Ru. 7/30/80

as source replacem

FORM NRC-313M

(8-78)

10 CFR 35

FORM NRC-313M

(8-78)

U.S. NUCLEAR REGULATORY COMMISSION APPLICATION FOR MATERIALS LICENSE — MEDICAL

Approved: GAO R0557

INSTRUCTIONS - Complete I terns 1 through 26 if this it an initial application or an application for renewal of a license. Use supplemental sheets where necessary. Item 26 must be completed on all applications and signed. Retain one copy. Submit original and one copy of entire application to: Director, Office of Nuclear Materials Safety and Safeguards, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555. Upon approval of this application, the applicant will receive a Materials License. An NRC Materials License is issued in accordance with the general requirements contained in Title 10, Code of Federal Regulations, Part 30, and the Licensee is subject to Title 10, Code of Federal Regulations, Parts 19, 20 and 35 and the license fee provision of Title 10, Code of Federal Regulations, Part 170. The license fee category should be stated in Item 26 and the appropriate fee enclosed.

license fee category should be state	ed in Ite	m and the approp	riate ree unclosed.				
1.a. NAME AND MAILING ADDRESS OF APPLIFICM, clinic, physician, etc.) INCLUDE ZIP Of Richard A. Morrison, M. The Radiarium 17525 Medical Center F. Independence, Missouri TELEPHONE NO.: AREA CODE(Sec.) 2	3. THIS IS AN APPLICA	s in it	em 1	d.	7182 7200 7486		
Richard A. Morrison, N 9021 Delmar Prairie Village, Kansa TELEPHONE NO.: AREA CODE 913) 62	A NEW LICENSE D AMENOMENT C. ARNEWAL OF	TO LICENSE N					
4. INDIVIDUAL USERS (Name Individuals who supervise use of radioactive material. Complete for each individual.) Richard A. Morrison, M.	D.	ements A and B	as radiation safety officer me of training and experie a. On Site: b. Consultin	If other than indi ence as in Supplement Richard	ent A.)	Mor:	rison, M. D
6. RADIOACTIVE MATERIAL FOR M	SUICA	MAXIMUM			MAF	K	MAXIMUM
	RED	POSSESSION LIMITS	ADDITIONA	L ITEMS:	DESIR	1S	POSSESSION LIMITS (In millicuries)
10 CFR 31,11 FOR IN VITRO STUDIES			OF HYPERTHYROIDIS		ENT		
10 CFR 35.100, SCHEDULE A, GROUP I		AS NEEDED	PHOSPHORUS-32 AS SO FOR TREATMENT OF VERA, LEUKEMIA AN	POLYCYTHEM	A		
10 CFR 35,100, SCHEDULE A, GROUP II	-	AS NEEDED	PHOSPHORUS-32 AS C PHOSPHATE FOR INTI	OLLOIDAL CHI	ROMIC		
10 CFR 35.100, SCHEDULE A, GROUP III			GOLD-198 AS COLLOI	THE RESERVE THE PERSON NAMED IN COLUMN 2 I			
10 CFR 35.100,SCHEDULE A, GROUP IV		AS NEEDED	CAVITARY TREATME	NT OF MALIGN			
10 CFR 35.100, SCHEDULE A, GROUP V		AS NEEDED	OF THYROID CARCIN	OMA			
10 CFR 35,100, SCHEDULE A, GROUP VI			XENON-133 AS GAS OF BLOOD FLOW STUDIE FUNCTION STUDIES.	S AND PULMO	VARY		
6.b. RADIOACTIVE MATERIAL FOR U celibration and reference standards are aut	SES N	OT LISTED IN d under Section 35	ITEM 6.a. (Sealed sources .14(d), 10 CFR Part 35, an	up to 3 mCi used to d NEED NOT B	or ELISTE	0.1	
ELEMENT AND MASS NUMBER	PH	CHEMICAL AND/OR YSICAL FORM	MAXIMUM NUMBER OF MILLICURIES OF EACH FORM	DESCRI	BE PURF	POSE	OF USE
Cchalt-60	sea ces	aled sour	17,000 curies (2 sources of not more than 8500 curies each. Each source is	in an A 1 780 tel the tre One sou ing cor	AECL Lethe Latme Latme Itain	The rap	y unit for of humans its shipp to be in
1 PF			rated at	possess	ion	of	licensee

7500 RHM.

INFORMA	TION DE	ALUDED !	EOD	ITERRO T	TUDOLICU 22
INFURINA	TION RE	UUIHED	FUR	IIEMS /	THROUGH 23

For Items 7 through 23, check the appropriate box(es) and submit	a detailed description of all the requested information. Begin
each item on a separate sheet. Identify the item number and the da	
you indicate that an appendix to the medical licensing guide will be	
number and date of the referenced guide: Regulatory Guida 10.8	, Rev Date:

7. M	EDICALISOTOPES COMMITTEE Not Applicabl	₂ 15.	GENERAL RULES FOR THE SAFE USE OF RADIOACTIVE MATERIAL (Check One)
	Names and Specialties Attached; and		Appendix G Rules Followed; or
	Duties as in Appendix B; or (Check One)	Х	Equivalent Rules Attached
	Equivalent Duties Attached	16.	EMERGENCY PROCEDURES (Check One)
B. T	RAINING AND EXPERIENCE and Annex A	1	Appendix H Procedures Followed; or
	Supplements A & B Attached for Each Individual User; and	Х	Equivalent Procedures Attached
	Supplement A Attached for RSO.	17.	AREA SURVEY PROCEDURES (Check One)
9, 11	NSTRUMENTATION (Check One)		Appendix I Procedures Followed; or
	Appendix C Form Attached; or	Х	Equivalent Procedures Attached
X	List by Name and Model Number	18.	WASTE DISPOSAL (Check One) Not Applicable
10. (CALIBRATION OF INSTRUMENTS See Alt. App	1	Appendix J Form Attached; or
	Appendix D Procedures Followed for Survey Instruments; or		Equivalent Information Attached
	Equivalent Procedures Attached; and	19.	THERAPEUTIC USE OF RADIOPHARMACEUTICALS (Check One) Not Applicable
	Appendix D Procedures Followed for Dose Calibrator; or		Appendix K Procedures Followed; or
	Equivalent Procedures Attached (Check One)		Equivalent Procedures Attached
11.	FACILITIES AND EQUIPMENT	20.	THERAPEUTIC USE OF SEALED SQUECES application
X	Description and Diagram Attached		Detailed Information Attached; and
12. F	PERSONNEL TRAINING PROGRAM Not Applica	ole	Appendix L. Procedures Followed; or (Check One)
	Description of Training Attached		Equivalent Procedures Attached
13.	PROCEDURES FOR ORDERING AND RECEIVING RADIOACTIVE MATERIAL Not Applicable	21.	PROCEDURES AND PRECAUTIONS FOR USE OF RADIOACTIVE GASES (e.g., Xenon — 133) Not Applic
	Detailed Information Attached		Detailed Information Attached
14.		22.	PROCEDURES AND PRECAUTIONS FOR USE OF RADIOACTIVE MATERIAL IN ANIMALS Applicable Detailed Information Attached
N	Not Applicable One)		PROCEDURES AND PRECAUTIONS FOR USE OF
	Appendix F Procedures Followed; or	23.	RADIOACTIVE MATERIAL SPECIFIED IN ITEM 6.b
	Equivalent Procedures Attached	X	Detailed Information Attached

FORM NRC-313M (8-78)

INFORMATION REQUIRED FOR ITEMS 7 THROUGH 23

For Items 7 through 23, check the appropriate box(es) and submit a detailed description of all the requested information. Begin
each item on a separate sheet. Identify the item number and the date of the application in the lower right corner of each page. If
you indicate that an appendix to the medical licensing guide will be followed, do not submit the pages, but specify the revision
number and date of the referenced guide: Regulatory Guide 10.8 , Rev Date:

7. N	MEDICAL ISOTOPES COMMITTEE Not Applicabl	15.	GENERAL RULES FOR THE SAFE USE OF RADIOACTIVE MATERIAL (Check One)
	Names and Specialties Attached; and		Appendix G Rules Followed; or
	Duties as in Appendix B; or (Check One)	X	Equivalent Rules Attached
	Equivalent Duties Attached	16.	EMERGENCY PROCEDURES (Check One)
8. T	RAINING AND EXPERIENCE and Annex A	p1	Appendix H Procedures Followed; or
	Supplements A & B Attached for Each Individual User; and	X	Equivalent Procedures Attached
	Supplement A Attached for RSO.	17.	AREA SURVEY PROCEDURES (Check One)
9. 11	NSTRUMENTATION (Check One)		Appendix I Procedures Followed; or
	Appendix C Form Attached; or	X	Equivalent Procedures Attached
X	List by Name and Model Number	18.	WASTE DISPOSAL (Check One) Not Applicable
10.	CALIBRATION OF INSTRUMENTS See Alt. App	1	Appendix J Form Attached; or
	Appendix D Procedures Followed for Survey Instruments; or		Equivalent Information Attached
	Equivalent Procedures Attached; and	19.	THERAPEUTIC USE OF RADIOPHARMACEUTICALS (Check One) Not Applicable
	Appendix D Procedures Followed for Dose Calibrator; or (Check One)		Appendix K Procedures Followed; or
	Equivalent @coedures Attached		Equivalent Procedures Attached
11.	FACILITIES AND EQUIPMENT	20.	HERAPEUTIC USE OF SEALED SOURCES plication
X	Description and Diagram Attached		Detailed Information Attached; and
12.	PERSONNEL TRAINING PROGRAM Not Applica	ple	Appendix L Procedures Followed; or (Check One)
	Description of Training Attached		Equivalent Procedures Attached
	PROCEDURES FOR ORDERING AND RECEIVING RADIOACTIVE MATERIAL Not Applicable	21.	PROCEDURES AND PRECAUTIONS FOR USE OF RADIOACTIVE GASES (e.g., Xenon — 133) Not Applic
	Detailed Information Attached		Detailed Information Attached
4.	PROCEDURES FOR SAFELY OPENING PACKAGES CONTAINING RADIOACTIVE MATERIALS	22.	PROCEDURES AND PRECAUTIONS FOR USE OF RADIOACTIVE MATERIAL IN ANIMALS Applicable
1	Not Applicable One)		Detailed Information Attached
	Appendix F Procedures Followed; or	23.	PROCEDURES AND PRECAUTIONS FOR USE OF RADIOACTIVE MATERIAL SPECIFIED IN ITEM 6.5
	Equivalent Procedures Attached	Х	Detailed Information Attached
****	A	Accesses to the last of	A service of the serv

FORM NRC-313M (8-78)

		24. PERSONNEL MONITORIN	G DEVICES
(Che	TYPE ck appropriate box)	SUPPLIER	EXCHANGE FREQUENCY
	X FILM	Searle Health Physics Serv	vices Monthly
NHOLE TLD			
	OTHER (Specify)		
	FILM		
, FINGER	TLD		
	OTHER (Specify)		
	FILM		
c. WRIST	TLD		
	OTHER (Specify)		
		Received By Providence S. FOR PRIVATE PRACTICE APPLICATE	ANTS ONLY
a. HOSPIT		PT PATIENTS CONTAINING RADIOACTIVE	MATERIAL
	of Hospital applicable for t	eletherany	b. ATTACH A COPY OF THE AGREEMENT LETTER SIGNED BY THE HOSPITAL ADMINISTRATOR.
	NG ADDRESS	V. 1. 30 to 1.130 to 1.40 to 1.	c. WHEN REQUESTING THERAPY PROCEDURES, ATTACH A COPY OF RADIATION SAFETY PRECA
CITY		STATE ZIP CODE	TIONS TO BE TAKEN AND LIST AVAILABLE RADIATION DETECTION INSTRUMENTS.
		26. CERTIFICATE (This item must be completed by	applicant;
conform	nity with Title 10. Code of	(This item must be completed by	applicant; It named in Item 1a certify that this application is prepared tall information contained herein, including any supplemen
conform	nity with Title 10, Code of d hereto, is true and correct a. LICENS	(This item must be completed by cuting this certificate on behalf of the applicant Federal Regulations, Parts 30 and 35, and that to the best of our knowledge and belief. OZ 1 Wd 02 100 as FEE REQUIRED	t named in Item 1s certify that this application is prepared tall information contained herein, including any supplement b. APPLICANT OR CERTIFYING OFFICIAL (Signature Richard Monuson
conform	nity with Title 10, Code of d hereto, is true and correct a. LICENS	(This item must be completed by cuting this certificate on behalf of the applican Federal, Regulations, Parts 30 and 35, and that to the best of our knowledge and belief. OZ 1 Wd 02 MG SE FEE REQUIRED 170.31, 10 CFR 170)	it named in Item 1a certify that this application is prepared tall information contained herein, including any supplemen
conformattache	nity with Title 10, Code of d hereto, is true and correct a. LICENS (See Section	(This item must be completed by cuting this certificate on behalf of the applicant Federal Regulations, Parts 30 and 35, and that to the best of our knowledge and belief. OZ 1 Wd 02 100 as FEE REQUIRED	b. APPLICANT OR CERTIFYING OFFICIAL (Signature (1) NAME (Type of Print)
conformattache	a. LICENS (See Section)	(This item must be completed by cuting this certificate on behalf of the applican Federal, Regulations, Parts 30 and 35, and that to the best of our knowledge and belief. OZ 1 Wd 02 MG SE FEE REQUIRED 170.31, 10 CFR 170)	b. APPLICANT OR CERTIFYING OFFICIAL (Signature (1) NAME (Type of Print) Richard A. Morrison, M.D.

PRIVACY ACT STATEMENT

Pursuant to 5 U.S.C. 552a(e)(3), enacted into law by section 3 of the Privacy Act of 1974 (Public Law 93-579), the following statement is furnished to individuals who supply information to the Nuclear Regulatory Commission on Form NRC-313M. This information is maintained in a system of records designated as NRC-3 and described at 40 Federal Register 45334 (October 1, 1975).

- 1. AUTHORITY Sections 81 and 161(b) of the Atomic Energy Act of 1954, as amended (42 U.S.C. 2111 and 2201(b)).
- PRINCIPAL PURPOSE(S) The information is evaluated by the NRC staff pursuant to the criteria set forth in 10 CFR
 Parts 30-36 to determine whether the application meets the requirements of the Atomic Energy Act of 1954, as amended,
 and the Commission's regulations, for the issuance of a radioactive material license or amendment thereot.
- 3. ROUTINE USES The information may be used: (a) to provide records to State health departments for their information and use; and (b) to provide information to Federal, State, and local health officials and other persons in the event of incident or exposure, for their information, investigation, and protection of the public health and safety. The information may also be disclosed to appropriate Federal, State, and local agencies in the event that the information indicates a violation or potential violation of law and in the course of an administrative or judicial proceeding. In addition, this information may be transferred to an appropriate Federal, State, or local agency to the extent relevant and necessary for a NRC decision or to an appropriate Federal agency to the extent relevant and necessary for that agency's decision about you. A copy of the license issued will routinely be placed in the NRC's Public Document Room, 1717 H Street, N.W., Washington, D.C.
- 4. WHETHER DISCLOSURE IS MANDATORY OR VOLUNTARY AND EFFECT ON INDIVIDUAL OF NOT PROVIDING INFORMATION Disclosure of the requested information is voluntary. If the requested information is not furnished, however, the application for radioactive material license, or amendment thereof, will not be processed.
- SYSTEM MANAGER(S) AND ADDRESS Director, Division of Fuel Cycle and Material Safety, Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555.

APPLICATION FOR NUCLEAR REGULATORY COMMISSION TELETHERAPY LICENSE

1.a. NAME AND MAILING ADDRESS OF APPLICANT:

Richard A. Morrison, M.D. The Radiarium 17525 Medical Center Parkway Independence, Missouri 64057

TELEPHONE NO.: Not yet installed - See Item 2 below.

1.b. STREET ADDRESS(ES) AT WHICH RADIOACTIVE MATERIAL WILL BE USED: See Item 1.a above.

2. PERSON TO CONTACT REGARDING THIS APPLICATION:

Richard A. Morrison, M.D. 9021 Delmar Prairie Village, Kansas 66207 TELEPHONE NO.: (913) 649-6592

3. THIS IS AN APPLICATION FOR A NEW LICENSE.

4. INDIVIDUAL USER(S):

Richard A. Morrison, M.D.

Licensed Physician in the State of Kansas - No. 12645; July 15, 1961;

Registered in Wyandotte County.

