ENCLOSURE 3

BRUNSWICK STEAM ELECTRIC PLANT, UNITS 1 AND 2 DOCKET NOS. 50-325 & 50-324/LICENSE NOS. DPR-71 & DPR-62 ELIMINATION OF CYCLE SPECIFIC PARAMETER LIMITS UPDATED TECHNICAL SPECIFICATION PAGES (NRC TAC NOS. 66153 AND 66154)

UNIT 1 TECHNICAL SPECIFICATION PAGES

-		-	-	
- 1	- NJ	13	ы	x
	1.14	1.1	124	~
				~ ~
-		-	-	-

SAFETY LIMITS AND I UMITING SAFETY SYSTEM SETTINGS

<u>SECTION</u> <u>2.1 SAFETY LIMITS</u> Thermal Power (I.c. Processor on Low Film)

Thermal	Power (Lcv Pressure or Low Flow)	2-1
Thermal	Power (Hi h Pressure and High Flow)	2-1
Reactor	Coolant System Pressure	2-1
Reactor	Vessel Water Level	2-2

2.2 LIMITING SAFETY SYSTEM SETTINGS

Reactor Protection System Instrumentation Setpoints...... 2-3

BASES

2.1 SAFETY LIMITS

Thermal	Power (Low Pressure or Low Flow)	В	2-1
Thermal	Power (High Pressure and High Flow)	В	2-2
Reactor	Coolant System Pressure	В	2-3
Reactor	Vessel Water Level	В	2-3

2.2 LIMITING SAFETY SYSTEM SETTINGS

Reactor Protection System Instrumentation Setpoints...... B 2-4

PAGE

I BUILH Y	
TUDEN	١

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION		PAGE
3/4.0 AP	PLICABILITY	3/4 0-1
3/4.1 RE	ACTIVITY CONTROL SYSTEMS	
3/4.1.1	SHUTDOWN MARGIN	3/4 1-1
3/4.1.2	REACTIVITY ANOMALIES	3/4 1-2
3/4.1.3	CONTROL RODS	
	Coatrol Rod Operability	3/4 1-3
	Control Rod Maximum Scram Insertion Times	3/4 1-5
	Control Rod Average Scram Insertion Times	3/4 1-6
	Four Control Rod Group Scram Insertion Times 3	3/4 1-7
	Control Rod Scram Accumulators	3/4 1-8
	Control Rod Drive Coupling	3/4 1-9
	Control Rod Position Indication	3/4 1-11
	Control Rod Drive Housing Support	3/4 1 13
3/4.1.4	CONTROL ROD PROGRAM CONTROLS	
	Rod Worth Minimizer	3/4 1-14
	Rod Sequence Control System	3/4 1-15
	Rod Block Monitor	3/4 1-17
3/4.1.5	STANDBY LIQUID CONTROL SYSTEM	3/4 1-18
3/4.2 PC	OWER DISTRIBUTION LIMITS	
3/4.2.1	AVERAGE PLANAR LINEAR HEAT GENERATION RATE	3/4 2-1
3/4.2.2	APRM SETPOINTS	14 2-2
3/4.2.3	MINIMUM CRITICAL POWER RATIO	3/4 2-3

.

INSTRUMENTATION

3/4.3.4 CONTROL ROD WITHDRAWAL BLOCK INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.4 The control rod withdrawal block instrumentation shown in Table 3.3.4-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.4-2.

APPLICABILITY: As shown in Table 3.3.4-1.

ACTION:

- a. With a control rod withdrawal block instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.4-2, declare the channel inoperable until the channel is restored to OPERABLE status with its Trip Setpoint adjusted consistent with the Trip Setpoint value.
- b. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, POWER OPERATION may continue provided that either:
 - 1. The inoperable channel(s) is restored to OPERABLE status within 24 hours, or
 - 2. The redundant trip system is demonstrated OPERABLE within 4 hours and at least once per 24 hours until the inoperable channel is restored to OPERABLE status, and the inoperable channel is restored to OPERABLE status within 7 days, or
 - 3. For the Rod Block Monitor only, THERMAL POWER is limited such that MCPR will remain above the Safety Limit MCPR of Specification 2.1.2, assuming a single error that results in complete withdrawal of any single control rod that is capable of withdrawal.
 - 4. Otherwise, place at least one trip system in the tripped condition within the next hour.
- c. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, place at least one trip system in the tripped condition within one hour.
- d. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5.

SURVEILLANCE REQUIREMENTS

4.3.4 Each of the above required control rod withdrawal block instrumentation channels shall be demonstrated OPERABLE by the performance of a CHANNEL CHECK, CHANNEL CALIBRATION, and a CHANNEL FUNCTIONAL TEST during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.4-1.

ENCLOSURE 4

BRUNSWICK STEAM ELECTRIC PLANT, UNITS 1 AND 2 DOCKET NOS. 50-325 & 50-324/LICENSE NOS. DPR-71 & DPR-62 ELIMINATION OF CYCLE SPECIFIC PARAMETER LIMITS UPDATED TECHNICAL SPECIFICATION PAGES (NRC TAC NOS. 66153 AND 66154)

UNIT 2 TECHNICAL SPECIFICATION PAGES

INSTRUMENTATION

3/4.3.4 CONTROL ROD WITHDRAWAL BLOCK INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.4 The control rod withdrawal block instrumentation shown in Table 3.3.4-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.4-2.

APPLICABILITY: As shown in Table 3.3.4-1.

ACTION:

- a. With a control rod withdrawal block instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.4-2, declare the channel inoperable until the channel is restored to OPERABLE status with its Trip Setpoint adjusted consistent with the Trip Setpoint value.
- b. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, POWER OPERATION may continue provided that either:
 - The inoperable channel(s) is restored to OPERABLE status within 24 hours, or
 - 2. The redundant trip system is demonstrated OPERABLE within 4 hours and at least once per 24 hours until the inoperable channel is restored to OPERABLE status, and the inoperable channel is restored to OPERABLE status within 7 days, or
 - 3. For the Rod Block Monitor only, THERMAL POWER is limited such that the MCPR will remain above the Safety Limit MCPR of Specification 2.1.2, assuming a single error that results in complete withdrawal of any single control rod that is capable of withdrawal.
 - 4. Otherwise, place at least one trip system in the tripped condition within the next hour.
- c. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, place at least one trip system in the tripped condition within one hour.
- d. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5.

SURVEILLANCE REQUIREMENTS

4.3.4 Each of the above required control rod withdrawal block instrumentation channels shall be demonstrated OPERABLE by the performance of a CHANNEL CHECK, CHANNEL CALIBRATION, and a CHANNEL FUNCTIONAL TEST during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.4-1.