIT Radiation Monitoring L	esson Plan					
Title:	Radiation Plan	Monitoring System Lesson	Lesson Plan #:	NKASYC15507				
EO: 1.4	Explain t	he basic operation of Area Ra	adiation Monitors.					
Introduct	ion							
Area radia	ation monitor	s are essential for the protectio	n of our personnel.					
Main Idea								
As their name implies, area radiation monitors are used to monitor for general radiation fields in a physical area or space. Although not always the rule, area monitors are generally for protection of personnel and are measuring gamma radiation fields. Area monitors:								

2.27 Control Room Ventilation Intake Monitors, (CRVA) SQA-RU-29 and (CRVB) SQB-RU-30

These radiation monitors monitor the noble gas concentrations in the control room air intake. The primary function of these monitors is to provide engineered safety feature actuation on high-high alarm activating the control room essential filtration units (CREFAS). These monitors are redundant with their sample points as near the intake as practical (see drawing 13-M-HJP-001).

Technical specifications apply. Required monitor features for operability are the gas channel, sample pump, low sample flow detection, associated ESF actuation capability, and control room indication and alarm. Technical Reference: Radiation Monitoring System Tech Manual

2.17 Control Room Area Monitor, (CRA) SQN-RU-18

The CRA radiation monitor continuously monitors radiation levels in the main control room. The primary function of this monitor is to provide warning to personnel of abnormal radiation levels in the control room, particularly under post accident conditions. The monitor has a local indication and alarm module. This function provides warning of abnormal radiation levels thus providing for protective actions (see drawing 13-J-ZJF-009).

This monitor has no operability requirements per the technical specifications. Backup monitoring using portable instrumentation can be employed in the event that this monitor fails.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Conduct of Operations: Knowledge of shift or	Tier	3		
short-term relief turnover practices	Group			
	K/A		G 2.1.3	
	IR	3.7		

Given the following conditions:

- You are preparing to take the shift as the OATC
- The last shift you worked was 5 days ago

Per 40DP-9OP33, Shift Turnover:

- (1) PRIOR to turnover, you must review the Unit Logs going back a MINIMUM of...
- (2) AFTER turnover, how much more of the Unit Logs, if any, must be reviewed?
- A. (1) 3 days
 - (2) No additional Unit Logs review is required
- B. (1) 3 days(2) 2 additional days of Unit Logs review is required
- C. (1) 5 days(2) No additional Unit Logs review is required
- D. (1) 5 days
 - (2) 2 additional days of Unit Logs review is required

Pro	posed Answer:	В					
Exp	Explanations:						
Α.		withir	econd part is plausible since no additional log review would be required if the last 3 days, however since the last shift was 5 days ago, an additional required.				
В.	Correct.						
C.	requirement for lo SHORTER. Seco	First part is plausible since 5 days of logs are required to be reviewed, however the minimum requirement for log review prior to turnover is 3 days or until the last shift, whichever is SHORTER. Second part is plausible as it would be correct if 5 days of log review was required prior to turnover, however since only 3 days of log review were required in part 1, the answer is incorrect.					
D.							

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
X Comprehension or Analysis		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	Ν	
Learning Objective:	des	72 – Given the conditions associated with Control Room relief, cribe the required review of operating logs prior to this relief in ordance with 40DP-90P33

Technical Reference: 40DP-9OP33, Shift Turnover

4.4.3 Prior to turnover (Oncoming OATC/BOP/TRO), perform the following:

A. Review Unit Logs back to the last shift worked or the previous three days, whichever is shorter.

Technical Reference:		40DP-9OP33, Shift Turnover				
4.4.4	4.4.4 After turnover, perform the following:					
	A. Review LCO tracking log or TSCCR book.					
	B. Review Effluent Release Permits.					
	C. Review Chemistry Control Instructions.					
	D. <mark>Review rer</mark> whichever	naining Unit Logs back to the last shift worked or seven days, is shorter.				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Conduct of Operations: Knowledge of the	Tier	3		
administrative requirements for temporary management directives, such as standing orders, night orders,	Group			
Operations memos, etc	K/A		G 2.1.15	
	IR	2.7		

Given the following conditions:

- An Operational Decision Making Issue (ODMI) has been issued for a Pressurizer safety valve that is leaking by
- The crew is calculating RCS leakage from the Pressurizer Safety valve every hour to determine if 1 GPM is exceeded and additional action needs to be taken

The ODM Action Plan is approved by the (1) and if 1 GPM is exceeded the crew should refer to the (2) point section of the ODMI.

- A. (1) Plant Manager
 - (2) hold
- B. (1) Plant Manager(2) trigger
- C. (1) Operations Director (2) hold
- D. (1) Operations Director
 - (2) trigger

Pro	posed Answer:	В	
Exp	planations:		
Α.			cond part is plausible because a "hold" point is a term used for radiation ndividual and collective doses ALARA and prevent exceeding dose limits.
В.	Correct		
C.	however the Plan	t Mar ed fo	ecause the Operations Director oversees Operations for all 3 units, hager approves the Action Plan. Second part is plausible because a "hold" radiation exposure to maintain individual and collective doses ALARA and e limits.
D.			ecause the Operations Director oversees Operations for all 3 units, nager approves the Action Plan. Send part is correct.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	N	
Learning Objective:	20314	44 – Describe the Operational Decision Making process

Technical Reference:	01DP-0ZZ01, Operational Decision Mak	-	
Ope	rational Decision Making	01DP-0ZZ01	6
wit the an cyo tha val de sta ma	s procedure is intended to provide Shift Ma h a tool to assist in decisions discussed in se scenarios, degraded conditions may inv d can occur over a period of hours, days, w eles. Industry examples include primary sy t remains below operational license limits, ve leaks, fuel defects, and the aggregate of iciencies. Such operational decisions often tion staff and have lasting effects on future nagement attention on the specific deman erational decision-making can help stations	the first and second scervolve reductions of safety veeks, months, or entire of stem and containment le numerous long term pur of equipment or material in send a strong message e decisions. Focusing inds associated with effect	marios. In margins operating akage mp and e to the tive
of	s process does not address issues that af equipment but may be entered after operal evaluate whether continued unit operation ated to management of the issue.	bility or functionality is de	termined
	e ODMI process is not intended to assign adition.	action(s) to fix the incide	nt
2.0 RESPONSIBIL	ITIES		
2.1 Plant M	anager		
2.1.1 Th	e Plant Manager or Designee is responsib	le for the following:	
•	Oversight of the ODM process.		
•	Selection of appropriate personnel for C Operational Decision Teams, including t		
•	Approval of the ODM Action Plan decisi this procedure.	ons made and document	ed via

Techni	cal Reference:	01DP-0ZZ01, Operational Decision M	aking	
Operational Decision Making			01DP-0ZZ01	6
3.5	that define the management	s — Explicit Operational Decision M se key worsening parameters and th and/or Unit operating personnel to a	e specific actions require ddress these degrading	ed by site
		e subsequent tasks necessary to bet erational Decision Making Issue con- ng.		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Equipment Control: Knowledge of Surveillance	Tier	3		
procedures	Group			
	K/A		G 2.2.12	
	IR	3.7		

Per 40ST-9ZZM1, Operations Mode 1 Surveillance Logs:

- (1) Appendix B, Mode 1 SHIFTLY Surveillance Logs Data Sheets, must have the Acceptance Review completed NO LATER THAN...
- (2) Appendix C, Mode 1 DAILY Surveillance Logs Data Sheets, is directed to be performed during...
- A. (1) 0800 on day shift and 2000 on night shift(2) day shift
- B. (1) 0800 on day shift and 2000 on night shift(2) night shift
- C. (1) 1100 on day shift and 2300 on night shift(2) day shift
- D. (1) 1100 on day shift and 2300 on night shift(2) night shift

Proposed Answer: [D		
Exp	lanations:			
Α.	however the lates	t is 1 lay sh	nce 0800 is the earliest the shiftly logs can be completed and reviewed, 100. Second part is plausible since some of the Mode 1 daily surveillances ift (i.e. ISFSI daily checks), however the Daily Surveillance Logs Data e night shift.	
В.	First part is plausible since 0800 is the earliest the shiftly logs can be completed and reviewed, however the latest is 1100. Second part is correct.			
C.		shift (i	econd part is plausible since some of the Mode 1 daily surveillances are .e. ISFSI daily checks), however the Daily Surveillance Logs Data Sheets hift.	
D.	Correct			

Question Source:		New	
	Χ	Bank	
		Modified	
	Χ	Previous NRC Exam	2016

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	10
Reference Provided:	N
Learning Objective:	27053 – Describe the responsibilities of the Reactor Operator with respect to logkeeping

Technical Reference: 40ST-9ZZM1, Operations Mode 1 Surveillance Logs							
PALO VERDE PROCEDURE Page 128 o							
Operations Mode 1 Surveillance Logs 40ST-9ZZM1							
	Appendix B Page	1 of 14					
Appendix B - Mode 1 Shiftly Surveillance L NOTE Appendix B - Mode 1 Shiftly Surveillance Log started prior to 0800 on the Day Shift and pri Shift.	gs Data Sheets, should be or to 2000 on the Night						
 Appendix B - Mode 1 Shiftly Surveillance Log completed and Acceptance Reviewed betwee Day Shift and between 2000 and 2300 on the 	en 0800 to 1100 on the						

Technical Reference: 40ST-9ZZM1, Operations Mode 1 Surveillance Logs							
PALO VERDE PROCEDURE Page 142 of							
Operations Mode 1 Surveillance Logs 40ST-9ZZM1 7							
	Appendix C Page 1 of 7						
Apj	Appendix C - Mode 1 Daily Surveillance Logs Data Sheets						
• Appendix C is started prior to 2000 on the Night Shift.							
 Appendix C is completed and Acceptance Reviewed between 2000 an 2300 on the Night Shift. 							

Technical Reference:	40ST-9ZZM1, Operations Mode 1 Survei	llance Logs			
PALO VERDE PRO	CEDURE	Page 14	9 of 174		
Operation	40ST-9ZZM1	Revision 72			
Арр	endix D - Unit 1 ISFSI Temperature Mo	nitoring Checks			
	NOTE				
	endix D is started prior to 0800 on the Da	<mark>ly Shift.</mark>			

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Equipment Control: Knowledge of tagging and	Tier	3	
clearance procedures	Group		
	K/A	G 2.2	2.13
	IR	4.1	

Per 40DP-9OP29, Power Block Clearance and Tagging, double valve isolation is REQUIRED for systems that are greater than a MINIMUM of ____(1)____ °F OR greater than a MINIMUM of ____(2)____ psig.

- A. (1) 200 (2) 385
- B. (1) 200 (2) 500
- C. (1) 212 (2) 385
- D. (1) 212 (2) 500

Pro	posed Answer:	В		
Exp	lanations:			
Α.	A. First part is correct. Second part is plausible because greater than 385 psia double valve isolation of the RCS from the SDC system is required.			
В.	Correct			
C.	First part is plausible because 212°F is the temperature that water boils. Second part is plausible because greater than 385 psia double valve isolation of the RCS from the SDC system is required.			
D.	First part is plausible because 212°F is the temperature that water boils. Second part is correct.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	2	
10CFR55.41:	10	
Reference Provided:	Ν	
Learning Objective:	27256 – Describe the special Clearance precautions used when establishing isolation boundaries on fluid or gas systems that operate at high temperatures or pressures	

Technical Reference:			40DP-9OP29, Power Block Clearance and Tagging					
		Power Blo	ck Clearance and Tagging 40DP-9OP	29	63			
Appendix H Page								
1.0	Appendix H - Mechanical Tagging Practices							
1.0	REG	UREMENT	S FOR MECHANICAL ISOLATION BOUNDARIES					
	 If using an isolation boundary to control process flow, then ensure a Danger tag used. 							
	<mark>1.2</mark>	Fluid or Gas Systems with temperature greater than 200° F or pressure greater than 500 psig should isolate the work area using double isolation boundary protection (two closed valves in series) and a tell-tale vent or drain valve between the two closed valves shall be opened.						

Technical	Reference:	40OP-9SI01, Shutdown Cool	ling Initiation	
	Shutdown	Cooling Initiation	400P-9SI01	57
3.2 Lir	nitations			
3.2.1		RCS Pressure and Temper and cooldown rate limitation	ature (P/T) Limits, Table 3.4.3-1 ns for the RCS.	, provides
3.2.2 The design allowable peak temperature for the Essential Coor System is 135°F per calculation 13-MC-SP-307, is based on a of the Essential Chillers. The thermal analysis predicts that the temperature for the Essential Cooling Water System may be is cooled with SDC at the maximum possible rate. The RCS limited to maintain the EW System peak temperature less that		-SP-307, is based on meeting the nalysis predicts that the allowak Vater System may be exceeded ssible rate. The RCS cooldown	ne functio ble peak if the RC:	
<mark>3.2.3</mark>		on the SDC containment isol en pressurizer pressure is g	lation valves prevent them from reater than 385 psia.	being

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Equipment Control: Knowledge of the process for	Tier	3		
managing maintenance activities during power operations, such as risk assessments, work	Group			
prioritization, and coordination with the transmission	K/A		G 2.2.17	
system operator	IR	2.6		

Given the following conditions:

- All Units are operating at 100% power
- There is required maintenance on Westwing #1 transmission line
- An Auxiliary Operator needs to access the Switchyard to hang a clearance

Per 40DP-9OP34, Switchyard Administrative Controls:

- (1) Auxiliary Operator access to the Switchyard may be granted by...
- (2) In order to hang the clearance, a Switching Order is REQUIRED to be provided by...
- A. (1) ANY of the Unit SMs(2) the Energy Control Center (ECC) ONLY
- B. (1) ANY of the Unit SMs(2) the Energy Control Center (ECC) AND Salt River Project (SRP)
- C. (1) the Unit 1 SM ONLY(2) the Energy Control Center (ECC) ONLY
- D. (1) the Unit 1 SM ONLY(2) the Energy Control Center (ECC) AND Salt River Project (SRP)

Pro	posed Answer:	С			
Exp	lanations:				
Α.	First part is plausible because each SM will oversee switching of their respective generator output breakers, including associated 525kV MOD and Start-up Transformer Secondary 13.8kV Disconnects. Second part is correct.				
В.	First part is plausible because each SM will oversee switching of their respective generator output breakers, including associated 525kV MOD and Start-up Transformer Secondary 13.8kV Disconnects. Second part is plausible because SRP is involved in the coordination of switching orders, however, the ECC provides the procedures.				
C.	Correct				
D.	First part is correct switching orders,	ct. Se howe	cond part is plausible because SRP is involved in the coordination of ever, the ECC provides the procedures		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	N	
Learning Objective:		87 – Identify the responsibilities of the Unit 1 Shift Manager acerning switchyard operations

2.4 PVGS Unit 1 Shift Manager

- 2.4.1 Overall responsibility to act as the single point of contact. Primarily interfaces with ECC and PDO for emergency operations in the SRP 525kV Switchyard, Startup Transformer Yard, Main Transformers, Startup Transformers, and AEZYNX05, Power Expansion Plant West Transformer. The Switchyard Coordinator is the normal designee for non-emergency work planning and scheduling purposes.
- 2.4.2 Acts as coordinator when ECC requests major changes to total site megawatt/megavar loading.
- 2.4.3 Monitors access of personnel to the SRP 525kV Switchyard. This activity is normally administered through the Switchyard Coordinator who is responsible for notifying the Unit 1 Shift Manager or Control Room Supervisor of all personnel entering and leaving the Switchyard.

2.4.4 Controls access of personnel entering and leaving the Startup Transformer Yard.

Technical Reference: 40DP-90P34, Switchyard Administrative Controls

2.6 APS Energy Control Center (ECC)

- 2.6.1 Functions as the primary interface between PVGS and PDO for operations in the SRP 525kV Switchyard. All communication, affecting the Switchyard, provided by PVGS shall be communicated to PDO.
- 2.6.2 Informs PVGS and PDO of all activities affecting the SRP 525kV Switchyard.
- 2.6.3 Initiates and coordinates System Blackstart Procedure for providing off site power to Palo Verde.
- 2.6.4 Notification of System Limits of Transmission and Generation on Path 49.
- 2.6.5 Provides coordination and clearance authorization between the following operations centers:
 - PVGS Control Rooms Unit 1, 2, and 3
 - ECC
 - PDO

2.6.6 Provide written switching orders to PVGS for PVGS work.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Radiation Control: Knowledge of radiological	Tier	3		
safety procedures pertaining to licensed operator duties, such as response to radiation monitor alarms,	Group			
containment entry requirements, fuel handling	K/A		G 2.3.13	
responsibilities, access to locked high-radiation areas, aligning filters, etc	IR	3.4		

Per 40DP-9ZZ01, Containment Entry in Mode 1 Through Mode 4, prior to a Containment Entry in MODE 1, Containment must be purged if Containment Atmosphere...

(1) H₂ Concentration is GREATER than or equal to a MINIMUM of...

OR

(2) Containment Atmospheric O₂ Concentration is LESS than a MAXIMUM of...

- A. (1) 0.04% (2) 19.5%
- B. (1) 0.04% (2) 20.3%
- C. (1) 0.15% (2) 19.5%
- D. (1) 0.15%
 - (2) 20.3%

Pro	posed Answer:	С					
Exp	Explanations:						
Α.	First part is plausible since if H2 concentration is > 0.15%, purge is required until H2 concentration is < 0.04%, however purge is not required if initial H2 concentration is < 0.15%. Second part is correct.						
В.	First part is plausible since if H2 concentration is > 0.15%, purge is required until H2 concentration is < 0.04%, however purge is not required if initial H2 concentration is < 0.15%. Second part is plausible since if two consecutive O2 samples are less than 19.5%, purge is required until O2 concentration is > 20.3%, however purge is not required if initial O2 concentration is > 19.5%.						
C.	Correct.						
D.		equir	econd part is plausible since if two consecutive O2 samples are less than ed until O2 concentration is > 20.3%, however purge is not required if initial 19.5%.				

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Х	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.41:	9
Reference Provided:	N
Learning Objective:	27001 - Given that a confined space entry must be made, determine the necessary requirements per 01DP-01SI2

Technical Reference:	40DP-9ZZ01, Containment Entry in Mode 1 Through Mode 4				
6.2 Prior to Containment Entry					
6.2.1 Perform	n the following to check the Containment atmosphere conditions:				
	eview the latest Containment Atmosphere H ₂ Concentration data in hemistry Laboratory Analysis Storage System (CLASS).				
Tł	CLASS is NOT available, HEN <u>request</u> Chemistry to provide the latest Containment Atmosphere Concentration data.				
gr	Containment Atmosphere H ₂ Concentration is eater than or equal to 0.15%, HEN <u>perform</u> the following:				
a.	Operate the Power Access Purge for a minimum of 12 hours per 400P-9CP01, Containment Purge System.				
b.	<u>Direct</u> Chemistry to sample the Containment Atmosphere H ₂ Concentration.				
c.	WHEN Containment Atmosphere H ₂ Concentration is less than 0.04%, THEN <u>stop</u> Power Access Purge per 40OP-9CP01, Containment Purge System.				
Co	equest the Radiation Monitoring Technicians to check the most recent ontainment Atmosphere O ₂ Concentration is between 0.5% and 23.5%.				
artin (artin Th Co	two successive Containment Atmosphere O ₂ Concentration samples e less than 19.5%, HEN <u>purge</u> the Containment until the Containment Atmosphere O ₂ oncentration is greater than or equal to 20.3% per 40OP-9CP01, ontainment Purge System.				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Radiation Control: Knowledge of radiological	Tier	3		
safety principles pertaining to licensed operator duties, such as containment entry requirements, fuel handling	Group			
responsibilities, access to locked high-radiation areas,	K/A	G 2.3.12		
aligning filters, etc	IR	3.2		

When working at heights in the RCA, fall protection is required for any work being performed above a MINIMUM height of ____(1)___ feet, and RP must be contacted to evaluate the need to perform a survey for any work being performed above a MINIMUM height of ____(2)___ feet.

