attachment 2

Int. J. Pres. Ves. & Piping 25 (1986) 25-46

# Applicability of Pipelocks as a Remedy for Intergranular Stress Corrosion Cracking in BWRs

## J. S. Abel, M. C. Strait

## Commonwealth Edison Company,1 First National Plaza, PO Box 767, Chicago, Illinois 60690, USA

# J. Gilman

Electric Power Research Institute, 3412 Hillview Avenue, Palo Alto, California 94303, USA

## M. L. Badlani, J. S. Porowski, W. J. O'Donnell\* and E. J. Hampton

O'Donnell & Associates Inc., 241 Curry Hollow Road, Pittsburgh, Pennsylvania 15236, USA

#### ABSTRACT

Design, analyses and first application of the Pipelock as a novel longterm multicycle protection for piping systems in Boiling Water Reactor plants damaged by Intergranular Stress Corrosion Cracking in BWRs is described. Confirmatory tests simulating all design and operating conditions including LOC.4 are also discussed.

Pipelocks are mechanical devices which prevent pipe break even if it is assumed that intergranular stress corrosion cracking punetrates through-the-wall and around the entire circumference of the pipe weldment. With a fully cracked weldment, the entrapped wedges lock the pipes together, preventing the ends from separating.

In addition to providing defense-in-depth against pipe breaks, pretightening of the Pipelock bolts produces axial and circumferential com-

\* To whom correspondence should be addressed.

8908110371 8907

ADOCK 05000254

25

1 tt. J. Pres. Ves. & Piping 0308-0161/86/\$03.50 © Elsevier Applied Science Publishers L d. England, 1986. Printed in Great Britain

#### J. S. Abel et al.

pressive stresses in the pipe wall at the weldment, thus tending to retard or eliminate crack growth during operation after installing the Pipelock.

Pipelocks are designed to meet regulatory requirements 10CFR50— Appendix B and ASME Code Section III requirements for long-term multicycle operation.

Installed Pipelocks can be disassembled to permit inservice inspection of the weldment. They therefore can be used through several outages subsequent to the installation, thereby eliminating or postponing the need for pipe changeout. The design of the Pipelock also enables their use on weldments which were previously overlaid.

# INTRODUCTION

Intergranular stress corrosion cracking of weldments in 304 stainless steel piping systems first occurred in the fall of 1974. Various remedies not requiring pipe changeout have been proposed in order to provide assurance of structural integrity and reliability. Pipe changeout requires new piping, human resources and capabilities which must be thoroughly planned and scheduled well in advance of the project. There are major advantages in being able to operate through several scheduled outages prior to changeout so that the long outage required for such a massive project can be scheduled at an opportune time, and adequate preparations can be made for evaluating all of the related plant changes. The Pipelock meets this need and provides certain advantages over other remedies which have been proposed.

The use of weld overlays provides a valuable option. At present, the use of overlays is restricted to a limited time period due to uncertainties related to crack growth and inspectability of overlaid welds. Research efforts are underway to eliminate these uncertainties.

Pipelocks on the other hand are designed to retain the pipe ends even in the hypothetical case of full degradation of the welded joint. The oad path is redirected around the degraded weldment through the Pipelock rings which act in a manner analogous to split loose flanges. The Pipelock studs carry the axial tensile loads. The positive locking mechanism holding the rings on the pipe operates without the benefit of friction. Pipelocks are designed for application with or without weld overlays. The Pipelock and overlay functions are complementary. The Pipelock ensures strength and safety while the overlay seals throughthe-wall cracks which may exist prior to the application of the Pipelock. Pipelocks as remedy for IGSCC in BWRs



Fig. 1. Typical compressive stress distribution for pretightened Pipelocks.

The Pipelock is not only capable of holding the joint together, but also provides compression at the inner surface of the pipe in the weld and heat-affected zone (HAZ). Tightening of the studs holding the Pipelock rings on opposite sides of the weldment provides compressive stresses in the axial and hoop directions which remain compressive at the inner surface also after pressurizing the pipe. A typical stress distribution in the HAZ due to pretightening the studs is shown in Fig. 1. The Pipelock thus retards or eliminates crack growth, and provides defense-in-depth against catastrophic failure.

## DESCRIPTION

An isometric view of the Pipelock is shown in Fig. 2. Figure 3 shows its typical cross section. The Pipelock consists of mating wedge-shaped inner locking rings and intermediate wedge rings. The inner locking rings clamp the pipe by wedge action and are held in place on the pipes on either side of the welded joint by shear rings even in the absence of friction. The shear rings are positioned in circular grooves that are machined on the corresponding inside and outside surfaces of the locking rings and pipes, respectively. The locking rings on both sides of the weldment are held firmly by the intermediate wedge rings that are tightened together by nuts and bolts.

Spherical washers or nuts with spherical bottom surfaces are used to provide the proper bearing surface and to ensure that the Pipelock bolts are not subjected to bending. Contact between the inner and intermediate

J. S. Abel et al.







Fig. 3. Characteristic cross-section for Pipelock installed on elbow.

.

Pipelocks as remedy for IGSCC in BWRs



Fig. 4. Equilibrium and kinematics of Pipelock.

rings occurs on a conical surface. All of these wedge-shaped rings and the shear rings are split so that they may be assembled around the pipes. The necessary radial constraint is provided by the outer closure rings which also secure the Pipelock assembly in place. Closure of the outer rings is provided by threaded keys.

The equilibrium conditions and kinematic interaction of the pipe and rings resulting in self locking of the Pipelock are explained diagrammatically in Fig. 4. The preloaded bolts draw the ends of the pipe together, creating axial compressive stress and circumferential compressive stress in the pipe through action of the wedges. Even if the bolts were not preloaded and if the weldment were fully cracked, the axial motion of the pipes moving apart locks the entrapped wedges, preventing the ends from separating.

The original design included chear rings located in grooves machined in the pipe on both sides of the weldment. A current improved design option shown in Fig. 5 provides shallow contour threads on the pipe surface and flexible pads which adjust to the outer profile of the pipe during tightening of the studs. Use of multiple threads guided by the surface of the pipe simplify machining and significantly facilitate installation of the Pipelock.

J. S. Abel et al.

LOCKING RING



Fig. 5. Contour thread on pipe surface with flexible pad as axial retainer of locking rings.

### TABLE 1 Functions and Benefits of the Pipelock

Provides positive mechanical protection against pipe break

Imposes axial compression on weldment to retard circumferential crack growth

Imposes circumferential compression on weldment to retard growth of deep axial cracks which can cause leaks

Eliminates need to inspect welds and quantify crack depths to ensure structural integrity Provides for safe operation with extensive IGSCC

Can be used with or without weld overlay (Fig. 6)

Can be applied for joints between straight pipes or for joints between pipes and pipe fittings

Enables installation on the existing piping systems: rings are split to enable assembly Can be disassembled to enable inspection of the welds

Causes no axial shrinkage or distortion in the piping system

Meets ASME Section III criteria and regulatory requirements for multicycle long-term service

## DESIGN AND FUNCTIONAL REQUIREMENTS

The Pipelock, when installed on a cracked piping weldment, functions as a structural part of the primary system pressure boundary of the Nuclear Steam Supply System (NSSS). As such, it is to be designed and constructed to the requirements for Safety Class I piping as set forth in the applicable ASME Code and the owner's Design Specification.

The Pipelock is designed in accordance with Section III, Division 1 requirements of the ASME Boiler and Pressure Vessel Code for safe, long-term multicycle operation. The Pipelock and pipe must therefore be shown to satisfy the stress limits given therein.

The functional requirements for the Pipelock are listed in Table 1. The positive locking mechanism of the Pipelock provides sufficient strength to hold the free ends of a pipe separated by a 360° throughthe-wall crack even without taking credit for friction. Friction generated by the wedge locking mechanism provides dual protection.

