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LETAL NOTICE

This report was prepared by JAYCOR, as an account of work sponsored by the
Ylectric Power Research Institute, Inc. (EPRI). Neither EPRI. members of EPRI,
JAYCOR, nor any PAYson ecting on hehalf of either: (a) makes any werranty or
representation, ew ress or implied, with respect to the accuracy, completeness,
©r usefulness of the information contained in this report, or that the use of any
information, apparatus, method, or process disclosed in this report may not
infringe Privately owned rights; or (b) assumes any liabilities with respect to

the use of, or for damages resulting from the use of, any information, apparatus,
method, or process disclosed in this rej rt,




FOREWORD

The initial goal of this project was to develop two-dimensional (2-D) computer
programs to simulate, for a MARK I pressure suppression system, the pool swell
surface shape and velocity prior to inpact on structures. This effort has been
coordinated with the MARK I Owner's Group to complement, ir a timely manner, the
efforts undertaken by that organization.

The gereric research needs of the MARK 1 Gioup have evolved such that additional
goals for th: computer codes were established. The codes therefore evolved into
more complex versions which will now predict: (1) vent clearing process;

(2) three-dimensional (3~D) early bubble growth; (3) torus wall pressurcs;

(4) net up and down loads on torus; (5) submerged velocity and acceleration
fields; (6) pool surface shape and velocity prior to impact on structures; and
(7) wet well pressurization. Predictions for a typical case are included at the
end of this report with overall comparison with experimental data being good to

excellent depending on the parameters chosen.

This EPRI project has been part of the MARK I Owner's Group program for addressing
generic suppression system concerns and will complement additional generic EPRI
experimental effortr underway to quantify pool swell effects in the MARK I

pressure suppression system.

Future effcerts will preduce a user's manual to permit efficient use of these

conputer programs.

Charles W. Sullivan
Project Manager
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ABSTRACT

This report describes in detail the analytical models, together with the

computational techniques for their solution, that are used in a continuing effort
to study the pool swell phenomenon in MARK 1 pressure suppression systems during
a postulated LOCA. A calculation using 1/4-scrle test conditions as input is given

as an exanmple,
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EXECUTIVE SUMMARY

This report is a detailed documentation of the analytical models, and the
corresponding solution procedures, that are employed in a continuing investi-
gation of the pool swell in MARK I pressure suppression systems during a
postulated LOCA. The present study is concerned with the vent clearirg and the
subsequent pool swell resulting from the pressurization of the drywell with air.

Steam condensation is outside the scope of this work.

The computer codes SWELL3 and SURGE, which are based on the formulat'ons
described in this report, have been used in validations against 1/4-scale and
1/12-sgale laboratory experiments. Since the validations are still being
evaluated, they will not be included here. Nevertheless, a typical simulation

run, using 1/4-scale test configuration as input, is given as an example.



Section 1

INTRODUCTION

This report documents in detail the analytical models, together with the computa~
tional technigues for their solution, that are employed in a continuing effort to
study the pool swell phenomenion in MARK I pressure suppression systems during a

postulated loss-of-coolant accident (LOCA).

The eventu following a postulated LOCA are numerous: the discharging of high-
pressure steam into the drywell which in turn forces a mixture of air and steam
into the vent system; the pouol swell in response vo the flow of air into the
bubbles; and condensation of steam in the suppression pool. The present study

is conoerred with the development of computational tools for simulating the vent
clearing process and the subsequent phenomenon of pool swell that result from the
pressurization of the drywell with air. Steam condensation is outside the scope

of this investigation.

As discussed in an earlier resport [1], our approach has been to distinguish two-
dimensional flow regime from the three-dimensional one, and to use computational
technigues appropriate for each regime. The two regimes are: the essentially
three-dimensional flow field during and shortly after the vent-clearing prucess,
and the approximately two-dimensional flow in the later stages of bubble growth.

In an earlier study (1], the VENT2 code was used to cover the period from the

onset of drywell pressurization to the instant when water in the downcomer is
completely expelled. After vent clearing, the simulation of pool response was
performed using the two-~dimensional SURGE code. By comparing with Stanford Research
Institute's 1/10-scale test measurement, the predictions on pocol surface displace~
ment and velocity by VENT3 and SURGE were guite good. It was found later, however,
that the VENT3/SURGE model is not adequate for predicting the peak download on the
torus, which occurs shortly after vent clearing. The reason is that the two-
dimensional SURGE code cannct properly describe the flow field about a highly
three~-dimensional buoble which is just being formed. 1In order to treat this flow

regime adequately, a time-dependent, three-dimensional code (SWELL3) has been

-1
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Section 2

SWELL3~~MODEL FOR THREE-DIMENSIONAL BUBBLE FLOW

The SWELL3 computer code calculates the fully three-dimensional fluid flow during
vent clearing and the flow associated with the fcrmation and growth, at early times,
of the underwater bubble. This sec.ion presents the numerical method contzined in
the SWELL3 code to simulate three-dimensional flows bounded by rigid walls and

multiple free surfaces which are not zestricted in their orientation.

Boiling water reactors incorporate in their design a pressure suppression system.
The MARK I containment design shown in Figure 2.1 is essentially a large pool of
water contained by a toroidal vessel. During a postulated loss-of-coolant
accidemt, steam from the depressurizing reactor mixes with air and is vented
through "vent pipes" from the reactor drywell into the wetwell. These vent

pipes lead to a toroidal ring header which is contained within the main torus and
is located above the pool surface. Pairs cf pipes called dcwncomers lead from the
ring header and exteid vertically downward into the pool with their exit openings
below the pool surface., Figure 2.2 shows a schematic of the guarter-scale test
facility for modeling a cross section of the pressure suppression system during a
pestulated LOCA., It contains one pair of downcomers in a cylindrical vessel., The
SWELL3 computer code simulates the incompressible fluid flow in a wetwell config-

uration similar to this experimental model.

Before the sub-scale experiment begins, the large air reservoir is pressurized and
pressures in the wetwell airspace and drywell are reduced to about 1/4 of the
atmospheric pressure. The wetwell and drywell are either at the same pressure
{(the so-called zero Ap condition), in which case the water in the downcomer pipe
is at the same level as the water in the pool, or the drywell pressure is slightly
larger (the full Ap condition) so that the water level in the downcomer is
initially at the exit of the pipe. The initiatior of the event begins when a
diaphragm between the reservoir and the drywell is broken, allowing air to flow
into the drywell and then through the vent pipes and the ring header into the

downcomers. The water in the downcomers is forced down, and eventually the air
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is vented into the pool where an underwater bubble is formed at the exit of each
downcomer. The torus wall experiences a certain amount of downward dynamic load
(the "down-load") during vent clearing and the early stages of the bubble growth,
the maximun magnitude occuring just after vent clearing. During this time the

pocl surface displacement is so small that the pressure in the wetwell airspace,
which is sealed in, chauges little. After vent clearing, the pressure loss in the
vent system, consisting of the vent pipe, ring header, and downcomors, is such that
the bubble pressure and the corresponding torus load begin tec decrease although the
drywell pressure is still increasing. At later times the rising pool surface causes
the wetwell airspace volume to decrease, therefore, increasing the airspace
pressure. The net dynamic load on the torus may become upward after the water in
the pool has gained a certain amount of upward momentum, which in turn exerts on

the upper half of the torus wall through the rising pressure in the airspace.

In an earlier study [1], the VENT3 code was used to calculate the flow during the
vent clearing process. After vent clearing, the purely two-dimensional SURGE code
was used for the bubkle growth and the associated pocl swell. As demonstrated in
Refegence 1, the predictions on pool surface velocity and displacement were in
good agreement with Stanford Research Institute's 1/10 scale experiments. It was
found later, however, that the peak download, cccuring just after vent clearing, can
not be correctly calculated by using a purely two-dimensional model such as SURGE
for the early growth of the bubble, which is characterized by highly three-~
fimensional effects. To treat this flow regime properly, the SWELL3 code was
developed; it contains VENT3 as a module for the vent clearing process. The bulk
of SWELL3, however, deals with the fully three~dimensional, time-dependent problem

of tracing the evolution of the bubble and the corresponding flow field.

In the following subsections, descriptions will be given of the underlying
assumptions ragarding the flow and the geometry, followed by separate descriptions
of the vent .‘learing model and the bubble formation model. The vent clearing
model i1s essentially the same as VENT3 in Reference 1, but a different approach is

taken &s far as the derivation is concerned.

2.1 MATHEMATICAL MODEL FOR THE FLOW

Potential flow has been assumed for the basic mathematical model of the fluid flow.
With the possible exception of the flow at the exit of the downcomer, the assumptions
of irrotational, inviscid flow are adequate for the solution of this geometrically

complex problem throughout the flow regime. During the process of vent clearing,

2-4



the flow around the edges of the downcomer is turbulent. The resulting turbulent

“turning” losses are approx.mated within the potential flow model by assuming that

there is a pressure drop across the end of the dow..comer which is proportional to

the square of the exit velocity.

The assumption of potential flow avoids several di1fficulties which would occur if
we were to solve the system of equations arising from the Navier-Stokes equa:ions
using the primitive variables of pressure and velocity. From the numerical point
of view, we need computer storage for only one primary variable, the potential ¢.
Even with the power of today's computers, the resolution of a three-dimensional,
finite difference mesh in the primitive variables is severely limited. Second,
the primitive equations are difficult to integrate in time on an Eulerian finite
difference mesh with irregular boundaries. The usual simple schemes reguire the
addition of a numerical diffusion, either explicit of implicit, whereas neutrally
stable schemes are difficult to implement for free surface flows with irregular
geometries. Third, using potential flow, only V¢ needs to be accurately approxi=-
mated on free surfaces. With the primitive eguations, however, mary more
combinttions of velocity derivatives are needed o evaluate the convective terms
in the momentum equations and the source term in the Poisson equation for the

pressure. All of these derivatives are difficult to calculate near free surfaces.

