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LEGAL NOTICE

This report was prepared by JAYCOR, as an account of work sponsored by the
.Ylectric Power Rebearch Institute, Inc. (EPRI). Neither EPRI, members of EPRI,
JhYCOR, nor any gerson acting on behalf of eithere (a) makes atsy werranty or
representation, eur ress or implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this report, or that the use of any
information, apparatus, method, or process disclosed in this report may not
inf ringe privately owned right s; or (b) assumes any 11abilaties with respect to
the use of, or for damages resultirg from the use of, any information, apparatus, i

!method, or process disclosed in this rer nrt,
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D
J FOREWORD

s The initial goal of this project was to develop two-dimensional (2-D) computer
programs to simulate, for a MARK I pressure suppression system,-the pool snell
surf ace shape and velocity prior to it.. pact on structures. This effort has been'
coordinated with the MARK I Owner's Group to complement, ir, a timely manner, the
efforts undertaken by that organization.

The ger.eric research needs of the MARK I G1oup have evolved such that additional
goals for the computer codes were established. The codes therefore evolved into
more complex versions which will now predicts (1) vent clearing process;

(2) three-dimensional (3-D) early bubble growths (3) torus wall pressures;
.

(4) net up and down loads on torus; (5) submerged velocity and acceleration
j

fields; (6) pool surface shape and velocity prior to impact on structures; and
(7) wet well pressurization. Predictions for a typical case are included at the
end of this report with overall comparison with experimental data being good to
excellent depending on the parameters chosen. '|

1

i

This EPRI project has been part of the MARK I Owner's Group program for addressing
generic suppression system concerns and will complement additional generic EPRI
experimental efforte underway to quantify pool swell effects in the MARK I

,

'
pressure suppression system.

Future efforts will produce a user's manual to permit efficient use of these

computer programs.

Charles W. Sullivan

Project Manager.
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ABSTRACT

.

This report describes in detail the analytical models, together with the
computational techniques for their solution, that are used in a continuing effort
to study the pool swell phenomenon in MARK I pressure suppression systems during

a postulated LOCA. A calculation using 1/4-scale test conditions as input is given
as an example,
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EXECUTIVE SUMMARY
s

!
* 1.

This report is a detailed documentation of the analytical models, and the .

)
corresponding solution procedures, that are employed in a continuing investi- !

gation of the pool swell in MARK I pressure suppression systems during a
postulated LOCA. The present study is concerned with the vent clearirig and the

subsequent pool swell resulting from the pressurization of the drywell with air.

Steam condensation is outside the scope of this work.

The computer codes SWELL 3 and SURGE, which are based on the formulat!.ons ;

described in thfs report, have been used in validations against 1/4-scale and

1/12-sgale laboratory experiments. Since the validations are still being
evaluated, they will not be included here. Nevertheless, a typical simulation

run, using 1/4-scale test configuration as input, is given as an example.

'.
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,' Section 1

INTRODUCTION., :
o

This report documents in detail the analytical models, together with the computa-
tional techniques for their solution, that are employed in a continuing effort to
study the pool swell phenomenon in MARE I pressure suppression systems during a
postulated loss-of-coolant accident (LOCA).

The eventa following a postulated LOCA are numerous: the discharging of high-
pressure steam into the drywell which in turn forces a mixture of air and steam

into the vent system; the pool ovell in response to the flow of air into the |
|bubbles; nnd condensation of steam in the suppression pool. The present study

is concerned with the development of computational tools for simulating the vent
clearing process and the subsequent phenomenon of pool swell that result from the
pressurization of the drywell with air. Stcam condensation is outside the scope

of this investigation. j
a

i,

As discussed in an earlier report (1), our approach has been to distinguish two- !

dimensional flow regime from the three-dimensional one, and to use computational
techniques appropriate for.eacn regime. The two regimes are the essentially

three-dimensional flow field during and shortly after the vent-clearing process, ;

and the approximately two-dimensional flow in the later stages of bubble growth.
In an earlier study [1], the VENT 3 code was used to cover the period from the

,

I

onset of drywell pressurization to the instant when water in the downcomer is

completely expelled. After vent clearing, the simulation of pool response was

performed using the two-dimensional SURGE code. By comparing with Stanford Research

Institute's 1/10-scale test measurement, the predictions on pool surface displace- h
*
.

(

ment and velocity by VENT 3 and SURGE were quite good. It was found later, however,*
,

that the VENT 3/ SURGE model is not adequate for predicting the peak download on the,,

- torus, which occurs shortly after vent clearing. The reason is that the two-

dimensional SURGE code cannot properly describe the flow field about a highly
J

three-dimensional bubble which is just being formed. In order to treat this flow

regime adequately, a time-dependent, three-dimensional code (SWELL 3) has been

1-1
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developed; SWELL 3 includes VENT 3 as a submodel for the vent clearing process as j

before.

In what follows, detailed descriptions of the mathematical formulations and
~

solution procedures for SWELL 3 (Section 2) and SURGE (Section 3) are given.
O \

Section 4 describes the equations for modeling the pressure drop in the vent
-

-

system; and an example using General Electric Company's 1/4-scale test conditions
*

as input is given in Section S.

.e

'.
*

$

e

e
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Section 2.

SWELL 3-MODEL FOR THREE-DIMENSIONAL BUBBLE FLOW

The SWELL 3 computer code calculates the fully three-dimensional fluid flow during
vent clearing and the flow associated with the formation and growth, at early times,
of the underwater bubble. This section presents the numerical method contained in

'the SWELL 3 code to simulate three-dimensional flows bounded by rigid walls and
multiple free surfaces.which are not testricted in their orientation.

Boiling water reactors incorporate in their design a pressure suppression system.
i

i

The MARK I containment design shown in Figure 2.1 is essentially a large pool of

-water contained by a. toroidal vessel. During a postulated loss-of-coolant

accidetti, steam'from the depressurizing reactor mixes with air and is vented
through " vent pipes" from the reactor drywell into the wetwell. These vent

pipes lead to a toroidal ring header which is contained within the main torus and

is located above the pool surface. pairs cf pipes called downcomers lead from the

ring header and extend vertically downward into the pool with their exit openings

below the pool surface. Figure 2.2 shows a schematic of the quarter-scale test

facility for modeling a cross section of the pressure suppression system during a

pestulated LOCA. It contains one pair of dosncomers in a cylindrical vessel. The

SWELL 3 computer code simulates the incompressible fluid flow in a wetwell config-

uration similar to this experimental model.

Before the sub-scale experiment begins, the 3arge air reservoir is pressurized and }

pressures in the wetwell airspace .and drywell are reduced to about 1/4 of the

atmospheric pressure. The wetwell and drywell are either at the same pressure !

\ (the so-called zero op condition), in which case the water in the downcomer pipe
'

is at the same level as the water in the pool, or the drywell pressure is slightly.

'
larger (the full op condition) so that the water level in the downcomer is..

'
initially at the exit of the pipe. The initiation of the event begins when a

diaphragm between the reservoir and the drywell is broken, allowing air to flow
into the drywell and then through the vent pipes and the ring header into the

'

downcomers. The water in the downcomers is forced down, and eventually the air

|
n

$.

2-1
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is vented into the pool where an underwater bubble is formed at the exit of each '

downcomer. The torus wall experiences a certain amount of downward dynamic'lood I
'

(the "down-load") during vent clearing and the early stages of the bubble growth,

the maximum magnitude occuring just after vent clearing. During this time the
.

pool surface displacement is so small that the pressure in the wetwell airspace,

which is sealed in, chaliges little. After vent clearing, the pressure loss in the-

vent system, consisting of the vent pipe, ring header, and downcomars, is'such that

- the bubble pressure and the corresponding torus load begin to decrease 'although the"

drywell pressure is still increasing. At later times the rising pool surface causes

the wetwell airspace volume to decrease, therefore, increasing the airspace

pressure. The net dynamic load on the torus may become upward after the water in

the pool has gained a certain amount of upward momentum, which in turn exerts on

the upper half of the torus wall through the rising pressure in the airspace.

In an earlier study (1], the VENT 3 code was used to calculate the flow during the
vent clearing process. Af ter vent clearing, the purely two-dimensional SURGE code

,

i

was used for the bubble growth and the associated poc1 swell. As demonstrated in

RefeLonce 1, the predictions on pool surface velocity and displacement were in

. good agreement with Stanford Research Institute's 1/10 reale experiments. It was

found later, however, that the peak download, cecuring just after vent clearing, can j

not be correctly calculated by using a purely two-dimensional model such as SURGE

for the early growth of the bubble, which is characterized by highly three-

dimensional effects. To treat this flow regime properly, the SWELL 3 code.was

developed; it contains VENT 3 as a module for the vent clearing process. The bulk

of SWEL13, however, deals with the fully three-dimensional, time-dependent problem

of tracing the evolution of the bubble and the corresponding flow field.

In the following subsections, descriptions will be given of the underlying

assumptions regarding the flow and the geometry, followed by separate descriptions

of the vent clearing model and the bubble formation model. The vent clearing

model is essentially the same as VENT 3 in Reference 1, but a different approach is

N taken as far as the derivation is concerned.

.

2.1 MATHEMATICAL MODEL FOR THE FLOW
,,

'

Potential flow has been assumed for the basic mathematical model of the fluid flow.
With the possible exception of the flow at the exit of tre downcomer, the assumptions

of irrotational, inviscid flow are adequate for the solution of this geometrically

complex problen throughout the flow regime. During the process of vent clearing,

i

I

2-4
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the flow around the edges of the downcomer is turbulent. The resultir.g turbulent
" turning" losses are approximated within the potential flow model by assuming that
there is a pressure drop across the end of the dow.. comer which is proportional to
the square of the exit velocity.

.

o

The assumption of potential flow avoids several difficulties which would occur if''

we were to solve the system of equations arising from the Navier-Stokes equacions
' using the primitive variables of pressure and velocity. From the numerical point

of view, we need computer storage for only one primary variable, the potential 4
Even with the power of today's computers, the. resolution of a three-dimensional,
finite difference mesh in the primitive variables is severely limited. Second,
the primitive equations are difficult to integrate in time on an Eulerian finite
difference mesh with irregular boundaries. The usual simple schemes require the
addition of a numerical diffusion, either explicit of implicit, whereas neutrally
stable schemes are difficult to implement for free surface flows with irregular
geometries. Third, using potential flow, only V4 needs to be accurately approxi-
mated on free surfaces. With the primitive equations, however, mar.y more
' combinations of velocity derivatives are needed to evaluate the convective terms
in the momentum equations and the source't5rm in the poisson equation for the

All of these derivative s are dif ficult to calculate near free surfaces.pressure.

.

The major disadvantage of solving for the\ potential in a finite difference formu-
lation instead of directly solving for the velocity and pressure is that it is
necessary to take derivatives of the resulting discrete potential solution to obtain
the variables of interest. To calculate the velocity, we need to compute the
spatial first derivatives Y4: to compute the pressure we need the first time

f,inadditiontothevelocityrandtocomputetheaccelerationwederivative
3

. need the second derivative s 3-| $4Direct numerical differentiation of the
potential obtained by the procedure developed in the succeeding sections yields
sufficiently accurate velocities and pressures. However, the acceleration
obtained by direct numerical dif ferentiation of the discrete potential solution

% is quite noisy. For a fixed point in space, a smooth acceleration-versus-time
profile can be obtained by approximating the time history ef velocity porential at'

that point by cubic spline. The accuracy of the resulting acceleration, however,%

has not been fully established.

