3/4.3 INSTRUMENTATION

BASES

3/4.3.1 and 3/4.3.2 REACTOR PROTECTIVE AND ENGINEERED SAFETY FEATURES ACTUATION SYSTEMS INSTRUMENTATION

The OPERABILITY of the Reactor Protective and Engineered Safety Features Actuation Systems instrumentation and bypasses ensures that (1) the associated Engineered Safety Features Actuation action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof reaches its setpoint, (2) the specified coincidence logic is maintained, (3) sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance, and (4) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundancy, and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The integrated operation of each of these systems is consistent with the assumptions used in the safety analyses.

The redundancy design of the Control Element Assembly Calculators (CEAC) provides reactor protection in the event one or both CEACs become inoperable. If one CEAC is in test or inoperable, verification of CEA position is performed at least every 4 hours. If the second CEAC fails, the CPCs will use DNBR and LPD penalty factors to restrict reactor operation to some maximum fraction of RATED THERMAL POWER. If this maximum fraction is exceeded, a reactor trip will occur.

The Surveillance Requirements specified for these systems ensure that the overall system functional capability is maintained comparable to the original design standards. The periodic surveillance tests performed at the minimum frequencies are sufficient to demonstrate this capability.

The measurement of response time at the specified frequencies provides assurance that the protective and ESF action function associated with each channel is completed within the time limit assumed in the safety analyses. No credit was taken in the analyses for those channels with response times indicated as not applicable.

Response time may be demonstrated by any series of sequential, overlapping, or total channel test measurements provided that such tests demonstrate the total channel response time as defined. Sensor response time verification may be demonstrated by either (1) in place, onsite, or offsite test measurements or (2) utilizing replacement sensors with certified response times.

3/4.3.3 MONITORING INSTRUMENTATION

3/4.2.3.1 RADIATION MONITORING INSTRUMENTATION

The OPERABILITY of the radiation monitoring channels ensures that: (1) the radiation levels are continually measured in the areas served by the

8910130104 891006 PDR ADOCK 0500038:

WATERFORD - UNIT 3

ATTACHMENT B

. .

3/4.3 INSTRUMENTATION

BASES

.

3/4.3.1 and 3/4.3.2 REACTOR PROTECTIVE AND ENGINEERED SAFETY FEATURES ACTUATION SYSTEMS INSTRUMENTATION

The OPERABILITY of the Reactor Protective and Engineered Safety Features Actuation Systems instrumentation and bypasses ensures that (1) the associated Engineered Safety Features Actuation action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof reaches its setpoint, (2) the specified coincidence logic is maintained, (3) sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance, and (4) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundancy, and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The integrated operation of each of these systems is consistent with the assumptions used in the safety analyses.

The redundancy design of the Control Element Assembly Calculators (CEAC) provides reactor protection in the event one or both CEACs become inoperable. If one CEAC is in test or inoperable, verification of CEA position is performed at least every 4 hours. If the second CEAC fails, the CPCs will use DNBR and LPD penalty factors to restrict reactor operation to some maximum fraction of RATED THERMAL POWER. If this maximum fraction is exceeded, a reactor trip will occur.

The Surveillance Requirements specified for these systems ensure that the overall system functional capability is maintained comparable to the original design standards. The periodic surveillance tests performed at the minimum frequencies are sufficient to demonstrate this capability.

The measurement of response time at the specified frequencies provides assurance that the protective and ESF action function associated with each channel is completed within the time limit assumed in the safety analyses. No credit was taken in the analyses for those channels with response times indicated as not applicable.

Response time may be demonstrated by an series of sequential, overlapping, or total channel test measurements provided that such tests demonstrate the total channel response time as defined. Sensor response time verification may be demonstrated by either (1) in place, onsite, or offsite test measurements or (2) utilizing replacement sensors with certified response times.

3/4.3 INSTRUMENTATION

BASES (Continued)

The main feedwater isolation valves (MFIVs) close slower under full flow conditions than under zero flow conditions. The MFIVs are tested under zero flow conditions. Therefore, the acceptance criteria for response time reduces to 4.0 seconds. This ensures the MFIVs meet the 6.0 second acceptance criteria of Table 3.3-5 under full accident flow conditions. Both of these acceptance criteria for response time include a 1.0 second allowance for signal proces. Ag. ADD

3/4.3.3 MONITORING INSTRUMENTATION

3/4.3.3.1 RADIATION MONITORING INSTRUMENTATION

The OPERABILITY of the radiation monitoring channels ensures that: (1) the radiation levels are continually measured in the areas served by the