The major disadvantage of solving for the potential in a finite difference formu-
lation instead of directly solving for the velocity and pressure ie that it is
necessary to take derivatives of the resulting discrete potential solution to obtain
the variables of interest. To calculate the velocity, we need to compute the
spatial first derivatives 3¢; to compute the pressure we need the first time
derivative %%, in addition to the velocity: and to compute the acceleration we
need the second derivatives é%—?@. Direct numerical differentiation of the
potential obtained by the procedure developed in the succeeding sections yields
sufficiently accurate velocities and pressures. However, the acceleration
obtained by direct numerical differentiation of the discrite potential solution

is quite noisy. For a fixed point in space, a smooth ance leration-versus~time
profile can be obtained by approximating the time history ¢f velocity potential at

that point by cubic spline. The accuracy of the resulting .cceleration, however,

has not been fully established.

Bulerian-Lagrangian Discretization

The flow eguations are written in a mixed Eulerian-Lagrangian system. The free

surfaces are moving through a fixed three-dimensional rectangular finite difference



mesh. In the fluid interior, the eguations are written with respect to a fixed
{Bulerian) computational mesh. However, on the free surface, they are written

with respect to the moving (Lagrangian) surface. Moreover, at inteiricr points

which are close to a free surface, the flow equations are discretized by an

"irregular star" technigue using the values of the potential at both interior and
surface points, but involving no points which lie outside of the flow regime.
Similarly, when a spatial derivative at & free surface point is needei, it is

evaluated by one-sided differencing so that no points outside of the fluid region

need to be used.

Considerations of the compromise between computer storage and accuracy requirements
were primary in the choice of the mixed Eulerian-Lagrangian formulation as opposed
to a str..t !y Eulerian or strictly Lagrangian apprcach. In termes of accuracy, a
totally Lagrangian treatment of the entire three-dimensional flow region might be
preferabh’ However, the computer storage required to obtain the necessary cell
resolution for such a scheme would be exorbitant. On the other hand, & strictly {
Bulerian method - milar to 3 primitive Marker-And-Cell method, in which the free
surfages are approximated by rectangular steps, was initially attempted and found
to be too inaccurate in its prediction of torus wall pressures. The storage
requirements of the mixed Eulerian-Lagrangian formulation are not much larger than
the purely Bulerian approach. However, since it uses the exact position of the
free surface within the underlying rectangular mesh, higher accuracy can be

achieved.

2.2 VENT CLEARING MODEL

In the interval frum the time of initial drywell pressurization to the time when
the downcomer vent clears, it is shown in Reference 1 that a simple model can
yield good results. For completeness this vent clearing model (VENT3) is also

described here.

The fcllowing assumptions are made:
(1) The water exits the downcomer with uniform velocity w(t)
Y across its cross section.

(2) The potential vanishes on the pool surface.

(3) fThere is an average pressure drop proportional to Howz across
the exit of the downcomer, where the loss coefficient f is

obtained empirically.

Justification of these assumptions was given in Reference 1.




A summary of the equations to bg solved during vent clearing is the following:

V2o = 0 (interior of the pool) (2-1)
%% = 0 (rigid bourdaries) (2=2)

¢ = 0 (pool surface) (2-3)
%% = w(t) (downcomer exit) (2-4)

where an expression for w is yet to be determined. Now if we let ¢*(x,y.,2) be the

solution of the striccly spatial boundary-value problem

V2¢* = 0 (interior) (2=5)
%ﬁ; = 0 (rigid boundaries) (2-6)
¢* = 0 (pool surface) (2-7)
%ﬁ; = «1 (downcomer exit) (2-8)
then
i 6 (X,y,2,t) = =w(t)o*(x,y,2) (2-9)

satisfies Equations (2-1) through (2-4).

Next consider the problem of matching the three dimensional flow in the pool with
the one dimensional flow in the downcomer, that is, finding the function wi(t).
Referring to Figure 2.3 for nomenclature, let pl(t) be the pressure applied to

the waser surface in the downcomer, pz(t) the fluid pressure just above the down-
comer exit, p3(t) the average fluid pressure in the pool just below the exit of
the dcwncomer. Furthermore, let h(t) be the length of the water column in the
downcemer, and A the constant cross-sectional area of the downcomer. Now consider
the conservation of vertical momentum in the control volume formed by the water in

the dowrcomer. In this control volume the time rate of change of momentum is
4. [phh w] - (pAW)W
dt

where p is the dansity of water and the second term is the flux of momentum through
the downcomer exit. This rate >f change of momentum is balanced by the sum of the
gurface forces due to the pressure (p2 - pl)A, and the hody force -phAg due to

gravity. Summing these contributions, and differentiating, we have

aw 1 [P2"P]
at hl_ o .







From aesumption (3), p, is related to p,, the average pressure in the pool just
2 3

below the exit of the downcomer, by
1 2
o ieg T o
1 1 2
= KfpdA + Efow (2-11)

where the integration is taken just below the downcomer exit.

The Bernoulli eguation can be written

g pair

+ =(u 4 v2 + w2) + * gle ~ zo) =0 (2-12)

vhere Pois is the wetwell airspace presswe, (u,v,w) the components of the velocity

vector, ¢ the gravitational acceleration, and z, the elevation of the undisturbed

free surface.

Applying Equations (2-9), (2-11), and (2-12) at point 3 (Figure 2.3), neglecting

(u2 + v2) which is much smaller than w® throughout most of the downcomer exit, we

-
obtain
- 1 dw 1-f 2
p2 P i + p"“ ““'d - "'—"2 w o+ qho' (2'13)

where ho is the submerged length of the downcomer; the constant a is determined

from the solution of the ¢* field, formulated in Equations (2-5) to (2-8), by

30 -l-f(p*dA (2-14)
downcomer exit

Eliminating P, between Eguations (2-10) and (2-13) we osbtain the desired

expressions

B ) » P o
dw o 1 air 1-f 2 X
at 1=ah(t) [ 5 + 5 w(t)” + g(h(t) ho)] (2-15)
where
dh
at i & (2-16)

In summary, to solve for the potential ¢ during vent clearung, first solve the
system represented by Equations (2-5) to (2-8) for ¢*; use Equation (2~14) to

find a; use the applied drywell precsure with adjustment for vent system losses

(see Section 4) to find Py and snlve the system of first order ordinary differential

equations (2-15) and (2-16) for w(t). Equation (2-9) then gives the velocity

2-9




potential in terms of ¢* and ‘. The numerical procedures for solving for ¢* and
w(t) weve presented in considerable detail in our previous work [1]; they will not

be repeated here.

2.3 BUBBLE FORMATION MODEL

The assumptions of frictionless, irrotational, incompressible flow imply that the
velocity, B = (u,v,w), can be derived from a scalar potential function ¢(x,y,z,t)
by

U= V¢ (2-17)

where ¢ satiefies
2
Vg =0 , (2-18)
On free surfaces the potential must satisfy the Bernoulli equation, and on fixed,
solid boundaries the normal component of velocity vanishes, i.e.,

2, .
2.0 (2-19)

At vent clearing the surface of the bubble is assumed to be a flat sheet at the
exit of downcomer. On the bubble surface the Lagrangian form of the Bernoulli
eguation applies:

& 1.8 2 3 PRy,

at " E(u Al R S0 B TTTITIIS HORN gie = zo) (2-20)

where pbub is the uniform pressure on the bubble. The left-hand side of

Equation (2-20) denotes the time rate of change of ¢ following a water particle

en the bubble surface. On the pool surface in contact with the airspace of the
wetwell, the motion of free surface is represented by mesh points that are allowed

t. mov. only in the vertical direction. At these points the applicable form of
rnoulli eguation is
R e SR I i b
at 2(w u v) gl(z zo) (2-21)

o where é% is the rate of change of ¢ following these special points.

A At a fixed interior point the applicable Bernovlli equation is of the familiar

form

LIl Lol T Pair
2(; + v 4+ w) 4+ TORSRPI 46 g(z - z,) =0 (2-22)

2-10




In addition we assume that the pressures are egual in the two downcomers throughout
the event. Then since the geometry (Figure 2.4) is symmetrical with respect to the
two vertical planes which bisect the cylinder, the calculation need only be done in
one guadrant as shown in Figure 2.3. The boundary conditions on planes of symmetry
are the same as if they were rigid walls; that is, the normal component of

? ] d
velocity, 3%, vanishes.

Numerical Solution

The primary components of the numerical procedure employed in this work are the
use of three-dimensional irregular stars to represent the Laplacian operator in
Egquation (2-18) and the evaluation of the instantaneous velocities on the bubble
surface by a linear extrapolation from two interior points along a direction normal
to the surface. The technique of irregular stars was used by Chan and Street [2]
in their numerical study of two-dimensional, large-amplitude water waves.
Subsequently, the same technigue or variants of it have been successfully used
by other investigators. Vander Vorst and Van Tuyl [3] used the irregular star
technigue for the solution of the motion of a two-dimensional underwater bubble.
They also demonstrated the usefulness of determining free surface velocity by
extrapolation along lines normal to the surface. Due to the complexity of the
computations, neither of these concepts have been previously extended@ to three-

dimensional flows with free surfaces of arbitrary orientat.on.

The computational fluid region is that bounded by the pool surface, £(x,y), and
the bubble surface as shown in Figure 2.5. The circular cylindrical downcomers
are replaced by rectangular ones with the same cross-sectional area. 1In addition,
the circular arc defining the torus wall is approximated by the step-like profile
which follows the boundaries of computational cells.

Values of the potential ¢i = ¢(xi.yj,z ) are defined at the intersections of

the mesh lines, i.e., at céiikcorners. Th:re are two different free surface
representations, one for the pool surface and one for the bubble., We assume

that the pool surface can be represented by a single-valued displacement function

£ = E(x,y) or in terms of the finite difference mesh, ﬁi,j = i(xl,yj), and we also
define ¢£,i,j = ¢(xi'yj’si,j + zO) as shown in Figure 2.6, Since the bubble under-
goes large deformations, it cannot be characterized by such a simple relationship,
Instead we use a parsmetric representation for the coordinates R = (x,y,2) of the

bubble where

2-11
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Figure Z.o. Pool Surface Perspective



.

x = x(a,8)
R=|y = y(a,B) (0 <<l D<B L)

T = z(’.l.f")
so that on the surface R the velocity potential is

®R(a,8) = ¢[x(a,B), y(a,8), =(a,B)] .