Eulerian-Lagrangian Discretization

The free' The flow equations are written in a mixed Eulerian-Lagrangian system.
surfaces are moving through a fixed three-dimensional rectangular finite difference

2-5
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mesh. LIn the fluid interior, the equations are written with respect to a fixed

(Eulerian) computational mesh. However, on the free surface, they are written
with respect to the moving (Lagrangian) surface. Moreover, at interior points

which are close to a free surface, the flow equations are discretized by an
.

" irregular star" technique using the values of the potential at both interior and
[ surface points, but involving no points.which lie outside of the flow regime.

Similarly, when a spatial derivative at a free surface point is neede1, it is
- I' evaluated by one-sided differencing so that no points outside of the fluid region

need to be used.

Considerations of the compromise between computer storage and accuracy requirements

were primary in the choice of the~ mixed Eulerian-Lagrangian formulation as opposed
to a str ct2y Eulerian or strictly Lagrangian approach. In terms of accuracy, a |
totally Lagrangian treatment of the entire three-dimensional flow region might be
preferab't However, the computer storage required to obtain the necessary cell
resolutioa for such a scheme would be exorbitant. On the other hand, a strictly |

Eulerian method -~milar to a primitive Marker-And-Cell method, in which the free

surfases are approximated by rectangular steps, was initially attempted and found
to be too inaccurate in its prediction of torus wall pressures. The storage

requirements of the mixed Eulerian-Lagrangian formulation are not much larger than
the purely Eulerian approach. However, since it uses the exact position of the
free surface within the underlying rectangular mesh, higher accuracy can be

achieved.

2.2 VENT CLEARING MODEL

In the interval fram the time of initial drywell pressurization to the time when*

the downcomer vent clears, it is shown in Reference 1 that a simple model can

yield good results. For completeness this vent clearing model (VENT 3) is also
described here.

The following assumptions are made:

%
(1) The water exits the downcomer with uniform velocity w(t)

,

across its cross section.' ,

b
.

(2) The potential vanishes on the pool surface..

(3) There is an average pressure drop proportional to pw across

the exit of the downcomer, where the loss coefficient f is
,

obtained empirically.

Justification of these assumptions was given in Reference 1.

I,
{2-6
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A summary of the equations to be solved during vent clearing is the following:

V $ = 0 (interior of the pool) (2-1)
!

|

= 0 (rigid boundaries) (2-2)
.

| y# $ = 0 (pool surface) (2-3)

= w(t) (downcomer exit) (2-4)
. . .

...I
'

where an expression for w is yet to be determined. Now if we let $*(x,y,2) be the
solution of the stric'cly spatial boundary-value problem

V $* = 0 (interior) (2-5)

= 0 (rigid boundaries) (2-6)

$* = 0 (pool surface) (2-7)

** = - 1 (downcomer exit) (2-8)
i

then

$(x,y,z,t) = -w (t) $ * (x,y , z) (2-9)#

satisfies Equations (2-1) through (2-4).

Next consider the problem of matching the three dimensional flow in the pool with
the one dimensional flow in the downcomer, that is, finding the function w(t) .
Referring to Figure 2.3. for nomenclature, let p (t) be the pressure applied toy

the water sarface in the downcomer, p (t) the fluid pressure just above the down-
2

comer exit, p (t) the average fluid pressure in the pool just below the exit of
3

the dc wncomer. Furthermore, let h(t) be the length of the water column in the
downcomer, and A the constant cross-sectional area of the downcomer. Now consider !

the conservation of vertical momentum in the control volume formed by the water in
the downcomer. In this control volume the time rate of change of momentum is

[pAhw]-(paw)w
.,

|where p is the dansity of water and the second term is the flux of momentum through-

the downcomer exit. This rate of change of momentum is balanced by the sum of the |
1

,,

surface forces due to the pressure (p ~ E )A, and the body force -phag due toa 2 l

gravity. Summing these contributions, and differentiating, we have
'

ip -p
(2-10)-g= .

,

h

2-7
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,

From assumption (3), p is related to p , the average pressure in the pool just
2 3

below the exit of the downcomer, by

+ h0Wp2 ".p3
.

pdA+how (2-11)=
,.

,

where the integration is taken just below the downcomer exit.
.. ]

The Bernoulli equation can be written

" (~ '+ (u +v +w) + + g(z - z "
0

uhere pdr is the wetwell airspace pressure, (u,v,w) the components of the velocity
the elevation of the undisturbedvector, g the gravitational acceleration, and z0

free surface.

Applying Equations (2-9)', (2-11) , and (2-12) at point 3 (rigure 2.3), neglecting
(u + v ) which is much smaller than w throughout most of the downcomer exit, we j

.a

obtain

* *9
~

p * pair + E2 0

where h is the submerged length of the downcomers the constant u is determined
o

from the solution of the $* field, formulated in Equations (2-5) to (2-8) , by

f = f $*dA (2-14)
downcomer exit

Eliminating p2.between Equations (2-10) and (2-13) we obtain the desired
expressions

(~+ +9 } ~ 0=
1-ch(t) p

where

= w(t) (2-16).

%

In summary, to solve for the potential & during vent clearAng,.first solve the*

system represented by Equations (2-5) to (2-8) for $*; use Equation (2-14) to
find a; use the applied drywell pressure with adjustment for vent system losses

' (see section 4) to find p and snive the system of first order ordinary differential1

y

equations (2-15) and (2-16) for w(t) . Equation (2-9) then gives the velocity

2-9
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potential in terms of 4* and * The numerical procedures for solving for (* and
w(t) were presented in considerable detail in our previous work [1]; they will not
be repeated here.

.

.2.3 BUBBLE FORMATION MODEL
e

' The assumptions of frictionless, irrotational, incompressible flow imply that the
{

velocity, D = (u,v,w),can be derived from a scalar potential function 4(x,y,z,t)
f.

-

by F

d = V4 (2-17)
,i
twhere 4 satisfies

V4=0 (2-18) |
.

;

On free surfaces the potential must satisfy the Bernoulli equation, and on fixed,
solid boundaries the normal component of velocity vanishes, i.e.,

=0 (2-19)'.
,

At vent clearing the surface of the bubble is assumed to be a flat sheet at the

exit of downcomer. On the bubble surface the Lagrangian form of the Bernoulli i

' equation applies:

'

*(u +v +w) - - g(z - z ) (2-20)=

0

where p is the uniform pressure on the bubble. The left-hand side ofhb
Equation (2-20) denotes the time rate of change of 4 following a water particle |

cn the bubble surface. On the pool surface in contact with the airspace of the
wetwell, the motion of free surface is represented by mesh points that are allowed
ti m v. only in the vertical direction. At these points the applicable form of

rnoulli equation is

=f(w 2,y2) - g(z - 20) (2-21)-u

- where g't is the rate of change of 4 following these special points.,

.

At a fixed interior point the applicable Bernoulli equation is of the familiar
form*

^#+ (u 4 v +w) + + g(z - 20) =0 (2-22)

,

2-10
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In addition we assume that the pressures are equal in the two downcomers throughout

| the event. .Then since the geometry (Figure 2.4) is symmetrical with respect to the

two vertical planes which bisect the cylinder, the calculation need only be done in. I'

one quadrant as shown in Figure 2.3. The boundary conditions on planes of symmetry
,

are the same as if they were rigid walls; that is, the normal component of |#
B

velocity, g&, vanishes.-

..
,=

Numerical Solution

The primary components of the numerical procedure employed in this work are the
use of three-dimensional irregular stars to represent the Laplacian operator in

Equation (2-18) and the evaluation of the instantaneous velocities on the bubble

surface by a linear extrapolation f rom two interior points along a direction normal

to the surface. The technique'of irregular stars was used by Chan and Street [2],

i

in their numerical study of two-dimensional, large-amplitude water waves. i

Subsequently, the same technique or vari: ants of it have been successfully used
by other investigators. Vander Vorst and Van Tuy1 [3] used the irregular star
technigue for the solution of the motion of a two-dimensional underwater bubble.
They also demonstrated the usefulness of determining free surface velocity by
extrapolation along lines normal to the surface. Due to the complexity of the
computations, neither of these concepts have been previously extended to three-
dirnensional flows with free surfaces of arbitrary orientation. ''

The computational fluid region is that bounded by the pool surface, ((x,y), and
the bubble surface as shown in Figure 2.5. The circular cylindrical downcomers

are replaced by rectangular ones with the same cross-sectional area. In addition,

the circular are defining the torus wall is approximated by the step-like profile
which follows the boundaries of computational cells.

Values of the potential $g f(x1,y ,z ) are defined at the intersections of=

k
the mesh lines, i.e., at cell corners. There are two different free surface
representations, one for the pool surface and one for the bubble. We assume.,

that the pool surface can be represented by a single-valued displacement function,

( = ((x,y) or in terms of the finite difference mesh, C = ((x ,y ), and we also

define t = 4 (x ,y , C +2g f 0) as shown in Figure 2.6. Since the bubble under-

goes large deformations, it cannot be characterized by such a simple relationship.
Instead we use a parametric representation for the coordinates R = (x,y,z) of the

q

bubble where

I2-11 )
|

1

_.



_ _ _ _ - ___-

n

..

|lM M)hh \ .%medREN

J{/dR|yW@yMn. %@ff56%g%
Jg%si8b

,

7j g&MQgi
-

.?' p
mmp/h:nMyg{q
n6dna+dyg

4 : mngrs4 ,. g%.. s lg s./ <_

downcomers
.

.

Q ~ %g m
,

. . ;I
water+

d%r?M ! .47k surface
:ny
y dl fc.te,

c,e,c7 .-
.vr

j|w@py . . .
< ,

,'

, ,

*
.

m.t. - ' , ' ' ''.c..... 'y

)Rf'' V .h,b.;'. '
!W.L. .

.. - h?,' ~. ; s'.*,'.h c.Q70h:'?

'

'

@ 1' . .] $'' ' Y., jf;d
. . ,F:. ..;..s;.) f.:).1. ' . ^ ' ;);. :.:j-|g)3y.: , . : . ..

Q5;j,U : ;
.

;,

4: 4 g
.

q.'
. ..

; %. ..*::, , f.. ,1 > . ; .. . . ;: . . . :. . , 0. . .::, <,.:p;c. . o . , y:. n..;. . .c
. aw- .: >. : .. .;. ,' -

.. . . s. . ,' V. . ;.y :? . . :. s. .. % . . ,;..,
..a ,,. .,

.

. . .'. . . . . .. : : : , c. . . .*:,. r , . , v. . ..,&;s -. g . '.
,

* . . ;;

-

: .

. es; . : . .. , .
. .. .

.ic ..t

)::.;h.,.;:.;: ;|;.'...:@,, *;%.|s;R. . bubbl e f,:'|. .*.:0.i' .' .Y.,.||
.. - . ... , .

: .- . , . . .. . ' . -

surfa
. . . . . .. vessel

:: >< .. , . ,c e s :j .V.f i g. ..", M,. .
.

