

James A. FitzPatrick NPP P.O. Box 110 Lycoming, NY 13093

Richard M. Sullivan Regulatory Assurance Manager

JAFP-20-0075 October 6, 2020

United States Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

> James A. FitzPatrick Nuclear Power Plant Renewed Facility Operating License No. DPR-59 <u>NRC Docket No. 50-333</u>

Subject: Core Operating Limits Report Cycle 25

Dear Sir or Madam,

Enclosed is the James A. FitzPatrick Nuclear Power Plant (JAF) Core Operating Limits Report (COLR). This revision incorporates changes resulting from a reload analysis completed by Global Nuclear Fuel (GNF) for Cycle 25 operations. This report is submitted in accordance with JAF Technical Specifications (TS) 5.6.5.

There are no new regulatory commitments contained in this letter. Questions concerning this report may be addressed to Mr. John Darweesh, (315) 349-7444.

Very truly yours,

Richard M. Sullivan Regulatory Assurance Manager

RMS/mh

Enclosure: Core Operating Limits Report for James A. FitzPatrick Nuclear Power Plant Unit 1 Reload 24 Cycle 25

cc: (w/ enclosure)

NRC Regional Administrator, NRC Region 1 NRC Project Manager NRC Resident Inspector NYSERDA NYSPSC

JAFP-20-0075

ENCLOSURE

Core Operating Limits Report for James A. FitzPatrick Nuclear Power Plant Unit 1 Reload 24 Cycle 25

(19 Pages)

CORE OPERATING LIMITS REPORT

FOR

JAMES A. FITZPATRICK NUCLEAR POWER PLANT

	UNIT 1 RELOAD 24 CYC	LE 25
Prepared By:	Schaefer Digitally signed by Schaefer, Jason P DN: cn=Schaefer, Jason P Date: 2020.09.22 10:59:21-04'00' L Schaefer / V/ Biso	2 Date:
Reviewed By:	Cycle Manager Kelly M ^c Clure 2020.09.22 13:24:13 -04'00'	Date [.]
Neviewed by.	K. McClure Independent Reviewer	Date
Reviewed By:	Katherine Grace DN: cn=Leaveck, Katherine Grace Date: 2020.09.23 04:50:05 -04'00' K. Leaveck Reactor Engineering	Date:
Reviewed By:	David & Knepper 2020.09.2 D. S. Knepper Engineering Safety Analysis	2 <u>012:18:24 -05'00'</u>
Approved By:	Digitally signed by Kovacs, Ashley Dist: 2020.09.23 07:57:04 -05'00' A. Kovacs Sr. Manager – BWR Cycle Management	Date:
Station Qualifi Review By:	ed Digitally signed by Leaveck, Katherine Grace DN: cn=Leaveck, Katherine Grace Date: 2020.09.24 01:49:07 -04'00' K. Leaveck Station Qualified Reviewer	Date:

FWTR (if applicable) and FFWTR cannot be used until station engineering change is fully implemented to address power-flow map stability regions that are bounding per 006N1761 Rev 0.

Table of Contents

		<u>Page</u>
Revis	sion History	3
List c	of Tables	4
List c	of Figures	4
1.0	Terms and Definitions	5
2.0	General Information	7
3.0	MAPLHGR Limits	8
4.0	MCPR Limits	9
5.0	LHGR Limits	12
6.0	APRM Allowable Values	14
7.0	RBM Allowable Values	15
8.0	Power/Flow Exclusion Region and Buffer Zone	16
9.0	Modes of Operation	18
10.0	Methodology	19
11.0	References	19