Numerically this is accomplishedé by covering the surface with triangles as shown
in Figure 2.7 for the initial flat surface at the end of the downcomer and in
Figure 2.8 for the bubble surface at a later time. On the computer this is done

by keeping two lists: a list of vertices,

R(P) = (% .¥ ,2), 1<pem,
v p'Yp'"p ~PZ

where
¢ = ¢(R(p)
s * $RP)]
and a list of triangles

T(q) R 0 -t WY

2 (pl,q'p2,q'p3,q

so that the coordinates of vertex £, (£ = 1, 2, or 3) of triangle g is R(pi q).

As indicated in Figure 2.9, no computations are performed and no variables are

defined at mesh points which are inside the bubble. Let

LA™ ®a "%

Then, at an interior mesh point (i,3,k) whose six cell neighbors are also within
the fluid, the finite difference approsimation to the Laplace equation (2-18), in

Cartesian coordinates, irc

S € - -
] [‘m,j,x T D TS s 1o
A
Axi A4 ia Axi-ﬁ ¥
- -
e [ Ve TT O it FOF T U Sl P 0%
By, iy, By,
ot Yy Y34 ’
g % oo " ¥ am Mg T Mg ]
& " + )y = ) < s - ¢+ & B i (2-24)
bz, bz, bz, 3
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3
Axi = E(Axi

ot Bxy

" 1

e (2-25)

1
Azk = 2(Azk+5 + Az

k=%

If one or more of the six neighbore of the interior point (i,j,k) are outside the
fluid region, i.e., inside the bubble, then the irregular star procedure is used to
approximate Equation (2-18). For example, if (i,j,k+41) lies outside the £luid,

as shown in Figure 4.10, let 8z be the distance from point (i,j,k) to the free
surface along the mesh line connecting point (i,3j,k) to point (i,4,k+1) and 0' be
the value of the potential at this intersection point. The irregular star

equation for the potential at (i,j,k) is then obtained by substituting 8z for

Az and ws for ¢i

k4k 13 k41
irregular star in three dimensions about a point (i,j,k). The three points

in Equations (2-24) and (2-25). Figure 2.11 depicts an

(i+1,3,k), (i,3#1,x) and (i,j,k+1) in Figure 2.11 are all outside the fluid domain.
The "regular legs" have lengths of the mesh sizes, Ax, Ay, and Az, whilie the
shorter "irregular legs" are labeled §x, 6y, and 6z.

For points which lie on rigid boundaries parallel to one of the coordinate planes,
the normal derivative boundary condition Equation (2-19) is combined with the
discrete form of the Laplace Fquation (2-24) to obtain an equation for the potertial
on the boundary. For example, at the plane of symmetry x = O, Equation (2-19)

becomes
3¢ 0

—

»

which we approximate by

A T Nt dk

Miay * %y

0

Observe that in this case the point (i-1,j,k) is outside the fluid region, i.e., it
is a “"fictitious point." The desired egquation at the plane of symmetry is obtained

by substituting

oi-l,j.k . ‘i*l,j,k (2-27)

into Eguation (2-24) so that fictitious cells are not used in the calculations.

Special problems arive with edges or corners. There are two kinds of edges (or

corners): concave as on the edge defined by the intersection of the two symmetry

2-19
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Figure 2.10. Irregular Star in a Two-Dimensional Space

Figure 2.11. ‘'hree-Dimensional Irregular Star




planes x = 0 and y = 0, and convex as on the protruding edges of the rectangular
downcomer. On the concave edye both the conditions %% = 0 and %% = 0 are appliecd
as in the preceding paragraph. At the convex edges, however, each of the six
neighbors of an edge point lies within the fluid; hence at these convex edge points

Equation (2~24) is used without modification.

On the surface of the torus wall the boundary condition Equation (2-19) can be

written

Q»
asd

Goa & - %%—sin 8 = 0 (2-28)

@
x

where, as shown in Figure 2.4, 8 is the angle between the x-axis and the line normal
to the torus. At points on the step-like surface shown in Figure 2.5 which
approximates the torus surface, the finite difference erpression used for Equation
(2-28B) is

Py - ¢ !
( i,3.k 1“1'J’k) cos §
ax
i=%

5 R
- ( ""kzl l'J'k) sin B =0 . (2-29)
zk*“:

At the instant of vent clearing a switch is made from the vent clearing model to
the bubble formation model. The initial values of ¢ in the poel for the bubble
formation calculation are given by Eguation (2-9). For problems with "full Ap*
condition; i.e., at the time of drywell pressurization the pressure differential
4p between the wetwell airspace and the drywell is such that the initial water
surface in the downcomer is at its exit, the vent clearing model is not needed
and the initial condition is simply ¢ ¢ 0 everywhere. In either case a surface
composed of triangles, as shown in Figure 2.7, is placed at the exit of the down=-
comer. Within a rectangular finite difference cell the potential is assumed to
vary linearly along lines parallel to the spatial axes so that the potential ¢

at a bubble surface point Rp B (xr, yp, zp), which is located within a cell, is

given by
1 1 1
el (g Se a B ¥
P asD BeO yeb aa,ﬁ,v xp yp zp (2-30)

where the eight coefficients a 8. are determined by the values of the potential
R
at the eight corners of the cell. Also, at vent clearing the value of the pool

surface displacement is assumed to be

2-21
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Ei =0 ' (2"‘31)

and the potential at £i 3 is

& s (2-32)

On the bubble surface, an explicit finite difference procedure is used to advence
the values of the free surface potential and positions. A bubble surface point is

moved from its old position R: to the new position R;*l by

. o a® (2-33)
P ™

' . n
where the superscript n refers to the time t and n+l to the new time level t + 4t .

Similarly, 0;+1 on the bubble surface is determined from the approximation

0 ¢ ‘l[ P hi® 4 (w")z]
P ]2 P 2
-l n n
PR
e LA )’ (2-34)

to the Bernoulli eguation, Equation (2-20). 1In the equation above the particle
velocity Un = \u:, v;, w:) at point Rp is-determined by an extrapolation procedure
to be described later in this section. The wetwell airspace pressure, p:ix' at

. Ny X : . i . i
time t is determined from the airspace volume V:ir by the adiabatic relationship

0 ¥
n 0 vair
P p t—— (2=-35)
air air n
\Y
air

where the specific heat ratic y is taken as 1.4.

T avoid bunching up of the bubble points which lie on the sides of the dov~<omer
(not those on the plane of symmetry), we constrain these points to move only in
the vertical direction. For these bubble surface points, the discretization of the

applicable form of the Rernoulli equation is

o, ¢ ¢ st" ‘3-Dw y* (v")z]
p (2 P P
pn 2 pn ’
bub air n
. . - glzp - zo)‘ (2-36)
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On the pool surface, an implicit numerical procedure is used to advance the values

of the pool surface displacement, £, and the pool surface potential, °C' For
example, the pool surface displacement is advanced by
" e g e 2 "0 0 ™Y (2-37)

This method ig practical due to the simple representation of the pool surface,
whireas, for the bubble surface such an implicit procedure is impractical since
it would require the execution of the algorithm to form the irregular stars

at each iteration. Let kB denote tlie vertical cell index of the undicturbed
pool surface, Figure 2.5(b), then the finite difference approximation to the

governirg equation (2-21) at a point (i,j) on *ie pool surface is the two-step

procedure:
n+h n 1.n ‘l n 2
ST Dl R ol Pwﬁ,i,w
n 2 n 2 n I
i (ui,j,ks) - (Vi,j,k ) ] g Ci,j ‘ (2-38a)
el TR i f1 s
£.d.43 . e 1217643
G i S L O SR BN ot B (2-38b)
15K - 5% By i3
6 J

Equation (2-37) can also be represented by a two-step operation:

ST T Tl (2-39a)
i,3 1.9 2 §+3:)
oAU g G TR (2-39b)
1.9 1.9 @ Edds)
where
n 2 n - n rn + 2
s " T T Niaan T g T I
s 1]
n n n
L™ Ween g, ® Yieg,g.x1712 0
n 4 n £ n 9 A
Yo" Praa a T Y st 1E g

n n n

. (s . \ . -40
BT PRI R TN R Ll ™ WAt

223



At the position of the undisturbed free surface, k = ks' we assume the potential

varies linearly between the point 2 = gz,

1.j,ks-l and the point z = zo+gi so that

'3
n

ey WIS e e .

2 h i3 T4,3.k51 ksﬁ §.4:3

WP, Y 4 n

8 Ei,j + Azks-k

(€ )

(2-41)

Te advance the solution from ¢n to ¢n+1' first explicitly advance the bubble
surface position and potential, vsing Equations (2-33), (2-34), (2-36), (2-38a),
and (2-39%9a). Then solve the sys':em of linear algebraic equations given by
Eguations (2-24), (2-29), (2-41), and the modifications of Equation (2-24) due
to rigid body boundary conditions and irregular stars. In this second step
Equation (Z-39b) and the nonlinear Equation (2-38b) are also used. This system

of algebraic eguations is solved by an SOR procedure as given in Appendix Al.

Velocity Calculation

The velocity U at a point in the fluid is given from Equation (2-17) as
-
o= (28 3¢ B¢
ox’ 9y’ 9z
At interior grid points and on rigid boundaries parallel to coordinate planes, the
components of U are simply calculated by the centered difference equations,

Equation (2-40). At grid points on the torus wall, we use one-sided finite

difference approximacions to obtain

¢i,j,k kg ¢i—1,j,k

Bx;

W

g 4. ne1 " N o4
W, R =
B % ¢ Azk+5

(2-42)

for u and w. The standard centered difference form in Equation (2-40) is used for

transverse component v at the torus wall.

A more difficult and numerically more sensitive problem ie to find a satisfactory
approximation to the gradient of the potential at points on the bubble surface.
The evaluation of velocities or the bubble surface is important since they can
provide & large contribution to the discretized Bernoulli equation (2-34). This
equation, through the velocity and the pressure differential between the bubble

and pool surface, drives the entire solution. At each time level it provides
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¢ for the Laplace eguation. Hence, to obtain a satisfactory

boundary values of
solution of ¢, the velocity field on the bubble surface must be relatively smooth
both spatially and temporally. For the sake of simplicity we describe the pro-
cedure which is used to calculate these velocities in two spatial dimensions
instead of threce., To find the velocity at point ps on the surface of the bubble
shown in Figure 2.12, first find two interior points Py and p, on the line "normal"
to the surface at Py such that the points p1 and p2 possess the following

pioperties:

(1) Py and P, are not both in the same rectangular cell.
(2) The distance between Py and P, is at least the width of a cell.