Licensed Physician in the State of Missouri - No. 28338; June 24, 1961;

Registered in Jackson County.

Certified by the American Board of Radiology in General Radiology on June 14, 1968.

Certified by the American Board of Radiology in Therapeutic Radiology on June 6, 1969.

See Annex A for CURRICULUM VITAE.

5. RADIATION SAFETY OFFICER (RSO):

- a. ON SITE: Richard A. Morrison, M.D.
 See Annex A for training and experience.
- b. CONSULTING: Peter J. Debus, M.S.

 Certified by the American Board of Radiology in Radiological Physics December 1978.

6.a. RADIOACTIVE MATERIAL FOR MEDICAL USE:

Not Applicable, since this is an application for a teletherapy license.

04676

Page 2

APPLICATION FOR NUCLEAR REGULATORY COMMISSION TELETHERAPY LICENSE

6.b. RADIOACTIVE MATERIAL FOR USES NOT LISTED IN ITEM 6.a.:

ELEMENT AND	CHEMICAL AND/OR	MAXIMUM POSSESSION LIMITS		
MASS NUMBER	PHYSICAL FORM	IN CURIES OF ACTIVITY		
Cobalt-60	Teletherapy sealed sources (AECL C-146 or C-151).	17,000 curies (2 sources of not more than 8,500 curies each). Each source is rated at 7,500 RHM.		

DESCRIBE PURPOSE OF USE:

One source to be used in an AECL Theratron 780 teletherapy unit for the treatment of humans. One source in its shipping container to be in possession of the licensee as necessary to the replacement of the source in the teletherapy unit only.

7. THE MECHANICAL AND/OR ELECTRICAL BEAM STOPS:

The mechanical and electrical beam stops, which will be operational at the time of installation of the AECL Theratron 780 teletherapy unit, are discussed in Annex B.

8. PLAN AND ELEVATION DETAILS OF TELETHERAPY FACILITY:

Annex C includes a description of the shielding material, thickness, and density of each barrier in the teletherapy room, as well as a floor plan and elevation drawing of the room itself. The location of the teletherapy unit isocenter and the distances from the isocenter to areas adjacent to the shielded facility are indicated on the drawings.

9. PATIENT VIEWING SYSTEM:

Two completely independent closed circuit television systems will be installed to view the patient during treatment. One television camera and monitor will serve as a backup to the other television camera and monitor. Both systems will be operated during treatment. The teletherapy unit will not be used for treatment, if both patient viewing systems become inoperable.

10. PENETRATIONS AND VOIDS:

Annex D includes drawings of the teletherapy room entrance, ventilation ducts, pipes, conduits and all other penetrations and voids in the treatment room walls, ceiling or floor. A description of the shielding used to compensate for the voids is included in Annex D.

Page three

THE RADIARIUM

11. Door Interlocks:
The door leading into the teletherapy room will be provided with an interlock to control the "ON-OFF" mechanism of the Theratron-780 unit. The interlock will cause the source to move to the "OFF" condition if the door is opened during source exposure. The mechanism will be so wired that the source cannot be returned to the "ON" condition until the system is reset at the control panel.

12. Calculations of Radiation Levels:

Annex E provides a general description of the assumptions and parameters which were utilized in calculating the radiation levels that will exist in each area adjacent to the shielded facility. This annex also contains a floor plan and elevation drawing, showing the locations of the various points used in calculating the radiation levels, as well as the calculation sheets themselves.

While occupancy factors were not considered in evaluating the exposure rates at the various locations, workload was included in determining whether the requirement to keep the dose equivalent to any individual continuously present in an UNRESTRICTED area at or less than two millirem in any one hour would be met. Shielding for first order scattered and leakage radiation was designed to keep the maximum instantaneous exposure rates at or below 5 mR per hour for a 7,500 RHM source. At this maximum output, the greatest number of individual ports to be treated in an hour would be eight, with an approximate total "ON" time of 16 minutes in one hour. Therefore, if the maximum exposure rate were 5 mR/hour at an area adjacent to the shielded facility, even with continuous occupancy, the maximum dose equivalent to an individual in any one hour would be 1.33 millirem.

Page four

12. Calculations of Radiation Levels (continued):

The second criterion for an UNRESTRICTED area is that an individual continuously present in the area would not receive more than 100 millirems in any seven consecutive days. It would be most unlikely that this facility would treat forty hours per week at such a high workload as eight individual ports per hour; however, if such an assumption relative to the workload were made, an individual present in the area would not receive more than 54 millirem in seven consecutive days.

As discussed in Annex C, the density of the shielding material, namely concrete, was estimated by the architect to be not less than 145 pounds per cubic foot. Since the standard density of concrete is normally listed as 147 pounds per cubic foot, the shielding calculations and the calculated radiation levels took this slightly lower density into account. However, it is likely that the actual radiation levels will be slightly lower because, subsequently, the concrete supplier has specified a concrete density of 152 pounds per cubic foot.

Radiation levels, from multiple scattered radiation to that section of the West wall containing the door, were not calculated but rather were approximated.

Page five

THE RADIARIUM

Annex F is the Radiarium Program for Maintaining Occupational Radiation Exposures
As Low As Reasonably Achievable (ALARA). This program is based on the Model Program which was enclosed with the NRC letter to all medical licensees dated

June 16, 1980. Since this is an application for a private practice physician
to be licensed for use of a Co-60 teletherapy unit, references in the Model Program to a Radiation Safety Committee do not apply. In particular, Section II
of the Model Program has been modified in the Radiarium Program for the following
reasons:

a. Review of Proposed Users and Uses. Since the Radiation Safety Committee does not exist in this private practice environment, and since the Radiation Safety Officer is also the Director and the only User (for the near future) and since, for the purpose of this license, the only use will be external beam teletherapy, it is unlikely that paragraphs 1, 2, and 3 of Section 11a could apply.

b. Delegation of Authority. It is assumed that in the case of a private practice, such as exists here, the authority normally vested with the Radiation Safety Committee will rest with the Radiation Safety Officer since the RSC does not exist.

c. Review of ALARA Program. The three items mentioned in this section overlap into the responsibilities of the Radiation Safety Officer, which are outlined in Section III.

The Radiarium Program will be general enough to allow for expansion of staff to include a radiation safety committee.

Page six

THE RADIARIUM

14. Personnel Monitoring Devices:
Searle Diagnostics, Inc., Health Physics Services, will provide clip-on film badges for all occupationally exposed personnel to determine 'whole body and skin' X-, gamma and beta dose. Badges are changed and reported monthly.

15. Radiation Survey and Monitoring Instruments:
The Radiarium will be equipped with a Victoreen Model 470 Panoramic Survey
Meter with an unsealed air ionization chamber which is capable of detecting
Alpha (greater than 8 MeV), Beta (greater than 120 keV), Gamma, and X-ray
with a window thickness of 17 mg/cm². This meter has both a rate and an
integrate mode and has the following exposure rate ranges:

1)	0	-	3	mR/hr	and	R/hr
11)	ů.	-	10	mR/hr	and	R/hr
111)	0	-	30	mR/hr	and	R/hr
iv)	0	*-	100	mR/hr	and	R/hr
v)	0	-	300	mR/hr	and	R/hr
vi)	0		1000	mR/hr	and	R/hr

This survey meter will be calibrated annually. It is equipped with a long-lived check source which is read:

- i) before each use
- ii) after each maintenance and/or battery change
- iii) at least quarterly

The Nuclear Associates Model 05-433 "PRIMALERT 10" area radiation monitor with Model 05-440 back-up battery pack will be installed within the teletherapy room as an aid in early detection of teletherapy machine malfunctions with accompanying hazardous radiation levels.

Page seven

THE RADIARIUM

16. Calibration of Survey Meter:
The Victoreen Model 470 Panoramic Survey Meter will be calibrated annually
in accordance with Appendix D, Section I, "Methods for Calibration of Survey
Meters, Including Procedures, Standards and Frequency", which was provided
with "Licensing Guide for Teletherapy Programs". This annual calibration and
quarterly checks will be performed by:

R. Emory Larimore, Health Physicist Radiation Consultants of Mid-America 4955 Westwood Terrace Kansas City, Missouri 64112 NRC License No. 24-18831-01

17. Semi-Annual Leak Test of the Teletherapy Source:
The cobalt-60 teletherapy source will be tested for leakage every sic months by:

R. Emory Larimore, Health Physicist Radiation Consultants of Mid-America 4955 Westwood Terrace Kansas City, Missouri 64112 NRC License No. 24-18831-01

The leak test performed by the above named consultant shail be sufficiently sensitive to detect 0.05 microcurie of contamination on the test sample.

18. Emergency Procedures:
A copy of the Emergency Procedures, which will be posted at the console, is enclosed as Annex G.

Any service operations on the teletherapy source, including the required five year service and maintenance inspection, as well as source exchanges, will be performed by persons or organizations licensed by the Nuclear Regulatory Commission to perform these services. At this time, it is anticipated that Atomic Energy of Canada Limited, Ottawa, Canada, or its regional service office

Page eight

THE RADIARIUM

in Dallas, Texas, will perform the required maintenance or source exchanges.

20. Radiation Survey Report:
Prior to initiation of a treatment program, and subsequent to each installation of a teletherapy source, radiation surveys and operational tests will be performed by a qualified expert and a copy of the results in a radiation survey report will be furnished to the NRC for evaluation. The surveys and tests to be conducted will be performed in accordance with Appendix A "Teletherapy

Applicant's or Certifying Official's Signature: Richard 4

Survey Reports" to this Licensing Guide.

ticharol Tromison

Name:

Richard A. Morrison, M.D.

Title:

Director, The Radiarium

APPLICATION FOR NUCLEAR REGULATORY COMMISSION TELETHERAPY LICENSE ANNEX A - ITEMS NOS. 4 AND 5.

CURRICULUM VITAE

of

Richard A. Morrison, M.D.

Date and Place of Birth: July 25, 1934; Kansas City, Missouri

Marital Status: Married 1958, 3 children

Education:

University of Kansas, Lawrence, Kansas; 1952-54.

William Jewel College; Liberty, Missouri 1954-56; A.B. (Chemistry), June 1956.

University of Kansas School of Medicine; Kansas City, Kansas; 1956-60; M.D. June 6, 1960.

Postgraduate Training:

Internship (Rotating); University of Kansas Medical Center; Kansas City, Kansas; 1960-61.

Residency (Internal Medicine); St. Luke's Hospital; Kansas City, Missouri; 1961-62.

Residency (General Radiology); University of Kansas Medical Center; Kansas City, Kansas; July 1-31, 1962 and Aug. 17, 1964-June 30, 1967.

USPHS Senior Clinical Traineeship in Cancer Control (Therapeutic Radiology) University of Kansas Medical Center; Kansas City, Kansas; July 1, 1967-June 30, 1969.

Specialty Certification:

Diplomate, American Board of Radiology (General Radiology); June 14, 1968. Diplomate, American Board of Radiology (Therapeutic Radiology); June 6, 1969.

Military Service:

Captain, United States Air Force, 3640th U.S.A.F. Hospital; Laredo AFB, Texas; 1962-64.

Medical Licensure:

Kansas - No. 12645; July 15, 1961;
Registered in Wyandotte County.
Missouri - No. 28338; June 24, 1961;
Registered in Jackson County.

04676

ANNEX A - ITEMS NOS. 4 AND 5 (continued).

Page 2

Past Appointments:

Chief, Radiology & Internal Medicine, 3640th U.S.A.F. Hospital; Laredo AFB, Texas; 1962-64.

Head, Division of Radiation Therapy; University

of Kansas Medical Center; Oct. 1. 1969-June 30, 1972.

Member, Research Committee, Mid-America Cancer Center Program, University of Kansas Medical Center; 1974-77.

Acting Chairman, Department of Radiation Therapy; University of Kansas Medical Center; July 1, 1972-Oct. 31, 1976.

Present Appointments:

Assistant Professor, University of Kansas Medical Center: July 1, 1967-present.

Associate Scientist, Mid-America Cancer Center Program, University of Kansas Medical Center, Aug. 1, 1975-present.

Consultant, Kansas City VA Hospital; K.C., MO; 1968-present. Consultant, Bethany Medical Center; K.C., KS; 1974-present.

Consultant, Providence-St. Margaret Medical Center;

K.C., KS; 1974-present.

Consultant, Kansas City Tumor Institute Foundation, 1974-present. Member, Committee for Radiation Therapy, Kansas Radiologic

Society, 1974-present.

Member (full), Southwest Oncology Group; 1975-present.

Medical Liaison Officer Network Representative for Kansas, U.S. Environmental Protection Agency; 1970-present.

Professional Society Memberships:

Wyandotte County Medical Society
Kansas Medical Society
American Medical Association
Greater Kansas City Radiologic Society
Kansas Radiologic Society
American College of Radiology
Radiologic Society of North America
American Society of Therapeutic Radiologists
American Radium Society

Publications:

 Morrison, R.A.: The Radius-dose Relationship in Linear-Source Therapy. Amer. J. Roent. 123: 179-181, Jan. 1975.

ANNEX A - ITEMS NOS. 4 AND 5 (continued).

Page 3

- 2. Morrison, R.A.: A Drop-in Treatment Shell Support.
 Radiology 114: 734-735, Mar. 1975.
 - 3. Morrison, R.A.: The Total Biological Dose. Radiology 114: 717-721, Mar. 1975.
 - Oliver, L.M. and Morrison, R.A.: Automatic Correction of On-Off Error in Telecobalt Therapy. Radiologic Technology 47: 250-251, Jan - Feb 1976.
 - Morrison, R.A.: Spherical Lead Shields for Megavoltage Radiotherapy. Radiology 127: 546-547, May 1978.
 - Morrison, R.A.: The Total Biological Effect. (Abst.)
 Proceedings of the American Radium Society's 61st
 Annual Meeting, Los Angeles, Calif., Mar. 4-8, 1979.
 - 7. Morrison, R.A.: Surgery, Radiotherapy, And Chemotherapy
 In A Hospital-based Cancer Practice. (Abst.)
 Proceedings of the American Radium Society's 61st
 Annual Meeting, Los Angeles, Calif., Mar. 4-8, 1979.

Scientific Papers Presented At National Meetings:

- Morrison, R.A.: A Drop-in Treatment Shell Support.
 XVI Annual Meeting of the American Society of Therapeutic Radiologists, Key Biscayne, Florida, Oct. 30-Nov. 3, 1974.
- Morrison, R.A.: Spherical Lead Shields.
 XIX Annual Meeting of the American Society of
 Therapeutic Radiologists, Denver, Colorado,
 Nov. 1-5, 1977.

Scientific Exhibits and Films:

- Morrison, R.A.: Radiation Treatment of Cancer of the Larynx, Stage I. University of Kansas Medical Center Film Library, 1968.
- Morrison, R.A.: A Drop-in Treatment Shield Support.
 XVI Annual Meeting of the American Society
 of Therapeutic Radiologists. Key Biscayne,
 Florida, Oct. 30-Nov. 3, 1974.

ANNEX A - ITEMS NOS. 4 AND 5 (continued).

Page 4

- Morrison, R.A.: Spherical Lead Shields.
 XIX Annual Meeting of the American Society of Therapeutic Radiologists. Denver, Colorado, Nov. 1-5, 1977.
- Morrison, R.A.: The Total Biological Effect.
 XX Annual Meeting of the American Society of Therapeutic Radiologists. Los Angeles, Calif., Oct. 31-Nov. 4, 1978.

Patents:

- Morrison, R.A. and Johnston, C.W.: Method and Apparatus For Making A Focused Shield. U.S. Patent No. 3937971 granted Feb. 10, 1976.
- Morrison, R.A.: Biplane Radiographic Localization Of The Target Center For Radiotherapy. U.S. Patent No. 3991310 granted Nov. 9, 1976.
- 3. Morrison, R.A.: Method and Apparatus For Automatically Providing Radiation Therapy Treatment Conforming To A Desired Volume Of Tissue. U.S. Patent Application Pending.
- 4. Morrison, R.A.: Method and Apparatus For Homogeneously Irradiating The Vaginal Mucosa With A Linear Source Uterovaginal Applicator. U.S. Patent Application Pending.

APPLICATION FOR NUCLEAR REGULATORY COMMISSION TELETHERAPY LICENSE

Annex B - Item No. 7
The Mechanical and/or Electrical Beam Stops

According to Section B.3.3 of Specification No. GS2200 for the AECL Theratron 780 Teletherapy Unit, "on a Beamstopper unit and with the head at 180°, the beamstopper will absorb an average of 99.73 of the primary beam, and up to 35° of scatter radiation regardless of collimator setting". The beamstopper would intercept the entire primary beam for a collimator setting of 30 cm x 30 cm even if the head were swiveled 5° either side of center.

