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ABSTRACT

TOPAZ is the two-dimiensional, implicit, finite-element computer code included in the
SCANS cask analysis system for heat conduction calculations. TOPAZ, a code developed on
LLNL mainframes, has been implemented on IBM PC computers. This report provides
documentation of TOPAZ controls and variables and a description of the numerical algorithms
used. Sample problems with analytical solutions are presented.
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NOMENCLATURE
(Units: M = mass, L = length, E = energy, 6 = temperature, T = time]

P = density [M/L3)

¢ = specific heat capacity [E/M6]

0, T = temperature [6)

t = time [T

x(orr) = coordinate in x direction (or radial direction) [L]

y(orz) = coordinate in y direction (or axial direction) (L

kx(orky) = thermal conductivity in x direction (or y direction) [E/LT8)

ng(orny) = fraction of bounding surface unit normal in x direction (or y direction)

qg = volumetric heat generation [E/L3T)

B = coefficient relating environment-imposed surface heat loads to environment
temperature [E/L2T6]

¥ = parameter dzfining environment-imposed surface heat loads which are not
driven by the environment temperature [E/L2T]

qQr = environment-imposed surface heat flux [E/L2T]

q = loce] net heat flux [E/L2T]

w = weighting function for integration

he = convective heat transfer coefficient [£/1.2T6)

Beilee = tempeiature of envirciinent

Tt = boundary surface temperature (6]

o = Stefan-Boltzman coefficient for thermal radiation heat transfer [E/L2T64)

¥ = exchange factor for thermal radiatio~

0i, Teo = temperature at each node

Nj = Finite element shape factor

o = fraction of time step at which to evaluate solution matrices (see pages 9 - 11)

v = angle of slideline surfaces to global coordinates

H, = radiant flux incident on a surface i (irradiance) [E/L2T]

B; = radiation leaving surface j (radiosity) =1 27

€ = emissivity of radiating surfacc

o = absorpuince of emitting surface i

Pi - reflectivity of surface i = (1 - @)

A, = area of surface segment i (L2

Fj = geometric view factor between surface segments i and j

Pr = Piandt] Number = ratio of kinematic viscosity to therr  diffusivity

-X1=




Grashof Number = ratio of buoyancy forces to viscous forces in a free
convection flow

thermal conductivity of flowing medium in environment (evaluated at
Tt = (Tourf + Tw) /2 [E/TLO)

kinetnatic viscosity of flowing medium in environment

(evaluated at Ty = (Tgy + Ta)/2 [LYT)

volume expansion coefficient of environment [1/8]

characteristic length of surface exposed to natural convection (L.
acceleration due to gravity [L/T2)

-xii=
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EXECUTIVE SUMMARY

Lawrence Livermore National Lahoratory has developed a microcomputer-based analysis
system to assist the Nuclear Regulatory Commission in performing confirmatory analyses for
licensing review of + dioactive-material shipping cask designs.

This volume (Volume 4) is the Thermal Analysis Theory Manual. In this manual we describe

the thertnal analysis computer code TOPAZ which is incorporated into the Shipping Container
Analysis System (SCANS). Benchmarking example problems are also presented.

-XV-



SCANS (Shipping Cask ANalysis System)
Volume 4--Theory Manual
Thermal Analysis’

1.0 INTRODUCTION

TOPAZ is the two-dimensional implicit finite element computer code for heat conduction analysis
included in the Shipping Container ANalysis System (SCANS). This report documents the
equations solved and gives a description of the numerical algorithins used. Sample problems with
analytical solutions are presented. TOPAZ has been implemented on IBM PCs.

SCANS is a system of menus and progranis used on PCs to cornplete thermal and *mpact analyses
of type B shipping cask designs being reviewed for ceriification by the U.S. Nuclear chulawrg
Commission. The thermal loads required by NRC regulations are built into SCANS. SCA

includes an input data editor, a finite element mesh generator, analytic codes to predict thermal and
structural response. and codes to graphically display the meshes and the results from the analyzers.

TOPAZ can be used to solve for the steady-state or transient temperature field on two-dimensional
planar or axisymmetric geometries. Material properties may be temperature-dependent and either
1sotropic or orthotropic. A variety of time- and temperature-dependent boundary conditions can be
specified; these include temperature, flux, convection, and radiation. TOPAZ can solve problems
of diffuse band radiation in an enclosure coupled with conduction in the material surrounding the
enclosure. Additional features include analyses of thermal contact resistance across an interface,
bulk fluids, phase change, and energy balances.




2.0 GENERAL THEORY

2.1 Conduction of Heat in an Orthotropic Solid

The differential equation of conduction of heat in a two-dimensional solid is given by

"o 3. 3 d
—=—-k.—e-+—ky22+q.inthcvolumﬂ (1)
o 9x dx dy ° dy

subject to the boundary condition

06 d8
k,«a—n,«rkya—ny-rﬁ(e-e.):yonthcboundarysurfaccsr (2)
X y

and with the initial condition
6 = 0(x,y) att = . (3)

Equations (1)-(3) represent the strong form of a boundary value problem to be solved for the
temperature field within the solid as shown in Fig. 2-1.

IMPOSED HEAT FLUX - q

k. 867

|
i SURFACES

|

|
|

l
‘ l

| "WSURFACE NORMAL ()

Figure 2-1 Two-dimensional heat conduction with heat fiow at ex.ernal boundary.




2.2 Finite Elemen’ Yormulation

A weak form of this boundarv value problem is obtained by requiring each side of Eg. (1) to be
satisfied in an average sense.

26 2 ¥ .
f‘f)wpca‘dxdy I - k‘ay+ay ' oy xdy + || wqgdxdy

The weighting function, w, is any function of x and y that is sufficiently weli-behaved that the

integrals make sense. Integ~ .ing the first term on the right side of Eq. (4) by parts results in a
weak form of the boundary 1 ue problem (see Appendix 3 of [1]).

209
time dependency I‘I)mpc-é-‘-dxdy =

: ow 00 ow_ 00
heat conduction -]

1 - e, we | dnd
Bl "ox ’ay] d

(5)

i < L) 0
natural boundary condition + I{_ .n[k,:; ny + ky % ny] dr

internal heat generation +] !}  qg dxdy .