(3) All corrers of the cells containing Py and p, are in the fluid

interior.

(4) p, and p, ére as close to pg a8 pozsible with regards to (1),
(2), and (3).

Then under the restrictions above, we can find the velocity at the corners of the
cells ifntaining p1 and P, and, hence, find each component of velocity at both

pl and pz, using linearity as in Equation (2-30). The velocity at ps is then
found from the velocities at Py and P, by linear extrapolations. The rormal

t» the bubble surface at Py is defined as the direction normal to the line
connecting the two (in two-dimensional case) adjacent surface points on either
side of ps. In three dimensions, we use the direction of the normal to the

plane determined by the three adjacent points (a, b, and c¢ in Figure 2.13) which

surround the point Py

Pressure, lLoad, and Impulse on Torus

After obtaining the solution of the finite difference equations for the bubble

, : n |
formation model, we have a record of the potential ¢i i at points on and

J.K
withan the fluid at the discrete times tn encompassed by the calculation. Specif-
ically, we have the time history of the potential on tne surface of the torus.

From this we can use the Rernoulli equation, Egquation (2-22), to find the pressure

p and hence the load given by

pNads , (2-43)

= (& | SR |
ol W y 2! “ftorus

where N is the unit vector normal to the torus wall.

The dynamic vertical load fz is defined as

R : :
N 2 [weight of water] ,
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B

or

" ‘ l
ﬂz = ,/;etted 'P " [paiz g . zo)]‘ dx dy . (2-44)

surface
of torus

Solving for p in Equation (2-22) and substituting the result into Equation (2-44)

we obtain

1 2
?{z = -fwetted P [%% 4 -5(u2 + v o4 wz)] ax 4y . (2-45)

surface
of torus

Nue to the geometric symmetry of the problem, the longitudinal and transverse

compcnents, hx and ly, respectively, of the load vanish. The impulse, I, is

- L -
1(t) u‘% £ 41 a1 . (2-46)

Upon subscituting Equation (2-45) into Equation (2-46) we obtain

ol B -.,;etted L’[¢(t)
- surface

1l ¢t 2 2 2
b L. (g + v + w’) d1] dx dy (2-47)

Instead of using Equation (2-45), the dynamic vertical load can be calculated

by the inverse of Equation (2-46); i.e.,

% d
iz(t) v.Sp 308, (2-48)

From Eguation (2-22) we calculate the pressure at a point (i,j,k) within the fluid

by

n BN PNV T
Pigx " Paiy ~ P '9 kT
n+l n-1
$i LR A
+ l'Jékl "f'k sy k' (2-49)
At ¢ Bt £ ‘
ol Tl 2 2 . : .
where A = E(U + v +w). The impulse is calculated by
n .
n ¥ n A T*=d @
= - . Ax, [ - A \ 5 & 12-50
1 o L® 5 Bx by ¢ rzl ) 1,5k 0%y by, )
(4,5,k)eT : (1,9.k)el

where I' is the set c¢f points on the wall of the torus, and the dynamic vertical

load is
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n+l n-

z n-1

I

I

l

1 |

}:n = 2___..._—___1..—... % 2L |
- (2-51) |

|

At + Ot
In the bubble formation part of the SWELL3 model, Equations (2-49) to (2-51) are
1
used to compute the pressure at sflected points and to cbtain the impulse and load *
on the torus wall. 1In the vent clearing part of the model, we use Equations (2-9) ;
i
{
|

and (2~15) to obtain slightly lifferent formulas for the same purpose:

n
n 2 2 Ay i e .d_w_ *
P " T T F [g(zk 2y ‘dt) %9k
G A
A - 2=
+ (w) i,j.k] (2-52)
n n oo
o G
b /-: ivj:k p 1

n

1
*
L4 o Ay, l

. *
TG o RN o (2-53)
b R & Taers Wiy,
o n=1 I
R T3 e R cleatii g 3 ; .
where A% 5 & (3g*/ax) " + (ag*/ay) + (34%*/3z) "|. The dynamic vertical load Qz is

still given by Eguation (2-51).

2.4 SWELL3 MODEL SUMMARY

The SWELL3 computer program incorporates a numerical method for calculating three

dimensional, incompressible, irrotational fluid flow in the presence of solid

bodies and with multiple free surfaces. The method is applied to find the forces

or a MARK I reactor containment degign durirg the early stages of a postulated

LOCA. The main features of the method are the use of three-dimensional irregular

stars to form the Laplacian operator and the imposition of the fully nonlinear

free surfaces which are not restricted in their orientation.

Bernoulli eguation on

mhe major challenge inherent in this approach is the formation of the irregular

on of velocities at points on free surfaces.
and free storage [4] were invaluable aids

star and the computati The concepts

of structurel programming, linked lists,

in programming the solution of this problem.

The following flow chart summarizes the solution procedure.
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Section 3

SURGE—~MODEL FOR TWO-DIMENSIONAL POOL SWELL

The flow field becomes practically two-dimensional in the late times of pool swell
in & single~cell configuration in which the spacing of downcomer cells is not too
large. 1In the present study we use SWELL3 to compute the flow until the diameter
of bubble reaches about half the spacing of downcomer cells. It has been found by
numerous calculations that at this point the flow in the pool becomes essentially
cwo-dimensional. In order to increase efficiency and, more important, to achieve
greater accuracy when impact on the ring header occurs, the calculation is con-
tinued by the SURGE code after this point.

- \
The SURGE code is primarily based on the Generalized Arbitrary Lagrangian-
Eulerian (GALE) method [5], which is a very useful tool for treating two-
dimensional, time~dependent incompressible flows in which free surfaces are present,
In what follows we shall describe briefly the GALE method and its application to

the pool swell precblem.

3.1 'THE GALE METHOD

First, the fluid domain of interest is divided into a number of quadrilaterals or
cells such that natural boundaries, e.g., free surfaces, coincide with the mesh
lines. A typical mesh for pool swell calculations is shown in Figure 3.1(a). Only
one half of the pool needs be considered. The mesh configuration in Figure 3.1(a)
may be interpreted as a mapping into a rectangular region shown in Figure 3.1(b).
The Lagrangian coordinates (a,b) correspornd to the mesh lines. The vertices of
the computational cells are desigr.ated by the (i,j) subscript system (Figure 3.2);
associated with each vertex are its cartesian space coordinates (xij' yij) and
velocity components (uij' vij)'

A set of initial conditions on (x,y) and (u,v) at each vertex is needed to begin a
calculation. To advance the flow field with respect to time, the vertices are
moved to their new positions according to their instantaneous velocities through

an increment in time 6t:



Figure 3.1(a'. Schematic of the SURGE Mesh

§
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Figure 3.1(b). SURGE Mesh in the Lagrangian Space
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*igure 3.2. Control Volume for an Interior Vertex (1,3,)




n+l n n+l \

YRR B PPLE L H

ij ij ij
(3-1) l

n+l n n+.

Vi ® yij * 3t vij
where the superscript n refers to the nth increment in tine. Note that in i
# Equation (3-1) the velocities (u,v) are evaluated at the new time level. Through :
|

this construction, appropriate boundary conditions can be satisfied at the new time
level.

B + +
The velocities (uzjl, vzjl) are computed from the momentum equations. For the

control volume of the vertex (i,j) in Figure 3.2, assuming (ui*' vij) equal to

|
1
1
the aver.je velocities in the control volume, the discretized inviscid momentum
? : I
equations can be written 1

n+l n
uij st “ij 3 n n |
e . TR s [Pi-5j+5 Wise1 = Yiogy)

" ( n . )

i Pionjeyy Wia1y = Y4541

i (y" b
Pisngey Wiger ~ Ying |
l
i3 n & e )] ot \
Piany-y Wiy 313-1’] " |
|
|
n+l n i
. H - W . :
i BRI 5 R0 e (x" & alhcien |
it 9y My g Piajuy %5414 ij=1 :
|
+ (xn - xn ) |
Pioggey ™50 ~ %14 ;
o) <xn at xn |
Pisnien ®i414 1541 |
]
n G 2 |
. pi-5j+5 (xij+1 xi-lj'] i (3=3) i

< For vertices lying on a boundary, such as the vertex (1,3) in Figure 3.3, the

momentum equations are written as:
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Figure 3.3. Control Volume for a Boundary Vertex

Figure 3.4. 1Illustration of the Rezoning Procedure
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n n
[(ps)ij Wie1g = Y414

2
M, .
i3

5 (y" W
Piahiety Yic1g ™ Yi4-1

n n
* Bt Wyads A yij_1>] : (3-4)

e W (x" - )
9 My Pisg-y "%i414 ij-1

& ( n n
Piobjety *i5-1 7 ¥io1j

; n G &
(ps)lj (xi+13 xi-lj)] A (3-5)

In the equation above, is the averave pressure defined at the center of

Piakivy
ezch cell, (gx, gy) are the components of gravitational acceleration, Mij is the
mass of the control volume associated with the vertex (i,j) (the shaded areas in
Figures‘3.2 and 3,3), and (ps)ij is the pressure acting on the boundary point.

If the boundary is a free surface, (ps)ij represents the instantaneous pressure
exerting on the free surface and is a known gquantity. If the boundary is one that
separates the fluid from a rigid body, then ps is to be determined from the
iterative solution procedure, to be described shortly. It is clear that one must

: ¢ y 5 : + +
first obtain the pressure distribution before (u?.l, v?jl) can be calculated.