. . . . .

4. 0.i:'|gf ; .,;.c':: ;, .
, ,........,;;.. ),... . . . :; ;. ,., a,. . . . . *. ,. : . , ~ ;, . .,- :?. , ,

, . , 'g . . . . :. . . .,. y| , .. . , - !

*\.p.
.

s-, ,, . :.n. :;;::;: , va- . .,..m;. -'; . .
. i: >.:. -

. , . . .

:;p*;f. . '.. ;.;; . . . . ,
.. . .
'.4

.:;.:, , , *.s: t.'.' ..:*;=..
,

.,

. : . . c. .
,,.

: * - *- -
,. ,s....; .,

,-
..

<*

. ~ . t.;
.. ..,,:.,,+r. ,.... , e.*.

. . . . . . . . ,. . <
,

''*?, . ,;'c,.);;g ..
*;,,,,

.

i
|
1

1

Figure 2.4. Scht.matic of a Single-C' 11 Suppression Vessel Model
(Circular Cylindrical Downcomers are Replaced by
Rectangular Ones)g

.

e

.Q

. -

;
<

,

/
1

I

|
,

2- ?.2



_ _ - . - _ - - _ _ _ _ _ . _ - - _ _ _ _ - _ _ _ . _ - - _ _ . -. -

1

y

i

3.89' ;_2

.

J=J
.gmax

,

c

. o - fI N 6y
.IT.

g
"! J=2- - l --

- - ; 0.1,89' x
.

1.0' M -y H 6xI -

..,
I=2 I=I max

(a) Top View

Z .I
" 3.89' -

2

_,

O" - 0*482'
' 6x

7 C ~N.
3 ' ')Erk - X

os o ,

.

1.O'

_

,

6z
I

t* --

i. -
,

r:
1

I }~
?

!
. _ _

__

._. -

_m

*

s ,

.

|

K=2.-
.

| i

(b) Side view

Figure 2.5. Mesh configuration for SWELL 3 Simulations

|

|2-13
1

|
,

~ L w. . - . _ _ _



,_
.. .. . . . .

.

.. ,
..

:

i. n-..
,

,

l'

J'

L

t s .n, .. ,

' ). i %
.

1,.-

im ,. --

W. ., .R9
' E /t=tg,3,3,

. - .
,~ .<

'
,

d'fjJQ -
.

..

i

1

(si. :p' . / '/
,. .- -- ,

/-
- . . , . |.

./ / . /% :; - -,4 - - p , p - --/- A---
, . ,

- ,- 7 /
s. ,' /:y / .- 7

.
/w ,-j - - /_ ,e w __- _-

.,' .|// / /J /
/. f.

'

/ / / -

!n
'

/' , ..

surface)
'

,

g (undisturbed pool.' ( . 'z=z,,

. r. ,
.

, f* ''
,

\ '

*);

.| s- \' f.'
' h. i

',,y,. *.

. .n, ,

% '

|< ,

' ' . . Figuth 2.'d . Pool Surface Perspective' 9. - :
,.,

. S *
js

-I's *
t; p. , . i j

|
'

i

.

,

s

.I

1

|

|
1
:
1

i

I
<

t

*,, !

.

.

;.-
1

,1

-.

'

|

.

J

2-14

,

I
i

- e-
'

_ _ _ _ . . _ _ _ . _ . _ _ _ _ _ . . _ _ . _ _ . _ _ _ _ _ _ _ . _ _ . _ _ _ _ _. _ _ . . _ _ _ . _ . .



.

f.

! I

l
l

(
-x = x(a,6)~

R= y = y(a,6) (0 < a < 1; O < 6 < 1)
f

_z = z(a,6)]

|- so that on the surface R the velocity potential is

R("'b' " * * "'b ' Y("'O ' *("'b l' 4 *
g

|

Numerically this is accomplished by covering the surface with triangles as showng

in Figure 2.7 for the initial flat surface at the end of the downcomer and in
Figure 2.8 for the bubble surface at a later time. On the computer this is done
by keeping two lists: a list of vertices,

R(p) = (x ,y ,z ) , 11p1m,p

where

0 = 4(R(p)]

and a list of triangles
!
;

T(q) = (py,q,p2,q'E ,q ' I91" '

3

so tnat the coordinates of vertex 1, (t = 1, 2, or 3) of triangle q is R(p ).

As indicated in Piqure 2.9, no computations are performed and no variables are
defined at mesh points which are inside the bubble. Let

'

6x ,q = x y - xig j

-Y (2-23)oy$#g " Y$41 3
I

0*k + * *k+1 ~ *k I
*

)

Then, at an interior mesh point (1,j,k) whose six cell neighbors are also within
the fluid, the finite difference approximation to the Laplace equation (2-18), in
Cartesian coordinates, ir

# ~#
1 i+1,j,k ~ *i,j,k 1,j,k i-1,j,k

* Lx.
-

Lx Lx
- I

1 14 i-
.

.

4 ,j-1,k-
*

-4 ,j+1,k . 4 ,j,k _ 4 ,j,k i,1 1 1 i. '

OY .g .j - OY +OY jj

. _,1_ l ,j,k+1 ~ *i,j,k _ # ,j,k - *i,$,k-1i i =0 (2-24).

OZ 0 *M 0*Hk-
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where

1
Ax = 7( Ax g + Ax ,y)1

1
AY $ * 7(Ay$#g + Ay$.g)

1
s Az IO (2-25)* I *k+ + Azk- ) .

k
t

!
1

If one or more of the six neighbors of the interior point (i,j,k) are outside the !

fluid region, i.e., inside the bubble, then the irregular star procedure is used to
approximate Equation (2-18). For example, if (i,j ,k+1) lies outside the fluid,

as shown in Figure 2.10, let 6z be the distance from point (1,j,k) to the free

surface along the mesh line connecting point (i,j,k) to point (1,j,k+1) and $s be
the value of the potential at this intersection point. The irregular star

equation for the pctential at (i,j,k) is then obtained by substituting 6z for
Ar and $s f# in Equations (2-24) and (2-25). Figure 2.11 depicts ank4 i,j,k+1

irregular star in three dimensions about a point (1,j,k). The three points

(i+1,j,k), (1,j+1,k) and (1,j,k+1) in Figure 2.11 are all outside the fluid domain.

The "regplar legs" have lengths of the mesh sizes, Ax, Ay, and Az, while the
1

shorter " irregular legs" are labeled 6x, 6y, and 6z.

For points which lie on rigid boundaries parallel to one of the coordinate planes,

the normal derivative boundary condition Equation (2-19) is combined with the

discrete form of the Laplace Equation (2-24) to obtain an equation for the poter.tial

on the boundary. For example, at the plane of symmetry x = 0, Equation (2-19)
becomes I

S1. O
Bx

which we approximate by

i+1,j,k ~ *i-1,j,k
=0

O*i+ + 0*i- 1

|
Observe that in this case the point (1-1,j,k) is outside the fluid region, i.e., it

i is a " fictitious point. " The desired equation at the plane of symmetry is obtained

by substituting
,

*

1-1,3,k = 4 +1,3,k (2-27)
.

4 .

i
.

into Equation (2-24) so that fictitious cells are not used in the calculations.

Special problems arine with edges or corners. There are two kinds of edges (or

corners): concave as on the edge defined by the intersection of the two symmetry

2-19
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planes x = 0 and y = 0, and convex as on the protruding edges of the rectangular

downconer. On the concave edge both the conditions f- = 0 and 7 = 0 are applied

| as in the preceding paragraph. At the convex edges, however, each of the six

neighbors of an edge point lies within the fluid; hence at these convex edge points
.

Equation (2-24) is used without modification.
s

"a

on the surface of the torus wall the boundary condition Equation (2-19) can be
e

' ' written

B+ 34
3x1 cos S Dz- sin 6 = 0 (2-28)

where, as shown in Figure 2.4, 6 is the angle between the x-axis and the line normal
to the torus. At points on the step-like surface shown in Figure 2.5 which

approximates the torus surface, the finite difference erpress3cn used for Equation
(2-28) is

# ,j,k ~#i 1-1,j,k g g
0*i-b\ I

a

- (4
-c i

*i,j,k+1 i,j,k lsin 6 = 0 (2-29).

*k+h }

At the instant of vent clearing a switch is made from the vent clearing model to
the bubble formation model. The initial values of 4 in the pocl for the bubble
formation calculation are given by Equation (2-9). For problems with " full dp"

condition; i.e. , at the time of drywell pressurization the pressure differential

dp between the wetwell airspace and the drywell is such that the initial water
surface in the downcomer is at its exit, the vent clearing model is not needed
and the initial condition is simply 4 E O everywhere. In either case a surface

composed of triangles, as shown in Figure 2.7, is placed at the exit of the down-
comer. Within a rectangular finite difference cell the potential is assumed to
vary linearly along lines parallel to the spatial axes so that the potential 4

p
. at a bubble surface point R (x p, z ), which is located within a cell, is

a p p,y=
p

given by

-

1 1 1

[ [ [* 4 6 *y= a
P (2-30)a=0 6=0 y=0 *a,6,y *p Yp p {

where the eight coefficients a ar determined by the values of the potential6,y

at the eight corners of the cell. Also, at vent clearino the value of the pool
surface displacement is assumed to be

2-21 j
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|

I 1 , =0 (2-31)C ,3 ,

f

and the potentici at (g is

. =0 (2-32). @C,1,j .

4
.

On the bubble surface, an explicit finite difference procedure is used to advence
the values of the free surface potential and positions. A bubble surface point is

*I moved from its old position R" to the new position R"+ by
| P P

||

R" R" +.U" At" (2-33)=
p p p

where the superscript n refers to the time 't'and n+1 to the new time level t + 6t".

Similarly, 4"+ on the bubble surface is determined from the approximation
p

t" l (u")e +1 , g (v") (*")n n +++
i

i
p p 2= , p p p ,

-

- p""#p""

- g (z" - z ) (2-34) i
p p O

to the Bernoulli equation, Equation (2-20). In the-equation above the particle
,

velocity U" = (u", v", w") at point R is determined by an extrapolation procedure ]
p p p p p I

to be described later in this section. The wetwell airspace pressure, p at.

time t" is determined from the airspace volume V" by the adiabatic relationship
i

fv . )y0
0 air

p" air I (2-35)= p ,r ,
yai n
air

where the specific heat ratio Y is taken as 1.4. j

Te avoid bunching up of the bubble points which lie on the sides of the do'ecomer i

(not those on the plane of symmetry), we constrain these points to move only in.

the vertical direction. For these bubble surface points, the discretization of the
,

applicable form of the Pernoulli equation is
'.

4 +1 , ngn(1 g ) 2"
{2

p)2 , g )2 _ nnn n
p p ,p p

*# - g(z" - z )( (2-36)-

p p 0
7 s

:

2-22 ;
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!
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On the pool surface, an implicit numerical procedure is used to advance the values

of the pool surface displacement, C, and the pool surface potential, 4 . For

example, the pool surface displacement is advanced by I

("+1 ("+ fat"(w"+u"*)
'

(2-37)=
.