- A. (1) 4 (2) 6
- B. (1) 4 (2) 7
- C. (1) 6 (2) 6
- D. (1) 6 (2) 7

Pro	posed Answer:	В		
Exp	Explanations:			
Α.	First part is correct. Second part is plausible because 6 feet was the old requirement and was recently changed to 7 feet.			
В.	Correct			
C.	First part is plausible since 6 feet was the minimum height which required fall protection until 2015, however the current minimum height requiring fall protection is 4 feet. Second part is plausible because 6 feet was the old requirement and was recently changed to 7 feet.			
D.			ince 6 feet was the minimum height which required fall protection until rent minimum height requiring fall protection is 4 feet. Second part is	

Question Source:		New	
	Х	Bank	
		Modified	
	Х	Previous NRC Exam	2016

Cognitive Level:	X	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.41:	12
Reference Provided:	N
Learning Objective:	228365 – Describe operations expectations when it comes to Safety in accordance with ODP-1, Operations Principles and Standards

Technical Reference:	75DP-0RP01, Radiological Posting and Labeling			
100 Destine Ores				
4.23 Posting Over	head Areas Within an RCA			
4.23.1 Overhead areas within a Radiologically Controlled Area may be posted with a white on blue background sign stating:				
	NOTIFY RP PRIOR TO ANY WORK			
	ABOVE 7 FEET IN THE OVERHEAD AREAS			

Technical Reference	01DP-01S20, Safety at Heights – Fall Protection							
4.1 General	General							
greater t Fall Arre	loyee not protected by a Standard Rail System and subject to a fall han four feet shall be protected by either a Fall Restraint or a Personal st System (PFAS). Refer to Appendix A - Donning and Doffing a y Harness.							

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Radiation Control: Knowledge of radiation	Tier	3		
exposure limits under normal or emergency conditions	Group			
	K/A		G 2.3.4	
	IR	3.4		

Per 10CFR20.1201, Occupational Dose Limits, the annual limit for dose to the lens of the eye is ____(1)___ rem and to extremities is ____(2)___ rem.

- A. (1) 12
 - (2) 40
- B. (1) 12 (2) 50
- C. (1) 15 (2) 40
- D. (1) 15 (2) 50

Pro	posed Answer:	D			
Exp	Explanations:				
Α.	First part is plausible because 12 rem is an administrative dose limit. Second part is plausible because 40 rem is an administrative dose limit.				
В.	First part is plausible because 12 rem is an administrative dose limit. Second part is correct.				
С.	First part is correct. Second part is plausible because 40 rem is an administrative dose limit.				
D.	Correct				

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Х	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2	
10CFR55.41:	12	
Reference Provided:	Ν	
Learning Objective:	Sta	te the Federal Dose Limits for lens of the eye and extremities

Technical Reference:	75DP-9RP01, Radiation Exposure and Access Control						
4.10 Radiation Exposure Limitations and Controls							
4.10.1 10 CFR 2	0.1201 Occupational Dose Limits						
A. Annual Occupational radiation dose to adults shall be limited to all of the following:							
 5 rem total effective dose equivalent (TEDE) or 50 rem total organ of equivalent (TODE), whichever is more limiting. 							
2. 15	rem lens dose equivalent (lens of the eye).						
<mark>3.</mark> 50) rem shallow-dose equivalent (skin or any extremity).						

Technical Reference:	75DP-9RP01, Radiation Exposure and Access Control
4.10.2 Common Inc	dustry Guidance for Occupational Dose Limits
A. Annual C following	Occupational radiation dose to adults shall be limited to all of the
	m total effective dose equivalent (TEDE) or 40 rem total organ dose valent (TODE), whichever is more limiting.
<mark>2.</mark> 12 n	em lens dose equivalent (lens of the eye).
<mark>(3.)</mark> (40 m	em shallow-dose equivalent (skin or any extremity).

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Emergency Procedures/Plan: Knowledge of the	Tier	3		
emergency plan	Group			
	K/A		G 2.4.29	
	IR	3.1		

Given the following conditions:

• Unit 1 SM has just declared an ALERT for an event in progress

The STSC communicator duties are normally performed by $a(n) _ (1) _$ and offsite notifications are required to be made within a MAXIMUM of $_ (2) _$ minutes of the declaration.

- A. (1) Reactor Operator(2) 15
- B. (1) Reactor Operator(2) 30
- C. (1) Auxiliary Operator (2) 15
- D. (1) Auxiliary Operator(2) 30

Pro	posed Answer:	С	
Exp	lanations:		
Α.	First part is plaus part is coorect.	ible b	ecause the ENS Communicator is normally a Reactor Operator. Second
В.	First part is plausible because the ENS Communicator is normally a Reactor Operator. Second part is plausible because site Accountability is required within 30 minutes of a Site Area Emergency.		
С.	Correct		
D.	First part is correct minutes of a Site		econd part is plausible because site Accountability is required within 30 Emergency.

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Х	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.41:	10	
Reference Provided:	Ν	
Learning Objective:	281	29 – Identify actions to be taken as STSC Communicator

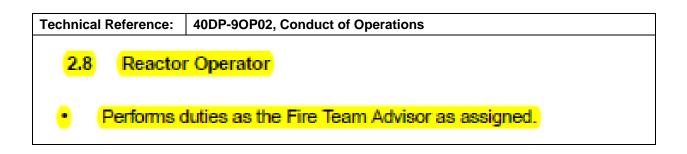
Technical Reference:			40DP-9OP02, Conduct of Operations
<mark>2.9</mark>	Nuc	lear Auxil	iary Operator
	•		equipment outside the Control Room per approved procedures and ed by Control Room personnel.
	•	Keeps Co Room.	ontrol Room personnel informed of activities outside the Control
	•		attentive to the operating condition of equipment within assigned area tes corrective action for deficiencies.
	•	Ensures	proper turnover of information for assigned area when relieved.
	•		s the Emergency Plan Satellite Technical Support Center (STSC) icator when directed.

Techni	Technical Reference:					
		NOTE				
•		duties and responsibilities transition from the Control Room with transfer of Command and Control.				
•	the responsi	not activated or is unable to accept Command and Control, bility for required Notification of Offsite Agencies remain in Technical Support Center (STSC).				
 All of the required offsite state and local agencies must be notified within 15 minutes of determining any of the following criteria: 						
	Change in Change in	sification of the Emergency the Classification Protective Action Recommendations (PARs) Radiological Release Status hination				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Emergency Procedures/Plan: Knowledge of facility	Tier	3		
protection requirements, including fire brigade and portable firefighting equipment usage	Group			
portable mengining equipment usage	K/A		G 2.4.26	
	IR	3.1		

Per 40DP-9OP02, Conduct of Operations, there will be one Fire Team Advisor (FTA) assigned to ____(1)___ and the LOWEST QUALIFICATION level he/she is required to be qualified is ____(2)___.

- A. (1) each Unit
 - (2) Reactor Operator
- B. (1) each Unit
 - (2) Auxiliary Operator
- C. (1) the entire Site(2) Reactor Operator
- D. (1) the entire Site
 - (2) Auxiliary Operator


Pro	posed Answer:	С		
Exp	lanations:			
Α.	First part is plausible because each unit will have their own STSC and ENS communicator during an emergency. Second part is correct.			
В.	First part is plausible because each unit will have their own STSC and ENS communicator during an emergency. Second part is plausible because an Auxiliary Operator fills the role of STSC Communicator and it is reasonable to think that an Auxiliary Operator will be able to respond to fire faster.			
C.	Correct			
D.				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	X	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:	3
10CFR55.41:	10
Reference Provided:	N
Learning Objective:	445256 – Describe the Duties and Responsibilities of the Fire Team Advisor

Technical Reference:	40DP-90P02, Conduct of Operations
4.8.1 Shift Com	position
five s	hally during non-outage periods, operating crews will be manned on a hift, self-relieving five crew basis. The minimum required shift crew hing is as follows:
	One Shift Manager per unit
•	One Control Room Supervisor per unit
	Two licensed reactor operators per unit - In addition to the two reactor operators per unit, one unit shall have an additional reactor operator (who may be filling an Auxiliary Operator position) to fulfill the requirement of site Fire Team Advisor.

qExamination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Vapor Space Accident: Knowledge of	Tier			1
the operational implications of EOP warnings, cautions, and notes	Group			1
	K/A	0	08 G 2.4.2	0
	IR			4.3

- (1) Per 40EP-9EO03, LOCA, one indication of voiding in the RCS occurs AS SOON AS RVLMS indicates a vessel level of less than...
- (2) Per the EAL Hot Chart, a POTENTIAL LOSS of the Fuel Cladding Barrier occurs AS SOON AS RVLMS indicates a vessel level of less than...
- A. (1) 16% in the RVUH(2) 16% in the RVUH
- B. (1) 16% in the RVUH(2) 21% in the plenum
- C. (1) 100% in the RVUH(2) 16% in the RVUH
- D. (1) 100% in the RVUH(2) 21% in the plenum

Pro	posed Answer:	D	
Exp	lanations:		
A. First part is plausible because greater than 16% in the RVUH means that the Inventory Control Safety Function is met and with the plenum full it could be assumed that there is no voiding. Second part is plausible because if there is not 16% in the RVUH then the Inventory Control Safety Function would net be met and there could potentially be voiding.			
В.		s met	ecause greater than 16% in the RVUH means that the Inventory Control and with the plenum full it could be assumed that there is no voiding.
C.			cond part is plausible because if there is not 16% in the RVUH then the ty Function would net be met and there could potentially be voiding.
D.	Correct		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	4	
Reference Provided:	Ν	
Learning Objective:		491 - Demonstrate RCS Void Control per Standard Appendices pendix 15, RCS Void Control

Technical Reference:	40EP-9EO03, Loss of Coolant Accident				
	<u>NOTE</u>				
 Voiding in the RCS may be indicated by ANY of the following: Letdown flow is greater than Charging flow Pressurizer level is rising significantly more than expected while operating pressurizer spray 					
 The RVLMS 	 The RVLMS indicates less than 100% RVUH level 				
 HJTC unhea RVUH 	ated thermocouple temperature indicates saturated conditions in the				

Technical Reference:	EAL Hot Chart		
Fuel Clad (FC) Barrier			
L	oss	Potential Loss	
		1. RVLMS < 21% plenum (Detector #8)	

Technical Referer	nce: SRO Level Question Criteria from NUREG-1021
	azards That May Arise during Normal and Abnormal Situations, including e Activities and Various Contamination Conditions [10 CFR 55.43(b)(4)]
Some exam	ples of SRO exam items for this topic include the following:
• proce	ess for gaseous/liquid release approvals (i.e., release permits)
	ysis and interpretation of radiation and activity readings as they pertain to the ction of administrative, normal, abnormal, and emergency procedures
	vsis and interpretation of coolant activity, including comparison to emergency criteria and/or regulatory limits

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Large Break LOCA: Knowledge of the bases in	Tier		1
Technical Specifications for limiting conditions for operations and safety limits	Group		1
operations and safety minus	K/A	011 G 2.2.2	25
	IR		4.2

Per Technical Specifications, in order for Safety Injection Tanks to be OPERABLE, they must have a MINIMUM boron concentration of ___(1)___ ppm in order to ensure ___(2)___ in the event a LOCA.

- A. (1) 2300
 - (2) the Reactor will remain subcritical following the injection of relatively colder SIT water volume into the RCS
- B. (1) 2300
 - (2) back leakage from the RCS into the SITs during normal operations will not dilute the SITs to less than the minimum required boron concentration in the safety analysis
- C. (1) 4000
 - (2) the Reactor will remain subcritical following the injection of relatively colder SIT water volume into the RCS
- D. (1) 4000
 - (2) back leakage from the RCS into the SITs during normal operations will not dilute the SITs to less than the minimum required boron concentration in the safety analysis

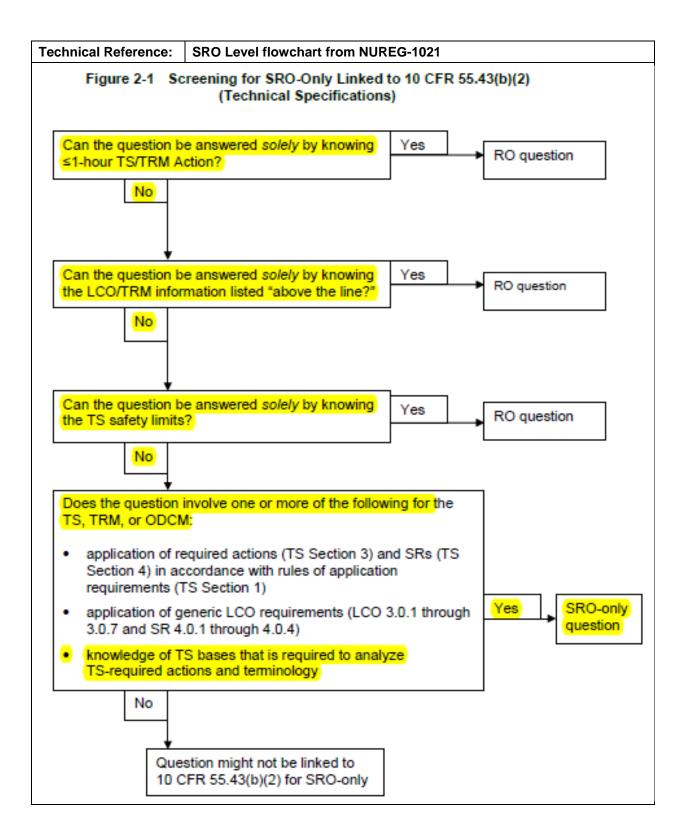
Pro	posed Answer:	В	
Exp	lanations:		
Α.	First part is correct concentration in t		econd part is plausible as this is the basis for the minimum boron NT.
В.	Correct.		
C.	C. First part is plausible since this is the minimum required boron concentration for the RWT. Second part is plausible as this is the basis for the minimum boron concentration in the RWT.		
D.	D. First part is plausible since this is the minimum required boron concentration for the RWT. Second part is correct.		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	X	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	2	
Reference Provided:	N	
Learning Objective:		11 – Identify the basis of Technical Specifications LCOs and TLCOs Section 3.5

Technical Reference	ce: Tech Specs LCO 3.5.1, SITs	
		SITs - Operating 3.5.1
SURVEILLANCE	E REQUIREMENTS (continued)	
	SURVEILLANCE	FREQUENCY
SR 3.5.1.4	Verify boron concentration in each SIT is ≥ 2300 ppm and ≤ 4400 ppm.	In accordance with the Surveillance


Technical Refere	nce:	Tech Specs LCO 3.5.5, RWT						
			RWT 3.5.5					
SURVEILLANC	SURVEILLANCE REQUIREMENTS							
		SURVEILLANCE	FREQUENCY					
SR 3.5.5.1	Only i tempe	required to be performed when ambient air erature is < 60°F or > 120°F.						
	Verify and ≤	RWT borated water temperature is ≥ 60°F 120°F.	In accordance with the Surveillance Frequency Control Program					
SR 3.5.5.2	Verify requir	r RWT borated water volume is ≥ minimum red RWT volume in Figure 3.5.5-1.	In accordance with the Surveillance Frequency Control Program					
SR 3.5.5.3	<mark>Verify</mark> and ≤	RWT boron concentration is ≥ 4000 ppm 4400 ppm.	In accordance with the Surveillance Frequency	 				

Technical Reference:	Tech Spec Bases for LCO 3.5.1, SITs
----------------------	-------------------------------------

The 2300 ppm minimum boron concentration in the SITs assures that the back leakage from the RCS will not dilute the SITs below the minimum boron concentration in the safety analysis. The minimum safety analysis boron requirements of 2000 ppm are based on beginning of life reactivity values and are selected to ensure that the reactor will remain subcritical during the reflood stage of a large break LOCA. During a large break LOCA, all Control Element Assemblies (CEAs) are assumed not to insert into the core, and the initial reactor shutdown is accomplished by void formation during blowdown. Sufficient boron concentration must be maintained in the SITs to prevent a return to criticality during reflood. Although this requirement is similar to the basis for the minimum boron concentration of the Refueling Water Tank (RWT), the minimum SIT concentration is lower than that of the RWT since the SITs need not account for dilution by the RCS during a large break LOCA.

Technical Reference: | Tech Spec Bases for LCO 3.5.5, RWT

The 4000 ppm limit for minimum boron concentration was established to ensure that, following a LOCA with a minimum level in the RWT, the reactor will remain subcritical in the cold condition following mixing of the RWT and RCS water volumes. Small break LOCAs assume that all control rods are inserted, except for the Control Element Assembly (CEA) of highest worth, which is withdrawn from the core. Large break LOCAs assume that all CEAs remain withdrawn from the core. The most limiting case occurs at beginning of core life.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Component Cooling Water: The normal	Tier			1
	Group			1
	K/A	(026 AA2.04	4
	IR			2.9

Given the following conditions:

• Unit 2 is operating at 100% power

Subsequently:

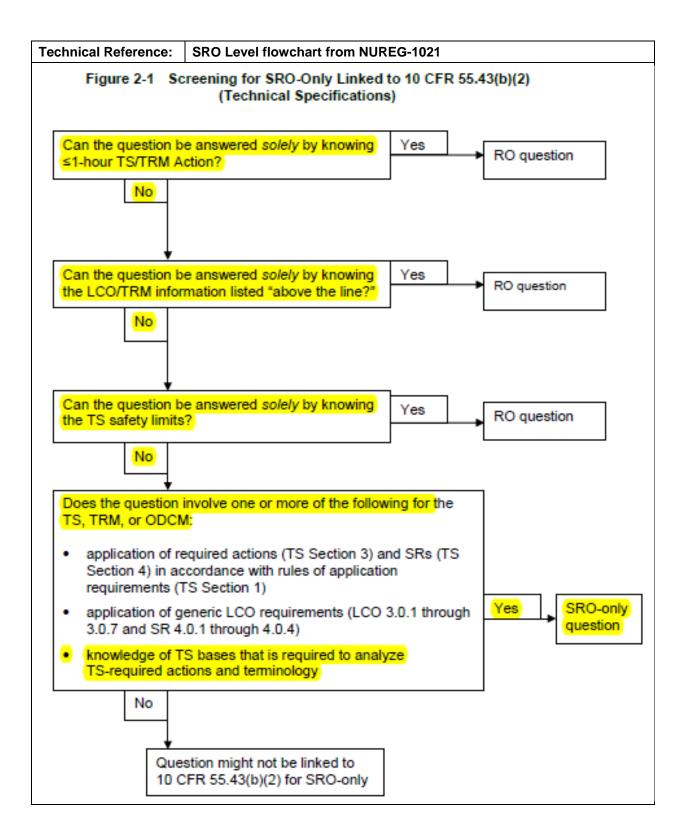
- A loss of all Nuclear Cooling Water occurs
- The CRS enters 40AO-9ZZ03, Loss of Cooling Water

The crew should cross-tie Train 'A' EW to NC to prevent RCP HP Seal Cooler inlet temperature to prevent exceeding the procedural driven RCP trip setpoint of ____(1)___ °F. After the cross-tie is complete, Train 'A' EW is considered ___(2)___ per Technical Specifications.

- A. (1) 250 (2) OPERABLE
- B. (1) 250(2) INOPERABLE
- C. (1) 300 (2) OPERABLE
- D. (1) 300
 - (2) INOPERABLE

Pro	posed Answer:	В				
Exp	Explanations:					
Α.	A. First part is correct. Second part is plausible because there are no components or valves that are out of service, however, since a manual valve has been throttled in the closed direction for the SDCHX and the cross connect valves are out of position, the EW System is INOPERABLE.					
В.	Correct					
C.	First part is plausible because to maintain LPSI seal life, SDC may not be placed in service until RCS temperature is less than 300°F. Second part is plausible because there are no components or valves that are out of service, however, since a manual valve has been throttled in the closed direction for the SDCHX and the cross connect valves are out of position, the EW System is INOPERABLE.					
D.	First part is plausible because to maintain LPSI seal life, SDC may not be placed in service until RCS temperature is less than 300°F. Second part is correct.					