The Pipelock materials are listed in Table 2. Selection of materials of lower coefficients of thermal expansion for the Pipelock than for the 304 SS pipe enhances the generation of compressive stresses at the operating temperature, thus retarding crack growth.



Fig. 6. Use of Pipelock to extend life of overload weldment: mini-overlay repair meets ASME Code Section XI IWB 3640 criteria; Pipelock meets ASME Code Section III criteria for long-term service.

J. S. Abel et al.

| energy and the state of the sta | TIPETOCK INA    | teriais                   |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|------------------|
| Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Product<br>form | Material<br>specification | Grade or<br>type |
| Closure ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Forging         | SA-508                    | Class 2a         |
| Locking ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Forging         | SA-705                    | Class 630        |
| Wedge ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Forging         | SA-508                    | Class 2a         |
| Threaded keys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bar             | SA-637                    | Type 718         |
| Studs*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bar             | SA-637                    | Type 718         |
| Nuts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bar             | SA-637                    | Type 718         |
| Spherical washers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bar             | SA-637                    | Type 718         |
| Shear rings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bar             | SA-637                    | Type 718         |
| Guide pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -               | 304 SS                    | Commercial       |

|    |    | T  | A  | B | L | E  | 2    |   |    |
|----|----|----|----|---|---|----|------|---|----|
| Pi | pe | 10 | cl | K | N | fa | teri | a | ls |

" SA540 Grade B23 Class 2 steel can also be used as an alternative bolting material.



Fig. 7. Two-dimensional finite element model of 12 in Pipelock.

# DESIGN EVALUATION

Detailed two-dimensional and three-dimensional finite element stress analyses were performed to verify that the Pipelock can be designed to the ASME Code Section III requirements for typical BWR recirculation system service conditions. Figures 7 and 8 show examples of twodimensional and three-dimensional models for a 12 in (30 cm) safe-end



Fig. 8s. Three-dimensional finite element model of 12 in Pipelock.





J. S. Abel et al.





Pipelock. In this case, the two-dimensional analysis was used for evaluating the symmetric loadings while the three-dimensional analysis was used for evaluating the bending loads. Figure 9 is a three-dimensional model of the split closure ring analyzed to ensure that the threaded key connection is strong enough to adequately satisfy stress limits, while Fig. 10 is an example of the three-dimensional model used in the analysis of the 12 in elbow Pipelock.



Fig. 10. Three-dimensional model of Pipelock on elbow.

Pipelocks as remedy for IGSCC in BWRs





All analyses including those for design and operating conditions were performed for the Pipelock on a fully cracked weldment. Zero friction was assumed for all analyses. This provides conservative results, since friction improves the clamping action of the Pipelock.

Some typical results for the 12 in safe-end Pipelock on the fully cracked pipe are illustrated in Figs 11-14. Figures 11 and 12 show the axial and hoop stress contours due to bolt preload (15000 psi per bolt). Figures 13 and 14 show the corresponding contours when pressure (1250 psi) is included in the analysis. In all cases, the inside pipe surface remains in compression at the weld location.

The temperature distribution at the end of the startup transient is shown in Fig. 15. The analysis included pretightening of studs, startup, steady operation and shutdown transient. The effect of the fast downtransient (LOCA) was also analyzed. Operating conditions, including transients, produce only moderate changes in the stud loads. (See also Fig. 22 comparing analysis with test results.)

As stated, the Pipelock is designed to meet ASME Section III, Division 1 Code limits. The corresponding calculated stresses for the worst locations based on the loading conditions of Table 3 are summarized



\* •

Fig. 12. Hoop stress distribution due to bolt preload. (-, Compression; +, tension.)



Fig. 13. Axial stress distribution due to bolt preload and internal pressure. (-, Compression; +. tension.)



. .

S. Sala

Fig. 14. Hoop stress distribution due to bolt prelead and internal pressure. (-, Compression; +, tension.)



Fig. 15. Temperature distribution at end of startup transient.

|                | TABLE 3<br>12 in (30 cm) Pipelock Loading Conditions                                                                                                           |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category       | Loading                                                                                                                                                        |
| Design         | 1 250 psi (internal pressure) + 50 000 ft lb                                                                                                                   |
| Levels A and B | <ol> <li>50 000 ft lb (thermal expansion bending moment)</li> <li>1 250 psi (internal pressure) + 50 000 ft lb + 100°F h<sup>-1</sup><br/>transient</li> </ol> |
| Level C        | 1 250 psi (internal pressure) + 50 000 ft lb                                                                                                                   |
| Level D        | 1 250 psi (internal pressure) + 50 000 ft 1b                                                                                                                   |



Fig. 16. 12 in Safe-end Pipelock test assembly.

TABLE 4 Basic ASME Code Evaluation of 12 in (30 cm) Pipelock<sup>a</sup>

\*

| ASME Code<br>condition         | Pipe<br>(SA-312 TP 304)<br>$S_m = 16900\text{psi}$<br>$S_s = 18000\text{psi}$<br>$S_n = 63700\text{psi}$                          | Locking ring<br>(SA-705 CL 630)<br>$S_m = 45475$ psi<br>$S_r = 101550$ psi                                                    | Lock closure ring<br>(SA-508 Class 2a)<br>$S_n = 30.000 \text{ psi}$<br>$S_r = 57.550 \text{ psi}$                                 | Bolts<br>(SA-637 Type 718)<br>$S_m = 45225 \text{ psi}$<br>$S_y = 136000 \text{ psi}$                                       | Shear rings<br>(SA-637 Type 718)<br>$S_m = 45225 \text{ psi}$<br>$S_r = 136000 \text{ psi}$ | Threaded keys<br>(SA-637 Type 718)<br>$S_m = 45225$ psi<br>$S_y = 136000$ psi                                                                   |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Design                         | $P_{n} < S_{m}$ $13\ 450 < 16\ 900$ $P_{t} + P_{b} < 1.5S_{m}$ $16\ 200 < 25\ 350$                                                | P <sub>m</sub> < S <sub>m</sub><br>44 300 < 45 475                                                                            | $\begin{array}{l} P_{\rm m} < S_{\rm m} \\ 23.600 < 30.000 \\ P_{\rm L} + P_{\rm b} < 1.5S_{\rm m} \\ 36.400 < 45.000 \end{array}$ | Bolt area > $A_{min}$ (total)<br>12 in <sup>2</sup> > 6.063 in <sup>2</sup><br>$\overline{S}_{xy} < S_m$<br>11 000 < 45 225 | t < 0.65 <sub>m</sub><br>11 750 < 27 135                                                    | $\begin{array}{c} A_{\rm Act} \ge A_{\rm min} \\ 3.16  {\rm in}^2 > 3.14  {\rm in}^2 \\ S_{\rm ros} < S_{\rm m} \\ 44.250 < 45.225 \end{array}$ |
| Levels A & B<br>service limits | $\begin{array}{c} P_{\rm t} < 3S_{\rm m} \\ 15800 < 50700 \\ P_{\rm t} + P_{\rm b} + Q < 3S_{\rm m} \\ 26900 < 50700 \end{array}$ | $\begin{array}{c} P_{\bullet} < 3S_{m} \\ 10\ 100 < 136\ 425 \\ P_{L} + P_{b} + Q < 3S_{m} \\ 51\ 300 < 136\ 425 \end{array}$ | $\begin{array}{c} P_{\rm e} < 3S_{\rm m} \\ 6200 < 90000 \\ P_{\rm L} + P_{\rm b} + Q < 3S_{\rm m} \\ 34600 < 90000 \end{array}$   | $S_{ww}^{sws} < 2.5_{m}^{sws}$<br>19 600 < 90 450                                                                           | $P_{\rm t} + P_{\rm b} + Q < 3S_{\rm m}$<br>26 800 < 135 675                                | $S_{max} < 2.5_m$<br>50 400 < 90 4 50<br>$S_{max} < S_m$<br>77 000 < 90 450                                                                     |
| Level C<br>service limits      | $P_{m} < 1.2S_{m} \text{ or } S,$ $13450 < 20280$ $P_{L} + P_{b} < 1.8S_{m} \text{ er } 1.5$ $16200 < 30420$                      | $P_{m} < 1.25_{m} \text{ or } S_{r}$<br>44 300 < 101 550<br>$S_{r}$ $P_{1}$                                                   | $P_{m} < 1.2S_{m} \text{ or } S,$<br>23 600 < 57 550<br>$+ P_{b} < 1.8S_{m} \text{ or } 1.5S$<br>36 400 < 86 325                   | $S_{avg} < 2S_m$<br>16800 < 90450                                                                                           | t <sub>m</sub> < 0.6 (1.25 <sub>m</sub> )<br>11 750 < 32 562                                | $S_{mw} < 2S_m$<br>44 250 < 90 450<br>$S_{max} < 2S_m$<br>64 350 < 90 450                                                                       |
| Level D<br>service limits      | $L_{\rm A} < 0.673 L_{\rm L}$                                                                                                     | $L_{\rm A} < 0.471 L_{\rm L}$                                                                                                 | $L_{\rm A} < 0.575 L_{\rm L}$                                                                                                      | $L_{\rm A} < 0.144 L_{\rm L}$                                                                                               | $L_{\rm A} < 0.251 L_{\rm L}$                                                               | $L_{\rm A} < 0.55 I_{\rm L}$                                                                                                                    |

