

NRC's audit results for the PWROG's FLEX OpE data collection and analysis

Mike Montecalvo, U.S. NRC NEI FLEX Summit September 2020

Objective

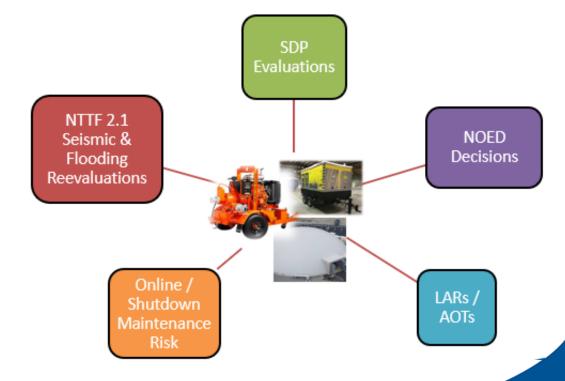
- Brief History
- Audit Team
- PWROG approach
- Audit Results
- Path Forward
- Questions

Project History

- One of the two remaining challenges to crediting FLEX
 - Highlighted from the beginning of crediting FLEX project
- Credit for FLEX has been provided
 - Data is needed to support efficient decisions
- EPRI initially had the lead
- PWROG took over the effort (2017)
 - Access to the PWROG report (March 2020)
 - Audit March 24-25 extended to May 4th

Commission's PRA policy statement:

"PRA evaluations in support of regulatory decisions should be as realistic as practicable and appropriate supporting data should be publicly available for review."



Audit Team

- Team
 - Matt Humberstone (NRR/DRA)
 - John Lane (RES/DRA)
 - Mike Montecalvo (NRR/DRA)
 - Frank Arner (RI SRA)
 - Zhegang Ma (INL)
- Idaho National Lab Support
 - Shawn St. Germain
 - John Schroeder
 - Andrea Mack (Statistics)
 - Cynthia Gentillon (Statistics) retired
 - Cory Atwood (Statistics) retired
 - Tom Wierman

PWROG Approach

PWROG-18043-P rev.0, "FLEX Equipment Data Collection and Analysis"

- GOAL: Consistent with NUREG/CR-6928, "Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants"
- Did not address CCF or unavailability
- Data Compilation
 - Data from all nuclear sites
 - Condition reports (CRs), preventative maintenance (PMs), and EPRI PM database
- Component Boundaries
- Common FLEX equipment (589 pieces of equipment, 16 categories)
- 32 total parameters (16 categories with FTS and FTR)

PWROG Approach Continued

PWROG-18043-P rev.0, "FLEX Equipment Data Collection and Analysis"

- Used INL's Nuclear Reliability and Operating Experience Database (NROD) and the RADS calculator to support their calculations
- Data Analysis Approach (3 methods)
 - Empirical Bayes (EB) (8 parameters)
 - **Jeffreys Noninformative Prior (JNI)** (13 parameters)
 - Weakly Informed Prior (WIP) (11 parameters)
 - Parameters with weak operating experience
 - < 50 demands or <100 hrs operating
 - Represents 54 out of 582 pieces of FLEX equip (~ 9%)
 - Uses permanently installed equip as priors
 - Engineering judgement

PWROG Results

PWROG-18043-P rev.0, "FLEX Equipment Data Collection and Analysis"

- Table 6-1, "Generic Failure Rates for FLEX Equipment"
 - Failure Mode
 - Distribution
 - Mean
 - Method (EB, JNI, or WIP)
- Most failure probabilities are greater than similar permanently installed equipment
 - FLEX DGs (5x FTR, 3x FTS)
 - Combustion Turbine Generator (1.5x FTS, 0.2x FTS)
 - Motor-Driven PD pump (80x FTR, 8.7x FTS)

Audit Result/Observations

PROCESS

- Need for explicit failure definition
- Formal update process needed
- Component Boundary definitions

DATA COLLECTION

- Overall data pedigree (PM frequencies aligned with actual starts)
- Data collected from before FLEX was officially established
- Does run data reflect loaded conditions

DATA ANALYSIS

- WIP method relies heavily on engineering judgement
- Potential errors in WIP results
- CCF and unavailability

Path Forward

- PWROG to review the NRC's audit summary
 - Potential adjustments to process
 - Finalize FLEX OpE data analysis report
 - Publicly available

- NRC audit team plans to review PWROGs final report
 - NRC will establish a position on final report
 - The process/results could have significant changes

Conclusions

- NRC Audit Summary (ADAMS Accession No. ML20155K827)
- INL/EXT-20-58327, "Evaluation of Weakly Informed Priors for FLEX data," (ADAMS Accession No. ML20155K834)

Audit Conclusion

If these observations and concerns are addressed in the PWROG's updated approach, this will provide a robust basis for FLEX equipment failure probabilities.

Questions?