The primary beam will be limited to the beamstopper with provision for off beamstopper radiation only when the primary beam is directed to the floor (vertical down).

APPLICATION FOR NUCLEAR REGULATORY COMMISSION TELETHERAPY LICENSE

Plan and Elevation Details of Teletherapy Facility

Much of this information will be repeated in Annex E - Item No. 12 as part of the assumptions used in calculating radiation levels.

The shielding design was based on the architect's initial assumption that the concrete used in the walls and ceiling would have a density of at least 145 pounds per cubic foot. This led to a conservatively safe shielding design since the actual concrete density was 148.52 pounds per cubic foot. Copies of the Mix Design and the Concrete Cylinder Test Data are enclosed with this annex. Gypsum wall board, which is 5/8 inch thick, lines the interior surface of all vertical barriers, as well as the outer surface of the West and near North walls. The manufacturer listed the weight of his gypsum wall board as 2.375 pounds per square foot, while, for comparison, the weight of a one inch thick, one square foot slab of concrete would be 12.08 pounds. For shielding purposes, we may assume the 5/8 inch gypsum wall board is equivalent to 0.2 inch of concrete and that the double thickness on the West and near North walls have the equivalent shielding of 0.4 inch of concrete.

The West wall, adjacent to Superficial X-Ray Room/Mold Room, has 26 inches of concrete plus two thicknesses of gypsum board for a total shielding equivalent of 26.4 inches of concrete.

The near North wall, adjacent to the Control Desk, has 20 inches of concrete plus two thicknesses of gypsum board for a total shielding equivalent of 20.4 inches of concrete.

The West wall, containing the entry door, has 12 inches of concrete plus two thicknesses of gypsum board for a total shielding equivalent of 12.4 inches of concrete.

Page two

Annex C - Item No. 8 (continued):

The four foot wide entry door has 5 mm of lead shielding.

The far North wall, an outside wall, has 14 inches of concrete plus one thickness of gypsum board for a total shielding equivalent of 14.2 inches of concrete.

The East wall, an outside wall, has 22 inches of concrete plus one thickness of gypsum board for a total shielding equivalent of 22.2 inches of concrete. A major portion of the southern half of this wall is below ground, that is, covered by earth.

The South wall, an outside wall, has 18 inches of concrete plus one thickness of gypsum board for a total shielding equivalent of 18.2 inches of concrete. With the exception of a small area near the ceiling, this entire wall is below ground, that is, covered by earth.

The ceiling has at least 20 inches of concrete throughout, with an additional seven inches of concrete in a 10 foot x 10 foot slab centered over the teletherapy unit isocenter. This ceiling is the unoccupied roof of the building.

There are enclosed with this annex, a 1/4 inch to the foot scale floor plan of the teletherapy room, a 1/4 inch to the foot scale elevation plan of the teletherapy room, and a 1/8 inch to the foot scale floor plan to show the teletherapy room in relation to other rooms within The Radiarium. Distances from the source or isocenter to the various barriers are shown on the 1/4 inch to the foot scale drawings.

HUB MATERIALS, INC.

Plant Location 1700 North 291 Highway Sugar Creek, Missouri 64054

Telephone 257-5300

May 22, 1980

Crowley Construction Company 3200 South M-291 Independence, Missouri 64057

Re: Radiarium Center Building Medical Center Park Independence, Missouri

Gentlemen,

As per your request, we are pleased to submit the following mix design used for the above mentioned job.

Cement - Type 1	575
Limestone rock	1650
Missouri River sand	1650
Water	

Yield -- 27.0 cubic ft.

Weight 152 lbs per cubic ft

Hoping this meets with your approval and may we be of further service to you.

Yours truly,

HUB MATERIALS, INC.

by, Eabel iv. Mlein

RWK/mgw

04676

ANNEX C - ITEM NO. 8

NSAS CITY TESTING LABORATORY

P.O. Box 6323 SHAWNEE MISSION, KANSAS 66206 TELEPHONE 648-2303

1	Laboratory	No	349	2	
4	THE TOTAL THE TALL A	A 7 17	w. 3. d.	64	

Date 6-10-80

TEST DATA CONCRETE CYLINDERS

Received 6-6-80	From	CROWLEY	WADE 1	MILSTEAD,	INC. ENG	INEERS	
Project	·····	RADIARIU	IM.	****************			
Location of Pour		INFORMAT	ION NO	OT AVAILA	BLE WITH	CYLINDERS	
		Heig	ht, ins.	12			
Diameter, ins. 6							
		Area	, sq. ins	. 28.27			
Cylinder marking	A	B	C				
Date cast	6-2-80	6-2-80	6-2-	-80			
Date crushed	6-9-80	6-30-80	6-30	0-80			
Age, days	7	28	28		*************	*************	***************************************
Crushing load, lbs	118500	163250	162	500			
Compressive strength lbs./sq. in	*148.83	5774 *148.62	5748 *148	.10		***************************************	
Fracture	CA	CA	CA				
(Code: C-conical	, D—diagon	al, I—irregu	lar, M-	-mortar, A	-aggregat	e)	
Slump, ins	Air	%		Un	it Wt		lb./cu. ft.
SupplierHUB.	Class.			Tkt. N	lo	Trk. No	D
Coarse aggregate, Fine aggregate, Cement, Water,	lbs.:		•••••	Sampling Weather	time		

REMARKS: MADE BY CONTRACTOR **UNIT WT. IN LBS/FT3

CC:

CROWLEY, WADE, MILSTEAD-BRADD CROWLEY-4 DS/cjm

Kansas City Testing Laboratory (Original Signed by)

DATE: July 15, 1980

Cours 6 Jem

APPLICATION FOR NUCLEAR REGULATORY COMMISSION TELETHERAPY LICENSE

Annex D - Item No. 10 Panetrations and Voids

Sheets Si3 and Si4 show details of duct penetrations in the West wall over the entry door. The supply duct, which is south of the return duct, is lined with 6 mm lead while the return duct, which is located in the north corner of the West wall, is lined with 5 mm lead. These penetrations are located above the acoustical ceiling.

Sheet S14 also shows conduit penetrations through the West wall between the supply and return ducts. Sheet S!5 demonstrates these penetrations in a different perspective. Since less than 3 inches of concrete were lost in the wall shielding, no compensating shielding was used. At these locations, 9 inches of concrete were considered adequate shielding.

Sheet S15 shows penetration of the East wall by conduit for exterior lighting. At that location, the remaining concrete thickness was considered to offer adequate shielding without compensating shielding.

Sheet S16 shows conduit entering the treatment room from the near North wall in a trench cut into the footing under the near North wall. The conduit then passes under the concrete slab floor to the Theratron 780 pit. This arrangement does not interrupt the integrity of the existing shielding.

The conduit running vertically inside the South wall does not require compensating shielding, since its entire run is below finished grade. (See sheet \$16 for illustration).

DATE: July 15, 1980

Duct Penetrations at Treatment Room ≠37

The Radiarium

Medical Center Park, Indepandence, Missouri

Crowley, Wade, Milstead, Inc. May 28, 1980

513

Blockout for Door Frame

The Radiarium

Medical Center Park, Independence, Missouri

Crowley, Wade, Milstead, Inc. May 30, 1980 1621-1

Medical Center Park, Indepence, Missouri

Milstead, Inc.

NOTE: CEE OH SIS FOR FLOOR MAN LORSTONS OF TREATMENT KOOM FENETRATIONS.

DATE: July 15, 1980

Section at Treatment Room Showing Conduit Configuration

The Radiarium

Medical Center Park, Independence, Missouri

Crowley, Wade, Milstead, Inc. June 13, 1980 1621-1

S 16

APPLICATION FOR NUCLEAR REGULATORY COMMISSION TELETHERAPY LICENSE

Annex E - Item No. 12
Assumptions for Calculations of Radiation Levels

Equipment: The AECL Theratron 780 Cobalt-60 Teletherapy Unit with beamstopper is to be installed in the Southeast corner room of the Radiarium. This unit is designed for fixed field or moving beam techniques, with an isocenter at 80 cm from the source. 'The sourcehead capacity of the unit is guaranteed at a minimum of 125 Rmm". (This corresponds to 7500 Roentgens per hour at one meter or a maximum activity of 8375 Curies of Cobalt-60). From this statement, it has been assumed that the sourcehead of this unit meets the criteria for a protective source housing in accordance with paragraphs 4.2.1(a) and (b) of National Council on Radiation Protection and Measurements (NCRP) Report Number 33. This means that in the "OFF" position, the average exposure rate at one meter from the "stored" source is 2.0 mR/hour or less, and the maximum exposure rate at any single location one meter from the source will not exceed 10 mR/hour. This should not be a concern for shielding of the walls. However, leakage with the source in the "ON" position is of concern. Since the specifications for the Theratron 780 do not guarantee of lower leakage figure than that recommended by NCRP Report No. 33, leakage of 0.1% has been assumed, which would mean that a potential exposure rate of 7.5 R/hour could be experienced at a distance of one meter from the source in all directions except the collimator zone (which would be much higher, but fortunately intercepted by the beamstopper). With regard to the beamstopper, assumptions have been based on the following quotation from NCRP Report No. 49, section 6.4: "When a beam interceptor is provided, it should transmit not more than 0.1 percent of the useful beam. It also should reduce, by the same factor, the radiation scattered by the patient

Page two

Annex E - Item No. 12 Equipment (continued):

through an angle of up to 30 degrees from the isocenter. Unless it is established that the beam interceptor attenuates radiation scattered more than 30 degrees, the computation of radiation barrier thickness should be based on the assumption that there is no interceptor attenuation beyond 30 degrees." It should be noted that Paragraph 8.3.3 of the AECL Specifications for the Theratron 780 contains the following statement: "On a Beamstopper unit and with the head at 180°, the beamstopper will absorb an average of 99.7% of the primary beam,..." This would indicate that the transmission of the primary beam through the beamstopper is 0.3%. With the patient in the beam, the net transmission would be reduced to 0.1% in accordance with the recommendation of NCRP Report No. 49 quoted above.

Workload:

NCRP Report No. 49 in Table 2 of Appendix C suggests that a typical weekly work-load for busy installations is 32 patients per day for a Cobalt-60 teletherapy unit. At 80 cm SSD, this would be equal to 40,000 Roentgens per week at one meter. It was suggested that this facility be shielded for a maximum workload of 40 patients per day which would be equivalent to 50,000 R/week at one meter.

Nature of Barriers:

All barriers are designed to shield for stray radiation, which includes both leakage and scattered radiation. It is assumed that the floor or the beamstopper will always intercept the primary beam. Separate calculations have been done for leakage radiation and for scattered radiation at a specified angle.

According to paragraph B.2.3 of NCRP Report No. 49, "If the required barrier thickness for leakage and scattered radiations are found to be approximately the same, one HVL (Half Value Layer) should be added to the larger one to

Page three

Annex E - Item No. 12

Nature of Barriers (continued):
obtain the required total secondary barrier thickness. If the two differ by at
least one TVL (Tenth Value Layer), the thicker of the two will be adequate".

Occupancy: All controlled areas, which include the hall and console area adjacent to the near North wall and the section of the West wall containing the door and the superficial x-ray/mold room, are assumed to have a full time occupancy (T = 1.0) with an exposure limit of 100 mR (0.1R) per week. The East wall and South wall are both outside walls with a very low occupancy (T = 1/16). The roof is also assumed to have a very low occupancy (T = 1/16); and the areas adjacent to these barriers are assumed to be noncontrolled areas with exposure limits of 10 mR (0.01R) per week.

Use: The use (U) factor for 90° scatter to all walls except that section of the West wall containing the door is 1.0, and to the ceiling it is 0.5. The use factor for leakage radiation to all walls and ceiling, except for that section of the West wall containing the door, is 1.0. The use factor for 30° scatter to the East wall, West wall, and ceiling is assumed to be 0.25 in each case.

Radiation Areas:
With respect to all walls and the ceiling, an evaluation has been made of the shielding requirements to limit the exposure rate to 5 milliroentgens per hour under the worst beam orientation at points of anticipated maximum radiation levels. For example, the worst irientation for the West wall would be with the beam directed toward the West wall (beamstopper in place), 30° below horizontai, with an SSD of 65 cm (isocentric technique). Thirty degree scattered radiation would strike the wall perpendicularly at point W-4. It might be

Page four

Annex E - Item No. 12 Radiation Areas (continued):

interesting to note the following comment from Section 8.3 of NCRP Report No. 49 regarding the radiation protection survey: "For the determination of the adequacy of secondary protective barriers, measurements shall be made employing a suitable phantom to simulate the patient. The near surface of the phantom should be placed at the usual source - skin distance." With this teletherapy unit, the usual source - skin distance - would probably be 80 cm for fixed fields, and the exposure rate from 30° scattered radiation would be even lower than that calculated for point W-4. The criteria for an UNRESTRICTED area have been discussed in ITEM No. 12 in the main body of the application. If the maximum instantaneous exposure rate were 5 mR/hour at an area adjacent to the shielded facility, even with continuous occupancy, the maximum dose equivalent to an individual in any one hour would be 1.33 mil'irem and not more than 54 millirem in any seven consecutive days.

Location:

The locations of the pit and isocenter are shown in the attached floor plan and elevation drawings. The isocenter is 7 feet 6 inches from the interior surface of the concrete West wall and 8 feet 6 inches from the interior surface of the concrete South wall. Exposure rate points have been marked on the drawings and have been located at a distance of 30 centimeters (12 inches) beyond the gypsum wall or concrete barrier, whichever is farther. On the elevation drawing, the isocenter is 115.6 centimeters (45.5) inches above the finished floor.

Shielding Material:

Initially, the architect specified that the concrete to be used in the walls and ceiling would have a density of at least 145 pounds per cubic foot. This density is slightly less than that specified in NCRP Report No. 49. Consequently, the minimum barrier thicknesses as determined from Appendix D. figures 12 and 15 of

Page five

Annex E - Item No. 12 Shielding Material (continued):

this report, have been corrected by the factor 1.0138 which is the ratio of 147:145. Gypsum wall board, which is 5/8 inch thick, lines the interior surface of ail vertical barriers except the door, as well as the outer surface of the West and near North (adjacent to the Control Desk) walls. The manufacturer lists the weight of his gypsum wall board as 2.375 pounds per square foot, while for comparison, the weight of a one inch thick, one square foot slab of concrete would be 12.08 pounds. For shielding purposes, we may assume that the 5/8 inch thick gypsum wall board is equivalent to 0.2 inch of concrete and that the double thickness on the West and near North walls have the equivalent shielding of 0.4 inch of concrete.

The shielding design, which is discussed below, and the maximum radiation levels were calculated on the assumption that the concrete had a density of 145 pounds per cubic foot. The attached report from the Kansas City Testing Laboratory indicates that the actual average density of the concrete was 148.52 pounds per cubic foot. The last column of summary sheet for CALCULATED RADIATION LEVELS contains the calculated maximum radiation levels for a concrete density of 148.52 pounds per cubic foot.

Shielding Design:

The West wall, adjacent to the Superficial X-Ray Room/Mold Room, has 26 inches of concrete plus two thicknesses of gypsum board for a total equivalent concrete thickness of 26.4 inches.

The near North wall, adjacent to the Control Desk, has 20 inches of concrete plus two thicknesses of gypsum board for a total equivalent concrete thickness of 20.4 inches.

The West wal¹, containing the entry door, has 12 inches of concrete plus two thicknesses of gypsum board for a total equivalent concrete thickness of 12.4 inches. The entry door has 5 millimeters of lead shielding.

Page six

Annex E - Item No. 12

Shielding Design (continued):

The far North wall, an outside wall, has 14 inches of concrete plus one thickness of gypsum board for a total equivalent concrete thickness of 14.2 inches.

The East wall, an outside wall, has 22 inches of concrete plus one thickness of gypsum board for a total equivalent concrete thickness of 22.2 inches. Part of this wall is below ground, that is, covered by earth. The shielding and maximum radiation level calculations did not take this into account. In several areas along this wall, however, the radiation protection survey will be measured at elevations above the isocenter so that measured exposure rates will be at lower radiation levels than those calculated.