Except in the case of areas, all units are psi (I psi = 70.3 gcm<sup>-2</sup>). Areas are expressed in in<sup>2</sup> (I in<sup>2</sup> = 6.45 cm<sup>2</sup>).

J. S. Abel et al.

|     | T | A | B | L | E  | 5   |   |
|-----|---|---|---|---|----|-----|---|
| Tes |   | n |   | p | ro | ora | m |

| 6 in (15 cm) Pipelock tests                       | 12 in (30 cm) elbow and safe-end<br>Pipelock tests                                    |
|---------------------------------------------------|---------------------------------------------------------------------------------------|
| Pressure cycled to 1 275 psi and 2 500 psi        | Pressure cycled to 1 250 psi and 1 600 psi                                            |
| Bending in both directions to $1.5S_m$ limit      | Bending cycled in both upward and down-<br>ward directions to 1.5S <sub>m</sub> limit |
| Design pressure plus bending to $1.5S_m$<br>limit | Pressure plus bending cycled in both directions to $1.5S_m$ limiter                   |
| Pressure cycled with one shear ring               | Sinusoidal and random noise excitation                                                |
| Thermal cycling-slow and fast down transients     | Thermal cyclingslow and fast down<br>transients                                       |

in Table 4. In all cases the calculated values are well within allowable limits.

#### Tests

Tests were performed on 6 in (15 cm) prototype and on full-size 12 in (30 cm) Pipelocks for safe-ends and elbows. The Pipelocks were installed on fully severed pipes. For pressure tests the pipe joint was sealed by an omega seal. The test assembly used for the 12 in Pipelock on a safe-end is shown in Fig. 16. The test assemblies were extensively strain-gaged to monitor the response of the Pipelock and pipe during the tests. The program of tests run on the 6 in and 12 in Pipelocks is outlined in Table 5. The scope of the pressure, bending and pressure plus bending tests is summarized in Table 6. Curves illustrating typical response of the elbow Pipelock assembly are shown in Figs 17-20.

Vibration and thermal tests were also performed on the Pipelocks. The vibration test included sinusoidal and random noise excitation. The loading history for the thermal test is shown in Fig. 21. The bolt stress variation is shown in Fig. 22 and correlates well with the analytically predicted results. Since the austenitic pipe expands more than the ferritic material of the bolts, the initial preload finally reaches a somewhat higher value during steady operation at elevated temperature. During the down-transient, since the thermal response of the pipe is much faster than that of the Pipelock, the pipe contracts more than the Pipelock. Thus, immediately at the end of the down-transient, the bolt preload drops slightly and then builds up again to its initial value as the

|        | 1.0000                                              |
|--------|-----------------------------------------------------|
|        | 3                                                   |
|        | and a                                               |
|        | *                                                   |
|        | õ                                                   |
|        | -                                                   |
|        | fate                                                |
|        | P                                                   |
|        | an                                                  |
|        | e                                                   |
|        | Đ.                                                  |
|        | 2                                                   |
|        | 31                                                  |
|        | -                                                   |
|        | E                                                   |
|        | 9                                                   |
|        | ŝ                                                   |
|        | 8                                                   |
|        | 6                                                   |
|        | -                                                   |
|        | E                                                   |
|        | =                                                   |
|        | n                                                   |
|        | 9                                                   |
|        | -                                                   |
|        | à                                                   |
|        |                                                     |
|        | ē                                                   |
|        | . 10                                                |
|        |                                                     |
|        | E                                                   |
| \$     | S                                                   |
| 62     | 100                                                 |
|        | N23                                                 |
| 22     | 2                                                   |
| 1      | d                                                   |
| Same . | 2                                                   |
|        | -                                                   |
|        | 0                                                   |
|        |                                                     |
|        | sck                                                 |
|        | rack                                                |
|        | Crack                                               |
|        | ly Crack                                            |
|        | ully Crack                                          |
|        | Fully Crack                                         |
|        | a Fully Crack                                       |
|        | ch a Fully Crack                                    |
|        | hich a Fully Crack                                  |
|        | which a Fully Crack                                 |
|        | n which a Fully Crack                               |
|        | in which a Fully Crack                              |
|        | ks in which a Fully Crack                           |
|        | ocks in which a Fully Crack                         |
|        | elocks in which a Fully Crack                       |
|        | ipelocks in which a Fully Crack                     |
|        | Pipelocks in which a Fully Crack                    |
|        | on Pipelocks in which a Fully Crack                 |
|        | on Pipelocks in which a Fully Crack                 |
|        | its on Pipelocks in which a Fully Crack             |
|        | ests on Pipelocks in which a Fully Crack            |
|        | Tests on Pipelocks in which a Fully Crack           |
|        | of Tests on Pipelocks in which a Fully Crack        |
|        | y of Tests on Pipelocks in which a Fully Crack      |
|        | rry of Tests on Pipelocks in which a Fully Crack    |
|        | nary of Tests on Pipelocks in which a Fully Crack   |
|        | nmary of Tests on Pipelocks in which a Fully Crack  |
|        | ummary of Tests on Pipelocks in which a Fully Crack |

.

.

| Pipelock<br>size | Max<br>test | imum<br>loads  | Nominal<br>12 in Sch 80              | stress in 6 in<br>elbow at ma         | pipe and<br>X, test loads            | al                                | ASME Code<br>lowable stress                   | 68                      |
|------------------|-------------|----------------|--------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------|
|                  | P<br>(psi)  | M<br>(in kips) | S <sub>b</sub><br>(ksi) <sup>a</sup> | $S_{p} + S_{b}$<br>(ksi) <sup>b</sup> | S <sub>e</sub><br>(ksi) <sup>c</sup> | $S_{p}^{p}$<br>(ksi) <sup>d</sup> | $S_{\rm b} + S_{\rm b}$<br>(ksi) <sup>e</sup> | S <sub>e</sub><br>(ksi) |
| 6in              | 2 550       | 1              | 22.8                                 | 1                                     | 1                                    | 20                                | 1                                             | 1                       |
|                  | 1           | 342            | 1                                    | 33.5                                  | 67                                   | 1                                 | 30                                            | 09                      |
|                  | 1 325       | 262.2          | I                                    | 37.5                                  | 1                                    | 1                                 | 30                                            | 1                       |
| 12 in            | 1 600       | 1              | 14                                   | 1                                     | 1                                    | 20                                | 1                                             | 1                       |
|                  | 1           | 661            | 1                                    | 42.8                                  | 1                                    | 1                                 | 30                                            | 1                       |
|                  |             | 705            | 1                                    | 38.84                                 | 81-64                                | 1                                 | 30                                            | 09                      |
|                  | 1 250       | 470            | 1                                    | 36-24                                 | 1                                    | 1                                 | 30                                            | 1                       |

mean pite Dm - $S_p = PD_m/2t_n$  where ID = 5.9 in.