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam


Cognitive Level:	Х	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.43:	2
Reference Provided:	Ν
Learning Objective:	22357 - Given the status of NC and RCP seal injection, describe the limitations on RCP operation without NC in accordance with 40AO-9ZZ03

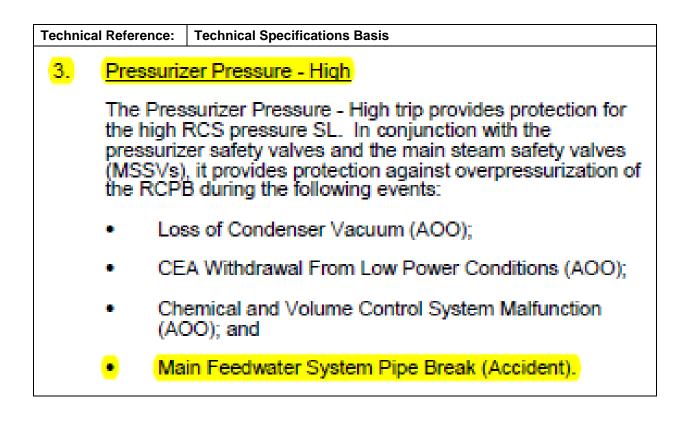
echnical Reference: 40AO-9ZZ04, Reactor Coolant Pump Emergencies Appendix D, Instrumentation and Setpoints						
Parameter	Instrument Number	Normal	Alarm	Trip		
No. 2 Seal Inlet Pressure	RCN-PT-152/162 (RCN-PI-152 on B04)	See	Lo 826 psig	-		
No. 2 Seal met Pressure	RCN-PT-172/182 (RCN-PI-172 on B04)	Appendix G	Hi 1766 psig	-		
No. 2 Seal Outlet Pressure	RCN-PT-153/163 (RCN-PI-153 on B04)	Lo See 179 psig		-		
(Controlled Bleedoff)	RCN-T-173/183) (RCN-PI-173 on B04)	Appendix G	Hi 537 psig	-		
Controlled Bleedoff Flow	RCN-FI-156/166/176/186 (B03)	2.0 - 4.0 gpm	Lo 1.6 gpm	-		
Controlled Dicedon Flow			Hi 6.0 gpm	Hi <u>></u> 9.5 gpm		
NCW RCP Temperature	NCN-TI-471/470/473/472 (B04)	<120°F	130°F	-		
H.P. Cooler Inlet Temperature	RCN-TT-150/160 (RCN-TI-150 on B04) RCN-TT-170/180) (RCN-TI-170 on B04)	170 - 212°F	221°F	<mark>≥250°F</mark>		
H.P. Cooler Outlet Temperature	RCN-TT-151/161 (RCN-TI-151 on B04) RCN-TT-171/181 (RCN-TI-171 on B04)	80 - 160°F	175°F	<u>≥</u> 200°F		

Technical Reference:	40OP-9SI01, Shutdown Cooling Initiation
	LPSI Pump seal life, SDC may not be initiated when the RCS re is greater than or equal to 300°F.

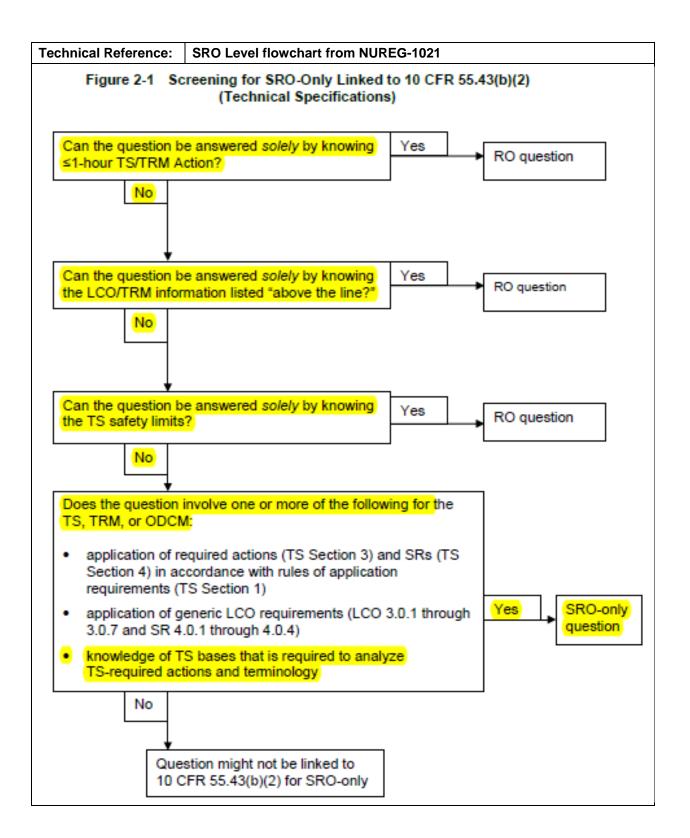
Technical Reference:	40AO-9ZZ03, Loss of Cooling W NC	ater, Appendix A, Cro	oss-connect EW to	
PALO VERDE NUCLEAR GENERATING STATION LOSS OF COOLING WATER		40AO-9ZZ03 Revision 13 Page 26 of 44		
2000 01	Sobeling InAlen	Appendix A	Page 1 of 13	
Appendix A, Cross-connect EW to NC INSTRUCTIONS CONTINGENCY ACTIONS 1. Enter Appendix Entry Time and Date:				
<u>NOTE</u>				
Cross-connecting EW and NC renders the EW Train inoperable per LCO 3.7.7, <u>Essential Cooling Water (EW) System</u> . Refer to 40ST-9EC03 and 40DP-9OP37 for impacts on supported system operability.				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Main Feedwater: Knowledge of limiting	Tier			1
conditions for operations and safety limits	Group			1
	K/A	054 G 2.2.22		
	IR			4.7

Per Technical Specification Basis for LCO 3.3.1, RPS Instrumentation - Operating, which of the following RPS trips mitigates a Feedwater Line Break?


- 1. Departure from Nucleate Boiling Low
- 2. Containment Pressure High
- 3. Pressurizer Pressure High
- A. 2 ONLY
- B. 3 ONLY
- C. 1 AND 2 ONLY
- D. 1 AND 3 ONLY

Pro	posed Answer:	В	
Exp	lanations:		
Α.	 Plausible because a Feedwater line break is high energy release into containment. However only a LOCA and ESD are mitigated by a High Containment pressure trip per Technical Specification Bases 		
В.	Correct		
C.	First part is plausible because a Feedwater line break is a heatup event (loss of Feedwater will cause a diminished heat sink and RCS temperature will rise), therefore DNBR will lower. Second part is plausible because a Feedwater line break is high energy release into containment. However only a LOCA and ESD are mitigated by a High Containment pressure trip per Technical Specification Bases.		
D.	First part is plausible because a Feedwater line break is a heatup event (loss of Feedwater will cause a diminished heat sink and RCS temperature will rise), therefore DNBR will lower. Second part is correct		


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	X	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	2	
Reference Provided:	N	
Learning Objective:	22620 – Identify the basis of Technical Specification LCOs and TLCOs for section 3.3 in accordance with Tech Spec 3.3 basis	

Technical Reference:		Technical Specifications Basis				
<mark>8, 9.</mark>	Steam Generator Level - Low					
	The Steam Generator #1 Level - Low and Steam Generator #2 Level - Low trips ensure that a reactor trip signal is generated for the following events to help prevent exceeding the design pressure of the RCS due to the loss of the heat sink:					
		dvertent Opening of a Steam Generator Atmospheric mp Valve (AOO);				
	• Lo:	ss of Condenser Vacuum (AOO);				
	• Lo:	ss of Normal Feedwater Event (AOO);				
	• Fe	edwater System Pipe Break (Accident); and				
	• Sir	igle RCP Rotor Seizure (AOO)				

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Station Blackout: Ability to determine or interpret	Tier		1
the following as they apply to a Station Blackout: Faults and lockouts that must be cleared prior to re-energizing buses	Group		1
	K/A	055 EA2.0	6
	IR		4.1

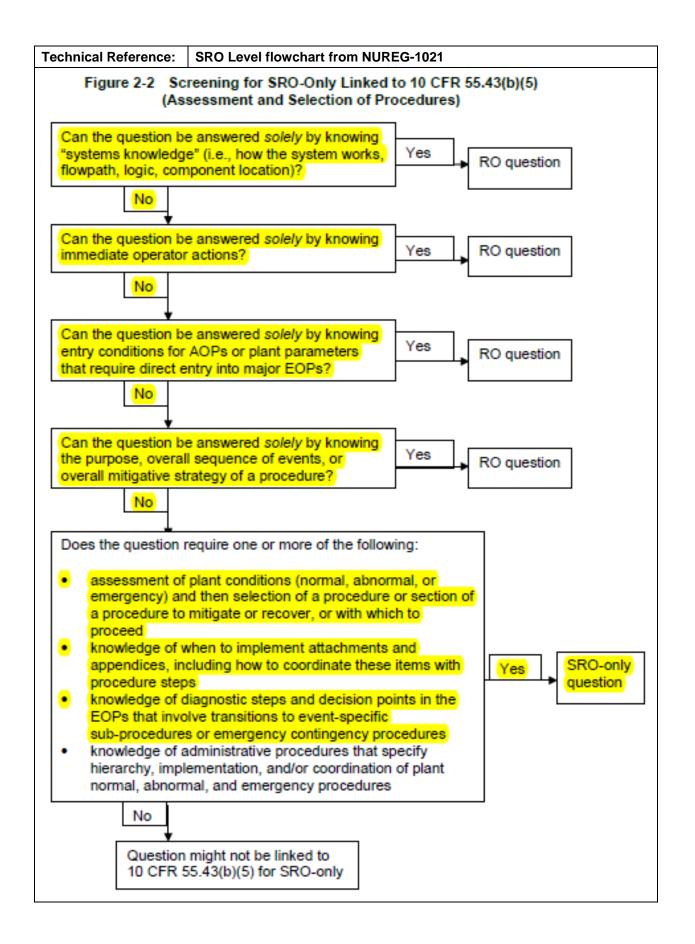
Given the following conditions:

- Unit 1 is in a blackout condition
- The 'B' EDG is OOS and will not be available for the next 6 hours

Per Appendix 55, Restore DG A to PBA-S03, which of the following faults can the crew attempt to reset in order to restore power to PBA-S03?

- 1. Overspeed trip of the 'A' EDG
- 2. Generator Differential trip of the 'A' EDG
- 3. Overcurrent trip of the 'A' EDG Output Breaker
- A. 2 ONLY
- B. 3 ONLY
- C. 1 AND 2 ONLY
- D. 1 AND 3 ONLY

Pro	Proposed Answer: C					
Exp	lanations:					
Α.	. Generator Differential is correct, however Overspeed trip is also correct.					
В.	Plausible because overcurrent of the EDG output breaker can be reset to re-energize the bus, however it cannot be reset using Appendix 55. There is a separate Relay Resetting procedure that would be used.					
C.	Correct					
D.	• Overspeed trip is correct. Overcurrent of the EDG output can be reset to re-energize the bus, however it cannot be reset using Appendix 55. There is a separate Relay Resetting procedure that would be used.					


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	Ν	
Learning Objective:	26234 - Given conditions of a Blackout and plant status, determine the flowpath of power available to energize a vital bus in accordance with 40EP-9EO08	

Т	Technical Reference: 40EP-9EO10-055, Appendix 55: Restore DG A to PBA-S03							
	PALO VERDE NUCLEAR GENERATING STATION APPENDIX 55: RESTORE DG A TO PBA-S03						EP-9EO10-055 Revision Page 2 of 17 Continuous Use	0
		IN	STRU	JCTIONS	<u>(</u>	CONT	INGENCY ACTIONS	
	2.	"OVE (DGA	RSPEI -07A),	nciator panel indicates ED ENGINE [®] rm the followin <mark>g</mark> :				
				"STOP" on DGA-HS-29, A" EMERGENCY STOP".				
			OGA-U OVER SOLEN gener	the plunger on JV-237, "DG "A" SPEED FUEL TRIP NOID VALVE". rator platform Southeast engine)				
		i	valve, s latch Attach	the intake air butterfly ensuring that its handle ned. <u>REFER TO</u> ment 55-A, <u>Resetting</u> <u>Air Butterfly Valve</u> .		c.1	<u>Request</u> additional manpower to assist in resetting the air butterfly valve.	
		t		the responsible operator e Diesel Generator may				
		l I	DGA-H	"RESET" on IS-29, "DG "A" GENCY STOP" to start esel Generator.				
		5	started	Diesel Generator has I, <u>GO TO</u> Step 19.				
	3.	"GEN (DGA	ERAT(-05B),	nciator panel indicates OR DIFFERENTIAL [®] m the CRS of the alarm.				

Technical Reference: 40EP-9EO10-055, Appendix 55: Restore DG A to PBA-S03						
		E NUCLEAR GENERATING STATION 55: RESTORE DG A TO PBA-S03		40EP-9EO10-055 Revision 0 Page 3 of 17		
				Continuous Use		
	Ī	INSTRUCTIONS	<u>C</u>	ONTINGENCY ACTIONS		
4 <mark>.</mark>	Ger	he CRS directs resetting the nerator Differential trip, E <mark>N <u>perform</u> the following:</mark>				
	a.	Press "STOP" on DGA-HS-29, "DG "A" EMERGENCY STOP".				
	b.	Reset "GENERATOR DIFFERENTIAL LOCKOUT RELAY 86D".				
	C.	Check that the "LOCKOUT RELAY RESET" white light is on.				
	d.	Inform the responsible operator that the Diesel Generator may start.				
	e.	Press "RESET" on DGA-HS-29, "DG "A" EMERGENCY STOP" to start the diesel generator.				
	f.	IF the Diesel Generator has started, THEN <u>GO TO</u> Step 19.				

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Loss of Offsite Power: Ability to determine and	Tier		1
nterpret the following as they apply to the Loss of Offsite Power: EDG indicators for the following: /oltage, frequency, load, load-status, and closure of the	Group		1
	K/A	056 AA2.3	7
bus-tie breakers	IR		3.8

Given the following conditions:

- Unit 1 was manually tripped in preparation for a refueling outage
- SPTAs are complete and the CRS has transitioned to 40EP-9EO02, Reactor Trip

Subsequently:

- A LOOP occurred
- On the LOOP the following occurred:
 - 'A' EDG tripped on overspeed
 - NNN-D12 tripped on a fault
- The BOP reports that there is no frequency indication on 'B' EDG

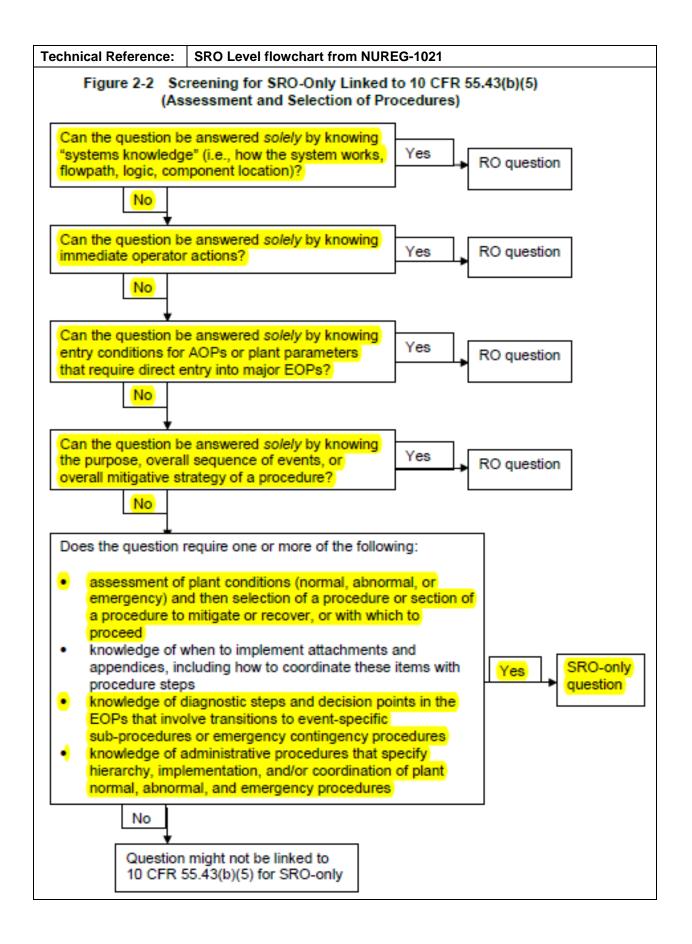
'B' EDG frequency should be determined ____(1)___ and entry into 40EP-9EO09, Functional Recovery is ____(2)___.

A. (1) locally

(2) REQUIRED

- B. (1) locally
 - (2) NOT required
- C. (1) in the Control Room(2) REQUIRED
- D. (1) in the Control Room(2) NOT required

Pro	posed Answer:	D			
Exp	lanations:				
Α.	First part is plausible because speed is indicated locally and there is no direction in SPTAs to energize the synchroscope if frequency indication is lost. Second part is correct.				
В.	First part is plausible because speed is indicated locally and there is no direction in SPTAs to energize the synchroscope if frequency indication is lost. Second part is plausible if it is thought that because there are multiple events with the LOOP and loss of NNN-D11, the Functional Recovery procedure is required to recover. However the MVAC Safety is met in the LOOP ORP.				
C.	with the LOOP ar	nd los	cond part is plausible if it is thought that because there are multiple events s of NNN-D11, the Functional Recovery procedure is required to recover. afety is met in the LOOP ORP.		
D.	Correct				


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	Ν	
Learning Objective:		95 – Analyze MVA to determine if the SFSC acceptance citeria is is

Technical Refer	ence	: 40DP-9AP06, Standard Post Trip Actio	ns Technical	Guideline	S
PVNGS NUC	LEA	R ADMINISTRATIVE AND TECHNICAL	MANUAL	Page 9	of 27
Standa	rd Po	ost Trip Actions Technical Guideline	40DP-9A	P06	Revision 22
4.5.3	Ste	p 3 - Maintenance of Vital Auxiliaries			
	A.	The Maintenance of Vital Auxiliaries safety electrical loads have power available. Elect fulfillment of succeeding safety functions.			
		A critical task associated with this step is to bus.	energize at le	ast one vi	tal AC
		The acceptance criteria reflect automatic dis and the transfer of power to offsite that sho			
		 Checks the automatic disconnect of the grid. 	main generat	tor from th	e offsite
		 Checks that the automatic transfer of el distribution system occurred. 	ectrical power	to the offs	site
	В.	Contingency Actions			
		Contingency actions are chosen to remedy responses and to ensure that the emergence to supply AC power if necessary.			
		 Manually opening the Main Generator (taken from the Control Room which sho automatic action. 			
		 Diesel generators supplying the associat continued fulfillment of succeeding safe either vital bus occurs without the association automatically starting and loading, oper the DG and close its output breaker. The generator(s) on B01 are powered from 1 (Train B). If NNN-D11 or NNN-D12 is de frequency meter will not be available. Fingenerator(s) can be obtained from either 	ety functions. If ciated Diesel (ator action will be frequency m NNN-D11 (Trai e-energized, the requency indice of the follow	f a loss of Generator I be needeneters for t in A) and I ne respect cation for t ing:	power to ed to start the diesel NNN-D12 ive
		 Energizing the associated sync switch Incoming (upper right hand side of B0 the diesel generator frequency 			ine
		- ERFDADS Points PES01 (A Train) or	PES02 (B Tra	<mark>in)</mark>	

T	Technical Reference: 40EP-9E007, Loss of Offsite Power / Loss of Forced Circulation								
		S OF OFF FORCE	40EP-9EO0 Pa)7 age 44 o	Revision 31 f 54				
	SAFETY FUNCTION:								
	2. Mai	ntenance of	Vital Auxiliaries						
ACCEPTANCE CRITERIA: CRITERIA SATISFIE					SATISFIED				
	a.	At least or	ne vital 4.16 kV AC bus energized.						
	b.	available a	ne of the following trains of PK and P and is on the same train as the powe kV AC bus.						
		• PKA-N	M41, PKC-M43, and PNA-D25						
		 PKB-M 	M42, PKD-M44, and PNB-D26						
	C.		dized safety functions require restora al power to a vital AC or DC bus.	ation					
	d.	Tank level	el Oil Transfer Pump is maintaining E for at least one Diesel Generator the powered vital 4.16 kV AC bus.	Day					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Dropped Control Rod: Ability to recognize	Tier			1
abnormal indications for system operating parameters that are entry-level conditions for emergency and	Group			2
abnormal operating procedures	K/A		003 G 2.4.4	1
	IR			4.7

Given the following initial conditions:

- Unit 2 is operating at 100% power
- 'B' Boric Acid Makeup pump is OOS

Subsequently:

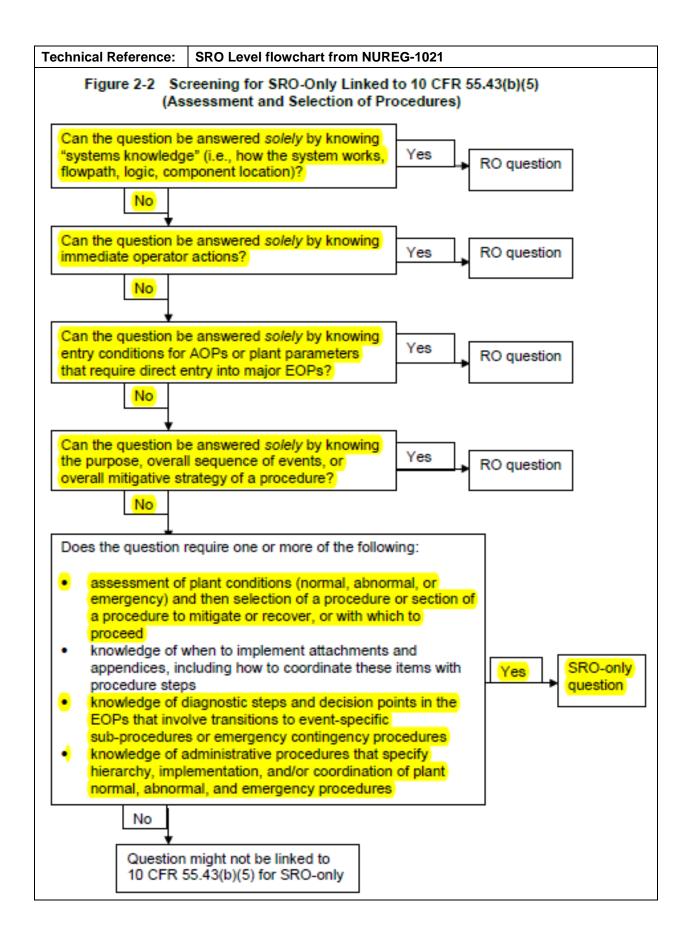
- A Seismic event occurs
- A 4-finger CEA dropped to the bottom of the core
- Reactor power stabilized at 97% following the dropped CEA
- The CRS entered 40AO-9ZZ11, CEA Malfunctions
- An Auxiliary Operator reports that the 'A' Boric Acid Makeup pump is severely damaged and CANNOT be used

The CRS should direct the crew to lower Reactor power to a MAXIMUM of ____(1)____ within the first hour from the CEA drop and direct the crew to borate the RCS using ____(2)____.