The pressure field is obtained by applying the principle of mass conservation.
For an incompressible flow, such as water at speeds much lower than the speed of
sound in the same medium, the fluid density can be regarded as constant and mass
conservation means volume conservation. The volume of the cell (i+k, j+4%) is

wn n .n

3.0 n
Viehieh * T1Xyg Yoy * Moy Yyg) o de

. In most of this discussion, the subscripts 1, 2, 3, and 4 are abbreviations fox

the vertices of the cell (i+%, j+%) in Figure 3.2, and the notations

f xn 8 xn xn xn xn xn etc are used for convenience For the new time
! < il | it | Balha 4’ 2t 5
® level, we can write
an+l 1 n+l n+l n+l n+l

( : (3=-7)

iagey T 2% Yoq T %24 Y23

Using Eguations (3~1), (3-6), (3-7), and conservation of volume. i.e.,

aunél H Gn
i+hi+h itk g4k

’
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we have

P n+l - n+l - n+l - n+l i 2
Dlshun T Wy Byy" * Wiy Vag © Moy Via % %ys Yoy 0 (3-8)
where
- ol i n+l L QE n+l
Koy & Fikpy # Rygd & Reg + 9 Wiy I
(3-9)
R GG SRR xn+1) Al st “n+1 ‘
Moy * T8y V%2 26 * 3 P

and similarly for 7]3 and ?24.

One way to ovotain the governing equation for pressure is to write momentum
equations, similar to Equations (3-2) and (3-3), for all the four vertices of cell
{i+%, j+%). The resulting expressions for (u,v)n+l are then substituted into
Equation (3-8). This opsration will lead to an equation in which the unknown

pressure p at the cell certer is related to other unkncwn pressures in its

i¥yg+
immediate neléL:orhood. These unknown discrete values of pressure can be solvad
by successive over-relaxation.

-
From programming point of view, there is another method that is more attractive:
The idea is to use an approxima.e pressure distribution, in Fguations (3-2) and
(3-3) for interior points and in Equations (3-4) and (3-5) for boundary points, to

1

+ ; i
obtain provisional values for (u,v)n throughout the flow field. This provisional

(u,v)n+l will not in general make Di+$‘+ﬁ in Pquation (3-8) vanish, nor will they
satisfy boundary conditions. The nexthtep is to make corrections on the pressure
field sc as to reduce the maximum value of IDI in the flow and satisfy boundary
conditions. To do so we need to known how much change in r:.'i-“,j*5 is produced by

a small change in p. By applying Equations (3-2) and {3-3) at the four

ikl
vertices 1, 2, 3, and 4 in Figure 3.2, it is easily found that to the first
variation
n+l n
A = 8
| $U8t APy agey Y2d' ™
A3 o etde n o
e Pivyien Y24 "3
n+l n
Au2 = =(8t Api*§j+5 y13)/‘42

n
Au4 = 4(8t Api+ﬁj*ﬁ le)/Md



oo s e el
Av?*l = - (6t AP1+5j+H xg‘)/i‘ll

|

Avg+1 = 4+(6¢t Api¢§j+5 xg4)/M3 i

|

iy Av;+1 = +(6t Api+5j+5 x?3)/M2 |

' 4|

. cv;‘*l . ~(Bt BB\ X) 5) /M, (3-10) ‘

where A means a small change. Similarly, by taking a first variatio: of the

unknown guantities in Equation (3-8), we have

- n+l n+l - n+l n+l
ADi+5j+5 y?_4 (Au1 Au3 ) y13 (Au2 Au4 )
A n+1 n+l - n+l n+l
- - 1‘1 AA o -
LI (Av1 Vg ) * Xy 4 ( v, Av4 ) (3-11)
Now we can relate bDi+5j+5 to Api+5j+5 by substituting Equations (3-10) into
Equation (3-11), with the result
= A -
i thsj“’ a &t LRty g ul (3-12)
where
1 1 n - n - 1 1 n - n -
BRI Y g Ry ¢ Wy Vag! v G AR ey g * Ve Vi
1 3 2 4
Recall that our objective is to find the correction in pressure, Ap, . such

14kl

ks will lead to diminishing values in

that the subseguent correcticns in (u,v)

| | ' . § £3s
'Di+5j+5" This can be accomplished by setting ADi

b T Pratig 8
- Equation (3-12) and obtaining

Api+53+5 = - Di+5j45/(u §t) (3-13)

which is the formula for computing the correction for the pressure at the center )

of each cell. ’

We also need a formula for correcting ps, the pressure at a liguid-solid boundary.
Assuming that the solid boundary has an angle of inclination € at the vertex (i,j)

«8 shown in Figure 3.3, then the boundary ccnditicn is

n+l . : n+l n+l |
uij gin 6 vij cos 6 = (VN)ij (3-14) |

where (VN)?;I is the magnitude of the normal velocity of solid boundary. Eguation

(3-14) states that, normal to the wall, the fluid partical velocity equals that of

Rel - pd
the wall. Recall that (u;, . vi,') are calculated by the momentum Equations (3-4)

and (3~5). We rewrite Equation (3-14) as




n+l n+l n+l

uij gin 6 - Vij cos 6 - (vﬂ)ij (RB)ij (3-15)
: ; . n+l ntl

where (RB)1j is the residual. Because provisional values of (ui* ¢ vij ) are

used, (RB)ij does not vanish in general. The aim of iterative procedure is to

correct (ps)ij in Equations (3-4) anéd (3-5) successively so that I(RB)iji is
reduced to an acceptable size. Taking first variation of Equations (3-4), (3-5),

and (3-15), we obtain, respectively, the following relations.

n+l 8t n n
i’ My Wieay © Yi-1y) PRg 4y
(3-16)
n+l 8t n n
Wi ™ M (X2 = %gaqy) 20044
el n+l A A
Aui] sin 6 = Avij cos 6 = A(RB'ij (FT i3 (3-17)

In Equation (3-17), A(RB)ij is set egual to -(RB)ij, the inte ition being to drive
I‘RB)ij! toward zero. Substituting Eguations (3-16) into Egquation (2-17), we

obtain
A(ps) = - (Ra)ij/ﬁ (3-18)
where
y ot n n n n 4
B Miﬁ [(>i¢13 yi'l)) sin 6 + (xi+1j xi-lj) cos G] (3-19)

T¢ svrmarize, the procedure for finding the pressure and velocity fields consists

of two parts:-

A. Predictor—An approximate pressure distribution, i.e., pij and p', is
used in Eguations (3-2) through (3-5) to calculate provisional
(u,v)rwl throughout the mesh. For a time-dependent problem, the
pressure field of a previous time level can be used as the first

approximation to reduce the number of iterations in the corrector

phase.

B. Corrector—gweep the mesh systematically; i.e., visit the cells
seguentially. When a particular cell (i+¥,j+%) is visited, first
calculate D'*Hj+5 by BEguation (3-8). Then, Equation (3-13) gives

1

Api*5j+5 which is the correction we have to add to pi+5j¢5' Let

the superscript v denote the iteration number, then *
(v+l) (v)
Piahieh = Piakgen * %Piiniay (3-20)




'

After that, Equations (3-10) are used to calculate the changes in (u,v)n+1 at

the four vertices of ce'l (i+h,j+k), that are caused by AF1+5‘+5‘ Make cor-
i n+l J
rections ir (u,v) by
it hae, SRV LR BT ol (3-21)
1 1 3
: n+l n+l ) . AT
and saimilarly for u, . Uy etc. After sweeping the intericr cells, visit each

vertex lying on a rigid boundary and calculate the residual kRB)ij according to
Bquation (3-15). Then use Fguation (3-18) to find the pressure correction
A(ps)ij' ané Bguations (3-16) give the corresponding corrections in the boundary
velocities. The ccrrector is repested until the maximum values of iDi+sj+5!
and I(RB)ijl become less than ¢ prescribed level.

After obtaining the field of (u.v)n*l. the position of vertices are changed by using

Equations (3-1), and the integration of the flow field by one time increment is now
completed. To maintain stability in numerical integration, the time step 6t
should be chosen such that no vertex moves more than the minimum mesh spacing
during‘that period. This condition can be satisfied by

6t = % /Lz /max {lul, Iv|} (3-22)

wnere

2 { 1
1 = mir V]| ,

and V is defined in Equation (3-6).

3.2 MESH GENERATIOM, REZONING, AND SMOOTHING

A procedure by Thompson, et al. [6], is employed in SURGE to generate the
curvilinear mesh shown in Figure 3.1(a). The first step is to select pairs of
(x,y) along the boundary, i.e., along ABCDE and along A'B'CDE in Figure 3.2(b).
Thus, (x,y) at boundary vertices are fixed, except those along AA" and EE” which
are periodic boundaries. The coordinates of interior vertices are obtained by

solving

{3-23)

3-10



ot = (ax/3b)2 + (dy/ep)?

: 5 Z(Ba b * @a ab,
i

' Yt = (3x/%a)% (ay/aa)2

and {2,b) are the Layrangian coordinate lines shown in Figure 3.1(a). Using

finite~difference representations

( ) /2

Pa T a4 T %5e19

Qv
x

Ll AT B

Ei = (x
b ij+1 ij-1

{?~24)

o m——
@
L%
X

X
B ij © Mig-1

and similarly for (dy/8a), (8y/8b), etc., in Equations (3-23), we obtain

K. = LaeiR; T Ihe LES 'S + :
“13 [' x1+13 xl-l]) it \xlj$l xi]-l)

ﬁ.
* 0 Baagen T Mg T Meny-1

+ xi-lj-l)] 74 [2(3‘ - y*)]

v = a¥ (v y R R
45 [J Wisy * )i—lj) b ()ij+l o yxj-l)

141941 - Yi-1341 T Yis1g-2

< #* yi-l;—l)] / [ (e y')] (3-25)

These are the formulas for suviving for (xij' yij) by the method of sucressive

over-relaxation. Note that in Bguation (3-24), we chose ba = &b = 1 in the

Lagrangian space.

