

NASA activities and perspectives on standardization in the AM certification process: NASA-STD-6030 and beyond

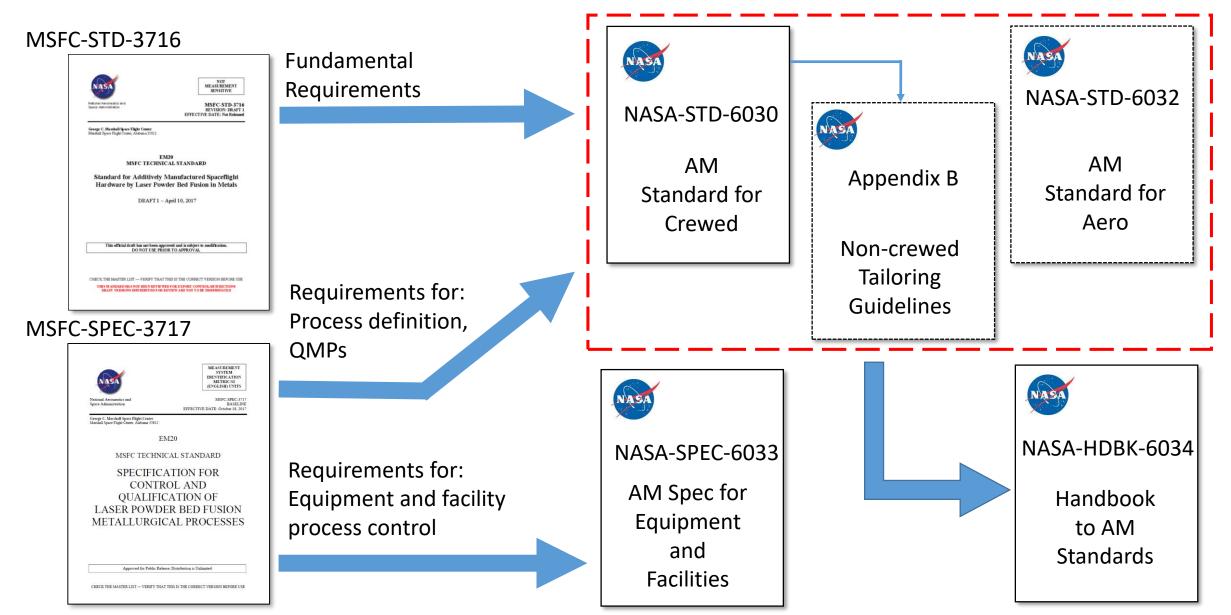
Douglas Wells NASA Marshall Spaceflight Center Douglas.N.Wells@nasa.gov

United States Nuclear Regulatory Commission Public Meeting (Virtual) Workshop on Advanced Manufacturing Technologies for Nuclear Applications November 7-10, 2020

Contents of Discussion

- Overview of selected standardization activities
 - Within Agency NASA-STD-6030 development
 - Review of status
 - Key concepts
 - Supporting Standards Development Organizations (SDOs)
 - ASTM CoE R&D in LB-PBF Process Qualification
- Considerations for critical, but uninspectable AM hardware
 - Cooperative work with FAA on DARWIN code development for AM applications

NASA has been motivated to develop internal standards for AM to provide for a complete and common foundation while industry standards (and standards of practice) evolve.


NASA AM standards have the following intent:

- To provide a consistent methodology for AM on NASA projects
- To define a complete and integrated approach to AM hardware implementation
- To ensure NASA visibility into the introduction of additively manufactured hardware
 - To allow for awareness and evaluation of risk with AM implementation