- A. (1) 77%
 (2) 40AO-9ZZ11, CEA Malfunctions, Appendix J, Boration for Power Reduction
- B. (1) 77%
 - (2) 40AO-9ZZ01, Emergency Boration
- C. (1) 80%
 - (2) 40AO-9ZZ11, CEA Malfunctions, Appendix J, Boration for Power Reduction
- D. (1) 80%
 - (2) 40AO-9ZZ01, Emergency Boration

Pro	posed Answer:				
Exp	Explanations:				
Α.	A. First part is plausible because it can be assumed that the downpower of 20% is from the power level after the CEA drops. Second part is plausible because if a BAMP is available then 40AO-9ZZ11, CEA Malfunctions, Appendix J can be used.				
В.	First part is plausible because it can be assumed that the downpower of 20% is from the power level after the CEA drops. Second part is correct.				
C.	C. First part is correct. Second part is plausible because if a BAMP is available then 40AO-9ZZ11, CEA Malfunctions, Appendix J can be used.				
D.	Correct				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam


Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	N	
Learning Objective:	25223 – Describe what action is taken to commence a Tech Spec required power reduction due to a dropped/slipped CEA	

Technical Reference:	Technical Reference: 40AO-9ZZ11, CEA Malfunctions							
	PALO VERDE NUCLEAR GENERATING STATION 40A0 CEA MALFUNCTIONS 40A0 3.0 DROPPED OR SLIPPED CEA MODE 1 OR 2							
	OR SLIPPED CEA MODE 1 C RUCTIONS	R 2 CONTINGENCY AC	TIONS					
	a boration to the RCS may take 4 t ation (Step 16) should be done as		herefore					
a. Log reduction a. Log redu	ne following to start a power within 10 minutes of the A deviation: the start time for power ction: (time) <u>er</u> the turbine load to raise e 3°F greater than Tref.							
	the required power based on initial power from e following: ater than 80% - requires a power reduction							

Technical Reference:			40AO-9ZZ11, CEA Ma Reduction	functions, A	Appendix J, Boration	n for Power
	PALO		CLEAR GENERATING S	TATION	40AO-9ZZ11 Page 90	Revision 27 0 of 92
					Appendix J	Page 1 of 2
			Appendix J, Borati	on for Pow	er Reduction	
		INSTR	RUCTIONS	<u>C</u>	ONTINGENCY A	CTIONS
	1.	on CHN-F Makeup to	oric acid makeup flow rate FIC-210Y, Boric Acid o VCT Flow Control, to 35 and 40 gpm.	•		
	2.	(gallons) (Acid Make	arget" makeup volume on CHN-FQIS-210Y, Bori eup Totalized Flow Contro ount determined by the			
	3. <u>Place</u> CHN-HS-210, Makeup Mode Select Switch, in "BORATE".					
	<mark>4.</mark>	Check one is running	e Boric Acid Makeup Pum	p		

Technical Reference: 40AO-9ZZ11, CEA Malfunctions							
	CLEAR GENERATING STATION	40AO-9ZZ11 Page 11	Revision 27 of 92				
	OR SLIPPED CEA MODE 1 OR	_	TIONS				
15. <u>Calculate</u> boric acid workshee	<u>RUCTIONS</u> <u>C</u> the number of gallons of needed (STA reactivity t) for the downpower: gal/% =gal	ONTINGENCY AC	TIONS				
Power Re borating to suction us criteria: • Mini	M Appendix J, <u>Boration for</u> 16.1 duction to commence the charging pump ing BOTH of the following mum rate of 35 gpm unt determined in Step 15	PERFORM 40AO-9Z Emergency Boration, the following boration the desired power red been achieved: CHN-UV-514 CHE-HV-536	using ONE of flowpaths until				

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Pressurizer Level Control Malfunction: Ability to	Tier		1
determine and interpret the following as they apply to the Pressurizer Level Control Malfunction: Letdown flow	Group		2
indicator	K/A	028 AA2.0	6
	IR		2.8

Given the following conditions:

- Unit 3 is operating at 100% power
- A PLCS malfunction has caused a sudden increase in letdown flow
- The increase in letdown flow caused PSV-354, Low Pressure Letdown Relief Valve, to come off its closed seat
- ERFDADS indicates the leak rate through PSV-354 is 5 gpm and stable

PSV-354 should relieve to the ____(1)___ and per LCO 3.4.14 RCS Operational Leakage, this ____(2)___ considered RCS Leakage.

- A. (1) EDT
 - (2) IS
- B. (1) EDT(2) is NOT
- C. (1) RDT (2) IS
- D. (1) RDT (2) is NOT

Proposed Answer: B				
Exp	lanations:			
Α.	A. First part is correct. Second part is plausible because the leakage does register as RCS leakage on ERFDADS and inventory is actually being lost from the RCS however intersystem leakage.			
В.	Correct			
C.	First part is plausible because the RDT is also connected to the CVCS system and collects various leakages. Second part is plausible because the leakage does register as RCS leakage on ERFDADS and inventory is actually being lost from the RCS.			
D.	First part is plausible because the RDT is also connected to the CVCS system and collects various leakages. Second part is correct.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3
10CFR55.43:	2
Reference Provided:	N
Learning Objective:	22681 – Given conditions when an LCO is not met, apply Tech Spec Section 3.4.14 (RCS Operational Leakage) in accordance with Tech Spec 3.4.14

 Technical Reference:
 Chemical Volume Control System Tech Manual

2.1.12 Low Pressure Letdown Relief Valve (PSV-354)

The purpose of this relief valve is to protect the boronometer from over pressure.

The valve is located downstream of the BPCVs. It opens at 200 psig and relieves to the EDT.

Technical Reference: LOIT Excessive RCS Leakrate Lesson Plan

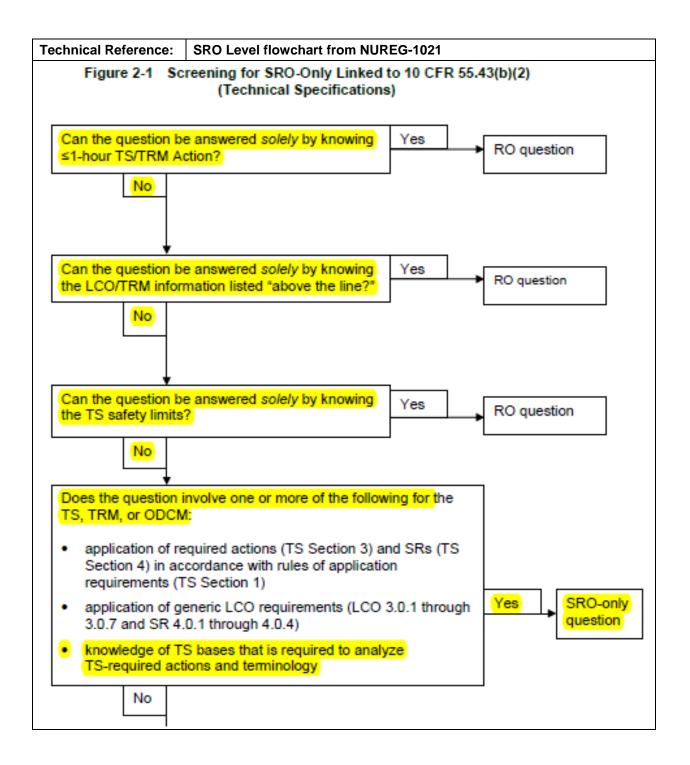
EO: 1.2 Given a description of an RCS "leak", state whether or not this is considered RCS leakage in accordance with 40AO-9ZZ02 and Tech. Specs.

Introduction

Several years ago, a CRDR (9-5-0232) was written to define RCS leakage. This CRDR was generated after an event that occurred on February 17, 1995 when a Unit 3 Charging Pump (CHB-P01) discharge relief valve stuck open during the post maintenance run of the pump. The stuck open relief valve caused the transfer of VCT inventory to the EDT even after the pump was shutdown.

The relief valve failure raised the question of whether the flow from the VCT to the EDT should be considered RCS IDENTIFIED LEAKAGE. Considering that the flow rate was calculated to be greater than 25 gpm, an RCS IDENTIFIED LEAKAGE of this magnitude would require:

- Entering LCO 3.4.14 Condition A for RCS leakage > 10 gpm IDENTIFIED LEAKAGE from the RCS.
- Declaring an NUE per EP-0901 for RCS identified leakage > 25 gpm for ≥ 15 min OR Reactor coolant leakage to a location outside containment > 25 gpm for ≥ 15 min in Modes 1-4 [SU5.1].


Since neither of these two actions occurred, a meeting was held to discuss the issue. The outcome of the meeting was how PVNGS defines RCS LEAKAGE.

Main Idea

The following describe how PVNGS defines RCS LEAKAGE:

- There are four classifications of RCS leak.
- Identified <u>Captured and conducted to a sump or tank</u> (anything that is routed to the Reactor Drain Tank is defined as identified). Any leak that has been <u>specifically located and</u> <u>then captured and conducted</u> to a monitored sump or tank (leak located, drip bag hung and hose routed to one of the containment sumps). <u>Steam Generator tube or tube sheet leaks</u> (very low threshold for required action per Tech Specs). Furthermore, if the leak interferes with leakage detection systems, it will be classified as Unidentified (more conservative).
- Unidentified <u>Leakage into the containment atmosphere</u> that does not meet the definitions listed as Identified. Unidentified leaks are determined by containment atmosphere radiation monitors, containment radwaste sump level changes or water inventory balance calculations or combinations of those indications.

Technica	al Reference:	LOIT Excessive RCS	S Leakrate Lesson Plan	
Title:	Excessive	RCS Leakrate	Lesson Plan #:	NKASMC030208
	component bod eakage. For the Specifications li of the reactor of UFSAR 5.2.5 Example – A sn quantity to be do nventory Balan Unidentified. Vis	y, pipe wall, vessel wa e purpose of leak deter- mit the definition of the polant system which ar nall RCS leak develops etected by RU-1, Cont ce determines the leak sual inspection reveals	y – Leakage through a nonis Il or weld with the exception ction, Regulatory Guide 1.45 e "reactor coolant pressure b re constructed so that no lea s with the reactor at full powe ainment Atmosphere Radiat to be 0.1 gpm. Initially, this that an RCS hot leg RTD th ill subsequently be classified	of primary to secondary and PVNGS Technical oundary" to those portions kage is expected to occur. er. The leak is sufficient ion Monitor. A Water leak will be classified as hermowell is leaking
1	type of leak may	v represent a loss of R al procedures require	nto CVCS, SDC, SI, NC, sai CS inventory, it is not define operators to address and tak	d by Tech Specs.

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Loss of Source Range Nuclear Instrumentation:	Tier			1
Ability to recognize system parameters that are entry- level conditions for Technical Specifications	Group			2
level conditions for Technical Specifications	K/A	0	32 G 2.2.4	2
	IR			4.6

Given the following conditions:

- Unit 1 is in MODE 6
- Core reload is in progress

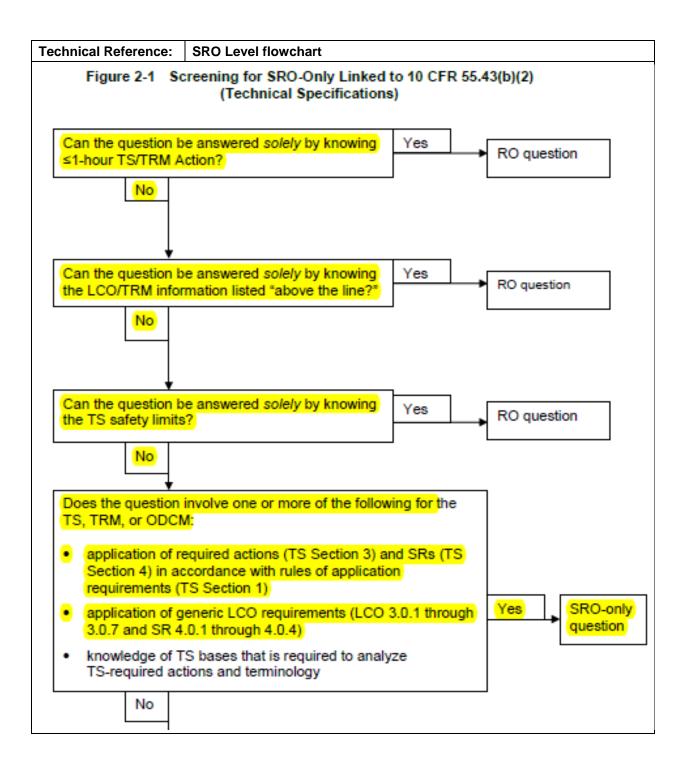
Subsequently:

- Audible indication of count rate for the Startup Range Monitors (SRMs) is lost inside Containment
- Audible and visual SRM indications remain available in the Control Room

Based on these indications, the core reload...

- A. MAY continue provided audible AND visual source range indications are available in the control room
- B. MUST be suspended in accordance with LCO 3.3.12 Boron Dilution Alarm System, Condition A, for two required SRMs inoperable
- C. MAY continue provided audible source range indication is available in the control room AND the Refueling machine maintains constant communications with the control room
- D. MUST be suspended and action must be taken to restore audible indication in Containment in accordance with LCO 3.9.2 Nuclear Instrumentation, Conditions A and B for two required SRMs inoperable

Pro	posed Answer:	D			
Exp	Explanations:				
Α.	A. Plausible since visual and audible indications will be maintained in the control room, and there is nothing to indicate that the SRM is not functioning (i.e. only the speaker in Containment is faulted), however in order for the SRM to be operable, audible indications are required in both the control room and containment.				
В.	Plausible that LCO 3.3.12 would not be met in this situation as inoperability of an SRM normally makes BDAS inoperable, however if SRMs are inoperable SOLELY due to the loss of audible indication, BDAS remains operable.				
C.	constant commur requirement for a	icatio udible	e indications will be maintained in the control room, and maintaining on with the refueling machine could be interpreted as meeting the e indication in containment, however communication from the control room he is not credited for meeting the operability requirement of LCO 3.9.2.		
D.	Correct				


Question Source:		New	
	Х	Bank	
		Modified	
	Х	Previous NRC Exam	2016

Cognitive Level:	X	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	2	
Reference Provided:	N	
Learning Objective:	is s	78 – Given a set of plant conditions identify whether or not LCO 3.9.2 atisfied and any actions or surveillance requirements that would vent core alterations per Tech Spec 3.9 and its basis

Technical Reference:	Technical Specifications								
3.9 REFUELING OPERATIONS									
3.9.2 Nuclear Instru	3.9.2 Nuclear Instrumentation								
LCO 3.9.2 Two startup range monitors (SRMs) shall be OPERABLE.									
	APPLICABILITY: MODE 6.								
ACTIONS									
	Enter applicable Conditions and Required Actions of LCO 3.3.12, "Boron Dilution Alarm System (BDAS)" for BDAS made inoperable by SRMs.								
CONDITION	REQUIRED ACTION COMPLETION TIME								
A. One required inoperable.	SRM A.1 Suspend CORE Immediately ALTERATIONS.								
	A.2 Suspend positive Immediately reactivity additions.								
B. Two required SRMs inopera	ble. B.1 Initiate action to restore one SRM to OPERABLE status.								

Technical Reference	: Technical Specifications Basis
	Nuclear Instrumentation B 3.9.2
BASES	
LCO (continued)	The SRMs include detectors, preamps, amplifiers, power supplies, indicators, recorders, speakers, alarms, switches and other components necessary to complete the SRM functions. Specifically, each SRM must provide continuous visual indication in the Control Room and each SRM must have the capability to provide audible indication in both the Control Room and Containment via use of the Control Room switch.
APPLICABILITY	In MODE 6, the SRMs must be OPERABLE to determine changes in core reactivity. There is no other direct means available to check core reactivity levels.
	The requirements for the associated Boron Dilution Alarm System (BDAS) operability in MODE 6 are contained in LCO 3.3.12, "Boron Dilution Alarm System." LCO 3.3.12 also covers SRM and BDAS operability requirements for MODES 3, 4 and 5.
ACTIONS	A.1 and A.2
	With only one SRM OPERABLE, redundancy has been lost. Since these instruments are the only direct means of monitoring core reactivity conditions, CORE ALTERATIONS and positive reactivity additions must be suspended immediately. Performance of Required Action A.1 shall not preclude completion of movement of a component to a safe position.
	With one required SRM channel inoperable due to loss of its neutron flux indication function, the associated BDAS is also inoperable. If the SRM is inoperable strictly due to a loss of its audible indication function, and the SRM is able to provide neutron flux indication signal to the associated BDAS, the BDAS channel can be considered OPERABLE. With one required BDAS channel inoperable, Action A.1 of LCO 3.3.12 requires the RCS boron concentration to be determined immediately and at the applicable monitoring frequency specified in the COLR Section 3.3.12 in order to satisfy the requirements of the inadvertent deboration safety analysis. The monitoring frequency specified in the COLR ensures that a decrease in the boron concentration during a boron dilution event will be detected with sufficient time for termination of the event before the reactor achieves

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Steam Generator Tube Leak: Magnitude of	Tier			1
atmospheric radioactive release if cooldown must be completed using steam dump or atmospheric reliefs	Group			2
completed using steam dump of atmospheric reliefs	K/A	()37 AA2.1	5
	IR			4.2

Given the following conditions:

- Unit 1 was tripped due to a Design Basis Steam Generator Tube Rupture event on SG #1
- On the trip, offsite power was lost
- The crew is commencing a cooldown using ADVs to meet conditions required to isolate SG #1

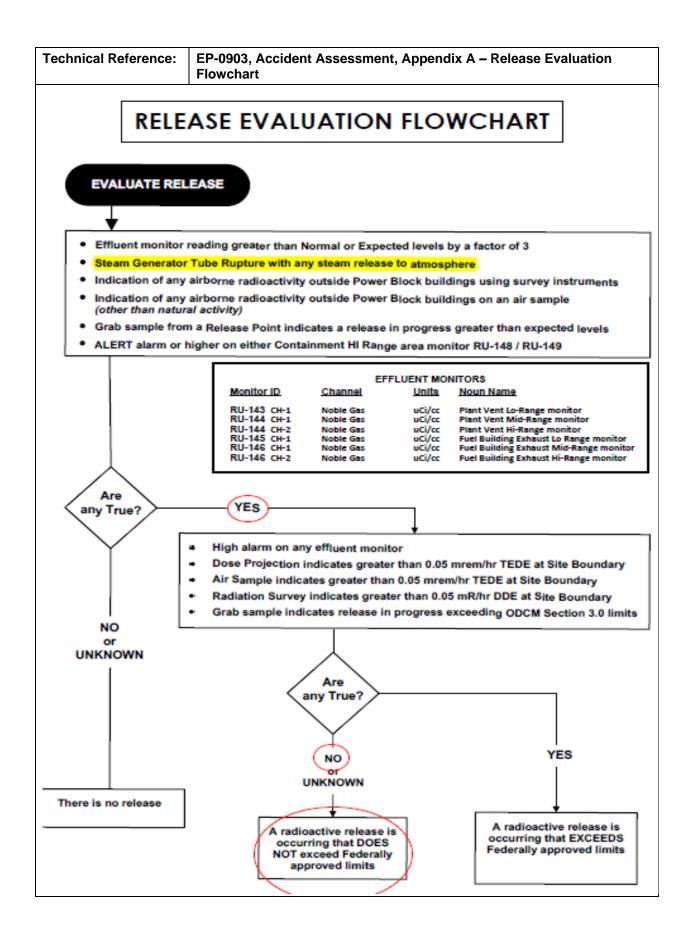
The use of ADVs for the INITIAL cooldown ____(1)___ considered a loss of the Containment Barrier, and the release in progress ____(2)___ exceeding federally approved limits.