Revision History

Revision

Description

Revision 1

First issuance for Cycle 25

List of Tables

Page

Table 3-1	MAPLHGR Versus Average Planar Exposure	8
Table 3-2	MAPLHGR Single Loop Operation (SLO) Multiplier	8
Table 4-1	Operating Limit Minimum Critical Power Ratio (OLMCPR)	10
Table 4-2	Power Dependent MCPR Limits and Multipliers, MCPR_{P} and K_{P}	10
Table 4-3	Flow Dependent MCPR Limits, MCPR _F	11
Table 4-4	Single Loop Operation (SLO) Flow Dependent MCPR Limits, $MCPR_F$	11
Table 4-5	Cycle-Specific SLMCPR (MCPR99.9%)	11
Table 5-1	Linear Heat Generation Rate Limits – UO ₂ Rods	12
Table 5-2	Linear Heat Generation Rate Limits – Gadolinia Rods	12
Table 5-3	LHGR Single Loop Operation (SLO) Multiplier	12
Table 5-4	Power Dependent LHGR Multiplier, LHGRFACP	13
Table 5-5	Flow Dependent LHGR Multiplier, LHGRFAC _F	13
Table 6-1	APRM Allowable Values	14
Table 7-1	Rod Block Monitor Setpoints	15
Table 9-1	Modes of Operation	18
Table 9-2	"BASE" EOOS Option – Included Conditions	18
Table 9-3	Power Level Restrictions	18

List of Figures

Figure 8-1	Exclusion and Buffer Region Illustration – Normal Feedwater Temperature Operation	16
Figure 8-2	Exclusion and Buffer Region Illustration – Reduced Feedwater Temperature Operation	17

1.0 Terms and Definitions

APLHGR	Average Planar Linear Heat Generation Rate
APRM	Average Power Range Monitor
BASE	This condition is defined by a group of individual operating conditions that are applicable to all Modes of Operation discussed in Section 9. The "BASE" condition includes the EOOS conditions provided in Table 9-2, concurrent with FFWTR during cycle extension operation.
DLO	Dual Loop Operation
EOOS	Equipment Out of Service
EOR	End of Rated; the cycle exposure at which reactor power is equal to rated thermal power with recirculation system flow equal to 100%, all control rods fully withdrawn, nominal feedwater temperature, and equilibrium xenon.
FFWTR	Final Feedwater Temperature Reduction
FWTR	Feedwater Temperature Reduction
ICF	Increased Core Flow
K _P	Off-rated power dependent OLMCPR multiplier
LHGR	Linear Heat Generation Rate
LHGRFAC _F	Off-rated flow dependent LHGR multiplier
LHGRFACP	Off-rated power dependent LHGR multiplier
MAPFAC _F	Off-rated flow dependent MAPLHGR multiplier
MAPFACP	Off-rated power dependent MAPLHGR multiplier
MAPLHGR	Maximum Average Planar Linear Heat Generation Rate
MCPR	Minimum Critical Power Ratio
MCPR99.9%	Limiting MCPR value such that 99.9 percent of the fuel in the core is not susceptible to boiling transition
MCPRF	Off-rated flow dependent OLMCPR
	Off-rated power dependent OLMCPR
MELLL	Maximum Extended Load Line Limit
MSIVOOS	Main Steam Isolation Valve Out of Service
OLMCPR	Operating Limit Minimum Critical Power Ratio

P-bypass	Reactor power level below which the TSV position and the TCV fast closure scrams are bypassed
PROOS	Pressure Regulator Out of Service
Rated recirculation flow	Required drive flow to achieve rated core flow
RBM	Rod Block Monitor
RTP	Rated Thermal Power
RWE	Rod Withdrawal Error
SLMCPR	Safety Limit Minimum Critical Power Ratio
SLO	Single Loop Operation
SRVOOS	Safety/Relief Valve(s) Out of Service
TBVOOS	Turbine Bypass Valve(s) Out of Service
TRM	Technical Requirements Manual
W	Loop drive flow in percent of rated

2.0 General Information

This report provides the following cycle-specific parameter limits for James A. FitzPatrick Unit 1 Cycle 25:

- Average Planar Linear Heat Generation Rate (APLHGR)
- Minimum Critical Power Ratio (MCPR) and MCPR(99.9%)
- Linear Heat Generation Rate (LHGR)
- Flow-Biased Average Power Range Monitor (APRM) Allowable Values
- Rod Block Monitor (RBM) Upscale Function Allowable Values
- Power/Flow Exclusion Region

This report is prepared in accordance with Technical Specification 5.6.5 of Reference 1. Preparation of this report was performed in accordance with Exelon Nuclear, Nuclear Fuels T&RM NF-AB-120-3600.