This rnethod is practical due to the simple representation of the pool surface,
whereas, for the bubble surface such an implicit procedure is impractical since,

it would require the execution of the algorithm to form the irregular stars

at each iteration. Let k denote the vertical cell index of the undisturbedg

Iool surface,' Figure 2.5(b), then the finite difference approximation to the

governing equation (2-21) at a point (i,j) on tne pool surface is the two-step

procedure

+b
4"(,1, j + .l.et" | 2,(w"C ,1, j )4"( ,1, j 2

- (u"i,3,k ) - (v"i,3,k ) _ g ("1,3 |. . . (2-38a)
\g g

.c

4 "( ,1, = 4"(+b + fit"-|1(w"+h.)
*

1,3 ,1,3
.

2 (,1,3

~ (" ,k ) ~ ,k[ (2-3 M~9 .j, g

Equation (2-37) can also be represented by a two-step operation

= ([ g + h t" w"( (2-39a)

("1,h = (" N + 1 " w"#
+

6t (2-39b)
3 1,3 2 (,1,j

where

( 4"( ,1, 3. - 4"1,3,k -1)/(("i,j + Az.w"( ,1, 3 ). . - . .

x,- ]g

" ,j,k (# +1,j,k ~ 1-1,j,k}!( 0*i*

.

" ,j,k ,j+3,k ~ # ,j-1,k D' *
j

n
"i,j,k " I#n ~ #n1,j ,k-1)/(2 Az ) (2-40) ,.

1,j,k+1 k

1

!

| 2. ? 3 l
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At.the position of the undisturbed free surface, k = k , we' assume the potential
'

varies' linearly between the point a = z and the point z = z *E ,j 8 ". g 0 i

# +'

,j . i, j ,k -1 k- (,1,j

&" j,k (2-41)-*
.,. .n

C ,$ + AZg _g
'

. 8
i

s

a' I To advance the solution from $" to $"+1, first explicitly advance the bubble

surface position and potential, tsing Equations - (2-33) , (2-34), (2-36), (2-30a),
and_(2-39a). Then solve the system of linear algebraic equations given by
Equations (2-24) , . (2-29) , (2-41), and the modifications of Equation (2-24) due
to rigid body boundary condits.ons and irregular stars. In this second step
Equation (2-39b) and the nonlinear Equation (2-38b) are also used. This system
of algebraic equations is solved by an SOR procedure as given in Appendix A1.

Velocity Calculation

The velocity U at a point in the fluid is given from Equation (2-17) as
" \

"[34 B& 34 j
\Bx' By' Bz/ *

1

At. interior grid points and on rigid boundaries parallel to coordinate planes, the
components of U are simply calculated by the centered difference equations,
Equation (2-40). At grid points on the torus wall, we use one-sided finite

difference approximations to obtain

*i,j,k i-1,j,k
~

"i,j,k " ax ,yj

~ # ,j,k1,3,k+1 1y ,

i,j,k ozg
!

for u and w. The standard centered difference form in Equation (2-40) is used for i

transverse component v at the torus wall.
~

n

I
*

A more difficult and numerically more sensitive problem is to find a satisfactory,

approximation to the gradient of the potential at points on the bubble surface.,

The evaluation of velocities on the bubble surface is important since they can
provide a large contribution to the discretized Bernoulli equation (2-34). This

equation, through the velocity and the pressure differential between the bubble
and pool surface, drives the entire solution. At each time level it provides

1

2-24
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boundary values.of 4 for the Laplace equation. Hence, to obtain a satisfactory
solution of t, the velocity field on the bubble surf >2ce must be relatively smooth

.both spatially and temporally. For the sake of simplicity we describe the pro- {

cedure which ic used to calculate these velocities in two spatial dimensions i
.

instead of three. To find the velocity at point p, on the surface of the bubble
j' shown in' Figure 2.12, first find two interior points p and,p n the line " normal"y 2

to the surface at p such that the points p and p; possess the following
'

g_

=I properties:

(1)~ and p are n t both in the same rectangular cell.. py 2

(2) The distance between p and p is at least'the. width of a cell.y 2

(3) All corners of the cells containing p and p are in the fluidy 2

interior.

(4) p and p are as el se to p, as possible with regards to (1),2

(2), and. (3) .

Then under the restrictions above, we can find the velocity at the corners of the !

. cells containing p and p and, hence, find each component of velocity at bothy 2

p and p , using linearity as in Equation (2-30). The velocity at p, is theny 2
found from the velocitias'at p and p by linear extrapolations. The normaly 2

to the bubble surface at p, is defined 'as the direction normal to the line
connecting the'two (in two-dimensional case) adjacent surface points on either

, side of p,. In three dimensions, we use the direction of the normal to the

plane determined by the three adjacent points (a, b, and e in Figure 2.13) which

surround the point p .
g

Pressure, Load, and Impulse on Torus

After obtaining the solution of the finite difference equations for the bubble

formation model, we have a record of the potential $" at points on and

within the fluid at the discrete times t" encompassed by the calculation. Specif-
ically, we have the time history of the potential on tne surface of the torus.

i From this we can use the Bernoulli equation, Equation (2-22) , to find the pressure

p and hence the load given by
..

L= (t , R, R)= p N ds (2-43),
. x y z torus

'where N is the unit vector normal to the torus wall.

The dynamic. vertical load I is defined as

I = ( - [ weight of water]g ,

2-25
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h ,l
I

L
i

' or.
*

P,if - p g (z - 20) dx dy (2-44)

surface |P-
* .

wettedz

; of torus.

i .

Solving for p in. Equation (2-22) and substituting the result into Equation (2-44)t
\>
'

we obtain

1, = -*
P + dx dy (2-45)' * .

wetted ,

surface
j

of torus
3

T)ue to the geometric symmetry of the problem, the longitudinal and transverse

compenents, I, .and E , respectively, of the load vanish. The impulse, I, is

t

I(t) = [O (T) di (2-46).

z

Upon substituting Equation (2-45) into Equation.(2-46) we obtain

|

I(t) P=-
wetted
surfacea

( + f [0 (c +v +w) dT dx dy (2-47)

Instead of using Equation (2-45), the dynsmic vertical load can be calculated

by the inverse of Equation (2-46); i.e.,

I (t) = I(t) (2-48).

|
|

From Equation (2-22) we calculate the pressure at a point (i,j,k) within the fluid

by

n- n
P ,j,k =P ~P 9 *k ~ *Oi air

n+1
,

n-1
}i,$,k 1,j,k

z ,

h

n
g ,49), ,

At" '3''

ot"~ +
o

*
1 2 2 2+v + w ). The impulse is calculated by jwhere A E 7(u_,

n
~ ~

i,j,k 0*i OY A (2-50)
,j,k i OYj"~P ~P j

(i,j,k)cr .(1, j ,k) c t .

where r is the set cf points on the wall of the torus, and the dynamic vertical

load is

2-27
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n+1 , n-1
g y (2-51)R - .

Lt"~A + bt"*
!

In the bubble formation part of the SWELL 3 model, Equations (2-49) to (2-51) are.

.' used to compute the pressure at sr lected points and to obtain the impulse and load

on the torus wall. In the vent clearing part of the model, we use Equations (2-9)

I and (2-15) to obtain slightly dif ferent formulas for the same purpose:

-(--)"4.dw *
n
1,3,k air - p g (z - z)

. =p k 0p. .

dt 1,3,k
,

(w") [1,3, k j.

(2-52)+

*

n4n
.

Ax. Ay.
1, 1,3,k 1 3

I = pw

1

- .

. n *

- oft I- (wn)2 [A. .
Ax. Ay ( 2- 5 3)

1,3,k 2 j'

J1= 1 - I. .

,,

C 4n'

(Bi*/3z)' The dynamic vertical load R, is
where A* E g (31*/3x)21 (3?*/9y)' ++ . ~

.
.

still given by Equation (2- 51) .

-

2.4 SWELL 3 MODEL SUWGRY

The SWELL 3 computer program incorporates a numerical method for calculating three-
dimensional, incompressible, irrotational fluid flow ir. the presence of solid
todies and with multiple free surfaces.. The method is applied to find the forces

on a MARK I reactor containment design during the early stages of a postulated

LOCA. The main features of the method are the use of three-dimensional irregular
fully nonlinearstars to form the Laplacian operator and the imposition of the

Bernoulli equation on free surfaces which are not restricted in their orientation.
The major chal:enge inherent in this approach is the formation of the irregular

The concepts
star and the computation of velocities at points on free sur f aces.

%
of structured programming, linked lists, and free storage {4] were invaluable aids

.

in programming the solution of this problem.*

.

O

The following flow chart summarizes the solution procedure.

1

2-28
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Section 3*

SURGE--MODEL FOR TWO-DIMENSIONAL POOL SWELL*
.

The ficw field becomes practically two-dimensional in the late times of pool swell

in a single-cell configuration in which the spacing of downcomer cells is not too

large. In the present study we use SWELL 3 to compute the flow until the diameter

of bubble reaches about half the spacing of downcomer cells. It has been found by

Inumerous calculations that at this point the flow in the pool becomes essentially

two-dimensional. In order to increase efficiency and, more important, to achieve

greater accuracy when impact on the ring header occurs, the calculation is con-
|

tinued by the SURGE code after this point.

The SURGE code is primarily based on the Generalized Arbitrary Lagrangian-
Eulerian (GALE) method (5], which is a very useful tool for treating two-

dimensional, time-dependent incompressible flows in which free surfaces are present.

In what follows we shall describe briefly the GALE method and its application to

the pool swell prcblem.

3.1 THE GALE METHOD

First, the fluid domain of interest is divided into a number of quadrilaterals or

cells such that natural'toundaries, e.g., free surfaces, coincide with the mesh

lines. A typical mesh for pool swell calculations is shown in Figure 3.l(a). Only

one half of the pool needs be considered. The mesh configuration in Figure 3.l(a)

may be interpreted as a mapping into a rectangular region shown in Figure 3.l(b).
The Lagrangian coordinates (a,b) correspond to the mesh lines. The vertices of
the computational cells are desigr.ated by the (i,j) subscript system (Figure 3.2);

*

.

associated with each vertex are its cartesihn space coordinates (xg,yf) and
velocity components (u ,v ).

j,

i

A set of initial conditions on (x,y) and (u,v) at each vertex is needed to begin a

calculation. To advance the flow field with respect to time, the vertices are

moved to their new positions according to their instantaneous velocities through

an increment in time 6t:

|

3-1
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,

n
= x?j + 6t ux

13 l ij :

(3-1)
n+1 n n+1 |
ip ij + h Vg) /Y "y

where the superscript n refers to the nth increment in til:.e. Note that in '

,

'. Equation (3-1) the velocities (u,v) are evaluated at the new time level. Through
this construction, appropriate boundary conditions can be satisfied at the new time

4'
,

1evel. {
4

I

(u +1 n+1) are computed from the momentum equations. For the
n jThe velocities v i,

control volume of the vertex (i,j) in Figure 3.2, asstuning (u ,v ) equal to | '

the averace velocities in the control volume, the discretized inviscid momentum
equations can be written

n+1 n

"ij ~ "ij , 1~ , nn
6t x M i- j+ ij+1 i-lj)

g3 ,

n n
+ P _ q 3_ q (yg_y$ - Yg3_y)

8

1

n n -

P ,g),g (Y13,1 - Y ,13)
-

g i
!

n n *

- P g3_g (Y +13 - ji3_y) . (3-2)1 i

v7+ - v"
6t *9 + P ,g)_g #13 j,1)-x

iy

P _g3_g (x" - x", )+
g

|

i#g3,q (x ,13 - x $,1- P
1

* n n
- P _g),g (Xg),1 i_y$)_ . (3-3)-Xg.