- A. (1) IS (2) IS
- B. (1) IS(2) is NOT
- C. (1) is NOT (2) IS
- D. (1) is NOT (2) is NOT

Pro	posed Answer:	D			
Exp	lanations:				
Α.	A. First part is plausible because for the initial RCS cooldown, there will be a release to the environment. However, since it is not an unisolable fault (e.g stuck open MSSV), this is not a loss of the Containment Barrier. Second part is plausible because for the initial RCS cooldown, there will be a release to the environment. However, per 0903, Accident Assessment, is not a release that exceeds Federal limits.				
В.	environment. Hov	vever	ecause for the initial RCS cooldown, there will be a release to the , since it is not an unisolable fault (e.g stuck open MSSV), this is not a loss rrier. Second part is correct.		
C.		vironr	cond part is plausible because for the initial RCS cooldown, there will be a nent. However, per 0903, Accident Assessment, is not a release that		
D.	Correct				

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis


Level of Difficultly:	3	
10CFR55.43:	4	
Reference Provided:	N	
Learning Objective:	248	390 – Determine whether a radioactive release is in progress

ATTACHMENT 2

Fission Product Barrier Loss/Potential Loss Matrix and Bases

This threshold also applies to prolonged steam releases necessitated by operational considerations such as the forced steaming of a leaking or RUPTURED steam generator directly to atmosphere to cooldown the plant. These type of condition will result in a significant and sustained release of radioactive steam to the environment (and are thus similar to a FAULTED condition). The inability to isolate the steam flow without an adverse effect on plant cooldown meets the intent of a loss of containment.

Steam releases associated with the expected operation of a SG Atmospheric Dump Valve(s) do not meet the intent of this threshold. Such releases may occur intermittently for a short period of time following a reactor trip as operators process through emergency operating procedures to bring the plant to a stable condition and prepare to initiate a plant cooldown. This includes the initial cooldown to 540°F to isolate the ruptured SG using Atmospheric Dump Valves directed in the SGTR EOP. Steam releases associated with the unexpected operation of a valve (e.g., a stuck-open safety valve) do meet this threshold.

Technical Reference:	SRO Level Question Criteria from NUREG-1021						
D. <u>Radiation Hazards That May Arise during Normal and Abnormal Situations, including</u> <u>Maintenance Activities and Various Contamination Conditions</u> [10 CFR 55.43(b)(4)]							
Some examples o	f SRO exam items for this topic include the following:						
 process fo 	r gaseous/liquid release approvals (i.e., release permits)						
	nd interpretation of radiation and activity readings as they pertain to the fadministrative, normal, abnormal, and emergency procedures						
-	nd interpretation of coolant activity, including comparison to emergency a and/or regulatory limits						

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Emergency Core Cooling: Knowledge of EOP	Tier			2
mitigation strategies	Group			1
	K/A	006 G 2.4.6		
	IR			4.7

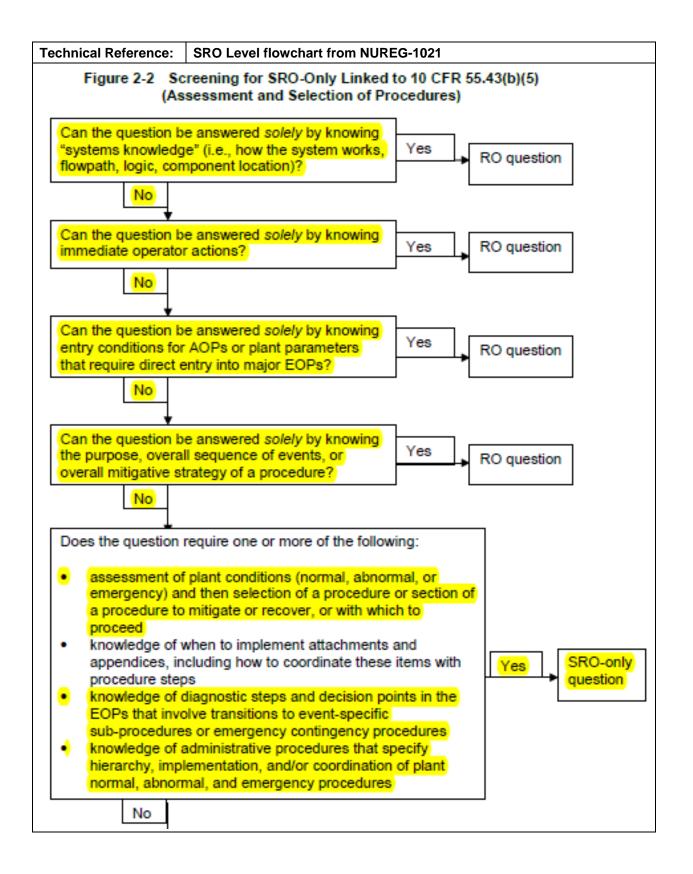
Given the following conditions:

- Unit 1 was tripped from 100% power due to a Pressurizer Safety lifting and sticking open
- SPTAs have been performed and the CRS has entered 40EP-9EO03, LOCA
- The RCS is 15°F subcooled and stable
- RCS TCOLD is 565°F and slowly lowering
- Indicated Pressurizer level is 95% and slowly rising
- Both SGs are 20% NR and slowly rising, being fed from AFB-P01
- QSPDS indicates 41% in the upper head
- Containment Temperature is 140°F and slowly rising
- Containment High Range Radiation Monitors RU-148 and RU-149 indicate 6.5 x 10² mR/hr and slowly rising

The RCS Heat Removal Safety Function is ____(1)___ and the CRS should implement ____(2)___ to lower pressurizer level.

- A. (1) MET(2) Appendix 15, RCS Void Control
- B. (1) MET(2) Appendix 2, Figures: HPSI Throttle Criteria
- C. (1) NOT met(2) Appendix 15, RCS Void Control
- D. (1) NOT met
 - (2) Appendix 2, Figures: HPSI Throttle Criteria

Proposed Answer: A				
Ехр	lanations:			
Α.	Correct			
В.	First part is correct. Second part is plausible because all the parameters meet HPSI Throttle Criteria with the exception of RCS subcooling.			
C.	First part is plausible Steam Generator water levels are not in band. However to meet the Safety Function Feedwater only needs to be restoring SGWL back in band. Second part is correct.			
D.	Function Feedwa	ter or	team Generator water levels are not in band. However to meet the Safety hy needs to be restoring SGWL back in band. Second part is plausible eters meet HPSI Throttle Criteria with the exception of RCS subcooling.	


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:		
Learning Objective:		22 – Given conditions of LOCA, analyze RCS Heat Removal to ermine if the SFSC acceptance criteria is satisfied

Technical Reference:		nce: 40EP-9EO03, Loss of Coolant Accident							
* <mark>30.</mark>		least one HPSI Pump is operating, ALL of the following conditions							
	RCS is 24°F [44°F] or more subcooled								
	•	Pressurizer level is greater than 10% [15%] and NOT lowering							
	•	At least one Steam Generator is available for RCS heat removal with level being maintained within or being restored to 45 - 60% NR [45 - 60% NR]							
 RVLMS indicates RVUH level is 16% or more 									
	THEN throttle HPSI flow or stop the HPSI Pumps one pump at a time.								

Technica	I Reference:	40EP-9EO03, Loss of Coolant Accident				
6. RC	S Heat Remov	/al				
AC	CEPTANCE (RITERIA:	CRI	TERIA	SATISI	FIED
<mark>a.</mark>	At least one [45 - 60%] N	Steam Generator has level 45 - 60%				
	OR					
		s restoring at least one Steam Generator 60% [45 - 60%] NR.				
<mark>b.</mark>	T _c is stable of	or lowering.				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Relief / Quench Tank: Ability to (a)	Tier			2
predict the impacts of the following malfunctions or operations on the PRTS; and (b) based on those	Group			1
predictions, use procedures to correct, control, or	K/A		007 A2.04	
mitigate the consequences of those malfunctions or operations: Overpressurization of the waste gas vent header	IR			2.9

Given the following conditions:

- Gaseous Radwaste Radiation Monitor RU-12 has failed off scale high and is alarming on RMS
- The Gaseous Radwaste header pressure is slowly rising
- A Waste Gas Decay Tank release is required

Which of the following describes the required action(s) in order to perform the release as planned?

In order for the release to be performed, ____(1)___ as required by ____(2)___.

- A. (1) the valve galleries associated with the release path must be posted as a high radiation area
 - (2) the Offsite Dose Calculation Manual
- B. (1) the valve galleries associated with the release path must be posted as a high radiation area
 - (2) 74RM-9EF41, Radiation Monitoring System Alarm Response
- C. (1) at least two technically qualified personnel must independently verify the discharge valve lineup
 - (2) the Offsite Dose Calculation Manual
- D. (1) at least two technically qualified personnel must independently verify the discharge valve lineup
 - (2) 74RM-9EF41, Radiation Monitoring System Alarm Response

Pro	posed Answer:	С	
Ехр	lanations:		
Α.	changing the radi failed high, it wou	ation Id be	ince there is guidance in the alarm response procedure to evaluate postings in the event of a radiation monitor alarm, and since RU-12 has reasonable to raise the postings as a conservative approach to ALARA, uired in order for the release to commence. Second part is correct.
В.	changing the radi failed high, it wou however this is no the ARP provides	ation ld be ot req cont	ince there is guidance in the alarm response procedure to evaluate postings in the event of a radiation monitor alarm, and since RU-12 has reasonable to raise the postings as a conservative approach to ALARA, uired in order for the release to commence. Second part is plausible since ingency actions for alarming or failed RMs, however there are no RP related to gaseous releases.
C.	Correct		
D.			econd part is plausible since the ARP provides contingency actions for , however there are no requirements in the ARP related to gaseous

Question Source:		New	
	Х	Bank	
		Modified	
	Х	Previous NRC Exam	2018

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	2	
Reference Provided:	N	
Learning Objective:		147 – As an SRO describe what actions to take during an effluent ease if RU-12, Waste Gas Decay Tank Monitor, goes inoperable

Technical Reference:				
		TABLE 2-1		
	RADIOACTIVE GASEOUS F	EFFLUENT MONITORING	INSTRUMENTATION	
INSTRU	MENT	MINIMUM CHANNELS FUNCTIONAL	APPLICABILITY	ACTIO
1. GASEOUS RADWASTE	SYSTEM			
	Ionitor - Providing Alarm and on of Release #RU-12	1	#	35
ACTION 35 - With the s			required by the Minimur may be released to the e	
	that prior to initiating the		may be released to me e	nvironment
a. At	least two independent san	pples of the tanks conter	nts are analyzed, and	
	least two technically qual ease rate calculations and e		acility staff independently	verify the
Otherwis	se, suspend release of radi	ioactive effluents via thi	s pathway.	

Technical Reference: 74RM-9EF41, Radiation Monitoring System Alarm Response				
Radiation Moni	toring System Alarm Response	74RM-9EF41	Revision 23	
2.3 Radiation	Protection (RP)			
2.3.1 RP is	s responsible for ALL the following:			
•	evaluating the need to update/change ra radiation monitor alarms	diological postings in res	sponse to	
•	controlling of personnel exposure in resp	oonse to radiation monite	or alarms	
•	reviewing any on-going jobs and plant s Chemistry in the evaluation of the cause			
•	Performing Section 6.3 actions			

Technical Referen	ce: SRO Level Question Criteria from NUREG-1021				
B. <u>Facility Operating Limitations in the Technical Specifications and Their Bases</u> [10 CFR 55.43(b)(2)]					
Some examp	oles of SRO exam items for this topic the following:				
(TS S	cation of required actions (TS Section 3) and surveillance requirements (SR) section 4) in accordance with rules of application requirements Section 1)				
	ation of generic limiting condition for operation (LCO) requirements 3.0.1 through 3.0.7; SR 4.0.1 through 4.0.4).				
	ledge of TS bases that are required to analyze TS-required actions and nology				
	items listed above for the Technical Requirements Manual (TRM) and e Dose Calculation Manual (ODCM)				

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Engineered Safety Features Actuation: Knowledge				2
of annunciator alarms, indications, or response procedures	Group			1
procedures	K/A	0	13 G 2.4.3	1
	IR			4.1

Given the following conditions:

• Unit 3 was tripped due to an unisolable small break LOCA into Containment

Given the SEIS panel drawing on the following page, the CRS should enter ____(1)____ and direct the crew to cooldown and depressurize the RCS to establish long term cooling via ____(2)____.

- A. (1) 40EP-9EO09, Functional Recovery(2) LPSI injection
- B. (1) 40EP-9EO09, Functional Recovery(2) Shutdown Cooling
- C. (1) 40EP-9EO03, Loss of Coolant Accident(2) LPSI injection
- D. (1) 40EP-9EO03, Loss of Coolant Accident(2) Shutdown Cooling

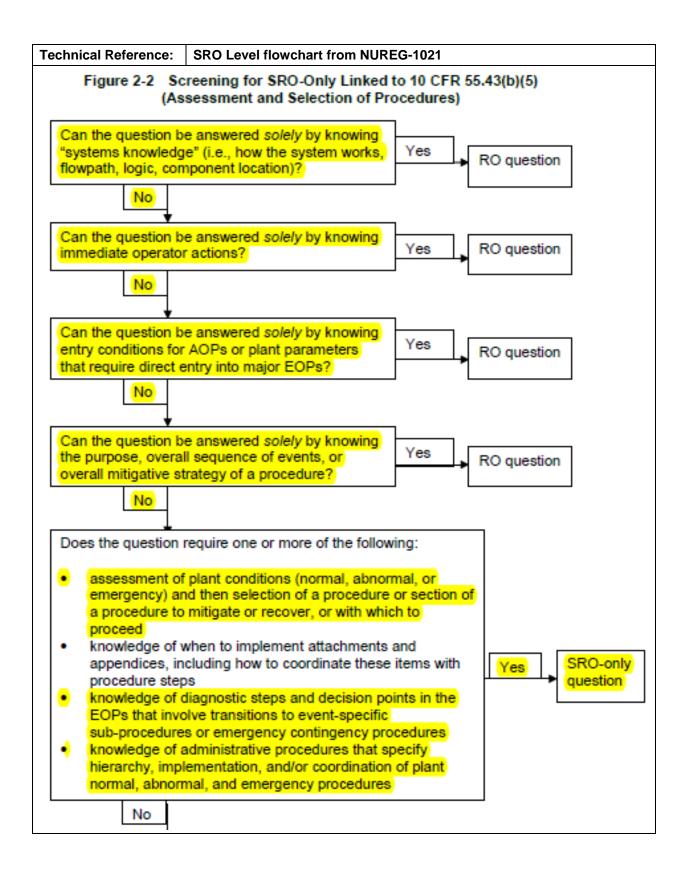
Train A

_	HIGH PR S INJ	
	HPSI HDR A TO RC LP 1A VLV UV-637	
	HPSI HDR A TO RC LP 2A VLV UV-617	HPSI HDR A TO RC LP 1B VLV UV-647
	HP SI A LONG TERM CLG RECRC HV-321	HPSI HDR A TO RC LP 2B VLV UV-627
	HPSI PUMPA RECRC VLV UV-666	HPSI A LONG TERM CLG RECRC HV-604
	HP SI PMP A RM ESS ACU Z01	HPSI HDR A TO RC LOOPS ISOL VLV HV-698
	RWT TO SI TR A VLV HV-531	HPSI PMP A P02

Train B

HIGH PR S INJ	
HPSIHDR B	HOT LEG INJ
TO RC LP 1A	A/B CHK VLV
VLV	-EAKOFF VLVS
UV-636	UV-322/UV-332
HP SI HDR B	HP SI HDR B
TO RC LP 2A	TO RC LP 1B
VLV	VLV
UV-616	UV-646
HP SI B	HPSIHDR B
LONG TERM	TO RC LP 2B
CLG RECRC	VLV
HV-331	UV-626
HPSIPMPB	HPSIB
RECRC	LONG TERM
VLV	CLG RECRC
UV-667	HV-609
HPSI	HP SI HDR B
PMP B RM	TO RC LOOP S
ESS ACU	ISOL VLV
Z01	HV-699
RWT TO SITR A VLV HV-530	HPSI PMP B P02

Pro	posed Answer: A			
Exp	lanations:			
Α.	Correct			
В.	First part is correct. Second part is plausible because if the RCS leak was isolable, the crew would cooldown/depressurize to SDC entry conditions. Also, there is currently no injection flow due to the loss of both HPSI pumps. The crew will rapidly cooldown/depressurize to achieve LPSI injection.			
C.	First part is plausible because there is a LOCA and the SPTA diagnostic flow chart says to consider LOCA. However, because the RCS Inventory safety function will not be met, the CRS will enter Functional Recovery. Second part is correct.			
D.	First part is plausible because there is a LOCA and the SPTA diagnostic flow chart says to consider LOCA. However, because the RCS Inventory safety function will not be met, the CRS will enter Functional Recovery. Second part is plausible because if the RCS leak was isolable, the crew would cooldown/depressurize to SDC entry conditions. Also, there is currently no injection flow due to the loss of both HPSI pumps. The crew will rapidly cooldown/depressurize to achieve LPSI injection.			


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	Y	
Learning Objective:		46 – Given conditions of LOCA, analyze the RCS Inventory Control to ermine if the SFSC acceptance criteria is satisfied per 40EP-9EO03

Technical	ent												
SAFETY	FUNCTION:												
3. RCS Inventory Control													
	NOTE												
M	Meeting the provisions of Condition 1 or Condition 2 will satisfy the RCS Inventory												
	ontrol Safety I							,					
AC	CEPTANCE	CRITERIA:				CRI	TERIA	SATIS	FIED				
Cor	ndition 1												
a.	Pressurizer	level greater	than 10% [1	15%].									
b.	RCS is 24°	F [44°F] or mo	ore subcoole	ed.									
						_	_	_	_				
C.	RVLMS ind	icates that RV	UH level is	16% or mor	θ.								
Cor	ndition 2												
-	C. C. L. L.			CED TO			_						
a.	Appendix 2	tion flow is ac Figures.	equate. <u>RE</u>	FER IO									
b.	b. CET Subcooling indicates less than 44°F [60°F]												
superheat and NOT rising.							Ц	Ц					
C.		oling indicate and NOT rising		44°F [60°F]									
	superneat a	ind NOT Itsing	9-										

Т	echnical Reference	: 40EP-9EO09, Functional Recov	very	
		UCLEAR GENERATING STATION		09 Revision 64 ge 125 of 246
	1011		IC-CA	Page 2 of 6
	<u>IN</u>	STRUCTIONS	CONTINGEN	NCY ACTIONS
	adequate	ressure is preventing RCS injection flow, pressurize the RCS by ANY of ing:		
	REF	imizing RCS Heat Removal. <u>ER TO</u> the HR Success Path ently in use.		
		ration of RCGVS using cess Path PC-2, <u>RCGVS</u> .		

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Containment Cooling: Ability to (a) predict the	Tier			2
impacts of the following malfunctions or operations on the CCS; and (b) based on those predictions, use	Group			1
procedures to correct, control, or mitigate the	K/A		022 A2.02	
nsequences of those malfunctions or operations: ss of CCS Pump	IR			2.6

Given the following conditions following a large break LOCA inside Containment:

- Containment Pressure is 20 psig and slowly rising
- Both CS Pumps have tripped
- The CRS has entered 40EP-9EO09, Functional Recovery

Per 40EP-9EO09, Functional Recovery, the crew should align a ____(1)___ pump to the CS Spray Header and should verify the CTPC Safety Function is met by ____(2)___.