The South wall, an outside wall, has 18 inches of concrete plus one thickness of gypsum board for a total equivalent concrete thickness of 18.2 inches. With the exception of a small area above the suspended acoustical ceiling, this wall is below ground. The shielding and maximum radiation level calculations did not take this into account. However, the radiation protection survey will be measured at elevations above the isocenter so that measured exposure rates will be at lower radiation levels than those calculated.

The ceiling is the roof and has a minimum thickness of 20 inches of concrete throughout. However, there is an additional 7 inch thick slab below the ceiling but integral with it which measures 10 feet by 10 feet and which is centered over the isocenter of the teletherapy unit. Total thickness of concrete in this area is 27 inches.

Beam Orientation:

The exposure rates at various points have been calculated for some of the following beam orientations:

Page seven

Annex E - Item No. 12 Beam Orientation (continued):

- (1) Beam directed vertically to the floor with the surface of the phantom at 65 cm from the source (SSD = 65 cm).
- (2) Beam directed at 30° below horizontal toward the West wall, with the phantom at an SSD = 65 cm.
- (3) Beam directed at 30° below horizontal toward the East wall, with the phantom at an SSD = 65 cm.
- (4) Beam directed 30° either side of vertical toward the ceiling, with the phantom at an SSD = 65 cm.

HUB MATERIALS, INC.

Plant Location 1700 North 291 Highway Sugar Creek, Missouri 64054

Telephone 257-5300

May 22, 1980

Crowley Construction Company 3200 South M-291 Independence, Missouri 64057

Re: Radiarium Center Building Medical Center Park Independence, Missouri

Gentlemen,

As per your request, we are pleased to submit the following mix design used for the above mentioned job.

Cement - Type 1	575
Limestone rock	1650
Missouri River sand	1650
Jator	225

Yield -- 27.0 cubic ft.

Weight 152 lbs per cubic ft

Hoping this meets with your approval and may we be of further service to you.

Yours truly,

HUB MATERIALS, INC.

Balph W. Klein

RWK/mgw

ANNEXE - ITEM NO

KANSAS CITY TESTING LABORATORY

P.O. Box 6323
SHAWNEE MISSION, KANSAS 66206
TELEPHONE 648-2303

Laboratory	No	3/492	
THUNDITURA	TAO	2426	

Date.....6-10-80

TEST DATA CONCRETE CYLINDERS

Received 6-6-80	From	CROWLEY	WADE M	ILSTEAD, INC.	ENGINEERS	
Project	**********	RADIARIU	M	***************************************	***************************************	
Location of Pour	***************************************	INFORMAT	CION NO	T AVAILABLE WI	TH CYLINDE	RS
		Heig	rht, ins.	12		
		Dian	neter, in	s. 6		
		Area	, sq. ins	. 28.27		
Cylinder marking	A	В	C		***************	•••••••
Date cast						
Date crushed						
Age, days						
Crushing load, lbs	118500	163250	1625	00		
Compressive atrenath						
Fracture	CA	CA	CA			
(Code: C-conical						
Slump, ins	Ai	r %		Unit Wt		lb./cu. ft.
SupplierHUB		******************	•••••	Tkt. No	Trk.	No
Coarse aggregate, Fine aggregate, Cement, Water,	lbs.:			Sampling time Weather	• • • • • • • • • • • • • • • • • • • •	

REMARKS: MADE BY CONTRACTOR ** WNIT WT. IN LBS/FT3

CC:

CROWLEY, WADE, MILSTEAD-BRADD CROWLEY-4

DS/cjm

Kansas City Tenting Laboratory (Original Signed by)

THE RADIARIUM

Page eight

Annex E - Item No. 12

Summary of Calculated Radiation Levels

LOCATION (Point)	BEAM ORIENTATION	EXP. RATE (P: 145#)	EXP. RATE (P:148.521)
W-1	(1)	0.052 mR	
W-1	(3)	0.036 mR	
W-1	(2)	0.525 MR	0.420 mR
W-2	(1)	0.125 mg	
W-2	(3)	0.084 mR	
W-2	(2)	1.495 mR	1.217 mR
W-3	(1)	0.348 mR	
W-3	(3)	0.403 mR	
W-3	(2)	3.695 mR	3.057 mg
W-4	(1)	0.493 mg	
W-4	(3)	0.658 mg.	
W-4	(2)	5. 155 mg	4. 294 mR
N - 1	(1)	2.207 mR	1.901 mg
N-2	(1)	3.487 mR	3.120 mg
N-2	(2)	5.489 mg	4.918 mg
E-I	(3)	1.040 mR	0.858 mg
E-2	(1)	0.822 mg	0.701 mg.
E-2	(3)	5.809 mR	4.934 mg
S-1	(1)	0.126 mR	0.103 mR
5-1	(2)	0.104 me	0.084 mp
C-1	(1)	0.919 mg	0.765 mg.
C-1	(4)	4.862 mg	4.033 mR
C-2	(4)	4.444 mr	3,722 mg
W-5	Multiple Scatter	frobably less the will modify if necessibelow 5.0 mR/hr.	an 5.0 mR/hr but sary to bring

THE RADIATUM COBALT-60 TELETHERAPY NOOM

PERTINENT INFORMATION FOR SHIELDING CALCULATIONS

POINT	TYPE OF RADIATION	NONCONTROL or CONTROL	(RM2/WK)	USE	OCCUP.	W·U·T (RM ² /WK)	DISTANCE (FT. & IN./M.)
W-1(a)	Leakage	CONTROLLED	50,000	1.0	1.0	50,000	dsec = 13+15 \$ in. 14.10
W-1 (b)	90° Scatter	CONTROLLED	50,000	1.0	1.0	50,000	dsec = 13+75 \$ in. 14.10 m dsca = 0.65 m.
W-1 (c)	36° Scatter	CONTROLLED	50,000	0.25	1.0	12,500	dsec = 13 ft 10 in. 14.22 m.
W-1 (d) orien	Leakage (only)	5 mR/hr. Limit	7.5 hr @ lm.	-	-	-	dsec = 115+ 6 in. /3.51 m.
W-1 (e) wars	36° Scatter			_	and a	-	dsec = 134+ 10in. /4.22m. dsca = 0.65 m.
W-1(F) ORIEN		5mR/hr. Limit	7.5 R @Im.	-	_	-	dsec = 15+18in. 14.78m
W-2(a)	Leanage	CONTROLLED	50,000	1.0	1.0	50,000	dsec = 12ft.5in./3.78 m.
W-2(b)	90° Scatter	CONTROLLED	50,000	1.0	1.0	50,000	dsec = 1257.5in. /3.78m. dsca = 0.65 m.
W-2(c)	30°Scatter	CONTROLLED	50,000	0.25	1.0	12,500	dsec = 12ft. 11in./3.94m. dsca = 0.65 m.
W-2 (d) ONLEA	T. Leakage (only)	5mR/hr. Limit	7.5 R @ Im.	-	-	-	dsec = 10ft. 2in. /3.10 m
W-2(e)worst	30° Scatter	,		_	_	-	dsec = 12ft.11in./3.94m. dsca = 0.65m.
W-2(4) ORIEN	Leakage >	5mR/nr. Limit	7.5 R@ 1m.	-	ester.	_	dsec = 1457.9in. 14.50 m
W-3(a)	Leakage	CONTROLLED	50,000	1.0	1.0	50,000	dsec = 11 ft. 3in. / 3.43 m.
W-3 (b)	90° Scaπer	CONTROLLED	50,000	1.0	1.0	50,000	dsec = 11ft. 3in. 13.43m. dsca = 0.65m.
W-3(c)	30° Scatter	CONTROLLED	50,000	0.25	1.0	12,500	dsec = 11ft.9in./3.58m. dsca = 0.65m.
W-3(d) worse	Leakage: (only)	5mR/hr. Limit	7.5 R@1m.	-	-	-	dsec = 8ft. 9in. / 2.67m.
W-3(e) werst	30°Scaπer				-	-	dsec = 11 ft. 9in. 13.58m. dsca = 0.65m.
W-3 (f) ORIENT	Leakage	5 mR/nr. Limit	7.5 R @/m.	-	-	-	dsec = 13ft. 10in. / 4.22m.
See page	2 for Point	W-4					
							04676

THE RADIARIUM COBALT-60 TELETHERAPY ROOM

PERTINENT INFORMATION FOR SHIELDING CALCULATIONS

	or CONTROL	(RM ² /WK)	FAC	TORS	W·U·T (RM ² /WK)	(FT. & IN./M.)
Lеакаде	CONTROLLED	50,000	1.0	1.0	50,000	dsec = 10 ft. 10 in. /3.30 m
90° Scaπer	CONTROLLED	50,000	1.0	1.0	50,000	dsec = 1017.10in. /3.30 m
30° Scaπer	CONTROLLED	50,000	0.25	1.0	12,500	dsec = 11+7.4in./3.45m
Leakage (only)	5mR/hr. Limit	7.5 R @ /m.	-	-	-	dsec = 8+1. 8in. /2.65m.
	- /- 1:-:-		-	_	_	dsec= 1141.4in./3.45m.
Leakage /	Smynr. Limit	7.5 R @ /m.	-	-		dsca = 0.65 m. dsec = 1357.5ir./4.10 m
Leakage	CONTROLLED	50,000	1.0	1.0	50,000	dsex = 1258.6in./3.81m.
90° Scatter	CONTROLLED	50,000	1.0	1.0	50,000	dsec = 1257. 6in / 3.81m. dsca = 0.65 m
Leakage	•	7.5 R@lm.	_	-	_	dsec = 125T. 6in / 3.81m
. 90°Scaпет	5 mM/hr Limit		_	-	_	dec = 12+7.6in./3.81 m dsca: 0.65 m
Leakage (1)	NONCONTROLLED	50,000	1.0	1/6:0.0625	3, 125	dsec = 245 4 in / 7.42
The same of the sa			1.0	16-0.0625	3,125	dsec: 24+1. 4in. /7.42n dsca: 0.65m.
Leakage (2)	NONCONTROLLED	50,000	0.25	16=0.0625	782	dsec: 24 + Oin. 17.32n
			0.25	16=0.0625	782	dsec: 249.3in. /7.39m
Leakage(2).		7.5 B. @ /m.	-	_	***	dsec = 24+7. Dia. /7.32 m
78° Scane (2)	hr. Limit		-	-	-	dsa: 24ft 3in. /7,39m.
_еакаде (3)	NONCONTROLLED	50,000	0.25	16:0.0625	782	dea: 20 st. 4in. 6.20 m
37° Scatter (3)			0.25	16 0.0625	782	dsec = 18 FT 710. 5.66 m dsea = 0.65 m.
Leakage (3)	Ent.	7.5 fre /m	_	-	-	dsa: 20ft. 4in. /6.20m
COMMENT OF THE PROPERTY OF THE	hr Limit		-	_		dec: 1897.7in/5.66m deca: 0.65 m.
	90° Scatter 30° Scatter Leakage (only) 30° Scatter Leakage 1. Leakage 90° Scatter 1. Leakage 1. 90° Scatter 2. Leakage 1. 90° Scatter Leakage 1. 90° Scatter Leakage 1. 10° Scatter Leakage 2. 10° Scatter 1. Leakage 2. 10° Scatter 2. 10° Scatter 30° Scatter	90° Scatter CONTROLLED 30° SCATTER CONTROLLED Leakage (only) 5mR/hr. Limit 30° SCATTER SMR/hr. Limit Leakage CONTROLLED 90° SCATTER CONTROLLED Leakage (1) NONCONTROLLED 1. YOUNG SCATTER NONCONTROLLED Leakage (2) NONCONTROLLED Leakage (2) NONCONTROLLED Leakage (2) NONCONTROLLED Leakage (3) NONCONTROLLED 1. YOUNG SCATTER (3) NONCONTROLLED Leakage (3) NONCONTROLLED Leakage (3) NONCONTROLLED 1. YOUNG SCATTER (3) NONCONTROLLED 1. Leakage (3) NONCONTROLLED 1. Leakage (3) NONCONTROLLED	90° Scatter CONTROLLED 50,000 30° SCATTER CONTROLLED 50,000 Leakage (only) 5mR/hr. Limit 7.5 R. @ Im. 30° SCATTER 5mR/hr. Limit 7.5 R. @ Im. Leakage CONTROLLED 50,000 90° SCATTER CONTROLLED 50,000 Leakage (1) NONCONTROLLED 50,000 Leakage (2) NONCONTROLLED 50,000 Leakage (2) NONCONTROLLED 50,000 Leakage (2) NONCONTROLLED 50,000 Leakage (2) NONCONTROLLED 50,000 Leakage (3) NONCONTROLLED 50,000	90° Scatter CONTROLLED 50,000 1.0 30° Scatter CONTROLLED 50,000 0.25 Leakage (only) 5mR/hr. Limit 7.5 R @ lm Leakage 5mR/hr. Limit 7.5 R @ lm Leakage CONTROLLED 50,000 1.0 90° Scatter CONTROLLED 50,000 1.0 1.0 90° Scatter CONTROLLED 50,000 1.0 1.0 90° Scatter CONTROLLED 50,000 1.0 1.0 90° Scatter NONCONTROLLED 50,000 1.0 Leakage (2) NONCONTROLLED 50,000 0.25 Leakage (2) NONCONTROLLED 50,000 0.25 Leakage (3) NONCONTROLLED 50,000 0.25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	90° Scatter CONTROLLED 50,000 1.0 1.0 30° Scatter CONTROLLED 50,000 0.25 1.0 1. Leakage (only) 5mR/hr. Limit 7.5 R. @1m	90° Scatter CONTROLLED 50,000 1.0 1.0 50,000 30° SCATTER CONTROLLED 50,000 0.25 1.0 12,500 30° SCATTER CONTROLLED 50,000 0.25 1.0 12,500 30° SCATTER CONTROLLED 7.5 & 21m

THE RADIARIUM COBALT-60 TELETHERAPY HOOM

PERTINENT INFORMATION FOR SHIELDING CALCULATIONS

POINT	TYPE OF RADIATION	NONCONTROL or CONTROL	WORKLOAD (RM ² /WK)	USE	OCCUP.	W·U·T (RM ² /WK)	DISTANCE (FT. & IN./M.)
E-2(a)	Leakage (1)	NONCONTROLLED	50,000	1.0	16:0.0625	3,125	dsec = 14 ft. 4in. 14.37m
E-2(b)	107°Scaner	NONCONTROLLED	50,000	1.0	16=0.0625	3,125	dsec = 14ft. 10in. 4.52n dsca : 0.65m
E-2(c)	Leakage (3)	NONCONTROLLED	50,000	0.25	16:0.0625	782	dsec = 17ft.4in./5.28m
E-2(d)	35° Scarrer	NONCONTROLLED	50,000	0.25	16:00625	782	dsec = 15tt.5in/4.70m dsca = 0.65m.
E - 2 (e)	Leakage (3)		7.5 Relm.	-	_	_	dsec = 1757.4ia./5.28m.
E-2(f)	35 *Scarrer (3)	The Unit		-		-	dec: 1547.5in. 14.70m.
S-1 (a)	Leakage (1)	NUNCONTROLLE	50,000	1.0	16:0.0625	3, 125	dsec: 12 ft 3in./3.73 m
S-1 (b)	127°Scatter(1)	NONCONTROLLED	50,000	1.0	18:0.0625	3,125	dsec= 13ft 5in. 4.09m dsca = 0.65m.
S-1 (c)	Leakage (2)	NONCONTROLLED	50,000	0.25	to: 0.0625	782	dsec = 14 5T Dia / 4.28 m
5-1(d)	90° Seamer (2)	NONCONTROLLED	-50,000	0.25	16:0.0625	782	dsec: 1347 510/4.09 m dsca: 0.65 m.
C-/ (a)	Leakage(1)	NONCONTROLLED	50,000	1.0	th = 0.0625	3,125	dsec = 6ft 9in. /2.06 m
C-1(b)	Legrage (4)	NONCONTROLLED		0.25	16:0.0625	782	dsex: 11ft 10in. [3.6] m
C-1(c)	35° Scatter (4)	NONCONTROLLED	50,000	0.25	\$ -0.0625	782	dsex = 9+T. 11in. 3.02n
C-1 (d) wors	Learage (4).	5 at Limit	7.5 fr @ /m		_	-	dsec = 11+1.10in. 3.61m
C-1(e)	35°Scatter (4)	hr Limit		-	-	_	dsec = 951.11in. 3.02m dsca = 0.65 m.
C-2(a)	Leakage (4)	5 me Limit	7.5 R. @ /m			_	dsec = 14ft, 6in/4.42m.
C-2(b)	350 Scatter (4)	75 hr Limit		-			dser: 12ft.7±in./3.85m dsca: 0.65m.
							04676