3~-11
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The proceiure outlined in Section 3.1 employs the Lagrangian description of fluid
motion; i.e., the vertices move with the fluid particle velocities. Its main

advantage lies in that material interfaces are properly maintained and the absence

of computational instability associated with convection terms. Its disadvantage,
however, is that the cells can be bac'ly distorted or even inverted in highly strained
i motions. To circumvent this difficulty, an automatic rezoning procedure is included

in SURGE. At the end of each time increment; i.e., after the vertices are moved

‘.

to their new positions, the vertex positions are adjusted so that a nearly optimum
shape is always maintained for each cell. The rezoning procedure is in complete
analogy with the method of mesh generation as described above. The first step is
to adjust position of vertices lying on boundaries of the fluid demain. Then the
interior vertives are moved by successive over-relaxation, using Equatione (3-25).
Only about five iterations are needed for each time step, since exact satisfacticn
of Equations (3-25) is no* reguired for generating a desirable mesh configuration.
After making the adjustment, due consid ration nust be given to the fact that,

1

1
while (a y)zg' now represent the adjusted vertex position, (u.v)?; are still

associated with the position prior to the adjustwent.
-
As shown in Figure 3.4, suppose that the vertex 0 is moved to a new location 0°
in the rezoning operation. The problew is to find the vel~cities (ué, vé) for the
new vertex 0°. Let Q represent either u or v. Then, using Taylor's series

expansion to the second order in the (a,b) plane,

96 = QO + (éa)(BQ/an)o . (Gb)(BQ/Lu)O

1

Rl PRI 2
+ 3[}6a) (87 Q/0a )0 + 2(da) (6b) (2 Q/Baab)o

: (6b)2(329/3b2)0] (3-26)

To evaluate éa and 8b., we have the following relations

" . <;a§)0"‘6 Vet 8 (% o Wo = ¥¢)

; ! 31"[(%%)0 Ry * #g) = (%‘;')o (yg = "o’]

(3-27)




where
o™ ‘(%3)0 ('g%)o v ':‘E’o (%)o (=38

Now, to calculate Qé from Equation (3-26), various derivatives with respect to a

and b can be evaluated at point 0 by central difference.

The growth of "alternating errors" is an instability which GALE shares with its
predecessors. The alternating errors are noises with wavelength equal to two
cell spacings in the Lagrangian space. In SURGE, a technique is used which
effectively eliminates the alternating errors but gives very little damping to
the meaningful part of the solution. At a given timestep, after the iterative
procedure for finding (u,v)’i‘;1 is terminated, the vertex velocities are adjusted
according to

(04 aajustea = Q44 * f% [2‘Qi+1j * Qa9 * Qe * 040!

" Rie19e1 " Rnged T Qenger * Rhaagan
- 4 3-29
o Qij] (3-29)

viere D = u or v. The damping parameter A lies in the range 0 £ 2 < 1. No damping
takes place when 2 = 0, and at 2 = 1 all alternating errors are danped out in one

timestep. Experience indicates that A = 0.2 produces excellent results.

3.3 TRANSITION FROM SWELL3 TO SURGE

By observation it is found that the flow field becomes essentially two-dimensional
during a SWELL3 calculation, when the bubble diameter reaches abnut 50% of the

cell depth (spacing between downcomer pairs). At this point the transition is made
from SWELL3 to SURGE. The flow field data to be transferred are the bubble volume,
its time rate of change, the location of the bubble center, thé¢ velocity distri-
bution (i.e., the average in the direction normal to the two-dimensionai plane)

aleng the pool surface, and the pool surface profile.

The first step is to create a SURGE mesh. It should be noted that the presence of
downcomer pipes is ingnored in SURGE. The mesh generation procedure, described in
the preceding section, can be used here. The values of (x,y) for vertices along
the pool surface, i.e., BC in Figure 3.1(a), are obtained by interpolation from
the centerplane pool surface profile prior to transition. Then a circular
cylindrical bubble is created with ite center at the same location as the center

of the “hree~dimensional bubble before the transition. The values of (x,y) for

3=13




vertices along the bubble interface are then easily computed as the intersection
points in Figure 3.5. With (x.y) now chosen on the bubble interface as well as
along the pool surface, the iterative proncedure in connection with Equations (3~25)
can be e ployed to generate the entire mesh.

The second step is to create a (u,v) field for the SURGE cude to carry on the flow
simulation. The values of (u,v) along pool surface are obtained by interpolation
from the (u,v) distribution along the centerplane pool surface in SWELL3 cal-
culation prior to the transition. BAlong the circular bubble interface, the
velocity is assumed to be uniformly expanding outward, as shown in Figure 3.5,

and (u,v) are just the components of these vectore. The magnitude of these
diverging vectors is the same for each vertex on the interface, and it is so
chosen that the resulting volumetric expansion rate, Zva/a:, of the cylindrical
bubble is the same as éva/dt before the transition. The values (u,v) associated
with the rest of the mesh points are found by noting that, for two-dimensional

incompressible irgcotational flows, u and v satisfy the Laplace eguation, viz.

-3 2
- -"-g ” 9—% " (3-30)
ox oy

where Q = u or v. Using the coordinate transformations

9 . (w2, 20 3
% I3t 55 v A A (3-31)
a9, (Bx 29 _ 3x 30 ;
ay (ab %a ~ Ba Bb)/J (3-32)

(3 is the Jacobian defined in Equation (3-28)), Bquation (3-30) can be written

in :he Lagrangian (a,b) space as *

N Flag 2 : ;
o X AL A o 18 b/ 9Y x R\,
“'(aa2)+e'(aaab ¥ "(ubz)* {.Pb)“"(ab" (32) 7 9
a 8% le] &
+[(M)A—(5-5)B]1ab)/aso (3-33)
where
2 3 4
Az ‘.x*("’,‘)* ﬁ*(#—.’—‘- +w'(" ;‘):0
qau L‘a‘.?b Bb
- O apile -
B“e'( 2)*6'(&% "'( 1 Salhe

da ? 3b

by virtue of Eguations (5-23). Equation (3~33) then reduces to
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2 2 <R
ac(ﬂ_g + Bw(éLjL " 22)\: 0 (3-34)
8&2 sasb b2

o

which is identical in form to Equations (3-23), and therefore can be solved by the

same iterative procedure described in connection with Equations (3-25). 1In

addition to pool and bubble surfaces, other boundary conditions need to be imposed.

Referring to Figure 3.5, along the line of symmetry AE and DE, and along the torus

wall EB, the following conditions are imposed:

u(%%) . v(%%) =0 (3-35)
du av
3; ol -t 0 (3~26)

Equation (3-35) states that the velocity component normal to the boundary vanishes

and Equation (3-36) requires gzern vorticity at the wall. By using the relations

in Equations (3-31) and (3-32), Equation (3-36} becomes

L« GG - G - B - -

Using the index system in Figure 3.3, the finite-difference forms of Equations

(3-35) and (3-37), respectively, are

LA e (3~-38)

1419 Vie1y
RIS (P O (3-39)

where

x
)

Solving Equations (3-38) and (3-39) simultaneously, we obtain
ij a

(3-40)
vi] = G ya ’
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b
g ['5’ Meagy ™ Micas’ T % et * T "iag T Viers?

bl "ij-l] /(% + )

Equations (3-40) are the iteration formulas for satisfying the boundary conditions
3, along the solid boundaries. They are imposed repeatedly during the iterative

soloation of Equation (3-34) for (u,v).

3.4 SCLUTION OF THE PRESSURE FIELD

To obtain forces on the torus will, one needs to know the pressure distribution
aleng the boundary. This objective can be met by obtaining the pressure associated
with the vertices, rather than that defined at cell centers. In SURGE, a Poisson

equation, i.e.,

2 2 - B % | b G

3 %; H 3 %; Ry - [B (; ) .2 da(uv) " 9 (v )] i (3-41)
& X0y 2

ax By ax ay

-

is used to compute vertex pressures p* from . he (u,v) field. 1In Egquation (3-41)
p is the density of water. Using Equations (3-31) and (3-32) for evaluating
derivatives and the left side of Eguation (3-33) for the Laplacian operator in
the (a,b) space, Equation (3-41) can be discretized using finite difference and
solved by successive over~relaxation. The appropriate boundary conditions are
the following: At the pool surface p* is set equal tc the current airspace
Fressure and it is set equal to the current bubble pressure at the bubble inter-

face. At a solid boundary, consider the momentum equations in rectangular

cartesian coordinates:

2
du  B(u) . d(uv) _ 1 Bp*
Bt . v -+ 3y A - K gx (3-42)
) g (uv) é(vz) 1 8p*
- Bt e ax ay i e oy 4 qy (3=43)

where (gx, gy) are the components of the gravitational acceleration. At a solid

. boundary (Figure 3.3), the acceleration normal to the wall ie zero, thus

sy v
T Sin 6 - 3¢ °08 8 =0 (3~44)
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Substituting Equations (3-42) and (3-43) into Equation (3-44) and using the

transformations in Equation (3-31) and {3-32), we obtain

v'(aa %— (-§—~) =p 8B (3-45)

with

gl 31,[ a(u) by 3®)  Bx Bluv) | 3x Bluv)
5 5 % "BEBET'LRRE

- (x)fa 2w | 2y s | dx a(ve) |, bx 8(v2)]
BN h R TR ‘ah

Here f* and y* have the sam: definitions as in Equations (3-23), 1In finite

difference form, Equation (3-45) becomes

* * 1 é- *
Pis " Py * 3 [" ' ("u]w X pi-lj)] i

This eguation is the iteration formula for boundary condition of p* at a rigid

beoundary.
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Section 4

MODEL FOR FLOW IN THE VFNT SYSTEM AND BUBBLES

A model for compressible gas flow in the vent system and bubble is described in
this section. Our approach is to use a simple model which possesses the essential
features of the phenomena that concern us. Further refinement will be made only
after we fully understand the role of various factors in the model. Thus, our
present vent flow model assumes an adiabatic gas flow in a pipc of constant cross-
sectional area. The energy loss is represented by a ncminal fL/D factor, which is
uniformly distributed along the length of the pipe. Fu thernore, the gas flow
in the vent pipe is assumed to be in quasi-steady state.

-
4.1 DERIVATION OF GOVERNING EQUATIONS
The subject under consideration consists of two parts: the gas flow in the vent
pipe and the gas in the bubbles. These models are essentially the same as those
used by Moody [7]. First, consider the eduation governing the pressure in a
compressible bubble. Let MB' 68’ TB' EB’ and Py be the mass, volume, temperature,
internal energy, and pressure, respectively, associated with the gas in the bubble.

The physical situation is depicted in Figure 4.1.