- A. (1) LPSI(2) CS flow indication in the Control Room
- B. (1) LPSI(2) indicated Containment pressure either lowering or stabilizing
- C. (1) HPSI
 - (2) CS flow indication in the Control Room
- D. (1) HPSI
 - (2) indicated Containment pressure either lowering or stabilizing

Pro	posed Answer:	В				
Exp	lanations:					
Α.	First part is correct. Second part is plausible because when CS is aligned to the spray header, there is indicated flow. However when LPSI is aligned to the spray header, there will be no indicated flow.					
В.	Correct					
C.	used for CS wher	n CS ay he	ecause HPSI will be used for Hot Leg Injection. However LPSI pumps are pumps are not available. Second part is plausible because when CS is ader, there is indicated flow. However when LPSI is aligned to the spray p indicated flow.			
D.			ecause HPSI will be used for Hot Leg Injection. However LPSI pumps are pumps are not available. Second part is correct.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

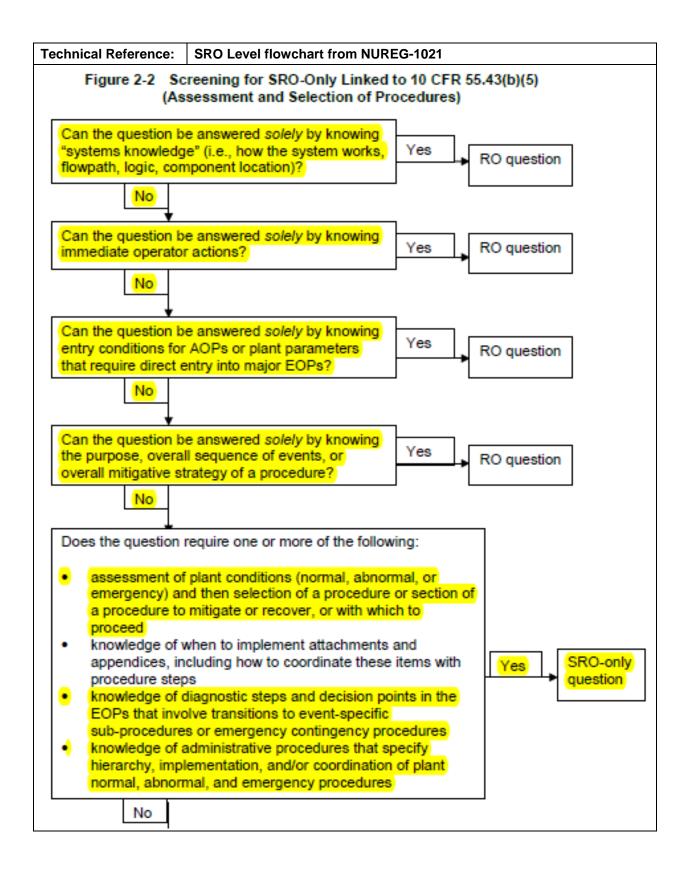
Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	N	
Learning Objective:	and	85 – Given conditions of LOCA, analyze Containment Temperature I Pressure Control to determine if the SFSC acceptance criteria is isfied per 40EP-9EO03

T	echnical Reference:	40EP-9EO09, Functional R	Recovery	/			
		CLEAR GENERATING STAT	ION	40EP-9EO09 Page 22	Revision 64 8 of 246		
	FUNCT	IONAL RECOVERY		CTPC-2	Page 2 of 7		
	INST	RUCTIONS		CONTINGENCY ACTIONS			
		uated, at least one CS header is 50 gpm or more.		ere is no indication of ng a LPSI pump for (CS flow when		
			si A si p	F it is desired to use upply CS A train, ND LPSI Pump A is upport any RC, IC, o ath, HEN <u>perform</u> the fol	NOT needed to or HR success lowing:		
			a	. Ensure that LPS running.	8 Pump A is		
			b	Ensure that SIA Shutdown Cooli Exchanger A By closed.	ng Heat		
		(continue)	c	Ensure that SIA LPSI-Containme Shutdown Heat Cross-Tie Valve	ent Spray From Exchanger A		
			d	Containment Sp	-UV-672, rray A Discharge r 1 Valve, is open.		
			e	Ensure SIA-HV- LPSI-Containme Shutdown Heat Cross-Tie Valve	ent Spray To Exchanger A		
			<mark>f</mark> .	Check that the L running at less t			

٦	Fechnical Re	ference:	LOIT Functional Recovery Procedure Lesson Plan	
	50 400	a : a		

EO: 1.33 Given the need to align a LPSI pump to spray the containment (per CTPC-2), describe the requirements that must be satisfied in order to align a LPSI pump as a containment spray pump in accordance with 40EP-9EO09.


Main Idea

If CSAS actuated and adequate Containment Spray flow of at least one CS header delivering 4350 gpm or more is not present, then CTPC-2 contingency actions allow the use of a LPSI pump in place of a CS pump. The LPSI pumps and motors are similar in design to the CS pumps and will function to give reduced flow to the spray header as a last resort.

The requirement is that the LPSI Pump that is chosen is NOT needed to support any RC, IC, or HR success path as a LPSI pump. One of the LPSI pumps can be used for CS without degradation of safety concerning SI.

There is no indication of CS flow when using a LPSI pump for CS. The CTPC-2 Acceptance Criteria recognizes "LPSI is cross-connected to CS" as acceptable for this condition. Further verification is by plant response by observing properly trending containment parameters after the LPSI pump is aligned to CS.

Technical Reference:		40EP-9EO10-100, Appendix 10	0: Hot Leg Injection		
PALO V	ERDE NU	CLEAR GENERATING STATION	40EP-9EO10-100 Revision 0		
APP	ENDIX 10	00: HOT LEG INJECTION	Page 3 of 4		
			Continuous Use		
	INSTR	RUCTIONS	CONTINGENCY ACTIONS		
5.		HPSI pumps are operating, <u>culate</u> the target hot leg lows:			
		ord the average indicated leg flow from Step 3:			
		_ gpm			
	cold	i <u>ply</u> the average indicated leg flow by 1.5 to obtain the et hot leg flow:			
		gpm			
6.	Open the HPSI Long Term Recirc Isolation Valves on ALL running HPSI pumps:				
	HPSI A				
	 SIA- 	HV-604			
	HPSI B				
	 SIB- 	HV-609			
7.	<u>Throttle</u> hot leg injection to the target hot leg flow for the running HPSI pump(s):				
	HPSI A				
	 SIC-HV-321, HPSI "A" Long Term Cooling Isolation valve 				
	HPSI B				
		HV-331, HPSI "B" Long n Cooling Isolation Valve			

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Emergency Diesel Generator: Knowledge of local	Tier			2
auxiliary operator tasks during an emergency and the resultant operational effects	Group			1
resultant operational enects	K/A	0	64 G 2.4.3	5
	IR			4.0

Given the following conditions:

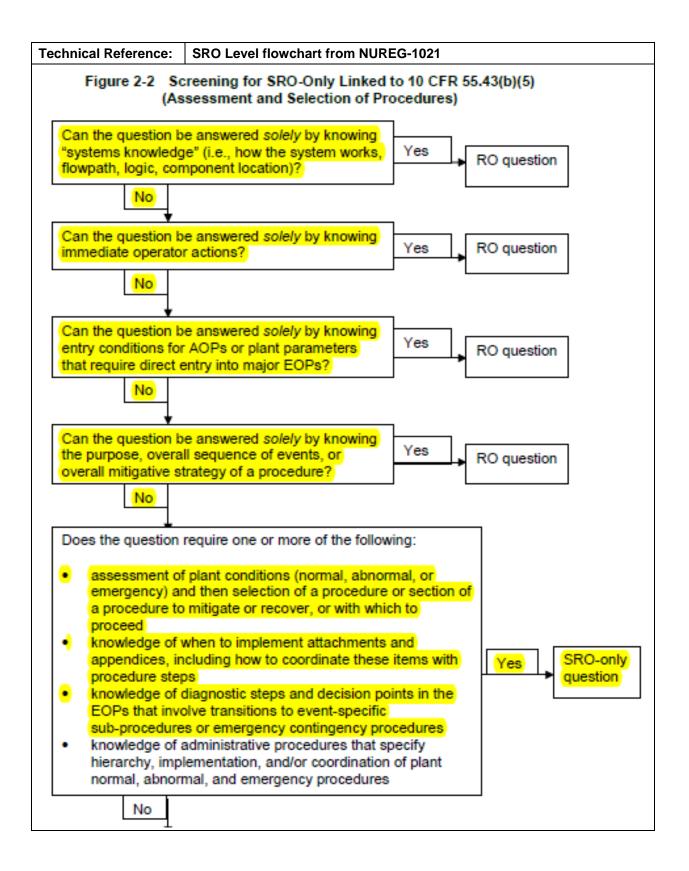
• Unit 1 is operating at 100% power

Subsequently:

- A loss of offsite power occurs
- 'B' EDG trips on low lube oil pressure
- The crew performs SPTAs
- The CRS enters 40EP-9EO07, Loss of Offsite Power/Loss of Forced Circulation
- The ECC has informed the Control Room that estimated time for restoration of offsite power is 8 hours
- There is no thunderstorm activity in the area

Per 40EP-9EO07, Loss of Offsite Power/Loss of Forced Circulation, the crew should direct the ____(1)___ to energize NAN-S07 with an SBOG and the CRS should direct an RO to perform ____(2)___.

- A. (1) Outside Area Operator
 - (2) 40EP-9EO10-081, Appendix 81 Align SBOG to PBB-S04 (BO)
- B. (1) Outside Area Operator
 (2) 40EP-9EO10-054, Appendix 54 Energize Switchyard Loads From the SBOGs
- C. (1) Control Building Operator
 (2) 40EP-9EO10-081, Appendix 81 Align SBOG to PBB-S04 (BO)
- D. (1) Control Building Operator
 - (2) 40EP-9EO10-054, Appendix 54 Energize Switchyard Loads From the SBOGs


Pro	posed Answer:	В	
Exp	lanations:		
Α.	A. First part is correct. Second part is plausible because PBB-S04 is de-energized, however since the MVAC safety function is met, there is no reason to align power to PBB-S04. Additionally, Appendix 81 is not directed in LOOP/LOFC. It only exists in the Blackout EOP.		
В.	Correct		
C.	First part is plausible because the Control Building Operator will check on a diesel, but it is the A and B EDGs. Second part is plausible because PBB-S04 is de-energized, however since the MVAC safety function is met, there is no reason to align power to PBB-S04. Additionally, Appendix 81 is not directed in LOOP/LOFC. It only exists in the Blackout EOP.		
D.	First part is plausible because the Control Building Operator will check on a diesel, but it is the A and B EDGs. Second part is correct.		

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	N	
Learning Objective:	Given conditions of a LOOP, analyze these conditions to determine switchyard loads should be energized by a SBOG per 40EP-9E007	

Technical Reference:	40EP-9EO07, Loss of Offsite Po	wer / Loss of Forced Circulation
LOSS OF OFF	SITE POWER / LOSS OF	40EP-9EO07 Revision 31 Page 14 of 54
<u>INST</u>	ED CIRCULATION RUCTIONS <u>NOTE</u> ations involving the SBOGs will be	CONTINGENCY ACTIONS
 IF power is log THEN <u>direct</u> to perform the a. <u>Start</u> a. <u>Start</u> a. <u>Append</u> <u>General</u> 	ost to Unit 1 NAN-S06, the Outside Area Operator	
damage ESF	<u>CAUTION</u> ke on the overhead lines between t Transformer NBN-X03 which will pr m the SBOGs.	
AND BOTH exist: Power i expected Thunde present THEN <u>PERE</u>	yard is de-energized, of the following conditions restoration is NOT ed within two hours rstorm activity is NOT in the vicinity of PVNGS ORM Appendix 54, itchyard Loads From the	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Pressurizer Level Control: Ability to (a) predict the	Tier			2
impacts of the following malfunctions or operations on the PZR LCS; and (b) based on those predictions, use	Group			2
procedures to correct, control, or mitigate the	K/A		011 A2.07	
consequences of those malfunctions or operations: Isolation of letdown	IR			3.3

Given the following conditions:

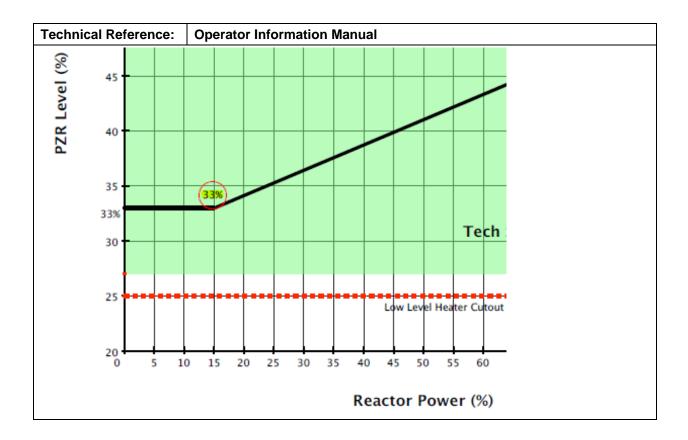
- Unit 3 is operating at 12%
- The crew is preparing to sync the Main Generator to the Grid
- CHE-P01 is aligned to Train B
- Charging Pump Mode Selector switch, CHN-HS-4, is in the "2-3-1" position

Subsequently:

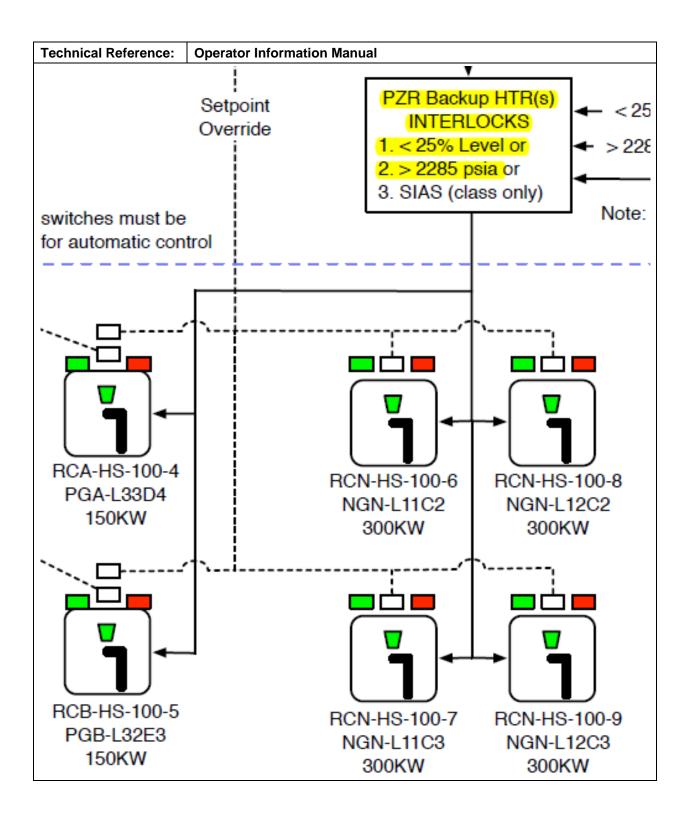
• PBB-S04 trips on overcurrent

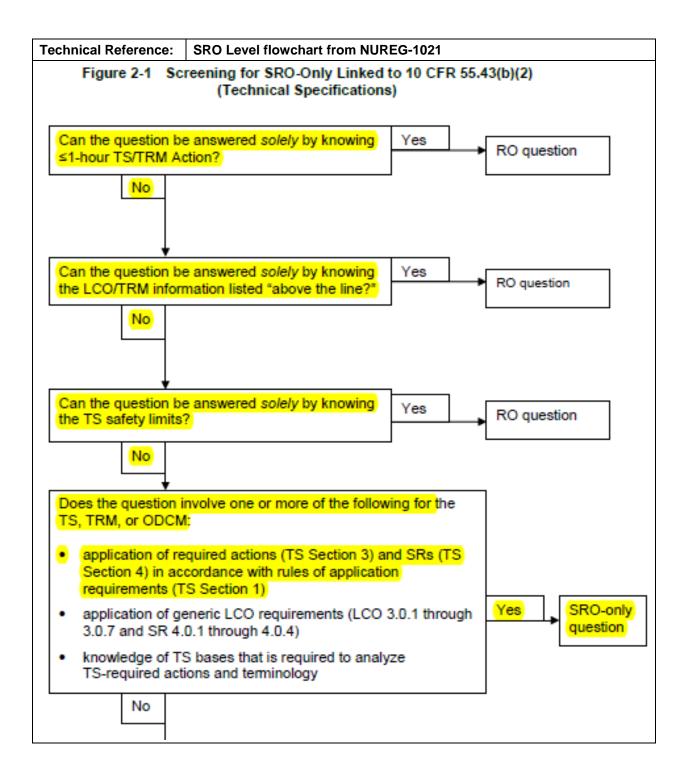
With NO operator action, Pressurizer level should FIRST exceed the ___(1)___ level LCO 3.4.9 Tech Spec limit and the Unit will be required to be in MODE 3 within a MAXIMUM of ___(2)___ hours from the time that the LCO 3.4.9 limit is exceeded.

- A. (1) low
 - (2) 6
- B. (1) low (2) 7
- C. (1) high (2) 6
 - ()
- D. (1) high
 - (2) 7


Pro	Proposed Answer: A		
Exp	lanations:		
Α.	Correct		
В.	B. First part is correct. Second part is plausible because if pressurizer level lowers to 25%, both class Pressurizer heater banks will be INOPERABLE resulting in LCO 3.0.3. However, per LCO 3.4.9 the unit will be in a 6 hour action once Pressurizer level lowers to 27%.		
C.	 First part is plausible because if the Charging Pump Mode Selector switch is in the 1-2-3 position, CHA-P01 will remain running, letdown will isolate and the LCO 3.4.9 Pressurizer level high Tech Spec value of 56% will be exceeded. 		
D.			

Question Source:	X	New
		Bank
		Modified
		Previous NRC Exam


Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis


Level of Difficultly:	3	
10CFR55.43:	2	
Reference Provided:	N	
Learning Objective:	22676 – Given conditions when an LCO is not met, apply Tech Spec Section 3.4.9 (Pressurizer) in accordance with tech pec 3.4.9	

Те	Technical Reference: Operator Information Manual				
		Y Y			
		Level Deviation Program			
	S	elected Level vs Selected Setpoint			
	+15% 1 - Nor n	nally Running Pump Stops			
	+14% ↓ - Norn	nally Running Pump Restarts			
	+ 3% 1 – Hi L	evel Dev. Backup Heaters on	_		
	+2.5%↓ – Hi L	evel Dev. resets, Backup Heaters off			
	- 14% 🕇 - Stan	dby Pump Stops			
	- 23%) 🔱 - Sta	ndby Pump Starts			

Technical Reference:	Technical Specifications			
3.4 REACTOR COOLANT SYSTEM (RCS)				
3.4.9 Pressurizer				
LCO 3.4.9	The pressurizer shall be OPERABLE with:a.Pressurizer water level $\geq 27\%$ and $\leq 56\%$; andb.Two groups of pressurizer heaters OPERABLE with the capacity of each group ≥ 125 kW.			

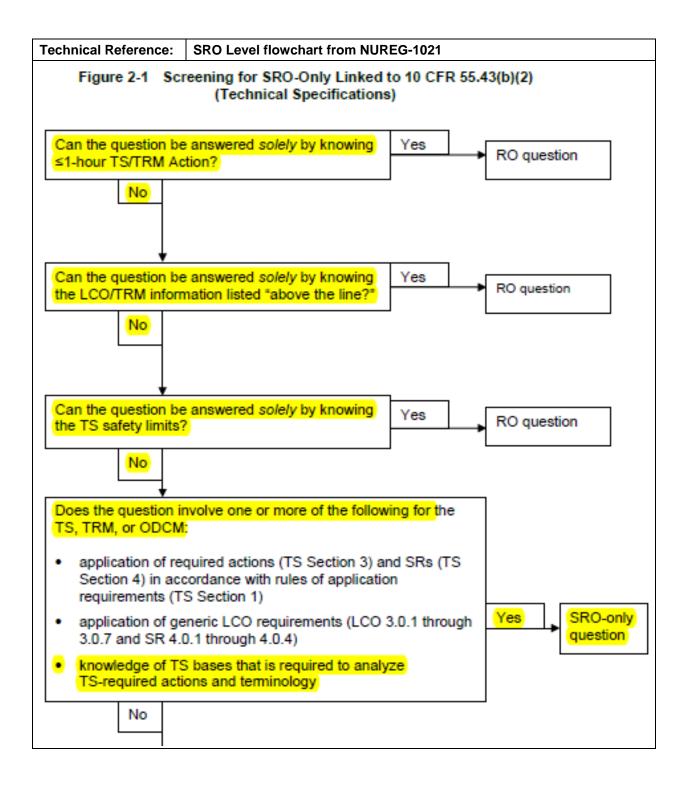
Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Fuel Handling Equipment: Ability to predict and/or	Tier		2
monitor changes in parameters (to prevent exceeding design limits) associated with operating the Fuel	Group		2
Handling System controls including: Water level in the	K/A	034 A1.0	2
refueling canal	IR		3.7

Given the following conditions:

- A crack in the Spent Fuel Pool liner has caused the level to lower
- Spent Fuel Pool level is 23 ft 8 in above the irradiated fuel assemblies
- Level is lowering at a rate of 1 inch every 5 minutes
- (1) With NO operator action, Spent Fuel Pool level should reach the Technical Specification MINIMUM level in...
- (2) The basis for the Technical Specification MINIMUM level is to...
- A. (1) 40 minutes
 - (2) shield and minimize the general area dose when the storage racks are filled to their maximum capacity
- B. (1) 40 minutes
 - (2) maintain Spent Fuel Pool keff < 0.95 assuming the most limiting single fuel mishandling accident
- C. (1) 60 minutes
 - (2) shield and minimize the general area dose when the storage racks are filled to their maximum capacity
- D. (1) 60 minutes
 - (2) maintain Spent Fuel Pool keff < 0.95 assuming the most limiting single fuel mishandling accident

Proposed Answer: A		Α				
Exp	Explanations:					
Α.	Correct					
В.	B. First part is correct. Second part is plausible because it is the basis for the Spent Fuel Pool boron concentration. If the Spent Fuel Pool lowers and the temperature rises to the point that some Boron may come out of solution and lower the Boron Concentration.					
C.	First part is plausible because Spent Fuel Pool level 22 feet 8 inches above irradiated fuel is the Spent Fuel Pool LO-LO alarm setpoint. Second part is correct.					
D.	Spent Fuel Pool L Spent Fuel Pool b	_O-LO	ecause Spent Fuel Pool level 22 feet 8 inches above irradiated fuel is the O alarm setpoint. Second part is plausible because it is the basis for the concentration. If the Spent Fuel Pool lowers and the temperature rises to ron may come out of solution and lower the Boron Concentration.			