<sup>b</sup>  $S_b = \dot{M}/Z$  where  $Z = \text{section modulus of pipe and 12 in Sch 80 elbow (includes stress index for elbow).$  $<sup>c</sup> <math>S_e = \text{Range due to cycling bending.}$ <sup>d</sup>  $S_p = S_m = 20 \text{ ksi for 304 material at room temperature. This is the basic allowable stress intensity.$  $<sup>e</sup> <math>S_p + S_e = 1.5S_m = 30 \text{ ksi for 304 material at room temperature.}$ <sup>f</sup>  $S_e = 3S_m = 60 \text{ ksi for 304 material at room temperature.}$ 





-O Channel 44 (Belt 1), 48 (Bolt 2).

Channel 60 (0°), 61 (189°); --- Channel 63 (180°). to 1250 psi: x --- x Channel 1 (0°), 9 (180°); O-



.

.

Channel 63 (0°). Channel 60 (180°), 61 (0°);

J. S. Abel et al.



Fig. 21. Load transient for thermal test.

temperature becomes more uniform. These results show that the Pipelock maintains its integrity and prevents the pipe ends from coming apart throughout.

The tests confirmed that the Pipelock fulfills the desired functional requirements and maintains the structural integrity of the severed joint. The response remains linear with loading, returning to the initial state on unloading. Also, no significant loss of preload was observed during repeated load cycling. Thorough inspections after the tests indicated no permanent deformations either in the pipe or in the Pipelock.

## Fabrication and installation

Installation of Pipelocks is carried out in four phases as follows:

- Preparation of the site, including removal of insulation and potential obstacles such as pipe restraints, cables, etc., installation of piatforms and services such as light lifting devices, shields, power, etc., and inspection of weldment.
- (2) Survey of pipe at specific locations, area preparation and machining the surface of the pipe.
- (3) Assembly of Pipelock.
- (4) Refurbishment of site including reinstallation of insulation, removal of construction materials and preparation for return to operational condition.

The first Pipelock was designed for Commonwealth Edison Company, fabricated by Westinghouse Electric Corporation and assembled at Commonwealth Edison Company's Quad Cities station by Power Cutting, Inc., Chicago, Illinois. The Pipelock was installed based on the repair plan issued under provisions of the Code cf Federal Regulations 10CFR5059 and ASME Code Section XI. After thorough training on mockup, installation progressed as planned, confirming the proficiency of QA approved procedures. A close-up in Fig. 23 illustrates the last

Pipelocks as remedy for IGSCC in BWRs



Fig. 22. Bolt stress for transient loading.



Fig. 23. Pipelock installed in drywell.

phase of installation of the Pipelock on the 12 in riser elbow in the drywell.

## CONCLUSIONS

The applicability of Pipelocks as a practical and effective long-term multicycle remedy for intergranular stress corrosion cracking in BWR piping systems has been demonstrated.

Analysis and testing have shown that the Pipelock provides positive mechanical protection against pipe breaks and that pretightening of the Pipelock bolts produces axial and circumferential compressive stresses in the pipe wall at the weldment, thus retarding or eliminating crack growth during subsequent operation.

The installation of Pipelocks does not raise any unreviewed safety questions nor does it bring into question any previously reviewed safety questions. Pipelocks can be implemented without requiring changes in the Technical Specifications. While Pipelocks can be readily disassembled in order to inspect the weldments and reassembled after completing the inspection, they eliminate the need to inspect the weld and quantify crack depths for safety purposes. Pipelocks meet ASME Section III criteria for long-term service.

### ACKNOWLEDGEMENTS

O'Donnell & Associates, Inc. gratefully acknowledges the support of Commonwealth Edison Company, Chicago, Illinois; Northeast Utilities, Hartford, Connecticut and Electric Power Research Institute, Palo Alto, California, for the total plan for Pipelock application in BWR plants.

#### ATTACHMENT 4

#### REQUEST FOR ADDITIONAL INFORMATION

#### OUESTION:

What is the affect of shrinkage caused by application of weld overlays on total applied stress in the piping systems?

#### **RESPONSE:**

During application of weld overlays, axial shrinkage of the pipe occurs. This shrinkage can change (increase or decrease) the total applied stresses in the piping system. These shrinkage induced stresses are usually very small when compared to the stress resulting from internal pressure, dead weight and thermal expansion. Shrinkage stresses resulting from weld overlays have always been considered during design of weld overlays. Results of these evaluations have been included in our design reports to the NRC concerning repair of IGSCC flaws. The concerns raised by NRR technical reviewers are related to the effectiveness of Stress Improvements (SI). Section 4.5 of NUREG-0313, Revision 2 states that mitigation by SI is not recommended for weldments with service stresses over 1.0  $S_m$ , cracks deeper than 30% of the wall, circumferential cracking longer than 10% of the circumference, or axial cracks of any extent.

Commonwealth Edison has developed and is currently implementing an IGSCC Integrated Program. This program includes application of a standard weld overlay on <u>sil</u> flawed welds, both circumferential and axial. For unflawed welds, stress improvement should be considered fully effective provided total sustained stresses are less than 1.5  $S_m$ . This was recognized in the draft version of NUREG-0313, Revision 2.

Attachment 4 is a summary of sustained stresses at each weldment, including shrinkage induced stresses. All weld locations in IGSCC-susceptible systems have sustained stresses less than 1.0 S<sub>m</sub>, except one weld in the RHR Loop A (10AD-F1), one weld in the RHR Loop B (10BD-F1), one weld in the Shutdown Cooling System (10S-F1) and six welds on the recirculation system (02D-F2, 02G-F2, 02J-F2, 02L-F2, 02L-S3, and 02M-F2). Of these, 02L-F2 has sustained stress greater than 1.5 S<sub>m</sub>.

The recirculation system has been evaluated from a weld overlay shrinkage standpoint to determine ways of reducing the shrinkage stresses. As a result of this evaluation, one weld overlay will be applied on an unflawed weld (O2L-S4) during the upcoming outage to reduce the sustained stress at O2L-F2 below 1.5  $S_m$ .

# ATTACHMENT 4

. .

Quad Cities Unit 1 Sustained Stresses at IGSCC Susceptible Weld Locations

## Introduction

This evaluation is limited to those susceptible systems listed in CECo's response to Generic Letter 88-01, for Quad Cities Unit 1. These systems are as follows:

- A) Recirculation System
- B) Shutdown Cooling
- C) RHR Lines
- D) Core Spray
- E) Reactor Water Clean-up
- F) CRD Return System
- G) Jet Pump Instrumentation
- H) Head Vent
- I) Spare Nozzles

#### Summary of Evaluation Results

Sustained stress level at a weld location consists of unintensified internal pressure, dead weight, thermal expansion and weld overlay shrinkage stresses. In performing this evaluation, the possibility was explored whether for systems without weld overly repairs, the sustained stress limits specified in NUREG-0313 are bounded by the code allowables used in the design of these systems. It was realized that for plants, designed under USAS B31.1, a general statement to this effect cannot be made because the design allowables are not related to Sm. Furthermore, stress intensification factors used in the design make such evaluation incompatible with the requirements of NUREG-0313. The sustained stresses were therefore calculated on a system unique basis for the susceptible systems listed above. Excluded in this evaluation are the jet pump instrumentation, head vent and spare nozzles which are affected only by internal pressure stress which is less than 1.0 Sm.

#### A - Recirculation System

Welds contained in this evaluation are those contained in the suction and discharge lines, the risers and all the N1 and N2 nozzle-to-safe end welds. Excluded in the evaluation are all the saddle welds which are assumed to be solution heat treated and therefore are Category A weldments under NUREG-0313. Most welds in this system have received SI treatment. A total of twenty-four (24) flawed welds in this system have been repaired with weld overlays. The locations of these overlays are shown in Figures 1 and 2.