-
\Box
in.
0
Person
Justing
2
Seet
M
Solvani
<<
roud.
inhad
Fer.)
Indeed
22
- Des
(cond
7.4
127
- 19
James
0.00
Service
Friend
P
-
\sim
-
V
. 1
Sint
-
. 7
-
ALC:
-
(L)
-
0
COBALT-
0
-
-
Mine
-
-
jeons
-
AR
400
1
_
-
4095
-
œ
H
B
R
E R
IE RI
HE RI
THE RI
THE RI
THE RI
THE RI
R THE RI
)R THE RI
OR THE RI
FOR THE RI
FOR THE RI
FOR THE RI
FOR THE RI
S FOR THE RI
IS FOR THE RI
NS FOR THE R
NNS FOR THE RI
ONS FOR THE RI
TONS FOR THE RI
IONS F
IONS F
TIONS FOR THE RA
IONS F

Page - 1	EXP. RATE (mR/hr.)	(1) Am C 20 0	hr.		(3)0.036 mk	26.4 in 200 5.75 mg	hr.	radiation as Thick.	(1) SE ME	O. to hear		(3) 0.084 mg	(2) 1 495 mR	hour learn	23.4inhes thick	(1) 248 mg	hr.		(3)0.403 mg	
	ACTUAL THICK,	26.4 in.	26.4in.	26.4 in.	26.4in.	26.4 in.	26.4 in.	receives 21.2 inche	26.4 in.	26.4in.	26.4 in.	26.4 in.	26.410.	26.4in.		26.4in.	26.4in.	26.4 in.	26.4in.	
PY ROOM	DENS. COR (1.0138)	II. Tin.	99.00	13.3 in.	14.7in.	313.		ing shielded wall should be	13.0 in.	10.0in.	15.5 in.	14.6 in.	724		space being shielded methor, the wall should be	15.2 in.	11. 4 in.	17.6in.	17.9 in.	
TELETHERAPY	MIN. THICK	11.5 in.	8.7 in.	13.110.	12.0in 12.5in. HY.	24. 15 x cos 36	- 20.Ym.	ince the space being below 5 mR/hr, the wall	12.77in.	9.85 in.	15.29 in.	14.39 in.	25,22 s (80.24)	=23.04in	SPACE 6	15.02in.	11.22in.	17.38in.	17.70in.	
	ENTRY	36°	36°	36°	450	3%°	30°		290	290	280	36°	280	240	Since the below 5 m	150	15°	15°	300	
RIUM COBALT-60	REQUIRED PATH LENGTH	36cm or 14.2in.	27.3cm # 10.75in.	41 cm of 16. Him.	43cm = 16.9lin.	(13cm 278)		= 15.3 inches. S	37cm & 146in.	28.6 cm # 11.26 in.	44 cm er 17.32in	45.18cm \$17.19in	(4.05cm or 35.3).		crossure rate	39.5cm# 15,55in	29.5cm=11.6lin	45.7cm # 17.99in.	47.86cm \$ 18.84in	
NS FOR THE RADIARIUM	CALCULATIONS	1,000 x 0.1 x (4.10 m) = 0.0336	0.0009 x 50,000 = 0.0158	00100-		5 mk s C.lem	5,312 hr.	17. 3 inches. To keep	1000 x 0.1 x (2.78 m)2 0.0300	0.1x (3.78m)2 x (0.65m) 0.0134	0.0060 x 12,500	5008/bc = 6.2cm	5 mg - 193 kg	J	I HVL: 15.5in. To Keep The	1000 × 0.1 × (3.43 m) 2.0.0235	0.1x(343m) x (045m) 0.01105	0.1 x (3.58m) x (0.65m) 20.00722	1,052mlhr = 6 6.2cm	And the property of the proper
SHIELDING CALCULATIONS FO	THANSMISSION FORMULA OF LK & SCA EXP RATE	BLG = 1000 x Px (dsex)2	Bsg = P x (dsec) x (dsea)?	-4	- 1	= 4,984 mk	-gharacean	2.0 in. =	BLS = 1000 x P x (dec)2	BS9 = P (deex). (decx)2.		815	(0.65m)2 x (3.84m)2 : 6,861 mg.	75 Ar (4.50m)2 = 371 mk	Since (a), (b) and (c) are within a tenth value layer, add From Two sources, add one HVL: 17.7 in + 2.2 in: 19.9 inches.	By: 1000 x P x (dsx)2 W UT	Bsg = P (dsn) - (dsn)	. (dsec) . (dsca)2	mp=1,052 mg	W-3(e) and W-3(f) continued on Page-2
	TYPE OF RADIATION	Leakage	90° Scaner	36° Scatter	Leanage (mh)	36° Samer	Leakage	and (c) are un nurces, add o	Leakage	90° Scaner	30° Scatter	Leakage (mly)	30° Saner	Leakage /	(b) and (c) a sources, ado	Leakage	90° Scatter	30° Scatter	Leakage (only)	d W-3(f) co
	WALL-LOC.	W-1(a)	W-1(b)	W-1(c)	W- I(d) orient	W-1(e) werst	W-1 (f)	Since (a),(b)	W-2 (a)	W-2(6)	W-26)	W-2 (d) oriens	W-2(e) WORST	W-26)	Since (a), From Two	W-3(a)	W-3(b)	W-3(c)	W-3 (d) OHEN	W-3(e) an

	90		6 3			-	~1.	*~1		-	1 1		400	~	1		154	
RATE	5 ms	7	6 inches thick.	W.	Pir.	-	mk	* WA		adia	AR A		0	1 8	NOT THE		1.901 mk	
-	(2)	20.5	radi	2011	76.713		658	155	3	1 2 T	4,204			2	er.	x	106	
EXP.	(2)		1				(3)	25		ceives radia	17.			3	7	relves	1.	
	.0.	1.0.	being shielded received the uses should be 25.	26.4in.	in.	'n.			ć	20		in.	in,	.2	N. S.	ielded re	fin.	
ACTUAL TRICK,	26.4in.	26.4in.	1	76.4	26. 4 in.	26.4 in.	26.4:0.	26.4in.	26.4in.	elde	26.4	20.4in.	20.4in,	20.4:0.	ty the	Ideo	26.410.	
Œ	-	na and a second	hario		7	~	14	7	7	Shi	8	-	,,		The beam the cale, shelding of the	Shie	- Gi	
DENS, COR	25.6 in.	25.6in.	9 sh		i.	in.	2 in.	5		tace being s	25.85 in.	in.	, c'	* '	cale.	· bui	410.	
DENS.	25.	25.	bein he w	15.8 in.	12.1 in.	8.5 in.	19.2	26.48in.			5.8	14.6 in.	11.4in.	20.6in.	age ac	be	20.14	
- Constitution of the Cons	2/	1	9					7			Con			-	e les	e the space being sh	makes approximate	
MIN. THICK	2587" (all)	=25.26in	The srad	15.55in.	11.93in.	8.23in.	18.89 in.	26.12 in		The	26.12in.	14.37in.	1.22in.	20,35in.	Sho	he s	20,35 in.	
SOUTH STREET,	PERSONAL PROPERTY AND PARTY AND PART	PERSONAL PROPERTY.	onegatomy Ages	15.	=	00	de	26.		Since the s	33.	五	=	8	nge ir is 6. Zen.;	6 7	12	
ENTRY	150	12.50	Since are belo	0	0	00	0	00		Sir		0	0	0	r is 6	Sin		
-				00	00	0	00			19.	0	00	00	ô		in.	00	
REQUIRED PATH LENGTH	至75.87		1 HVL: 17.6 in +24 in = 20.0 in	39.5 cm gr 15.55 in	93in.	. 33in	or 18.89 in	66.4 cm or 26.12in		: 18. Sin + 2.4in: 20, Ein. To keep the exposure have	66.4cm or 26.12in	36.5cm#1437in	28.5cm # 11.22in	Bin	10.65m) 2 x (3.81m)2 - 1,101 mg 1618 mg/hr For 90° xaner is 46cm; for leak	6in +2.4in = 17.0	et 20,35in	
REQUIRED ATH LENG	व्या	4	n.= 2	gr 15	30.3cm or 11.93in	or 18.33in	100	28	1	1:n:	200	1 To	No.	51.7cm # 20.36	1, 500	: "!	120.	
300 FR	16.71	110	2.4 i	Scm	35	Scar)cm	- cm		+ 2.9	cm	Sen	54]cm	460	+2.4	Icm	
PA'	57	5	in. t	39.		46.3cm	48.0cm	66.4		Sin con	66.4	36.	6 28	51.	er is			
NS	K.X.		17.6 To x	(8.50-5 = 0.02178	0.1 x (330-12-(465-12-00102)	0.1 x (3.95-17- (2.65-12-2,006,705)	\$ 6.20m	45		10 K	£ ft,	1000 x 0.1x (3.11m)2 0.62903	0.1 x (3.81m) x (0.650) - 0.0136	E3set	Xa	: 14.	4	
CALCULATIONS	.683xt		VL :	=0.0	7-1	200	el.	-613xx			per cubit ft,	12 0.	1452	89	36 20	I HYL:	(d)	
ILA'	.0	ט	add I HVL = 22.4 inches.	8.30-	900	500	1	0.1		I HV	per 4 (e	3.810	50,0	, 0	HALL	# "	53	
LCU	SA	野	13.4	000 000	30=12	5 m/2	Inc.	म्यू	45	23.3 ii	s W.	50,000	3.81m	1	The	200	s b.	
CA	5	873178	= 23	1000 x 0.1 x 50,000	0.0009 x 50,000	01x(345-12-108)	5 melhr.	SmR/hr = e	12	24	Pour	350 X	0.0009x 50,000	Such	1618	ad	Pour	
4 (1)		a12	within a tenth Value layer, one HVL: 20.0 in t 2.4in.	9				_	4	laser, add	522	9	1	~1	al L	17.0	3.52	
MUL	0.006 x 7500 hr. (0.65 m)2 = 8,310 mg	5-13	200		BSg = a. VIUT . (dsec) - (dscy)	dread	58 71	(0.65m)2 x (2.45m)2 = 8,948 mt	日日	2.4	148	7	ca)	7.5 hr x (381m)2: 517 mx	1 7	lay L.	148	
FOR	90	42	ralu	79	3.6	13.	1,00	000	44	Val	ion	duce	.(4,	51	1,10	Hy	as	
A E	10	"	0.0	x de	(dse	(dye	14	11		nrh 20.9.	u los	PX	dec)	"	12/4	in wa	cular	
SCI	Ar. 3.58	1.22m	ten:	W W.	i E	IL	165,	ST ST	No m	. te	rer	W). 1	181m	3.81	the	cal	
MIS	75%	X	146	000	J 24	2 3	×	1500 x	× (4)	377	din	las	S. E.	×	x 75	D T	edin	
ANS	006 x	SAS	ithi	Bug = 1000x 2x lded	"		5.8	5m)	ate !	isthi	use use	Big = 1000 x Px (deed)2	"	SAS	65m	hin	OF C	
TYPE OF THANSMISSION FORMULA	00	Leakage 7:5 Ar x (4.22m)2 = 421 mA	3 6	82	8	00	7	6.0	7.	30	FT	8	-	-	A	Time	25	
OF	апе	36	ad	36	Ter	Her	c (an	ITEL	6	2) 21	1845	36	ите	96	rer	are	tens 145	
PE	30,00	ака	d (ces,	Leakage	Scal	Sca	(Kag	Se	кад	nd la	al d	1KQ	Sco	ака	Scal	(9)	the	
TYPE OF THANSMISSION FORMULA RADIATION OF LK & SCA EXP RATE	W-3(e) моры 30° Samer	Le	Since (a), (b) and (c) are within a tenth value layer, From Two sources, add one HVL: 20.0 in. + 2.4 in.	Le	90° Scaner	30° Scaner Bsg: a.wut . (dse) . (dsca)	W-4 (d) webs Leakage (any) 7.58 x (2.65 m)= = 1,068 mh	W.4(e) weeks 30° Statters (0.65m)2 x 0.45m)2 = 8,948 mx	Lea	Since (a), (b) and (c) are within a tenth value lay From Two sources, add one HVL: 20.9 in + 2.4 in	Actual density of concrete was 148.52 pounds per cubitft, vice the 145 lbft used in calculations. This revises W-4(e)-(f) as:	Leakage	90	N-1 (c) under Leakage	90° Scarrer	Since (a) and (b) are within a tensin value layer, add 1 h radiation from two sources, add one HVL: 17012 + 34:00	Actual density of concrete was 148.52 pounds per cubic vice the 14516/ft3 used in calculations. This revises N-1614(d) as:	
	WOLST	ORIGIN	2),(-	WO RE	See S	MILE	1), (00				7.00	9nes	(a)		
LL-LOC	3(e)	3(4)	n I	W-4 (a)	(9) #	W-4(c)	(P) +	(0)	(£)	e Ca	T	(a)	(6)	(0)	a,	ce	E	
WALL-LOC.	W.	W-3(f)	Sin	N.	W-4 (b)	3	W-	7.4	11-4	Since (a), From Two	*NOTE:	N-1(a)	N-1 (b)	- 7	N-1 (d)	Sin	*NOTE:	
3								-			* 1				The state of the s		*	

EXP. RATE	(3)	>3.457 ms			(2) **	3.467	of the exposure rate of by calc. roxiation lovels.	145/45/43	Surface	d in the	2) Jones Mil	4.418 hr.			(3) OUL M.	LOI hr.	(3) 858 mg	9 (1)	7 as 22 m		
ACTUAL TRICK.	14.2in.	14.2in.	14.2in.	W.2in.	14.2in.	14.2in.			exterior	or include	200	14.2in.	22,2 in.	22,2in.	22.2in.	22.2in	1			22.2 in.	22.2 in.
DENS. COR	7.78 in.	6.38in.	2,37in.	4.68in.	16.9:0.		for anly to	assan	floor Plan shows an	s, it was no	Dens.	14.16 in.	3.31 in.	9.56 in.	18.39 in.		Dens : WZ : 0.983	11.84 in.	8.02 in.	5.31in.	13.78in.
×	7.68in.	6.29in.	2.34in.	4.62in.	16.70in		leakage accounts	If we	floor Pla	hicknes	n Thickness Per	14.5 in.	3.27in.	9.43in.	18.14in.		18.14 in.	11.68:n.	7.91in.	5.23in.	13.59in.
ENTRY MIN.	130	130	20	120	70	120		10.1in	S. The	Ty and T	A PACE TOCK		340	370	340	370		8.50	170	140	0 001
REQUIRED PATH LENGTH	20.0cm	16.4cm # 6.46in.	6.0cm # 236in.	12.0cm of 4.72in.	42.75 or 16.83 *		is 6.2 cms Since	7.7:n+2.4:n. =	e ~ 142 inche	cs on its density and thickness, it was not included in the	JOE	as follows:	10.0cm \$ 3.94 in.	30.0cm = 11.81in.	55.56m = 21884		follows:	30cm £ 11.8in.	21cm # 8.27in.	13.7cm = 5.39in.	36.3cm \$ 14.28in.
CALCULATIONS	100 x 0.01 x (742m) 2.0.176	0.01 × (7.42.1) × 6465. 0.0827	1000 x 0.01 x (7.32m) 0.685	0.01 × (125") * 10652 0.211	-463x t	545 mg/sr	for Leakage, the HVL, basedon 6.2cm HV	r, add 1 HVL:	all should	not include specifications		113 FPV15ES N-2(P)+15	1000 × 0.01 × (6.20) 0.492	0.0049 x 782 -1035	26.63KX		Vice	x (4374)2	La ;	1000×0.01×(5.28m)=0357	0.00 x (4.74m) x (454m)=00215
TYPE OF RADIATION	-	2 (0)	Leakage (2) By: 190xPx (dsec)2	78° Saner (2) By a. WuT . (ded) . (dea) 2	N-2(e) wayer Leakage (2) 7.5 for x (7.82m) = 140 mg Smales	18° Same (0.65 m) x (7.39m) = 455 mg	* Note: The HVL for 78 Saner is approximately 5.0 cm; for Leakage, the HVL the beam in question, the cakulated shielding, basedom 6.2 cm HV	Since (a) and (b) are within a tenth value layer, add	then, to keep the exposure rare below 5 mR/hr the wall should be ~ 142 inches.	Shielding calculations. If the concess had a deminy as 145 //c/c-3	Actual density of concrete was 148.52 lbs/fr3,		Leakage (3) Big = 1000 x P x (drec)?	37° SCATTER 858 - a. WUT. (dsca) 2 ADIX (5.66m) x 665, -4035	7.5 hr x (6.2m) = 195 mk	37° Scare (4,5m) x (5.66m) 2 - 2,715mB	17 of concrete was 148.5. used in cakulations. This re	Leakage (1) Big : 1000 x P x (454)2	(dsca)2	Leakage (3) Brg: 1020 x Px(dsec)2	35° Scatter (3) By = P (dsec) (dsec) 2 (dsec) 2 0.00 3x 782 -0.005 36.3cm \$ 14.280
WALL-LOC. POINT	N-2(a)	N-2(b)	N-2(c)	N-2(d)	N-2(e) wg	N-26)	* NOTE: The	Since (a)	Then, to h	Shielding	** WOTE:		E-1 (a)	E-1 (b)	E-1 (C) way	E-1 (d)	NOTE:	E-2(a)	E-2(b)	E-2(c)	E-2(d)