Notice the appearance of the "natural” boundary condition term in Eq. (5) resulting from the
integration by J::ns operation. Several forms of the boundary condition Eq. (2) will now be
substituted for the natural boundary condition term. Equation (2) can be rewritien as

5o by 50y == B 0-0.) ®)

Heat flow in the TOPAZ computer code is positive in the direction of the surface-outward normal

vecu_);. A flux (or Neumann type) boundary condition on a surface scgment can be represented by
specifying

B =0,

(FLUX B.C)) (7)




in Eq. (6). A convection (or Robin type) boundary condition can be represented by specifying
(CONVECTION B.C.) (8)

in Eq. (6). Equation (8) can also be used for a radiation boundary condition by utilizing a radiant-
heat transfer coefficient.

h, = cF(6 + 6,) (8> + 62).  (RADIATION B.C)) 9)

The forced (or Dirichlet type) boundary condition in which the TEMPERATURE is specified on

the boundary is imposed on the final system of equations by a penalty method.

For now, let a heat flux be applied on the boundary segment, I'y, and heat transfer occur by

convection on the boundary segment, I'c. Utilizing Eqs. (6) - (8), Eq. (5) becomes

08
time dependency | !, wpc ; dxdy =

heat conduction

flux b.c.

convection b.c.

internal heat generation  + A | oq, dxdy .

Ualerkin's method consists of seeking an approximate solution to Eq. (10). This p: sceeds by
assuming a trial (shape) function expansion for 6,

0=

n
1=

lNl 0, = NO (11a)




and taking as th= weighting function
w= Nj

Using the relations Eq. (11) in Eq. (10) results in

M) ot o
l‘I’I Nichdxdy]{-s‘—} [ yv N;KVN dxdy] {6}

- ! Nqr dI'; + rj N;h.0.dI - [ rI N;h NdI"] {6}
f c <

+ /] Njq, dxdy
Q
where

(i=1,2,...,n)

or a set of discrete equations of the form

[C) () + [H)(8) = (F) .

with

[Cijl = AI N; pc Nj dxdy

(H) = ‘Il VN,KVN,; dxdy + rI N;h NI,

{F,} =] g} N; q, dxdy - II_ Nq dI'¢ + lj Nh 0.dl,
f ¢

(11b)

(12)

(13)

(14a)

(14b)

(14¢)

The finite element method provides a technique for spatial discretization of the body and
construction of shape functions, N;, for the numerical solution of Eq. (13). Let the domain, £, be
partitioncd into a finite number of four node quadril.teral elements, Q¢, interconnected at their

nodal points, Fig. 2-2.

Having constructed a finite element mesh for the problem, we proceed to construct a corresponding
set of shape functions. In constructing the shape functions, we seek a change in coordinates which
maps the given quadrilateral into a biunit square (Fig. 2-3). This standardizes the subsequent

integration of Eq. (15).



|
Figure 2-2 Solid body overlayed with a quadrilateral grid.

(xqs¥q) X3:¥3)

Figure 2-3 Bilinear quadrilateral element domain.



We seek the temperature at the nodal points. This achieves the spatial discretization, and we now
require that

[Cl=ZICil=Z | ] N; pc N, dxdy (15a)
e e n'
(H] = Z[H{)=£ [ | VT N, KVN; dxdy + | N;h,NdT, (15b)
y ok 0
i=1,2,3,4
=1,2,3,4
e=]1,2,...,n
{F}=Z\Ffl=Z | JN;q dxdy - | Nqdl'i+ | NihBpdl', (15¢)
¢ ‘q rf 4

for substitution into Eq. (13).

xem) = £ Nem) <! PO
: ;
4

ylen) = i§l Ni(en) yi (16b)

where the shape function N; (g,n) for node i defined as
N, (em) =7 (1 +6) (1 +n0) (17)

relates points in the biunit square (¢, 1 coordinate system) to coordinates of a point in Q€ (x, y
coordinate system), Fig. 2-3. We also require that the temperature be interpolated by these same
shape functions (i.e., the isoparametric concept).

8 (en) = sé N, (en) 6. (18)

Equation (15) is now written as functions of the new variables € and | That is, the integrands are

expressed in terms of € and 1 and dxdy is replaced by dedn times the absolute value of the
Ja:obian J. In general,



] 3
‘III f(x,y) dxdy = _Il !l fix(en).y(e,n)) Jdedn

where

[9x 9x ]
% on

25

(19a)

(19b)

Equation (15) is integrated numerically by using a second order Gaussian quadrature in each

direction. In general,

11 4
J 1]1 glen) dedn = L sle;n) W,

(20)

where
i (=] Ni Wi
1 -1/43 -1/43 1
2 1/V3 -1/43 1
3 1/V3 1/43 1
4 -1/V3 1/V3 1

Upon integration of Eq. (15) for each clement, the element
matrix Eq. (13). This equation is solved for the temperature

2.3 Time Integration Scheme

The time integration of Eq. (13) is carried out usin
method has been shown by Hughes [2] to be unconditio

equations are assembled to form the

g a gereralized trapezoidal method. This
nally stable for nonlinear problems. The



method consists of the following family array of algorithms: Find the temperature array, 8y, n
takes the value of (0,1,...n), after n fixed-length time steps, A, such that

Fria = Gria Onsa + Hiva Onea s (21a)
0, = ,+ALO 040 (21b)
i
8, = 0 , (initial condition) (21¢c) |
where
g ® Ol il (21d) ‘
Hpa = HBpq, thed) » (2ie)
|
Bpio = (1-0) 6, + a6, , (210 |
Fpo = (1~0) F, + aF,,, , (21g) 1
00 ' ‘ ‘
o = Opq = (1-a0) 6, + @6,,, , (21h)
ta = (n+a) At , (211)

Equations (21b) and (21f) can be rephrased as

: 1

Opia = T (6,41~ 6,) (22) |
and

o = 0, + a(0,,, - 6,) , (23)

respectively. Substituting these equations into Eq. (21a) yields

CnHl
At v a'“n'*ﬂ {eml iy en} s {Fnﬂl o Hnﬂxen} ' (24)



The so'ution marches forward in time by first solving Eq. (24) for the incremental temperature
change vector {6541 - 8,) and then updating the temperature. In nonlinear problems, C, H, and F
may be functions of 8; thus, iteration must be used to solve Eq. (24) (see 3ection 3.12).

The parameter o used in transient conduction solutions, is taken to be in the interval [0,1]. Some
well-known members of this a-family are given below.