These overlays have introduced shrinkage stress that contribute to the total sustained stress at unrepaired weld locations. Sustained stress for welds in this system therefore consist of internal pressure, deadweight, thermal expansion and weld overlay shrinkage stresses. The sustained stresses calculated for the

various weld locations are shown in Table 1. It can be seen from this table that six (6) welds have sustained stress greater than 1.0 Sm. These are welds 02D-F2, 02G-F2, 02J-F2, 02L-F2, 02L-S3, and 02M-F2. Of these only 02L-F2 has sustained stress greater than 1.5  $\rm S_m$ . Weld overlay shrinkage stresses contribute significantly to the sustained stresses of these weld locations. Weld overlay repairs will be performed on several welds of the recirculation system during the upcoming outage. These repairs could introduce additional shrinkage in the system which could significantly change the shrinkage stresses at the various weld locations which could in turn change the sustained stresses. The magnitude of the shrinkage stresses is affected by the distribution of weld overlay repairs in the system. Non-uniform distribution of those repairs in the system has the potential of introducing significant stresses. Therefore weld overlay repairs are being applied at unflawed locations to provide uniform distribution of weld overlays and reduce the shrinkage stresses.

#### B - Shutdown Cooling

The welds considered in this evaluation are contained in the piping between drywell penetration X-12 and the connection the recirculation system loop B. There are no weld overlay repairs on this system, hence sustained stresses consist of internal pressure, dead weight and thermal expansion stresses. The sustained stresses are shown in Table 2. Other than weld 10S-F1 which has a sustained stress of 1.09 S<sub>m</sub>, all other welds have sustained stresses no greater than 1.0 S<sub>m</sub>.

#### C. - RHR Lines

The welds considered in this evaluation are contained in the piping between drywell penetration X-13A and X-13B to the recirculation system discharge for Loops A and B respectively. There are no weld overlay repairs on these lines and the effect of weld overlay shrinkage from the recirculation system is negligible on these lines. There is one unrepaired flawed weld (10BD-S13) on this system; the location of this weld is shown in Figure 3. The sustained stresses consisting of internal pressure, dead weight and thermal expansion stresses are shown in Table 3. It can be seen from this table that with the exception of welds 10AD-F1 and 10BD-F1, the sustained stresses at all weld locations are less than 1.0 Sm. Welds 10AD-F1 and 10BD-F1 are unflawed and have sustained stresses of 1.37 Sm and 1.09 Sm respectively which are below 1.5 Sm.

#### D - Core Spray

The welds considered in this evaluation are between the reactor pressure vessel and penetrations X-16A and X-16B for loops A and B respectively. There are four weld overlay repairs on A loop and two on the B loop as shown in Figures 4 and 5. Total sustained

stresses therefore consist of internal pressure, dead weight, thermal expansion and weld overlay shrinkage stresses as shown in Table 3. From this table it can be seen that for all weld locations, the sustained stresses are below 1.0 S<sub>m</sub>. Additional weld overlay repairs will be performed on these lines during the upcoming outage which could change the shrinkage stresses. However, due to the flexibility of these lines, shrinkage stresses do not contribute significantly to the sustained stresses as can be seen from Table 4.

#### E - Reactor Water Clean-up

The welds considered in this evaluation are contained between the attachment to the shutdown cooling and penetration X-14. There are no weld overlays present on this system hence sustained stresses consist of internal pressure, dead weight and thermal expansion stresses. These are summarized in Table 5. As can be seen from this table, sustained stresses for all welds are less than 1.0 S<sub>m</sub>.

#### F - CRD Return Line

Welds considered in this evaluation are contained between the reactor pressure vessel and penetration X-36. No weld overlay repairs have been performed on this system hence sustained stresses consist of internal pressure, dead weight and thermal expansion stresses. These stresses are summarized in Table 6. The sustained stresses for all welds in this evaluation are below 1.0  $S_m$ .



Figure 1

QUAD CITIES UNIT 1 FLAWED WELD LOCATIONS REACTOR RECIRCULATION SYSTEM LOOP "A"



.

\*



QUAD CITIES UNIT 1 FLAWED WELD LOCATIONS REACTOR RECIRCULATION SYSTEM LOOP "B"









. . .

Figure 4

QUAD CITIES UNIT 1 FLAWED WELD LOCATIONS CORE SPRAY SYSTEM LOOP "A"



. .



QUAD CITIES UNIT 1 FLAWED WELD LOCATIONS CORE SPRAY SYSTEM LOOP "B"

. ...

QUAD CITIES UNIT 1 SUSTAINED STRESSES RECIRCULATION SYSTEM

| WELD<br>NO. | PRESSURE<br>STRESS<br>(PSI) | DW<br>STRESS<br>(PSI) | THERMAL<br>STRESS<br>(PSI) | SHRINKAGE<br>STRESS<br>(PSI) | SUSTAINED<br>STRESS<br>(PSI) | RATIO<br>TO<br>Sm |
|-------------|-----------------------------|-----------------------|----------------------------|------------------------------|------------------------------|-------------------|
| 02AS-F1     | 6439                        | 225                   | 101                        | 250                          | 7015                         | 0.41              |
| 02AS-F2     | 6439                        | 225                   | 101                        | 250                          | 7015                         | 0.41              |
| 02AS-53     | 6439                        | 162                   | 101                        | 266                          | 6967                         | 0.41              |
| 02AS-54     | 6439                        | 88                    | 90                         | 276                          | 6892                         | 0.41              |
| 02AS-F5     | 6439                        | 88                    | 90                         | 268                          | 6885                         | 0.41              |
| 02AS-56     | 6439                        | 223                   | 23                         | 182                          | 6867                         | 0.41              |
| 02AS-F8     | 6439                        | 223                   | 23                         | 152                          | 6837                         | 0.40              |
| 02AS-F9     | 6439                        | 200                   | 39                         | 156                          | 6834                         | 0.40              |
| 02AS-S12    | 6439                        | 48                    | 50                         | 136                          | 6672                         | 0.39              |
| 02AS-F14    | 6439                        | 50                    | 50                         | 118                          | 6657                         | 0.39              |
| 02AS-S15    | 6439                        | 56                    | 41                         | 99                           | 6635                         | 0.39              |
| 02AD-F12    | 6439                        | 330                   | 37                         | 94                           | 6898                         | 0.41              |
| 02AD-F9     | 6439                        | 582                   | 31                         | 35                           | 7087                         | 0.42              |
| 02AD-F8     | 6439                        | 185                   | 30                         | 20                           | 6673                         | 0.39              |
| 02AD-56     | 6439                        | 48                    | 25                         | 62                           | 6573                         | 0.39              |
| 02AD-S2     | 6439                        | 111                   | 62                         | 460                          | 7071                         | 0.42              |
| 02AD-F1     | 6439                        | 111                   | 62                         | 592                          | 7203                         | 0.42              |
| 02BS-F1     | 6439                        | 112                   | 5629                       | 245                          | 12425                        | 0.73              |
| 02BS-F2     | 6439                        | 112                   | 5629                       | 245                          | 12425                        | 0.73              |
| 02BS-S3     | 6439                        | 68                    | 4371                       | 207                          | 11085                        | 0.65              |
| 02BS-F4     | 6439                        | 68                    | 4371                       | 207                          | 11085                        | 0.65              |
| 02BS-S5*    | 6439                        | 64                    | 3055                       | 220                          | 9778                         | 0.58              |
| 02BS-F6*    | 6439                        | 215                   | 3568                       | 241                          | 10462                        | 0.62              |
| 02BS-F7     | 6439                        | 210                   | 2408                       | 273                          | 9329                         | 0.55              |
| 02BS-59     | 6439                        | 90                    | 634                        | 322                          | 7484                         | 0.44              |
| 02BS-512    | 6439                        | 56                    | 614                        | 291                          | 7400                         | 0.44              |
| 02BS-F14    | 6439                        | 56                    | 630                        | 283                          | 7408                         | 0.44              |
| 02BS-S15    | 6439                        | 37                    | 409                        | 245                          | 7130                         | 0.42              |
| 02BD-F12    | 6439                        | 448                   | 1873                       | 231                          | 8991                         | 0.53              |
| 02BD-F9     | 6439                        | 607                   | 1881                       | 122                          | 9048                         | 0.53              |
| 02BD-F8     | 6439                        | 237                   | 1962                       | 29                           | 8667                         | 0.51              |
| 02BD-56     | 6439                        | 46                    | 1832                       | 91                           | 8408                         | 0.50              |
| 02BD-52     | 6439                        | 76                    | 4606                       | 264                          | 11384                        | 0.67              |
| 02BD-F1     | 6439                        | 76                    | 4606                       | 210                          | 11330                        | 0.67              |
| 02B-F6      | 6439                        | 20                    | 154                        | 237                          | 6850                         | 0.40              |
| 02A-F1      | 6290                        | 199                   | 674                        | 1403                         | 8567                         | 0.51              |
| 02A-53      | 6290                        | 101                   | 366                        | 4192                         | 10948                        | 0.65              |
| 02A-F5      | 6290                        | 186                   | 324                        | 7469                         | 14269                        | 0.84              |
| 02A-59      | 6290                        | 0                     | 0                          | 0                            | 6290                         | 0.37              |
| 02B-F1*     | 6290                        | 334                   | 508                        | 1330                         | 8461                         | 0.50              |