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam


Cognitive Level: Memory or Fundamental Knowledge		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	2	
Reference Provided:	Ν	
Learning Objective:	21218 – Given a set of plant conditions, determine whether or no LCOs and TLCOs of 3.7 are satisfied in accordance with Tech Sp	

Technical Reference:	Technical Specifications
3.7.14 Fuel Stora	ge Pool Water Level
	_
LCO 3.7.14	The fuel storage pool water level shall be ≥ 23 ft over the top of
	irradiated fuel assemblies seated in the storage racks.

Technical Reference:	Technical Specifications Basis						
B 3.7.14 Fuel Stora	B 3.7.14 Fuel Storage Pool Water Level						
BASES							
	The minimum water level in the fuel storage pool meets the assumptions of iodine decontamination factors following a fuel handling accident. The specified water level shields and minimizes the general area dose when the storage racks are filled to their maximum capacity. The water also provides shielding during the movement of spent fuel.						

Technical Reference:	Technical Specifications Basis					
B 3.7.15 Fuel Storage Pool Boron Concentration						
BASES						
a c ti ti k li c k	As described in LCO 3.7.17, "Spent Fuel Assembly Storage," fuel assemblies are stored in the spent fuel racks in accordance with riteria based on initial enrichment and discharge burnup. Although the water in the spent fuel pool is normally borated to ≥ 2150 ppm, the criteria that limit the storage of a fuel assembly to specific rack bocations is conservatively developed without taking credit for boron. In order to maintain the spent fuel pool k _{eff} < 1.0, a soluble boron concentration of 900 ppm is required to maintain the spent fuel pool $t_{eff} \le 0.95$ assuming the most limiting single fuel mishandling incident.					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Condensate: Ability to analyze the effect of	Tier			2
maintenance activities, such as degraded power sources, on the status of limiting conditions for	Group			2
operations	K/A	056 G 2.2.36		
	IR			4.2

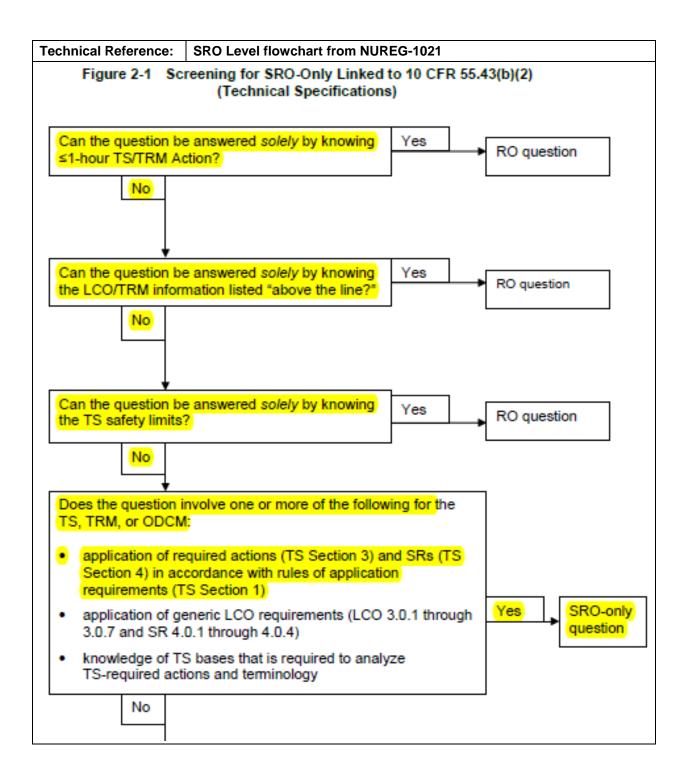
Given the following conditions:

- Unit 1 is operating at 100% power
- The CST is being drained for emergent corrective maintenance
- CST has just dropped below 22 feet

Per LCO 3.7.6, Condensate Storage Tank, the crew must INITIALLY verify operability of the RMWT within a MAXIMUM of ____(1)___ hours and to restore the CST to OPERABLE the CST level will need to be raised to a MINIMUM of ____(2)___ feet.

- A. (1) 4 (2) 29.5
- B. (1) 4 (2) 31
- C. (1) 5 (2) 29.5
- D. (1) 5 (2) 31

Proposed Answer: A						
Ехр	Explanations:					
Α.	Correct					
В.	First part is correct. Second part is plausible because 31 feet is the alarm setpoint for 'CST AT MINIMUM OPERATING LEVEL'.					
C.	First part is plausible because 5 hours would be allowed if this was a surveillance per SR 3.0.2. However, there is no extension for an LCO. Second part is correct.					
D.	However, there is	no e	ecause 5 hours would be allowed if this was a surveillance per SR 3.0.2. xtension for an LCO. Second part is plausible because 31 feet is the alarm INIMUM OPERATING LEVEL'.			


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.43:	2
Reference Provided:	N
Learning Objective:	17468 – Given conditions when an LCO is not met, apply Tech Spec 3.7.6 in accordance with Tech Specs

Technical Reference:	Technical Specifications					
3.7.6 Condensate Storage Tank (CST)						
LCO 3.7.6	he CST level shall be ≥ 29.5 ft.	level shall be ≥ 29.5 ft.				
APPLICABILITY:	APPLICABILITY: MODES 1, 2, and 3, MODE 4 when steam generator is relied upon for heat removal.					
ACTIONS						
CONDITION	REQUIRED ACTION COMPLETION TIME	Ξ				
A. CST level not limit.	within A.1 Verify OPERABILITY of 4 hours backup water supply.					

Technical Reference: 40AL-9RK6A, Panel B06A Alarm Responses						
PALO VERDE PROCEDURE Page 259 of 305						
Panel	40A	Revision 22				
			Page 1 of 3			
Response S	ection	6A15B				
Condensate Storage	Tank at Minimum Operating Level		AT UM TING			
Point ID Description Setpoint						
CTLSL11 CST at M	CTLSL11 CST at Minimum Operating Level 31 ft					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Ability to interpret reference materials, such as	Tier			3
graphs, curves, tables, etc.	Group			
	K/A		G 2.1.25	
	IR			4.2

Using the Safety Function Tracking Sheet on the following page:

- (1) The first Safety Function performed will be...
- (2) After all Challenged and Jeopardized Safety Functions are performed, the next Success Path in use to be verified will be...
- A. (1) Pressure Control
 - (2) MVDC
- B. (1) Pressure Control(2) Reactivity Control
- C. (1) Heat Removal (2) MVDC
- D. (1) Heat Removal(2) Reactivity Control

PALO VERDE NUCLEAR GENERATING STATION

40EP-9EO09		Revision 6		
Derre	•	~*	045	

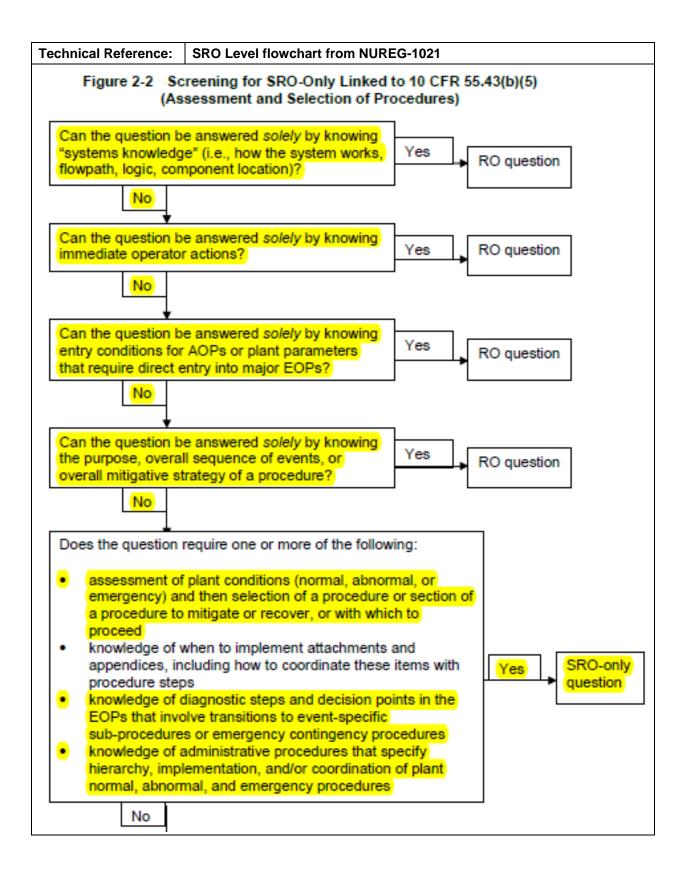
FUNCTIONAL RECOVERY

Page 8 of 245

4.0 SAFETY FUNCTION TRACKING

Safety Function	Success Path	Path in use	Challenged	Jeopardized	Completed
RC	RC-1; CEA Insertion	x			
	RC-2; CVCS Boration				
	RC-3; HPSI Boration				
MVDC	MVDC-1; Batt Chargers/Station Batt	x			
MVAC	MVAC-1; Offsite Power	x			
	MVAC-2; DGs				
	MVAC-3; SBOGs				
	MVAC-4; Other Unit DGs				
IC	IC-1; CVCS	x			
	IC-2; SI				
PC	PC-1; Subcooled Pressure Control	x	x		
	PC-2; RCGVS				
	PC-3; Saturated Pressure Control				
HR	HR-1; SG with no SI	x		x	
	HR-2; SG with SI				
CI	CI-1; Auto/Man CTMT Isolation	x			
CTPC	CTPC-1; CTMT Fans	x			
	CTPC-2; CS				
		·			

Pro	Proposed Answer: C					
Exp	lanations:					
Α.	RCS Heat Remov	First part is plausible because the Pressure Control safety function is higher in the hierarchy than RCS Heat Removal. However, since it's jeopardized it takes priority over a challenged safety function. Second part is correct.				
В.	First part is plausible because the Pressure Control safety function is higher in the hierarchy than RCS Heat Removal. However, since it's jeopardized it takes priority over a challenged safety function. Second part is plausible because Success Path performance is normally done in safety function hierarchy order. However, since the completed column is greyed out (all CEAs inserted), the first safety function success path verified will be MVDC.					
C.	Correct					
D.	in safety function	hiera	cond part is plausible because Success Path performance is normally done rchy order. However, since the completed column is greyed out (all CEAs ty function success path verified will be MVDC.			


Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Х	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	Y	Safety Function Tracking Sheet
Learning Objective:	27348 – Given the FRP is being performed and specific plant conditions, determine if a specific selected success path is jeopardized or challenged and how that information will be used in accordance with 40EP-9EO09	

Technic	echnical Reference: 40DP-9AP14, Functional Recovery Technical Guideline					
PALC	PALO VERDE PROCEDURE Page 7 of 217					
	Fun	ictional	Recovery Technical Guideline	40DP-9AP14	Revision 37	
4.0	INSTRU	CTION	s			
4	4.1 Ch	aracter	ization of Event			
	4.1.1		unctional Recovery procedure is impleme the following conditions is met:	nted following a reactor	trip when	
		• Tł	ne event cannot be diagnosed.			
		• Ar	n appropriate Optimal Recovery Procedur	e (ORP) is not available.	.	
		• Th	ne ORP in use is not satisfying safety fund	tions.		
4	4.2 Pro	ocedure	e Strategy			
	4.2.1 The basic strategy of the Functional Recovery procedure is to first determine status of all of the safety functions and then build a procedure using the appropriate success paths that will recover or maintain the acceptance criteria each safety function.					
Once the Functional Recovery procedure has been entered, the operator the Safety Function Tracking page and the Resource Assessment Trees determine the acceptance criteria and the equipment needed to satisfy safety function. The operator must determine whether each safety funct jeopardized (acceptance criteria not met), challenged (acceptance criteria action must be taken to ensure that the criteria continue to be met) or sa order to set the priorities for performance of the procedure.			(RATs) to each ion is a met but			
		addres	rdized safety functions are addressed firs ssed next, with appropriate actions for sat ety functions are addressed in the establi	isfied safety functions ta		

Technical Reference: 40DP-9AP14, Functional Recovery Technical Guideline					
PALO VERDE PROCEDURE	PALO VERDE PROCEDURE Page 16 of 217				
Functional Recovery Technical Guideline 40DP-9AP14					
4.6 Safety Function Tracking 4.6.1 The Safety Function Tracking page organizes a the success paths in use. It was created to give keep track of selected success paths in use and columns identify all the success paths as descrifunction Status Check. The third column provid the success paths in use. Also, the third column new success path in use when conditions warra path. The fourth column provides the CRS with selected success path is challenged. The fifth or place to annotate whether the selected success sixth column provides the CRS with a place to a instructions within the selected success path in the selected succes path in the selected success path in the sele	the CRS a convenient p their status. The first tw bed in section 5.0, Safet es the CRS a place to an provides a place to ann int selection of a new suc a place to annotate whet olumn provides the CRS path is in jeopardy or no annotate that appropriate use have been complete eaning. Performing the required when the asso feeting the acceptance of	lace to y nnotate otate a ccess ther the with a ot. The ed.			

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Knowledge of new and spent fuel movement	Tier		3
procedures	Group		
	K/A	G 2.1.42	2
	IR		3.4

The transportation of a dry cask from the Unit 2 Fuel Building to its designated storage location at the ISFSI is complete

- (1) Ownership of the dry cask while being delivered to the ISFSI is the responsibility of the...
- (2) Ownership of this dry cask concerning the performance of specific conditional surveillances and inspections is the responsibility of the...
- A. (1) Unit 1 Shift Manager(2) Unit 1 Shift Manager
- B. (1) Unit 1 Shift Manager(2) Unit 2 Shift Manager
- C. (1) Unit 2 Shift Manager(2) Unit 1 Shift Manager
- D. (1) Unit 2 Shift Manager(2) Unit 2 Shift Manager

Pro	Proposed Answer: C				
Exp	lanations:				
Α.	First part is plausible since Unit 1 has ownership of the dry cask conditional surveillances and inspections. Second part is correct.				
В.	First part is plausible since Unit 1 has ownership of the dry cask conditional surveillances and inspections. Second part is plausible because Unit 2 has ownership of the dry cask while it being delivered to the ISFSI.				
C.	Correct				
D.	First part is correct. Second part is plausible because Unit 2 has ownership of the dry cask while it being delivered to the ISFSI.				

Question Source:		New	
	Х	Bank	
		Modified	
	Х	Previous NRC Exam	2016

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:		
10CFR55.43:		
Reference Provided:		
Learning Objective:	90026 – Describe Operation's responsibilities for Dry Cask Storage Operations	

Technical Reference: 2016 NRC Exam Original Question

The transportation of a dry cask from the Unit 2 Fuel Building to its designated storage location at the ISFSI is complete

Who has the ownership of this dry cask concerning the performance of specific conditional surveillances and inspections?

- A. Unit 1 Shift Manager
- B. Unit 2 Shift Manager
- C. Unit 1 Control Room Supervisor
- D. Unit 2 Control Room Supervisor

Т	echnical Reference:	40DP-9OP02, Conduct of Operations			
	PVNGS NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 120 of 165				
	٥	onduct of Operations	40DP-90P02	Revision 72	
	con pay	en notified of an emergency, then area op nmence a walkdown of their respective are ing particular attention to steam or water l ipment.	as looking for potential p	roblems,	
		ere will be no turnovers conducted during t horization from the SM/CRS.	the event without prior		
	4.14 Dry Cas	k Storage Operations			
		e SM maintains responsibility and ownersh heir respective Power Block.	nip for all activities that ta	ke place	
	4.14.1.1	Nuclear Safety and Reactivity Managem SM and are not relinquished to any othe		with the	
		Dry Cask Storage Operations which take p hority of the respective Unit SM.	place in a Unit will be und	ler the	
	4.14.2.1	The SM is responsible to ensure that all plant/site policies and programs.	operations are per appro	oved	
	res	SM responsible for Dry Cask Storage Op ponsible for Dry Cask Operations during to SI and any E-Plan implementation associa	he subsequent transport		
	<mark>4.14.3.1</mark>	Transport Operations start when the loan respective Fuel Building and RCA and e Cask is in the designated storage location	nds when the loaded Co		
	spe	Unit 1 SM has ownership of the ISFSI co cific conditional surveillance, inspections, vities.			

 Technical Reference:
 SRO Level Question Criteria from NUREG-1021

G. Fuel-Handling Facilities and Procedures [10 CFR 55.43(b)(7)]

Some examples of SRO exam items for this topic include the following:

- refuel floor SRO responsibilities
- assessment of fuel-handling equipment SR acceptance criteria
- prerequisites for vessel disassembly and reassembly
- decay heat assessment
- assessment of SRs for the refueling mode
- reporting requirements
- emergency classifications

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Ability to perform pre-startup procedures for the	Tier		3
facility including operating those controls associated with plant equipment that could affect reactivity	Group		
with plant equipment that could affect reactivity	K/A	G 2.2.33	
	IR		4.4

Given the following conditions:

• Unit 1 is conducting a Reactor startup

Per 40DP-9OP02 Conduct of Operations, during a Reactor Startup the Reactivity Manager can be (1) and the EARLIEST they are required to be stationed is when the (2).

- A. (1) an off-watch SRO OR the Unit 1 licensed STA(2) Shutdown Group Bank CEAs are withdrawn
- B. (1) an off-watch SRO OR the Unit 1 licensed STA(2) Regulating Group 1 CEAs are withdrawn
- C. (1) an off-watch SRO ONLY(2) Shutdown Group Bank CEAs are withdrawn
- D. (1) an off-watch SRO ONLY(2) Regulating Group 1 CEAs are withdrawn

Pro	posed Answer:	С		
Exp	lanations:			
Α.		First part is plausible because the on watch STA has an SRO license however, he cannot perform duties as the STA and the Reactivity Manager at the same time. Second part is correct.		
В.	First part is plausible because the on watch STA has an SRO license however, he cannot perform duties as the STA and the Reactivity Manager at the same time. Second part is plausible because when Regulating Group CEAs are withdrawn, it is the first time that a reactivity change is observable. However, the Reactivity Manager will be stationed during Shutdown bank withdrawal.			
C.	Correct			
D.	withdrawn, it is th	e firs	cond part is plausible because when Regulating Group CEAs are t time that a reactivity change is observable. However, the Reactivity ned during Shutdown bank withdrawal.	

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	Ν	
Learning Objective:		823 – Determine the control room operator's responsibilities with pect to Reactivity Management

٦	Technical Reference: 40DP-9OP02, Conduct of Operations							
	PVNGS NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 109 of 165							
	Conduct of Operations 40DP-90P02 Revision 72							
	4.9.5 Reactor Startup and Shutdown							
	4.9.5.1 A Reactivity Manager (SRO, other than the CRS or STA, with cognizance of all reactivity manipulations) is assigned to the Control Room for all reactor startup and planned reactor shutdown activities, from the commencement of the first reactivity insertion for a shutdown or CEA withdrawal on a startup.							