S U Solution Method
0 Forward difference; forward Euler
172 Midpoint rule; Crank-Nicolson
2/3 Galerkin
1 Backward difference

In the case a=0, the method is said to be explicit. For a<1/2, the algorithm is conditionally stable;

i.e., stability considerations limit the maximum time step size allowed. For 021/2, the algorithm
is unconditionally stable and there are no time step restrictions.

For steady-state analysis, Eq. (13) reduces to

[H] (8) = (F} , (25)

and the solution is obtained in a single step. For nonlinear problems, iteration is used to solve
Eq. (25) (see Section 3.12).

2.4 Thermal Contact Resistance Across an Interface (Slidelines)’

If two parts are placed in contact or across a small gap, there exists a considerable resistance to heat
flow from one part to the other. This thermal resistance (known as "contact resistance") is a
function of the gap width and gap filler, the physical properties of the contact material, the surface
conditions and finish, the contact pressure, and the presence of a fluid or vacuum in the gap
between the surfaces. We present an algorithm to couple the finite element heat transfer equations
between two parts through a contact resistance across a gap which can be of zero thickness
between the contacting surfaces. The surfaces in contact can have dissimilar zoning. For ease of
presentation, assume for now that the gap has a finite thickness. It will be shown ‘hat the gap
thickness factors out of *he conductance matrix and is incorporated into a contact resistance term.
This allows for a zero thickness gap both in reality (i.e., perfect thermal contact) and for numerical
modeling purposes (i.e., the two contacting surfaces coincide in spacial coordinates). Triangles
are used to mesh the gap between the contacting surfaces (Fig. 2-4).

** Not validated yet in PC version.
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MASTER SURFACE

o<

PART 2

Figure 2-4 Added elements for contact resistance or slideline.

The gap elements are linear triangular elements (4) comprised of an orthotropic material. Consider

SLAVE SURFACE ‘
the triangular element, Fig. 2-5.

"
- e = e e e == SUAVE SURFACE
/\ GAP
| i :
- -4 et WASTER SURFACE

Figure 2-§ Typical triangular element at gap or slideline.

Hy = | VINNKVNdQ , (26)
Q

where

Ni = (a; + bix + Ciy)2Aijk , (27)

The element conductance matrix is defined as
«31.



in which
a = Xj Yk = Xk Y
bj = Yj - Yk (28)
C| = xk i xj ’

with the other coefficients obtained by a cyclic permutation of subscripts in the order i, j» k. The
constitutive matrix is defined as

x . [5"19] (29)

Evaluating Eq. (26) using Eqs. (27)-(29) yields the element conductance matrix

[bb; b, bb,] ‘
e Ky \
aA
L sym, by by
(30)
[ CiC, CiCj CiCx 1
k
PR cic;  Cfk
4A° |
L sym. CxCyd - |

Heat transfer is assumed to take place only in the direction perpendicular to the contacting surfaces.
Setting k, = 0, Eq. (30) becomes

[ ciey i, Cicﬂ
e
H = -Le Ci  Cf%
4A
L sym, CxCxd (31
The area of the element is
s} 1
Az'z'(xj"xi)hzfckh- (32)

+




Substituting Eq. (32) into Eq. (31) yields the final result

CiCk

where

The term. R, is called the thermal contact resistance. As can be seen from Eqgs. (33) and (34), the
only place the gap thickness is represented is in the R term. A zero gap thickness is allowable (i.e.,
perfect thermal contact). However, for computer calculations, R would be assigned a small finite
value to prevent a divide-by-zero in Eq. (33). Also, for numerical modeling purposes, the two
contacting surfaces can spacially ccincide, with the value assigned to R representing the thermal
resistance due to a physical gap. For axisymmetric problems, the triangle centroid radius, r = 1/3
(x; + X; + xi), should be included in the numerator of Eq. (33)

If the contacting surfaces are at some angle, W, to the global coordinate system, a coordinate rotation

must be performed prior to calculating the element conductance matrix, Eq. (33). A local coordinate
system is defined with its origin fixed to the global coordinate system and with the x| axis parallel to
the contacting surfaces (Fig. 2-6). Local coordinates are calculated from the global coordinates by

X] = Xg COSY + yg sSiny
(35)
yl = -8g Siny + Yyg COSY




Y s\)““&g
N
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-
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Figure 2-6 Relationship between local and global coordinates.

2.5 Enclosure Radiation"*

The finite element thermal analysis of problems involving conduction in a solid ccupled with thermal
radiation in enclosures (cavities) within the solid can be performed using TOPAZ. The solution
procedure is to solve the enclosure radiation problem first for the net radiative flux on each surface,
using an estimated initial surface temperature distribution. The resulting fluxes are then used as
boundary conditions for the solution of the conduction problem. The conduction solution then gives
r-v estimates for the surface temperatures. The process is then repeated until temperature
wonvergence is achieved.

The enclosure is defined by the discrete boundary surfaces of finite elements which surround the
enclosure and define the solid object. Let the finite element of Fig. 2-7 be a boundary element
comprising part of the wall of an enclosure. The boundary surface of this element is exchanging
energy with other enclosure surfaces by radiation. Additionally, there may be heat transfer from the
boundary surface by imposed heat flux or convection. Heat transfer by conduction is occurring
within the body. A total energy balance across the boundary surface results in

dcoND = GrLux + deony + QRAD - (36)

** Not validated yet ir. PC version.




Figure 2-7 Boundary conductions at wall surface.

The radiation term may be calculated separately from any convection or conduction process if the

medium within the enclosure does not absorb or emit radiant energy. In the radiation literature this
is indicated by specifying

QRAD=QNEr (37)
Solution Using View F

The net radiation heat flux at a surface i is the difference between the emitted radiation and the
absorbed portion of the incident radiation.

GineT = GOT] + oiH; , (38)

Note that Eq. (38) is not a total energy balance at the element surface. Equation (38) is only an
expression for the radiation term, q RAD, for use in Eq. (36).

The radiant flux incident on a surface, H; (called the irradiation), comes from the other surfaces of

the enclosure. Consider the radiation coming from any surface J. An energy quantity called the
radiosity,

Bj = £~.01“ + piH; , (39)

-15-



streams away from j in all directions. The first term on the right represents the radiation emitted by

the surface, while the second term represents the reflected portion of the irradiation. Of this, an
amount A F;B, arrives at surface i. By employing the reciprocity rule AiF;j = AjF;;, this can be
rephrased as AjF;;B;. The rate at which energy arrives per unit area at i from all n surfaces of the
enclosure is

The radiosities are found by applying Eq. (39) at each surface of the enclosure. [ sing the gray

body condition p = 1 - € at surface i,

B e.o'l‘? + (1 + €;) H;

I'hen, using Eq. (40),

In this way there are generated n linear algebraic equations for the n unknown radiosities. The
system of Eq. (42) can be rephrased as

(x] (B} = {1}

in which

- |
o'l

The radiosities are then calculated by

(B) [x]! (t)

If the surface emi sS1vities are not a function of temperature, then the terms in !,(_i' are constant

'hus, the inverse matrix, [X]-!, need only be calculated once for the problem




—————————————————%

The solution of the enclosure radiation problem proceeds as follows:

Compute [x].