The data presented in this report is valid for all licensed operating domains on the operating map, including:

- Maximum Extended Load Line Limit down to the minimum licensed core flow (i.e., 79.8% of rated) during full power operation (2536 MWth)
- Rated core flow of 77.0 Mlb/hr
- Increased Core Flow (ICF) up to 105% of rated core flow
- Final Feedwater Temperature Reduction (FFWTR) up to 80°F during cycle extension operation (and Feedwater Temperature Reduction (FWTR) during normal operation, if applicable) at or below the 103% rod line.
- End-of-Cycle coastdown to minimum power level of 40%

Further information on the cycle-specific analyses for FitzPatrick Unit 1 Cycle 25 and the associated operating domains discussed above is available in Reference 2.

Per Technical Specification 5.6.5, these values have been determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met.

A variation of 2% in core flow or 10 psi in dome pressure or 10°F in feedwater temperature has a negligible effect on the calculated Δ CPR or peak vessel pressure.

3.0 MAPLHGR Limits

3.1 Technical Specification

Sections 3.2.1 and 3.4.1

3.2 Description

The MAPLHGR limits for the most limiting lattice for GNF2 fuel, as a function of average planar exposure, is given in Table 3-1. For single loop operation, a multiplier is used, which is shown in Table 3-2. The power and flow dependent multipliers for MAPLHGR have been removed and replaced with LHGRFAC_P and LHGRFAC_F; therefore, MAPFAC_P and MAPFAC_F are equal to 1.0 for all power and flow conditions (Reference 2). LHGRFAC_P and LHGRFAC_F are addressed in Section 5.0.

Table 3-1MAPLHGR Versus Average Planar Exposure
(Reference 2)

Average Planar Exposure (GWd/ST)	MAPLHGR Limit (kW/ft)
0.00	13.78
17.52	13.78
60.78	7.50
63.50	6.69

Table 3-2MAPLHGR Single Loop Operation (SLO) Multiplier
(Reference 2)

SLO Multiplier	0.85
----------------	------

4.0 MCPR Limits

4.1 Technical Specification

Sections 3.2.2, 3.4.1, and 3.7.6

4.2 Description

The Operating Limit MCPR (OLMCPR) for GNF2 fuel is provided in Table 4-1. These values are determined by the cycle-specific reload analyses in Reference 2 and are valid for all Cycle 25 operating domains. Table 4-1 includes OLMCPR values for all conditions listed in Section 9.0, Modes of Operation. For single loop operation, the MCPR operating limit is 0.03 greater than the analyzed dual loop value. A minimum value of 1.44 is required to obtain an OLMCPR set by the Single Loop Operation Recirculation Pump Seizure Event.

Control rod scram time verification is required per Technical Specification 3.1.4, "Control Rod Scram Times". Tau (τ), a measure of scram time performance to notch position 36 throughout the cycle, is determined based on cumulative scram time test results (Reference 7). The calculation of Tau shall be performed in accordance with site procedures. Linear interpolation shall be used to calculate the OLMCPR value if Tau is between 0.0 (Tau Option B) and 1.0 (Tau Option A).

The power dependent MCPR limits for GNF2 fuel are presented in Table 4-2. Below Pbypass, the MCPR_P limits in Table 4-2 are applied directly; at or above P-bypass, the K_P multiplier is applied to the OLMCPR from Table 4-1. The appropriate MCPR_P or K_P value may be determined by linear interpolation for points not explicitly listed. The flow dependent MCPR limits are provided in Tables 4-3 and 4-4.