Т	echnical Reference:	40OP-9ZZ23, Outage GOP				
	PALO VERDE PROCEDURE Page 138 of 509					
		Outage GOP	400P-9ZZ23	Revision 82		
	Step 6.5.34.C, Continued					
		IF Chemistry reports the backup dip sar less than 4000 ppm, THEN <u>perform</u> the following:	nple taken at Step 6.5.34	4.C.1. is		
		 a) <u>Ensure</u> PCN-V118, Fuel Transfer Tu closed. 	be Canal Isolation, rema	ins		
		 b) <u>Direct</u> Chemistry to sample the Refu 137.8 ft. 	eling Pool at level greate	er than		
		I the Refueling SRO reports ready to lift to perform the following:	he CEA Support Plate,			
	A. Check the SM has granted permission to raise the CEA Support Plate.					
	B. <u>R</u> e	ecord an entry in CORA Autolog Core Alte	rations have commence	d.		
		NOTE		7		
	Step 6.5	.35.C and Step 6.5.35.D are performed si	imultaneously.			
	C. <u>Commence</u> filling the Refueling Pool as the UGS Lift Rig working platform is raised per 400P-9PC02, Filling and Draining the Refueling Pool.					
	D. <u>Direct</u> the Refueling SRO to perform the following to raise the UGS Lift Rig:					
	<u> </u>	Raise slowly the UGS Lift Rig working p level increases.	latform as the Refueling	Water		
	<u> </u>	Check all CEAs are being withdrawn wi platform.	th the UGS Lift Rig work	ing		

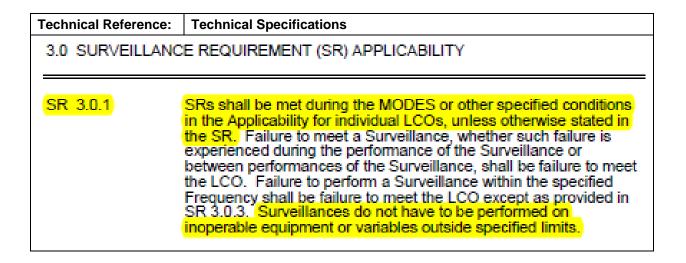
Technical Reference:	SRO Level Question Criteria from NUREG-1021				
The applicant's knowledge can be evaluated at the level of 10 CFR 55.43(b)(5) by ensuring that the additional knowledge of the procedure's content is required to correctly answer the written test item. The following are examples:					
_	f when to implement attachments and appendices, including how to nese items with procedure steps				
procedures (f diagnostic steps and decision points in the emergency operating EOPs) that involve transitions to event-specific sub-procedures or contingency procedures				
	f administrative procedures that specify hierarchy, implementation, ination of plant normal, abnormal, and emergency procedures				

Examination Outline Cross-Reference:	Level	RO	SRO
K/A: Ability to apply Technical Specifications for a	Tier		3
system	Group		
	K/A	G 2.2.4	40
	IR		4.7

Given the following conditions:

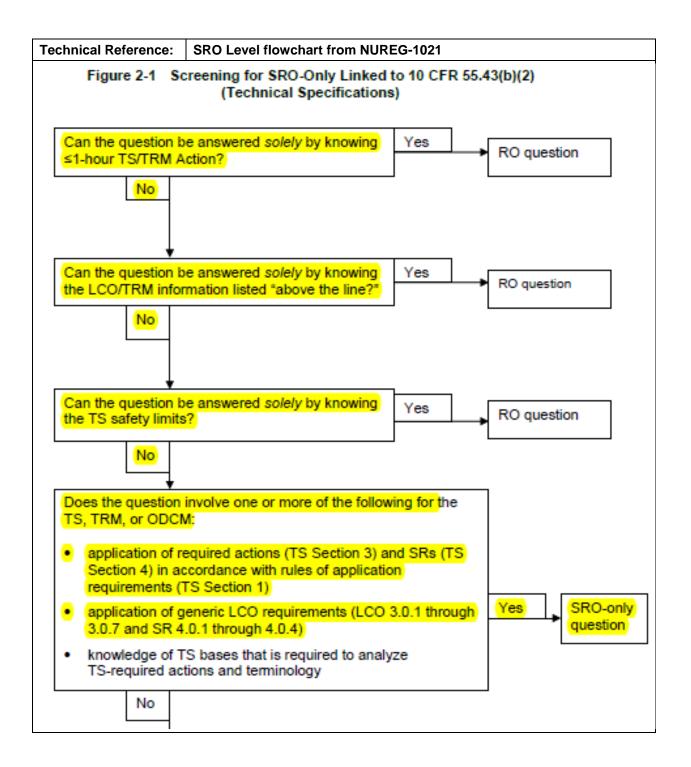
- Unit 1 is exiting an outage with T_{cold} 345°F
- Preparations are being made to enter MODE 3
- During the outage, maintenance on AFA-P01 was conducted and the governor was replaced
- All maintenance activities have been completed including all Surveillance Requirements, with the exception of Surveillances needed to be performed at NOP/NOT

Based on these conditions, AFA-P01 is considered...


- A. OPERABLE, and SR 3.0.4 allows changing modes only after performing a risk assessment
- B. OPERABLE, because SR 3.0.1 allows the completion of required surveillances when plant conditions support
- C. INOPERABLE, however the mode change can be completed and the required surveillances must be completed within a MAXIMUM of 24 hours
- D. INOPERABLE, however the mode change can be completed and the required surveillances must be completed within a MAXIMUM of 72 hours

Pro	posed Answer:	В	
Exp	lanations:		
Α.	A. Plausible since AFA-P01 is operable, and its plausible since 3.0.4 addresses changing modes and when to perform a risk assessment.		
В.	Correct		
C.	Plausible since not all surveillances on AFA-P01 have been completed. 24 hours is plausible since when a surveillance is out of periodicity, the time requirement to complete the surveillance is that surveillance's completion time or 24 hours, whichever is longer.		
D.	Plausible since not all surveillances on AFA-P01 have been completed. 72 hours is plausible since it is the time requirement to perform SR 3.7.5.3 once at NOT.		

Question Source:		New		
	Х	Bank		
		Modified		
	Х	Previous NRC Exam	2016	


Cognitive Level:	Χ	Memory or Fundamental Knowledge	
		Comprehension or Analysis	

Level of Difficultly:		
10CFR55.43:		
Reference Provided:		
Learning Objective:	21081 – Concerning Technical Specification, describe the requirements of SR 3.0.1 in accordance with Tech Specs	

Technical Reference:	Technical Reference: Technical Specifications Bases				
B 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY					
BASES					
LCOs	LCO 3.0.1 through LCO 3.0.8 establish the general requirements applicable to all Specifications and apply at all times unless otherwise stated.				
LCO 3.0.1	LCO 3.0.1 establishes the Applicability statement within each individual Specification as the requirement for when the LCO is required to be met (i.e., when the unit is in the MODES or other specified conditions of the Applicability statement of each Specification).				

Technical Reference:	Technical Specifications	
		AFW System 3.7.5
SURVEILLANCE R	EQUIREMENTS	
	SURVEILLANCE	FREQUENCY
bi tu oi	erify each AFW manual, power operated, and utomatic valve in each water flow path and in oth steam supply flow paths to the steam irbine driven pump, that is not locked, sealed, r otherwise secured in position, is in the prect position.	In accordance with the Surveillance Frequency Control Program
	ot required to be performed for the turbine iven AFW pump until 72 hours after reaching 32°F in the RCS. erify the developed head of each AFW pump the flow test point is greater than or equal to e required developed head.	In accordance with the INSERVICE TESTING PROGRAM
SR 3.7.5.3 - 1.	NOTES	

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Ability to approve release permits	Tier			3
	Group			
	K/A		G 2.3.2	
	IR			3.8

Given the following conditions:

- A large break LOCA has occurred.
- A Site Area Emergency has been declared
- Due to emergency conditions, a gaseous radioactive release from Containment must be performed to relieve pressure in the Containment and bring the plant to a safer condition.
- (1) During a SAE, releases ____(1)___ exceed EPA Protective Action Guidelines (PAGs) at the site boundary
- (2) The SM/CRS (2) the only personnel that may AUTHORIZE the release
- A. (1) WILL (2) ARE
- B. (1) WILL
 - (2) are NOT
- C. (1) will NOT (2) ARE
- D. (1) will NOT (2) are NOT

Pro	posed Answer:	С				
Exp	lanations:					
Α.	First part is plausible because during a SGTR when ADVs must be used for the initial cooldown, federal limits are not exceeded. That scenario would be an Alert declaration. It may be assumed that because an SAE is the next higher declaration, PAGs will be exceeded. Second part is correct.					
В.	First part is plausible because during a SGTR when ADVs must be used for the initial cooldown, federal limits are not exceeded. That scenario would be an Alert declaration. It may be assumed that because an SAE is the next higher declaration, PAGs will be exceeded. Second part is plausible because the RP Manager and Sr VP Site Operations must acknowledge the release but they cannot authorize the release.					
C.	Correct					
D.	First part is correct. Second part is plausible because the RP Manager and Sr VP Site Operations must acknowledge the release but they cannot authorize the release.					

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	Χ	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	3
10CFR55.43:	4
Reference Provided:	N
Learning Objective:	25949 - Describe whose authority is needed to exceed requirements and what reporting is necessary

Technical Reference:	74RM-9EF20, Gaseous Radioactive Release and Offsite Dose
	Assessment

Appendix B - Release Permit Review and Approval Matrix							
Description of Release Action Levels	Release Level as % of any Dose/Dose Rate ODCM Requirement	Radiation Protection Supervision	Radiological Services Superintendent	Operations Department Leader	Radiation Protection Manager	Shift Manager/CRS	Sr Vice President Site Operations
Less than or Equal to 50% of the Admin. Dose/Dose Rate Limit ^(a)	Dose/Dose	Review and Approval ^(e)	N/A	N/A	N/A	Authorize ^(c)	N/A
Greater than 50% but less than the Admin. Dose/Dose Rate Limit ^(a)	Dose/Dose Rate >40% and <80%	Review	Review and Approval	Acknowledge ^(b)	Acknowledge ^(b)	Authorize ^(c)	N/A
Greater than or equal to the Admin. Dose/Dose Rate Limit ^{(a)(f)}	Dose/Dose Rate ≥ 80%	Review	Review	Review and Approval	Acknowledge ^(b)	Authorize ^(d)	Acknowledge ^{(b}

a. Applies to the quarterly and annual air and organ dose limits and instantaneous dose rate limits and not to the 31 day dose projection limits.

b. Acknowledgment requires that the appropriate individual be informed that the applicable dose/dose rate limit is being approached and that actions should be taken to reduce future releases. Acknowledgment should be obtained prior to release but can be obtained as soon as practical after the release.

c. Authorization of Permits for routine continuous releases are not required.

d. Under abnormal (emergency) conditions verbal approval for exceeding ODCM Requirement limits may be given by the CRS/Shift Manager when performing the release if it will bring the plant in to a safer condition. A notification to the NRC within one hour in accordance with 10CFR50.72 will be required after approval. If ODCM Requirement limits for dose are exceeded (ODCM sections 4.4a, 4.4b, 4.1a, 4.1b, 4.2a or 4.2b) comply with ODCM Requirement 5.1.

Technical Reference:	SRO Level Question Criteria from NUREG-1021					
D. Radiation Hazards That May Arise during Normal and Abnormal Situations, including Maintenance Activities and Various Contamination Conditions [10 CFR 55.43(b)(4)]						
Some examples of	of SRO exam items for this topic include the following:					
 process for 	r gaseous/liquid release approvals (i.e., release permits)					
-	nd interpretation of radiation and activity readings as they pertain to the of administrative, normal, abnormal, and emergency procedures					
	nd interpretation of coolant activity, including comparison to emergency a and/or regulatory limits					

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of general guidelines for EOP usage	Tier			3
	Group		-	
	K/A		G 2.4.14	
	IR			4.5

- (1) Per EOP Operations Expectations, during performance of SPTAs, when a step requires going to contingency actions...
- (2) Per EOP Operations Expectations, once an EOP is entered the CRS should ensure that Safety Function Status Checks are completed within a MAXIMUM of...
- A. (1) CRS concurrence is REQUIRED(2) 15 minutes
- B. (1) CRS concurrence is REQUIRED(2) 30 minutes
- C. (1) CRS concurrence is NOT required(2) 15 minutes
- D. (1) CRS concurrence is NOT required(2) 30 minutes

Pro	posed Answer:	Α				
Exp	lanations:					
Α.	Correct					
В.	B. First part is correct. Second part is plausible because the STA (normally performs SFSCs) will perform Accountability and a Core Damage Assessment within 30 minutes of an EAL being exceeded.					
C.	First part is plausible because when Reactor trip and ESFAS setpoints are exceeded, CRS concurrence is not required for manual actuation. Second part is correct.					
D.						

Question Source:	Χ	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:	X	Memory or Fundamental Knowledge
		Comprehension or Analysis

Level of Difficultly:	2
10CFR55.43:	5
Reference Provided:	N
Learning Objective:	Given that an ORP, FRP, or LMFRP is in use, describe the performance of the Safety Function Status Checks in accordance with 40DP-9AP16

Те	chnic	al F	Reference:	EOP Operations Expectations	6							
Γ	PA	LO	VERDE NUC	CLEAR GENERATING STATION		Revision 27						
		E		TIONS EXPECTATIONS	Page 6 of 50							
[4.0	STANDARD POST TRIP ACTIONS (SPTAs)										
		SPTA Step: ALL										
	 The CRS may use 1, 2, or 3 ROs to complete SPTAs. Normally 2 or 3 will be used. W 3 ROs, the third RO normally checks MVA, then checks the RMS. The ROs are to be flexible and gather information as requested by the CRS. 											
	The STA and SM have to be careful not to disrupt the close teamwork of the CRS and ROs during the SPTAs. Normally, the SM and STA should remain behind the communications console during SPTAs.											
		Unless otherwise noted, the SPTAs consist of quick actions from the control room. A other actions directed by the CRS during SPTAs should conform to this rule.										
	 The ROs should communicate directly to the CRS. Cross communication between the ROs should be limited to specific items such as changing feed flow, and initiating activate will result in annunciators. The CRS should communicate with the ROs and ensure the ROs acknowledge any prompted questions with a value, trend, and method of control, if applicable. The CR should communicate with the STA as necessary to concur with the diagnosis. The CR should communicate with the SM to discuss the diagnosis. 											
	 The CRS shall normally direct progress through the SPTA's by prompting the ROs for information relating to the SPTA steps. Expected performance is to detect and verify condition, notify other control room personnel of the condition (using Update or focus communication). 											
		7.	CRS concu	rrence shall be obtained before ta	iking	contingency actions.						
		<mark>8.</mark>	occurred, th			peen exceeded and a trip has not CRS and other control room personnel						

Technical Reference:	EOP Operations Expectations	
	CLEAR GENERATING STATION	Revision 27 Page 5 of 50
This is norm interval of a CRS gets to	nally delegated to the STA. The STA pproximately every 15 minutes. If the	ction Status Check (SFSC) is completed. will normally perform the SFSC at an STA is not in the control room when the trol room staff (normally the 3rd Reactor SC until the STA arrives.

Technical Reference:	SRO Level Question Criteria from NUREG-1021								
The applicant's knowledge can be evaluated at the level of 10 CFR 55.43(b)(5) by ensuring that the additional knowledge of the procedure's content is required to correctly answer the written test item. The following are examples:									
	f when to implement attachments and appendices, including how to ese items with procedure steps								
procedures (f diagnostic steps and decision points in the emergency operating EOPs) that involve transitions to event-specific sub-procedures or ontingency procedures								
	f administrative procedures that specify hierarchy, implementation, ination of plant normal, abnormal, and emergency procedures								

Examination Outline Cross-Reference:	Level	RO		SRO
K/A: Knowledge of the lines of authority during	Tier			3
implementation of the emergency plan	Group			
	K/A		G 2.4.37	
	IR			4.1

Given the following conditions:

- It is Thursday afternoon during a non-holiday workday
- At time = 1300 An ALERT is declared for an event in progress
- At time = **1530** A GENERAL EMERGENCY is declared

The Emergency Coordinator is located in the (1) and the PAR will be performed by the (2).

- A. (1) Control Room
 - (2) Emergency Coordinator
- B. (1) Control Room(2) Emergency Operations Director (EOD)
- C. (1) Technical Support Center (TSC)(2) Emergency Coordinator
- D. (1) Technical Support Center (TSC)(2) Emergency Operations Director (EOD)

Pro	posed Answer:	D						
Exp	Explanations:							
Α.	A. Plausible because if the General Emergency was declared less than an hour after the Alert, th the Shift Manager will still have EC duties in the Control Room including PARs.							
В.			ecause if the General Emergency was declared less than an hour after the nager will still have EC duties in the Control Room including PARs. Second					
			cond part is plausible if the General Emergency was declared less than an in the Shift Manager will still have EC duties in the Control Room including					
D.	Correct							

Question Source:	Х	New
		Bank
		Modified
		Previous NRC Exam

Cognitive Level:		Memory or Fundamental Knowledge
	Χ	Comprehension or Analysis

Level of Difficultly:	3	
10CFR55.43:	5	
Reference Provided:	N	
Learning Objective:		80 – State the purpose and location of the onsite and offsite ergency Response Facilities

T	echni	ical R	eference:	EP-0904, ERO/ERF Activation and Ope	eration				
	PAL	.O VE	RDE PRO	CEDURE	Page 5	of 29			
		E	ERO/ERF A	EP-0904	Revision 10				
4.0 DEFINITIONS									
		4.1		I and Control — The designated Emerge at has overall responsibility for the Palo V					
			 Emerged 	ency Coordinator - Satellite Technical Su	pport Center (STSC)				
			 Emerged 	ency Coordinator - Technical Support Ce	nter (TSC)				
			 Emerged 	ency Operations Director - Emergency O	perations Facility (EOF)				
		4.2	-	cy Personnel — The organizational group emergency condition.	os that perform a function	nal role			
		4.3 Emergency Response Organization (ERO) Activation — The process used the intention of fully staffing the facility to assume the positional responsibilities described in the Emergency Plan. ERO Activation time is measured from the tin when the event is classified until the responders have reported to the facility.							
		<mark>4.4</mark>	assigned f functions. EOF) with	on when it is ready to as ve the on-shift staff of the applicable ERF (TSC, (tion during normal worki he facility can be declare	ose OSC and ng hours				

Technical Reference: EP-0904, ERO/ERF Activation and Operation							
PALO VERDE PROCEDURE			Page 7 of 29				
ERO/ERF ACTIVATION AND OPER/	EP-090	4 Revision 10					
 6.0 INSTRUCTIONS 6.1 Non-Delegable Responsibilities 6.1.1 <u>Transfer</u> the following responsite Technical Support Center (ECOperations Director (EOD) in t Final decision to notify the Final decision to notify the Final decision to recommend 6.1.2 <u>Transfer</u> the following responsite Coordinator-Technical Support Final decision to declare the Final decision for issuance lodide or KI) to PVGS emended 6.1.3 <u>Move</u> non-delegable responsite indicated in the below table. 	STSC) in the Cou he Emergency O offsite agencies and protective acti ibilities from the E Center (EC-TSC he emergency cla of thyroid blockin ergency workers a exposure per EF	ntrol Room to the perations Facilit cons to the offsit C-STSC to the sitication ng agents (that and onsite person A-400 (PAG Mathematication)	ty (EOF): te agencies Emergency is, Potassium onnel. anual) limits.				
Classification	×						
PARs Notifications		×					
Emergency Exposure Cont	trois X	~					
Potassium Iodide (KI) Issu	ance X						

Technical Reference: SRO Level Question Criteria from NUREG-1021

The applicant's knowledge can be evaluated at the level of 10 CFR 55.43(b)(5) by ensuring that the additional knowledge of the procedure's content is required to correctly answer the written test item. The following are examples:

- knowledge of when to implement attachments and appendices, including how to coordinate these items with procedure steps
- knowledge of diagnostic steps and decision points in the emergency operating procedures (EOPs) that involve transitions to event-specific sub-procedures or emergency contingency procedures
- knowledge of administrative procedures that specify hierarchy, implementation, and/or coordination of plant normal, abnormal, and emergency procedures

Technical Refere	ence:	SRO Level Qu	estion	– SRO Mas	ster Task	List			
MASTER TASK LIST									
	Task list for OPTRNG at 2020/01/29: (189524) <mark>Senior Reactor Operator</mark> All Tasks								
Task# Task Selected for Training How Often Training S									
L392177		r command and cor ergency Coordinato s		Yes	No		Classroom		

1	В	26	А	51	D	76	D
2	С	27	В	52	С	77	В
3	А	28	D	53	D	78	В
4	D	29	С	54	А	79	В
5	А	30	D	55	А	80	С
6	С	31	В	56	С	81	D
7	А	32	D	57	В	82	D
8	D	33	С	58	В	83	В
9	D	34	В	59	С	84	D
10	А	35	А	60	D	85	D
11	А	36	С	61	В	86	А
12	А	37	С	62	А	87	С
13	В	38	А	63	D	88	А
14	А	39	С	64	С	89	В
15	А	40	С	65	D	90	В
16	D	41	А	66	В	91	А
17	D	42	С	67	В	92	А
18	А	43	В	68	D	93	А
19	А	44	А	69	В	94	С
20	А	45	В	70	С	95	С
21	В	46	D	71	С	96	С
22	В	47	В	72	В	97	В
23	В	48	D	73	D	98	С
24	D	49	В	74	С	99	А
25	D	50	А	75	С	100	D