Compute [x]-!.

Guess an initial temperature distribution (B} = [X)-! (T)x.
Compute (B) = [x]! {1}y

Fori=12..n do:

WV A W N -

Computc Hi = 1_1"2" (B, - Eioﬁl{) ’
Compute .‘li. mseio’rf -oH; .

6. Solve the conduction problem for {t)y=k+1 using (q ngr)-
7. Repeat steps 4 to 6 until the following criteria are satisfied for prescribed €

ABS (| ITy | =11l 1)
IEWIR ;

The finite element conduction problem is solved using

qiNET = eiUT: + o H, (45)

from step 5 as a boundary condition. The Tf term is linearized by using the first two terms of its
Taylor series expansion about 1‘; , the temperature from the previous iteration.

’['?34?‘?1]-3?'?. (46)

Using Eq. (46) in Eq. (45),
Q'i',NETc‘%eic??Ti- 3816?? - ajH;. (47)

The first term on the right contributes to the conductance matrix, while the second and third terms
contribute to the load vector.

%



Solution Using Exct F
TOPAZ can also solve the coupled problem using exchange factors, F;. The exchange ic.ur is a
characterization of the effect of the system geometry, emissivity, and reflectivity on the capability of
radiative transport between surfaces Ajand A, [3].

Using exchange factors, the net radiative heat flux at a surface i is

"

qi NET= ;‘5 F,;(E,~E)
+(EZFy- FpoT'-ZF ot (48)
J a4
i

Following the previous procedure, Tf is linearized, and contributions to the conductance matrix and
load vector are obtained.

Wavelength-dependent Properties
The gray body assumptior becomes prone to error when the range of waveicngths contains strong

emission bands, such as for metals. TOPAZ solves probisms with wavelength-dependent properties
by subdividing the wavclc!l\%tch range into several finite bands and assuming that the surfaces are

gray within each band {4). net radiative heat flux at a surface i is

4iNET = Lﬁmm , (49)
with

GiNeT = OF; 1y, - 0y Hy (50)

using view factors or, using exchange factors,

Qix, NET = {-Fij)- (Ej b2 - Ej. ba) - (51)

The black body band emissive power is calculated by

Epp = Epp (AL, T) = foT¢ . (52)

-18-
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The term f represents the fraction of the total radiant output of a black body that is contained in the
wavelength band AL = Az-A),

f(AA, T) = Foagr - Foay T, (53)
with [12]
15 B o
Foar= v 1,2, .. =7 {[(mv+3)mv+6lmv+6} v 22, (54)
m
13 11 «w v v v v )

b e G (? “%*% 5040 * 773160 ~ 13305600 ) V<2 59
where

= 2222 (units: Alpml: TIKD . (56)

-19-




3.0 ASPECTS OF TOPAZ

The sections in this chapter should be consulted prior to and during th istruction of TOPAZ
input M
secton

any helpful suggestions, warnings, and procedural information In each

3.1 Bandwidth Minimization

The coded by S. J. Sackett is available as an option in
}

TOPAZ to minimize the bandwidth an file of the conductance matrix. The result of bandwidtt
minimization 1s a decrease in problem solution time. Bandwidth minimization node-renumbering is
transparent to the user. All calculated nodal quantities are printed using the user's original node
numbering scl

3.2 Boundary Conditions

conditions, q, on the bounda

Iy are repre:

sitive 1n the direction of the surface outward normal vector. Surface definition is in

with the right-hand rule. The outward normal vect Ints he right as one
resses from node N, to N5 (Fig. 3-1)

Figure 3-1 Direction of outward normal vector with respect to nodes




Temperature

Temperature boundary conditions can be specified on any node, whether on the physical boundary

or not

Flux

Set q = qr where qy is defined at the node peints comprising the flux b.c. segments (Fig. 3-2)

Figure 3-2 Setting boundary linearly varyi boundary conditions on surface segment
Radiation
A radiation boundary condition is calculated using a radiant-heat-transfer coefficient. Set q
(T - Teo) where b, is a radiant-heat-transfer coefficient defined as

hy = OF

I'he exchange factor, F 1s a characterization of the effect of the system geometry, emissivity, and
reflectivity on the capability of radiative transport between surfaces. The radiation b.c. data cards

require specification of the product, f = 6F , and Tee for the boundary segment

Convection




TOPAZ evaluates he at the film temperature
C t

i

: i
It = 5 (Tsygrs

For fc: .d convection calculations, set a=0. Then q = hc (1

For free convection calculations, empirical formulas are available to calculate the heat transfer

coefficient. These formulas contain the Grashof numb.r raised to some power, a. For example, the

average value of the heat transfer coefficient for laminar free convection from an isothermal vertical

plate of length L is

0.555 k; Pr''°Gr,
)

where the Grashof number

The rate of heat transfer by convection between the plate and a fluid may be computed by the relation




3.3 Bulk Fluid™’
The bulk fluid concept is best described with the aid of Fig. 3-3:

Figure 3-3 Heat flow between bulk node (B) and adjoining surface (S).

Here a bulk node "B" is used to represent the entire volume of a particular material, such as a gas in

a cavity. The heat flow between the bulk node (material) "B" and an adjoining surface "S" is given
by

q = f®.1) (68 - 68) , (66)
where 85 and 6p represent the temperatures of the surface "S" and the bulk node "B," respectively.

In addition, the density, specific heat, and volume of the bulk material are specified.

TOPAZ requires that a bulk node be given a node nuniber as well as coordinates. However, these
coordinates are arbitrary.

The bulk node concept can also be used in the case wnere it is desired to specify a lumped heat
capacity at a node. In such a case, no segments "S" are associated with the bulk node, and only the
density, heat capacity, and volume associated with the bulk node are specified.

** Not validated yet in PC version.




3.4 Element Types

A four node isoparametric element is used. This element degenerates to a three node triangle when
the last two node numbers of the four node elements are identical (Fig. 3-4).