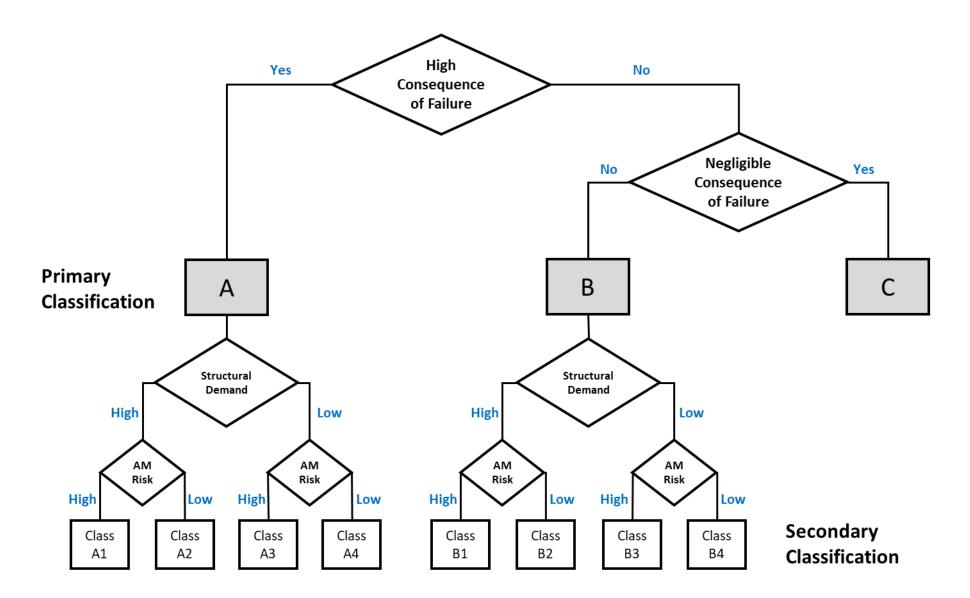
New Agency Document Structure

AM Certification: Governing Principles

- <u>Understanding</u> and <u>Appreciation</u> of the AM process
- Integration across disciplines and throughout the process
- *Discipline* to define and follow the plan
- Have a plan
- Integrate a Quality Management System (QMS) Statistical Build a foundation Process Contro Equipment and Facility Rationale (SPC Qualified • Training **Oualified** for Metallurgical Part Process Process and machine qualification Qualified Process (QPP) (QMP) Material Properties / SPC AM parts Material • Plan each Part **Properties** Suite (MPS) • Design, classification, Pre-production articles Qualify and lock the part production process
- Produce to the plan Stick to the plan

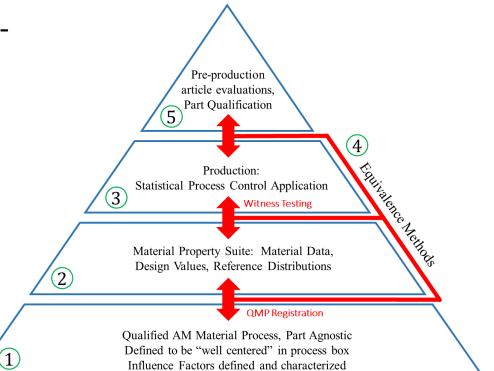
Applicable Materials and Technologies in NASA-STD-6030

Table 1—Applicable Technologies and Material Types


			Class		
Category	Technology	Materials Form	Α	В	С
	Laser Powder Bed				
Metals	Fusion (L-PBF)	Metal Powder	Х	Х	Х
	Directed Energy				
	Deposition (DED)	Metal Wire	Х	Х	Х
		Metal Blown			
	DED	Powder	Х	Х	Х
		Thermoplastic			
Polymers	L-PBF	Powder		Х	Х
	Vat	Photopolymeric			
	Photopolymerization	Thermoset Resin			Х
		Thermoplastic			
	Material Extrusion	filament			Х

<u>Adaptive technologies</u>—where process parameters change based on active feedback during the manufacturing process—are not allowed without a tailored, point-design methodology.

NASA-STD-6030 AM Part Classification



Material "Engineering Equivalence"

Statistical process controls are important in sustaining certification rationale

- Statistical / Engineering <u>equivalency</u> evaluations substantiate design values and process stability buildto-build
 - a) Process qualification
 - b) Witness testing
 - c) Integration to existing material data sets
 - d) Pre-production article evaluations
- Equivalency of material performance is an anchor to the structural integrity rationale for additively manufactured parts

Standardizing AM Process Qualification

One example of NASA's involvement in the AM SDO landscape.