## Table 1 (Continued)

. . . . .

QUAD CITIES UNIT 1 SUSTAINED STRESSES RECIRCULATION SYSTEM

| WELD<br>NO. | PRESSURE<br>STRESS<br>(PSI) | DW<br>STRESS<br>(PSI) | THERMAL<br>STRESS<br>(PSI) | SHRINKAGE<br>STRESS<br>(PSI) | SUSTAINED<br>STRESS<br>(PSI) | RATIO<br>TO<br>Sm |
|-------------|-----------------------------|-----------------------|----------------------------|------------------------------|------------------------------|-------------------|
| 02B-F5      | 6290                        | 404                   | 5979                       | 715                          | 13388                        | 0 70              |
| 02B-S7*     | 6290                        | 395                   | 3154                       | 173                          | 10012                        | 0.59              |
| 02B-S9*     | 6290                        | 0                     | 0                          | 0                            | 6290                         | 0.37              |
| 02-F1       | 6290                        | 66                    | 674                        | 1373                         | 8403                         | 0.50              |
| 02-F1D      | 6290                        | 459                   | 566                        | 1372                         | 8687                         | 0.51              |
| 02-F1E      | 6290                        | 459                   | 566                        | 1372                         | 8687                         | 0.51              |
| 02-F2       | 6290                        | 459                   | 566                        | 1367                         | 8682                         | 0.51              |
| 02C-F1      | 3558                        | 579                   | 758                        | 1938                         | 6832                         | 0.40              |
| 02C-F2      | 5800                        | 1096                  | 1435                       | 3669                         | 11999                        | 0.71              |
| 02C-S3*     | 5800                        | 535                   | 1292                       | 1855                         | 9482                         | 0.56              |
| 02C54*      | 5800                        | 348                   | 666                        | 2765                         | 9579                         | 0.57              |
| 02C-F6      | 5800                        | 319                   | 2237                       | 3095                         | 11451                        | 0.68              |
| 02D-F1      | 3558                        | 280                   | 1849                       | 3946                         | 9633                         | 0.57              |
| 02D-F2      | 5800                        | 531                   | 3502                       | 7474                         | 17306                        | 1.02              |
| 020-53*     | 5800                        | 317                   | 2623                       | 4797                         | 13537                        | 0.80              |
| 02D-54*     | 5800                        | 143                   | 757                        | 2540                         | 9240                         | 0.55              |
| 02D-F6      | 5800                        | 223                   | 3415                       | 3050                         | 12487                        | 0.74              |
| OZE-F1      | 3558                        | 237                   | 3566                       | 1044                         | 8404                         | 0.50              |
| OZE-FZ      | 5800                        | 448                   | 6754                       | 1093                         | 14095                        | 0.83              |
| 02E-53      | 5800                        | 251                   | 4283                       | 1105                         | 11439                        | 0.67              |
| UZE-S4      | 5800                        | 149                   | 1769                       | 754                          | 8472                         | 0.50              |
| UZE-F6A     | 5800                        | 462                   | 3957                       | 856                          | 11075                        | 0.65              |
| UZE-F6      | 5800                        | 462                   | 3957                       | 1977                         | 12195                        | 0.72              |
| O2F-FI      | 3558                        | 548                   | 1697                       | 1472                         | 7274                         | 0.43              |
| O2F-F2      | 5800                        | 1038                  | 3215                       | 2786                         | 12838                        | 0.76              |
| 02F-53*     | 5800                        | 529                   | 2277                       | 1547                         | 10153                        | 0.60              |
| 021-54*     | 5800                        | 283                   | 1465                       | 2231                         | 9779                         | 0.58              |
| 025-56      | 5800                        | 191                   | 1495                       | 1677                         | 9163                         | 0.54              |
| 02G-F1      | 3558                        | 249                   | 2909                       | 2885                         | 9601                         | 0.57              |
| 026-12      | 5800                        | 472                   | 5509                       | 5464                         | 17245                        | 1.02              |
| 026-53*     | 5800                        | 258                   | 3862                       | 1665                         | 11585                        | 0.68              |
| 026-54*     | 5800                        | 103                   | 1141                       | 895                          | 7939                         | 0.47              |
| 026-10      | 5800                        | 205                   | 3036                       | 1764                         | 10805                        | 0.64              |
| OZH-FI      | 3558                        | 94                    | 192                        | 4762                         | 8605                         | 0.51              |
| 024-12      | 5800                        | 177                   | 363                        | 9018                         | 15359                        | 0.91              |
| 024-53*     | 5800                        | 81                    | 315                        | 6506                         | 12702                        | 0.75              |
| 021-54*     | 5800                        | 76                    | 245                        | 2623                         | 8743                         | 0.52              |
| 021-10      | 5800                        | 163                   | 462                        | 8903                         | 15327                        | 0.90              |
| 02J-F1      | 3558                        | 116                   | 202                        | 6647                         | 10522                        | 0.62              |
| 020-12      | 5800                        | 219                   | 382                        | 12587                        | 18988                        | 1.12              |
| 020-53*     | 5800                        | 144                   | 306                        | 6835                         | 13085                        | 0 77              |

A.10

# Table 1 (Concluded)

. . . . . .