Nz'N‘

Nz N

——

Figure 3-4 Degeneration from four node into three node element.

3.5 Energy Balances'

Various energy terms may be printed and written into the plot file for post processing. The ene- :
terms are:

* change in material internal energy for time step,

* change in material internal energy from initial time,

* heat transfer rates on boundary condition surfaces,

* heat transfer rates on enclosure radiation surfaces, and
* xand y fluxes at all nodes.

Since the nodal fluxes are expensive to calculate, a flag on data section 1 is available to turn this
option on or off.

3.6 Function Definitions

Any specified function of time or temperature (fur example, internal heat generation, boundary
conditions) can be described by either a piece-wise iinear curve or by a functional relationship
defined in a user subprogram. Functic 1s that are dependent upon both time and temperature must be
defined by a User Subprogram.

** Not validated yet in PC version.
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A typical piecewise linear curve is shown below in Fig. 3-5.

f(t)
or
f(e)

tor®

Values of a function at intermediate points on a curve are obtained by linear interpolation.
Functional values outside the range of a curve are extrapolated equal to the last value or first value in
function curve tavles.

|
Figure 3-5§ Piecewise linear curve for interpolation.
A single curve may be used for several functions if their ordinates differ by only a constant. This is
accomplished by the use of curve multipliers which are applied to the ordinate of the curve.

In order to differentiate between a function of time and a function of temperature, the sign on the
number assigned to the curve describing the function is used. For a time variation, the curve
number is positive and for a temperature variation, the curve number is preceded by a negative sign.

A curve number of zero indicates that a function is constant.

3.7 Heat Generation

Volumetric heat generation rates may be specified by element, by material, or both (in which case the
effect is additive). Volumetric heat generation rates can be functions of time or temperature (see
Section 3.6). Spatially, they are assumed constant within an element.

3.8 Initial Conditions

Initial temperature conditions can be specified on the nodal data-input cards or on the nodal
temperature initial-condition cards. If no temperatures are specified, the default is 0. For nonlinear
steady-state problems, the temperature initial condition serves as a first guess for the equilibrium
iterations (see Section 3.12).




3.9

Internal Boundary Elements™’

Internal boundary elements allow thermal coupling betw

between two parts) according to the formula

een two surfaces (e.¢

a
““'?

The subscripts A and B refer to the element segments as indicated in Fig

Figure 3-6 Thermal coupling between two surfaces

ire the respective av erage temperatures of these surfaces. En y transport 1s normal to
Segments A and B should be approximately the same lengatl 1le four node numbers
] ' » element, opposed nodal rdinates may coinci That 1s, an element

This element is ecifying t resistances between
scribing certain types of gaps betweer

3.10

Material Properties

ISILYV, , and thermal conductivity are assumed to be spatially constant within each

' func temperature. Since the density
capacity appear only as a product in the g equations, the temperature depend

lensity may be included in the tempe

1€NCE
emperature dependence of the heat capacity




SO
<
a2

Figure 3-7 Orthotropic material angle .

3.11 Mesh Generation

TOPAZ hzs no general mesh generu'ion capability. Rows of evenly spaced nodes and rows of
sequentia’ elements may be generated internal to the coxde.

3.12 Nonlinear Analysis

In a nonlinear problem, C, i, and F may be functions of €, and iteration is required to solve
Eq. (24). Functional iteration with under relaxation is used. The nonlinear solution scheme

censists of two steps. The firs: step called “reformation” is the assembly and triangularizatior of the
coefficient matrix

c
n+a
[ T +uK,,,,,} . (69)

in Eq. (24). This step is computationally expensive. The second step called an “equilibrium
iteration" is the formation of the right-hand side vector (F - KnyaBn) in Eq. (24) and back
substitution to solve for {6,,,1 - 8,). This step is computationally inexpensive.

~or strongly nonlinear prublems (e.g., radiation boundary conditions), it is necessary to perform a
refurmation for each equilibrium iteration. For weakly nonlinear probleras (e.g., material property
nonlinearities), it is computationally advantageous to perform a reforrnation only at the beginning of
the time step, and then to perform as many equilibrium iterations as required for convergence.
Further still, a reformation of Eq. (69) can be performed and used over several time steps. It is best

to base on experience or a trial-and-error process the decision as to the number of reformations and
equilibrium iterations 1o use on a particular probiem,

27




In a steady-state nonlineas problem, an initial guess should be made of the final temperature
distribution and included in the input file as an initial condition. If your guess is good, a
considerable savings in computation time is achieved

3.13 Phase Change

A phase change algorithm developed by Rolph and Bathe [6] has been implemented in TOPAZ
This algorithm explicitly constrains the solution of the conduction problem to satisfy phase change
energy balance. Therefore, the finite element mesh and time step size for a specific analysis can be
largely chosen by considering the accuracy predicted on the temperatures when phase changes are
neglected. The phase change front may advance over several elemeats in a single time step

L

A solution may show temperature oscillations at nodes near the phase change front. This is a re-.alt
of the algoirithm not following the phase change front but, rather, detecting phase change within an
element and then lumping material latent heat at the nodes. Spacial discretization and time step size
will effect the magnitude and decay rate of these temperature oscillations

> change problems require specification of the problem as a nonlinear analysis with backward
rence ime integranon (o = 1)

These conditions are automatically invoked on the analysis by
seiting the phase change calculation flag on control-card one

> 10 produce temperature contour plots,

temperature-time history plots, plots of temperature vs distance along arbitrary
us geometry plots

2

3.15 Radiation in Enclosures

l'he theory and algorithms used for enclosu.e radiation problems are presented in Section 2.5. An

enclosure 1s defined by the discrete surfaces which are, in general, the boundaries of the finite

elements which surround the enclosure, as illustrated in the following Fig

16

o

— R~

“~d - Y

DY Oh

Figure 3-8 R




The enclosure segments must be specified such that the surface outward normal vector points to the
right as one proceeds from node Ny to N in Fig. 3-8.

When an enclosure has an opening to the exterior of a body, such as surface 6 in Fig. 3-8, the

opening acts like a nonflective surface. Such a surface acts as a blackbody radiator (€ = 1) at the
outer surrovnding temperature. Such surfaces are identified on the enclosure radiation data-cards by
flagging them as not participating in the conduction part of the problem and giving them an
emissivity curve number of zero.