Well-defined process qualification standards remain a clear gap in the AM standards framework

• This gap impedes the diversification and responsiveness of AM part suppliers when qualification requirements are unique to each purchaser

Many fundamental concepts that define AM process qualification remain undetermined

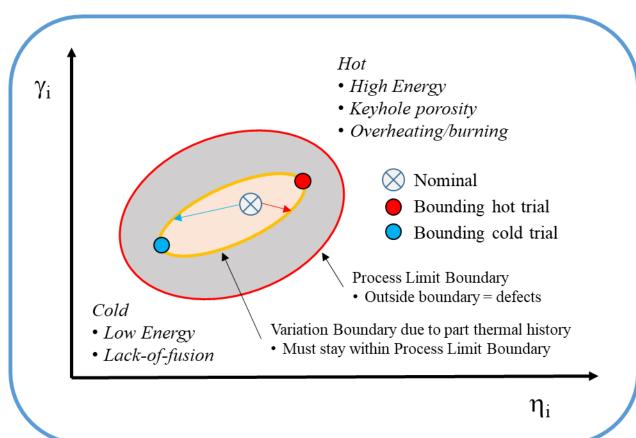
- Terminology What nomenclature is used to describe the process?
- Scope What is within the scope of "process qualification"?
- Intent What should the final outcome of a successful process qualification consist of?
- Rigor How detailed and thorough should a process qualification be? Same for all parts?
- Application How will a process qualification standard fit into the bigger picture of the AM standards framework?

Standardizing AM Process Qualification

Core fundamentals of the project approach remain the same:

- 1. Develop consensus within the ASTM CoE community regarding minimum requirements for the qualification of L-PBF machines and processes.
- 2. Establish a standard set of procedures, test methods, and evaluations used to establish L-PBF qualification based on fundamental objectives.
- 3. Establish quantitative and/or qualitative metrics applicable to each evaluation to define successful machine and process qualification.
- 4. Conduct development and round-robin-style trials of the qualification evaluations and associated metrics.
- 5. Establish a set of recommendations to appropriate F42 sub-committees for standards implementation.

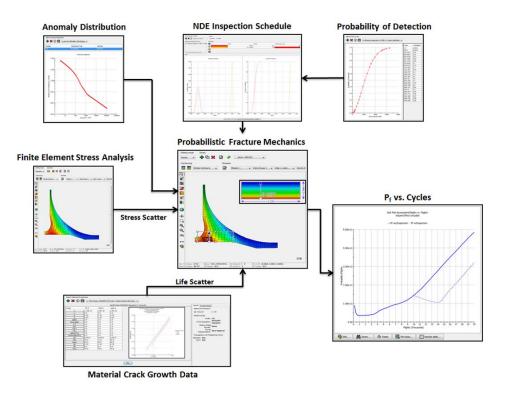
Standardizing AM Process Qualification



Thermal Challenge Build for Process Box Confirmation (Auburn University)

Subset of Process Qualification Standardization

- <u>Objective</u>: confirm candidate parameter set is "well centered" in the process box.
- Develop standard parts or part design philosophy
- Challenge the AM process box through geometry, and potentially scan pattern
- <u>Not</u> used in defining process box during parameter development
- Needs to be able to work with fixed, "black box" parameter sets from OEMs



Assessment of Non-inspectable Critical Parts

- Risk level in AM parts for space applications continues to accelerate rapidly
- Need methodologies to assess damage tolerance (DT) in critical parts that, through mass or complexity, significantly limit or preclude traditional non-destructive inspection
- Challenges in work:
 - Integration tools for deterministic or probabilistic DT assessment
 - DARWIN software through Southwest Research Institute
 - Projects complimentary to similar FAA efforts
 - Part zoning methodologies/considerations
 - AM defect characterization
 - Inherent
 - Rogue / process escapes
 - Leveraging NDI simulation to understand limits of coverage
 - Practical use of process data on a per-part basis
 - In situ monitoring data
 - Qualification of in situ monitoring systems

Conclusions

- 1. NASA remains intently interested in standardization for AM
 - Working Agency (public) standards as well as with multiple SDOs
 - Standards for AM process qualification remains a focus
- 2. NASA has near-term challenges regarding risk management of high criticality parts with limited post-build structural integratory verification
 - Working on integrated methods to utilize all available data (traditional NDE, in-process data...) and assessment techniques (zoning, probabilistic assessments, ...) to manage risk