EXP. RATE	-	(3) 4,934 mR	(1) 0.701 mg	(I) A 12. m.R	0.176	(2)	7 0.101 hr	(1) 0.103 mg		=	ED CONTRACTOR OF THE PARTY OF	•	27.0in 4.862 me	(1) 0.765 mg	(4) 4.033 mg	4) 4.4444 ms (4) 3.722 ms
ACTUAL EXP.	22.2in.	22.2in.	22.2in.	South Wall +	18+ in.	18+ in.	18+ in.	98 18+in.	18+ in.	27.0 in.	27.0in.	27.0in.	27.0in.	27.0in.	27.0 in.	20.0 in.
DENS. COR (1.0138)	22.75 in	22, 210.	11.56 in.		6.54 in.	5.58 in.	4.79in.	Cor. 445.52 0.8898	7.82in.	17.56 in.	7.98 in.	17.16 in.	27.0 in.	17.3 in + 1 Mr. bons - 147 = 0.989 - 19.7 in. 19.5 in.	26.37in.	Dens Gar 10134 20.22 in. Dens Gar. 0.988 19.74 in.
×	STREET, THE PARTY OF THE PARTY	22.44in.	11.68ia.	11.09in.	6.45in.	5.50 in.	4.72 in.	11.1in + 1m.	55.24%.	17.32,n.	7.87in.	16.93in.	26.64m	17.34+18m	26.64in.	1994 in.
ENTRY MIN. ANGLE THIC				30°	370	37°	370			0.	00	00	00			35° 39°
REQUIRED PATH LENGTH		follows:	follows;	32.5cm \$128in	20.5 cm # 8.07in.	17.5cm £ 6.89in.	15.0cm = 5.9lin.	follows:	s follows:	44 cm # 17.32in	20cm & 7.87in.	43cm = 16.93in	67.56 cm = 26.64.	s follows:	C-1(d)+(e) as follows:	63.42cm = 24.97in
CALCULATIONS	- 18st	2 ks/f+*, vice revises E-2(e)+(f) a. follows;	This revises E-2(a) 46) as follows:	1000 x 0.01 x 15.13 ml . 0.0445 32.5 cm 25 128 in	0.01×(4.09=)×(0.65=)=0.0346	1000 x 0.01 x (4.280)=0,234	0.01×(4.04) x (0.65) 2.0, 100	52/bs/ft3, vice revises S-1(a) +(b) as	This revises S-1(c)+(d) as follows:	1000 x 0.01 x (2.04.) 2.0.0136	1000 × 0.01 × (3412) = 0.167	0.01 x (3.02m) x 645 2 0.0093	10,891.54 C	2 lbs/ft3, vice	This revises C-1d)+	6-1cm
TYPE OF THANSMISSION FORMULA RADIATION OF LK & SCA EXP RATE	7.5R x 1 269 mk 0.0053 x 7500 mc = 4,259 mk (0.65 ml x (4.10 ml) = 4,259 mk	Actual density of concrete was 148.52 lbs/ft the 145 lbs/ft used in calculations. This revises	This	Leakage (1) By = 1000 xP x (dsc)?	· (dea)	S-1 (c) Leanage (2) By: 1000 x Px (dxx)2	900 Satter(2) B3 = a. WUT. (dsex) - (dsca) 2 0.01×(404) x (a.65) -0.100	the 145 165/tt3 used in calculations. This revises 5-1 (a) +(b) as				C-1 (c) 35° Scatter 859: a. WUT. (4sec). (4sea) 2018 (3022) 2018 20083	C-1 (d) Leakage (4) 7.5 g x 1 m3 = 575.5 m8 Orient (4) 2.0053 x 7500 fc 10, 316 m8 (6.65 m) x (3.02 m) = 10, 316 m8	Actual density of concrete was 148.52 lbs/ft3, vice The 145 lbs/ft3 used in calculations. This revises C-1 (a) as follows:	1	C-2(a) Lezkage (4) 7.5 £ x 1 2 384 mg 5 mg C-2(b) 350 Scatter (20053 x 7500 mg 6,347 mg 6,731 mg (20053 x 7500 mg 75,85 m/3 = 6,347 mg 6,731 mg
WALL-LOC. POINT	35	*NOTE:		5-1 (4)	(9) 1-5	S-1 (c)	5-1 (4)	NOTE:		C-1 (a)	(e) (b)	(c) 1-0	C-1 (d) unco	NOTE:		C-2(a)

THE RADIATIUM COBALT-60 TELETHERAPY ROOM

WALL-LOC. POINT	BEAM ORIENT.		RATE CALCULATIONS LATIONS	EXPOSURE RATE
W-1(a)+(b)	(1)	(a) Leakage 26.4 inches concrete corrected for density = 26.4	7500 $\frac{mR}{hr} \times \frac{1}{(4.10 \text{ m})^2} = 446.16 \frac{mR}{hr}$ $\frac{-693 \times 81.76cm}{6.2cm}$ $I_L = 446.16 \frac{mR}{hr} \times e^{-9.1387}$ $I_L = 446.16 \frac{mR}{hr} \times (1.0743 \times 10^{-4})$ $I_L = 0.048 \frac{mR}{hr} \times (1.0743 \times 10^{-4})$ $I_L = 0.048 \frac{mR}{hr} \times (4.10m)^2 = 950.4 \frac{mR}{hr}$ $\frac{693 \times 81.76cm}{hr} \times (4.10m)^2 = 950.4 \frac{mR}{hr} \times (4.4735 \times 10^{-6})$ $I_{90} \times carrer = 950.4 \frac{mR}{hr} \times (4.4735 \times 10^{-6})$ $I_{90} \times carrer = 950.4 \frac{mR}{hr} \times (4.4735 \times 10^{-6})$ $I_{90} \times carrer = 0.00425 \frac{mR}{hr}$	0.052 mg
W-1 (d)	(3)	(d) Leakage (only) Path Length: Since the incident angle is large (45°), Subtract one HVL From the Path length. 26.04in. = 36.83	$I_L = 608.8 \frac{mR}{hr} \times (5.9012 \times 10^{-5})$ The original representation of the second secon	0.036 mg
W-1(e)+(f)	(2)	(e) 36° Scatter Path Length: 32.19 inches or 81.76 cm as in (a) and (b) above. (f) Leakage Path Length: 26.04 in = 30.068 inches cos 30° 76.37 cm Total Exposure Rate from beam orienta (2) at Point W-1 is:[0.461+0.044] m = 0.525 m = 20.525 m = 20	YAT T	0.525 mg

THE RADIAHIUM COBALT-60 TELETHERAPY HOOM

SHIELDED EXPOSURE RATE CALCULATIONS WALL-LOC. EXPOSURE BEAM CALCULATIONS POINT ORIENT RATE 7500 mR × 1 (3.78m)2 = 524.9 mR (1) (a) Leakage W-2 (a)+(b) IL: 5249 mg xe-693 x75.62cm 26.4 inches concrete corrected for density = 26.4in = 26.04 inches IL: 5249 mg xe -8.4524 IL: 524.9 mg x [2.1339 x 10-4] Path Length: 26.041n = 29.77 inches IL: 0.112 mR 75.62 cm. $\frac{7500 \, \text{R}}{\text{hr}} \times 0.0009}{(0.65 \, \text{m})^2 \times (3.78 \, \text{m})^2} = 1,118 \, \frac{\text{mR}}{\text{hr}}$ (b) 90° Scatter Parh Length = 75.62cm 1900Scatter = 1,118 mR xe= 1693 x75.62cm as above. Total Exposure Rate from Igoscarer : 1,118 mR x @-11.3923 beam orientation (1) at Point W-2 is: 0.112 mg Igo Scatter : 1,118 mg x [1.1281 x 10-5] +0.013 mg Igoscaner = 0.0126 mR 0.125 mg 0.125 mg 7500 mR x 1 (3.10m)2 = 780.4 mR (d) Leakage (only) W-2 (d) (3) Path Length: IL = 780.4 mR x e - 1693 x 81.76 cm. 26.04in. = 32.19inches IL= 780.4 mR x e -9.1387 81.76 cm IL: 780.4 x [1.0743 x 10-4] IL = 0.084 mR 0.084 mk $\frac{7500 \, \frac{R}{nr} \times 0.0060}{(0.65 \, \text{m})^2 \times (3.94 \, \text{m})^2} = 6,861 \, \frac{mR}{nr}$ W-2(e)-(f) (2) (e) 30° Scatter Parn Length: 1300 Scatter = 6861 mR x @ 6.1cm 26.04 in = 29.49 inches COS 280 I30° Scaner = 6,861 mB xe -8.5103 74.91cm I 30° Scatter = 6,861 mR x [2.0139 x 10-4] I300 Scotter = 1.382 mg (5) Leakage 7500 mR x 4.50m9 = 371 mR Path Length: IL = 371 mg x e - 693 x 72.4cm 26.04in. = 28.50 inches IL = 371 mR x e - 8.0925 72.40cm IL = 371 mg x [3.0583 x/0-4] Total Exposure Rate From IL= 0.113 mR beam orientation (2) at Point W.2 is: 1.382 mg 00113 maynr 1.495 mR 1.495 majar

THE RADIATIUM COBALT-60 TELETHERAPY TOOM

WALL-LOC.	BRAM	SHIELDED EXPOSURE	RATE CALCULATIONS	EXPOSURE
POINT	ORIENT.	CALCUI	LATIONS	RATE
W-3(a)+(b)	(1)	(a) Leakage	$7500 \frac{mR}{hr} \times \frac{1}{(3.43m)^2} = 637.5 \frac{mR}{hr}$	
		26.4 inches concrete corrected for density	IL = 637.5 mA x e - 693 x 68.47cm	
		= 26.4 : 26.04 inches	IL: 637.5 me xe 7.6532	
		Path length:	IL: 637.5 MR x [4.7453 x 10-4]	
		26.04in. = 26.96 inches	IL: 0.3025 mg	
		68.47cm	0 0000	
		(b) 90° Scatter	$\frac{7500 \frac{R}{hr} \times 0.0009}{(0.65 \text{m})^2 \times (3.43 \text{m})^2} = 1,358 \frac{mR}{hr}$	
		Path Length: 68.47cm	Igo Scarrer = 1,358 mg x e 4.6cm	
		Total Exposure Rate from	Igo scatter = 1,358 mg x e -103152	
		beam orientation (1) at	190° Scatter = 1,358 mR x [3.3127 x 10.5]	
		Abint W-3 is: 0.3025 maylar + 0.0450 maylar 0.348 mk	Iqo Scaπer = 0.0450 mR.	0.348 mR
11/ 2/11	(3)	(d) Leakage (only)	7500 mR x (2,67m)2 = 1,052 mR	
W-3(d)	(3)	Path Length:	IL: 1,052 mg xe - 693 x 70.38 cm	
		26.04in = 27.71inches	I_: 1,052 mR x e - 7.867	
		70.38 cm	IL: 1,052 ma x [3.8331 x/0-4]	
			I.: 0.4032 me	
			ar nr	0.403 mg
W-3(e)+(f)	(2)	(e) 30° Scatter	$\frac{7500 \text{R} \times 0.0060}{(0.65 \text{m})^2 \times (3.58 \text{m})^2} = 8,310 \frac{\text{mR}}{\text{hr}}$	
		Path Length:	I 30° Scattle = 8,310 mR x e693 x 68.47cm	
		26.04 in : 26.96 inches	T = 7.7786	
		68.47 cm	I 30° Scatter = 8,310 mg x e = 7.7786	
			I 300 Scatter : 8,310 7 x [4.1858 x/0-4]	
			130 Scatter = 3.478 mg	
		(f) <u>Leokage</u> Path Length:	7500 MR x (422m)= 421 MR	
		26.04in : 26.67inches	IL . 421 mg x e - 0.693 x 67.75cm	
		67.75 cm	IL = 421 mg x e - 7.573	
		Total Exposure Rate From	IL: 421 mg x [5.143 x 10.4]	
		beam orientation (2) or	I. : 0.2165 mg	
		Point W-3 is: 3.478 mg 0.217 mg/hr	7	
		3.695 mayhr		me
				3.695 mg

THE RADIOIUM COBALT-60 TELETHERAPIOOM

WALL-LOC.	SHIELDED EXPOSURE RATE CALCULATIONS POINT ORIENT. CALCULATIONS			EXPOSURE RATE
W-4(a)+(b)	(1)	(a) Leakage 26.4 inches concrete corrected for density = 26.4 = 26.04 inches Path Length: 26.04 inches 66.14 cm (b) 90° Scatter Path Length = 66.14 cm as above. Total Exposure Rate from beam orientation (1) at Point W-4 is: 0.424 mg her to.069 melar	$7500 \frac{mR}{hr} \times \frac{1}{(3.30m)^2} = 688.7 \frac{mR}{hr}$ $I_L = 688.7 \frac{mR}{hr} \times e^{\frac{-693 \times 66.14cm}{6.2cm}}$ $I_L = 688.7 \frac{mR}{hr} \times \left[\frac{-7.3927}{6.157 \times 10^{-4}} \right]$ $I_L = 688.7 \frac{mR}{hr} \times \left[\frac{6.157 \times 10^{-4}}{6.157 \times 10^{-4}} \right]$ $I_L = 0.424 \frac{mR}{hr}$ $\frac{7500 \frac{R}{hr} \times 0.0009}{(0.65m)^2 \times (3.30m)^2} = 1,467 \frac{mR}{hr}$ $\frac{-695.66.14cm}{4.6cm}$ $I_{90°} Scatter = 1,467 \frac{mR}{hr} \times e^{\frac{-9.9641}{4.7057 \times 10^{-5}}}$ $I_{90°} Scatter = 1,467 \frac{mR}{hr} \times \left[\frac{4.7057 \times 10^{-5}}{1.90°} \right]$	
W-4 (d)	(3)	(d) Leakage (only) Path Length: 26.04 inches or 66.14 cm	7500 mg x 12.65m) = 1,068 mg IL = 1,068 mg x e - 7.3927 IL = 1,068 mg x e - 7.3927 IL = 1,068 mg x [6.157 x/0-9] IL = 0.658 mg	0.493 mg
W-4(e)+(f)	(2)	(e) 30° Scatter Path Length: 26.04 inches or 66.14cm (f) Leakage Path Length: 26.04 inches or 66.14cm Total Exposure Rate from beam orientation (2) at Point W-4 is: 4,880 mR 0.275 mg 0.275 mg	7.500 \(\frac{R}{hr} \times 0.0060 \) = 8,948 \(\frac{mR}{hr} \) \[\left[(0.65m)^2 \times (3.45m)^2 \] \[\left[\frac{8,948 \text{mR}}{hr} \times e^{-\frac{6.14m}{6.10m}} \] \[\left[\frac{1}{30°Scatte} = \frac{8,948 \text{mR}}{hr} \times e^{-7.51394} \] \[\left[\frac{1}{30°Scatte} = \frac{8,948 \text{mR}}{hr} \times \left[\frac{5.4542 \times 10^{-4}}{10m} \right] \] \[\left[\frac{1}{30°Scatte} = \frac{4.880 \text{mR}}{hr} \times \left[\frac{6.1542 \times 10^{-4}}{10m} \right] \] \[\left[\frac{1}{446 \text{mR}} \times e^{-\frac{6.93 \times 66.14 \text{km}}{10m} \] \[\left[\frac{1}{446 \text{mR}} \times e^{-7.3927} \] \[\left[\frac{1}{446 \text{mR}} \times \left[\frac{6.1570 \times 10^{-4}}{10m} \right] \] \[\left[\left[\frac{1}{10m} \text{mR} \text{mR} \text{mr} \text{mR} \] \[\left[\frac{6.1570 \times 10^{-4}}{10m} \right] \] \[\left[\left[\frac{1}{10m} \text{mR} \]	
		5.155 mx/hr		5.155 mR