Emissivity is input as a function of wavelength. If emissivity is considered not a function of

wavelength, the first wavelength breakpoint, A, should be assigned a large number (e.g. 1 x 1010),
Note that the units on the wavelength must be micrometers.

Enclesure radiation problems can be expensive to solve both in computation time and computer core
requirements. Problems using view factors that are not a function of wavelength are relatively quick

because the [x] matrix has to be formed only once for the problem. Problems using wavelength
dependent emissivities are computationally slewer because a Gauss-Seidel iterative solution is
performed to solve the radiation part of the coupled problem for each wavelength band. The
radiation part of the coupled problem is perf yymed ‘n-core. For very large problems, an out-of-core
solution is available. Contact the author for further information

3.16 Slidelines - Thermal Contact Resistance Across an Interface’’

The theory and algorithm used for slidelines is presented in Section 2.4. Slidelines are used to
couple the finite element heat transfer equations between two parts through a thermal contact
resistance across a gap between the contacting surfaces. The surfaces in contact can coincide
spatially and have dissimilar zoning. One side of the contact surface is referred to as the master
surface, and the other side is referred to as the slave surface. The designation of the slave and
weaster surface is arbitrary. However, the slave surface must lie to the left of the master surface, as

?P?F mg»;:)s along the master surface, encountering the master nodes in the order that they are defined
_(Fig. 3-9).

s, % 53

\

/::._-——":.:.\ g SLAVE SURFACE

/c/*—.\o MASTER SURFACE
m3 ‘“A

" ma

Figure 3.9 Relationship between slave and master surfaces.

-
Not validated yet in PC version,
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3.17 Steady-State Analysis

TOPAZ has a one step steady-state solution algorithm. For nonlinear steady-state problems,
iteration is required, and an initial guess of the temperature field is needed. This can be specified on
the initial temperature condition data-cards.

3.18 Thermal Stress Analysis

The temperatures calculated by TOPAZ can be used in performing uncoupled thermal stress analyses
with the mechanical code SAPPHIRE (which is included in SCANS). SAPPHIRE wili read the
temperature states from the plot files generated by TOPAZ.

3.19 Transient Analysis

TOPAZ has both fixed and variable time-step capabilities. In addition, any number of fixed time-
step blocks may be specified, allowing for variation of time-step size in a stepwise fashion by
restarting the code with new initial temperatures.

3.20 Units

Any consistent set of units may be used with the governing equations.

Examples are:
__OQuantity Units

Temperature C & Fe
Space m cm in*
Time < . min*
Densi.y kg/m3 g/em3 Lbyy/in3*
Heat capacity Jkg C callg C Btu/Lb,F*
Thermal conductivity W/mC cal/semC Btu/min in F*
Thermal generation "fm3 cal/s cm3 Btu/min ft3*
Heat flux W/m? cal/s cm? Btu/min ft2*

* SCANS Units
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4.0 EXAMPLES

4.1 Introduction

To validate TOPAZ, six sample problems similar to shipping cask geometry or thermal loadings
were run. These sample problems are documented in this manual. Two additional problems
benchmark TOPAZ results from SCANS with the mainframe version of TOPAZ.

4.2 Example 1 - Finite Cylinder with Two Surface Temperatures

Carslaw and Jaeger [7] provide a solution for steady-state heat flow in a solid cylinder (Fig. 4-1)
with the temperature on the bottom at a fixed temperature and the side and the top at a different
temperature. The material thermal properties are held constant (see Fig. 4-1 and Table 4-1). This
two-dimensicnal problem has the exact analytical solution (see Fig. 4-2).

T.‘ :
2
T=T| " z2=0.
T=T| y T=Tp.
Y T=T,, z=1

Figure 4-1 Solid finite cylinder with two surface temperatures.

T-T = sinh (A,Z) J, (A,R)
RANOR. RPN . MZ) Jo , (70a)
T2 o T.: n=1 }." sinh ()\-“L) Jl (kn)
Jo(Ay) =0,Z=12z2/1y,L =1/10. (70b)
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Table 4-1 Input data for Exampie 1.

Geometry
l = 10.87313 m
fy, = 271828 m
Boundary Condis
T = 10°C, bottom surface temperature

=3
il

0°C, top/side surface temperature

-32.




I LI

x\xxxx\\\\\\\\\\\\\\\\
\\\\SHS W \
\
)\

\ \\ \\\\
l\\YT)'_*'\\A; \x\;\\\ |
AR RRRR R

§o g 8 TREE— \\\\\\XXT‘\

]
\
|
1 hen ‘
]
]

Phen L0

Figure 4-2 Analytical and numerical results for a

steady-state heat flow in a finite cylinder with
two surface temperatures.
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4.3 Example 2 - Slab with Nonlinear Materia! Properties

Stewart and Wessling (8] analytically solved the following problem, which can be used for
comparison in validating heat transfer computer codes. They found that several of the computer

codes investigated did not correctly handle strong material nonlinearities.

The problem consists of 4 homogcncgps. isotropic slab of finite thickness, 1, heated on the front face
by a constant and uniform heat flux, q, and insulated on the rear face (see Fig. 4-3 and Table 4-2).

uu'luu

Figure 4-3 Heat conduction in homogeneous isotropic slab.

The appropriate form of the heat conduction equation is

(. oT oT
x\Fx)e
subject to the initial and boundary conditions
b (X.O) = TO .

oT
K(O’T):- q .

oT
g {(LT)=0.

(71)

(72)

(73)

(74)



This problem can be solved analytically for the special case k = k(T), ¢ = ¢(T), and p = p(T) such
that k/pc = & = constant. The solution is

BT 0’ 4 (xz 1 : =21 2 2)
s Sl _2.-x+-3-+Fo--u—2-n2='.l-n—zcosnan—Fon1! v D

koTo
where
T-T, :
- T s (/\ }
i % : (77)
Fo = %T- . (78)
1
Table 4-2 Input data for Example 2.
|
|
. | Material F .
1 = 003133ft \
P = 500 1b/ft3 }
M) = ko [1 + B(T - To)] = 1.00 [1 + .005(T - 530)] Btu/hr ft °R ‘
o = co [1 + B(T - Tp)] =0.005 [1 + .005(T - 530)] Btulby'R
kp = 1. Bw/hr ft'R
o = 0.05 Btu/Ib'R
B = 0.005 1/°R
B { Initial Condic
qQ =  252%*3106Btu/hr A2
MR 530 'R
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The finite element mesh consisted of 40 elernents in the x-direction. By trial-and-error, it was found
that fewer elements could not resolve the large temperature gradients existing in this nrogram.