The cycle-specific SLMCPR, known as MCPR99.9%, can be found in Table 4-5 for dual loop and single loop operating conditions. The values in Table 4-5 or conservative values were used to calculate the rated and off-rated MCPR limits.

The OLMCPR is determined for a given power and flow condition by evaluating the power and flow dependent MCPR values and selecting the greater of the two.

		Cycle Exposure				
EOOS Combination	SCRAM Time Option	< 3583 MWd/ST	≥ 3583 MWd/ST & < EOR – 3997 MWd/ST	≥ EOR – 3997 MWd/ST		
DAGE	A	1.45	1.45	1.50		
DASE	В	1.39	1.32	1.36		
	A	1.48	1.48	1.53		
DASE SLU	В	1.44	1.44	1.44		
TRUCCE	A	1.54	1.54	1.54		
160003	В	1.40	1.40	1.40		
	A	1.57	1.57	1.57		
	В	1.44	1.44	1.44		
DDOOS	A	1.45	1.45	1.50		
PROUS	В	1.39	1.32	1.36		
	A	1.48	1.48	1.53		
	В	1.44	1.44	1.44		

Table 4-1Operating Limit Minimum Critical Power Ratio (OLMCPR)(Reference 2)

Table 4-2Power Dependent MCPR Limits and Multipliers, MCPRP and KP(Reference 2)

	Core	Core Thermal Power (% of Rated)							
EOOS	Flow	0	25	≤ 29	> 29	40	60	85	100
Combination	(% of rated)	Operating Limit MCPR, MCPR _P			Operating Limit MCPR Multiplier, K _P				
РАСС	< 60	2.41	2.41	2.35	1 5 2 0	1 200	1 1 5 0	1 056	1 000
DASE	≥ 60	2.74	2.74	2.63	1.520	1.390	1.150	1.056	1.000
	< 60	2.44	2.44	2.38	1 520	1 200	1 1 5 0	1 056	1 000
DASE SLU	≥ 60	2.77	2.77	2.66	1.520	1.390	1.150	1.050	1.000
	< 60	2.53	2.53	2.35	1.520	1.390	1.150	1.056	1.000
IBVOOS	≥ 60	2.74	2.74	2.63					
	< 60	2.56	2.56	2.38	1 5 2 0	1.390	1.150	1.056	1.000
IBV005 SLU	≥ 60	2.77	2.77	2.66	1.520				
PROOS	< 60	2.41	2.41	2.35	4 500	1 200	4 4 7 7	1 101	1 000
	≥ 60	2.74	2.74	2.63	1.520	1.390	1.177	1.104	1.000
PROOS SLO	< 60	2.44	2.44	2.38	1 500	1 200	1 1 77	1 164	1 000
	≥ 60	2.77	2.77	2.66	1.520	1.590	1.177	1.104	1.000

Table 4-3
Flow Dependent MCPR Limits, MCPR
(Reference 2)

Flow (% rated)	MCPR _F ¹
0.0	1.76
30.0	1.58
89.4	1.22
117.0	1.22

Table 4-4Single Loop Operation (SLO) Flow Dependent MCPR Limits, MCPRF(Reference 2)

Flow (% rated)	MCPR _F
0.0	1.79
30.0	1.61
89.4	1.25
117.0	1.25

Table 4-5Cycle-Specific SLMCPR (MCPR99.9%)(Reference 2)

Loop Operation	MCPR99.9% Limit	
DLO	1.08	
SLO	1.10	

¹ Values are applicable up to a Maximum Runout Flow of 112% of rated.