. q

|-

IFor vertices lying on a boundary, such as the vertex (1,j) in Figure 3. 3, the '),

i
'

momentum equations are written as:
)

|

|

|

|
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p, ,p.
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In the eqt.ation above, p is the average pressure defined at the center ofg
each cell, (g , g ) are the components of gravitational acceleration, M is theg
mass of the control volume associated with the vertex (1,j) (the shaded areas in

Figures 3. 2 and 3. 3) , and (p ) is the pressure acting on the boundary point.g

If the boundary is a free surface, (p )1. represents the instantaneous pressures 3
exerting on the free surface and is a known quantity. If the boundary is one that i

separates the fluid from a rigid body, then p, is to be determined from the
iterative solution procedure, to be described shortly. It is clear that one must

first obtain the pressure distribution before (uN , v" ) can be calculated. f
13 13 ;

k
the pressure field is obtained by applying the principle of mass conservation.

.

For an incompressible flow, such as water at speeds much lower than the speed of

sound in the same medium, the fluid density can be regarded as constant and mass

conservation means volume conservation. The volume of the cell (i+ , j+ ) is I

J
i

Y~
+j+ 3 4 ~ 4 3

~

In most of this discussion, the subscripts 1, 2, 3, and 4 are abbreviations for.

,

,
the vertices of the cell (i+h, j+ ) in Figure 3.2, and the notations 1

x" x -x, tc., are used for convenience. For the new time- x x -x ,

3
,' level, we can write

gn+1 I

g +3 n+1 _ gn+1 n+1) (3-7)n1
y,

i+bj+ 2 1 24 24 13

Using Equations (3-1), (3-6), (3-7), and conservation of volume, i.e.,

gn+1 ,gn
'

i+ j+ i+ j+

I
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N
,

we have

+

v"24
#

v"13u"24
*

u"13
=0 (3-8)+x-xI yD.+ j+ .24

-y 1324131

where

}- _1 n n+1 n 6t n+1

*[ *13 2 13 *13 ' " *13 * I "13#
|

) (3-9)
n+1 n 6t n+1 |-

1 (*n24 + *24 " *24 * I "24 )-
* X

24 2.

and similarly for y33 "" Y 24'

One way to obtain the governing equation for pressure is to write momentum
equations, similar to Equations (3-2) and (3-3), for all the four vertices of cell
(i+ , j+ ). The resulting expressions for (u,v)" are then substituted into

Equation (3-8). This operation will lead to an equation in which the unknown (

at the cell certer is related to other unkncwn pressures in itsprersure p 4
immediate neigl.borhood. These unknown discrete values of pressure can be solved

by successive over-relaxation.
a ,

i
c

From programing point of view, there is another rnethod that is more attractive:
The idea is to use an approximate pressure distribution, in Equations (3-2) and
( 3- 3 ) for interior points and in Equations (3-4) and (3-5) for boundary points, to
obtain provisional values for (u,v)" throughout the flow field. This provisional
(u,v)n+1 will not in eeneral make D. in Fquation (3-8) vanish, nor will they

- 1+ \ ;.+
satisfy boundary conditions. The next step is to make corrections on the pressure
field se as to reduce the maximum value of |D| in the flow and satisfy boundary
conditions. To do so we need to known how much change in D is produced byg

By applying Equations (3-2) and (3-3) at the foura small change in p 4
vertices 1, 2, 3, and 4 in Figure 3.2, it is easily found that to the first
variation

n+1
Au = +(6t Ap . yn }/H

j y g 24 1

n+1
n '!"3

*

Au YE + j+*~
24i3

Au = -(6t op y !"2
*

3,

i

n+1
n '!"4Au = +(6t op y
134 g

|

|

1
.

|
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Lv = -(6t op x" )/M4 y

Av = +(6t 6p x )/M4 3

Lv = +(6t op x4 3'!"23
,

.

ev = -(6t op xg 3 "4 I ~1.
_ ,

where a means a small change. Similarly, by taking a first variatiof of the

unknown quantities in Equation (3-8), we have

(ou"1 - Au"3+) (Au"+ - au"' )+

AD + ].
~y -y

i + 24 13 2 4

g ( Av - Av 1) +2 (A - AvN (3-11)-x
73 4

to Ap +qj,q W s@sdudng Equadons O- W intoNow we can relate 6D 4 i

Equation (3-11), with the result

a AD = a 6t Lp (3-12)
f 4

where

)(x" + y" yg)a= ( + + ( + ) (x 13 + 3 13
xg 3

Recall that our object Ave is to find the correction in pressure, op 4, such
that the subsequer.t corrections in (u , v) "+ will lead to diminishing values in

|D , |. This can be accomplished by setting AD 4=-D. ing j

Equation (3-12) and obtaininga

=-D d a St) (3-13)Lp ,g3 g j+qj4qg

which is the formula for computing the correction for the pressure at the center

of each cell.

!

We also need a formula for correcting p , the pressure at a liquid-solid boundary.
, g

,
Assuming tha.t the solid boundary has an angle of inclination 0 at the vertex (1,j) i

4.s shown in Figure 3.3, then the boundary conditic n is
* ;

u sin 0 - v ces 6 = (V ) (3-14)g
r ,

where (V ) is the magnitude of the normal velocity of solid boundary. Equation

(3-14) states that, normal to the wall, the fluid partical velocity equals that of
n+1 n+1

the wall. Recall that (u ,v ij ) are calculated by the nomentum Equations (3-4) ;

!| and (3-5). We rewrite Equation (3-14) as
!

|

'

3-8
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i ;,

i ,

(R ) U
(3-15)u sin 0 - y cos 0 - (V ) =

Bg

where (R l is the residual. Because provisional values of (u"+ , v ) are
g ij

used, (R ) does not vanish in general. The aim of iterative procedure is to
, g

(p,) g in Equations (3-4) and (3-5) successively so that |(P) |is '

correct g
*

reduced to an acceptable size. Taking first variation of Equations (3-4), (3-5),*
,

and (3-15), we obtain, respectively, the following relations.
1.

IY +1j ~ -lj) 4(p )f$0" j ~
i gr

> (3-16)

(X - X" y) A(p )OV "~

| g
13 >

y

:

!

Au sin 0 - Av cos 0 = 6(R "~
B ij ij

~

i

In Equation (3-17), A(R " ** "9'" ~ B'ij' * "* " "9 *
B ij

|(P) |towardzero. Substituting Equations (3-16) into Equation (3-17), weg
i obtain s *

= - (P ) /B (3-18)A(p ) g
>

where
i i

13
-(y[y)-y[_1)) (x[y$ - x _y)) cos 0 (3-10sin 0 +j 6=

To svemarize, the procedure for finding the pressure and velocity fields consists

of two partsq
'l ,

A. Predictor-An approximate pressure distribution, i.e. , p and p , is
g

used in Equations (3-2) through (3-5) to calculate provisional.

(u,v) throughout the mesh. For a time-dependent problem, the

pressure field of a previous time level can be used as the first

approximation to reduce the number of iterations in the corrector

' , . phase.

'

B. Corrector-Sweep the nesh systematically; i.e. , visit the cells

sequentially. When a particular cell (i+ ,j+ ) is visited, first,

.

calculate D by Equation (3-8). Then, Equation (3-13) givesg
' Map which is the correction we have to add to p g) g.p g

the superscript v denote the iteration number, then *

(v+1) (v) (3-2M+O P + j+* P + j+P + j+ i ii

3-9
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After that, Equations '3-10) are used to calculate the changes in (u,v)" at

the four vertices of ce11 (i+ ,j+ ), that are caused by Ap . Make cor-

rections ir. (u,v)n+1 by

(un+1) ("+1) n+1) (v) + Lu (3-21)n+1
= tu y y

,-
* n+1 n+1

e c. Af er m ng e n er r ce 1s , VM eachand similarly for u
2 "3* ,

*. vertex lying on a rigid bour.dary and calculate the residual .(P ) according to
3

Equation (3-15). Then use Equation (3-181 to find the pressure correction

4(p )g , and Equations (3-16) give the corresponding corrections in the boundaryg

velocities. The ccrrector is reperted until the maximum values of |D 4|
|(R ) d| become less than e prescribed level.and

B

After obtaining the field of (u,v) , the position of vertices are changed by using

Equations (3-1), and the integration of the flow field by one time increment is now
completed. To maintain stability in numerical integration, the time step 6t
should be chosen such that no vertex moves more than the minimum mesh spacing

during ,that period. This condition can be satisfied by

6t = / max {|u|,|v|| (3-22)

wnere

|" |VL = min ,

r
and V is defined in Equation (3-6).

3.2 MESH GENERATION, REZONING, AND SMOOTHING

A procedure by Thompson, et al. [6), is employed in SURGE to generate the
curvilinear mesh shcun in Figure 3.l(a) . The first step is to select pairs cf

(x,y) along the boundary, i.e., along ABCDE and along A'B'C'D'E' in Figure 3.2(b).
Thus, (x,y) at boundary vertices are fixed, except those along AA' and EE' which
are periodic boundaries. The , coordinates of interior vertices are obtained by
solving ),

. a* + B* .
+y* =0

> (3-23)
|f 9~V k + 3e f 5.2lk , of.d2

*

\32)4
1 ge

'

as
| \3a?bj \3 2) |

* )
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gr

where

a*= (Bx/3b) + (Oy/Bb)

S*=-2f3*3*+U.31
\3a ab Ba 3b

,
, '

y*= (3x/'a ) 2 (By/Da) 2t 4

.|*'t
i and (a,b) are the Lagrangian coordinate lines shown in Figure 3.l(a) . Using

finite-difference representations

i+13 i_1j)/2IX -X"
1

!
.

I*1j+1 ~ *1j-1"

.,

(?-24)
2

U=x - 2x
g,2 i+1j ij + *i-lj

--

s
|

=x - 2x +x
2 ij+1 ij ij-1

Bb

and similarly for (Dy/3a), ( By/3b) , etc., in Equations (3-23) , we obtain

!

y i ij,y ij,1)+ P (x +xa*(x ,3) + x ,1j)X =
ij

,

i
' s*

+ T *i+1j+1 ~ *i-13+1 ~ *i+1j-1
,

. .

+X / 2(a* +g_y$,7
_

- 1

+ y*(yij+1 + yij,1)a*(y +1j + y ,1j)|- Y =
i i13

. 6* I ~ Y +1j-1~ Y -lj+1
,e.