Table 4-3 shows the analytical and numerical results for the temperature on the face at x = ( at
various times.

Table 4-3 Comparison of results for Example 2.

TEMPERATURE [*R] at x =0 |

IIME[hd  ANALXQUCAL — TOPAZ

1x 106 847.19 £45.44
1x 10°3 1201.41 1200.24
1x 104 1851.45 1850.43




4.4 Example 3 - Cylinder with Temperature + Convection Boundary Conditions

Carslaw and Jaeger [9] provide a solution for steady heat flow in a solid cylinder with the
temperature on the bottom at at fixed temperature and the side and the top subject to convective
cooling. The material thermal properties are held constant. (See Fig. 4-4 and Table 4-4) This two-
dimensional problem has the exact analytical solution (see Fig. 4-5):

Finite cylinder with:
T=1(r),z=0,0<r<r,
T=Tp.z=1,0<r<ry

Convection boundary at
r=r9,0<z<1,
with h, T,

fir

Figure 4-4 Finite solid cylinder with convection.

L =1/19, Bi = hro/k, AnJ, (An) + Bi Jo (An) = 0, Ap > 0 (79)

T - To . oo JO (Rkn) sin h ([l - Z] Ll.n)
e el ¥ R ey (80)
S, "=l (Bi® + A,) Jp (A,) sin h (LA,)

Table 4-4 Input data for Example 3.

: o

1 = 10.87313 m

To B 271828 m

k = 3 W/m °C, thermal conductivity
B tary Condi

1.10364 W/m? °C heat transfer coefficient applied over 21
0°C, environment temperature
10°C, environment temperature = f(r)
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Figure 4-§ Analytical and numerical results of temperature plus convection boundary conditions
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4.5 Example 4 - One-Dimensional Cylinder with Heat-Generating Core

Sandia National Laboratory was contracted to study the performance of general purpose thermal
analysis codes used for eva'uating the response of nuclear fuel shipping casks to thermal loads. As
part of this work, they developed a standard set of thermal models consistent with many shipping
cask designs [10]. Model 1 of this standard set consists of a composite two-region cylinder of

length L, with a central region that generates heat (Fig. 4-6). The central core (region 1 withr £11)
generates heat at 11090 W/m3, a value representative of spent fuel shipments, while the external
surface of region 2 (r) <r g )is subjected to a convective boundary condition equal to 5.67

W/m2.K, simulating natural convection in room temperature air. With all material propertie; held
constant (Table 4-5), this one-dimensional steady-state problem has an exact analytical solution
(Fig. 4-7) [10].

(AXIS
A i
/ADIABATJC SURFACE rJE
'y 4 1 [T
".ﬁ r | r H
4 t (T
ADIABATIC || CONVECTIVE s, | R
SURFACE w3 K COOLING e @ TEMPERATURE
%" b(Ty~- o) b I PROFILE
S PATH
2. t M
REGION 1 ; ]
REGION 2 - L t (T
Y o

o
-

f

-—‘1!—- "N ADIABATIC SURFACE | A
B
I, ——— D .4 .8 1.2

Figure 4-6 SNI. Model 1 geometry »nd LLNL finite element mesh
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The exact solution is:
of 1 In(ry/ry) 1 r2
Osrsr TMD=T,+Qr, [21'211- 7y +4k1 i (81)
n
L of 1 In (ry/ry)
r,SrSrz T(r)-T.+er [er h. 2k2 . (82)
Table 4-5 Input data for Example 4.
Region Geometry Material properties*
1 Inner region with
internal heat source p1 = 16.02 kg/m3
rp =02743 m k; =69.23 W/m-K
L=4572m Q, = 11.09 kW/m?3
2 Outer region
P2 = 16.02 kg/m?
Cpa = 4184 J/kg-K
n= 09144 m kz = 34,61 W/m-K
L=4572m
Boundery Condid

Convective coefficient (h) = 5.67 W/m?-K
Environment temperature (T..) = 54.4°C
Initial cask temperature (Tjp;,) = 54.4°C

*These material properties not representative of real materials.
The second figure set shows the analytical and numerical results
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Figure 4-7 Analytical and numerical results for one dimensional cylinde: with internal heating.
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4.6 Example 5 - Finite Rod with Band Heating

Carslaw and Jaeger [7) provide a solution for steady-state heat flow in a hollow cylinder with a flux
boundary condition heat source on the middle of the rod side surface and convection houndary
conditions over the entire side surface. The material thermal properties are held constant (see Fig. 4-
8 and Table 4-6). This two-dimensional problem has the exact analytical solution (Fig. 4-9):

b
Q._g'g_.l > Finite rod with band heating,
/ =(0,z=%2b
é o J i // q: =0,z .
é e e 2 Z Convection boundary at r = 1,
é 7 4 -b<z < +b.
I hT, Surface heating (q) at r = 1y,
Heating band -l<z<+ ]

Figure 4-8 Finite rod with heating band.

(T-T)y B * i sin (A,L) Iy (A,pR) cos (A,z) 83)
Aok Bi " “nsi ) Bi L) (hyp) + (hp) I, (Ap)]

An=nm, Bi=hro/k, L= 1b, Z=2b (84)
R = r/ro’ p = rdb (85)

Table 4-6 Input data for Example 5.

o T
1 = 543657m
o =  271828m

3 W/m-K, thermal conductivity

271828 m
4.41555 W/m2, heat flux applied over 2b

1.10364 m, heat transfer coefficient applied over 21
10°C, environment temperature
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4.7 Example 6 - Finite Cylinder with Strip Heating and Cooling

Carslaw and Jaeger [7] provide a solution for steady-stace hieat flow in a solid cylinder with a heatng
flux boundary condition source at one end of the cylinder's side surface and an equivalent cooling
flux boundary condition at the other end (Fig. 4-10). The material thermal properties are held
constant (Table 4-7). This two-dimensional problem has the exact analytic<] solution (Fig. 4-11):

0

C=-qur=1,1>x>1-b.

q a
1 777777777027, 7707707700778 1 , G =0,r=11-v>2z5-14b
. 0 G=vgni=r-l+b>z>-
/ Q. =0, 2=%Lr=r
l b

TN K‘Z"zm o qt' T=Tpz=0,0<r< o

"R
2 Jt 'S

Figure ©-10 Finite cylinder with strip heating and cooling.