QUAD CITIES UNIT 1 SUSTAINED STRESSES RECIRCULATION SYSTEM

| WELD<br>NO. | PRESSURE<br>STRESS<br>(PSI) | DW<br>STRESS<br>(PSI) | THERMAL<br>STRESS<br>(PSI) | SHRINKAGE<br>STRESS<br>(PSI) | SUSTAINED<br>STRESS<br>(PSI) | RATIO<br>TO<br>Sm |
|-------------|-----------------------------|-----------------------|----------------------------|------------------------------|------------------------------|-------------------|
| 02.7-54*    | 5800                        | 103                   | 140                        | 8483                         | 14526                        | 0.86              |
| 02.1-F6*    | 5800                        | 364                   | 352                        | 3959                         | 10475                        | 0.62              |
| 02K-F1      | 3558                        | 151                   | 394                        | 2018                         | 6120                         | 0.36              |
| 02K-F2      | 5800                        | 285                   | 747                        | 3818                         | 10649                        | 0.63              |
| 02K-53*     | 5800                        | 196                   | 544                        | 3963                         | 10503                        | 0.62              |
| 02K-54*     | 5800                        | 62                    | 126                        | 2773                         | 8761                         | 0.52              |
| 02K-F6      | 5800                        | 359                   | 641                        | 9905                         | 16704                        | 0.99              |
| 021-F1      | 3558                        | 545                   | 269                        | 9933                         | 14304                        | 0.84              |
| 02L-F2      | 5800                        | 1032                  | 510                        | 18810                        | 26151                        | 1.54              |
| 02L-S3      | 5800                        | 577                   | 502                        | 11962                        | 18841                        | 1.11              |
| 02L-54      | 5800                        | 236                   | 365                        | 9051                         | 15452                        | 0.91              |
| 02L-F6      | 5800                        | 271                   | 808                        | 6993                         | 13872                        | 0.82              |
| 02M-F1      | 3558                        | 1023                  | 362                        | 6443                         | 11386                        | 0.67              |
| 02M-F2      | 5800                        | 1938                  | 685                        | 12201                        | 20624                        | 1.22              |
| 02M-53*     | 5800                        | 1020                  | 660                        | 7707                         | 15186                        | 0.90              |
| 02M-54*     | 5800                        | 512                   | 480                        | 5493                         | 12285                        | 0.72              |
| 02M-F6      | 5800                        | 366                   | 1043                       | 8482                         | 15689                        | 0.93              |
| 02M-F7      | 5800                        | 366                   | 1042                       | 8482                         | 15689                        | 0.93              |
| 4031-5-A7   | 4173                        | 0                     | 0                          | 0                            | 4173                         | 0.25              |
| 4031-5-A8   | 4173                        | 0                     | 0                          | 0                            | 4173                         | 0.25              |
| 4031-5-A5   | 5 4173                      | 0                     | 0                          | 0                            | 4173                         | 0.25              |
| 4031-5-A6   | 5 4173                      | 0                     | 0                          | 0                            | 4173                         | 0.25              |
| 4031-5-B3   | 4173                        | 0                     | 0                          | 0                            | 4173                         | 0.25              |
| 4013-5-B4   | 4173                        | 0                     | 0                          | 0                            | 4173                         | 0.25              |
| 4031-5-B1   | 4173                        | 0                     | 0                          | 0                            | 4173                         | 0.25              |
| 4031-5-B2   | 4173                        | 0                     | 0                          | 0                            | 4173                         | 0.25              |

\* These welds have been overlay repaired. The overlay thickness is not included in the stress evaluation.

. . . .

| QUAD | CITI  | ES UNIT 1 |
|------|-------|-----------|
| SUST | AINED | STRESSES  |
| SHU  | TDOWN | COOLING   |

| WELD    | P+DW                 | THERMAL                 | SUSTAINED | RATIO |
|---------|----------------------|-------------------------|-----------|-------|
| NO.     | STRESS               | STRESS                  | STRESS    | TO    |
|         | (PSI)                | (PSI)                   | (PSI)     | Sm    |
|         | 900 MC 900 MD 640 MM | 400-900 800-980 800 80C |           |       |
| 105-F1  | 10033                | 8463                    | 18496     | 1.09  |
| 10S-S3  | 6631                 | 5902                    | 12533     | 0.74  |
| 105-54  | 6845                 | 8541                    | 15386     | 0.91  |
| 10S-F5  | 6710                 | 8989                    | 15699     | 0.93  |
| 10S-F6  | 6977                 | 9926                    | 16903     | 1.00  |
| 105-57  | 6688                 | 8824                    | 15512     | 0.92  |
| 105-F8  | 6710                 | 9223                    | 15933     | 0.94  |
| 10S-S9  | 6929                 | 8794                    | 15723     | 0.93  |
| 10S-511 | 6815                 | 8927                    | 15742     | 0.93  |
| 105-512 | 6570                 | 9555                    | 16125     | 0.95  |
| 10S-F13 | 6608                 | 8929                    | 15537     | 0.92  |
|         |                      |                         |           |       |

.....

# QUAD CITIES UNIT 1 SUSTAINED STRESSES RHR LINES

|        | WELD<br>NO.                             | P+DW<br>STRESS<br>(PSI)  | THERMAL<br>STRESS<br>(PSI) | SUSTAINED<br>STRESS<br>(PSI) | RATIO<br>TO<br>Sm |
|--------|-----------------------------------------|--------------------------|----------------------------|------------------------------|-------------------|
| A LOOP | ann aite ann ann ann cas ann ann ann an | 10 N.S 10 NO 10 10 NO 10 |                            |                              |                   |
|        | 10AD-F1                                 | 6138                     | 17027                      | 23165                        | 1.37              |
|        | 10AD-53                                 | 6016                     | 8412                       | 14428                        | 0.85              |
|        | 10AD-F4                                 | 5952                     | 8868                       | 14820                        | 0.87              |
|        | 10AD-F5                                 | 5963                     | 8315                       | 14278                        | 0.84              |
|        | 10AD-56                                 | 5982                     | 10178                      | 16160                        | 0.95              |
|        | 10AD-57                                 | 6035                     | 7881                       | 13916                        | 0.82              |
|        | 10AD-58                                 | 6048                     | 3893                       | 9941                         | 0.59              |
|        | 10AD-F9                                 | 5993                     | 7633                       | 13626                        | 0.80              |
|        | 10AD-510                                | 6067                     | 5353                       | 12.420                       | 0.67              |
|        | 10AD-F12                                | 6196                     | 3054                       | 9250                         | 0.55              |
|        | 10AD-F13                                | 6007                     | 8496                       | 14503                        | 0.86              |
| B LOOP |                                         |                          |                            |                              |                   |
|        | 10BD-F1                                 | 9098                     | 9382                       | 18480                        | 1.09              |
|        | 10BD-52                                 | 5976                     | 8891                       | 14867                        | 0.88              |
|        | 10BD-S3                                 | 5994                     | 8498                       | 14492                        | 0.85              |
|        | 10BD-54                                 | 6007                     | 8062                       | 14069                        | 0.83              |
|        | 10BD-F5                                 | 6004                     | 6445                       | 12449                        | 0.73              |
|        | 10BD-F6                                 | 6015                     | 5164                       | 11179                        | 0.66              |
|        | 10BD-57                                 | 6056                     | 6278                       | 12334                        | 0.73              |
|        | 10BD-58                                 | 6092                     | 5735                       | 11827                        | 0.70              |
|        | 10BD-F9                                 | 6104                     | 3521                       | 9625                         | 0.57              |
|        | 10BD-510                                | 6095                     | 2090                       | 8185                         | 0.48              |
|        | 10BD-F11                                | 6094                     | 2106                       | 8200                         | 0.48              |
|        | 10BD-512                                | 6114                     | 4960                       | 11074                        | 0.65              |
|        | 10BD-513                                | 6025                     | 4837                       | 10862                        | 0.64              |
|        | 10BD-F15                                | 6531                     | 2117                       | 8698                         | 0.51              |
|        | 10BD-F16                                | 6691                     | 2726                       | 9417                         | 0.56              |

A.13

. .....