Assuming a perfect gas, one can write the following relations:

perfect Gas Law pB GB = MB R TB ’ {4-1)

Internal Engery EB = MB Cv TB ' (4-2)

where R is the gas constant and Cv is thie specific heat at constant volume.

Eliminating MB TB Letween Equations (4-1) and (4-2), we obtain
Y,
g Vp * REJ/C,

or, upon differentiating with respect to time,

aE aE
4 g 5 B
i okl ity e 3 e 4-3
at Py "‘}a) e, iy =3 |2 (4=3)
4-1
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Figure 4.1. Schematic of the Compressible Gas Flow Model



where vy is the specific heat ratio. By considering the energy balance in the

bubble, one can write

N
dE av
B B s
ot "Byl T (4-4)

The {irst term on the 1ic¢cht side of Equation (4~4) is the rate of work done by the
gas in the bubble, and the second term is the enthalpy flux into the bubble through

the pipe. Here, hD is the stagnation enthalpy and m is the mass flow rate in the

pipe. 1In this formulation, we have neglected the enerygy dissipation and kinetic
energy inside the bubble and the heat transfer occurring at the bubble surface.

Effects of these variables are expected to be small.

Now, referring to Figure 4.1, let P , and TO be the pressure, density, and

o' Pp

temperature in the drywell, respectively. For a perfect gas, ho =

[v/(y=1) ] (po/po). Using this relation and substituting Equation (4-4) into

Equation (4-3), we have

N
dp P av
PR e ¥
i il v (p B " Py B ) . (4-5)
VB 0

This is the governing equation for pressure in the bubble. The mass flow rate ﬁ

will be expressed below in terms of other guantitites in the vent system.

Assuming isentropic process between reservoir and point 1, we can write

~[y/(y=1)]
i | e G| it
P, * Py [} S Ml] (4-6)
,1=11/(y=-1)]
h - i 005 Wi "
P1 Yo [1 + 3 Ml] (4~7)

For a perfect gas in any process, the fluid velocity V_ can he written in terms

j |
of Mach number Ml by

Because of the steady-state assumption, the mass flux in the vent pipe is given

by

mEpe N A (4-9)

4-3



where A is the constant cross-sectional area and V1 is the average flow speed at

point 1 near the pipe entrance (Figure 4.1). Eliminating pl, ol. and V1 among
Equations (4+-6) through (4-9), the result is

i My A JYPg Py

m = (4-10)

[1+Y'1 e

(y+1) /[2(v=1)]
- )

Using this expressior for m in Equation (4-5), we finally have

Y
dPB ' M1 po A,/w po/oo de '

Va [1+——-———‘;1M§

For adiabatic flow in & duct of constant area, we also have the relation [8]:

2
1

. (o ] (4-12)
2

-

In this eguation, we have substituted pa for Py since it has been confirmed
experimentally that these two pressures are practically the same for the flow

regime considered here. Combining Equations (4-6) and (4-12), we have

(1+y) /(1=-v)

p M 3 » Lot

e 3

ol W -~ (4-13)
¥o Ny 1 17-— M,

Finally, if the energy loss is uniformly distributed along the pipe, we have [8]

2 9 4

P 1 s -rml My - 2) Mg e 2
F:; -7'--7 + -'—2'-- in i" 3 (4-14)

1 5 ! 2 (Y-l)Ml*R

where the nominal loss factor fL/D must be specified for each problem.

Equations (4-11), (4-13), and (4-14) constitute the set of equations that model
the compressible gas flow in the vent pipe and bubbles. The unknowns to be solved
are pB, Ml' and M2, the other quantities being given at any instant of time. 1In
fact, v, /D, Po, Yo and A are a part of the parameters that define the problem,

N a,
while VB and dVB/dt are the results of solving the time-dependent flow in the pool.

4-4
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:
4.2 NUMEKICAL SOLUTION PROCEDURE

For pa/p0 in the range 0.7 < pB/pO < 1.0, a very simple, but accurate, expression (
| o |
may be derived from Equations (4-13) and (4-14): |

2 ‘

- / :

2 1= (pg/Py) |

M B emtcmmttm—t————— (‘-15) 1
1 fL
L Ll 9

' \ i ; 2
This equation is obtained by making series expansions in Ml

%
and neglecting higher-~ |
!
order terms. Note that M2 is no longer present in Eguation (4-15). Similarly, for ]

\

small Mi we can make the approximation

(y41) /[2(y=2) ]
. 1 e N ) b b4
s peae ] g M ( 4 ) Ml

and reduce Equation (4~11), with the aid of Eguation (4-15), to the form

i’ e ‘po % A\/"po/"o_p f:’g'
dt & y+1 2 B 4t
VE l 1+ (-Z—) M ‘
-
‘p AJyp, /P V[i » (p./Pa) I/IY(I - - l |
e 0" 0 B'F0 s (4-16) ;
n y+1 : fL B 4t }
Vg l 1+ e (1 - (Pg/k ) ]/[w(l o )] ‘ |
) . : : n+l n n
Using the superscript n to denote the time level; e.g., t -t = (8t) where
(6t)n is the time increment, Equation (4-16) is discretized as
|
n+l B i
Pg Py |
(6¢)" ‘
?
n+l V/ Jh#l - ) \/ I n+1 2 fL |
. “'0 AVY Py /oy (4 /po V1/Iv@ « ] |
& n +1 n+l r+1 2 fL
(V) l 1+ (3 11 - @ g va + )
n+l (di\ja n|
(PB) 75;-) ‘ (4=17)

Equation (4~17) is in "implicit" form because every term on the right-hand side is
n o

evaluated at the advanced time level n+l, with vB and de/dt as the only

exceptions. Though one could also evaluate these quantities at the new time level,

it was found by actual calculations that the results are practically the same if

4-5
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they were evaluated at the old time level. One advantage of this "explicit"
treatment of 35 and d%a/dt is that they can be easily computed from the geometry
and motion of the bubble at the old time level, thus avoiding the need to iterate

between p:+1 and the hydrodynamics in the pool.

In performing stepwise time-~integration, Equation (4-17) reduces to the problem of

1 n+l

finding a value for p:+ such that F(pB ) = 0, since all other guantities are

known. The Newton-Raphson method may be used for this purpose. The iterative

formula is

3 \
(pn+1)(»+1) # ‘pn+1)(v, - Fl(p

n+l, (v) n+l, (v)
B B ) ] (4-18)

bt B Tt £

where v is the iteration number and F” is the first derivative of F. Because the
bubble pressure does not change much during one time step, a good tirst approxi-
L S n+l, (1) n
g | 3-e (pg ") il g

Eguation (4-18) is then used repeatedly until the correction to pg*l becomes less

. {2l . ’ : ; n
mation for initiating the iteration is to use pB for p
than a prescribed amount.

The proéZdure above is used after vent clearing. Before the vent clears, the
pressure exerting on the water surface inside the downcomer is set eguzl to the
drywell pressure, since in this period the velocity of gas in the vent system is
quite small and the corresponding preessure drop is negligible.

“

4-€



Section 5

SAMPLE CALCULATION

A computation of the pool response during an experimentally controlled loss of
coolant accident in a 1/4-scale test facility was made using the SWELL3 and SURGE
computer programe. The data for this calculation is from the 1/4-scale test run,
Part 1 Test 21, supplied by the General Electric Company (Case GE 1-21). The

results of the computations are shown in Figures 5.1 through 5.4.

Figure 5.1 gives a three-dimensional perspective view of the water in the pool at
various times during the bubble growth phase after the clearing of the downcomers,
as calculated by SWELL3. At 0.18B2 second after the initiation of drywell pres-
surization when the bubbles are large enough s that the soluticn on the wall of
the torus is essentially two-dimensioral, that is, there is little variation in
the transverse or y direction, then a transition is made from the three-dimensional
SWELL3 model to the two-dimensional SURGE model. This is accomplished by assuming
that the bubbles have a circular crcus section with uniform radial velocity deter-
mined so that the mass flow rate matches that through the bubbles from SWELL3 at
transition. The pool surface velncities and displacements are also transferred
from SWFLL3 to SURGE. Figure 5.2 shows the pool motion from the time of

transition to the time of ring header impact as predicted by the SURGE model.

Combined results from SURGE and SWELL3 from time of initiation of drywell
pressurization to the instant of ring header impact are shown in Figure 5.3. These
results include the experimental drywell pressure history used as input, the
resulting bubble pressure, wetwell airspace pressure, and torus pressures at the
far bottom of the pool; i.e., 180°, and on the sides of the pool at 210° and 240°.
Also shown are the dynamic load and impulse on the torus. Figure 5.4 gives the
bubble and pool surface profiles as well as velocities at sclected points on the

pool surface as computed by SURGE.
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Appendix A-1l

SUCCESSIVE OVER~-RELAXATION

Successive over-relaxation (SOR) is an effective and easily progrummed iterative
method to solve the system of linear algebraic eguations which arise from the
discretization of Laplace's or more generally Poisson's equation. The method is
most useful in transient problems where a good initial guess is available from
the solution at the previous time step. Varga® gives a complete development of
the method. Vander Vorst** gives a discussion of the implementation of SOR to
hydrodyramic problems with emphasis on the development of a criteria for stopping
the iteration after a predetermined accuracy has been obtained.

o .
Finite difference approximations to Poisson's equstion on a three-dimensional mesh

give rise to a system of equations, each of which is of the form

P + 49

¥ T T 0O 0 L T 0 1,9,k

1 ¢i,j,k-l

Ty Mt e %5 e x % Y,

= Si,jok (Al-1)

where each of the coefficients depends on (i,3,Kk).

The SOF method for solving the system (Al-1l) is given by the following algorithm:

*R. 8. Varga, Matrix Iterative Analvsis, Prentice-Hall, Inc., New Jersey, 1962.

*#M. J. Vander Vorst, "A Survey of Error Estimates for Iterative Solutions of
Systems of Linear Equations," Maval Ordnance Laboratory, NOLTR 72-18%,
October 1972,
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e \/9/2(°i,j.k)
end

sufficient conditions for convergence of the above algorithm are given in Varga.