(T-Tyk « («1)",(mxR)
lo) = —85— X 2 2 sin (mnb/l) sin {mnZ) (8¢)
& g n=0 m ll (mltRo)
where
m=2n+1,R=1/2l,Z=2/21, B = b/2l. (87)
Table 4-7 Input data for Example 6.
G { Material P :
1 = 543657 m
Ty = 2.71828 n
Bomnder St
b = 1.35914 m
Qs = 5.5182 W/m?2, heat flux applied over 2b
Ty = 10°C, center-plane temperature
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Figure 4-11 Analytical and numerical results for steady-state heat flow in a finite cylinder with
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4.8 Example 7 - Finite Hollow Cylinder with Inside Band Heating

Carson a | Jaeger [7] provide a solution for steady-state heat flow in a solid cylinder with a flux
boundary condition heat source on the middle of the inside surface of the cylinder and fixed
temperature boundary conditions over the remaining surface (Fig. 4-12). The material thermal
properties are held constant (Table 4-7). This two-dimensional problem has the exact analytical
solution (Fig. 4-13):

Finite hollow cylinder with

T=f(z),r=r,0<z<l

T=tyr=150<2z2<]

T=ty,z=0andl,ry <r<r

Forf(z) =q,w<z<(l-w)

Figure 4-12 Finite hollow cylinder with inside bond heating

Fo = Ip (ntR) Ko (ntRg) - Ko (nnR) Ip (ntR), (88)

Fi = I) (nrR)) Ko (ntRp) - K (nnR;j) Ip (ntRg), (89)
where

R=r/land W = w/l (90)

(T-Ty k « Fy v
S—— ~— c0s (nxtW) sin (nxZ), n= 1,3,5, .. (91
kll' n=1 n‘F, )

Table 4-8 Input data for Example 7

Geometry and Material Properties

I = 10.87313 m

L 2.71828 m

I ' l m

k 3 W/m-K, thermai conductivity

Boundary Conditions

W = 2.71828 m

y y { Y
Qi z 55.182 W/m#, heat flux applied over w on r;
T 00C, surface temperature




in s an m b n e ey e o RNMARERRR™ == v 7 wwr n o o
o NUMERICAL
ANALYTICAL

T =TTttt

e H R e s B 16

. +
i e T G T B s s .4.«,_|._L__. o ik 7

Lol
]

| l |
1__.1 —— o N : e e g it o

1)

. -
|

! - .l SURPUESY 19 IR e ——1 Y., o 1

1

5 { __4 ] 1

Tgl_lpgzja'ture '
L ERrLIE S AhlE-1 1|
L ;
1
|
!
i

H f b i
o S o S A S S . PN TR e e B R
AL T | H
- g e l ! } ;Q B G v .
bia 1 ) %, 6 ; W W 4.3 i

il
t
!
«f
jf_
-

AR Reatiew o sl

5 B o \lel
il

EeRSEE Hll 1
YR '
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4.9 Example 8 - Regulation Case-Normal Hot Day with Maximum Decay
Heat/Solar Heat

Along with Example 9, this case is included to benchmark the PC-based version of TOPAZ with the
validated version on the LLNL CRAY mainframe machines. The geometry for this example is
similar to some spent fuel shipping cok designs (Fig. 4-14).

AXIS

!

36 "

[POLYURETHANE FOAM)

Y

7.5" [55304])

] 25,6‘5"_)1:7 ‘_‘ﬂ.ﬂ_
R "

1
|
2 3.875"
2.25"

.

96.25"

A\Rj— (304 STAINLESS STEEL (5S304)]
.- (LEAD]

Figure 4-14 Geometry and finite element mesh for regulation case. Normal hot with maximum
heat.




The thermal load is based on the regulation-defined case assuming a 100°F ambient temperature with

natural convection cooling and 95 Btu/hr-ft2 solar heating over the entire external surface. The
decay heat, 500 Btu/min, is spread uniformly in terms of an heat flux boundary condition on the
surface of the cask cavity. The temperature-dependent heat transfer coefficients for the cylindrical
and end surfaces are given by

hey) = 2.118 X 10-5(T - Tymp)!/? Btu/min-in2-'F (92)
hend = 2.095 X 10°5(T - Tymp) V3 Btu/min-in2. °F (93)

For stainless steel 304, the density is 0.28414 lbny/in3. The specific heat capacity (Btu/lbm-*F) and
the thermal conductivity (Btu/min-in-°F) vs temperature (*F) are given in Table 4-9.

Table 4-9 Stainless steel specific heat capacity and thermal conductivity.

v -58. 68. 212. 392. 572. 134, 1112, 1472.
Cp: 01125 .0114 012083 .012083 .013056 .013889 .015278 .018056
K % ¥ ) 123 12375 A275 13125 438 1425 R §

For lead, the density is 0.411 lbnm/in3. The melt tamperature is 620°F, and the heat of fusion is
10.26 Btu/Ibm. The specific heat capacity (Btu/lbm-‘F) and thermal conductivity (Btuw/min-in-"F) vs
temperature ('F) are given in Table 4-10.

Table 4-10 Lead specific heat capacity and thermal conductivity.

¢ -38. 68. 212. 392. 572. 630. 717. 1276.
Cp: 028888  .0280 .0268 .025278 .023889 .016806 013472 .012028
& 03 0307 .0315 .032598 .033695 034 033914 033653

For polyurethane foam, the density is 0.01157 Ibm/in®. The specific heat capacity (Btu/Ibm-F) and
thermal conductivity (Btu/min-in-"F) vs temperature (°F) are given in Table 4-11.




Table 4-11 Polyurethane form specific heat capacity and thermal conductivity.

| v -58. 68. 1300.
Cp: 000278 000278 000278
k: 5 3 3

Figure 4-15 shows a comparison between the CRAY version prediction and the PC version
prediction of the temperature profiles along the cask axis and the cask center plane.
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4.10 Example 9 - Regulation Case-Cold Soak with Maximum Decay Heat/No
Solar Heat

This case is also included to benchmark the PC-based version of TOPAZ with the well-
documented version on the LLNL CRAY mainframe machines. The geometry for this example is
the same as Example 8. The thermal load is based on the regulation-defined case assuming a -40'F

ambient temperature with natural convection cooling over the entire external surface. The
remaining input data is the same as Example 8.

Figure 4-16 shows a comparison between the CRAY version prediction and the PC version
prediction of the temperature profiles along the cask axis and the cask center plane.

-52.
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