September 15, 2020

PG&E Letter DCL-20-077

U.S. Nuclear Regulatory Commission
ATTN: Document Control Desk
Washington, DC 20555-0001

Docket No. 50-323, OL-DPR-82
Diablo Canyon Power Plant, Unit 2
Unit 2 Licensee Event Report 2020-002-00, Unit 2 Manual Reactor Trip Due to Increased Main Generator Hydrogen Usage

Dear Commissioners and Staff,

In accordance with the requirements of 10 CFR 50.73(a)(2)(iv)(A), Pacific Gas and Electric Company (PG&E) hereby submits the enclosed Diablo Canyon Power Plant (DCPP) Unit 2 Licensee Event Report regarding a manual reactor trip and the automatic actuation of the auxiliary feedwater system as expected, due to increased main generator hydrogen usage.

PG&E makes no new or revised regulatory commitments (as defined by NEI 99-04) in this report. All corrective actions identified in this letter will be implemented in accordance with the DCPP Corrective Action Program.

This event did not adversely affect the health and safety of the public.

Sincerely,

Paula Gerfen

dqmg/51082265
Enclosure
Cc/enc: Samson S. Lee, NRR Senior Project Manager
Scott A. Morris, NRC Region IV Administrator
Christopher W. Newport, NRC Senior Resident Inspector
INPO
Diablo Distribution
On July 17, 2020, at 13:46 Pacific Daylight Time, with Diablo Canyon Power Plant Unit 2 operating at 100 percent power, the reactor was manually tripped in accordance with plant procedures due to increasing hydrogen usage in the Unit 2 Main Generator.

The reactor trip was uncomplicated, and the auxiliary feedwater system started as expected.

This event is being reported per 10 CFR 50.73(a)(2)(iv)(A) due to a manual reactor trip and the associated automatic actuation of a specified safety system.

The cause of the increased hydrogen usage was due to a leak in a weld segment located on the Unit 2 Main Generator exciter end stator coil cooling water manifold.

There was no impact to the health and safety of the public or plant personnel.
NARRATIVE

This event is being reported in accordance with 10 CFR 50.73(a)(2)(iv)(A) and the associated guidance of NUREG-1022, Revision 3, due to a manual reactor trip and the subsequent automatic actuation of the auxiliary feedwater (AFW) system as expected.

This event was initially reported in Event Notification 54789 in accordance with the requirements of 10 CFR 50.72(b)(2)(iv)(B) as a manual actuation of the reactor protection system and 10 CFR 50.72(b)(3)(iv)(A) as an automatic actuation of a specified safety system.

II. Plant Conditions

At the time of the event, Diablo Canyon Power Plant (DCPP) Unit 2 was in Mode 1 at 100 percent power.

III. Problem Description

A. Background

The basic function of the turbine generator is to convert thermal energy initially to mechanical energy and finally to electrical energy. The generator is cooled by hydrogen, which is circulated by a blower inside the generator. The hydrogen gas system, which is part of the turbine generator system, dissipates the heat, provides a safe means of adding or removing hydrogen, maintains the gas pressure, dries the gas to remove undesired vapors, and monitors the hydrogen for pressure, temperature and purity.

The AFW system serves as a backup supply of feedwater to the secondary side of the steam generators when the main feedwater system is not available, thereby maintaining the heat sink capabilities of the steam generators. As an engineered safety feature system, the AFW system is directly relied upon to prevent core damage and reactor cooling system overpressurization in the event of transients such as a loss of feedwater or a secondary system pipe rupture, and to provide a means for plant cooldown following any plant transient.

B. Event Description

On July 17, 2020, at 13:46 Pacific Daylight Time, with DCPP Unit 2 operating at 100 percent power, the reactor was manually tripped in accordance with plant procedures due to increasing hydrogen usage in the Unit 2 Main Generator.

C. Status of Inoperable Structures, Systems, or Components that Contributed to the Event
The reactor trip was uncomplicated, and the AFW system started as expected. There were no inoperable Technical Specification structures, systems, or components that contributed to the event.

D. Method of Discovery

Self-revealing. Increased hydrogen usage was validated following the receipt of the low hydrogen pressure control room annunciator.

E. Operator Actions

The Operations crews responded to this event in accordance with plant operating procedures.

F. Safety System Responses

The AFW system responded as expected following the manual reactor trip.

IV. Cause of the Problem

The cause of the increased hydrogen usage was due to a leak in a weld segment located on the Unit 2 Main Generator Exciter End stator coil cooling water manifold.

V. Assessment of Safety Consequences

There were no safety consequences as a result of this event.

There was no impact on health and safety of the public or plant personnel.

VI. Corrective Actions

The Unit 2 Main Generator Exciter End manifold was repaired. Follow-up corrective actions to prevent recurrence will be managed in accordance with the DCPP Corrective Action Program.

VII. Additional Information

There have been no similar events at DCPP in the previous three years.