5.0 LHGR Limits

5.1 Technical Specification

Sections 3.2.3 and 3.7.6

5.2 Description

The LHGR limit for the GNF2 fuel type is the product of the exposure dependent LHGR limit (from Table 5-1 for UO₂ fuel rods and Table 5-2 for Gadolinia fuel rods) and the minimum of the power dependent LHGR factor, LHGRFAC_P, and the flow dependent LHGR factor, LHGRFAC_F. The LHGRFAC_P multiplier is determined from Table 5-4. The LHGRFAC_F multiplier is determined from Table 5-5.

The single loop operation multiplier is shown in Table 5-3 and applied in Table 5-5.

Linear interpolation should be used for points not explicitly listed.

Table 5-1Linear Heat Generation Rate Limits – UO2 Rods(References 4 and 6)

Fuel Type	LHGR
GNF2	See Table B-1 of Reference 6

Table 5-2 Linear Heat Generation Rate Limits – Gadolinia Rods (References 4 and 6)

Fuel Type	LHGR
GNF2	See Table B-2 of Reference 6

Table 5-3LHGR Single Loop Operation (SLO) Multiplier
(Reference 2)

SLO Multiplier	0.85
----------------	------

	Core	Core Thermal Power (% of Rated)							
EOOS	Flow	0	25	≤ 29	> 29	40	60	85	100
Combination	(% of rated)		LHGRFAC _P Multiplier						
DAGE	< 60	0.513	0.513	0.524	0.625	625 0.683	0.789	0.921	1.000
DASE	≥ 60	0.513	0.513	0.524	0.025				
	< 60	0.513	0.513	0.524	0.625	0.625 0.683	0.789	0.921	1.000
DASE SLU	≥ 60	0.513	0.513	0.524	0.025				
	< 60	0.415	0.415	0.470	0.625	0.683	0.789	0.921	1.000
160003	≥ 60	0.408	0.408	0.410					
	< 60	0.415	0.415	0.470	0.625	0.683	0.789	0.921	1.000
	≥ 60	0.408	0.408	0.410					
DROOS	< 60	0.513	0.513	0.524	0.625	0 602	0.789	0.921	1.000
FROUS	≥ 60	0.513	0.513	0.524		0.005			
	< 60	0.513	0.513	0.524	0.625	0.692	0.000 0.700	0.021	1 000
	≥ 60	0.513	0.513	0.524		0.020 0.083	0.769	0.921	1.000

Table 5-4 Power Dependent LHGR Multiplier, LHGRFAC_P (Reference 2)

Table 5-5Flow Dependent LHGR Multiplier, LHGRFACF(Reference 2)

	Core Flow (% of rated)					
EOOS Combination	0	30	62.94	85	110	
	LHGRFAC _F Multiplier					
Dual Loop Operation	0.422	0.626		1.000	1.000	
Single Loop Operation	0.422	0.626	0.850		0.850	

6.0 APRM Allowable Values

6.1 Technical Specification

Sections 3.3.1.1 and 3.4.1

6.2 Description

When operating in MODE 1, the APRM Neutron Flux-High (Flow Biased) Allowable Values shall be set as provided in Table 6-1. APRM Neutron Flux-High (Flow Biased) Rod Block Allowable Values are found in TRM 3.3.B, Control Rod Block Instrumentation.

APRM Neutron Flux-High (Flow Biased) Function	Allowable Value (% RTP)	Applicable Drive Flow Range
	0.38W + 61.0%	0 < W ≤ 24.7%
Dual Lean Operation	1.15W + 42.0%	24.7 < W ≤ 47.0%
Dual Loop Operation	0.63W + 73.7%	47.0 < W ≤ 68.7%
	117.0% (clamp)	W > 68.7%
Single Loop Operation	0.38W + 57.9%	0 < W ≤ 32.7%
	1.15W + 32.8%	32.7 < W ≤ 50.1%
	0.58W + 61.3%	50.1 < W ≤ 95.9%
	117.0% (clamp)	W > 95.9%

Table 6-1 APRM Allowable Values (Reference 3)

7.0 RBM Allowable Values

7.1 Technical Specification

Sections 3.3.2.1 and 3.4.1

7.2 Description

The Rod Block Monitor Upscale Allowable Values are determined from the relationships shown in Table 7-1. The setpoint is set at maximum equipment adjustability limits and still complies with the RWE analysis because RWE is analyzed unblocked (Reference 2). The allowable value is clamped with a maximum value not to exceed 120.9%, the allowable value for recirculation loop drive flow (W) of 100% per Reference 5.