When these conditions are satisfied, there is an optimum SOR factcr, w,
1 <=2,

independent of the source term, si,ﬁ.k’ which gives the fastest asymptotic
convergence of Qm to the solution ¢‘of the linear system. These conditions will
not be given here, however, we note that (2-24) satisfies them while (2-29) does
not. We have found, however, that the system converges if we underrelax the torus
wall boundary condition (2-29), i.e., use 0 < w < 1, or in our case w = 0.4. The
order in which the eguatione are solved within a single iteration is also

important. The ordering used in the above algorithm, the natural ordering,

satisfies the conditions for convergence. However for programming convenience,
the order used in the SWELL3 code is to first solve the intsrior equatious,
including irregular stars, using the natural ordering, then solve the rigid wall

and pool surface boundary equations. The iteration still converges although

probably at a slower rate.




In order to attain maximum efficiency in the code, we wish to use a value for
w ar close as possible to the optimum. To numerically determine a value for

near the optimum, we first need to quantify the concept of convergence rate. Let

[ 1 : 2
!¢ || \/Zwi,j,k) .

the norm of ¢ be

| S
then the error, € , 18

m m
"=l e~0 |l
; m ; :
and the difference, ¢ , between iterationsg 1s

o 1 %« ™1

Varga, shows that there is a constant, ¢, such that

m m m=-1
R e e A0 5 Nl N el |
If we denote by " the ratio,
"] : rm‘ ".m
6m—l
then we obtain
m
© 3 xm
m=1 -~
e

Moreover we know that r™ has an asymptotic limit, r. Hence, gsymptotically the

number of iterations, Nr’ necessary to decrease the error by 1/10 is

Nr = «1/log r

To find an acceptable over-relaxation factor, w, for the problem geometry shown in

Figure 2.5, a series of tests were performed to find the solution of

Vz@ = 0 interior
a9 ¥ i
s ol solid boundaries
$ =0 pool surface, z = z,
¢ = alz - 2.) exit of downcomer
’ kd 0

Al-3



The exact solution to both the analytic and finite difference form of these

equations is
LTIt AL R,
The initial guess for all cases is
$ =0

; The results of these tests are shown in Table 1. Note that the convergence rate

is usually highest during the early iterations.

Based on the results shown in Table 1, we used an w of 1.98 for all of the guarter
scale runs. 1In addition, we found that after attaining the solution of V2¢ = 0 at
t = 0, that only 50 to 100 iterations were needed to give an accuarcy of about

two digits at succeeding times. The time step, Atn, in these cases was determined

using a Courant number, fAt’ of

fAt = 0.15

nl-4




Table 1. Determination of Optimum Over-Relation Factor
‘ e"=[6 , =0 |
u.‘&_‘.m._-_ll 0 2,23 " 20,8 ell\ A
g " ‘ |¢m| I 5 ¢2’2'23116 em-l Nr
100 s 4 98
200 g s % P 75 N
300 .18 .67 42 .56
400 o & .67 28 .67 550
1.75 500 .079 .66 1 .64 |iterations
600 .052 .66 11 .61
700 .034 .65 7 .64
800 .022 .65 3 .43
200 .015 .68 2 .66
1000 .010 .67
100 .56 68
200 s @D .45 31 .46 290
1.90 300 ikl .44 14 .45 literations
400 .05 .45 4 .29
500 .023 .46 -
100 .60 52
200 .19 o+ b 17 33 210
1.95 300 . 066 .35 3 .18 literations
400 022 + 33 -
500 .008 .36 -
100 .36 45
1.97 200 12 «18 10 3 1874
300 .05 .29 3 .30 l|iterations
400 .014 .28 -
100 3,03 38
1.98 200 .29 .10 iy .29
300 0% 3 ¥ 3 27 140
400 011 .22 - iterations
100 8.14 34
1.99 200 1.90 a3 18 170
300 + 54 + 28 - iterations
400 14 .26 -

*per 100 iterations



Appendix A~2

FORMATION OF IRREGULAR STARS

The following procedure is used to find the irregular stars from the surface

geometry:
Procedure stars
for each mesh point (i,j,k)
if point inside region
then if each of six neighbors, Ni' are in region
then point (i,j,k) is a “"regular interior" point
else point (i,j,k) is an “"irregular interior"
3 find length 6R of each leg

find six coefficients for Laplacian (2-24)
end
else point is "out"
end

end

end Erocedure

From the description of the above procedure, we see that we must determine whether
each point (i,9,k) i# inside or outside the region of the computations. Various
solutions to this geometric problem are surveyed by Burton*. The procedure we

use to determine whether the point, p, is inside a region, 2, with rectifiable
boundary, I', is to draw a ray, R, emanating from point p and count the number of
intersections, N_, of R passiny through I'. If N_ is odd, then p is ingide 0

R
otherwise it is outside, as shown in the following illustration.

*W. Burton, "Representation of Many-Sided Polygonal Lines for Rapid Proceesing,"
Communications of ACM, Volume 20, Number 3, March 1977.
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For a surface composed of triangular e’ements in three spatial dimensions we must
determine whether R passes through each of the triangles. Moreover, this must be
done for each mesh point or at leas* for those mesh points near the surface assun~
ing that the others can be easily eliminated by a simple flagging scheme. 1In
addition, if R intersects the triangle, Tg, on an edge, this intersection may be
counted twice, once for Tq and once for an adjacent triangle. The probability that
a ray will intersect precisely on the edge of a triangle is very remote given

the properties of real arithmetic on a digjtal cemputer. Even sc we account for
thie problem by considering not one ray, but three orthogonal rays, each normal

to a coordinate plane. A by-product of using three such rays is the irregular
star lengthe needed tc form the Laplacian operator, Equation (2-24).

If we were to examine each triangular surface segment for each mesh point near the
surface, the number of computational operations needed to form the irregular stars
far exceeds the number needed to solve the resulting system of linear equations.
However, if the triangles are pre-processed such that for each cell (i,j,k) a
list, Li,j,k' of each of the triangles, Tg, intersecting the cell is made, then

to determine the status of point (i,j.k) only the triangles associated with those
cells containing the three rays need be examined. The resulting procedure to
determine whether a mesh point is within the computational region ard, if it is,

to also find the irregular star is summarized below.



logical procedure isit;n (1.4.,%)

-

x:y'gz‘nom

for each Tq ¢ L.

1=1,4.k T 5 S find closeet intersection
' ‘

1.9,k

- -

X%, %7 < X, with the line (y = Yyr 4» zk) end

6“1-1 = min (xi - X, Axi‘ﬁ)
for each Tq ¢ Li,j-l,k‘JLi,j,k find closest intersection,

¥ e :‘yi, with line (x = X, 2= zk) end

6 = mi s AL
Vyeq ™ ®n Ay, = ¥ M)

-

for each Tq ¢ Li,j,k-l tJLi,j,k find closest intersection,
2°, 27 < L with line (x = X y = yj) end
6zk—1 = min (zk * B Azkms)

isx = isy = isz = false

v v A,

X = y ® 2 = ®

for 47 4 to 3

e — max

for Ta ¢ Li‘,j,k

if line (y = y), z = zk) intersects Tg at x°
N 4 Y [
then x = min (x, x )

isx = Vvisx

end
end
end
J in (% A
ox, = min (x - x, R,
isl 4 "The%)

1 1 5 d i’ = 1 6 4
(similarly for j j to Jmsx find y3+1 and
pd i ) )
for k k to Kmax find zk*1|
isitin = isx Visy V isz

end procadure
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Appendix A-3

SOME GEOMETRIC IDENTITIES INVOLVING TRIANGLES

The plane determined by three points, IFI' Py p3] in three-dimensicnal space

(xl. Xo0 x3) can be described as the locus of all points which satisfy
Ax] + Bx2 + Cx3 + D=0 (A3~1)
where pi = (xlx' x2i' xal). However for our application it is more convenient to

represent this plane using the parametric form

U B WRSET U AE W IS B L | (A3-2)

i il i2 i3’
for all real pairs (a, ). This can be envisioned as a mapping from the triangle,
[p1, p;. :3] formed by three points in three-dimensional space onto the unit

triangle [(0,0), (1,0), (0,1)] in the two-dimensional space (a, B) where

a, Lot | P .,

il i2 il
Bip ™ K, v X, (A3-3)
oo | g

Similarly the parametric eguations for the line connecting two points, Py and Py

in three-dimensional space can be written in one parameter

i2

;. = ATed) M0 AR
i W |

for all real numbers A.

In the (a, B) space, the intersection of the line

with the plane, (A3-~2), is




. (A3-5
: B ) )
-
where
8! |
i R Yy JIRRET R ey
il P 12 1
& -~ J J
'
when
R¥O
If D vanishes the line and the plane are parallel. 1In (xl. Xo0 x3) space the
solution is ‘
X, = ¢
i i
X >0 \
] ]
e Gl > Tl '
-
S N A SRR (A3-T)
\
Tte area of the triangle, T°, formed by the three points, l(ul, 81), (02, 82), {
(ay, 53)], in the two-dimensional space is
v R | . : - B - -

A(T") = 2'“1(62 83) * %, (B, 'l) + Gy (Bl 82)] (A3=-7)
where A(T°) is positive when the points forming the triancle are enumerated in |
the counterclockwise direction and negative when numbered clockwise. The point
of intersectin (A3-6), of the line (A3-4), with the plane (A3-2), is within the |

1
triangles, T, formed by three points, lpl, Py p‘], if the point (a”, B”) from
(A3-5) in the transformed space is within the unit triangle as shown below.
|
4
. 1
L
.
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The point p, is within the triangle T° = {pi, pé. p;] if the areas, A(Ti),
A(Té), A(T;) of the three triangles

;= [l v wg)
2 = [Pz P53 pg)

I3 %5+ %3]

-3
"

-
~
-3

"

are all non-negative, otherwise the point is outside the triangle.

et the vector R be

x, (a, B)

1

R = x2 (a, B)

X, (a, B)

where the X, are from (A3-2). The area of the triang.e, T = [pl, pZ' 93]: in

physical space is given by the magnitude of the cross product

o ' 3R
A(T) = | X 56 |
or
AT) = [(8,) 8y, = By 85,)° + (8, 85y = 8 85))
2
¥ b
+ (a8, = ay, ay) ]
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