+ T Y +1j+1 iii*
/

i

/ 2(a* + Y*) (3-2H+ Y _yg_y)_
_ _

g.

e

f

These are the formulas for solving fer (x.., yij) by the method of s'accessive1]
over-relaxation. Note that in Equation (3-24), we chose Aa = ab = 1 in the

lLagrangian space.
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The prcceSure outlined in Section 3.1 employs the Lagrangian description of fluid
t

motions i.e., the vertices move with the fluid particle velocities. Its main

advantage lies in that material interfaces are properly maintained and the absence
of computational instability associated with convection terms. Its disadvantage,

however, is that the cells can be bacly distorted or even inverted in highly strained '

,e motions. To circumvent this dif ficulty, an automatic rezoning procedure is included ! |

in SURGE. At the end of each time increment; i.e., after the vertices are moved |
'

; to their new positions, the vertex positions are adjusted so that a nearly optimum
shape is always maintained for each cell. The rezoning procedure is in complete
analogy with the method of mesh generation as described above. The first step is

i

to adjust position of vertices lying on boundaries of the fluid domain. Then the

interior vertiues are moved by successive over-relaxation, using Equations (3-25).
Only about five iterations are needed for each time step, since exact satisfaction
of Equations (3-25) is not required for generating a desirable mesh configuration.
After making the adjurtment, due consideration must be given to the fact that,

(% y)"1N now represent the adjusted vertex position, (u,v)"N are stillwhile
3 13

associated with the position prior to the adjustment.
.s

As shown in Figure 3.4, suppose that the vertex 0 is moved to a new location O'

in the rezoning operation. The problea is to find the ve bcities (uf,vf) for the
new vertex O'. Let Q represent either u or v. Then, using "aylor's series

expansion to the second order in the (a,b) plane,

Qf=Og+ (6a) (BQ/a2)g + (6b) ( BQ/Bi>) g

1
'

' 2 2

+7 (6a)2(B-Q/Ba 10 + 2 (6a) (N (B Q/ bano
{
l

+ (6b) (B Q/Bb )0 ~

|
|

To evaluate 6a and 6b. we have the following relations |

6a = b~*O0 0 b~YC+

:

"

0 b~*0I~ (Yb~YO.
*

0
- 0-

|

|
*

6b = I*b~*0'0 O IYb~Y'*
O

|
* -

0 b~*0}
O - 0 (Yb~Y+

O

|

1
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3'
.,

's
'

,

'where

UO"- 0 0 0 0
~~

| -- , .

| Now, tocalculateQffromEquation(3-26),variousderivativeswithrespecttoa
and b can be evaluated at point 0 by central difference.

*
!; .-

.

The growth of " alternating errors" is an instability which GALE ' shares with its

" . *[ predecessors. The alternating errors are noises with wavelength equal to two
cell spacings in the Lagrangian space. In SURGE, a technique is used which

effectively eliminates the alternating errors but gives very little damping to
the meaningful part of the solution.'At a given timestep, after the iterative

procedure for finding 'u,v) is terminated, the vertex velocities are adjusted
according to

A

IEij) adjusted " Eij tE (E +1j + E -lj Eij+1 + Eij-1)i i

~ E +1j+1 ~ E +1j-1 ~ E -lj+1 ~ E -lj-1l 1 i i

.s -

-4Q (3-29)g$

Q ere Q = u or v. The damping parameter A lies in the range O < A < 1. No damping
,,

a takes place when A = 0, and at A = 1 all alternating errors are danped out in one

, .
. timestep. Experience indicates that A = 0.2 produces excellent results.

g . 3. 3. TRANSITION FROM SWELL 3 TO SURGE
;

i By observation it is found that the flow field becomes essentially two-dimensional

during a SWELL 3 calculation, when the bubble diameter reaches about 50% of the

cell depth (spacing between downcomer pairs). At this point the transition is made

. from SWELL 3 to SURGE. The flow field data to be transferred are the bubble volume,
1

its time rate of change, the location of the bubble center, the velocity distri-

bution (i.e., the average in the direction normal to the two-dimensional plane)
along the pool surface, and the pool surface profile.

.

; .

P The'first step is to create a SURGE mesh. It should be noted that the presence of
.; ~ downcomer pipes is ignored in SURGE. The mesh generation procedure, described in

:I the preceding section, can be used here. The values of (x,y) for vertices along
the pool surface, i.e. , E in Figure 3.1(a), are obtained by interpolation fromi

the centerplane pool surface profile prior to transition. Then a circular

cylindrical bubble is created with .its center at the same location as the center
,

of the three-dimensional bubble before the transition. The values of (x,y) for

3-13
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i

4

vertices along the. bubble interface are then easily computed as the intersection
points in Figure 3.5. With (x,y) now chosen on the bubble interface as well as
along the pool surface, the iterative procedure in connection with Equations (3-25)
can be erployed to generate the entire mesh..

~ The second step is'to create a (u,v) field for the SURGE code to carry on the flow*

simulation. The values of (u,v) along pool surface are obtained by interpolation
from the (u,v) distribution along the centerplane pool surface in SWELL 3 cal-
culation prior to the transition. Along the circular bubble interface, the
velocity is assumed to be uniformly expanding outward, as shown in Figure 3.5,
and (u,v) are just the components of these vectors. The magnitude of these
diverging vectors is the same for each vertex on the interface, and it is so
chosenthattheresultingvolumetricexpansionrate,DV *# ^ *

'

B
sbubble is the'same as dV /dt before the transition. The values (u,v) associatedg

with.the rest of the mesh points are found by noting that, for two-dimensional
incompressible irrotational flows, u and v satisfy the Laplace equation, viz.

2 2
O+b=0 (3-30)"
2 2

Bx by

where Q = u or v. Using the coordinate transformations

b- bI /J (3-31)=
ox Bb Ba aa Bbl

= -f - /J ( 3- 32)

(J is the Jacobian defined in Equation (3-26)) , Equation (3-30) can be written
.in :he Lagrangian (a,b) space as

a* (b)+ e* ( a*al) + c (h)'+ )(B)^ + (E)S(B)/3 ;

(E) > - (gp; (g) e a = 0 o-m+
.

.

where
2 2 2

|.- ^ * a*(*;j) + e* ( |a s) + "($) - o
*

2 2

6*(h) + S*( a*Jb) + "($)- o8

iby virtue of Equations (3-23) . Equation (3-33) then reduces to

3-14
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a* + 8 '' + Y* =0 (3-34) j
aBb

which is identical in form to Equations (3-23), and therefore can be solved by.the
,

same iterative procedure described.in connection with Equations (3-25). In

addition to pool and bubble surfaces, other boundary conditions need to be imposed. -*
,

Referring to Figure 3.5, along the line of symmetry AB and DE, and along the torus - j

wall CD, the following conditions are imposed:. )*

uf )-v(f=0 (3-35)

" #
0 (3-35)

By Bx

Equation (3-35) s.tates that the velocity component normal to the boundary vanishes
and Equation (3-36) requires zero vorticity at the wall. By using the relations

-in Equations (3-31) and (3-32), Equation (3-36) becomes

-( ) )+( ff f-f f f+( ff )=0 -(3-37)
a

.

Using the index system in Figure 3.3, the finite-difference forms of Equations
(3-35) and (3-37), respectively, are

y, - v x, = 0 (3-38)u

*b Yb
7 (v yj - vg j)~ ~ T (u ,yj - u ,y$) + x, (u - u ),y) g3 g g3 g

-y ) =0 (3-39)+ y, (vg

where

(x -x )/2x = g

i-lj'!Y +1j ~YYa" i

b " *ij ~ *WX<

.

Yb"Yij ~ Y ij-1
~

~ :

|
! Solving Equations (3-38) and (3-39) simultaneously, we obtain |

u =G*xg
(3-40)'

=G+y, j
y

|

!

3-16
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j

where
i

i
-x . y .

I +* #O" T "i+1j ~ "i-lj) a "ij-1 I (# +1j ~ "i-lh1

2 2
*Ya."ij-1 ! **

a' * Ya

'.*- ;
* Equations (3-40) are the iteration formulas for satisfying the boundary conditions

,

i

along'the solid boundaries. They are imposed repeatedly during the iterative, ,
,

solaation of Equation (3-34) for.fu,v).

. 3.4 SOLUTION OF THE PRESSURE FIELD

' To obtain forces on the torus wall, one nee 3s to know the pressure distribution
along the boundary. This objective can be met by obtaining the pressure associated
with the vertices, rather than that defined at cell centers. In SURGE, a Poisson
equation, i.e.,

& p* + 3 p* 3 (u ) B (uv) +B (v ) ~~P +2 (3'4l)''2 2 2 BxBy 2Bx By . Bx By, .

is used to compute vertex pressures p* from t.he (u,v) field. In Equation (3-41)
p.is the density of water. Using Equations (3-31) and (3-32) for evaluating
derivatives and the left side of Equation (3-33) for the Laplacian operator in

.

the (a,b) space, Equation (3-41) can be discretized using finite difference and j
solved by successive over-relaxation. The appropriate boundary conditions are
the following: At the pool surface p* is set equal to the current airspace
pressure and it is set equal to the current bubble pressure at the bubble inter-
face. At a solid boundary, consider the momentum equations in rectangular
cartesian coordinates:

. L

2
3." + B(u ) B(uv) , , ,1, g*, ..
Bt Bx By p Bx x

2
, , g 3(uv) . B(v ) +g (3-43)--
.. ot Bx By p By y

*

|where (g , g ) are the components of the gravitational acceleration. At a solid
boundary (Figure 3.3), the acceleration normal to the wall is zero, thus- '

sin 0 - cos 0 = 0 (3-44)

| '. 4
1
,

k

]
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!.

k. . Substituting Equations . (3-42) and (3-43) into Equation (3-44)'and using the *

transformations in Equation (3-31) and (3-32), we obtain

(Y* + =pS ( 3-45) {

,
.,

with
*

b" ""S= - Ba -Bb Bb Ba + Ba Bb\Ba ,B b Ba
. .,

,

2, [g "h 3(uv) _ h B(uv) , g B(v ) . b g gy2)-
\Ba _Bb Ba Ba Bb Bb Ba ba Bb . l

*

'liere E* and Y* have the samu definitions as in Equations (3-23). In finite

' difference form, Equation (3-45) becomes

* * 1
~

* *

ij ij-1 + 7 [ ij ~ p * (PP "E 4 yq3 - Pg_33 (3-46)

This equation is the iteration formula for boundary condition of p* at a rigid
boundary.

, .a

!

!

1

4

)

I

i,.

e'

n

4

en*

4.

\
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Section 4*

MODEL FOR FLOW IN THE VFNT SYSTEM AND BUBBLES
. ' "

.-

A model for compressible gas flow in the vent" system and bubble is described in
this section. Our approach is to use a simple.model which possesses the essential
features of the phenomena that concern us. Further refinement will be made only

after we fully understand the role of various factors in the model. Thus, our~

present vent flow model assumes an adiabatic gas flow in a pipe of constant cross-
sectional area. The energy loss is represented by a nc-minal fL/D f actor, which is
uniformly distributed along the length of the pipe. Furthermore, the gas flow
in the vent pipe is assumed to be in quasi-steady state.

1
4

4.,1. DERIVATION OF GOVERNING EQUATIONS ,|2

The subject under. consideration consists of two parts: the gas flow in the vent
,

! pipe and the gas in the bubbles. These models are essentially the same as those
.

used by Moody (7]. First, consider the equation governing the pressure in a
~

" " "" ""*' **' ""P #" " "'compressible bubble. Let M 'B B' B' B' B

internal energy, and pressure, respectively, associated with the gas in the bubble.'

The physical situation is depicted in Figure 4.1.'