Table 7-1 Rod Block Monitor Setpoints (Reference 5)

Rod Block Monitor Upscale Trip Function	Allowable Value (%RTP)	
Dual Loop and Single Loop Operation	≤ 0.66W + 54.9%	

8.0 Power/Flow Exclusion Region and Buffer Zone

8.1 Technical Specification

Section 3.4.1

8.2 Description

The FitzPatrick Unit 1 Cycle 25 power/flow relationship for the Stability Option I-D Exclusion and Buffer Region is shown in Figure 8-1 for Normal Feedwater Temperature Operation and in Figure 8-2 for Reduced Feedwater Temperature Operation.

Figure 8-1 Exclusion and Buffer Region Illustration – Normal Feedwater Temperature Operation (Reference 2)

Figure 8-2 Exclusion and Buffer Region Illustration – Reduced Feedwater Temperature Operation (Reference 2)

9.0 Modes of Operation

The following conditions are supported by the FitzPatrick Unit 1 Cycle 25 licensing analysis; operation in a condition (or conditions) is controlled by station procedures. **If a combination of options is not listed, it is not supported.** Table 9-1 provides allowed modes of operation with thermal limit sets in this COLR. Table 9-2 provides allowed modes of operation that do not contain explicit thermal limit sets in this COLR. Table 9-3 provides power level restrictions that support specific operating conditions.

Table 9-1 Modes of Operation (Reference 2)

EOOS Options	Supported Scram Speed Option	Supported Recirculation Loops
BASE	A or B	DLO or SLO
TBVOOS	A or B	DLO or SLO
PROOS	A or B	DLO or SLO

Table 9-2
"BASE" EOOS Option – Included Conditions
(Reference 2)

Condition
SRVOOS ¹
MSIVOOS ²

Table 9-3 Power Level Restrictions (Reference 2)

Condition	Power Level Restrictions (% rated)
1 MSIVOOS	≤ 75

¹ Includes up to 2 SRVOOS.

² Includes up to 1 MSIVOOS.

10.0 Methodology

The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following document:

1. "General Electric Standard Application for Reactor Fuel," NEDE-24011-P-A-29, October 2019 and U.S. Supplement NEDE-24011-P-A-29-US, October 2019.

11.0 References

- 1. "James A. FitzPatrick Nuclear Power Plant Renewed Facility Operating License", Docket No. 50-333, Renewed License No. DPR-59.
- 2. "Supplemental Reload Licensing Report for FitzPatrick Reload 24 Cycle 25", Global Nuclear Fuel Document No. 006N1761, Revision 0, July 2020.
- 3. "Setpoint Calculation for APRM A through F", FitzPatrick Calculation Doc No. JAF-CALC-NMS-00758 Revision 12, March 2019.
- 4. "Fuel Bundle Information Report for FitzPatrick Reload 24 Cycle 25", Global Nuclear Fuel Document No. 005N1960, Revision 0, July 2020.
- 5. "Setpoint Calculation for the Rod Block Monitor (07RBM-82A, B)", FitzPatrick Calculation Doc. No. JAF-CALC-NMS-00759, Revision 8D, October 2018.
- 6. "GNF2 Advantage Generic Compliance with NEDE-24011-P-A (GESTAR II)," Global Nuclear Fuel Document No. NEDC-33270P, Revision 10, March 2020.
- 7. "Scram Times Versus Notch Positions for Option B", GNF Letter REK-E:02-009, May 28, 2002.