| QUAD  | CITI | ES | UN  | IT 1 |
|-------|------|----|-----|------|
| SUSTA | INED | SI | RE  | SSES |
| CORE  | SPR  | Y  | SYS | TEM  |

|          | PRESSURE                        | DW     | THERMAL | SHRINKAGE | SUSTAINED | RATIO                         |
|----------|---------------------------------|--------|---------|-----------|-----------|-------------------------------|
| WELD     | STRESS                          | STRESS | STRESS  | STRESS    | STRESS    | TO                            |
| NO.      | (PSI)                           | (PSI)  | (PSI)   | (PSI)     | (PSI)     | Sm                            |
|          | 10° 60° 80° 50° 530 80° 80° 80° |        |         |           |           | 1751 1551 1650 1650 1650 1650 |
| 14A-F1   | 5733                            | 225    | 5787    | 1707      | 14453     | 0.85                          |
| 14A-F2*  | 5733                            | 508    | 6787    | 1689      | 14717     | 0.87                          |
| 14A-F3K  | 5733                            | 508    | 6787    | 1629      | 14658     | 0.86                          |
| 14A-F4AR | 5733                            | 508    | 6787    | 1182      | 14211     | 0.84                          |
| 14A-54AR | 5733                            | 508    | 6787    | 1110      | 14139     | 0.83                          |
| 14A-SABR | 5733                            | 508    | 6787    | 2000      | 14029     | 0.83                          |
| 14A-F4CR | 5733                            | 508    | 6787    | 1000      | 14029     | 0.83                          |
| 14A-S4DR | 5733                            | 508    | 6787    | 1000      | 14029     | 0.83                          |
| 14A-F4ER | 5733                            | 508    | 6787    | 716       | 13745     | 0.81                          |
| 14A-F6   | 5733                            | 471    | 5862    | 679       | 12745     | 0.75                          |
| 14A-F7   | 5733                            | 420    | 8140    | 794       | 15088     | 0.89                          |
| 14A-S3*  | 5733                            | 151    | 8458    | 1207      | 15548     | 0.92                          |
| 14-59*   | 5733                            | 135    | 7026    | 1716      | 14610     | 0.86                          |
| 14A-F11* | 5733                            | 315    | 5553    | 1757      | 13358     | 0.79                          |
| 14A-F12  | 5733                            | 549    | 3573    | 1252      | 11108     | 0.66                          |
| 14A-F12A | 5733                            | 549    | 3573    | 1202      | 11057     | 0.65                          |
| 14A-S13  | 5733                            | 163    | 2102    | 543       | 8541      | 0.50                          |
| 14A-514  | 5733                            | 18     | 2149    | 358       | 8258      | 0.49                          |
| 14A-S15  | 5733                            | 275    | 4888    | 1099      | 11995     | 0.71                          |
| 14A-F17  | 5733                            | 218    | 5955    | 1214      | 13119     | 0.77                          |
| 14B-F1   | 5733                            | 1091   | 6373    | 440       | 13637     | 0.80                          |
| 14B-F2*  | 5733                            | 1091   | 6373    | 434       | 13631     | 0.80                          |
| 14B-F4R  | 5733                            | 1091   | 6373    | 415       | 13612     | 0.80                          |
| 14B-F5R  | 5733                            | 1091   | 6373    | 315       | 13512     | 0.80                          |
| 14B-S5AR | 5733                            | 1091   | 6373    | 328       | 13525     | 0.80                          |
| 14B-F5BR | 5733                            | 1091   | 6373    | 305       | 13502     | 0.80                          |
| 14B-F6AR | 5733                            | 350    | 9052    | 250       | 15385     | 0.91                          |
| 14B-F7   | 5733                            | 421    | 7196    | 133       | 13483     | 0.80                          |
| 14B-S8*  | 5733                            | 195    | 4988    | 80        | 10996     | 0.65                          |
| 14B-S9   | 5733                            | 195    | 4988    | 180       | 11096     | 0.65                          |
| 14B-S10  | 5733                            | 191    | 2978    | 397       | 9299      | 0.55                          |
| 14B-F12  | 5733                            | 308    | 2350    | 475       | 8866      | 0.52                          |
| 14B-F13  | 5733                            | 602    | 2357    | 377       | 9069      | 0.54                          |
| 14B-S14  | 5733                            | 300    | 6037    | 169       | 12238     | 0.72                          |
| 14B-F15  | 5733                            | 224    | 6600    | 198       | 12756     | 0.75                          |

\* These welds have been overlay repaired. The overlay thickness is not considered in the stress evaluation.

. .....

# QUAD CITIES UNIT 1

# SUSTAINED STRESSES

# REACTOR WATER CLEAN-UP SYSTEM

| WELD<br>NO. | P+DW<br>STRESS<br>(PSI) | THERMAL<br>STRESS<br>(PSI) | SUSTAINED<br>STRESS<br>(PSI) | RATIC<br>TO<br>Sm |
|-------------|-------------------------|----------------------------|------------------------------|-------------------|
| 12S-S1      | 7801                    | 5780                       | 13581                        | 0.80              |
| 12S-F3R     | 5296                    | 5370                       | 10666                        | 0.63              |
| 12S-F2R     | 5296                    | 5370                       | 10666                        | 0.63              |
| 12S-F4R     | 5446                    | 4748                       | 10194                        | 0.60              |
| 12S-F4AR    | 5446                    | 4748                       | 10194                        | 0.60              |
| 12S-F4CR    | 5116                    | 2964                       | 8080                         | 0.48              |
| 12S-S4DR    | 5079                    | 946                        | 6025                         | 0.36              |
| 12S-S5R     | 5073                    | 1692                       | 6765                         | 0.40              |
| 12S-F6R     | 5688                    | 4125                       | 9813                         | 0.58              |
| 12S-S6AR    | 6038                    | 6679                       | 12717                        | 0.75              |
| 12S-S7R     | 6065                    | 6739                       | 12804                        | 0.76              |
| 12S-58R     | 6409                    | 4315                       | 10724                        | 0.63              |
| 125-S9R     | 6507                    | 4107                       | 10614                        | 0.63              |
| 12S-S9AR    | 6656                    | 3571                       | 10227                        | 0.60              |
| 125-F10R    | 6495                    | 2178                       | 8673                         | 0.51              |
| 12S-S11R    | 6543                    | 2308                       | 8851                         | 0.52              |
| 12S-S12R    | 6463                    | 2082                       | 8545                         | 0.50              |
| 12S-S13R    | 6689                    | 3250                       | 9949                         | 0.59              |
| 12S-S14R    | 6671                    | 3247                       | 9918                         | 0.59              |
| 12S-S15R    | 6196                    | 1912                       | 8108                         | 0.48              |
| 123-S16R    | 5192                    | 1573                       | 7765                         | 0.46              |
| 12S-S17R    | 7033                    | 2295                       | 9328                         | 0.55              |
| 125~518R    | 6690                    | 2359                       | 9049                         | 0.53              |
| 12S-S19R    | 5762                    | 1862                       | 7624                         | 0.45              |
| 125-F20R    | 5559                    | 1603                       | 7162                         | 0.42              |
| 12S-F21R    | 5330                    | 1838                       | 7168                         | 0.42              |
| 125-F?2R    | 5316                    | 2249                       | 7565                         | 0.45              |
| 12S-F23R    | 5663                    | 2287                       | 7950                         | 0 47              |

· . ......

| QU | AD  | C    | I  | T  | I  | E  | S  |   | U | N  | I  | T  |   | 1 |
|----|-----|------|----|----|----|----|----|---|---|----|----|----|---|---|
| SU | STA | I    | N  | E  | D  |    | S  | T | R | E  | S  | S  | E | S |
| (  | CRD | 2.40 | 15 | EI | 11 | JF | 15 | ą | I | _1 | 11 | NE | 2 |   |

|        | P+DW   | THERMAL | SUSTAINED | RATIO |
|--------|--------|---------|-----------|-------|
| WELD   | STRESS | STRESS  | STRESS    | то    |
| NO.    | (PSI)  | (PSI)   | (PSI)     | Sm    |
|        |        | ***     | -         |       |
| 03-F8  | 4661   | 945     | 5606      | 0.33  |
| 03-F7  | 5555   | 1104    | 6659      | 0.39  |
| 03-F6  | 5813   | 1187    | 7000      | 0.41  |
| 03-F5  | 9009   | 2965    | 11974     | 0.71  |
| 03-F4  | 9009   | 2965    | 11974     | 0.71  |
| 03-53  | 6586   | 4904    | 11490     | 0.68  |
| 03-52  | 6615   | 5689    | 12304     | 0.73  |
| 03~F1  | 9537   | 6654    | 16191     | 0.96  |
| 03-F1A | 9537   | 6654    | 16191     | 0.96  |
|        |        |         |           |       |