THE RADIOUM COBALT-60 TELETHERAP ROOM

WALL-LOC. POINT	BEAM	SHIELDED EXPOSURE RATE CALCULATIONS CALCULATIONS	EXPOSURE RATE
W- l(e) +(f)	(2)	(e) 36° Scatter Path Length: 26.4 inches concrete corrected for density 26.673 inches 26.673 inches er 83.74 cm Inches er 9.513 Inc	13 (13 (16)) mR. hr
W-2(e)+6)	(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5"]
W-3(e)+(f)	(2)	(e) 30° Scatter Path Length: 26.673in : 27.6/in. at 70.14cm Too Scatter: 8,310 mR x e -7.9684 I 30° Scatter: 8,310 mR x [3.4624 x /0° I 30° Scatter: 2.877 mR/hr Path Length: 26.673in: 27.32in et 69.39cm Total Exposure Rate From beam orientation [2.421 mR x e -7.756 [2.421 mR x e -7.756 [3.057 mR/hr I : 421 mR x e -7.756	

THE RADITIUM COBALT-60 TELETHERAPT 100

SHIELDED EXPOSURE RATE CALCULATIONS

WALL-LOC. BEAM EXPOSURE CALCULATIONS POINT ORIENT Concrete Density is 148.52 lbs/ft vice 145 lbs/ft 7500 1 x 0.0060 = 8,948 mR W-4(e)+(f) (2) (e) 30° Scatter Path Length: I300 Scatter = 8,948 mR x e - 673 x 67.75cm 26.673 in. or 67.75 cm I30° SCATTET = 8,948 MR x e = 7.6968 I30° scatter = 8, 948 mg x [4.5425 x 10-4] I30° scarer = 4.065 mF/hr (f) Leakage 7500 mR x 1 (4.10m)= 446 mR/hr. Path Length: IL = 446 mB x e - 693 x 67.75 cm 26.673 in or 67.75 cm IL: 446 ma x e -7.5727 Total Exposure Rate from beam orientation (2) at IL: 446 mR x [5.1430 x 10-4] Point W-4 is: 4.065 mR/nn IL = 0.229 mR/hr. +0.229mR/hr 4.294 mR/hr 4.294 7 7500 mR x 1 (3.81m)2 = 517 mR (1) (c) Leakage N-16)+(d) Path Length: IL: 517 mR x e - 693 x 51.11cm 20.4 in. - 1.0138 = 20.122 in or 51.11cm IL: 517 mg re-5.71278 IL= 517 mR x [3.3034 x 10-3] IL: 1.708 MR (d) 90°Scatter 7.500 R/br x 0.0009 = 1,101 mg (0.65 m) 2 x (3.81 m) 2 = 1,101 mg 20.4in. + 1.0138 = 20.122in. 25 51.11cm 1900 Scotta = 1101 mB x e 4.6cm Total Exposure Rate from 190° Scatter = 1,101 mR x e -7.6998 beam oriemation (1) at Point N-1 is: 1.708 mg 190° Scattle - 1,101 mg x [4.529 x 10-4] 0.499 mR/hr. 2.207 mR Igoscatter : 0.499 mR/Ar. 2. 207 mR/hr. 148,52 lbs/ft vice 145 lbs/ft3 Concrete Density is 7500 mg x 5.81)2: 517 mg N-1(c)+(d) (1) (c) Leakage IL: 517 05 x e-693 x 5) 35 cm Path Length: 20.4 in. x 148.52 = 20.61 in. gr 52.35cm. IL= 517-08 x e-5.85138 IL: 517 ma x [2.8759 x 10-3] IL = 1.487 mg (d) 90°Scatter 7.500 R/hr x 0.0009 = 1,101 mg 148.52 : 20.61in 190° SCATON : 1,101 md x @ 4.6 cm Path Length: 20.4inx (0.65m)2 x (3.81m) £ 52.35 cm Total Exposure Rate from 190°SCAWET = 1,101 mg xe-7.88664 beam orientation (1) at Igo scarer = 1,101 = 8 x [3.7573 x/0] Point N-1 is: 1.487 me/Ar 1.901 mg 0.414 mR/Ar Igo scarer = 0.414 mR/nr 1.901 mR/hr

5.489 mR

COBALT-60 TELETHERAPY

Page-7 SHIELDED EXPOSURE RATE CALCULATIONS WALL-LOC. BEAM EXPOSURE POINT ORIENT CALCULATIONS RATE 7500 mR x (7.42m)2: 136.2mR/hr N-2(a)+(b) (1) (a) Leakage: Path Length: IL: 136.2 mg x e - 693 x 36.51000 14.2in. + 1.0138 = 14.007in. or 35.58cm IL= 136.2 mg xe-4.0809 35.58cm 1 36.51 cm. or 14.38 in. IL: 136.2 me x [1.689×10-2] IL: 2.301 mg (b) 90° Scatter: Path Length: 36.51cm or 14.38 n. 7500 R/hr x 0.0009 = 290.2 mg. Total Exposur- Rate fich Igo Scatter = 290.2 mg x e - 1693 x 36.51cm beam orientation (1) at 140° Scatter = 290.2 mg x e = 5,500 Point N-2 is: 2.301 mg 1. 186 majar Igo Scaner: 290. 2 me x [40855x103] 3.487 mR I90° Scatter = 1.186 mg 3.487 CONCRETE DENSITY IS 148,52165/473 vice 145/65/473 (1) 7500 me x (7.42m) = 136.2 me (a) Leakage: N-2(a)+(b) Path Length: 14.2in x 148.52 = 14.35in. IL: 136.2 mR xe - 683 x 37.40x 36.44cm. 36.44cm . 37.40cm # 14.72in. In = 136.2 mg x e- 4,1804 IL: 136.2 7 x [1.5293 x 10-2] (b) 90° Scatter: IL: 2.083 mR/hr. Path Length: 37.40 cm of 14.72in. (0.65 m) = x (7.42 m) = 290.2 mp Total Exposure Rate from Igoscatter = 290.2 mg x @ - 1693 x 32.4 cm beam orientation (1) at Point N-2 is: 2.083 mg Igo Satty = 290.2 mx x e - 5.634 1.037 Igo Scatte: 290. 2018 x [3.5728 x 103] 3.12 mg 3.12 7 Igo-Samer = 1.037 mR/hr. N-2(e)+6) (2) (e) Leakage: 7500 mg x (7.32m)= 140 mg Parn Length: 14.2 in + 1.0138:14.007 in or 35.58cm IL: 140 mg x e - 693 x 35.85 mm 35.58 cm = 35.85 cm or 14.11 in. IL: 140 me x e -4.007 IL = 140 mg x [1.8186 x10-2] IL: 2.546 mR/hr. (+) 78° Scatter: 7500 Bx 0.0014 (0.65m)2x (7.39m)2 455 mR Path Length: 14.2in. + 1.0138: 14.007in & 35.58cm 178' Scener = 455 mg: x C 5.00m 35.58cm = 36.37cm gr H. 32in. Inposcoper : 455 mb-x e-5.041 Total Exposure Rate from Insoscoper : 455 42 x [6.468 x 10-3] beam orientation (2) at Point N-2 is: 2.546 major 178 Scotter= 2.943 mR/Ar.

2.943 ma/Ar

5.489 mg/hr.

		SHIELDED EXPOSURE RATE (CALCULATIONS	Lavacaras
POINT	BEAM ORIENT.	CALCULATIONS	3	EXPOSURE RATE
N-2(e)+(f)	(2)	Concrete Density is 14	8.52 lbs/++3 vice 145 lbs/++3	
N-2(e)*(7)	(2)	(e) Leakage: Path Length: 14.2in x 148.52 = 14.35 in 36.44 cm = 36.71 cm g 14.45 in. (f) 78° Scatter: Path Length: 14.2in x 148.52 : 14.35 in. 36.44 cm = 37.25 cm or 14.67 in. Total Expasure Rate from	7500 mR x (7.32m)2 = 140 mR IL : 140 mR x e - 693 x 36.71cm IL : 140 mR x e - 4.1032 IL : 140 mR x [1.6519 x 10-2] IL : 2.313 mR 7500 R x 0.0014 (0.65 m)2 x (7.39 m)2 455 mR 1780 SCATTET = 455 mR x e - 693 x 37.25cm I780 SCATTET = 455 mR x e - 5.163	
		Point N-2 is: 2.313 mp/hr. 2.605 mp/hr. 4.918 mp/hr.	Intescener = 455 mg x 5.7253 x/63	4.918 me
E-1 (G)+(d)	(3)	(c) Leakage: Path Length: 22.2in : 21.898in or 55.626 55.626m : 67.09cm or 26.4/in.	7500 me x (6.2m) = 195 me hr. IL = 195 me x e - 5.93 x 67.00c. IL = 195 me x e - 7.4989 IL = 195 me x [5.5367 x /0-4]	
		(d) 37. Scatter: Path Length: 22.2in . 21.898 in er 55.62cm 55.62cm = 69.64cm er 27.42 in. Total Expasure Rate from beam orientation (3) at Point E-1 is: 0.108 me/hr. 0.932 me/hr.	I.: 0.108 mR/hr. 7500 R x 0.0049 (0.65m) x (5.66m) 2 2715 mR (0.65m) x (5.66m) 2 6.05m I 37° Scatter 2715 mR x e 6.05m I 37° Scatter 2715 mR x e 7.977 I 37° Scatter 2715 mR x [3.4328 x 10"] I 37° Scatter 2715 mR x [3.4328 x 10"]	
E-1 (c)+(d)	(3)	1.04 mR/hr. Sportere Density is 148.5. (c) Leokoge: Path Length: 22.2in. x 148.52 = 2243 in # 56.97 56.97 cm = 68.72 cm er 27.05 in.	2/bs/ft3 vice 145/bs/ft3 7500 mg x (6:2)2: 195 mg/Ar. 7cm. IL: 195 mg x @ 6:20m IL: 195 mg x @ 7.6811 IL: 195 mg x [4.6145 x 10-4]	7.07 AF
		(d) 37° Scatter: Path Length: 22.2inx 48.52:22.43in. \$56.9; 56.97cm = 71.33 cm et 28.08in. Total Exposure Rati from beam oriuntation (3) at Print E-1 is: 0.090 maling 20.768 malfor 0.858 malfor	11: 0.090 mR/hr.	

THE RADIOUM COBALT-60 TELETHERAPT ROOM

WALL-LOC.	BEAM	SHIELDED EXPOSURE RATE CALCULATIONS	EXPOSURE
POINT	ORIENT.	CALCULATIONS	RATE
E-2 (a)+(b)	(1)	(a) Leakage: Path Length: 22.2in : 21.898in. \$\operatornum{\text{25.62cm}}{\text{loss}}\$ = \$56.24 cm \text{ et } 22.14 in. \[\begin{array}{c} \frac{1}{1.0138} \\ \frac{1}{1.0138} \end{array} = \$2.14 in. \] \[\begin{array}{c} \frac{1}{1.0138} \\ \frac{1}{1.0138}	
	(.)	+0.090 malar 1070 Scarer = 0.0896 malar 0.822 majar. Concrete Density is 148.52 lbs/ft3 vice 145 lbs/ft3	0.822 mR
E-2(a)+(b)	(1)	(a) Leakage: Path Length: 22.2in. x 148.52 lbs/ft = 22.43in 56.97cm = 57.60cm or 2:2.68in. Cos 8.50 = 57.60cm or 2:2.68in. [L: 393 mg x [1.5992x/6]] IL: 393 mg x [1.5992x/6]] IL: 0.629 mg TL: 0.629 mg 11: 0.629 mg 12: 0.629 mg 12: 0.65m) = 59.57cm or 23.45in. Total Exposure Rate from beam orientation (1) at Point E-2 is: 0.629 mg/hr 1070 scatter: 0.629 mg/hr 11070 scatter: 11070	
E-2(e)+(f)	(3)	(e) Leakage: Path Length: 22.2in.: 21.898 in. gr 55.62cm 55.62cm 57.323cm or 22.57 in. [L: 269 mR x (5.28m) = 269 mR 55.62cm IL: 269 mR x (6.495 x 10-3) IL: 269 mR x [1.6495 x 10-3] IL: 269 mR x [1.6495 x 10-3] IL: 269 mR x [1.6495 x 10-3] IL: 269 mR x (0.0053 = 4, 259 mR) 55.62cm 55.62cm 58.483cm or 23.025 in. Total Exposure Rate from beam Orientation(3) at Point E-2 is: 0.444 mR/hr 135° scatta = 4, 259 mR x [1.2596x 10-3] Iso'scatta = 4, 259 mR x [1.2596x 10-3] Iso'scatta = 5.365 mR Iso'scatta = 5.365 mR Iso'scatta = 5.365 mR	

THE RADIOIUM COBALT-60 TELETHERAP COOM

WALL-LOC.	BEAM ORIENT	SHIELDED EXPOSURE RATE CALCULATIONS CALCULATIONS	EXPOSURE RATE
E-2(e)+(f)	(3)	Concrete Density is 148.52 lbs/st3 vice 145/bs/st3 (e) Leakage; Path Length: 22.2in.x 148.52 = 22.43 in.st 56.971cm 56.971cm 56.971cm 56.971cm 56.971cm 1 = 269 mR x e - 6.5647727 1 = 269 mR x e - 6.5647727 I = 269 mR x e - 6.56477 I = 269 mR x e - 6.56477 I = 269 mR x e - 6.56477 I = 269 mR x e -	8
S-1(a)+(b)	(1)	(a) Leokage: Path Length: Measured differtly: From the elevation drawing since both WALL + Roof are involved. Thickness of concrete ranges from Thickness of concrete ranges from It: 539 me x [:: 2465 x 10-4] Source of leukage or scaper. For all subsequent calculations to this point, we will assume a concrete thickness of 30 in. or 76.2 cm corrected for density to: 29.59 in. or 76.2 cm [b) 1270 Scatter: Table 1 1 2 39 me x [:: 2465 x 10-4] The subsequent calculations The subsequent calculati	
		Figh Length: 29.59 in. or 75.16 cm. Total Exposure Rati from beam orientation (1) at foint S-1 is: 0.121 mR/hr + 9.005 mR/hr 0.126 mR/hr.	0.126 ms
5-1(a)+(b)	(1)	Concrete Density is 148.52 lbs/ft3 vice 145 lbs/ft3 Parh Length: [30in or 76.2 cm] x (48.52) = 30.31in. ar 76.99 cm (a) Leakage (b) 127° Scatter: [a) Leakage (c) 127° Scatter: [a)	1

THE RADIOUM COBALT-60 TELETHERAPY COM Page - 11

WALL-LOC. POINT	BEAM ORIENT.	SHIELDED EXPOSURE RATE CALCULATIONS CALCULATIONS	EXPOSURE RATE
S-16)+(d)	(2)	Path Length for both Leakage and 90° Scatter is assumed to be at least 30 inches or 76.2 cm, corrected for density to: 29.59 in of 75.16 cm. (d) 90° Scatter: 75.16 cm. (d) 90° Scatter: 75.16 cm. (e) Leakage: (d) 90° Scatter: 75.16 cm. (o) 100 mr × (1.28 m) × 409.4 mr. (o) 100 mr × (1.28 m) × 409.4 mr. (o) 100 mr × (1.08 m)	
S-1 (e)+(d)	(2)	Concrete Density is 148.52 lbs/473 vice 145/bs/473 Path Length: [30 in. or 76.2 cm] x (148.52): 30.31 in at 76.99 cm (c) Leakige: (d) 90° Scatter: 409.4 me x e 6.2 cm IL: 409.4 me x e 6.2 cm IL: 409.4 me x e 8.6055 Igo scatte: 955 me x e 71.59871 IL: 409.4 me x & 6.31×10 Total Exposure Rate IL: 0.075 me/hr. From Beam Orient. [90° Scatter: 0.009 me/hr. (2) at Point 5-1 is 0.075 me/hr. 0.009 me/hr.	
C-1(a)	(1)	(a) Leakage: Path Length: 27.0in x 1.0138 26.63in. Or IL: 1,767 mR x e - 693x67.65cm IL: 1,767 mR x e - 7.5615241 IL: 1,767 mR x e - 7.5615241 IL: 1,767 mR x e - 7.5615241 IL: 0.919 mx/hr	0.919 DR
C-1(a)	(1)	Concrete Density is $148.52 lbs/41^3$ vice $145 lbs/41^3$ (a) Leakage: Path: Length= $[27.0 in \text{ or } 68.58 cm] \times \frac{148.52 lb}{147 lbs/41^3} = 27.28 in. \text{ or } 69.29 cm$ $7500 \frac{mR}{hr} \times \frac{1}{(2.06m)^2} = 1767 \frac{mR}{hr}$ $I_L: 1767 \frac{mR}{hr} \times e^{-\frac{.693 \times 69.29 cm}{6.2 cm}}$ $I_L: 1767 \frac{mR}{hr} \times e^{-\frac{.693 \times 69.29 cm}{6.2 cm}}$ $I_L: 1767 \frac{mR}{hr} \times e^{-\frac{.794 \times 89.29 cm}{6.2 cm}}$ $I_L: 1767 \frac{mR}{hr} \times e^{-\frac{.794 \times 89.297 \times 10^{-4}}{1000}}$ $I_L: 0.765 \frac{mR}{hr}$	0.765 mR

Page nine

VII. Signature of Certifying Official

I hereby certify that the Radiarium has implemented the ALARA Program set forth above.

