

## Fatigue and Mechanical Properties of Laser Powder Bed Fusion 316L Stainless Steel

Steve Attanasio, Chelsea Snyder, and Tressa White

Naval Nuclear Laboratory – Schenectady, NY

NRC workshop on Advanced Manufacturing

December 7-10, 2020

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Fluor Marine Propulsion, LLC, a wholly owned subsidiary of Fluor Corporation.

Steven.Attanasio@unnpp.gov (518) 395-7566

### Naval Nuclear Propulsion Program: *A History of Success*



Į

## مر (مرد امر مرد ا مرد (مرد ارم مرد ا مرد (مرد ارم مرد ا



Over 80 Nuclear-Powered Ships Over 167 Million Miles Safely Steamed



Ę

### Naval Nuclear Laboratory Expertise

#### NNPP Reactor and Propulsion Plant Designs, Equipment, and Support Require Expertise In:

• Acoustics

L

- Materials Science
- Reactor Engineering
- Instrumentation & Control





- Power Electronics and Distribution
- Experimental Engineering
- Scientific Computations
- Information Technology

# NNL Interests in Metal Additive Manufacturing (AM)

• The capabilities of metal AM processes have spurred changes to fabrication methods in industries such as aerospace and medical

L

- More modest changes to date in other areas such as the nuclear industry
- Prospective benefits include manufacturing and performance gains
  - Delivery time, hard-to-source parts, part consolidation, improved design
  - Tooling, rapid prototyping, repairs, hard-to-fabricate parts, tailored design

Materials of interest include 316L SS and Alloy 625 Components of interest include valves and pump hardware

## Laser Powder Bed Fusion (L-PBF)

• L-PBF 316L contains long grains and crystallographic texture in the build direction due to epitaxial growth across layers



L





# Build Parameters and Chemistry for 316L Build

Naval Nuclear Laboratory (NNL) Build 20 µm layer EOS M290 Hot Isostatic Press (HIP) Porosity – Witness cylinder <0.05% External Vendor (EV) Build 40 µm layer EOS M290 Hot Isostatic Press (HIP) Porosity – Witness cylinder <0.03%

|            | ASTM F3184  | ASTM A182   | EV As-Built   | NNL<br>As-Built | Bar Stock |
|------------|-------------|-------------|---------------|-----------------|-----------|
| Iron       | Balance     | Balance     | Balance       | Balance         | Balance   |
| Chromium   | 16.0 - 18.0 | 16.0 - 18.0 | 17.88 - 17.92 | 17.64 - 17.98   | 16.68     |
| Nickel     | 10.0 - 14.0 | 10.0 - 15.0 | 12.95-12.99   | 13.15 - 13.40   | 10.62     |
| Carbon     | 0.030, max. | 0.030, max. | 0.013         | 0.015 - 0.017   | 0.018     |
| Copper     | -           | -           | 0.02          | 0.03            | 0.36      |
| Manganese  | 2.00, max.  | 2.00, max.  | 1.22          | 0.84 - 0.87     | 1.38      |
| Molybdenum | 2.00 - 3.00 | 2.00 - 3.00 | 2.37          | 2.38 - 2.43     | 2.05      |
| Nitrogen   | -           | 0.10, max.  | 0.083 - 0.084 | 0.090 - 0.091   | 0.045     |
| Oxygen     | -           | -           | 0.014 - 0.015 | 0.020 - 0.026   |           |
| Phosphorus | 0.045, max. | 0.045, max. | 0.009         | 0.005 - 0.007   | 0.026     |
| Sulfur     | 0.030, max. | 0.030, max. | 0.004 - 0.005 | 0.004 - 0.005   | 0.0285    |
| Silicon    | 1.00, max.  | 1.00, max.  | 0.78 - 0.80   | 0.70 - 0.72     | 0.28      |
| Cobalt     | -           | -           | 0.02          | 0.03            | 0.28      |
| Boron      | -           | -           | < 0.005       | < 0.005         |           |
| Tantalum   | -           | -           | < 0.01        | < 0.01          |           |



## Microstructure

#### Grain Sizing

- Similar grain size and structure between builds ullet
- Precipitate size and locations (primarily along grain boundaries) similar between builds
- Texture was stronger in the NNL build





Grain Size 19.5 µm Aspect Ratio 3.4



Grain Size 25 µm Aspect Ratio 3.4







F

## **Tensile Testing**



#### **Specimen Orientations**



Fractography

## **Tensile Testing**

 Minimal difference in properties between witness coupon and body specimens



Ę





## **Charpy Impact Toughness**









Secondary Electron Microscopy (SEM) images of lowest energy fracture surfaces



F

## 480°F Air Fatigue Crack Growth Testing



Testing according to ASTM E647-15<sup>ε1</sup> Temperature: Precrack 70 °F air, Test 480 °F air Stress Ratio: Precrack R = 0.1, Test R=0.3 Clip gage compliance method used ASME Boiler and Pressure Code, Section XI, Article C-8410 for Austenitic Steels

Ę



Heat tint more difficult to see in AM material



## Fracture Toughness





Build direction in Z axis z v xz Build Plate



Testing according to ASTM E1820-17a 70F, air

Ē

Precrack to 0.55 a/W, 0.6T C(T) specimens

Partially side-grooved (10% total) prior to precrack and then further side-grooved prior to test (additional 10% total)

### Fracture Toughness E1820 Validity Criteria

 High toughness performance made it difficult to meet all validity requirements and therefore qualify K<sub>Q</sub> as K<sub>IG</sub>.



Ē



 $(\Delta a_{predicted})$  at the last unloading differed from physical crack extension  $(\Delta a_p)$  by more than  $0.15\Delta a_p$  for crack extensions less than  $0.2b_o$ , and  $0.03b_o$  thereafter.

#### ASTM E1820 -17a: Section A9.6.4, A9.6.6.6



Not enough qualified data points (Region A or B)

#### ASTM E1820 -17a: Section A8.3.1, A9.10.1, A9.10.2



Maximum J-integral capacity was exceeded, thickness and initial ligament < 10  $J_Q/\sigma_Y$ 

## Summary

 Similar microstructure and properties were observed across vendors and when comparing test blocks to components

Ē

- Orientation effects caused by deposition process could be traced back to microstructural differences and texture in material
- Despite orientation effects, AM material performed as good as or better than wrought material
- Satisfactory performance of AM material gives confidence in qualification of methods for component fabrication and use of this material in applications