Assuming a perfect gas, one can write the following relations:

Perfect Gas Law p V ~

g B' B B !'

Internal Engery E "B B'
~

#

B v

where R is the gas constant and C is the specific heat at constant volume.

.*
"Eliminating M # * * " 9"# " ~ " ~ '*

B B
s

,r B B" B v,' P'

|

L or, upon differentiating with respect to time,

h(p D) =f W-U= '

g 3 t
v ,

I

i

J

4-1
f-

( --________--_ _ _____- ____ ____ _m
.,



-. _ ,

I
!

|

|

Reservoir
(Drywell).-

,o.
.

P
. O.~*

O VT " I iO

/ vent pipe
'h0

P y

01

2

P2'P 2
o

._ .

ed
' IIlho
s

Bubble p Eg, VB' B 'g,

i

o
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where y-is the specific heat ratio. By considering the energy balance in the

bubble, one can write

dE d)
= -p * *

B dt 0
.

The first term on the right side of Equation (4-4) is the rate of work done by the
'

gas .in the bubble, and the second term is the enthalpy flux into the bubble through

a py and $ h, t h mass flow ra u in Wthe pipe. Here,'h is .e s agna ne
0,,

'

pipe. In this formulation, we have' neglected the energy dissipation and kinetic

energy inside the bubble and the heat _ transfer occurring at the bubble surface.

Effects of these variables are expected to be small.
..

Now, referring to Figure 4.1, let p ' P " e e pressure, dens h y, and
0 O' O

temperature in the drywell, respectively. For a perfect gas, h *
0

[Y/(Y-1) ] (p !
0 0

ng s're a na suMtuting Egadon M-O into

Equation (4-3), we have 1

|

s
dp p dv i

l M= m-p .
s g j

B

This is the governing equation for pressure in the bubble. The mass flow rate E
will.be expressed below in terms of other quantitites in the vent system.

Assuming isentropic process between reservoir and point 1, we can write

+ y - 1 "2'
~{T!IT l

p =Py O 2 1 ;
. . j

' * -{l/(YW }1 21*y- M I#~7)P.1 " P0 2 1
- .

For a perfect gas in any process, the fluid velocity V can be written in terms

of Mach number M byy

- Yp y
.- V =My

1 .

.

.

1
~

"4 Because'of the steady-state assu,mption, the mass flux in the vent pipe is given '

by
I

$=p V A (4-9),

.1 a

1

4-3 !
!
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L where A is the constant cross-sectional area and V is the average flow speed at
point I near the pipe entrance (Figure 4.1). Eliminating p , p , and V among

i ' Equations ' (4-6) through (4-9) , the result is
|~

M A g yp0 0-

y,

~

y- 1 2
(Y+1)/[2 (y-1)]-

*
. 2 1

', Using this expresslor. for [n in Equation (4-5), we finally have

1 \

i r }
\

'

dP EO^ YE # IB v I 1 O 0 B
E~I ~

Mf.
(y+1)/[2 (y-1)I ~ B E '~ E

1+T~B {
. 2

i

( ,

For adiabatic flow in a duct of constant area, we also have the relation (8):

p M 1+Y~l 2
M

2=J 2 1
(4-12)p M 1+y- 1 2y 2 g

2 2
.s

In this equation, we have substituted p for p , since it has been confirmed
B 2

experimentally that these two prassures are practically the same for the flow
regime considered here. Combining Equations (4-6) and (4-12), we have

p M +y- 1 2"
y)/(1-Y)

g y 2 1'
(4-13)- =-

p "2 1+Y~ M0
2 2

Finally, if the energy loss is uniformly distributed along the pipe, we have [8]

2
* bM (y - 1) M2+fL 1 1 1 y+1 1|+ In - *

(4-14)
Mf M

2y MY /
2 -

2- (y - 1) M +2-1

j..

where the nominal loss factor fL/D must be specified for each problem..

*

Equations (4-11) , (4-13) , and (4-14) constitute the set of equations that model
,

the compressible gas flow in the vent pipe and bubbles. The unknowns to be solved 1

are p , M , and M *# 9""" " "9 9'Y'" " ""Y "" " ** I"g y 2'
fact, Y , fL/D, P

O' O, a 4d A are a part of the parameters that define the problem, jr r
while V and dV /dt are the results of solving the time-dependent flow in the pool. 1

B B

4-4
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4.2 NUMERICAL SOLUTION. PROCEDURE 1

Por.p /P in the range 0.7 < p /P 1 . , a Ny S mP e, a cura e, expressiong O , B 0

-may be derived from Equations (4-13) and (4-14):

IE /E '21~
2 B 0 k

*

M = (4-15),
y f

T1*T&

2This equation is obtained by making series expansions in M and neglecting' higher- _ ' ... 1
*

order terms. Note that.M is no longer present in Equation (4-15). Similarly, for
|y

2
small M3 we can make the approximation

1 U~r

1'*
y - 1 "2' g L ~t "21 !

* +
2 1, 4 1 .!

and reduce Equation (4-11) , with the aid of Equation (4-15) , to the form
{
l

s
b,1 EO "1 A /YP !#o 0,

f l' + (d)d 2 B dtV M
B 4

y
.

fP A/YP ~ E !P ) / Y (1 + )] dhO O O B O By
*C ~EBE ~

W+1 [ ~ IE !I
Y 2 fLV #

B B O D

Using the superser.ipt n to denote the time level; e.g. , t"+ - t" = (6t)" where
(6t)" is the time increment, Equation (4-16) is discretized as

i
i# n+1 n
iP -Pg g

(6t)^

f p"+ A YE + /P [ - (P /P ) }/[Y(1 + )] _|0 O g

(U )" l+ h) D - (p /p )h/[y(1+h]g,

.- |
1

*
%

!

,. - (P)n+1[ Bk"
D T/ I4~17)

Equation (4-17) is in " implicit" form because every term on the right-hand side is

evaluated at the advanced time level n+1, with VB "" B
as de only

exceptions. Though one could also evaluate these quantitles at the new time level,
it was found by actual calculations that the results are practically the same if .;

|4-5
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they were evaluated at the old time level. One advantage of'this " explicit"
s- S

treatment of V and dV /dt is that they can be easily computed from the geometry
B 3

and motion of the bubble at the old time level, thus avoiding the need to iterate
,

+
between p :and'the hydrodynamics in the pool.

B,

#* In performing stepwise time-integration, Equation (4-17) reduces to the problem of
'

finding ' a value for p"+ such that F(p ) = 0, since all other quantities areg
'' known. The Newton-Raphson method may be used for this purpose. The iterative.

formula is

(p"+1)(V+1) = (p"+1)(V} - F[ (p"B+1) (") F'{(+1)(")] (4-18)

where v is the iteration number and F' is the first derivative of F. Because the |

bubble pressure does not change much during one time step, a good first approxi-

: 3.e., (p[ ) = p" .mation for initiating the iteration is to use p" for p
Equation (4-18) isthenusedrepeatedlyuntilthecorrectiontopy+1 becomes less
than a prescribed amount.

The procedure above is used after vent clearing. Before the vent clears, the

pressure exerting on the, water surface inside the downcomer is set equel to the

drywell pressure, since in this period the velocity of gas in the vent system is j

quite small and the corresponding pressure drop is negligible.

,

,

-
'h

.

I

i

.

.

P

.

k
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Section 5p.
.e

SAMPLE CALCULATION J
.

;

A computation of the pool response during an experimentally controlled loss of
coolant accident in a 1/4-scale test facility was made using the SWELL 3 and SURGE ,

computer programe. The data for this calculation is from.the 1/4-scale test run,
:

Part 1 Test 21, supplied by the General Electric Company (Case GE l-21) . The j
'

results of the computations are shown in Figures 5.1 through 5.4.

Figure 5.1 gives a three-dimensional perspective view of the water in the pool at 'h

various times during the bubble growth phase after the clearing of the downcomers,
as calculated by SWELL 3. At 0.182 second after the initiation of drywell pres-

isuriza' tion when the bubbles are large enough so that the solutien on the wall of
the torus is essentially two-dimensional, that is, there is little variation in
the transverse or y direction, then a transition is made from the three-dimensional
SWELL 3 model to the two-dimensional SURGE model. This is accomplished by assuming

that the bubbles have a circular creas section with uniform radial velocity deter- ,

!

mined'so that the mass flow rate matches that through the bubbles from SWELL 3 at

trarisition. The pool surface velocities and displacements are also transferred
from SWELL 3 to SURGE. Figure 5.2 shows the pool motion from the time of

transit.4cn to the time of ring header impact as predicted by the SURGE model. |

i

Combined results from SURGE and SWELL 3 from time of initiation of drywell

pressurization to the instant of ring header impact are shown in Figure 5.3. These

results include the experimental drywell pressure histor/ used as input, the I

!

resulting bubble pressure, wetwell airspace pressure, and torus pressures at the j

, ,
far bottom of the pools i.e., 180 , and on the sides of the pool at 210 and 240 .*

|.Also shown are the dynamic load and impulse on the torus. Figure 5.4 gives the.

^ bubble and pool surface profiles as well as velocities at sclected points on the
i

pool surface as computed by SURGE. j
,

i
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/* Appendix A-1..

". . SUCCESSIVE OVER-RELAXATION-
,

Successive over-relaxation-(SOR) is an effective and easily progrhmmed iterative

method to solve the system of linear algebraic equations which arise from the

discretization of Laplace's or more generally poisson's equation. The method.is
~

most useful in transient problems where a good initial guess is available from

the solution at the previous time step. Varga* gives a' complete development of

the method. Vander Vorst** gives a discussion of the implementation of SOR to

hydrodynamic problems with emphasis on the development of a criteria for stopping

the iteration after a predetermined accuracy has been obtained.

.

Finite difference approximations to Poisson's equation on a three-dimensional mesh
'

' ' give rise to a system of equations, each of which is of the form

i-1,j,k + d 41,j,kl'fi,j,k-1+# 2 i',j-1,k + 3'

4 i+1,j,k + #5 i,j+1,k * #6 *i,j,k+1*C

*S (Al-1)i,j,k

where each of the coefficients depends on (1,j,k) .

The SOE method for solving the system (Al-1) is given by the following algorithm:

.

*
.

-.

.M
'

.. *

*R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc., New Jersey, 1962.

- **M. J. Vander Vorst, "A Survey of Error Estimates for Iterative Solutions of
' Systems of-Linear Equations," Maval Ordnance Laboratory, MOLTR 72-189,
October 1972.
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m=0

until e" < e
4
e=0

.

for k = 1 to K
NaX

p.
|

for j = 1 to J*

max

". fc1 = 1 to 1 ,"

1 m+1')i,j,k &"i , j-lk
*

s _c 4 ,j,k-1 -c.
i 2 id i,j,k 1

~ |

#m

'

m+1
~#~ 3 1-1,j,k 4 1+1,j,k

-

5 * ,j+1,k ~ #~ #
6 ,j,k+1 l

.

&m+1 &mi,j,k + w(& ,j,k - &m1,j,k)
4

=
1,j,k 1 ;

i

2
e = e + ($m+1 - &m
4 %

1,3,k 1,3,k) q
. , ,

end 1,j,k

m=a+1

e" = e/I ( &*i ,3 , k).