(Signature) Richard Amorrism

Richard A. Morrison, M.D.

(Mame - print or type)

Director

(Title)

Licensee Address:

Prior to December 15, 1980:

Richard A. Morrison, M.D. 9021 Dalmar Shawnee Mission, Kansas 66207

After December 15, 1980 :

Richard A. Morrison, M.O. The Radiarium 17525 Medical Center Parkway Independence, Missouri 64057

THE RADIARIUM

APPLICATION FOR NUCLEAR REGULATORY COMMISSION TELETHERAPY LICENSE

Annex G - Item No. 18
Emergency Procedures for the Teletherapy Unit
IN THE EVENT OF EQUIPMENT FAILURE
RESULTING IN THE SOURCE REMAINING
"GN". THE OPERATOR SHOULD DO THE

FOLLOWING:

- A. If the patient is ambulatory, instruct him to get off the table and leave the room.
- B. If the patient is not ambulatory:
 - If the patient can be removed from the room, enter the room and avoiding exposure to the useful beam, pull the treatment table as far away from the useful beam as possible, transfer the patient to a stretcher and remove him from the room.
 - 2. If the patient cannot be removed from the teletherapy room without assistance:
 - (a) Take the red "T" rod kept at the control panel and enter the treatment room. Insert the "T" rod into hole in front head trim cover and push source drawer to "OFF" position.
 - (b) Obtain additional assistance in removing the patient from the room.

CAUTION: STAY OUT OF THE DIRECT (USEFUL) BEAM AT ALL TIMES

- C. Close the entry door to the treatment room, lock it, and post a sign to guard against anauthorized access.
- D. Notify Dr. Richard Morrison for remedial action to be taken.

04676

WALL-LOC.		SHIT DED EXPOSURE RATE CALCULATIONS	EXPOSURE
POINT (-1 (d)+(e)	(4)	(d) Leakage: Path Length: 27.0 in. $\times \frac{1}{1.0138}$: 26.63 in. 67.65 cm $11: 575.5 \frac{mR}{hr} \times \frac{1}{(3.61m)^2}: 575.5 \frac{mR}{hr}$ $11: 575.5 \frac{mR}{hr} \times \frac{1}{6.2cm}$ $11: 575.5 \frac{mR}{hr} \times \frac{1}{6.2cm} \times \frac{1}{6.2cm}$ $11: 575.5 \frac{mR}{hr} \times \frac{1}{6.2cm} \times \frac{1}{6.2cm}$ $11: 575.5 \frac{mR}{hr} \times \frac{1}{6.2cm} \times \frac{1}{6.2cm} \times \frac{1}{1.0138} \times \frac{1}{1$	
C-1(d)+(e)	(4)	4.862 mR/hr. $I_{35^{\circ}}$ saa π er: 4.563 mR/hr. $Concrete$ Density is [48.52] bs/st3 vice [45] bs/st3 Path Length = [27.0 in or 68.58 cm] × $\frac{148.52}{147}$ bs/st3 = 27.28 in er 69.29 cm. (d) Leakage: (e) 35° Scatter: $\frac{693 \times 61.29 \text{ cm}}{147}$ bs/st3 = 10,315.6 $\frac{mR}{hr}$ x e $\frac{693 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{69.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{69.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{69.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 5 \times 61.29 \text{ cm}}{12.575.5 \frac{mR}{hr}}$ x e $\frac{135 \times 61.29 \text{ cm}}{12$	
C-2(a)+(b)	(4)	(a) Leakage: Path Length: 20.0 in x 1.013 t	
C-2(a) + (b)	(4)	Concrete Density is 148.52 lbs/ft3 vice 145/b5/ft3 (a) Leakage: (b) 350 Scatter: (a) Leakage: Fath length: 20.0 inx 148.52: 20.207 ingr 51.325 im Fath length: 20.0 inx 148.52: 20.207 ingr 51.325 im 51.325 cmx 103350: 62.656 cm or 24.67 in. L: 384 ma x e - 10033238 Total Exposure IL: 384 ma x E - 7.0033238 Total Exposure IL: 384 ma x E - 7.0033238 Total Exposure IL: 384 ma x E - 7.00885 x / 6 1 3 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 7.53899 IL: 384 ma x E - 7.00885 x / 6 1 8 catta = 6.347 ma x e - 6.347 ma x e	

THE RADIARIUM

APPLICATION FOR NUCLEAR REGULATORY COMMISSION TELETHERAPY LICENSE

An F - Item No. 13 Radia on Safety Program

The Radiarium Program for Maintaining Occupational Radiation Exposures as low as Reasonably Achievable (ALARA)

Richard A. Morrison, M.D.

July 15, 1980

1. Management Commitment

- a. I, the Director of the Radiarium, a radiation therapy facility, am committed to the program described in this paper for keeping exposures (individual and collective) as low as reasonably achievable (ALARA). In accord with this commitment, I hereby describe an administrative organization for radiation safety and will develop the necessary written policy, procedures and instructions to foster the ALARA concept within my institution. The organization will include the Director as onsite Radiation Safety Officer and an offsite consulting medical physicist or health physicist.
- b. I will perform a formal annual review of the radiation safety program including ALARA considerations. This shall include reviews of operating procedures and past exposure records, inspections, etc., and consultations with the above mentioned medical physicist or health physicist.
- c. Modification to operating and maintenance procedures and to equipment and facilities will be made where they will reduce exposures unless the cost, in my judgement, is considered to be unjustified. I will be able to demonstrate, if necessary, that improvements have been sought, that modifications have been considered, and that they have been implemented

DATE: July 15, 1980)4676

Page two

Annex F - Item No. 13

1. Management Commitment (continued)

where reasonable. Where modifications have been recommended but not implemented, I will be prepared to describe the reasons for not implementing them.

d. In addition to maintaining doses to individuals as far below the limits as is reasonably achievable, the sum of the doses received by all exposed individuals will also be maintained at the lowest practicable level. It would not be desirable, for example, to hold the highest doses to individuals to some fraction of the applicable limit if this involved exposing additional people and significantly increasing the sum of radiation doses received by all involved individuals.

II. Radiation Safety Committee

At the present time, the responsibilities of the radiation safety committee have been assumed by the Director who will carry out the following functions where applicable, until such time as the staff of the Radiarium expands to make the establishment of a radiation safety committee practical. The Director will also function as the radiation safety officer in consultation with a medical physicist or health physicist, until such time as a full-time qualified radiation physicist or health physicist can join the staff.

- a. Review of Proposed Users and Uses
 - The RSC will thoroughly review the qualifications of each applicant with respect to the types and quantities of materials and uses for which he has applied to assure that the applicant will be able to take appropriate measures to maintain exposure ALARA.
 - 2. When considering a new use of byproduct material, the RSC will review the efforts of the applicant to maintain exposure ALARA. The user should have systematized procedures to ensure ALARA, and shall have incorporated the use of special equipment such as syringe shields, rubber gloves, etc., in his proposed use.
 - The RSC will ensure that the user justifies his procedures and that dose will be ALARA (individual and collective).

DATE: July 15, 1980

Page three

Annex F - Item No. 13 II. Radiation Safety Committee (continued)

b. Delegation of Authority

- 1. The RSC will delegate authority to the RSO for enforcement of the ALARA concept.
- 2. The RSC will support the RSO in those instances where it is necessary for the RSO to assert his authority. Where the RSO has been overruled, the committee will record the basis for its action in the minutes of the committee's quarterly meeting.

c. Review of ALARA Program

- The RSC will encourage all users to review current procedures and develop new procedures as appropriate to imp'ement the ALARA concept.
- 2. The RSC will perform a quarterly review of occupational radiation exposure with particular attention to instances where investigational Levels in Table I below are exceeded. The principle purpose of this review is to assess trends in occupational exposure as an index of the ALARA program quality and to decide if action is warranted when investigational Levels are exceeded.
- 3. The RSC will evaluate this institution's overall efforts for maintaining exposures ALARA on an annual basis. This review will include the efforts of the RSO, authorized users, and workers as well as those of management.

Annex F is the Radiarium Program for Maintaining Occupational Radiation Exposures
As Low As Reasonably Achievable (ALARA). This program is based on the Model
Program which was enclosed with the NRC letter to all medical licensees and
dated June 16, 1980. Since this is an application for a private practice physician to be licensed for use of a Co-60 teletherapy unit, references in the Model
Program to a Radiation Safety Committee do not apply. In particular, Section II
of the Model Program has been modified in the Radiarium Program for the following
reasons:

a. Review of Proposed Users and Uses.

Since the Radiation Safety Committee does not exist in this private practice environment and since the Radiation Safety Officer is also the Director and the only user (for the near future), and since for the

Page four

Annex F - Item No. 13
II. Radiation Safety Committee (continued)

purpose of this license the only use will be external beam teletherapy, it is unlikely that paragraphs 1, 2, and 3 of Section Ha could apply.

b. Delegation of Authority.

It is assumed that in the case of a private practice, such as exists

here, the authority normally vested with the Radiation Safety Committee

will rest with the Radiation Safety Officer, since the RSC does not exist.

c. Review of ALARA Program.
The three items mentioned in this section overlap into the responsibilities of the Radiation Safety Officer, which are outlined in Section III.

The Radiarium Program will be general enough to allow for expansion of staff to include a radiation safety committee.

Personnel Monitoring Devices:
Searle Diagnostics, Inc., Health Physics Services, will provide clip-on film badges for all occupationally exposed personnel to determine 'whole body and skin' X-, gamma and beta dose. Badges are changed and reported monthly.

III. Radiation Safety Officer (RSO)
The Director, functioning as the RSO, may request a consulting medical physicist
or health physicist to carry out some of the functions listed below.

- a. Annual and Quarterly Review
 - Annual review of the Radiation Safety Program. The RSO will perform an annual review of the Radiation Safety Program for adherence to ALARA concepts. Reviews of specific procedures may be conducted on a more frequent basis.
 - 2. Quarterly review of Occupational Exposures. The RSO will review at least quarterly the external radiation exposures of authorized

Page five

Annex F - Item No. 13 III. Radiation Safety Officer (RSO) (continued)

users and workers to determine that their exposures are ALARA in accordance with the provisions of paragraph VI of this program.

- Quarterly review of records of Radiation Level Surveys. The RSO
 will review radiation levels in unrestricted and restricted areas
 to determine that they were at ALARA levels during the previous
 quarter.
- b. Education Responsibilities for an ALARA Program
 - The RSO will schedule briefings and educational sessions to inform workers of ALARA program efforts.
 - 2. The RSO will assure that authorized users, workers, and ancillary personnel who may be exposed to radiation will be instructed in the ALARA philosophy and informed that management, the RSC and the RSO are committed to implementing the ALARA concept.
- c. Cooperative Efforts for Development of ALARA Procedures
 - Radiation workers will be given opportunities to participate in formulation of the procedures that they will be required to follow.
 - The RSO will be in close contact with all users and workers in order to develop ALARA procedures for working with radioactive materials.
 - 3. The RSO will establish procedures for receiving and evaluating the suggestions of individual workers for improving health physics practices and encourage the use of those procedures.
- d. Reviewing Instances of Deviation from Good ALARA Practices.

The RSO will investigate all known instances of deviation from good ALARA practices; and, if possible, determine the causes. When the cause is known, the RSO will require changes in the program to maintain exposures ALARA.

IV. Authorized Users

- a. New Procedures Involving Potential Radiation Exposures
 - The authorized user will consult with, and receive the approval of, the RSO and/or RSC during the planning stage before using radioactive materials for a new procedure.
 - 2. The authorized user will evaluate all procedures before using radioactive materials to ensure that exposures will be kept

Page six

Annex F - Item No. 13 IV. Authorized Users (continued)

ALARA. This may be enhanced through the application of trial runs.

- b. Responsibility of the Authorized User to Those He Supervises
 - 1. The authorized user will explain the ALARA concept and his commitment to maintain exposures ALARA to all of those he supervises.
 - 2. The authorized user will ersure that those under his supervision who are subject to occupational radiation exposure are trained and educated in good health physics practices and in maintaining exposures ALARA.

V. Persons Who Receive Occupational Radiation Exposure

- a. The worker will be instructed in the ALARA concept and its relationship to his working procedures and work conditions.
- b. The worker will know what recourses are available if he feels that ALARA is not being promoted on the job.

Establishment of Investigational Levels in Order to Monitor Individual Occupational External Radiation Exposures.

The Radiarium hereby establishes Investigational Levels for occupational external radiation exposure which, when exceeded, will initiate review or investigation by the Radiation Safety Committee and/or the Radiation Safety Officer. The Investigational Levels that we have adopted are listed in Table 1 below. These levels apply to the exposure of individual workers.

Table 1

Investigational Levels (mrems per calendar quarter)

		LEVEL I	LEVEL II	
1.	Whole body; head and trunk; active blood-forming organs; lens of eyes; or gonads	125	375	
2.	Hands and forearms; feet and ankles	1875	5625 Depuis	1
			DATE: July 95, 988	

Page seven

Annex F - Item No. 13 VI. Establishment of Investigational Levels ... (continued)

The Radiation Safety Officer will review and record on Form NRC-5, Current Occupational External Radiation Exposures, or an equivalent form (e.g. dosimeter processor's report), results of personnel monitoring, not less than once in any calendar quarter, as is required by 10 CFR 20, 20.401. The following actions will be taken at the investigational Levels as stated in Table 1.

e. Quarterly exposure of individuals to less than Investigational Level I.

Except when deemed appropriate by the RSO, no further action will be taken in those cases where an individual's exposure is less than Table 1 values for the Investigational Level I.

b. Personnel exposures equal to or greater than Investigational Level I, but less than Investigational Level II.

The RSO will review the exposure of each individual whose quarterly exposures equal or exceed Investigational Level I. He will report the results of his reviews at the first RSC meeting following the quarter when the exposure was recorded. If the exposure does not equal or exceed Investigational Level II, no action related specifically to the exposure is required unless deemed appropriate by the Committee. The Committee will, however, consider each such exposure in comparison with those of others performing similar tasks as an index of ALARA program quality and will record the review in the Committee minutes.

c. Exposure equal to or greater than Investigational Level II.

The RSO will investigate in a timely manner the cause(s) of all personnel exposures equaling or exceeding Investigational Level II

Page eight

Annex F - Item No. 13
VI. Establishment of Investigational Levels ... (continued)

and, if warranted, take action. A report of the Investigation, actions taken, if any, and a copy of the individual's Form NRC-5 or its equivalent will be presented to the Radiation Safety Committee at the first Radiation Safety Committee meeting following completion of the investigation. The details of these reports will be recorded in the Committee minutes. Committee minutes will be sent to the management of this institution for review. The minutes, containing details of the investigation, will be made available to NRC inspectors for review at the time of the next inspection.

d. Re-establishment of an individual occupational worker's Investigational Level II above that listed in Table 1.

In cases where a worker's or a group of worker's exposures need to exceed Investigational Level II, a new, higher Investigational Level II may be established on the basis that it is consistent with good ALARA practices for that individual or group. Justification for a new Investigational Level II will be documented.

The Radiation Safety Committee will review the justification for, and will approve, all revisions of Investigational Levels II. In such cases, when the exposure equals or exceeds the newly established Investigational Level II, those actions listed in paragraph c above will be followed.