,

gnd_

Sufficient conditions for convergence of the above algorithm are given in Varga.

When these conditions are satisfied, there is an optimum SOR facter, w,
i
,

1<u<2 ,

1,3,k, which gives the fastest asymptoticindependent of the source term, S. ,

convergence of $" to the solution & of the linear system. These conditions will
not be given here, however, we note that (2-24) satisfies them while (2-29) does
not. We have found, however, that the system converges if we underrelax the torus

wall boundary condition (2-29) , i.e., use 0 < w < 1, or in our case w = 0.4. The
,

,

order in which the equations are solved within a single iteration is also-

important. The ordering used in the aboce algorithm, the natural ordering,
,

,,

satisfies the conditions for convergence. However for programming convenience,
the order used in the SWELL 3 code is to first solve the interior equations,
including irregular stars, using the natural ordering, then solve the rigid wall
and pool surface boundary equations. The iteration still converges although
probably at a slower rate.

Al-2
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In order to attain maximum efficiency in the code,'we wish to use a value for

e an close as possible to the optimum. To numerically determine a value for
near the optimum, we first need'to quantify the concept of convergence rate. Let

the norm of 4 be
.

!!4||" f(4 ,j,k' '
1,

then the error, e", is j
*

.,

e"=||4-4"||

and the difference, 6", between iterations is

6"=||4"-4"'A|| .

Varga, shows that there is a constant, c, such that

| | 4 - 4" | | 1 C ||4 - 4"~ || .

If we denote by r" the ratio,

6"a m
' # * '

6*~1

then we obtain

e m
1# *

m-1
e

Moreover we know'that r* has an asymptotic limit, r. Hence, asymptotically the

number of iterations, N , necessary to decrease the error by 1/10 is

N -1/1 g r .

r

To find an acceptable over-relaxation factor, w, for the problem geometry shown in
Figure 2.5, a series of tests were performed to find the solution of

V4=0 interior

.

b=n solid boundaries*

t an
e

' ~ ~ 4=0 pool surface, z = z0

4 = g(z -z * ' # *'
0

Al-3
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The exact' solution to both the analytic and finite difference form of these
)equations is j

I t <

i

# ,j,k " 9I*k ~ "O
'

*

1n. :
| |

The initial guess for all cases is
. ,

..

$=0 .

*
. .

The results of these tests are shown'in Table 1. Note that the convergence rate

is usually highest during the early iterations.

Based on the 'results shown in Table 1, we used an w of 1.98 for all' of the quarter
In addition, we found that after attaining the solution of [ 4 = 0 atscale runs.

t = 0, that only 50 to 100 iterations were needed to give an accuarcy of about
two digits at succeeding times. The time step, At", in these cases was determined

using a Courant nuraber, f3 , of

f = 0.15 .g

'
.

1

b

|

.

0* |

3

.

Og

Al-4
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? . Table 1. Determination of Optimum Over-Relation Factor'

<
.

-k e ,| mm
2,2,2j ,m* ,j,

jj4_,m-!.|| 2,2,2m
m*

# ,2,2 e"~
*

- -||$"|| #f* 79 'm 2 r
,

M*' '100; .37 98 1
'

,

'200 .27 .73 '75 .77
300 .18 .67 42 .56
4006 .12 .67 28 .67 550

00 .079 .66 18 .64 iteradons |
1.75 600- .052 .66 11 .61 -

.. c . 700 .034 .65 7 .64
800- .022 .65 3 .43

0 900 .015 .68 2 .66'

1000 .010' .67
..

100 .56 68*

200 .25 .45 31 .46- 290
1.90 300 .11 .44 14 .45 iterations

400- .05 .45 4 .29
500 .023 .46 -

. . ,
,

100 .60' 52
200 .19 .32 17 .33 210

1.95 300- .066 .35 3 .18 iterations-

-400 .022 .33 -

500 .008 .36 -

,s

100 1.16 45
200 .17 .15 10 .22 .,180

1.97
300' . 05.. .29 3 .30 iterations

- 400 .014 .28 -

4e

100 3.03 38
.0 11- .29

1.98 300' .05 .17 3 .27 140 ' i

400 .011 .22 - iterations

100 8.14 34

1.99 '

.' ' 4
* *

300 5 .28 - iterations
- 400 34 .26 -

: e*
f. *per 100 iterations

(..e*
.5

I
i
1

Al-5

:-___---_.___



_ _ _ _ - - . . _ - _ - _ - - _ - _ _

; _w
t, <

|

.

* Appendix A-2

FORMATION OF' IRREGULAR STARS, e,

,

The'following procedure.is used to find the irregular stars from'the surface
geometry:

Procedure stars

M each mesh point (1,j,k)
M point inside region
then M each of six neighborr, N , are in regiong

then point (1,j,k) is a " regular interior" point

else point (1,j,k) is an " irregular interior"

find length 6 of each leg
R.a

'

find six coefficients for Laplacian (2-24)

. D4*

else point is "out"

ell

end

end procedure

From the description of the tbove procedure, we see that we must determine whether
each point. (1,j,k) 'is inside or outside the region of the computations. Various
solutions to'this geometric problem are surveyed by Burton *. The procedure we
use.to determine whether the point, p, is inside a region, D, with rectifiable

boundary, P, is to draw a ray, R, emanating from point p and count the number of
. intersections, N , f R passing through T. If N is odd, then p is inside 0

R
otherwise it is outside, as shown in the following illustration.-:

'*. e
1 ,

. .

,*.,

*W. Burton, " Representation of Many-Sided Polygonal Lines for Rapid Processing,"
Communications of ACM, Volume 20, Number 3, March 1977.
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For a surface composed of triangular e3cments in three spatial dimensions we must
determine whether R passes through each of the triangles. Moreover, this must be
done for each mesh point or at least for those mesh points near the surface assun-

ing that the others can be easily e?iminated by a simple flagging scheme. In
addition, if R intersects the triangle, Tg', on an edge, this intersection may be
counted twice, once for Tq and once for an adjacent triangle. The probability that
a ray will intersect precisely on the edge of a triangle is very remote given
the properties of real arithmetic on a digital computer. Even so we account for

this problem by considering not one ray, but three orthogonal rays, each norral
to a coordinate plane. A by-product of using three such rays is the 3rregular
star lengths needed to form the Laplacian operator, Equation (2-24).

If we were to examine each triangular surface segment for each mesh point near the
surface, the number of computational operations needed to form the irregular stars
far exceeds the nurber needed to solve the resulting system of linear equations.
However, if the triangles are pre-processed such that for each cell (1,j,k) a
list, L f each of the triangles, Tg, intersecting the cell is made, then

i k,

- to determine the status of point (1,j,k) only the triangles associated with those
;

** cells containing the three rays need be examined. The resulting procedure to
,

determine whether a mesh point is within the computational region ar.d, if it is,,

* * * to also find the irregular star is summarized below.

(
_

A2-2 j
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y

logical procedure isitin (1,j,k)

x'=y'=z'=-=
for each Tq t L UL find el sect interseedon

i-1,j,k i,j,k

x', x' 1 xg, with the line (y = y , z = z ) ed*
k

6x = min (xj - x, Ax ,q)e g1 ,

! E each Tg c L " * *** " *#8" "'
i,j-1,k 1,j,k

'd
z=z) edy', y' 1 y , with line (x = xj,g

6y = min (y - y ', by _g)j,y j j

L ,j,k-1 UL find closest intersection,f3 each Tg t
i 1,3,x

z', z' 1 z , with line (x = x , y = y ) endk g

'

6zk-1 " *j" (*k ' t'*k4 )~*

isx = isy = isz = false

r ~ r
x=y=z=*

f3 i' = i to I

l.Of. Tq c L , j,kg ,

if line (y = y , z = z ) intersects Tg at x

4 % othen x = min (x, x )

isx = risx

fpd

2nd.

19.o
s

6x = min (x - x3, Axg)g

(similarly for j' = j to J find 6y +1 andmax j

for k' = k to K find 6zk+1)rnax

isitin = isx V isy V isz

end procedure
,

e*
e

O

4O
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** Appendix A-3*

# SOME GEOMETRIC IDENTITIES INVOLVING TRIANGLES4,

The plane determined by three points, [p , p ' P ] in three-dimensional spacey 2 3

(x , x ' *3) an be described as the locus of all points which satisfy
y 2

^~
Ax) + Bx2 + C:(3

*
'

21' *3i). However for our application it is more convenient to(x ,xwhere p =
y y

represent this plane using the parametric form

^~
3 gy a+a? "i3'# *x =a * '

i

for all real pairs (a, 6). This can be envisioned as a mapping from the triangle,

[p , pg, p ] formed by three points in three-dimensional space onto the unity 3

triangle [(0,0), (1,0), (0,1)] in the two-dimensional space (a, 6) where

"il * *i2 ~ *i1
(A3-3)

2 *13 ~ *i1a

"i3 * *il
Similarly the parametric equations for the line ccanecting two points, p and p 'y 2

in three-dimensional space can be written in one parameter

x = (1-M xyy+Axi23

for all real numbers A.

In the (a, 8) space, the intersection of the line

- x. = c.
1 1

s'
x.=c. (A3-4),

.

3 J
.

i/j
6 ,*

with the plane, (A3-2), is

A3-1
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;

(x -a
f g3) 2 ~ (*j ~ "j3 "i2a

a = ~

D

*i ~ "i 3 "jl ~ *j ~ "j3 "il8,, (A3-5) j
D ,

.

s ee

where

3
D = a,1 j2 - a.2 a .1asp 1 1 39

to
when

D/O |.

I
If D vanishes the line and the plane are parallel. In (x y, x ' *3 "''"#* *

2
solution is

X = C

X, *C
J j

x =a a'+a 4
2 "k3

"
,

i /j/k (A3-0).

i I

Ite area of the triangle, T', formed by ths three points, [(a ,B), (a2' 2)'
^

(a " " "~ **"" "" "P"#* '"3' 3
'

-[ ay(82 ~ 3} + "2 ( ~s) + "3 (0 ~ 2)] (A3-7)A (T') =

3 l 1

where A(T') is positive when the points forming the triangle are enumerated in

the counterclockwise direction and negative when nunbered clockwise. The point
of intersection (A3-6), of the line (A3-4), with the plane (A3-2), is within the

triangles, T, formed by three points, [p , p2' E3 , if the point (a ', 6 ') from

(A3-5) in the transformed space is within the unit triangle as shown below. i

.

e

e

'
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The point p is within the triangle T' = [p', p', p'] if the areas, A(T') ,
4 y y

A(T'), A(Tj) of the three triangles

T{=(p{,Pj,Fj)
Tj= [pj,p,Pj]3

pe T'= [p},p{,pj]

i are all non-negative, otherwise the point is outside the triangle.4
,

I.e t the vector R be

"x (a, 6 )~
y

! Re x (0, 6)
2

,x3 -
"'

where the x are from (A3-2). The area of the triang'.e, T = [p , p , p ], in
y y 2 3

physical space is given by the magnitude of the cross product

A(T)* = x
1
i
'

or

2 2i

[(a,y 32 ~ *22 "31I +j A(T) #"12 "31 ~ "11 32a=

f
| 2h
( + (a ayy 22 ~ "12 21

# *

O

O

m

&

1
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